

TEST REPORT

EUT Description	WLAN and BT, 1x1 PCIe M.2 1216 SD adapter card
Brand Name	Intel® Wireless-AC 9462
Model Name	9462D2W
FCC ID ISED ID	PD99462D2 1000M-9462D2
Date of Test Start/End	2017-10-25 / 2017-11-29
Features	802.11ac, Dual Band, 1x1 Wi-Fi + Bluetooth® 5, Diversity Antenna (see section 5)
Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Contact Person	Steven Hackett
Telephone/Fax/ Email	steven.c.hackett@intel.com
Reference Standards	FCC CFR Title 47 Part 15 E RSS-247 issue 2, RSS-Gen issue 4 (see section 1)
Test Report identification	170919-01.TR03
Revision Control	Rev. 00 This test report revision replaces any previous test report revision (see section 8)

The test results relate only to the samples tested. The test report shall not be reproduced in full, without written approval of the laboratory.

Issued by

Reviewed by

Gregory ROUSTAN (Test Engineer Lead)

Jose M. FORTES (Technical Officer)

Intel Mobile Communications France S.A.S – WRF Lab 425 rue de Goa - Le Cargo B6 - 06600, Antibes, France Tel. +33493001400 / Fax +33493001401

Table of Contents

1.	Standa	ards, reference documents and applicable test methods	3
2.	Gener	al conditions, competences and guarantees	3
3.	Enviro	nmental Conditions	3
4.	Test s	amples	
		eatures	
		ks and comments	
7.		erdicts summary	
7.	1. 80	2.11 A/N/AC – U-NII- 3	5
8.	Docun	nent Revision History	5
Ann	ex A.	Test & System Description	6
A.	1 M	EASUREMENT SYSTEM	6
A.		ST EQUIPMENT LIST	
Α.		EASUREMENT UNCERTAINTY EVALUATION	-
Ann	ex B.	Test Results U-NII-3	
В.	1 Tr	ST CONDITIONS	
B.		ST RESULTS TABLES	
	B.2.1	6dB & 99% Bandwidth	
	B.2.2	Power Limits. Maximum output power & Peak power spectral Density	
	B.2.3	Undesirable emission limits : Band Edge (Conducted)	
	B.2.4	Radiated spurious emission	
В.	.3 Te	ST RESULTS SCREENSHOT	
	B.3.1	6dB Bandwidth	
	B.3.2	6dB Bandwidth (Overlapped Channel)	
	B.3.3	99% Bandwidth	
	B.3.4	26dB Bandwidth (Overlapped Channel)	
	B.3.5	Maximum output power	
	B.3.6	Maximum output power (Overlapped Channel)	
	B.3.7	Peak power spectral Density	
	B.3.8	Peak power spectral Density (Overlapped Channel)	
	B.3.9	Undesirable emission limits : Band Edge (Conducted)	
Ann	ex C.	Photographs	56
C.	.1 Te	ST SETUP	56
C.	.2 Te	ST SAMPLE	58

1. Standards, reference documents and applicable test methods

- 1. FCC 47 CFR part 15 Subpart E Unlicensed National Information Infrastructure Devices.
- 2. FCC 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements.
- 3. FCC OET KDB 789033 D02 General U-NII Test Procedures New Rules v01r04 Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E)
- FCC OET KDB 644545 D03 Guidance for IEEE 802.11ac v01 GUIDANCE FOR IEEE Std 802.11ac[™] DEVICES EMISSION TESTING.
- 5. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- 6. RSS-247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
- 7. RSS-Gen Issue 4 General Requirements for Compliance of Radio Apparatus.

2. General conditions, competences and guarantees

- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2005 testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC, with Designation Number FR0011.
- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is a Registered Test Site listed by ISED, with ISED Assigned Code 1000Y.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	21 ℃ ±3 ℃
Humidity	35 % ± 10 %

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of receipt	Note
	170919-01.S41	Module	9462D2W	WFM 3413E86E6045	2017-10-05	
	170524-02.S15	Extender Board	PCB00609_01	6092416-442	2017-05-30	Used for Conducted
#01	170000-01.S01	Laptop	Latitude E5470	DPBLMC2	2017-03-28	Tests
	170220-04.S04	Adapter 1216SD to M.2	JfP Adapter M2	N/A	2017-04-10	
	170919-01.S46	Module	9462 D2W	WFM:3413E86E603B	2017-10-05	
	170220-02.\$03	Extender Board	PCB00609_01	6092416-446	2017-02-20	Used for Radiated Tests (From 30MHz to 1GHz)
#02	170000-01.S13	Laptop	Latitude E5470	FT6LMC2	2017-05-30	
	170727-02.S11	Adapter 1216SD to M.2	JfP Adapter M2	N/A	2017-08-09	
	170919-01.S48	Module	9462 D2W	WFM:3413E86E5FE1	2017-10-05	
#03	170220-02.S04	Extender Board	PCB00609_01	6092416-493	2017-02-20	Used for Radiated
	7KNOXF2	2017-09-13	Tests (From 1GHz to 40GHz)			
	170727-02.S13	Adapter 1216SD to M.2	JfP Adapter M2	N/A	2017-08-09	

5. EUT Features

Brand Name	Intel® Wireless-AC 9462		
Model Name	9462D2W		
FCC ID	PD99462D2		
ISED ID	1000M-9462D2		
Software Version	10.1739.0-06012		
Driver Version	99.0.28.6		
Prototype / Production	Production		
Supported Radios	802.11b/g/n 802.11a/n/ac	2.4GHz (2400.0 – 2483.5 MHz) 5.2GHz (5150.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz)	
	Bluetooth 5	5.8GHz (5725.0 – 5850.0 MHz) 2.4GHz (2400.0 – 2483.5 MHz)	
Antenna Information	CHAIN A Div1: PIFA antenna. WiFi 2.4GHz & 5GHz and BT CHAIN A Div2: PIFA antenna. WiFi 2.4GHz & 5GHz and BT		
Additional Information	-		

6. Remarks and comments

N/A

7. Test Verdicts summary

7.1. 802.11 a/n/ac – U-NII- 3

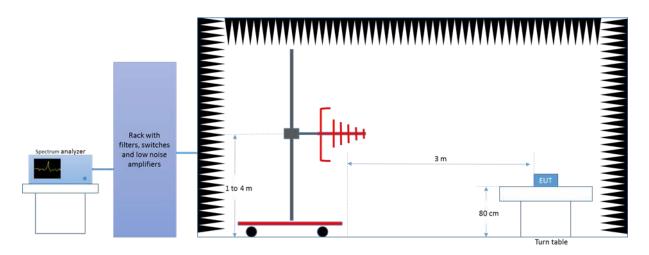
FCC part	RSS part	Test name	Verdict
15.407 (a) (3)	RSS-247 Clause 6.2.4.1	Power Limits. Maximum output power	Р
15.407 (a) (3)	RSS-247 Clause 6.2.4.1	Peak power spectral density	Р
15.407 (b) (3)	RSS-247 Clause 6.2.4.2	Undesirable emissions limits: Band Edge (conducted)	Р
15.407 (b) (3) 15.209	RSS-247 Clause 6.2.4.2 RSS-GEN Clause 8.9	Undesirable emissions limits (radiated)	Р

8. Document Revision History

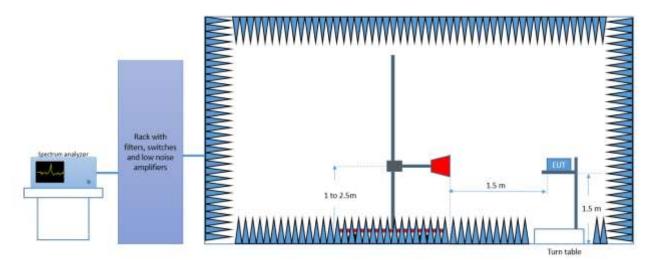
Revision #	Date	Modified by	Revision Details
Rev.00	2017-12-06	A.Sayoud I.Kharrat	First Issue

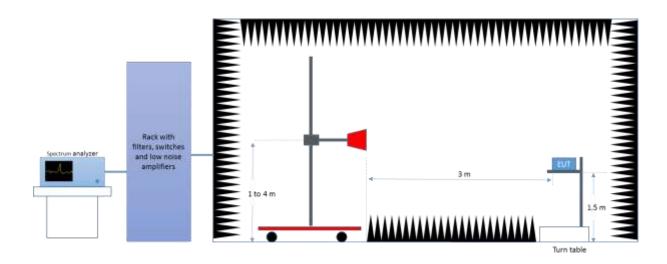

Annex A. Test & System Description

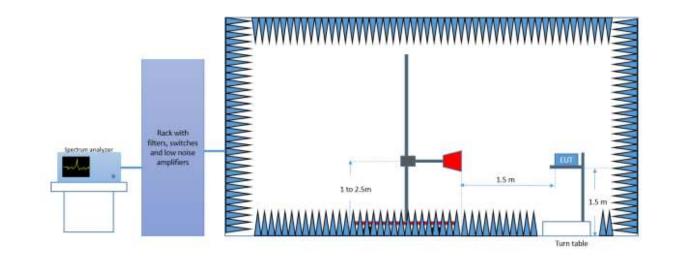
A.1 Measurement System


Measurements were performed using the following setups, made in accordance to the general provisions of FCC KDB 789033 D02 General UNII Test Procedures.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes, using the Intel proprietary tool DRTU.


Conducted Setup


Radiated Setup 30 MHz-1GHz


Radiated Setup 1 GHz – 6.4 GHz

Radiated Setup 6.4GHz - 18 GHz

Radiated Setup 18 GHz – 40 GHz

A.2 Test Equipment List

Conducted Setup

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0316	Spectrum analyzer	FSV30	103309	Rohde & Schwarz	2017-09-22	2019-09-22

Radiated Setup-1

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0133	Spectrum analyzer	FSV40	101358	Rohde & Schwarz	2016-04-15	2018-04-15
0137	Log antenna 30 MHz – 1 GHz	3142E	00156946	ETS Lindgren	2015-12-11	2017-12-11
0141	Double Ridged Horn Antenna 1 GHz – 18 GHz	3117	00157736	ETS Lindgren	2016-04-13	2018-04-13
0135	Semi Anechoic chamber	FACT 3	5720	ETS Lindgren	2016-04-28	2018-04-28
0530	Measurement Software	EMC32	100623	Rohde & Schwarz	N/A	N/A
0296	Power Supply	6673A	MY41000318	Agilent	N/A	N/A
0346	Multimeter	34401A	US36054685	HP	2016-02-04	2018-02-04

N/A: Not Applicable

Radiated Setup-2

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0420	Spectrum analyzer	FSV40	101556	Rohde & Schwarz	2016-04-14	2018-04-14
0138	Horn antenna 1 GHz – 6.4 GHz	3117	00152266	ETS Lindgren	2016-03-14	2018-03-14
0334	Double Ridged Horn Antenna 18 GHz – 40 GHz	3116C-PA	00196308	ETS Lindgren	2017-08-22	2019-08-22
0337	Full Anechoic chamber	RFD_FA_100	5996	ETS Lindgren	2016-04-28	2018-04-28
0329	Measurement Software	EMC32	100401	Rohde & Schwarz	N/A	N/A

N/A: Not Applicable

Radiated Setup - shared equipments

ID#	Device	Type/Model	Serial #	Manufacturer	Cal. Date	Cal. Due Date
0617	Power Sensor 50MHz-18GHz (Peak and average)	NRP-Z81	104386	Rohde & Schwarz	2017-05-24	2019-05-24
0618	Power Sensor 50MHz-18GHz (Peak and average)	NRP-Z81	104382	Rohde & Schwarz	2017-05-24	2019-05-24

A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the below table:

Measurement type	Uncertainty [±dB]
Conducted Power	±1.0
Conducted Spurious Emission	±2.9
Radiated tests <1GHz	±3.8
Radiated tests 1GHz - 40 GHz	±4.7

Annex B. Test Results U-NII-3

B.1 Test Conditions

For 802.11a, 802.11n20 (20 MHz channel bandwidth), 802.11n40 (40MHz channel bandwidth), 802.11ac80 (80MHz channel bandwidth) modes the EUT can transmit at both CHAIN A Div1 and CHAIN A Div2 RF outputs individually, but not simultaneously.

The conducted RF output power at chain A Div1 and chain A Div2 was adjusted according to the client's supplied Target values (see following table) using the Intel DRTU tool and measuring the power by using a spectrum analyser with the channel integration method according to point II) E) 2) e) (Method SA-2 Alternative) of Guidance 789033 D02. Measured values for adjustment were within +/- 0.25 dB from the declared Target values.

U-NII-3			Conducted Power, Target Value (dBm)			
Mode	BW (MHz)	Data Rate	CH #	Freq. (MHz)	Chain A Div1	Chain A Div2
			149	5745	21.5	21.5
802.11a	20	6Mbps	157	5785	21.0	21.5
			165	5825	21.5	21.5
			149	5745	21.0	21.5
	20	HT0	157	5785	21.0	21.5
802.11n			165	5825	21.5	21.5
	40	ЦТО	151F	5755	16.0	16.0
	40	HT0	159F	5795	20.5	21.5
802.11ac	80	VHT0	155ac80	5775	14.5	15.0

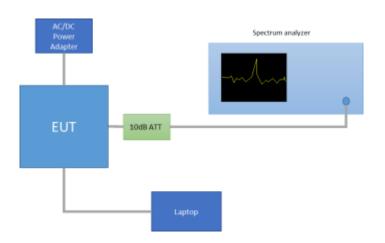
Overlapped cha	annels betwe	en UNII-2C a	Conducted Power, Target Value (dBm)			
Mode	BW (MHz)	Data Rate	CH #	Freq. (MHz)	Chain A Div1	Chain A Div2
802.11n	20	HT0	144	5720	20.0	20.0
002.1111	40	HT0	142F	5710	19.5	20.0
802.11ac	80	VHT0	138ac80	5690	19.5	19.5

The following data rates were selected based on preliminary testing that identified those rates as the worst cases for output power and spurious levels at the band edges:

802.11a → 6Mbps 802.11n20 and 802.11n40 (SISO) → HT0 802.11ac80 (SISO) → VHT0

Alternative channels to the lowest and highest channels per band have been also tested for Band Edge compliance.

B.2 Test Results Tables


B.2.1 6dB & 99% Bandwidth

Test limits

FC	C part	RSS part	Limits
15.4	407 (e)	RSS-247 Section 6.2.4.1	For equipment operating in the band 5725-5850 MHz, the minimum 6 dB bandwidth shall be at least 500 kHz.

Test procedure

The setup below was used to measure the 6dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

For the overlapped channels between U-NII-2C and U-NII-3 bands, and according to FCC KDB 644545 D03, the boundary frequency between the bands is used as one edge for defining the portion of the 6dB bandwidth that falls within a particular U-NII band. This rule is only applicable for the 6dB bandwidth and for those channels marked as overlapped.

Results tables

U-NII-3 channels

Mode	Rate	Antenna	Channel	Freq. [MHz]	6dB BW [MHz]	99% BW [MHz]
			149	5745	16.33	24.76
		CHAIN A DIV1	157	5785	16.33	21.60
802.11a	6Mbpo		165	5825	16.35	26.36
002.11a	6Mbps		149	5745	17.57	24.24
		CHAIN A DIV2	157	5785	17.57	24.40
			165	5825	17.58	25.16
		CHAIN A DIV1	149	5745	17.57	24.88
			157	5785	17.57	22.16
000 11=00			165	5825	17.58	28.44
802.11n20	HT0		149	5745	17.57	24.88
		CHAIN A DIV2	157	5785	17.57	24.44
			165	5825	17.58	25.60
			151F	5755	36.33	36.64
802 11=40	нто	CHAIN A DIV1	159F	5795	36.33	37.92
802.11n40	HT0		151F	5755	36.33	36.56
		CHAIN A DIV2	159F	5795	36.34	49.92
000 110000		CHAIN A DIV1	4550000	5775	72.72	75.12
802.11ac80	VHT0	CHAIN A DIV2	CHAIN A DIV2 155ac80		71.42	75.12

Max Value

Overlapped channels between U-NII-2C and U-NII-3

Mode	Rate	Antenna	Channel	Frequency	6dB BW [MHz]	26dB BW UNII-3
802.11n20	HT0	CHAIN A DIV1	144	5720	3.63	11.63
002.111120	піо	CHAIN A DIV2	144	5720	3.63	9.08
802.11n40	HT0	CHAIN A DIV1	142F	5710	3.18	8.54
002.111140	піо	CHAIN A DIV2	1426	5710	3.18	8.18
902 11 2290		CHAIN A DIV1	1280080	5600	3.17	14.12
802.11ac80	VHT0	CHAIN A DIV2	138ac80	5690	3.18	8.99

Max Value

Note, the 26dB bandwidth of the overlapped channels falling in U-NII-3 band is shown in the above table. These values were used to measure the maximum output power in the U-NII-3 band as specified in chapter B.2.2.

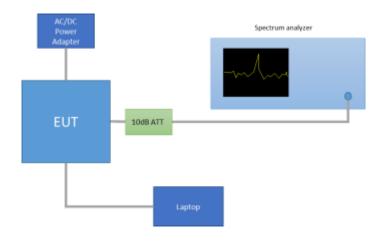
See Section B.3.1, B.3.2, B.3.3, and Section B.3.4 for the screenshot results.

B.2.2 Power Limits. Maximum output power & Peak power spectral Density

Test limits

FCC part	RSS part	Limits
15.407 (a) (3)	RSS-247 Clause 6.2.4.1	For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band

Test procedure


The Maximum Conducted Output Power was measured using the channel integration method according to point E) 2) e) (Method SA-2 Alternative) of KDB 789033 D02.

The maximum power spectral density (PSD) was measured using the method according to point F) (Method SA-2 Alternative) of KDB 789033 D02.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The setup below was used to measure the maximum conducted output power and power spectral density. The antenna terminal of the EUT is connected to the spectrum analyser through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

The declared maximum antenna gain is 5dBi.

For the overlapped channels between U-NII-2C and U-NII-3, and according to FCC KDB 644545 D03, the power is computed based on the portion of the emission bandwidth (26dB) contained within that band. This rule is only applicable for those channels marked as overlapped.

Results tables

Duty cycle

Mode	Rate	Antenna	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
802.11a	6Mbpa	CHAIN A DIV1	2.03	2.07	98.28%
002.11d	6Mbps	CHAIN A DIV2	2.03	2.07	98.28%
802.11n20		CHAIN A DIV1	1.89	1.93	98.11%
602.111120	HT0	CHAIN A DIV2	1.89	1.93	98.11%
802.11n40	НТО	CHAIN A DIV1	0.93	0.96	96.19%
602.11N40	HT0	CHAIN A DIV2	0.93	0.96	96.19%
902 11 220		CHAIN A DIV1	0.46	0.49	93.31%
802.11ac80	VHT0	CHAIN A DIV2	0.46	0.49	93.31%

Maximum output power - U-NII-3 Channels

Mode	Rate	Channel	Frequency (MHz)	Antenna	Average Cond. Output Power [dBm]	Max.* Cond. Output Power [dBm]	Max.* Cond. Output Power [mW]	Max.* EIRP [dBm]					
		149	5745	CHAIN A DIV1	21.25	21.25	133.35	26.25					
-		149	5745	CHAIN A DIV2	21.39	21.39	137.72	26.39					
802.11a	6Mbps	157	5785	CHAIN A DIV1	20.93	20.93	123.88	25.93					
802.	olviops	157	5765	CHAIN A DIV2	21.41	21.41	138.36	26.41					
		165	5825	CHAIN A DIV1	21.41	21.41	138.36	26.41					
		105	105	105	105	105	105	5625	CHAIN A DIV2	21.38	21.38	137.40	26.38
		149	5745	CHAIN A DIV1	21.00	21.00	125.89	26.00					
0		149	5745	CHAIN A DIV2	21.37	21.37	137.09	26.37					
802.11n20	нто	157	5785	CHAIN A DIV1	20.87	20.87	122.18	25.87					
02.1	1110	157	5765	CHAIN A DIV2	21.41	21.41	138.36	26.41					
õ		165	5825	CHAIN A DIV1	21.55	21.55	142.89	26.55					
		105	5625	CHAIN A DIV2	21.43	21.43	139.00	26.43					
0;		1515	151F	1515	5755	CHAIN A DIV1	16.02	16.19	41.58	21.19			
802.11n40	НТ0	1511	5755	CHAIN A DIV2	16.05	16.22	41.87	21.22					
02.1	1110	159F	5795	CHAIN A DIV1	20.36	20.53	112.95	25.53					
80		1995	5795	CHAIN A DIV2	21.44	21.61	144.84	26.61					
802.11ac80	VHT0	155ac80	5775	CHAIN A DIV1	13.98	14.28	26.80	19.28					
802.1	VIIIO	100000	5175	CHAIN A DIV2	14.53	14.83	30.41	19.83					

* Maximum values are the duty cycle compensated values calculated from the average (measured)

Max Value

Maximum output power - Overlapped channels between U-NII-2C and U-NII-3

Mode	Rate	Channel	Freq.	Antenna	Average Cond. Output Power UNII-3 [dBm]	Max.* Cond. Output Power UNII-3 [dBm]	Max.* Cond. Output Power UNII-3 [mW]	Max.* EIRP UNII-3 [dBm]
802.1 1n20	ГО	144	5720	CHAIN A DIV1	13.48	13.56	22.71	18.56
80; 1n	Ē	144	5720	CHAIN A DIV2	13.39	13.47	22.25	18.47
2.1	ΓO	142F	E710	CHAIN A DIV1	8.96	9.13	8.18	14.13
802.1 1n40	Ĕ	1426	5710	CHAIN A DIV2	9.29	9.46	8.83	14.46
802.1 1ac80	инто	1290090	5000	CHAIN A DIV1	2.89	3.19	2.08	8.19
80: 1ac	H 138ac80		5690	CHAIN A DIV2	2.68	2.98	1.99	7.98

* Maximum values are the duty cycle compensated values calculated from the measured average values Max Value

Min Value

Maximum Power Spectral Density (PSD) – U-NII-3 channels

Mode	Rate	Channel	Freq. [MHz]	Antenna	Average conducted PSD [dBm/500kHz]	Max.* conducted PSD [dBm/500kHz]	
		149	5745	CHAIN A DIV1	6.47	6.47	
-		149	5745	CHAIN A DIV2	6.28	6.28	
802.11a	6Mbps	157	5785	CHAIN A DIV1	6.14	6.14	
302.	6MI	157		CHAIN A DIV2	6.32	6.32	
		165	5825	CHAIN A DIV1	6.61	6.61	
		105	5625	CHAIN A DIV2	6.31	6.31	
		149	5745	CHAIN A DIV1	5.81	5.81	
0		149	5745	CHAIN A DIV2	6.28	6.28	
1n2	НТО	157	5785	CHAIN A DIV1	5.83	5.83	
802.11n20	<u> </u>	Ξ ¹⁵⁷	157	5765	CHAIN A DIV2	6.36	6.36
80		165	5925	CHAIN A DIV1	6.46	6.46	
		165	5825	CHAIN A DIV2	6.32	6.32	
o,		1615	6766	CHAIN A DIV1	-1.97	-1.80	
1n4	НТО	151F	5755	CHAIN A DIV2	-1.94	-1.77	
802.11n40	Ξ	4505	5705	CHAIN A DIV1	2.33	2.50	
80		159F	5795	CHAIN A DIV2	3.46	3.63	
802.1 1ac80	VHT0	1550090	5775	CHAIN A DIV1	-6.16	-5.86	
80; 1ac	ΗΛ	155ac80	5775	CHAIN A DIV2	-5.61	-5.31	

* Maximum values are the duty cycle compensated values calculated from the average (measured) Max Value

Maximum Power Spectral Density (PSD) – Overlapped channels between U-NII-2C and U-NII-3

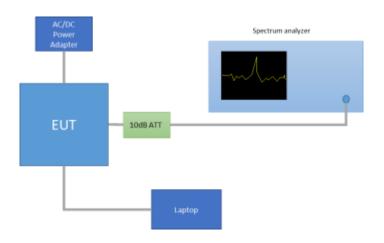
Mode	Rate	Channel	Freq. [MHz]	Antenna	Average conducted PSD UNII-2C [dBm/MHz]	Maximum* conducted PSD UNII-2C [dBm/MHz]
802.11n20	нто	144	5720	CHAIN A DIV1	4.97	5.05
002.11120	піо	144		CHAIN A DIV2	4.90	4.98
802.11n40	нто	142F		CHAIN A DIV1	1.19	1.36
002.111140	піо	1426	5710	CHAIN A DIV2	1.55	1.72
802.11ac80	VHTO	138ac80	5690	CHAIN A DIV1	-4.83	-4.53
802.11acou	VHIU	1308000	5690	CHAIN A DIV2	-5.01	-4.71

* Maximum values are the duty cycle compensated values calculated from the average (measured) values

Max Value

See Section B.3.5, B.3.6, B.3.7, and Section B.3.8 for the screenshot results

B.2.3 Undesirable emission limits : Band Edge (Conducted)


Test limits

FCC part	RSS part	Limits
15.407 (b) (4)	RSS-247 Clause 6.2.4.2	For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge.

Test procedure

The setup below was used to measure undesirable emissions on the Band Edge domain. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss and the declared Antenna Gain.

The declared maximum antenna gain is 5dBi.

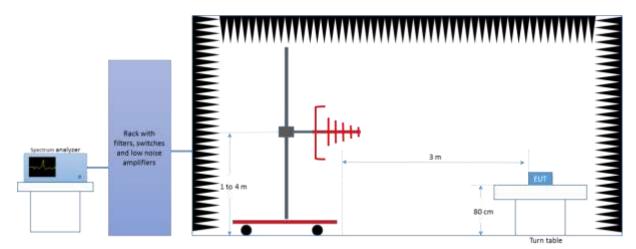
See Section B.3.9 for the screenshot results.

B.2.4 Radiated spurious emission

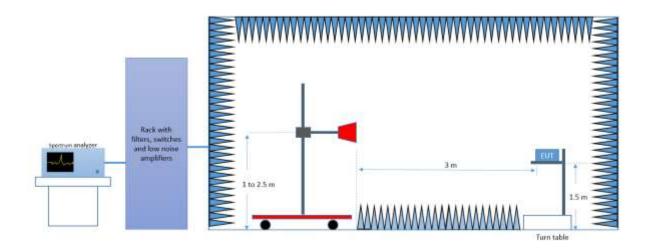
Standard references

FCC part	RSS part		Limits					
15.407 (b) (4)	RSS-247 Clause 6.2.4.2	For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge.						
		Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a):Freq RangeField StrengthField StrengthMeas. Distance						
				(MHz)	(μV/m)	(dBµV/m)	(m)	-
			30-88	100	40	3		
			88-216	150	43.5	3		
(= 0.00	RSS-GEN,		216-960	200	46	3		
15.209	Clause 8.9		Above 960	500	54	3		
		The emission limits shown in the above table are based on measuremen employing CISPR quasi-peak detector except for the frequency bands 9-90 kH 110-490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also limit specified when measuring with peak detector function, corresponding to 2 dB above the indicated values in the table.						

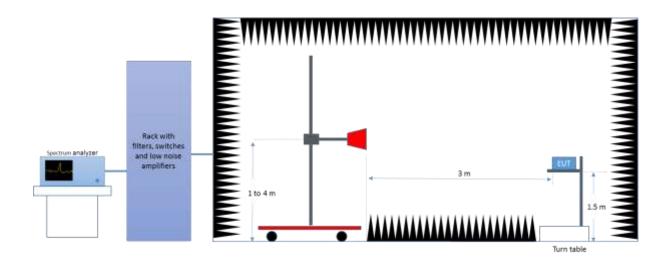
Test procedure


The setup below was used to measure the radiated spurious emissions.

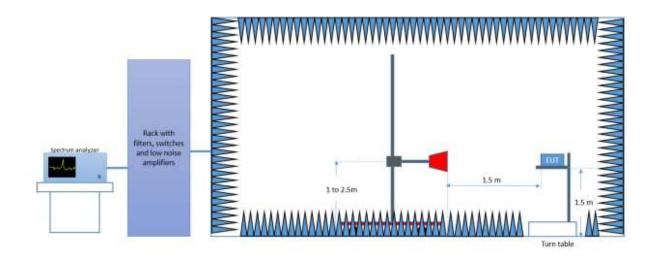
Depending of the frequency range and bands being tested, different antennas and filters were used.


The final measurement is done by varying the antenna height, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emission was measured on the worst case configuration selected from the chapter B.2.2 and using the low, middle and high channel.


Radiated Setup 30 MHz - 1 GHz

Radiated Setup 1 GHz - 6.4 GHz



Radiated Setup 6.4GHz - 18 GHz

Radiated Setup 18 GHz - 40 GHz

Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

$E = 126.8 - 20log(\lambda) + P - G$

where

E is the field strength of the emission at the measurement distance, in $dB\mu V/m$

P is the power measured at the output of the test antenna, in dBm

 λ is the wavelength of the emission under investigation [300/f_{MHz}], in m

G is the gain of the test antenna, in dBi

NOTE - The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses, amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

E_{SpecLimit} = E_{Meas} + 20log(D_{Meas}/D_{SpecLimit})

where

 $E_{\text{SpecLimit}}$ is the field strength of the emission at the distance specified by the limit, in $dB\mu V/m$

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

D_{Meas} is the measurement distance, in m

DspecLimit is the distance specified by the limit, in m

Test Results

30 MHz – 40 GHz, 802.11a, 6Mbps, Chain A Div 1

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.9		46.0	10.1
640.0	37.8		46.0	8.2
2124.9	55.2		74.0	18.8
2132.8		37.1	54.0	16.9
6083.6		48.9	54.0	5.1
6142.5	61.0		74.0	13.0
11487.6	52.7		74.0	21.3
11490.0		42.7	54.0	11.3
25911.1		37.0	54.0	17.0
25943.1	47.8		74.0	26.2

Radiated Spurious – CH149

Radiated Spurious – CH157

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.6		46.0	10.4
640.0	37.0		46.0	9.0
2129.3		36.5	54.0	17.5
2130.6	50.9		74.0	23.1
11569.7		44.2	54.0	9.8
11569.7	58.0		74.0	16.0
23145.0		40.2	54.0	13.8
23145.5	50.9		74.0	23.1

Radiated Spurious – CH165

Frequency	MaxPeak	Avg	Limit	Margin
437.6	35.8		46.0	10.2
640.0	38.9		46.0	7.1
2129.8		36.8	54.0	17.2
2131.3	51.9		74.0	22.1
11649.5		49.1	54.0	4.9
11654.3	62.1		74.0	11.9
23298.0		38.7	54.0	15.4
23301.6	49.0		74.0	25.0

30 MHz – 40 GHz, 802.11a, 6Mbps, Chain A Div 2

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.8		46.0	10.2
576.0	35.8		46.0	10.2
640.0	37.2		46.0	8.8
2130.3		36.7	54.0	17.3
2131.1	51.5		74.0	22.5
11489.5		51.0	54.0	3.0
11493.9	60.5		74.0	13.5
25943.4		37.0	54.0	17.1
25974.9	47.9		74.0	26.1

Radiated Spurious – CH149

Radiated Spurious – CH157

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.4		46.0	10.6
640.0	38.3		46.0	7.7
2128.8		36.9	54.0	17.1
2128.8	52.2		74.0	21.8
11569.3	57.3		74.0	16.7
11569.3		43.8	54.0	10.2
17351.9	61.5		74.0	12.5
17354.3		48.4	54.0	5.6
23138.8		38.7	54.0	15.3
23149.2	49.6		74.0	24.4

Radiated Spurious – CH165

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.5	36.0		46.0	10.0
640.0	39.1		46.0	6.9
2126.9		37.6	54.0	16.4
2126.9	52.9		74.0	21.1
23294.6	47.8		74.0	26.2
23295.4		38.6	54.0	15.4

30 MHz - 40 GHz, 802.11n20, HT0, Chain A Div 1

Radiated Spurious – CH149

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.7		46.0	10.3
640.0	39.5		46.0	6.5
2129.8		37.0	54.0	17.0
2129.8	54.6		74.0	19.4
11489.5	53.4		74.0	20.6
11491.0		44.8	54.0	9.2
23797.2	47.8		74.0	26.2
25888.8		37.3	54.0	16.8

FO-044 RF FCC WLAN U-NII 3 Test Report _170524

Radiated Spurious – CH157

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
312.0	34.6		46.0	11.5
437.5	35.2		46.0	10.8
640.0	37.7		46.0	8.3
2127.9	50.5		74.0	23.5
2139.9		37.0	54.0	17.0
11572.2	52.5		74.0	21.5
11572.6		42.7	54.0	11.3
23136.0		37.8	54.0	16.2
23153.7	47.6		74.0	26.4

Radiated Spurious – CH165

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
500.0	36.5		46.0	9.5
640.0	38.8		46.0	7.3
2131.3		36.9	54.0	17.1
2131.3	51.2		74.0	22.8
11647.6	51.2		74.0	22.8
11650.5		41.5	54.0	12.5
23284.8	49.3		74.0	24.7
23293.2		39.4	54.0	14.6

30 MHz – 40 GHz, 802.11n20, HT0, Chain A Div 2

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
437.6	35.6		46.0	10.4
640.0	40.2		46.0	5.8
2132.8		38.3	54.0	15.7
2132.8	54.9		74.0	19.1
11487.1		47.2	54.0	6.8
11487.1	59.9		74.0	14.2
25898.1	47.7		74.0	26.3
25938.3		37.3	54.0	16.7

Radiated Spurious – CH157

Frequency	MaxPeak	Avg	Limit	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
437.6	35.2		46.0	10.8	
640.0	37.9		46.0	8.1	
2125.4		36.6	54.0	17.4	
2130.1	51.0		74.0	23.0	
23134.3	48.4		74.0	25.6	
23143.3		39.4	54.0	14.6	

Radiated Spurious – CH165

Frequency	MaxPeak	Avg	Limit	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
821.4	40.8		46.0	5.2	
2129.1		37.7	54.0	16.3	
2129.1	53.5		74.0	20.5	
11647.6		44.2	54.0	9.8	
11650.5	58.1		74.0	15.9	
23296.0		39.3	54.0	14.7	
23310.9	48.9		74.0	25.2	

30 MHz - 40 GHz, 802.11n40, HT0, Chain A Div 1

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
225.2	29.2		46.0	16.8
398.9	31.3		46.0	14.7
826.9	40.7		46.0	5.3
830.0	36.4		46.0	9.6
2127.4		37.2	54.0	16.8
2127.4	54.3		74.0	19.7
11511.7		40.8	54.0	13.2
11512.7	50.7		74.0	23.3
23839.4		36.6	54.0	17.4
23910.5	48.0		74.0	26.0

Radiated Spurious – CH151F

Radiated Spurious – CH159F

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
224.6	29.3		46.0	16.7
837.9	40.6		46.0	5.4
1113.4		41.6	54.0	12.4
1151.9		40.3	54.0	13.7
1190.2	49.6	74.0		24.4
1190.2		44.5	54.0	9.5
1279.8		39.5	54.0	14.5
2131.3		38.5	54.0	15.5
2131.3	54.0		74.0	20.0
2655.1		39.1	54.0	14.9
3199.8		41.7		12.3
23180.1	47.7		74.0	26.3
23186.3		37.8	54.0	16.2

30 MHz – 40 GHz, 802.11n40, HT0, Chain A Div 2

Radiated Spurious – CH151F

Frequency	MaxPeak	Avg	Limit	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
225.2	29.9		46.0	16.1	
834.4	40.6		46.0	5.4	
2129.3		37.3	54.0	16.7	
2129.3	56.8		74.0	17.2	
25942.3		37.4	54.0	16.6	
25943.1	47.4		74.0	26.6	

Radiated Spurious – CH159F

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
226.2	29.3		46.0	16.7
822.0	40.4		46.0	5.6
1113.4		41.3	54.0	12.7
1151.9		40.1	54.0	13.9
1190.2		44.3	54.0	9.7
1190.2	49.3		74.0	24.7
1280.1		38.6	54.0	15.4
2127.4	50.5		74.0	23.5
23173.1		39.2	54.0	14.8
23173.4	48.8		74.0	25.2

30 MHz - 40 GHz, 802.11ac80, VHT0, Chain A Div 1

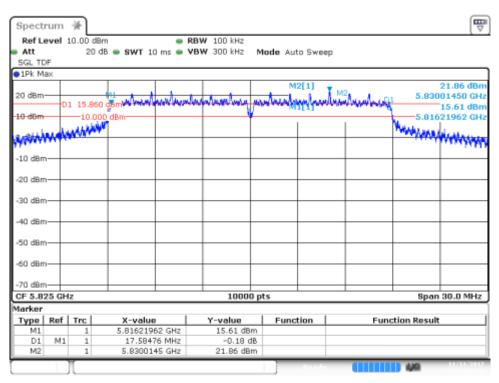
Frequency	MaxPeak	Avg	Limit	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
226.3	28.9		46.0	17.1	
815.0	40.5		46.0	5.5	
1113.4		41.5	41.5 54.0		
1113.6	48.0		74.0	26.0	
1151.7		39.4	54.0	14.6	
1190.0	48.7		74.0	25.3	
1190.5		44.0	54.0	10.0	
1279.8		38.8	54.0	15.2	
22867.1	48.2	74.0		25.8	
22882.8		36.4	54.0	17.6	

Radiated Spurious – CH155ac80

30 MHz – 40 GHz, 802.11ac80, VHT0, Chain A Div 2

Radiated Spurious – CH155ac80

Frequency	MaxPeak	Avg	Limit	Margin	
MHz	dBuV/m	dBuV/m	dBuV/m	dB	
224.5	29.4		46.0	16.6	
814.9	40.1		46.0	5.9	
1113.6		41.6	54.0	12.4	
1151.9		40.2	54.0	13.8	
1190.2	48.9		74.0	25.1	
1279.8		39.4	54.0	14.6	
2130.3	52.9		74.0	21.1	
25924.3		37.1	54.0	16.9	
25935.3	48.1		74.0	25.9	



B.3 Test Results Screenshot

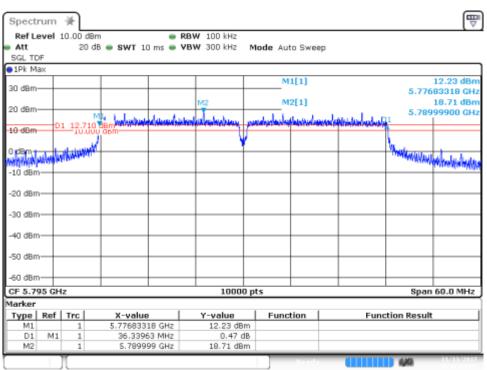
B.3.1 6dB Bandwidth

Channel 165

CHAIN A DIV2, 802.11a, 6Mbps

Date: 13NOV:2017 15:59:00

CHAIN A DIV1, 802.11n20, HT0


Channel 165

SGL TO								al -	
PIPK M	50(1	1	M2[1]		22.14 dE
20 dBm	n	1 16 140	Boundary	history	manuface	14	transformations	M2 maluelus	5.03001150 0
10 dbm		10.000	1.10	1.00		V.	a computation of the		16.09 dE 5.81622862 G
to dom	-114	LUMA					1	1	Wallacteditor
A MANA	Ner	14444		-		+		-	www.man.
-10 dBm									
-IU GBU									
-20 dBm				-		-		_	
	- 1								
-30 dBm	1		-	-	-	+			
-40 dBm									
10.500	8								
-50 dBm	1		-	-	-	-			
-60 dBm									
-ou dan									
-70 d6m	1			-	-	-	_	-	
CF 5.8	25 GH	z	1		1000	0 pt	5		Span 30.0 MH
Marker	Sume	Locy and Ch			STATISTICS IN T			1	
Type	Ref	Trc	X-value		Y-value	_	Function	Fund	tion Result
M1 D1	MI	1	5.816228 17.581		16.09 di -0.38				
M2	- M1	1	5.83001	Carls and president land it	-0.38 22.14 di				

Date: 14.NOV/2017 11:16:09

Channel 159F

CHAIN A DIV2, 802.11n40, HT0

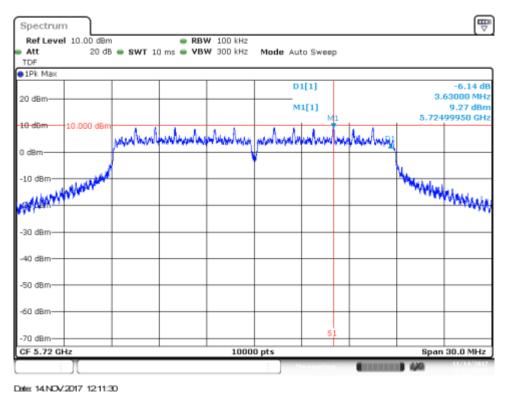
Date: 13NOV.2017 18:16:04

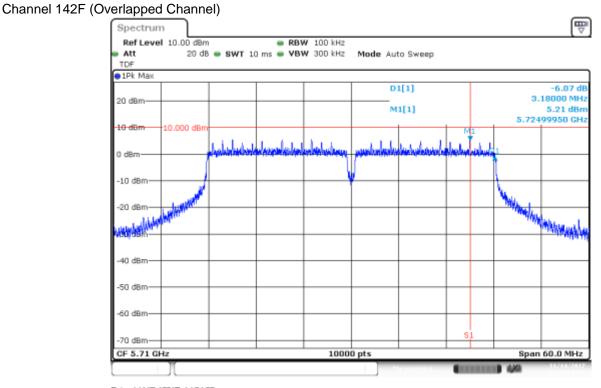
CHAIN A DIV1, 802.11ac80, VHT0

Channel 155ac80

Spect								l,
		10.00 dBr			BW 100 kHz			
Att		20 d	B 👄 SWT 1	0 ms 🖷 V	BW 300 kHz	Mode Auto Sweep	p	
SGL TO								
1Pk M	900							
		6414	L. H.L.	LILLI	المكالما لمالية الم	ALL MARINE	واللبيبية.	0.40 dB
d8m-	D;	1 3.000 d	19m	CARL PROPERTY.	Contraction of the local division of the loc	A CONTRACTOR OF A CONTRACTOR	Manda and a state	11 C 7386379 G
uprii			1		1 1	M2[1]		(a.oo ab
LO dBm								5.7699830 GI
	· 17				1 1			
0 dBm								
10	M				1 1			THE REAL PROPERTY AND A DECIMAL OF A DECIMAL
d dBm	-							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	·				1 1			1 1
l0 dBm	<u> </u>							
					1 1			
i0 dBm	⊢				++			
					1 1			
i0 dBm	⊢ −				++		_	
					1 1			
'0 dBm	<u>ا</u>				++			
			1					
30 dBm	·+−				++			
					1 1			
F 5.7	75 GH	z			3000 (ots		Span 100.0 MH
arker								
Type	Ref	Trc	X-value	a	Y-value	Function	Fund	ction Result
M1		1	5.73863		0.40 dBm		1 0.110	
D1	M1	1	72.72	42 MHz	0.54 dB			
M2		1	5.7699	83 GHz	9.00 dBm	1		
	-	17						

Date: 14.NOV.2017 11:36:17

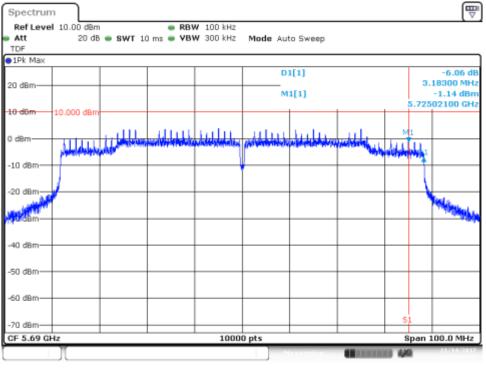



B.3.2 6dB Bandwidth (Overlapped Channel)

CHAIN A DIV1, 802.11n20, HT0

Channel 144 (Overlapped Channel)

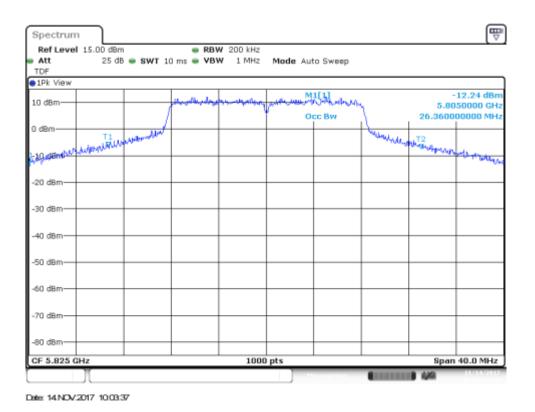
CHAIN A DIV1, 802.11n40, HT0



Date: 14.NOV.2017 14.34:05

CHAIN A DIV2, 802.11ac80, VHT0

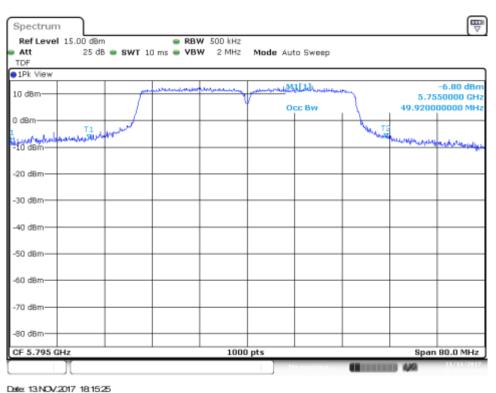
Channel 138F (Overlapped Channel)


Date: 14.NOV.2017 16.05.50

B.3.3 99% Bandwidth

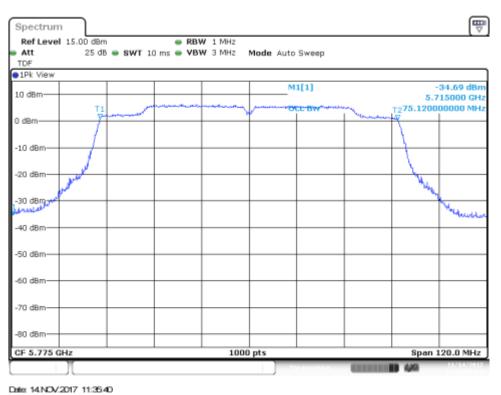
CHAIN A DIV1, 802.11a, 6Mbps

Channel 165

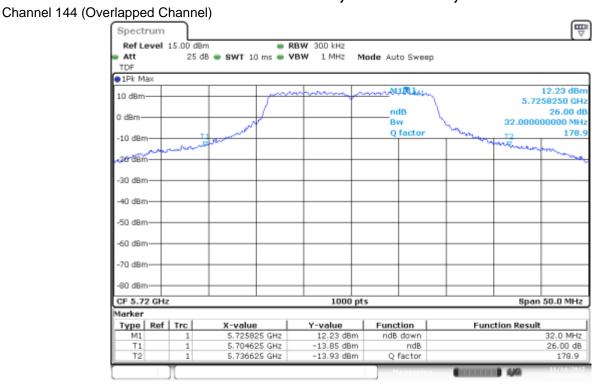


CHAIN A DIV1, 802.11n20, HT0

Att TDF	25 dB 🖷 SWT 1	0 ms 👄 VBV	N 1 MHz	Mode Au	to Sweep			
1Pk View								
10 dBm		Martinetas	and the second	1	CC BW	m		10.29 dE 50000 G
0 d8m					CC DW	1		
ALC BER	Kunnerstaller					"It shows	ALW T2	ulhendaha
-20 dBm								
-30 dBm								
-40 d8m								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
CF 5.825 GHz			1000) pts			Span	40.0 MH

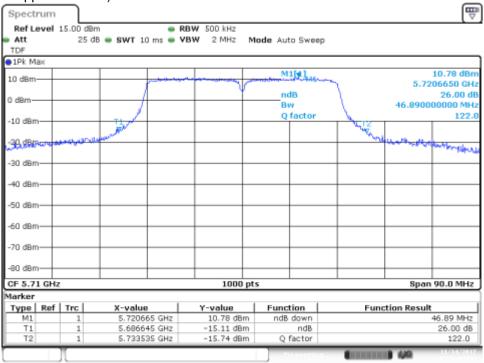

Channel 159F

CHAIN A DIV2, 802.11n40, HT0


CHAIN A DIV1, 802.11ac80, VHT0

Channel 155ac80

B.3.4 26dB Bandwidth (Overlapped Channel)

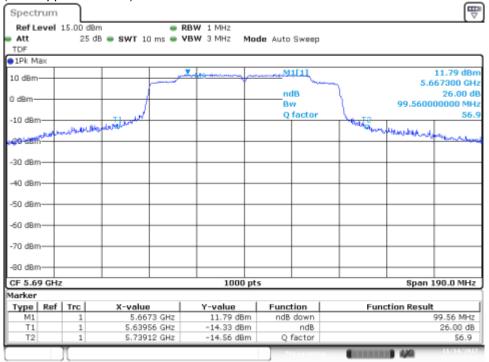


CHAIN A DIV1, 802.11n20, HT0

Date: 14.NOV.2017 12.01:42

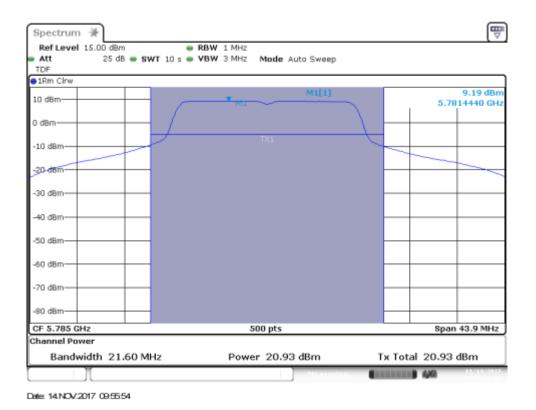
CHAIN A DIV1, 802.11n40, HT0

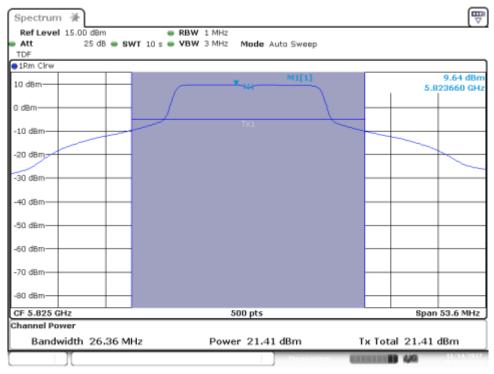
Channel 142F (Overlapped Channel)


Date: 14.NOV:2017 14:22.05

CHAIN A DIV1, 802.11ac80, HT0

Channel 138ac80 (Overlapped Channel)

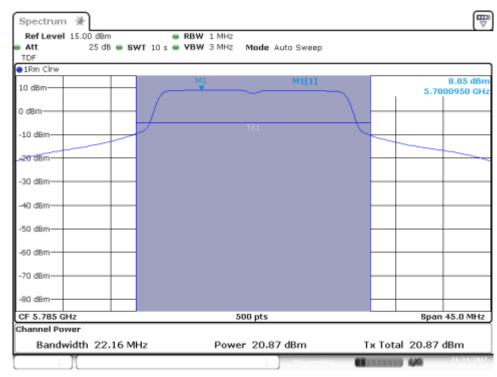

Date: 14.NOV.2017 14:41:36


B.3.5 Maximum output power

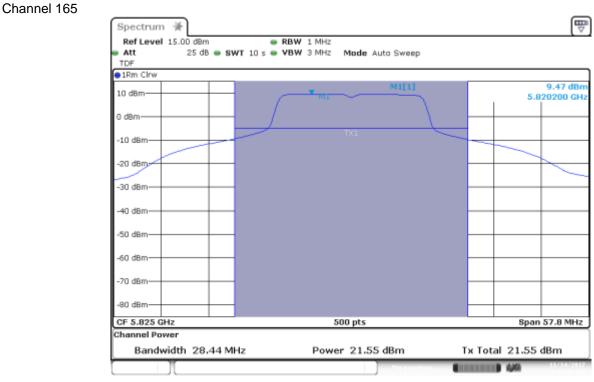
CHAIN A DIV1, 802.11a, 6Mbps

Channel 157

Channel 165

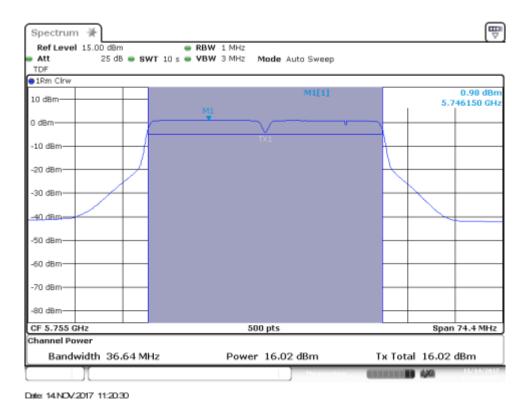


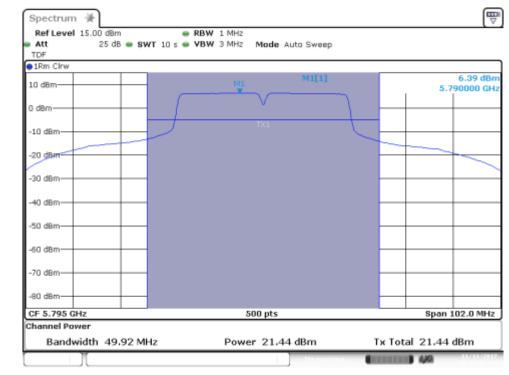
Date: 14.NOV.2017 10.03.54


Channel 157

CHAIN A DIV1, 802.11n20, HT0

Date: 14.NOV.2017 11:04:11

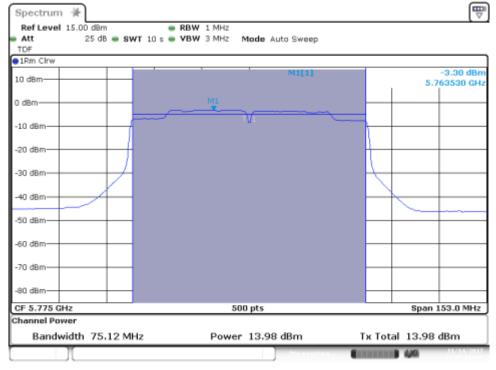

Date: 14.NOV.2017 11:15:46


CHAIN A DIV1, 802.11n40, HT0

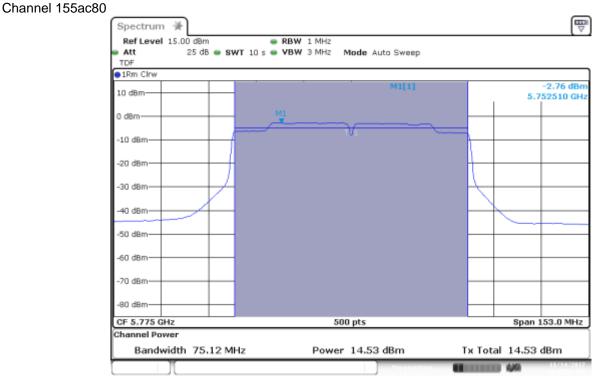
Channel 151F

Channel 159F

CHAIN A DIV2, 802.11n40, HT0



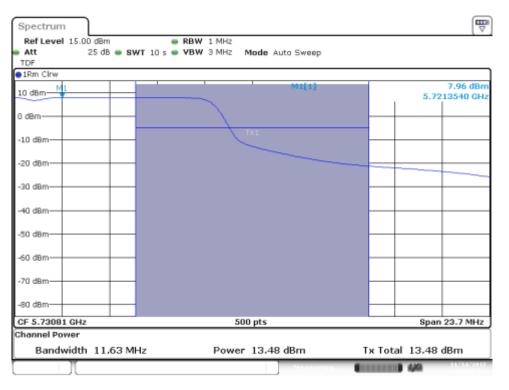
Date: 13NOV:2017 18:15:43


CHAIN A DIV1, 802.11ac80, VHT0

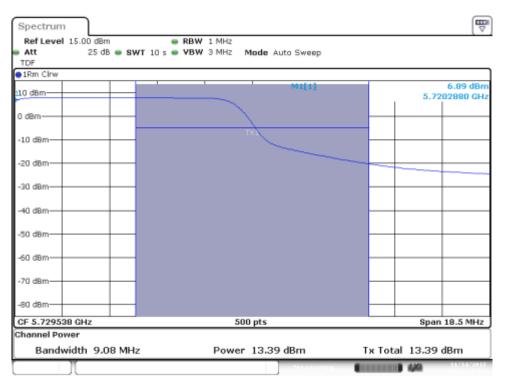
Channel 155ac80

Date: 14.NOV.2017 11:36:58

CHAIN A DIV2, 802.11ac80, VHT0

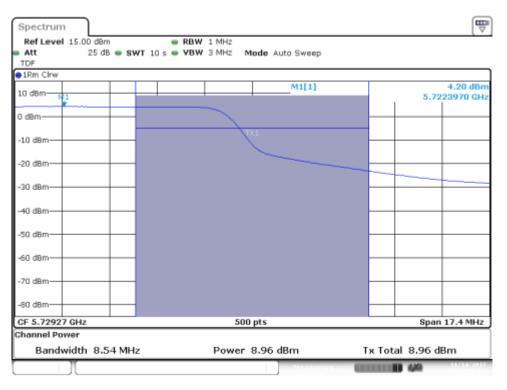

Date: 14.NOV:2017 09:29:52

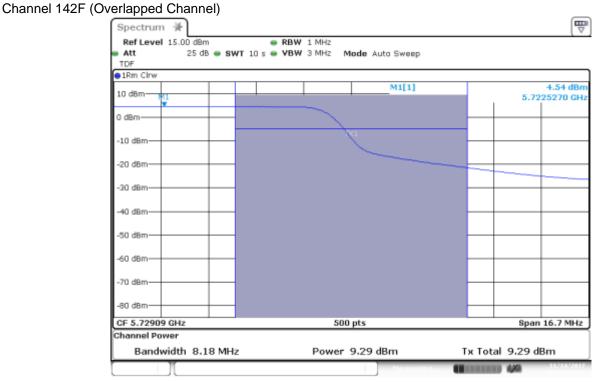
B.3.6 Maximum output power (Overlapped Channel)


CHAIN A DIV1, 802.11n20, HT8

Channel 144 (Overlapped Channel)

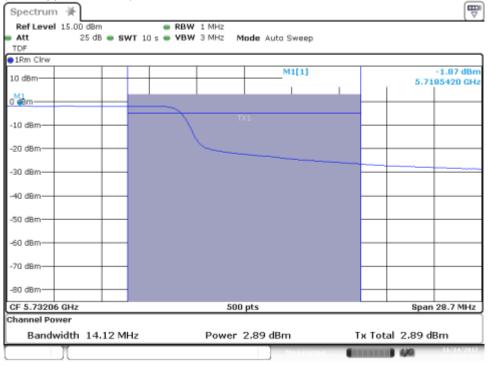
CHAIN A DIV2, 802.11n20, HT8

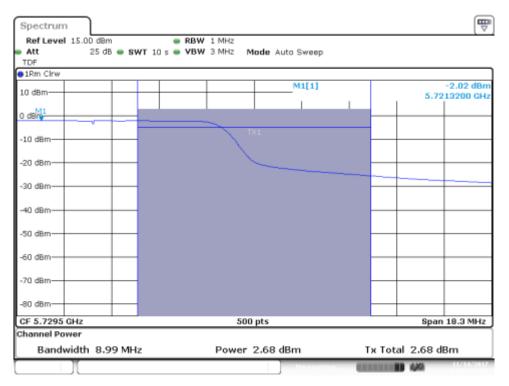

Channel 144 (Overlapped Channel)



CHAIN A DIV1, 802.11n40, HT8

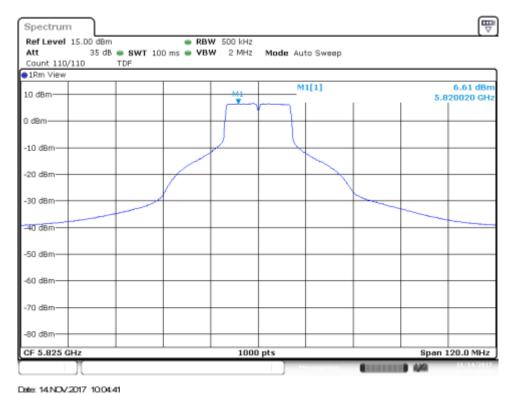
Channel 142F (Overlapped Channel)


CHAIN A DIV2, 802.11n40, HT8

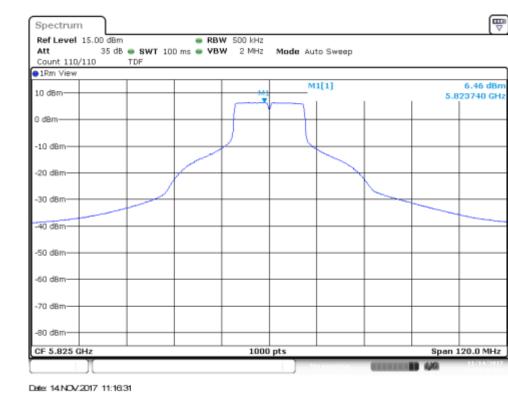

CHAIN A DIV1, 802.11ac80, VHT0

Channel 138ac80 (Overlapped Channel)

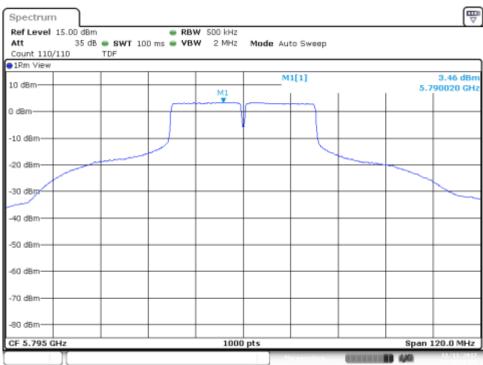
CHAIN A DIV2, 802.11ac80, VHT0


Channel 138ac80 (Overlapped Channel)

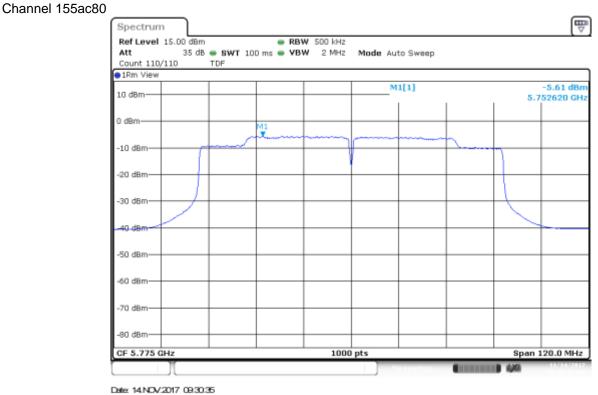
Channel 165



B.3.7 Peak power spectral Density


CHAIN A DIV1, 802.11a, 6Mbps

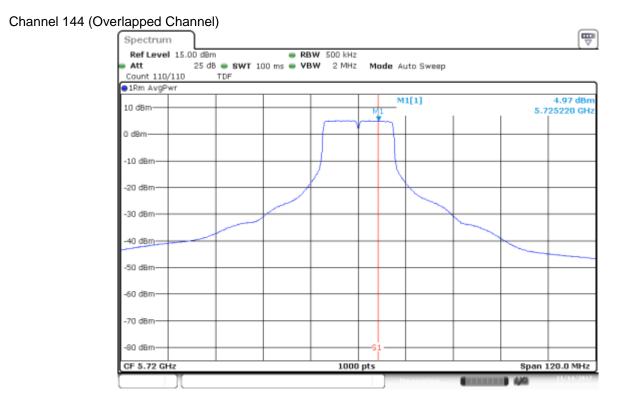
CHAIN A DIV1, 802.11n20, HT0


Channel 165

CHAIN A DIV2, 802.11n40, HT0

Date: 13NOV.2017 18.16.26

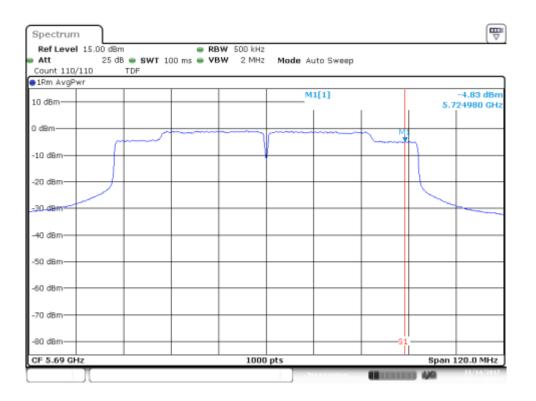
CHAIN A DIV2, 802.11ac80, VHT0



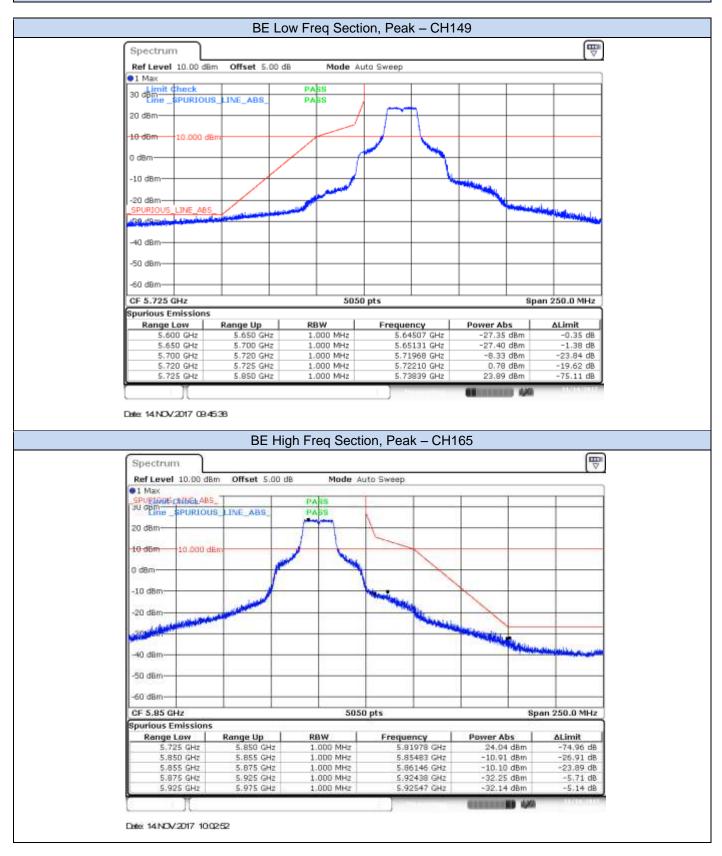
Channel 159F

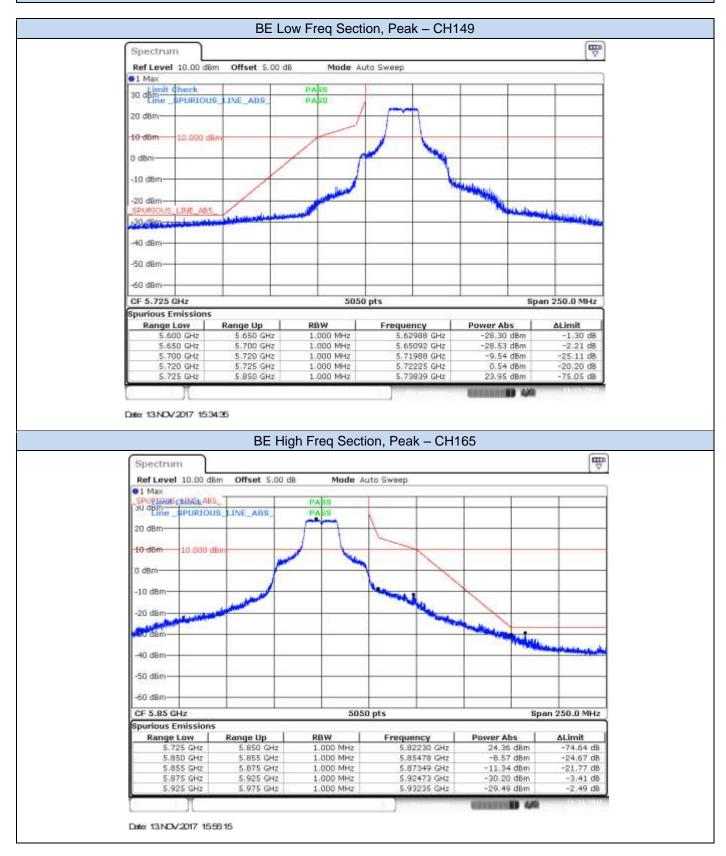
CHAIN A DIV1, 802.11n20, HT0

CHAIN A DIV2, 802.11n20, HT0

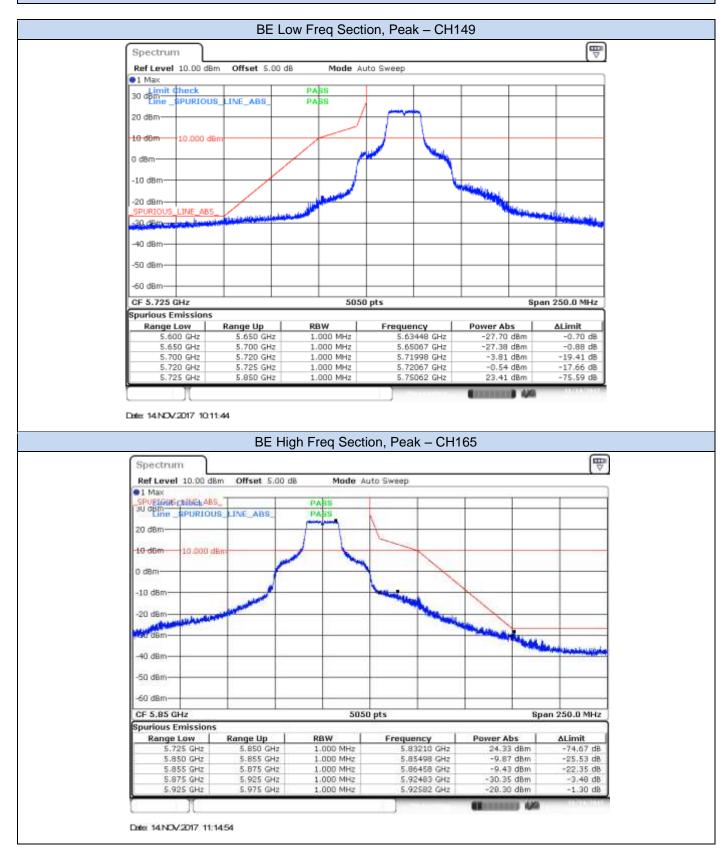


CHAIN A DIV1, 802.11ac80, VHT0

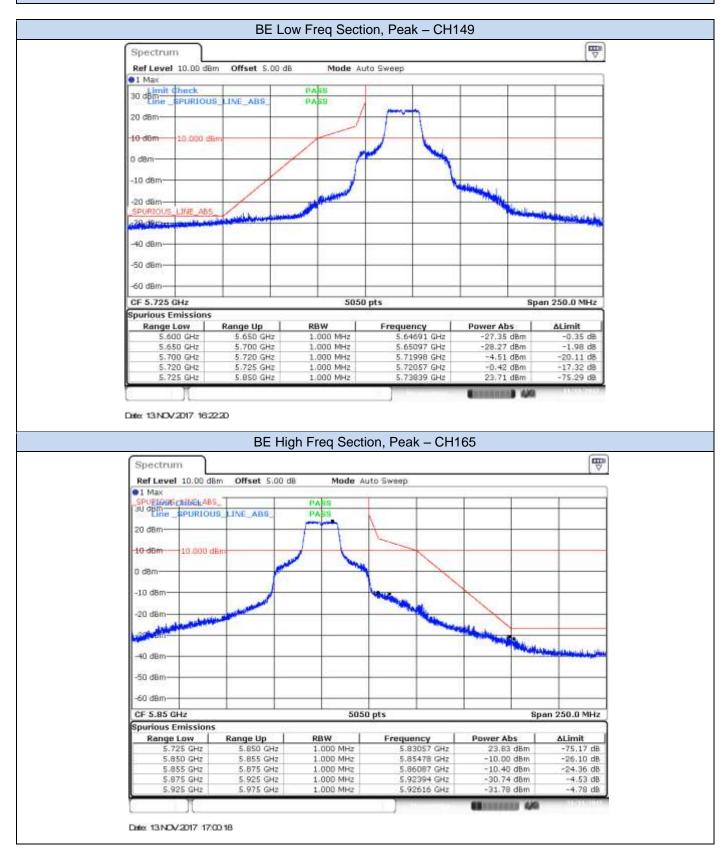

Channel 138ac80 (Overlapped Channel)


B.3.9 Undesirable emission limits : Band Edge (Conducted)

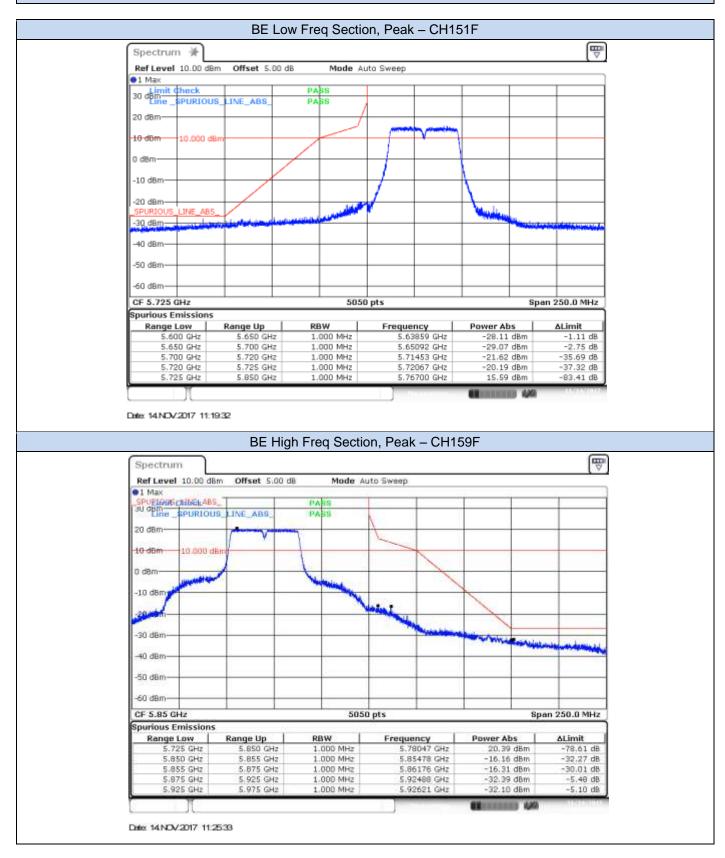
802.11a, 6Mbps – Chain A Div1



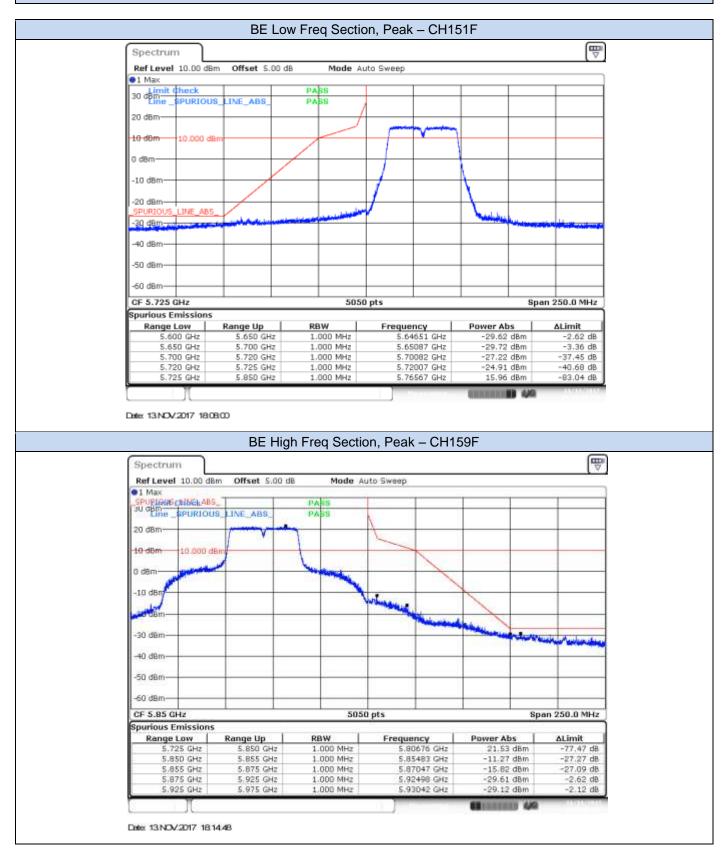
802.11a, 6Mbps – Chain A Div2



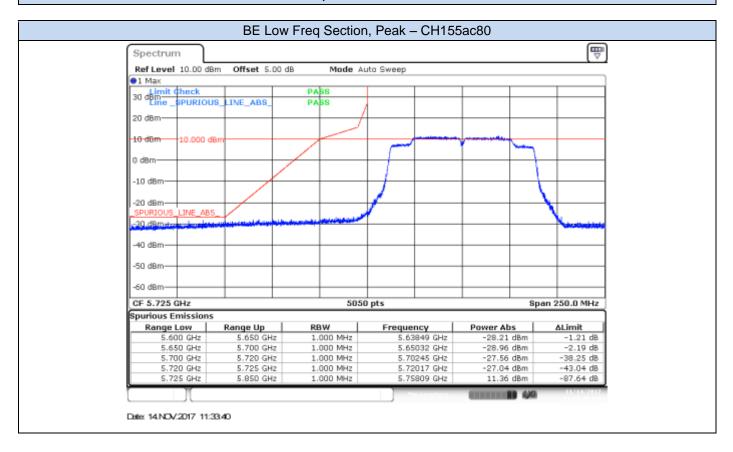
802.11n20, HT0 - Chain A Div1



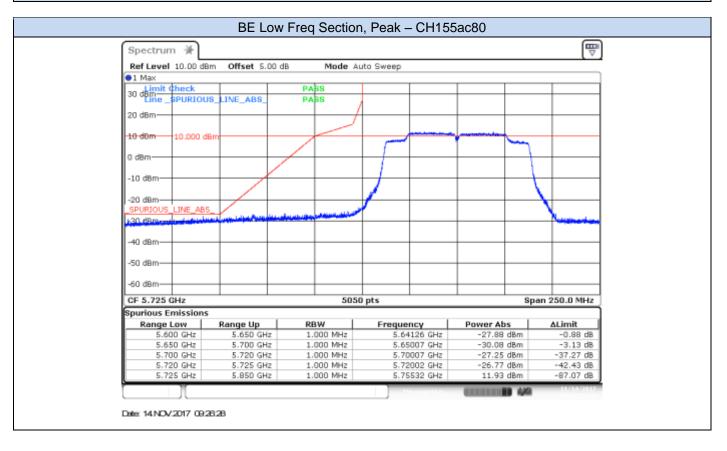
802.11n20, HT0 - Chain A Div2



802.11n40, HT0 - Chain A Div1



802.11n40, HT0 - Chain A Div2



802.11ac80, VHT0 - Chain A Div1

802.11ac80, VHT0 - Chain A Div2

