



# TEST REPORT

| EUT Description            | WLAN and BT. 1x1 PCIe M.2 1216 SD adapter card                                                     |
|----------------------------|----------------------------------------------------------------------------------------------------|
| Brand Name                 | Intel® Wireless-AC 9462                                                                            |
| Model Name                 | 9462D2W                                                                                            |
| FCC ID                     | PD99462D2                                                                                          |
| Date of Test Start/End     | 2017-10-25 / 2017-11-29                                                                            |
| Features                   | 802.11ac. Dual Band. 1x1 Wi-Fi + Bluetooth® 5. Diversity Antenna (see section 5)                   |
|                            |                                                                                                    |
| Applicant                  | Intel Mobile Communications                                                                        |
| Address                    | 100 Center Point Circle. Suite 200<br>Columbia. South Carolina 29210<br>USA                        |
| Contact Person             | Steven Hackett                                                                                     |
| Telephone/Fax/ Email       | steven.c.hackett@intel.com                                                                         |
|                            |                                                                                                    |
| Reference Standards        | FCC CFR Title 47 Part 15 E<br>(see section 1)                                                      |
|                            |                                                                                                    |
| Test Report identification | 170919-01.TR01                                                                                     |
| Revision Control           | Rev. 00<br>This test report revision replaces any previous test report revision<br>(see section 8) |

The test results relate only to the samples tested.

The test report shall not be reproduced in full. without written approval of the laboratory.

Issued by

Reviewed by

Gregory ROUSTAN (Test Engineer Lead) Jose M. FORTES (Technical Officer)

Intel Mobile Communications France S.A.S – WRF Lab 425 rue de Goa – Le Cargo B6 - 06600. Antibes. France Tel. +33493001400 / Fax +33493001401



# **Table of Contents**

| 1.     | Stan           | ndards. reference documents and applicable test methods | 3  |
|--------|----------------|---------------------------------------------------------|----|
| 2.     | Gene           | neral conditions. competences and guarantees            | 3  |
| 3.     | Envi           | ironmental Conditions                                   | 3  |
| 4.     | Test           | t samples                                               | 4  |
| <br>5. |                | 「Features                                               |    |
|        |                |                                                         |    |
| 6.     |                | narks and comments                                      |    |
| 7.     | Test           | t Verdicts summary                                      | 5  |
| 7.     | .1. 8          | 802.11 A/N/AC – U-NII-1                                 | 5  |
| 7.     | .2. 8          | 802.11 A/N/AC – U-NII-2A                                | 5  |
| 8.     | Docu           | ument Revision History                                  | 5  |
| Ann    | nex A          | A. Test & System Description                            | 6  |
| А      | 1              | MEASUREMENT SYSTEM                                      |    |
| A      |                | TEST EQUIPMENT LIST                                     |    |
| A      |                | MEASUREMENT UNCERTAINTY EVALUATION                      |    |
|        | nex B          |                                                         |    |
|        |                |                                                         |    |
| B      |                | TEST CONDITIONS                                         |    |
| В      |                | TEST RESULTS TABLES U-NII-1                             |    |
|        | B.2.1          |                                                         |    |
|        | B.2.2          |                                                         |    |
|        | B.2.3          |                                                         |    |
|        | B.2.4          |                                                         |    |
| В      |                | TEST RESULTS SCREENSHOT U-NII-1                         |    |
|        | B.3.1          |                                                         |    |
|        | B.3.2          |                                                         |    |
|        | B.3.3          |                                                         |    |
| -      | B.3.4          | <b>o</b> ( <b>)</b>                                     |    |
| В      |                | TEST RESULTS TABLES U-NII-2A                            |    |
|        | B.4.1          |                                                         |    |
|        | B.4.2          |                                                         |    |
|        | B.4.3<br>B.4.4 |                                                         |    |
|        |                | · · · · · · · · · · · · · · · · · · ·                   |    |
| В      |                | TEST RESULTS SCREENSHOT U-NII-2A                        |    |
|        | B.5.1          |                                                         |    |
|        | B.5.2<br>B.5.3 |                                                         |    |
|        | В.5.3<br>В.5.4 |                                                         |    |
|        |                |                                                         |    |
|        | nex C          |                                                         |    |
| -      |                | TEST SETUP                                              | 91 |
| С      | .2             | TEST SAMPLE                                             | 93 |



### 1. Standards. reference documents and applicable test methods

- 1. FCC 47 CFR part 15 Subpart E Unlicensed National Information Infrastructure Devices.
- 2. FCC 47 CFR part 15 Subpart C §15.209 Radiated emission limits; general requirements.
- 3. FCC OET KDB 789033 D02 General U-NII Test Procedures New Rules v01r04 Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15. Subpart E).
- 4. FCC OET KDB 644545 D03 Guidance for IEEE 802.11ac v01 GUIDANCE FOR IEEE Std 802.11ac<sup>™</sup> DEVICES EMISSION TESTING.
- 5. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

#### 2. General conditions. competences and guarantees

- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an ISO/IEC 17025:2005 testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA) with the certificate number 3478.01.
- ✓ Intel Mobile Communications France SAS Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm recognized by the FCC. with Designation Number FR0011.
- Intel WRF Lab only provides testing services and is committed to providing reliable. unbiased test results and interpretations.
- Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- $\checkmark$  This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.

## 3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

| Temperature | 21 °C ±3 °C |
|-------------|-------------|
| Humidity    | 35 % ± 10 % |



# 4. Test samples

| Sample | Control #      | Description              | Model          | Serial #          | Date of receipt | Note                                               |
|--------|----------------|--------------------------|----------------|-------------------|-----------------|----------------------------------------------------|
|        | 170919-01.S41  | Module                   | 9462D2W        | WFM: 3413E86E6045 | 2017-10-05      |                                                    |
|        | 170524-02.S15  | Extender Board           | PCB00609_01    | 6092416-442       | 2017-05-30      | Used for Conducted                                 |
| #01    | 170000-01.S01  | Laptop                   | Latitude E5470 | DPBLMC2           | 2017-03-28      | Tests                                              |
|        | 170220-04.S04  | Adapter 1216SD to<br>M.2 | JfP Adapter M2 | N/A               | 2017-04-10      |                                                    |
|        | 170919-01.S46  | Module                   | 9462 D2W       | WFM: 3413E86E603B | 2017-10-05      | Used for Radiated<br>Tests (From 30MHz<br>to 1GHz) |
| #02    | 170220-02.\$03 | Extender Board           | PCB00609_01    | 6092416-446       | 2017-02-20      |                                                    |
| #02    | 170000-01.S13  | Laptop                   | Latitude E5470 | FT6LMC2           | 2017-05-30      |                                                    |
|        | 170727-02.S11  | Adapter 1216SD to<br>M.2 | JfP Adapter M2 | N/A               | 2017-08-09      |                                                    |
|        | 170919-01.S48  | Module                   | 9462 D2W       | WFM: 3413E86E5FE1 | 2017-10-05      |                                                    |
| #03    | 170220-02.S04  | Extender Board           | PCB00609_01    | 6092416-493       | 2017-02-20      | Used for Radiated                                  |
|        | 170801-01.S10  | Laptop                   | Latitude E7470 | 7KNOXF2           | 2017-09-13      | Tests (From 1GHz to<br>40GHz)                      |
|        | 170727-02.S13  | Adapter 1216SD to<br>M.2 | JfP Adapter M2 | N/A               | 2017-08-09      |                                                    |

# 5. EUT Features

| Brand Name             | Intel® Wireless-AC 9462                                                                                        |                                                                                                                                                              |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Model Name             | 9462D2W                                                                                                        |                                                                                                                                                              |  |  |  |
| FCC ID                 | PD99462D2                                                                                                      |                                                                                                                                                              |  |  |  |
| Software Version       | 10.1739.0-06012                                                                                                |                                                                                                                                                              |  |  |  |
| Driver Version         | 99.0.28.6                                                                                                      |                                                                                                                                                              |  |  |  |
| Prototype / Production | Production                                                                                                     |                                                                                                                                                              |  |  |  |
| Supported Radios       | 802.11b/g/n<br>802.11a/n/ac<br>Bluetooth 5                                                                     | 2.4GHz (2400.0 – 2483.5 MHz)<br>5.2GHz (5150.0 – 5350.0 MHz)<br>5.6GHz (5470.0 – 5725.0 MHz)<br>5.8GHz (5725.0 – 5850.0 MHz)<br>2.4GHz (2400.0 – 2483.5 MHz) |  |  |  |
| Antenna Information    | CHAIN A Div1: PIFA antenna. WiFi 2.4GHz & 5GHz and BT<br>CHAIN A Div2: PIFA antenna. WiFi 2.4GHz & 5GHz and BT |                                                                                                                                                              |  |  |  |
| Additional Information | -                                                                                                              |                                                                                                                                                              |  |  |  |

# 6. Remarks and comments

N/A

## 7. Test Verdicts summary

## 7.1. 802.11 a/n/ac – U-NII-1

| FCC part                 | Test name                                           | Verdict |
|--------------------------|-----------------------------------------------------|---------|
| 15.407 (a) (1)           | Power Limits. Maximum output power                  | Р       |
| 15.407 (a) (1)           | Peak power spectral density                         | Р       |
| 15.407 (b) (1)<br>15.209 | Undesirable emissions limits: Band Edge (conducted) | Р       |
| 15.407 (b) (1)<br>15.209 | Undesirable emissions limits (radiated)             | Р       |

# 7.2. 802.11 a/n/ac – U-NII-2A

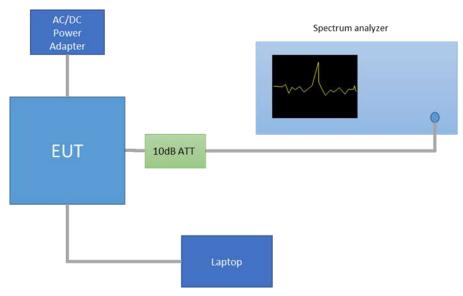
| FCC part                 | Test name                                           | Verdict |
|--------------------------|-----------------------------------------------------|---------|
| 15.407 (a) (2)           | Power Limits. Maximum output power                  | Р       |
| 15.407 (a) (2)           | Peak power spectral density                         | Р       |
| 15.407 (b) (2)<br>15.209 | Undesirable emissions limits: Band Edge (conducted) | Р       |
| 15.407 (b) (2)<br>15.209 | Undesirable emissions limits (radiated)             | Р       |

P: Pass F: Fail NM: Not Measured NA: Not Applicable

# 8. Document Revision History

| Revision # | Date       | Modified by            | Revision Details |
|------------|------------|------------------------|------------------|
| Rev.00     | 2017-12-06 | A.Sayoud<br>I. Kharrat | First Issue      |

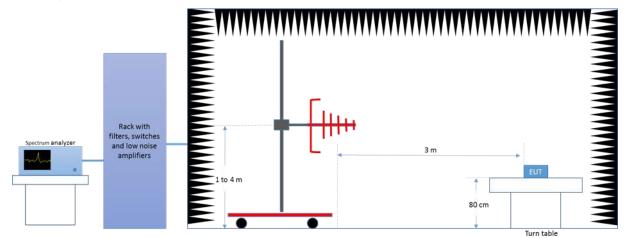



# Annex A. Test & System Description

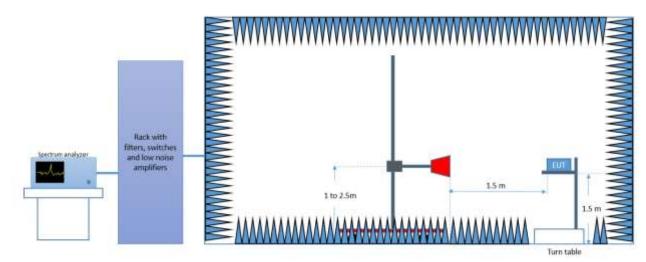
### A.1 Measurement System

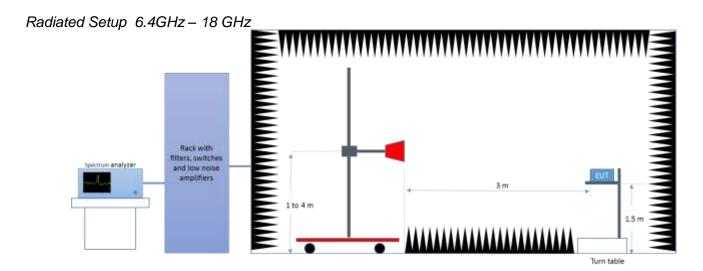
Measurements were performed using the following setups, made in accordance to the general provisions of FCC KDB 789033 D02 General UNII Test Procedures.

The DUT was installed in a test fixture and this test fixture is connected to a laptop computer and AC/DC power adapter. The laptop computer was used to configure the EUT to continuously transmit at a specified output power using all different modes and modulation schemes. using the Intel proprietary tool DRTU.

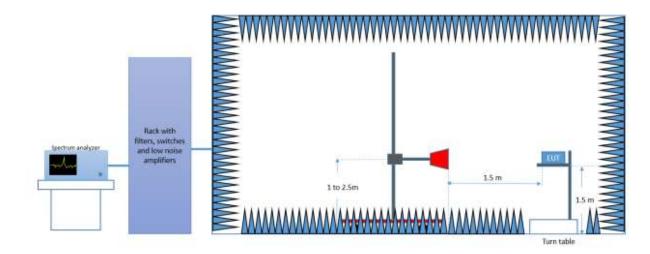

Conducted Setup







Test Report N° 170919-01.TR01

Radiated Setup 30 MHz - 1GHz




Radiated Setup 1 GHz – 6.4 GHz





# Radiated Setup 18 GHz - 40 GHz





# A.2 Test Equipment List

Conducted Setup

| ID#  | Device            | Type/Model | Serial # | Manufacturer       | Cal. Date  | Cal. Due Date |
|------|-------------------|------------|----------|--------------------|------------|---------------|
| 0316 | Spectrum analyzer | FSV30      | 103309   | Rohde &<br>Schwarz | 2017-09-22 | 2019-09-22    |

#### Radiated Setup-1

| ID#  | Device                                          | Type/Model | Serial #   | Manufacturer       | Cal. Date  | Cal. Due Date |
|------|-------------------------------------------------|------------|------------|--------------------|------------|---------------|
| 0133 | Spectrum analyzer                               | FSV40      | 101358     | Rohde &<br>Schwarz | 2016-04-15 | 2018-04-15    |
| 0137 | Log antenna<br>30 MHz – 1 GHz                   | 3142E      | 00156946   | ETS Lindgren       | 2015-12-11 | 2017-12-11    |
| 0141 | Double Ridged Horn<br>Antenna<br>1 GHz – 18 GHz | 3117       | 00157736   | ETS Lindgren       | 2016-04-13 | 2018-04-13    |
| 0135 | Semi Anechoic<br>chamber                        | FACT 3     | 5720       | ETS Lindgren       | 2016-04-28 | 2018-04-28    |
| 0530 | Measurement<br>Software                         | EMC32      | 100623     | Rohde &<br>Schwarz | N/A        | N/A           |
| 0296 | Power Supply                                    | 6673A      | MY41000318 | Agilent            | N/A        | N/A           |
| 0346 | Multimeter                                      | 34401A     | US36054685 | HP                 | 2016-02-04 | 2018-02-04    |

N/A: Not Applicable

#### Radiated Setup-2

| ID#  | Device                                           | Type/Model | Serial # | Manufacturer       | Cal. Date  | Cal. Due Date |
|------|--------------------------------------------------|------------|----------|--------------------|------------|---------------|
| 0420 | Spectrum analyzer                                | FSV40      | 101556   | Rohde &<br>Schwarz | 2016-04-14 | 2018-04-14    |
| 0138 | Horn antenna<br>1 GHz – 6.4 GHz                  | 3117       | 00152266 | ETS Lindgren       | 2016-03-14 | 2018-03-14    |
| 0334 | Double Ridged Horn<br>Antenna<br>18 GHz – 40 GHz | 3116C-PA   | 00196308 | ETS Lindgren       | 2017-08-22 | 2019-08-22    |
| 0337 | Full Anechoic<br>chamber                         | RFD_FA_100 | 5996     | ETS Lindgren       | 2016-04-28 | 2018-04-28    |
| 0329 | Measurement<br>Software                          | EMC32      | 100401   | Rohde &<br>Schwarz | N/A        | N/A           |

N/A: Not Applicable

#### Radiated Setup - shared equipments

| ID#  | Device                                            | Type/Model | Serial # | Manufacturer       | Cal. Date  | Cal. Due Date |
|------|---------------------------------------------------|------------|----------|--------------------|------------|---------------|
| 0617 | Power Sensor<br>50MHz-18GHz<br>(Peak and average) | NRP-Z81    | 104386   | Rohde &<br>Schwarz | 2017-05-24 | 2019-05-24    |
| 0618 | Power Sensor<br>50MHz-18GHz<br>(Peak and average) | NRP-Z81    | 104382   | Rohde &<br>Schwarz | 2017-05-24 | 2019-05-24    |

# A.3 Measurement Uncertainty Evaluation

The system uncertainty evaluation is shown in the below table:

| Measurement type             | Uncertainty [ ±dB] |
|------------------------------|--------------------|
| Conducted Power              | ±1.0               |
| Conducted Spurious Emission  | ±2.9               |
| Radiated tests <1GHz         | ±3.8               |
| Radiated tests 1GHz - 40 GHz | ±4.7               |



# Annex B. Test Results U-NII-1 & U-NII-2A

## B.1 Test Conditions

For 802.11a. 802.11n20 (20 MHz channel bandwidth). 802.11n40 (40MHz channel bandwidth). 802.11ac80 (80MHz channel bandwidth) modes the EUT can transmit at both CHAIN A Div1 and CHAIN A Div2 RF outputs individually. but not simultaneously.

The conducted RF output power at Chain A Div1 and Chain A Div2 was adjusted according to the client's supplied Target values (see following table) using the Intel DRTU tool and measuring the power by using a spectrum analyser with the channel integration method according to point II) E) 2) e) (Method SA-2 Alternative) of Guidance 789033 D02. Measured values for adjustment were within +/- 0.25 dB from the declared Target values.

| U-NII-1  |             | Conducted Power. T | arget Value (dBm) |                |              |              |
|----------|-------------|--------------------|-------------------|----------------|--------------|--------------|
| Mode     | BW<br>(MHz) | Data<br>Rate       | CH #              | Freq.<br>(MHz) | Chain A Div1 | Chain A Div2 |
|          |             |                    | 36                | 5180           | 17.0         | 17.0         |
| 802.11a  | 20          | 6Mbps              | 40                | 5200           | 20.5         | 20.0         |
|          |             |                    | 48                | 5240           | 21.0         | 21.5         |
|          |             | НТО                | 36                | 5180           | 16.5         | 17.0         |
|          | 20          |                    | 40                | 5200           | 20.0         | 20.0         |
| 802.11n  |             |                    | 48                | 5240           | 21.0         | 21.5         |
|          | 40          | HT0                | 38F               | 5190           | 15.5         | 15.5         |
|          | 40          | 1110               | 46F               | 5230           | 19.0         | 19.5         |
| 802.11ac | 80          | VHT0               | 42ac80            | 5210           | 15.0         | 15.0         |

| U-NII-2A |             | Conducted Power. T | arget Value (dBm) |                |              |              |
|----------|-------------|--------------------|-------------------|----------------|--------------|--------------|
| Mode     | BW<br>(MHz) | Data<br>Rate       | CH #              | Freq.<br>(MHz) | Chain A Div1 | Chain A Div2 |
|          |             |                    | 52                | 5260           | 21.0         | 21.5         |
| 802.11a  | 20          | 6Mbps              | 56                | 5280           | 21.0         | 21.5         |
|          |             |                    | 64                | 5320           | 17.0         | 17.5         |
|          |             | нто                | 52                | 5260           | 21.0         | 21.0         |
|          | 20          |                    | 56                | 5280           | 21.0         | 21.5         |
| 802.11n  |             |                    | 64                | 5320           | 17.0         | 17.5         |
|          | 40          | HT0                | 54F               | 5270           | 19.0         | 18.0         |
|          |             |                    | 62F               | 5310           | 15.0         | 15.0         |
| 802.11ac | 80          | VHT0               | 58ac80            | 5290           | 16.0         | 16.5         |

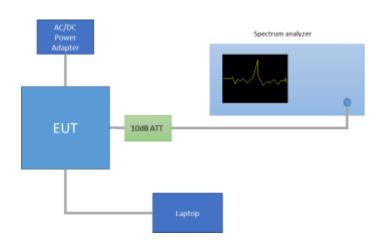
The following data rates were selected based on preliminary testing that identified those rates as the worst cases for output power and spurious levels at the band edges:

802.11a → 6Mbps

802.11n20 and 802.11n40 (SISO)  $\rightarrow$  HT0 802.11ac80 (SISO)  $\rightarrow$  VHT0

802.11ac80 (SISO) → VHT0

Alternative channels to the lowest and highest channels per band have been also tested for Band Edge compliance.




## B.2 Test Results Tables U-NII-1

### B.2.1 26dB & 99% Bandwidth

#### Test procedure

The setup below was used to measure the 26dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss.



#### **Results tables**

| Mode        | Rate  | Antenna      | Channel | Frequency<br>[MHz] | 26dB BW<br>[MHz] | 99% BW<br>[MHz] |
|-------------|-------|--------------|---------|--------------------|------------------|-----------------|
|             |       |              | 36      | 5180               | 23.92            | 16.84           |
|             |       | CHAIN A DIV1 | 40      | 5200               | 27.88            | 17.44           |
| 802.11a     | 6Mbpo |              | 48      | 5240               | 34.33            | 19.52           |
| 002.11a     | 6Mbps |              | 36      | 5180               | 23.97            | 16.80           |
|             |       | CHAIN A DIV2 | 40      | 5200               | 25.28            | 16.96           |
|             |       |              | 48      | 5240               | 31.53            | 18.44           |
|             |       |              | 36      | 5180               | 24.58            | 17.92           |
|             |       | CHAIN A DIV1 | 40      | 5200               | 27.03            | 18.12           |
| 802 11 - 20 | ЦТО   |              | 48      | 5240               | 32.13            | 18.72           |
| 802.11n20   | HT0   |              | 36      | 5180               | 24.53            | 17.88           |
|             |       | CHAIN A DIV2 | 40      | 5200               | 26.88            | 18.08           |
|             |       |              | 48      | 5240               | 37.34            | 19.48           |



# Test Report N° 170919-01.TR01

| Mode       | Rate | Antenna      | Channel | Frequency<br>[MHz] | 26dB BW<br>[MHz] | 99% BW<br>[MHz] |
|------------|------|--------------|---------|--------------------|------------------|-----------------|
|            |      | CHAIN A DIV1 | 38F     | 5190               | 44.87            | 36.56           |
| 802.11n40  | HT0  |              | 46F     | 5230               | 45.41            | 36.80           |
| 002.111140 | пі   | CHAIN A DIV2 | 38F     | 5190               | 43.96            | 36.56           |
|            |      |              | 46F     | 5230               | 46.58            | 36.72           |
| 802.11ac80 |      | CHAIN A DIV1 | 42ac80  | 5210               | 84.64            | 75.24           |
| 002.118000 | VHT0 | CHAIN A DIV2 | 42ac80  | 5210               | 85.59            | 75.24           |

#### Max Value

See Section B.3.1 and Section B.3.2 for the screenshot results.



### B.2.2 Power Limits. Maximum Output power & Peak power spectral density

Test limits

| FCC part               | Limits                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.407<br>(a) (1) (iv) | For mobile and portable client devices in the 5.15-5.25 GHz band. the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. |

#### Test procedure

The Maximum Conducted Output Power was measured using the channel integration method according to point E) 2) e) (Method SA-2 Alternative) of KDB 789033 D02.

The maximum power spectral density (PSD) was measured using the method according to point F) (Method SA-2 Alternative) of KDB 789033 D02.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The setup below was used to measure the maximum conducted output power and power spectral density. The antenna terminal of the EUT is connected to the spectrum analyser through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss.

The declared maximum antenna gain is 5dBi.





# Test Report N° 170919-01.TR01

# Results tables

#### Duty cycle

| Mode        | Rate  | Antenna      | Transmission<br>Duration<br>[ms] | Transmission Period<br>[ms] | Duty Cycle<br>[%] |
|-------------|-------|--------------|----------------------------------|-----------------------------|-------------------|
| 802.11a     | 6Mbpo | CHAIN A DIV1 | 2.03                             | 2.07                        | 98.28%            |
| 002.11d     | 6Mbps | CHAIN A DIV2 | 2.03                             | 2.07                        | 98.28%            |
| 802.11n20   | μтο   | CHAIN A DIV1 | 1.89                             | 1.93                        | 98.11%            |
| 802.TTT20   | HT0   | CHAIN A DIV2 | 1.89                             | 1.93                        | 98.11%            |
| 902 11 - 10 | μтο   | CHAIN A DIV1 | 0.93                             | 0.96                        | 96.19%            |
| 802.11n40   | HT0   | CHAIN A DIV2 | 0.93                             | 0.96                        | 96.19%            |
| 902 110090  |       | CHAIN A DIV1 | 0.46                             | 0.49                        | 93.31%            |
| 802.11ac80  | VHT0  | CHAIN A DIV2 | 0.46                             | 0.49                        | 93.31%            |



# Test Report N° 170919-01.TR01

## Maximum output power

| Mode  | Rate     | Channel | Freq.<br>[MHz] | Antenna      | Average<br>Conducted<br>Output<br>Power<br>[dBm] | Maximum*<br>Conducted<br>Output Power<br>[dBm] | Maximum*<br>Conducted<br>Output<br>Power [mW] | Max of<br>EIRP<br>[dBm] |       |              |        |       |        |       |              |       |       |       |       |
|-------|----------|---------|----------------|--------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------|-------|--------------|--------|-------|--------|-------|--------------|-------|-------|-------|-------|
|       |          | 36      | 5180           | CHAIN A DIV1 | 16.97                                            | 16.97                                          | 49.77                                         | 21.97                   |       |              |        |       |        |       |              |       |       |       |       |
| g     |          | 30      | 30             | 5160         | CHAIN A DIV2                                     | 17.05                                          | 17.05                                         | 50.70                   | 22.05 |              |        |       |        |       |              |       |       |       |       |
| ~     | 6Mbps    | 40      | 40             | 40           | 40                                               | 40                                             | 40                                            | 40                      | 5200  | CHAIN A DIV1 | 20.44  | 20.44 | 110.66 | 25.44 |              |       |       |       |       |
| 802.1 | ompha    |         |                | 5200         | CHAIN A DIV2                                     | 19.92                                          | 19.92                                         | 98.17                   | 24.92 |              |        |       |        |       |              |       |       |       |       |
| ~     |          | 48      | 19             | 5240         | CHAIN A DIV1                                     | 21.08                                          | 21.08                                         | 128.23                  | 26.08 |              |        |       |        |       |              |       |       |       |       |
|       |          |         | 5240           | CHAIN A DIV2 | 21.27                                            | 21.27                                          | 133.97                                        | 26.27                   |       |              |        |       |        |       |              |       |       |       |       |
|       |          | 26      | 5180           | CHAIN A DIV1 | 16.71                                            | 16.71                                          | 46.88                                         | 21.71                   |       |              |        |       |        |       |              |       |       |       |       |
| 0     |          | 30      | 30             | 30           | 30                                               | 30                                             | 30                                            | 30                      | 30    | 36           | 30     | 36    | 36     | 5160  | CHAIN A DIV2 | 16.90 | 16.90 | 48.98 | 21.90 |
| 1n20  | uто      |         | 10             | 40           | 40                                               | 40                                             | E200                                          | CHAIN A DIV1            | 20.14 | 20.14        | 103.28 | 25.14 |        |       |              |       |       |       |       |
| 802.1 | E HTO 40 | 5200    | CHAIN A DIV2   | 20.21        | 20.21                                            | 104.95                                         | 25.21                                         |                         |       |              |        |       |        |       |              |       |       |       |       |
| 80    |          | 48      | 50.40          | CHAIN A DIV1 | 21.00                                            | 21.00                                          | 125.89                                        | 26.00                   |       |              |        |       |        |       |              |       |       |       |       |
|       |          |         | 5240           | CHAIN A DIV2 | 21.47                                            | 21.47                                          | 140.28                                        | 26.47                   |       |              |        |       |        |       |              |       |       |       |       |

| Mode  | Rate  | Channel | Freq.<br>[MHz] | Antenna      | Average<br>Conducted<br>Output<br>Power<br>[dBm] | Maximum*<br>Conducted<br>Output Power<br>[dBm] | Maximum*<br>Conducted<br>Output<br>Power [mW] | Max of<br>EIRP<br>[dBm] |       |
|-------|-------|---------|----------------|--------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------|-------|
| q     |       | 38F     | 5100           | CHAIN A DIV1 | 15.30                                            | 15.47                                          | 35.23                                         | 20.47                   |       |
| 1n40  | HT0   | зог     | 5190           | 5190         | CHAIN A DIV2                                     | 15.20                                          | 15.37                                         | 34.43                   | 20.37 |
| 802.1 | піо   | 46F     | 5230           | CHAIN A DIV1 | 18.88                                            | 19.05                                          | 80.33                                         | 24.05                   |       |
| 8(    |       | 406     | 5250           | CHAIN A DIV2 | 19.50                                            | 19.67                                          | 92.66                                         | 24.67                   |       |
| 1ac80 | VHT0  | 42ac80  | 5210           | CHAIN A DIV1 | 14.45                                            | 14.75                                          | 29.86                                         | 19.75                   |       |
| 802.1 | VIIIO | 42800   | 5210           | CHAIN A DIV2 | 14.76                                            | 15.06                                          | 32.07                                         | 20.06                   |       |

 \* Maximum values are the duty cycle compensated values calculated from the average (measured) values Max Value Min Value

## Test Report N° 170919-01.TR01



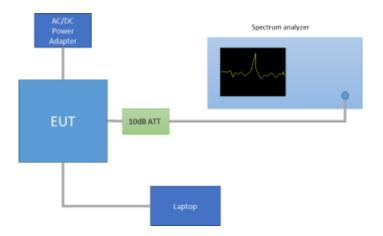
#### Maximum power spectral Density (PSD)

| Mode      | Rate                      | Channel           | Freq.<br>[MHz] | Antenna      | Average<br>conducted PSD<br>[dBm/MHz] | Maximum*<br>conducted PSD<br>[dBm/MHz] |      |
|-----------|---------------------------|-------------------|----------------|--------------|---------------------------------------|----------------------------------------|------|
|           |                           | 36                | 5180           | CHAIN A DIV1 | 5.25                                  | 5.25                                   |      |
|           |                           | 30                | 5180           | CHAIN A DIV2 | 5.34                                  | 5.34                                   |      |
| 802.11a   | 6Mbps                     | 40                | 5200           | CHAIN A DIV1 | 8.73                                  | 8.73                                   |      |
| 302.      | olviops                   | 40                | 5200           | CHAIN A DIV2 | 8.21                                  | 8.21                                   |      |
| ~         |                           | 48                | 5240           | CHAIN A DIV1 | 9.36                                  | 9.36                                   |      |
|           |                           | 40                | 5240           | CHAIN A DIV2 | 9.54                                  | 9.54                                   |      |
|           |                           | 36<br>ГО 40<br>48 | 26             | 5180         | CHAIN A DIV1                          | 4.72                                   | 4.72 |
| 0         |                           |                   | 5160           | CHAIN A DIV2 | 4.93                                  | 4.93                                   |      |
| 802.11n20 | НТО                       |                   | 5200           | CHAIN A DIV1 | 8.13                                  | 8.13                                   |      |
| 02.1      | піо                       |                   | 5200           | CHAIN A DIV2 | 8.21                                  | 8.21                                   |      |
| 8(        |                           |                   | 5040           | CHAIN A DIV1 | 8.96                                  | 8.96                                   |      |
|           |                           | 40                | 5240           | CHAIN A DIV2 | 9.42                                  | 9.42                                   |      |
| o,        |                           | 38F               | 5400           | CHAIN A DIV1 | 0.23                                  | 0.40                                   |      |
| 802.11n40 | НТО                       | зог               | 5190           | CHAIN A DIV2 | 0.18                                  | 0.35                                   |      |
| 02.1      | ніо                       | 405               | 5000           | CHAIN A DIV1 | 3.83                                  | 4.00                                   |      |
| 80        |                           | 46F               | 5230           | CHAIN A DIV2 | 4.42                                  | 4.59                                   |      |
| 1ac80     | УНТО                      | 42ac80            | 5210           | CHAIN A DIV1 | -3.00                                 | -2.70                                  |      |
| 802.1     | 802.11ac80<br>01HA 11ac80 | VHT0 42ac80 5210  |                | CHAIN A DIV2 | -2.68                                 | -2.38                                  |      |

\* Maximum values are the duty cycle compensated values calculated from the measured average values

See Section B.3.3 for the screenshot results.




### B.2.3 Undesirable emission limits : Band Edge (Conducted)

#### Test limits

| FCC part       | Limits                                                                                                                                      |                                                                          |                                                           |                                                      |                                                          |                                              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| 15.407 (b) (1) | For transmitters of GHz band shall n                                                                                                        |                                                                          |                                                           |                                                      | sions outside of t                                       | the 5.15-5.35                                |
|                | Radiated emissio<br>comply with the ra                                                                                                      |                                                                          |                                                           |                                                      | - (                                                      | a). must also                                |
|                | F                                                                                                                                           | req Range<br>(MHz)                                                       | Field Strength<br>(μV/m)                                  | Field Strength<br>(dBµV/m)                           | Meas. Distance<br>(m)                                    |                                              |
|                |                                                                                                                                             | 30-88                                                                    | 100                                                       | 40                                                   | 3                                                        | ]                                            |
|                |                                                                                                                                             | 88-216                                                                   | 150                                                       | 43.5                                                 | 3                                                        |                                              |
|                |                                                                                                                                             | 216-960                                                                  | 200                                                       | 46                                                   | 3                                                        |                                              |
| 15.209         | A                                                                                                                                           | bove 960                                                                 | 500                                                       | 54                                                   | 3                                                        |                                              |
|                | The emission limi<br>quasi-peak detec<br>MHz. Radiated er<br>an average detec<br>For average radia<br>when measuring<br>values in the table | tor except fo<br>mission limits<br>stor.<br>ated emission<br>with peak d | r the frequency b<br>s in these three b<br>n measurements | oands 9-90 kHz.<br>oands are based<br>above 1000 MHz | 110-490 kHz and<br>on measuremen<br>z. there is also a l | above 1000<br>ts employing<br>imit specified |

#### Test procedure

The setup below was used to measure undesirable emissions on the Band Edge domain. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss and the declared Antenna Gain.





For Band Edge measurements in average mode on the low frequency section. one of the two methods is used according to section G) 6) (KDB 789033 D02):

- 1) Method AD (Average Detection) as per paragraph II.G.6.c.
- 2) Method VB (Averaging using reduced video bandwidth) as per paragraph II.G.6.d.

In case of Band Edge measurements falling in restricted bands. the declared Antenna Gain is also compensated in the graph. The declared maximum antenna gain is 5dBi.

For Band Edge measurements falling in restricted bands. the following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dB $\mu$ V/m. according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.

|                  | §15.209(a)      |                                      | Converted values                        |                |  |
|------------------|-----------------|--------------------------------------|-----------------------------------------|----------------|--|
| Freq Range (MHz) | Distance<br>(m) | Field strength<br>(microvolts/meter) | Field strength<br>(dB microvolts/meter) | Power<br>(dBm) |  |
| Above 960        | 3               | 500                                  | 54.0                                    | -41.2          |  |

See Section B.3.4 for the screenshot results.



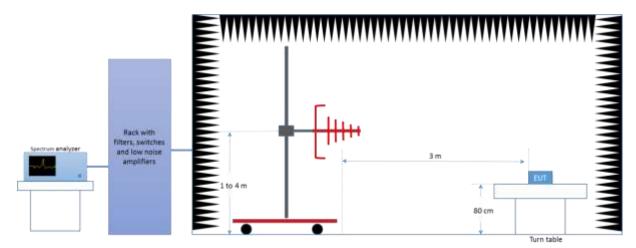
#### Standard references

**B.2.4** 

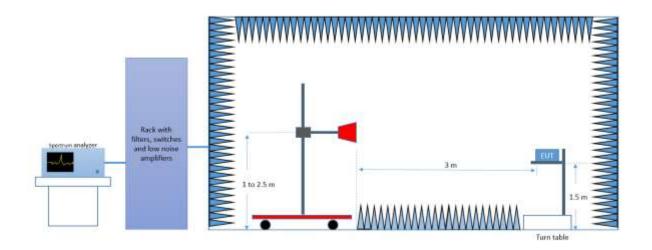
| FCC part       | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                          |                            |                       |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-----------------------|--|--|
| 15.407 (b) (1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of $-27$ dBm/MHz.         |                          |                            |                       |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radiated emissions which fall in the restricted bands. as defined in §15.205(a). must also comply with the radiated emission limits specified in §15.209(a): |                          |                            |                       |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Freq Range<br>(MHz)                                                                                                                                          | Field Strength<br>(µV/m) | Field Strength<br>(dBµV/m) | Meas.<br>Distance (m) |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.009-0.490                                                                                                                                                  | 2400/f(kHz)              | -                          | 300                   |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.490-1.705                                                                                                                                                  | 24000/f(kHz)             | -                          | 300                   |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.705-30.0                                                                                                                                                   | 30                       | -                          | 30                    |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30-88                                                                                                                                                        | 100                      | 40                         | 3                     |  |  |
| 15.209         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88-216                                                                                                                                                       | 150                      | 43.5                       | 3                     |  |  |
| 10.200         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 216-960                                                                                                                                                      | 200                      | 46                         | 3                     |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Above 960                                                                                                                                                    | 500                      | 54                         | 3                     |  |  |
|                | Above 960500543The emission limits shown in the above table are based on measurements employing CISP<br>quasi-peak detector except for the frequency bands 9-90 kHz. 110-490 kHz and above 100<br>MHz. Radiated emission limits in these three bands are based on measurements employin<br>an average detector.For average radiated emission measurements above 1000 MHz. there is also a limit specifie<br>when measuring with peak detector function. corresponding to 20 dB above the indicate<br>values in the table. |                                                                                                                                                              |                          |                            |                       |  |  |

#### Test procedure

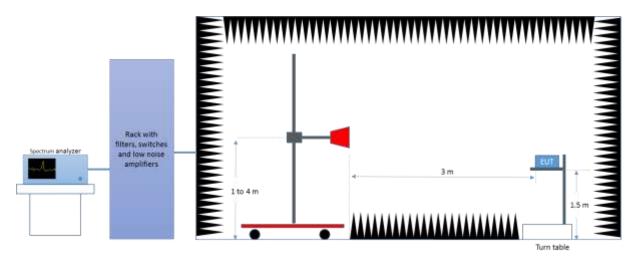
The setup below was used to measure the radiated spurious emissions.


Depending of the frequency range and bands being tested. different antennas and filters were used.

The final measurement is done by varying the antenna height. the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

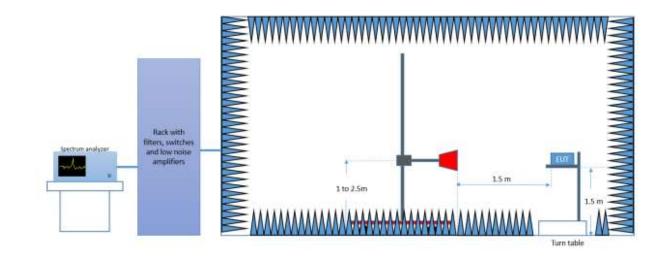

The radiated spurious emission was measured on the worst case configuration selected from the chapter B.2.2 and using the low. middle and high channel.




Radiated Setup 30 MHz - 1GHz



Radiated Setup 1 GHz - 6.4 GHz




Radiated Setup 6.4GHz - 18 GHz





# Radiated Setup 18 GHz - 40 GHz



Test Report Nº 170919-01.TR01



#### Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

#### $E = 126.8 - 20log(\lambda) + P - G$

where

*E* is the field strength of the emission at the measurement distance in  $dB\mu V/m$ .

*P* is the power measured at the output of the test antenna in dBm.

 $\lambda$  is the wavelength of the emission under investigation [300/f<sub>MHz</sub>] in m.

G is the gain of the test antenna in dBi.

NOTE - The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses, amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

E<sub>SpecLimit</sub> = E<sub>Meas</sub> + 20log(D<sub>Meas</sub>/D<sub>SpecLimit</sub>)

where

 $E_{SpecLimit}$  is the field strength of the emission at the distance specified by the limit in  $dB\mu V/m$ .

 $E_{Meas}$  is the field strength of the emission at the measurement distance in  $dB\mu V/m$ .

D<sub>Meas</sub> is the measurement distance in m.

DspecLimit is the distance specified by the limit in m.



#### Test Results

# 30 MHz – 40 GHz. 802.11a. 6Mbps. Chain A Div1

#### Radiated Spurious – CH36

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 28.0    |        | 40.0   | 12.0   |
| 178.9     | 27.7    |        | 43.5   | 15.8   |
| 183.0     | 28.4    |        | 43.5   | 15.1   |
| 216.0     | 31.1    |        | 43.5   | 12.4   |
| 500.0     | 35.3    |        | 46.0   | 10.7   |
| 640.1     | 38.2    |        | 46.0   | 7.8    |
| 1190.2    |         | 44.4   | 54.0   | 9.6    |
| 1190.2    | 49.1    |        | 74.0   | 24.9   |
| 10350.8   | 59.5    |        | 74.0   | 14.5   |
| 10358.0   |         | 47.7   | 54.0   | 6.3    |
| 25937.8   |         | 37.0   | 54.0   | 17.0   |

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 27.3    |        | 40.0   | 12.8   |
| 96.0      | 29.6    |        | 43.5   | 13.9   |
| 115.2     | 27.7    |        | 43.5   | 15.8   |
| 216.0     | 30.8    |        | 46.0   | 15.2   |
| 500.1     | 35.5    |        | 46.0   | 10.5   |
| 640.0     | 38.4    |        | 46.0   | 7.6    |
| 1190.2    |         | 43.8   | 54.0   | 10.2   |
| 1190.2    | 48.0    |        | 74.0   | 26.0   |
| 10400.1   |         | 41.1   | 54.0   | 12.9   |
| 10407.8   | 53.3    |        | 74.0   | 20.7   |
| 25938.6   |         | 36.9   | 54.0   | 17.1   |
| 25967.9   | 47.0    |        | 74.0   | 27.0   |

#### Test Report Nº 170919-01.TR01



# Radiated Spurious – CH48

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 62.5      | 29.7    |        | 40.0   | 10.4   |
| 115.1     | 28.0    |        | 43.5   | 15.5   |
| 216.0     | 31.3    |        | 43.5   | 12.2   |
| 437.6     | 35.5    |        | 46.0   | 10.5   |
| 500.0     | 34.9    |        | 46.0   | 11.2   |
| 640.0     | 38.2    |        | 46.0   | 7.9    |
| 1190.2    |         | 44.1   | 54.0   | 9.9    |
| 1190.5    | 48.5    |        | 74.0   | 25.5   |
| 10482.2   |         | 42.1   | 54.0   | 11.9   |
| 10486.1   | 56.1    |        | 74.0   | 17.9   |
| 22848.5   |         | 36.5   | 54.0   | 17.5   |

# 30 MHz – 40 GHz. 802.11a. 6Mbps. Chain A Div2

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 59.5      | 32.4    |        | 40.0   | 7.6    |
| 72.0      | 27.3    |        | 40.0   | 12.7   |
| 115.2     | 27.1    |        | 43.5   | 16.4   |
| 216.0     | 30.9    |        | 46.0   | 15.1   |
| 500.0     | 34.9    |        | 46.0   | 11.1   |
| 640.0     | 38.3    |        | 46.0   | 7.7    |
| 1190.2    | 48.3    |        | 74.0   | 25.7   |
| 1190.5    |         | 43.5   | 54.0   | 10.5   |
| 20720.0   |         | 37.1   | 54.0   | 16.9   |

# Test Report N° 170919-01.TR01



## Radiated Spurious – CH40

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 27.2    |        | 40.0   | 12.8   |
| 96.0      | 26.5    |        | 43.5   | 17.0   |
| 115.2     | 28.4    |        | 43.5   | 15.1   |
| 216.0     | 31.6    |        | 46.0   | 14.4   |
| 437.6     | 36.7    |        | 46.0   | 9.3    |
| 640.0     | 37.9    |        | 46.0   | 8.1    |
| 1190.2    |         | 44.2   | 54.0   | 9.8    |
| 1190.2    | 48.2    |        | 74.0   | 25.8   |
| 20799.9   |         | 39.2   | 54.0   | 14.8   |

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.7    |        | 40.0   | 13.4   |
| 96.0      | 27.6    |        | 43.5   | 15.9   |
| 115.2     | 27.4    |        | 43.5   | 16.1   |
| 216.0     | 31.8    |        | 43.5   | 11.7   |
| 500.1     | 35.0    |        | 46.0   | 11.0   |
| 640.0     | 37.6    |        | 46.0   | 8.4    |
| 1190.2    | 48.8    |        | 74.0   | 25.2   |
| 1190.5    |         | 43.8   | 54.0   | 10.2   |
| 25896.7   |         | 36.8   | 54.0   | 17.2   |



# 30 MHz - 40 GHz. 802.11n20. HT0. Chain A Div1

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 28.6    |        | 40.0   | 11.4   |
| 115.2     | 26.9    |        | 43.5   | 16.6   |
| 216.0     | 31.2    |        | 43.5   | 12.3   |
| 437.6     | 36.3    |        | 46.0   | 9.7    |
| 500.1     | 36.4    |        | 46.0   | 9.6    |
| 640.0     | 38.5    |        | 46.0   | 7.6    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.2    | 48.8    |        | 74.0   | 25.2   |
| 10358.0   | 52.1    |        | 74.0   | 22.0   |
| 10360.4   |         | 42.3   | 54.0   | 11.7   |
| 20720.3   |         | 37.9   | 54.0   | 16.1   |

#### Radiated Spurious – CH36

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 27.5    |        | 40.0   | 12.5   |
| 79.0      | 27.4    |        | 40.0   | 12.6   |
| 96.0      | 27.5    |        | 43.5   | 16.0   |
| 115.2     | 27.4    |        | 43.5   | 16.1   |
| 216.0     | 31.9    |        | 46.0   | 14.1   |
| 640.0     | 37.0    |        | 46.0   | 9.0    |
| 1190.2    |         | 44.1   | 54.0   | 9.9    |
| 1190.2    | 47.7    |        | 74.0   | 26.3   |
| 20720.0   |         | 38.1   | 54.0   | 15.9   |

#### Test Report Nº 170919-01.TR01



#### Radiated Spurious – CH48

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.9    |        | 40.0   | 13.1   |
| 95.9      | 26.6    |        | 43.5   | 16.9   |
| 115.2     | 26.9    |        | 43.5   | 16.6   |
| 216.0     | 30.9    |        | 46.0   | 15.1   |
| 500.1     | 35.6    |        | 46.0   | 10.4   |
| 640.0     | 38.2    |        | 46.0   | 7.8    |
| 1190.2    |         | 43.9   | 54.0   | 10.1   |
| 1190.2    | 48.9    |        | 74.0   | 25.1   |
| 20959.9   |         | 39.7   | 54.0   | 14.3   |

# 30 MHz – 40 GHz. 802.11n20. HT0. Chain A Div2

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 62.4      | 27.1    |        | 40.0   | 12.9   |
| 72.0      | 26.7    |        | 40.0   | 13.3   |
| 115.2     | 27.8    |        | 43.5   | 15.7   |
| 216.0     | 32.1    |        | 46.0   | 13.9   |
| 500.0     | 36.2    |        | 46.0   | 9.8    |
| 640.0     | 37.5    |        | 46.0   | 8.5    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.2    | 48.5    |        | 74.0   | 25.6   |
| 20720.0   |         | 38.1   | 54.0   | 15.9   |

## Test Report Nº 170919-01.TR01



## Radiated Spurious – CH40

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 27.0    |        | 40.0   | 13.0   |
| 96.0      | 29.0    |        | 43.5   | 14.5   |
| 115.2     | 27.8    |        | 43.5   | 15.7   |
| 216.0     | 31.7    |        | 46.0   | 14.3   |
| 500.0     | 36.5    |        | 46.0   | 9.5    |
| 640.0     | 39.0    |        | 46.0   | 7.0    |
| 1190.5    |         | 43.6   | 54.0   | 10.4   |
| 1190.5    | 48.8    |        | 74.0   | 25.2   |
| 10476.9   | 52.6    |        | 74.0   | 21.4   |
| 10486.6   |         | 42.6   | 54.0   | 11.4   |
| 20799.9   |         | 39.0   | 54.0   | 15.0   |

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 96.0      | 26.6    |        | 43.5   | 16.9   |
| 115.2     | 27.1    |        | 43.5   | 16.4   |
| 201.7     | 33.7    |        | 43.5   | 9.8    |
| 216.0     | 31.8    |        | 46.0   | 14.2   |
| 500.0     | 35.9    |        | 46.0   | 10.1   |
| 640.0     | 38.8    |        | 46.0   | 7.2    |
| 1190.2    |         | 43.9   | 54.0   | 10.1   |
| 1190.2    | 48.0    |        | 74.0   | 26.0   |
| 25918.9   |         | 36.7   | 54.0   | 17.3   |



# 30 MHz - 40 GHz. 802.11n40. HT0. Chain A Div1

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.3    |        | 40.0   | 13.7   |
| 115.2     | 26.9    |        | 43.5   | 16.6   |
| 216.0     | 30.8    |        | 46.0   | 15.2   |
| 437.6     | 34.5    |        | 46.0   | 11.5   |
| 500.1     | 35.1    |        | 46.0   | 10.9   |
| 640.0     | 38.6    |        | 46.0   | 7.4    |
| 1190.2    | 48.1    |        | 74.0   | 26.0   |
| 1190.5    |         | 44.0   | 54.0   | 10.0   |
| 22225.0   |         | 36.6   | 54.0   | 17.4   |

#### **Radiated Spurious – CH38F**

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 28.0    |        | 40.0   | 12.0   |
| 115.2     | 26.7    |        | 43.5   | 16.8   |
| 216.0     | 31.3    |        | 46.0   | 14.7   |
| 437.6     | 35.2    |        | 46.0   | 10.8   |
| 500.0     | 35.3    |        | 46.0   | 10.7   |
| 640.0     | 38.0    |        | 46.0   | 8.0    |
| 1190.2    |         | 44.1   | 54.0   | 10.0   |
| 1190.2    | 49.2    |        | 74.0   | 24.8   |
| 20920.0   |         | 37.4   | 54.0   | 16.6   |



# 30 MHz - 40 GHz. 802.11n40. HT0. Chain A Div2

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 27.2    |        | 40.0   | 12.9   |
| 115.2     | 27.0    |        | 43.5   | 16.5   |
| 216.0     | 31.0    |        | 46.0   | 15.0   |
| 437.5     | 35.9    |        | 46.0   | 10.1   |
| 500.0     | 35.7    |        | 46.0   | 10.3   |
| 640.0     | 39.4    |        | 46.0   | 6.6    |
| 1190.2    |         | 44.1   | 54.0   | 9.9    |
| 1190.2    | 47.8    |        | 74.0   | 26.2   |
| 20760.3   |         | 37.0   | 54.0   | 17.0   |

#### **Radiated Spurious – CH38F**

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 96.0      | 28.8    |        | 43.5   | 14.7   |
| 115.2     | 26.5    |        | 43.5   | 17.0   |
| 216.0     | 30.8    |        | 43.5   | 12.7   |
| 437.6     | 35.2    |        | 46.0   | 10.9   |
| 500.1     | 36.6    |        | 46.0   | 9.4    |
| 640.0     | 38.2    |        | 46.0   | 7.8    |
| 1190.2    |         | 44.1   | 54.0   | 9.9    |
| 1190.2    | 48.0    |        | 74.0   | 26.1   |
| 20920.0   |         | 39.7   | 54.0   | 14.3   |



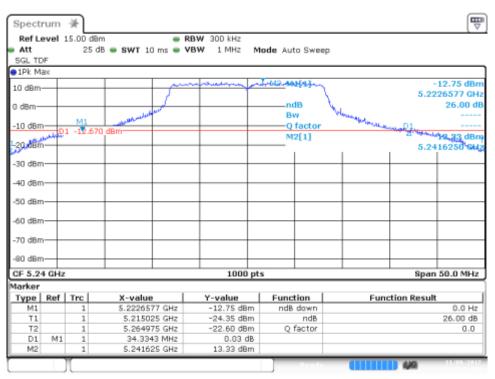
# 30 MHz - 40 GHz. 802.11ac80. VHT0. Chain A Div1

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 96.0      | 25.8    |        | 43.5   | 17.7   |
| 115.2     | 26.4    |        | 43.5   | 17.1   |
| 312.0     | 33.3    |        | 46.0   | 12.7   |
| 320.0     | 33.3    |        | 46.0   | 12.7   |
| 500.1     | 35.5    |        | 46.0   | 10.6   |
| 640.0     | 38.5    |        | 46.0   | 7.5    |
| 1190.2    |         | 43.9   | 54.0   | 10.1   |
| 1190.2    | 47.6    |        | 74.0   | 26.4   |
| 20839.8   |         | 37.2   | 54.0   | 16.8   |

#### Radiated Spurious – CH42ac80

# 30 MHz – 40 GHz. 802.11ac80. VHT0. Chain A Div2

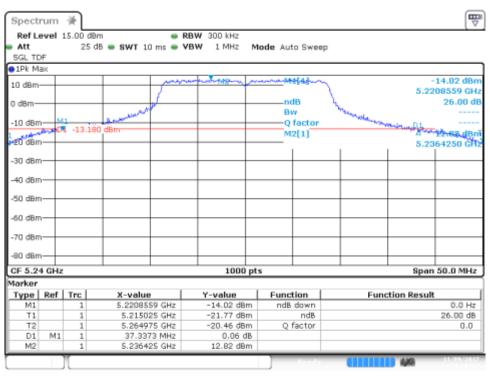
| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 96.0      | 24.5    |        | 43.5   | 19.0   |
| 312.0     | 33.3    |        | 46.0   | 12.7   |
| 320.0     | 33.3    |        | 46.0   | 12.7   |
| 437.6     | 34.9    |        | 46.0   | 11.1   |
| 500.0     | 35.3    |        | 46.0   | 10.7   |
| 640.0     | 39.0    |        | 46.0   | 7.0    |
| 1190.2    | 47.7    |        | 74.0   | 26.3   |
| 1190.5    |         | 43.4   | 54.0   | 10.6   |
| 20839.8   |         | 39.0   | 54.0   | 15.0   |




#### B.3 Test Results Screenshot U-NII-1

#### B.3.1 26dB Bandwidth

# CHAIN A DIV1. 802.11a. 6Mbps

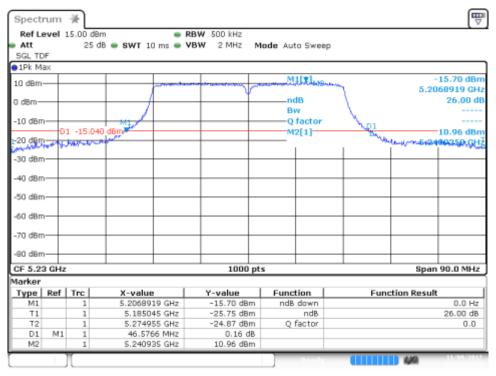

#### Channel 48



Date: 8 NOV:2017 16:18:52

# CHAIN A DIV2. 802.11n20. HT0

#### Channel 48



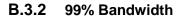

Date: 9.NOV.2017 11:49:14



# CHAIN A DIV2. 802.11n40. HT0

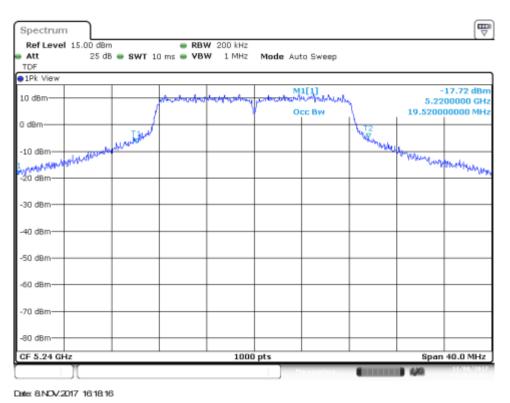
#### Channel 46F




Date: 9.NOV.2017 14:29:34

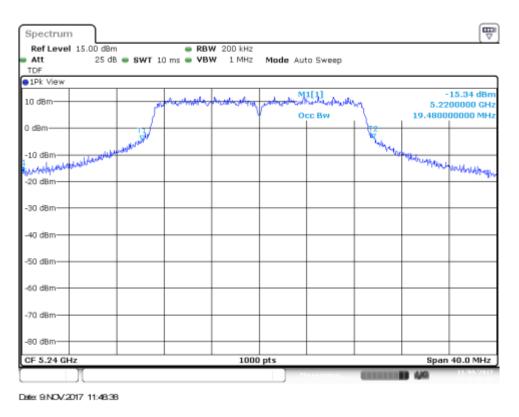
# CHAIN A DIV2. 802.11ac80. VHT0

Spectrum ¥ Ref Level 15.00 dBm RBW 1 MHz 25 dB 🖷 SWT 10 ms 🖷 VBW 3 MHz Att Mode Auto Sweep SGL TDF 1Pk Max 19.81 dBr MINE 10 dBm-5.167492 GH ndB 26.00 dB 0 d8m Bay -10 dBm-Q factor мJ 6.96 dBr M2[1] D1 -19.040 -20 dBm-5.232710 GH 30 dBm-40 dBm -50 dBm--60 dBm -70 dBm -80 dBr CF 5.21 GHz 1000 pts Span 190.0 MHz Marker Function Result Type Ref Trc M1 1 X-value 5.167492 GHz -19.81 dBm Function 0.0 Hz ndB down Τ1 5.1151 GHz -37.40 dBm ndB 26.00 dB Q factor 5.30491 GHz 85.586 MHz T2 -38.02 dBm 0.0 D1 M1 -1.90 dB 5.23271 GHz 6.96 dBm M2 48


Date: 9 NOV:2017 14:43:53

## Channel 42ac80



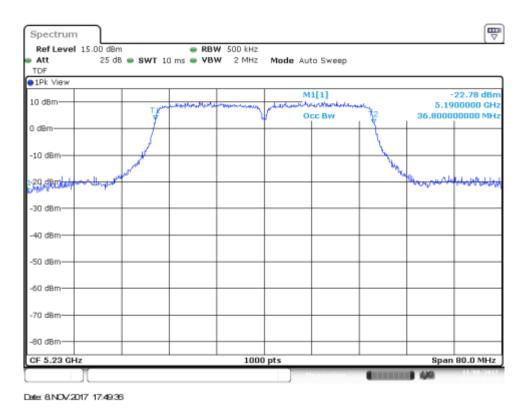

Channel 48

CHAIN A DIV1. 802.11a. 6Mbps



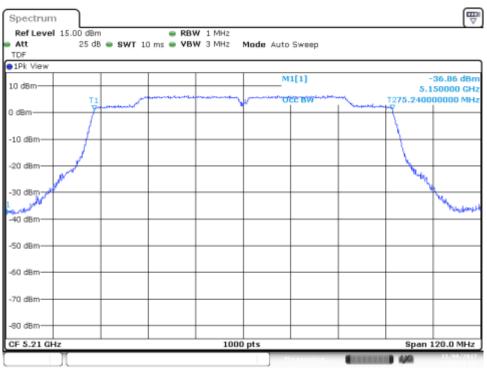
# CHAIN A DIV2. 802.11n20. HT0

#### Channel 48







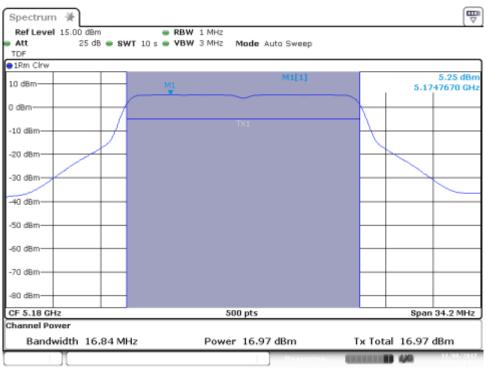


# CHAIN A DIV1. 802.11n40. HT0

#### Channel 46F



# CHAIN A DIV1. 802.11n20. VTH0

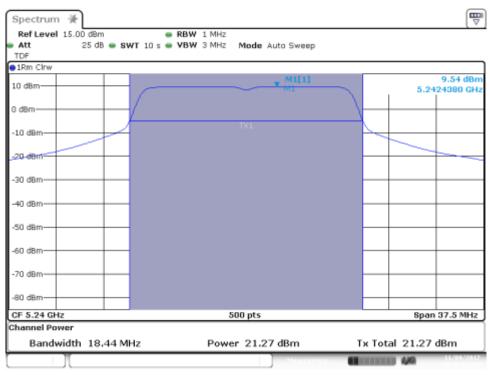
#### Channel 42ac80




Date: 8.NOV.2017 17:58:08



# B.3.3 Power Limits. Maximum Output power & Peak power spectral density CHAIN A DIV1. 802.11a. 6Mbps

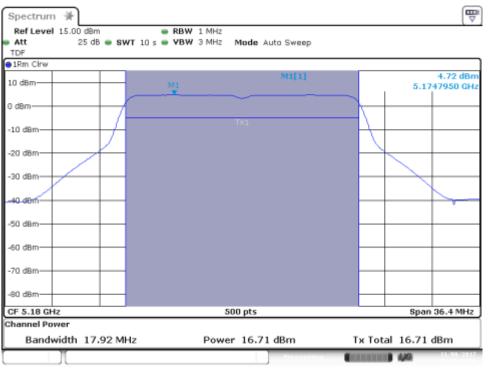

#### Channel 36



Date: 8NOV:2017 16:09:28

# CHAIN A DIV2. 802.11a. 6Mbps

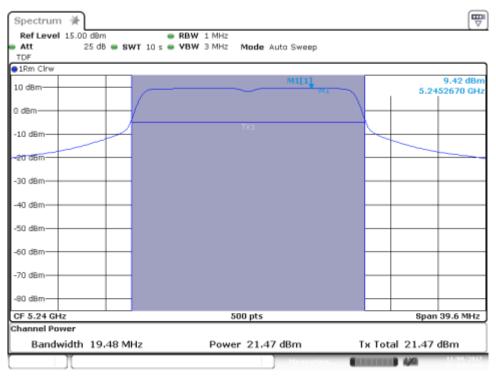
#### Channel 48




Date: 9.NOV.2017 10.46.45



# CHAIN A DIV1. 802.11n20. HT0

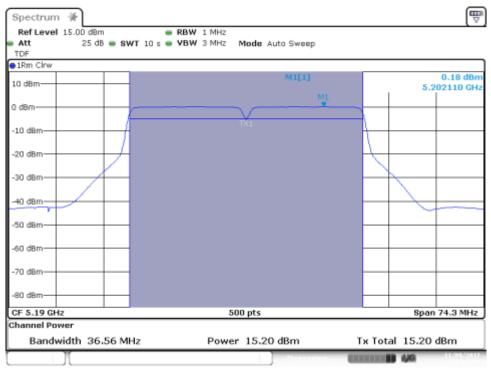

#### Channel 36



Date: 8NOV.2017 17:17:32

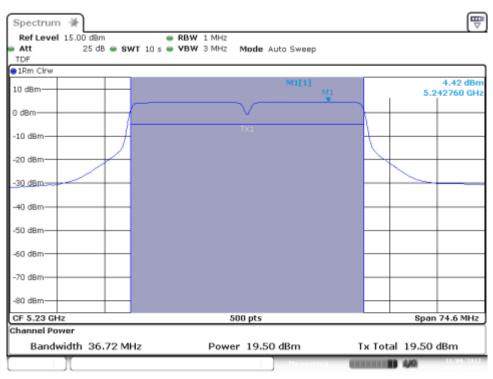
# CHAIN A DIV2. 802.11n20. HT0

#### Channel 48




Date: 9.NOV.2017 11:48:56




# CHAIN A DIV2. 802.11n40. HT0

#### Channel 38F



Date: 9.NOV.2017 11:56:55

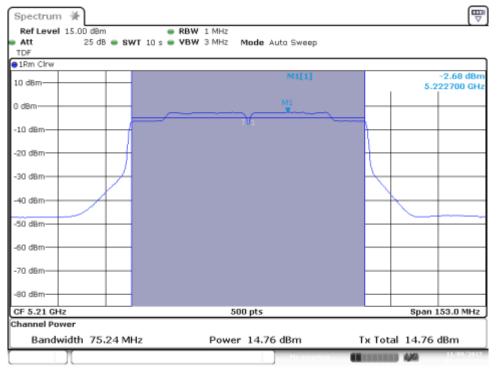
#### Channel 46F



Date: 9.NOV.2017 14:29.15



# CHAIN A DIV1. 802.11ac80. VHT0


#### Channel 42ac80



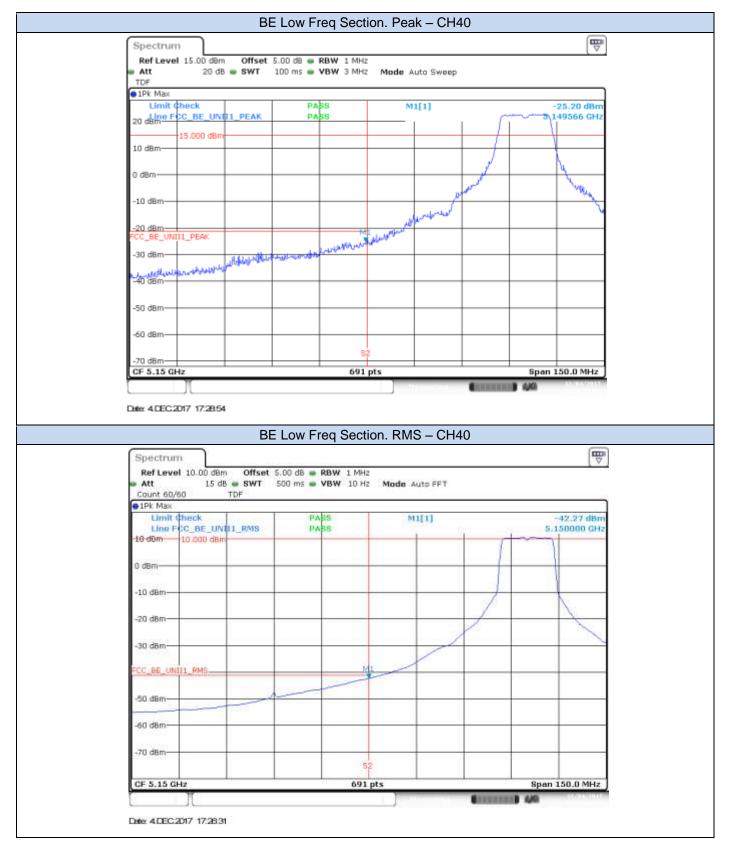
Date: 8 NOV:2017 17:58:23

# CHAIN A DIV2. 802.11ac80. VHT0

Channel 42ac80

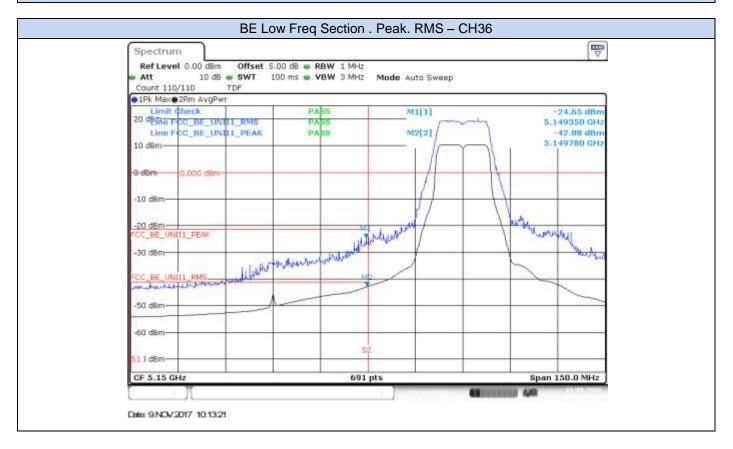


Date: 9.NOV.2017 14:43:34

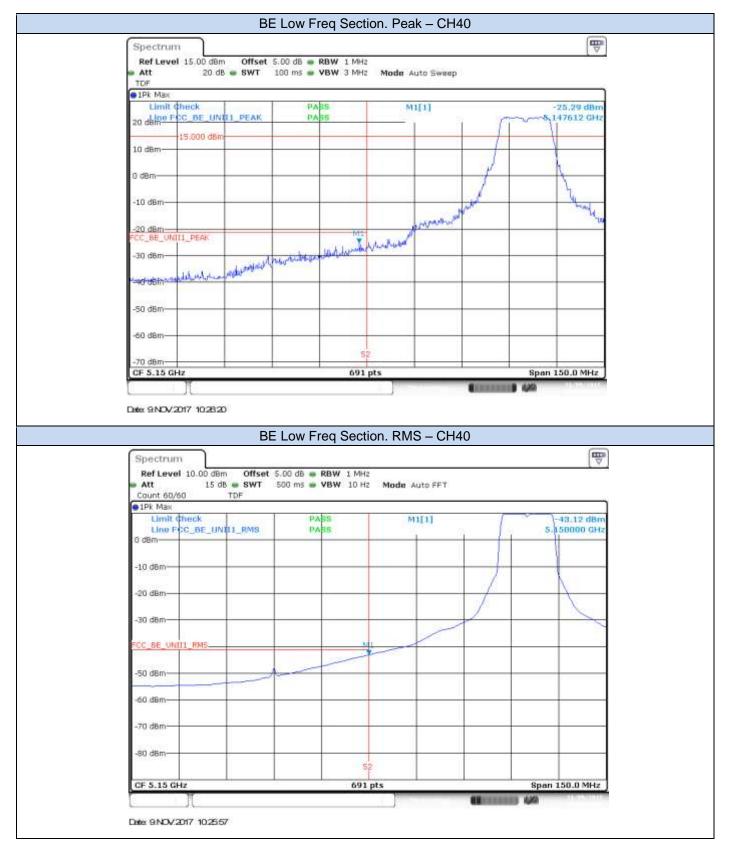



# B.3.4 Undesirable emission limits : Band Edge (Conducted)

# 802.11a. 6Mbps – Chain A Div1

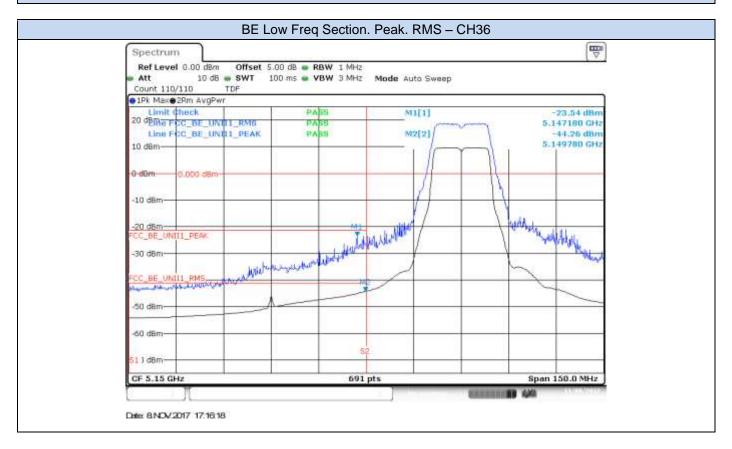




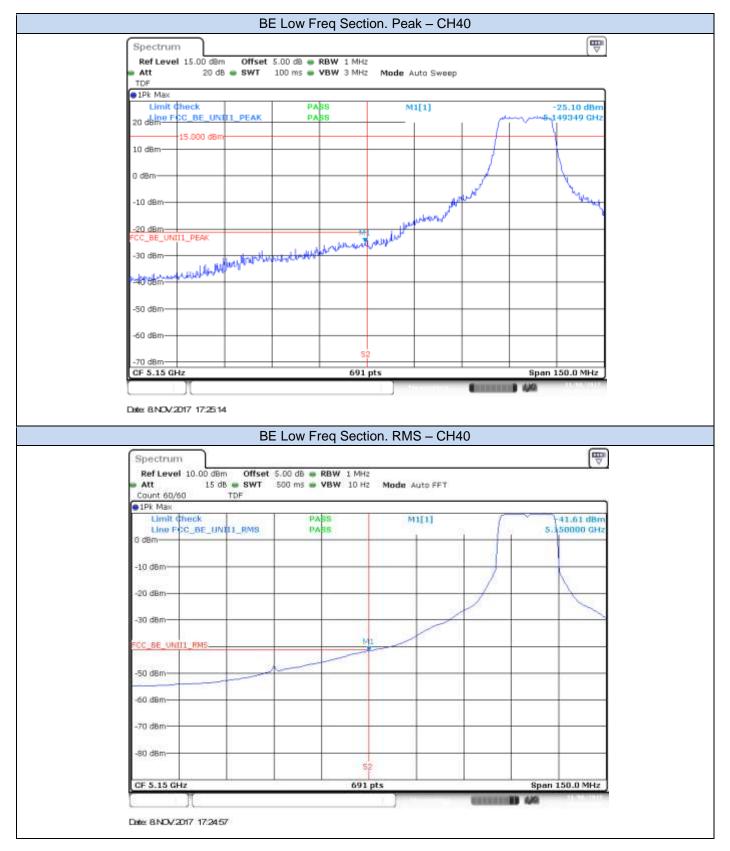






# 802.11a. 6Mbps – Chain A Div2

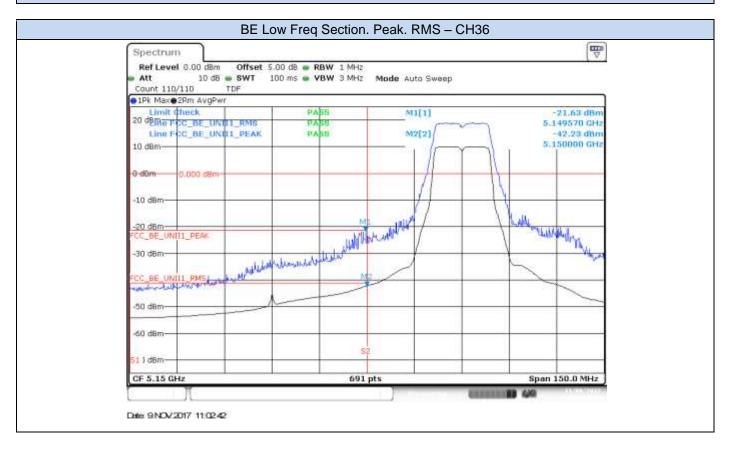




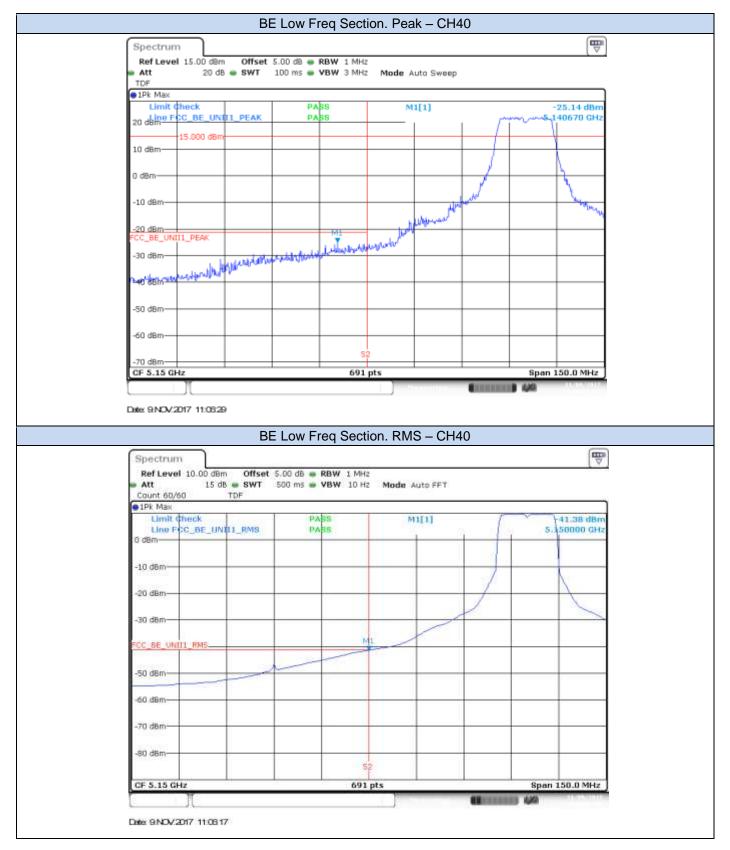






# 802.11n20. HT0 - Chain A Div1








# 802.11n20. HT0 - Chain A Div2

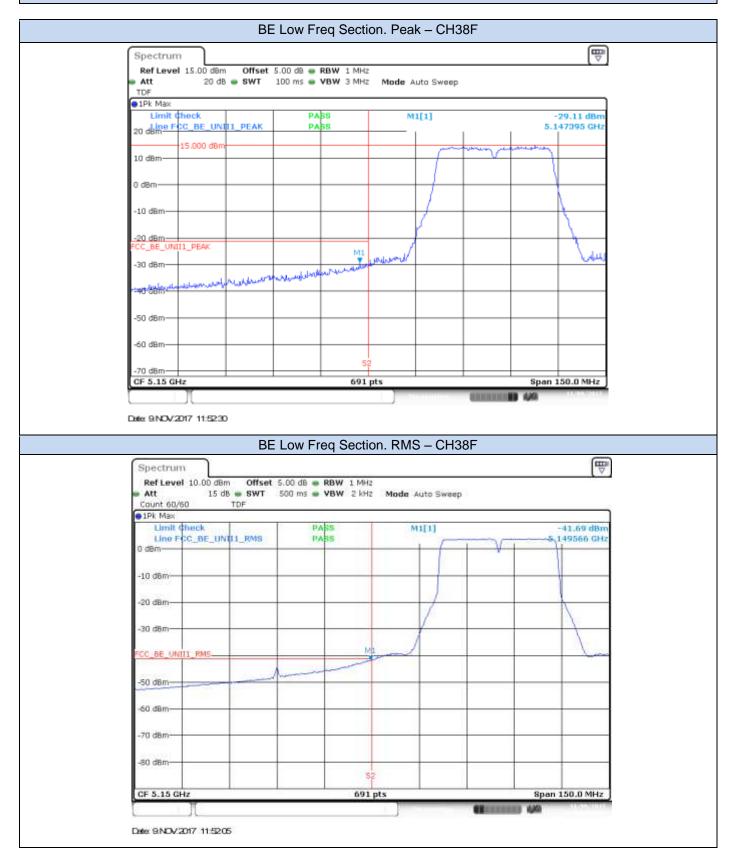








# 802.11n40. HT0 - Chain A Div1










# 802.11n40. HT0 - Chain A Div2









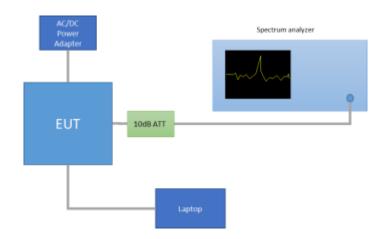

# 802.11ac80. VHT0 - Chain A Div1





# 802.11ac80. VHT0 - Chain A Div2






### B.4 Test Results Tables U-NII-2A

#### B.4.1 26dB & 99% Bandwidth

#### Test procedure

The setup below was used to measure the 26dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss.





#### Results tables

| Mode        | Rate   | Antenna      | Channel | Frequency<br>[MHz] | 26dB BW<br>[MHz] | 99% BW<br>[MHz] |
|-------------|--------|--------------|---------|--------------------|------------------|-----------------|
|             |        |              | 52      | 5260               | 27.78            | 17.88           |
|             |        | CHAIN A DIV1 | 56      | 5280               | 27.98            | 17.52           |
| 802.11a     | 6 Mbpo |              | 64      | 5320               | 24.17            | 16.76           |
| 602.11a     | 6Mbps  |              | 52      | 5260               | 29.93            | 18.20           |
|             |        | CHAIN A DIV2 | 56      | 5280               | 29.48            | 18.16           |
|             |        |              | 64      | 5320               | 23.92            | 16.80           |
|             |        | CHAIN A DIV1 | 52      | 5260               | 30.58            | 18.48           |
|             |        |              | 56      | 5280               | 28.83            | 18.44           |
| 000 44=00   |        |              | 64      | 5320               | 24.53            | 17.88           |
| 802.11n20   | HT0    |              | 52      | 5260               | 30.73            | 18.72           |
|             |        | CHAIN A DIV2 | 56      | 5280               | 30.93            | 18.72           |
|             |        |              | 64      | 5320               | 24.27            | 17.88           |
|             |        |              | 54F     | 5270               | 45.14            | 36.72           |
| 902 11p 10  | HT0    | CHAIN A DIV1 | 62F     | 5310               | 43.69            | 36.56           |
| 802.11n40   | ΠIV    | CHAIN A DIV2 | 54F     | 5270               | 45.50            | 36.80           |
|             |        |              | 62F     | 5310               | 43.24            | 36.56           |
| 000 110 000 |        | CHAIN A DIV1 | 58ac80  | 5290               | 85.97            | 75.12           |
| 802.11ac80  | VHT0   | CHAIN A DIV2 | 58ac80  | 5290               | 86.16            | 75.12           |

#### Max Value

See Section B.5.1 and Section B.5.2 for the screenshot results.

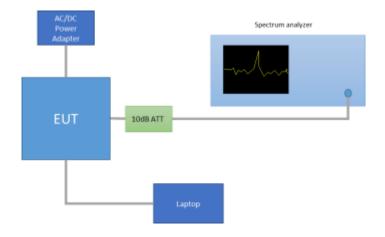


### B.4.2 Power Limits. Maximum Output power & Peak power spectral density

Test limits

| FCC part          | Limits                                                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.407<br>(a) (2) | For the 5.25–5.35 GHz and 5.47–5.725 GHz bands. the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B. where B is the 26 dB emission bandwidth in megahertz. In addition. the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. |

#### Test procedure


The Maximum Conducted Output Power was measured using the channel integration method according to point E) 2) e) (Method SA-2 Alternative) of KDB 789033 D02.

The maximum power spectral density (PSD) was measured using the method according to point F) (Method SA-2 Alternative) of KDB 789033 D02.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

The setup below was used to measure the maximum conducted output power and power spectral density. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss.

The declared maximum antenna gain is 5dBi.





### Results tables

#### Duty cycle

| Mode        | Rate    | Antenna      | Transmission<br>Duration<br>[ms] | Transmission Period<br>[ms] | Duty Cycle<br>[%] |
|-------------|---------|--------------|----------------------------------|-----------------------------|-------------------|
| 802.11a     | 6Mbps   | CHAIN A DIV1 | 2.03                             | 2.07                        | 98.28%            |
| 002.11a     | olviphs | CHAIN A DIV2 | 2.03                             | 2.07                        | 98.28%            |
| 802.11n20   |         | CHAIN A DIV1 | 1.89                             | 1.93                        | 98.11%            |
| 002.111120  | HT0     | CHAIN A DIV2 | 1.89                             | 1.93                        | 98.11%            |
| 902 11 - 10 | ШТО     | CHAIN A DIV1 | 0.93                             | 0.96                        | 96.19%            |
| 802.11n40   | HT0     | CHAIN A DIV2 | 0.93                             | 0.96                        | 96.19%            |
| 902 110090  |         | CHAIN A DIV1 | 0.46                             | 0.49                        | 93.31%            |
| 802.11ac80  | VHT0    | CHAIN A DIV2 | 0.46                             | 0.49                        | 93.31%            |



#### Maximum output power

| Mode      | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Channel | Freq.<br>[MHz] | Antenna      | Average<br>Conducted<br>Output<br>Power<br>[dBm] | Maximum*<br>Conducted<br>Output<br>Power<br>[dBm] | Maximum*<br>Conducted<br>Output<br>Power<br>[mW] | Maximum*<br>EIRP<br>[dBm] |        |       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------|--------|-------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52      | 5260           | CHAIN A DIV1 | 21.10                                            | 21.10                                             | 128.82                                           | 26.10                     |        |       |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52      | 5200           | CHAIN A DIV2 | 21.27                                            | 21.27                                             | 133.97                                           | 26.27                     |        |       |
| 802.11a   | 6Mbps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56      | 5280           | CHAIN A DIV1 | 21.00                                            | 21.00                                             | 125.89                                           | 26.00                     |        |       |
| 302.      | olviops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50      | 5260           | CHAIN A DIV2 | 21.52                                            | 21.52                                             | 141.91                                           | 26.52                     |        |       |
| ~         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64      | 5320           | CHAIN A DIV1 | 17.04                                            | 17.04                                             | 50.58                                            | 22.04                     |        |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                | 04           | 5520                                             | CHAIN A DIV2                                      | 17.33                                            | 17.33                     | 54.08  | 22.33 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 50             | 52           | 5260                                             | CHAIN A DIV1                                      | 20.93                                            | 20.93                     | 123.88 | 25.93 |
| 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52      | 5260           | CHAIN A DIV2 | 21.23                                            | 21.23                                             | 132.74                                           | 26.23                     |        |       |
| 802.11n20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50      | 5000           | CHAIN A DIV1 | 20.81                                            | 20.81                                             | 120.50                                           | 25.81                     |        |       |
| 02.1      | HT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56      | 5280           | CHAIN A DIV2 | 21.50                                            | 21.50                                             | 141.25                                           | 26.50                     |        |       |
| 80        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 4     | 5320           | CHAIN A DIV1 | 17.17                                            | 17.17                                             | 52.12                                            | 22.17                     |        |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64      | 5320           | CHAIN A DIV2 | 17.26                                            | 17.26                                             | 53.21                                            | 22.26                     |        |       |
| 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E 4 E   | 5070           | CHAIN A DIV1 | 18.95                                            | 19.12                                             | 81.64                                            | 24.12                     |        |       |
| 802.11n40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54F     | 5270           | CHAIN A DIV2 | 17.90                                            | 18.07                                             | 64.10                                            | 23.07                     |        |       |
| 02.1      | HT0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 005     | 5040           | CHAIN A DIV1 | 14.62                                            | 14.79                                             | 30.12                                            | 19.79                     |        |       |
| 80        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62F     | 5310           | CHAIN A DIV2 | 15.08                                            | 15.25                                             | 33.49                                            | 20.25                     |        |       |
| 1ac80     | VHTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 582080  | 5290           | CHAIN A DIV1 | 15.49                                            | 15.79                                             | 37.94                                            | 20.79                     |        |       |
| 802.1     | 08027<br>08057<br>07HT0<br>08067<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>08077<br>0800000000 | 5230    | CHAIN A DIV2   | 15.99        | 16.29                                            | 42.57                                             | 21.29                                            |                           |        |       |

\* Maximum values are the duty cycle compensated values calculated from the average (measured) values Max Value

Min Value

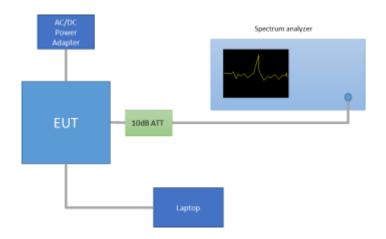


#### Maximum Power Spectral Density (PSD)

| Mode       | Rate       | Channel | Freq.<br>[MHz] | Antenna      | Average<br>conducted PSD<br>[dBm/MHz] | Maximum*<br>conducted PSD<br>[dBm/MHz] |      |      |
|------------|------------|---------|----------------|--------------|---------------------------------------|----------------------------------------|------|------|
|            |            | 52      | 5260           | CHAIN A DIV1 | 9.38                                  | 9.38                                   |      |      |
|            |            | 52      | 5200           | CHAIN A DIV2 | 9.55                                  | 9.55                                   |      |      |
| 802.11a    | 6Mbps      | 56      | 5300           | CHAIN A DIV1 | 9.28                                  | 9.28                                   |      |      |
| 802        | 0101003    | 50      | 5500           | CHAIN A DIV2 | 9.81                                  | 9.81                                   |      |      |
|            |            | 64      | 5320           | CHAIN A DIV1 | 5.38                                  | 5.38                                   |      |      |
|            |            | 04      | 5520           | CHAIN A DIV2 | 5.68                                  | 5.68                                   |      |      |
|            |            | 52      | 52             | 52           | 5260                                  | CHAIN A DIV1                           | 8.91 | 8.91 |
| 0          |            |         |                | 5200         | CHAIN A DIV2                          | 9.21                                   | 9.21 |      |
| 802.11n20  | HTO        | 56      | 56             | 5300         | CHAIN A DIV1                          | 8.80                                   | 8.80 |      |
| 02.1       | IIIU       |         |                | 5500         | CHAIN A DIV2                          | 9.47                                   | 9.47 |      |
| 80         |            |         | 5320           | CHAIN A DIV1 | 5.23                                  | 5.23                                   |      |      |
|            |            | 04      | 5520           | CHAIN A DIV2 | 5.31                                  | 5.31                                   |      |      |
| 0;         |            | 54F     | 5270           | CHAIN A DIV1 | 3.91                                  | 4.08                                   |      |      |
| 802.11n40  | HTO        | 546     | 5270           | CHAIN A DIV2 | 2.86                                  | 3.03                                   |      |      |
| 02.1       | IIIU       | 62F     | 5310           | CHAIN A DIV1 | -0.40                                 | -0.23                                  |      |      |
| 8(         |            | 026     | 5510           | CHAIN A DIV2 | 0.04                                  | 0.21                                   |      |      |
| 802.11ac80 | 0THV 7ac80 | 58ac80  | 5290           | CHAIN A DIV1 | -1.94                                 | -1.64                                  |      |      |
| 802.1      | VIIIO      | J04000  | 3230           | CHAIN A DIV2 | -1.43                                 | -1.13                                  |      |      |

\* Maximum values are the duty cycle compensated values calculated from the measured average values

See Section B.5.3 for the screenshot results.




#### Test limits

| FCC part       | Limits                                                                                                                                                       |                                                              |                                                        |                                                      |                                                                                                   |                                                 |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| 15.407 (b) (2) |                                                                                                                                                              | operating in the<br>xceed an EIRP o                          |                                                        | and: all emissio                                     | ns outside of the                                                                                 | 5.15–5.35 GHz                                   |  |  |
|                | Radiated emissions which fall in the restricted bands. as defined in §15.205(a). must also comply with the radiated emission limits specified in §15.209(a): |                                                              |                                                        |                                                      |                                                                                                   |                                                 |  |  |
|                |                                                                                                                                                              | Freq Range<br>(MHz)                                          | Field Strength<br>(µV/m)                               | Field Strength<br>(dBµV/m)                           | Meas. Distance<br>(m)                                                                             |                                                 |  |  |
|                |                                                                                                                                                              | 30-88                                                        | 100                                                    | 40                                                   | 3                                                                                                 |                                                 |  |  |
|                |                                                                                                                                                              | 88-216                                                       | 150                                                    | 43.5                                                 | 3                                                                                                 |                                                 |  |  |
|                |                                                                                                                                                              | 216-960                                                      | 200                                                    | 46                                                   | 3                                                                                                 |                                                 |  |  |
| 15.209         |                                                                                                                                                              | Above 960                                                    | 500                                                    | 54                                                   | 3                                                                                                 |                                                 |  |  |
|                | quasi-peak dete<br>Radiated emissi<br>detector.<br>For average rad                                                                                           | ctor except for th<br>on limits in these<br>iated emission m | e frequency band<br>three bands are<br>neasurements ab | ds 9-90 kHz. 110<br>based on meas<br>ove 1000 MHz. t | irements employi<br>)-490 kHz and ab<br>urements employ<br>here is also a lim<br>dB above the ind | ove 1000 MHz.<br>ing an average<br>it specified |  |  |

#### Test procedure

The setup below was used to measure undesirable emissions on the Band Edge domain. The antenna terminal of the EUT is connected to the spectrum analyzer through an attenuator. and the spectrum analyzer reading is compensated to include the RF path loss and the declared Antenna Gain.







For Band Edge measurements in average mode on the low frequency section. one of the two methods is used according to section G) 6) (KDB 789033 D02):

- 1) Method AD (Average Detection) as per paragraph II.G.6.c.
- 2) Method VB (Averaging using reduced video bandwidth) as per paragraph II.G.6.d.

In case of Band Edge measurements falling in restricted bands. the declared Antenna Gain is also compensated in the graph. The declared maximum antenna gain is 5dBi.

The following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dB $\mu$ V/m. according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.

| §15.209(a)       |                 |                                      | Converted values                        |                |  |
|------------------|-----------------|--------------------------------------|-----------------------------------------|----------------|--|
| Freq Range (MHz) | Distance<br>(m) | Field strength<br>(microvolts/meter) | Field strength<br>(dB microvolts/meter) | Power<br>(dBm) |  |
| 960-25000        | 3               | 500                                  | 53.98                                   | -41.2          |  |

See Section B.5.4 for the screenshot results.



### B.4.4 Radiated spurious emission

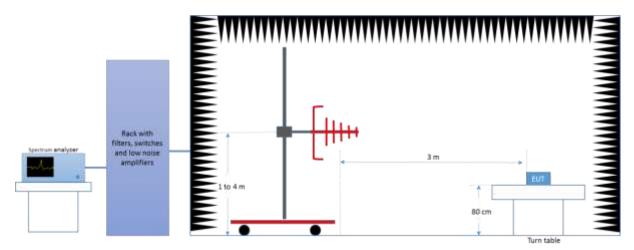
Standard references

| FCC part       | Limits                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              |                          |                            |                       |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-----------------------|--|--|--|
| 15.407 (b) (3) | For the 5.25–5.35 GHz and 5.47–5.725 GHz bands. the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B. where B is the 26 dB emission bandwidth in megahertz. In addition. the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. |                                                                                                                                                              |                          |                            |                       |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                          | Radiated emissions which fall in the restricted bands. as defined in §15.205(a). must also comply with the radiated emission limits specified in §15.209(a): |                          |                            |                       |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                          | Freq Range<br>(MHz)                                                                                                                                          | Field Strength<br>(µV/m) | Field Strength<br>(dBµV/m) | Meas. Distance<br>(m) |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                          | 30-88                                                                                                                                                        | 100                      | 40                         | 3                     |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                          | 88-216                                                                                                                                                       | 150                      | 43.5                       | 3                     |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                          | 216-960                                                                                                                                                      | 200                      | 46                         | 3                     |  |  |  |
| 15.209         |                                                                                                                                                                                                                                                                                                                                          | Above 960                                                                                                                                                    | 500                      | 54                         | 3                     |  |  |  |
|                | quasi-peak d<br>MHz. Radiate<br>an average o<br>For average<br>when measu                                                                                                                                                                                                                                                                |                                                                                                                                                              |                          |                            |                       |  |  |  |

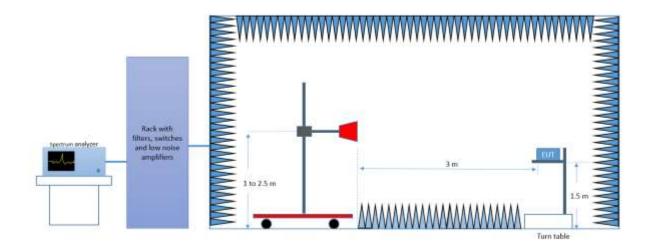
#### Test procedure

The below setups were used to measure the radiated spurious emissions.

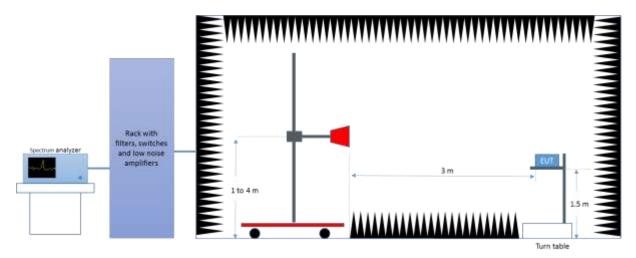
Depending of the frequency range and bands being tested. different antennas and filters were used.


The final measurement is done by varying the antenna height. the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.

The radiated spurious emissions were measured on the worst case configuration selected from the chapter B.4.2 and using the lowest. middle and highest channels.

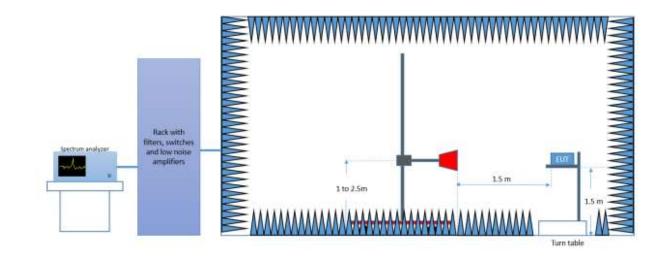






Radiated Setup 30MHz - 1GHz



Radiated Setup 1 GHz - 6.4 GHz




Radiated Setup 6.4GHz - 18 GHz





## Radiated Setup 18 GHz - 40 GHz





#### Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

#### $E = 126.8 - 20log(\lambda) + P - G$

where

*E* is the field strength of the emission at the measurement distance. in  $dB\mu V/m$ 

P is the power measured at the output of the test antenna. in dBm

 $\lambda$  is the wavelength of the emission under investigation [300/f\_{MHz}]. in m

G is the gain of the test antenna. in dBi

NOTE - The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses. amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified. the field strength of the emission at the distance specified by the limit is deduced as follows:

#### E<sub>SpecLimit</sub> = E<sub>Meas</sub> + 20log(D<sub>Meas</sub>/D<sub>SpecLimit</sub>)

where

 $E_{SpecLimit}$  is the field strength of the emission at the distance specified by the limit. in  $dB\mu V/m$ 

E<sub>Meas</sub> is the field strength of the emission at the measurement distance. in  $dB\mu V/m$ 

D<sub>Meas</sub> is the measurement distance. in m

DspecLimit is the distance specified by the limit. in m

#### Test Results

# 30 MHz – 40 GHz. 802.11a. 6Mbps. Chain A Div1

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 24.0    |        | 40.0   | 16.0   |
| 115.1     | 25.2    |        | 43.5   | 18.3   |
| 192.0     | 28.4    |        | 43.5   | 15.1   |
| 216.0     | 31.0    |        | 43.6   | 12.6   |
| 437.6     | 36.7    |        | 46.0   | 9.3    |
| 640.0     | 39.2    |        | 46.0   | 6.8    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.5    | 48.3    |        | 74.0   | 25.7   |
| 25903.2   |         | 36.9   | 54.0   | 17.1   |

### Radiated Spurious – CH52

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 24.7    |        | 40.0   | 15.3   |
| 115.2     | 25.5    |        | 43.5   | 18.0   |
| 216.0     | 31.7    |        | 46.0   | 14.3   |
| 312.0     | 34.3    |        | 46.0   | 11.7   |
| 437.6     | 35.8    |        | 46.0   | 10.2   |
| 640.0     | 39.1    |        | 46.0   | 6.9    |
| 1190.2    |         | 44.1   | 54.0   | 9.9    |
| 1190.2    | 48.0    |        | 74.0   | 26.0   |
| 25911.3   |         | 37.0   | 54.0   | 17.0   |



#### **Radiated Spurious – CH64**

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 28.4    |        | 40.0   | 11.6   |
| 115.2     | 25.8    |        | 43.5   | 17.7   |
| 183.0     | 28.8    |        | 43.5   | 14.7   |
| 216.0     | 30.2    |        | 46.0   | 15.8   |
| 437.5     | 35.6    |        | 46.0   | 10.4   |
| 640.0     | 41.2    |        | 46.0   | 4.8    |
| 1190.0    | 47.1    |        | 74.0   | 26.9   |
| 1190.2    |         | 43.7   | 54.0   | 10.3   |
| 21280.0   |         | 37.0   | 54.0   | 17.0   |

# 30 MHz – 40 GHz. 802.11a. 6Mbps. Chain A Div2

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 24.5    |        | 40.0   | 15.5   |
| 96.0      | 24.1    |        | 43.5   | 19.4   |
| 216.0     | 29.6    |        | 46.0   | 16.5   |
| 360.0     | 34.6    |        | 46.0   | 11.4   |
| 437.6     | 36.6    |        | 46.0   | 9.4    |
| 640.0     | 38.3    |        | 46.0   | 7.7    |
| 1190.2    |         | 43.9   | 54.0   | 10.1   |
| 1190.2    | 48.3    |        | 74.0   | 25.7   |
| 10520.9   |         | 45.1   | 54.0   | 8.9    |
| 10527.2   | 53.9    |        | 74.0   | 20.1   |
| 21039.8   |         | 37.5   | 54.0   | 16.5   |



### Radiated Spurious – CH56

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 24.1    |        | 40.0   | 15.9   |
| 115.2     | 25.8    |        | 43.5   | 17.7   |
| 216.0     | 30.6    |        | 46.0   | 15.4   |
| 437.6     | 36.3    |        | 46.0   | 9.7    |
| 500.0     | 35.7    |        | 46.0   | 10.3   |
| 640.0     | 40.5    |        | 46.0   | 5.5    |
| 1190.0    | 48.0    |        | 74.0   | 26.0   |
| 1190.5    |         | 43.7   | 54.0   | 10.3   |
| 10561.0   |         | 44.1   | 54.0   | 9.9    |
| 10563.0   | 54.3    |        | 74.0   | 19.7   |
| 21120.0   |         | 38.5   | 54.0   | 15.5   |

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 25.8    |        | 40.0   | 14.2   |
| 115.2     | 25.7    |        | 43.5   | 17.8   |
| 192.0     | 27.7    |        | 43.5   | 15.8   |
| 216.0     | 30.3    |        | 46.0   | 15.7   |
| 437.6     | 36.5    |        | 46.0   | 9.5    |
| 640.0     | 38.4    |        | 46.0   | 7.6    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.2    | 48.3    |        | 74.0   | 25.7   |
| 10629.7   | 51.9    |        | 74.0   | 22.1   |
| 10642.2   |         | 43.0   | 54.0   | 11.0   |
| 21279.7   |         | 37.4   | 54.0   | 16.7   |



# 30 MHz - 40 GHz. 802.11n20. HT0. Chain A Div1

| _         |         |        |        |        |
|-----------|---------|--------|--------|--------|
| Frequency | MaxPeak | Avg    | Limit  | Margin |
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 26.4    |        | 40.0   | 13.6   |
| 95.9      | 23.3    |        | 43.5   | 20.2   |
| 115.1     | 25.3    |        | 43.5   | 18.2   |
| 216.0     | 30.7    |        | 46.0   | 15.3   |
| 437.6     | 35.5    |        | 46.0   | 10.5   |
| 640.0     | 38.9    |        | 46.0   | 7.1    |
| 1190.2    |         | 43.8   | 54.0   | 10.2   |
| 1190.5    | 48.3    |        | 74.0   | 25.7   |
| 21040.1   |         | 39.1   | 54.0   | 14.9   |

#### Radiated Spurious – CH52

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 24.6    |        | 40.0   | 15.4   |
| 115.2     | 25.9    |        | 43.5   | 17.6   |
| 216.0     | 30.7    |        | 43.5   | 12.8   |
| 312.0     | 33.0    |        | 46.0   | 13.0   |
| 437.6     | 36.0    |        | 46.0   | 10.0   |
| 640.0     | 38.8    |        | 46.0   | 7.2    |
| 1190.2    |         | 43.9   | 54.0   | 10.1   |
| 1190.5    | 48.7    |        | 74.0   | 25.3   |
| 10562.0   |         | 41.3   | 54.0   | 12.7   |
| 10573.1   | 50.6    |        | 74.0   | 23.4   |
| 21120.3   |         | 38.5   | 54.0   | 15.5   |



# Radiated Spurious – CH64

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.3    |        | 40.0   | 13.7   |
| 115.2     | 24.9    |        | 43.5   | 18.6   |
| 216.0     | 31.6    |        | 46.0   | 14.4   |
| 437.6     | 36.1    |        | 46.0   | 9.9    |
| 500.1     | 35.3    |        | 46.0   | 10.7   |
| 640.0     | 38.5    |        | 46.0   | 7.5    |
| 1190.0    | 47.5    |        | 74.0   | 26.5   |
| 1190.2    |         | 43.9   | 54.0   | 10.2   |
| 10640.3   | 50.0    |        | 74.0   | 24.0   |
| 10644.6   |         | 39.9   | 54.0   | 14.1   |
| 21280.0   |         | 37.7   | 54.0   | 16.3   |

# 30 MHz – 40 GHz. 802.11n20. HT0. Chain A Div2

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 27.6    |        | 40.0   | 12.4   |
| 115.2     | 25.6    |        | 43.5   | 18.0   |
| 216.0     | 31.8    |        | 43.5   | 11.8   |
| 437.5     | 35.9    |        | 46.0   | 10.1   |
| 500.1     | 37.1    |        | 46.0   | 8.9    |
| 640.0     | 38.6    |        | 46.0   | 7.4    |
| 1190.2    |         | 43.7   | 54.0   | 10.3   |
| 1190.5    | 48.0    |        | 74.0   | 26.0   |
| 10520.4   |         | 44.7   | 54.0   | 9.3    |
| 10520.4   | 54.7    |        | 74.0   | 19.3   |
| 21039.8   |         | 38.8   | 54.0   | 15.2   |

### Test Report Nº 170919-01.TR01



### Radiated Spurious – CH56

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 25.1    |        | 40.0   | 15.0   |
| 115.2     | 26.6    |        | 43.5   | 16.9   |
| 216.0     | 30.5    |        | 46.0   | 15.5   |
| 437.6     | 35.3    |        | 46.0   | 10.7   |
| 500.0     | 37.0    |        | 46.0   | 9.0    |
| 640.0     | 41.3    |        | 46.0   | 4.7    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.2    | 48.0    |        | 74.0   | 26.0   |
| 10558.6   |         | 45.2   | 54.0   | 8.9    |
| 10562.5   | 54.8    |        | 74.0   | 19.2   |
| 21120.3   |         | 37.3   | 54.0   | 16.7   |

### Radiated Spurious – CH64

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 24.8    |        | 40.0   | 15.2   |
| 115.2     | 25.5    |        | 43.5   | 18.0   |
| 216.0     | 30.4    |        | 46.0   | 15.6   |
| 437.5     | 35.5    |        | 46.0   | 10.5   |
| 576.0     | 35.3    |        | 46.0   | 10.7   |
| 640.0     | 41.0    |        | 46.0   | 5.0    |
| 1190.2    |         | 43.8   | 54.0   | 10.2   |
| 1190.5    | 48.4    |        | 74.0   | 25.6   |
| 10637.9   |         | 43.2   | 54.0   | 10.8   |
| 10643.7   | 52.8    |        | 74.0   | 21.2   |
| 21279.7   |         | 38.5   | 54.0   | 15.5   |



## 30 MHz - 40 GHz. 802.11n40. HT0. Chain A Div1

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.7    |        | 40.0   | 13.3   |
| 96.0      | 25.4    |        | 43.5   | 18.1   |
| 216.0     | 30.8    |        | 46.0   | 15.2   |
| 437.6     | 35.2    |        | 46.0   | 10.9   |
| 500.1     | 35.0    |        | 46.0   | 11.0   |
| 640.0     | 36.8    |        | 46.0   | 9.2    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.2    | 49.0    |        | 74.0   | 25.1   |
| 21080.0   |         | 38.0   | 54.0   | 16.0   |

### Radiated Spurious – CH54F

### Radiated Spurious – CH62F

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 26.1    |        | 40.0   | 13.9   |
| 96.0      | 33.6    |        | 43.5   | 9.9    |
| 115.2     | 25.6    |        | 43.5   | 17.9   |
| 216.0     | 30.8    |        | 46.0   | 15.2   |
| 437.6     | 35.8    |        | 46.0   | 10.2   |
| 640.0     | 37.8    |        | 46.0   | 8.2    |
| 1190.0    | 48.5    |        | 74.0   | 25.5   |
| 1190.2    |         | 44.4   | 54.0   | 9.6    |
| 25937.2   |         | 36.9   | 54.0   | 17.1   |



## 30 MHz - 40 GHz. 802.11n40. HT0. Chain A Div2

|           | 1       |        |        |        |
|-----------|---------|--------|--------|--------|
| Frequency | MaxPeak | Avg    | Limit  | Margin |
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 72.0      | 24.2    |        | 40.0   | 15.8   |
| 115.2     | 24.7    |        | 43.5   | 18.8   |
| 216.0     | 30.8    |        | 46.0   | 15.2   |
| 312.0     | 33.4    |        | 46.0   | 12.7   |
| 437.6     | 34.8    |        | 46.0   | 11.2   |
| 640.0     | 38.9    |        | 46.0   | 7.2    |
| 1190.2    |         | 44.0   | 54.0   | 10.0   |
| 1190.5    | 48.6    |        | 74.0   | 25.4   |
| 10539.8   | 51.2    |        | 74.0   | 22.8   |
| 10541.7   |         | 41.4   | 54.0   | 12.6   |
| 21079.8   |         | 39.4   | 54.0   | 14.6   |

#### **Radiated Spurious – CH54F**

### **Radiated Spurious – CH62F**

| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 26.3    |        | 40.0   | 13.7   |
| 115.2     | 25.3    |        | 43.5   | 18.2   |
| 216.0     | 30.5    |        | 43.5   | 13.0   |
| 272.0     | 36.0    |        | 46.0   | 10.0   |
| 437.6     | 35.3    |        | 46.0   | 10.7   |
| 640.0     | 41.2    |        | 46.0   | 4.8    |
| 2127.9    |         | 37.1   | 54.0   | 16.9   |
| 2129.1    | 56.8    |        | 74.0   | 17.2   |
| 10606.0   | 51.8    |        | 74.0   | 22.3   |
| 10611.8   |         | 40.9   | 54.0   | 13.2   |
| 21239.8   |         | 37.5   | 54.0   | 16.5   |



### 30 MHz - 40 GHz. 802.11ac80. HT0. Chain A Div1

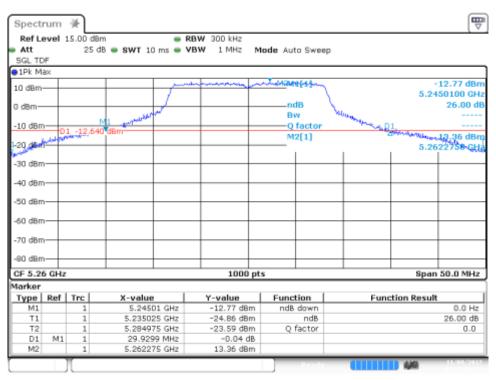
| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 27.4    |        | 40.0   | 12.6   |
| 96.0      | 25.7    |        | 43.5   | 17.8   |
| 216.0     | 30.1    |        | 46.0   | 15.9   |
| 437.6     | 36.6    |        | 46.0   | 9.4    |
| 500.0     | 36.1    |        | 46.0   | 9.9    |
| 640.0     | 38.1    |        | 46.0   | 7.9    |
| 2127.1    |         | 36.7   | 54.0   | 17.3   |
| 2130.3    | 56.2    |        | 74.0   | 17.8   |
| 21159.9   |         | 37.5   | 54.0   | 16.5   |

#### Radiated Spurious – CH58ac80

### 30 MHz – 40 GHz. 802.11ac80. HT0. Chain A Div2

### Radiated Spurious – CH58ac80

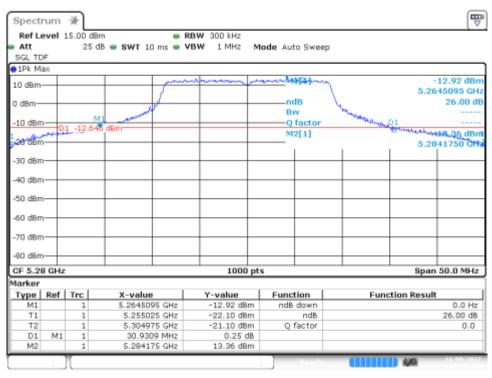
| Frequency | MaxPeak | Avg    | Limit  | Margin |
|-----------|---------|--------|--------|--------|
| MHz       | dBµV/m  | dBµV/m | dBµV/m | dB     |
| 71.9      | 26.1    |        | 40.0   | 13.9   |
| 96.0      | 34.1    |        | 43.5   | 9.4    |
| 115.2     | 25.1    |        | 43.5   | 18.4   |
| 216.0     | 30.6    |        | 46.0   | 15.4   |
| 437.5     | 34.8    |        | 46.0   | 11.2   |
| 640.0     | 37.4    |        | 46.0   | 8.6    |
| 2126.1    |         | 36.6   | 54.0   | 17.4   |
| 2126.1    | 50.5    |        | 74.0   | 23.5   |
| 25935.8   |         | 37.3   | 54.0   | 16.7   |




### B.5 Test Results Screenshot U-NII-2A

### B.5.1 26dB Bandwidth

## CHAIN A DIV2. 802.11a. 6Mbps

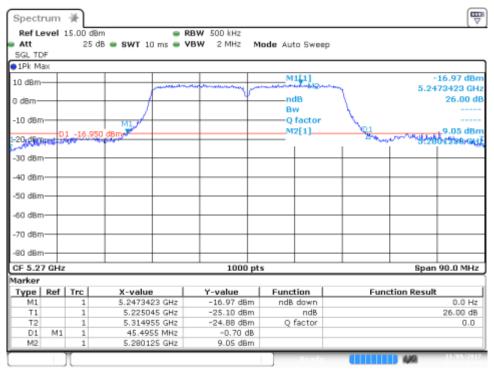

#### Channel 52



Date: 9.NOV.2017 15:38:59

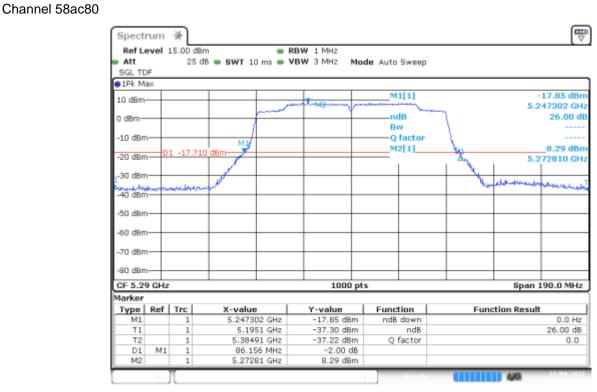
# CHAIN A DIV2. 802.11n20. HT0

#### Channel 56

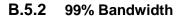



Date: 9.NOV:2017 16:01:44



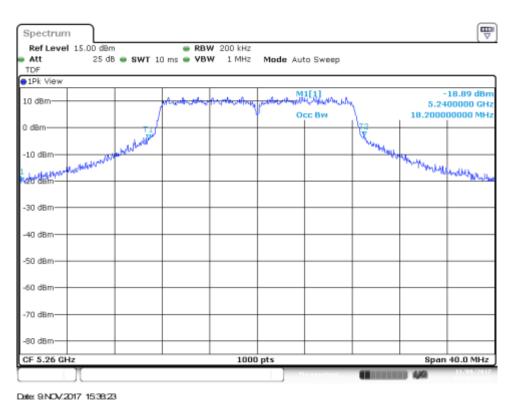

## CHAIN A DIV2. 802.11n40. HT0

#### Channel 54F



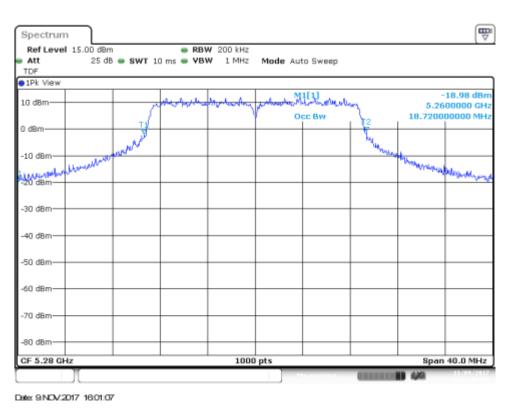

Date: 9.NOV.2017 16:55:38

## CHAIN A DIV2. 802.11ac80. VHT0




Date: 9.NOV.2017 17:12:40




Channel 52

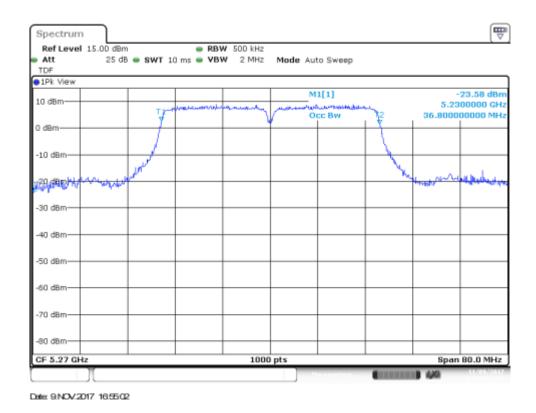
CHAIN A DIV2. 802.11a. 6Mbps



## CHAIN A DIV2. 802.11n20. HT0

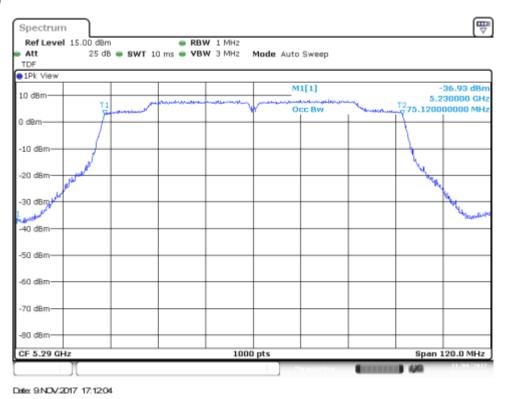
#### Channel 56




## CHAIN A DIV2. 802.11n40. HT0





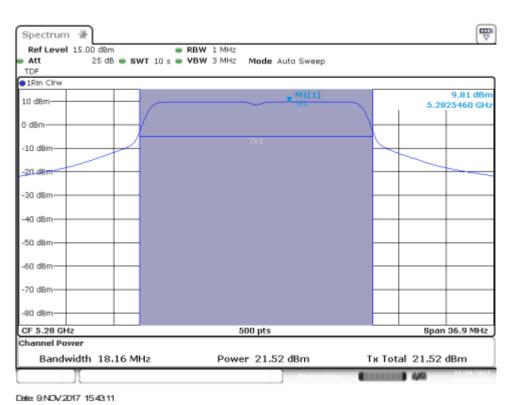

#### Test Report Nº 170919-01.TR01

#### Channel 54F



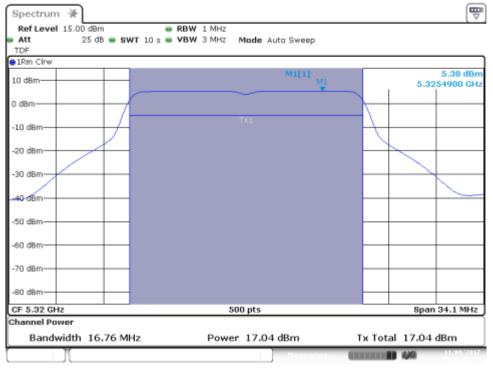
## CHAIN A DIV2. 802.11ac80. VHT0

#### Channel 58ac80




Channel 56




### B.5.3 Power Limits. Maximum Output power & Peak power spectral density

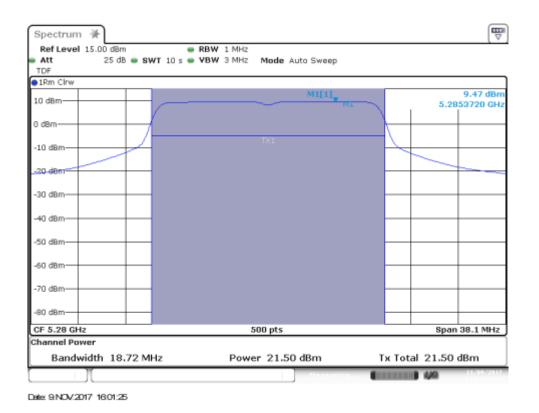
CHAIN A DIV2. 802.11a. 6Mbps



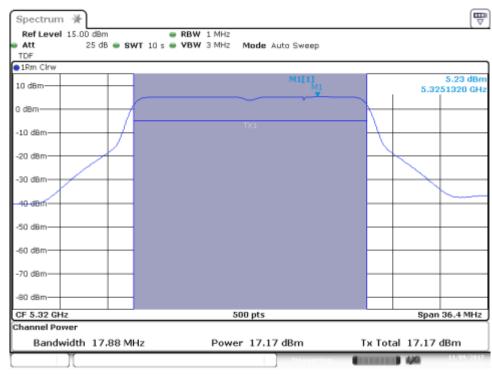
# CHAIN A DIV1. 802.11a. 6Mbps

#### Channel 64




Date: 9.NOV.2017 17:48:15



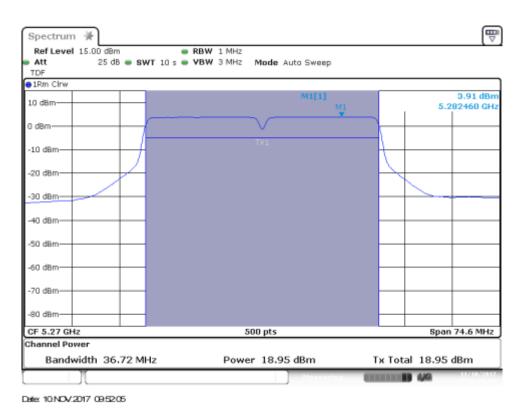

### CHAIN A DIV2. 802.11n20. HT0

#### Channel 56

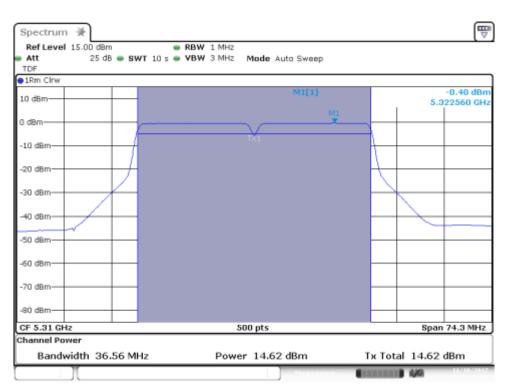
Channel 64



# CHAIN A DIV1. 802.11n20. HT0




Date: 9.NOV.2017 18:03:38

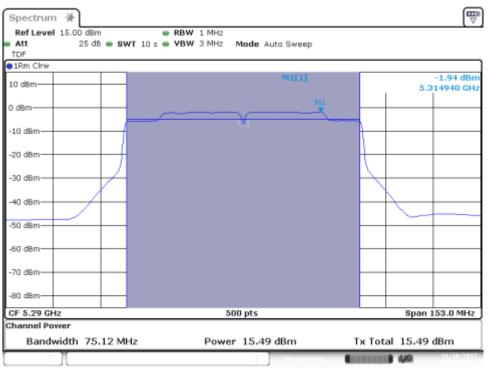



## CHAIN A DIV1. 802.11n40. HT0

#### Channel 54F



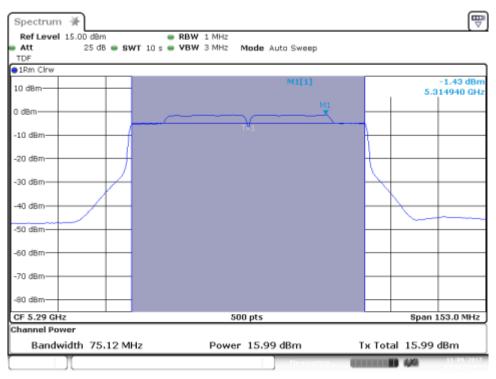
Channel 62F




Date: 10.NOV:2017 09:55:47



## CHAIN A DIV1. 802.11ac80. VHT0

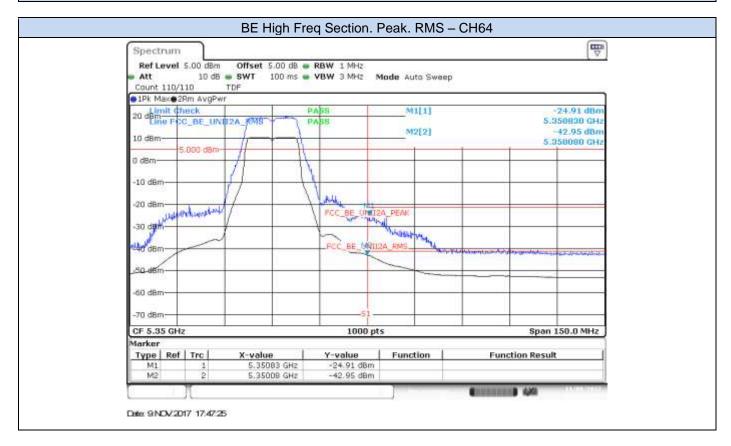

#### Channel 58ac80



Date: 10.NOV.2017 10.03.10

# CHAIN A DIV2. 802.11ac80. VHT0

#### Channel 58ac80

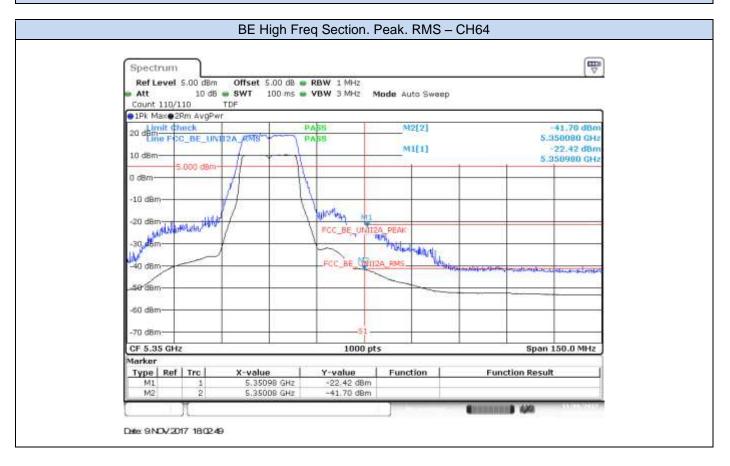



Date: 9.NOV.2017 17:12:21



### B.5.4 Undesirable emissions limits : Band Edge (Conducted)

### 802.11a. 6Mbps – Chain A Div1

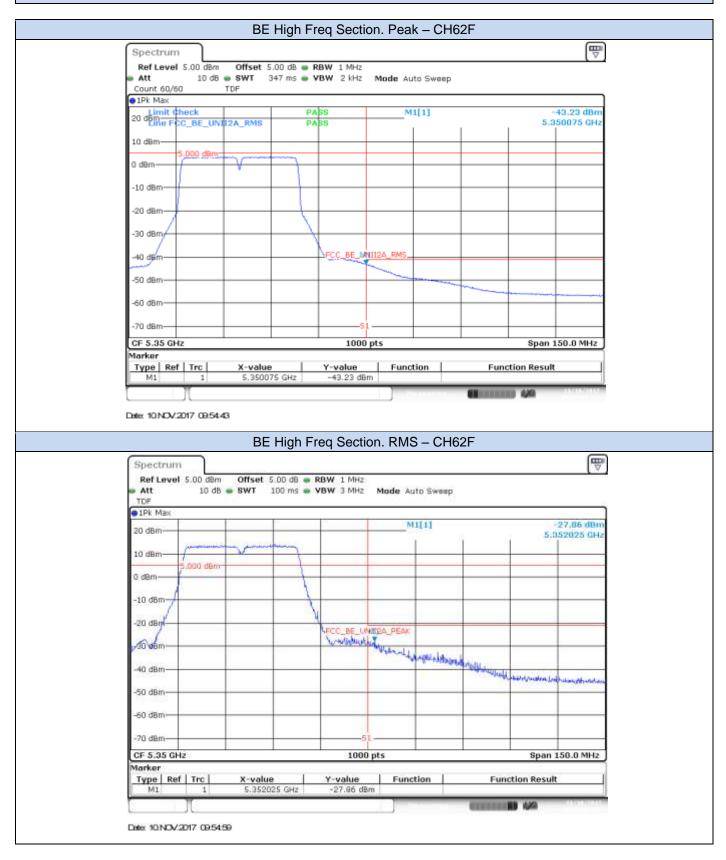



## 802.11a. 6Mbps – Chain A Div2

|               |                | BE Hig             | h Fre    | q Section. F | eak. RMS        | 6 – CH64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
|---------------|----------------|--------------------|----------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Spectrum      | 1              |                    |          |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Ref Level S   | .00 dBm        | Offset 5.00        | dB 🖷 I   | RBW 1 MHz    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |
| 🛛 Att         |                |                    | ) ms 😐 🧯 | VBW 3 MHz M  | ode Auto Swe    | ep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| Count 110/11  |                |                    |          |              | 1.1.1.1.1.1.1.1 | 5 W 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| 1Pk Maxe2R    |                |                    | 10       | ASS          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -24.45 dBm            |
| 20 dame FCC   | BE UN          | EDA EME            |          | 458          | M1[1]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.352639 GHz          |
|               | "nr"nie        | and finds          | 1        |              | M2[2]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -43.31 dBm            |
| 10 d8m-       | 1000           | 11-1               | 1        |              |                 | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.358230 GHz          |
| 0 d8m-        | 000 d8m-       |                    | 18       |              |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 0 00m         |                | 11                 | 1        |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| -10 dBm-      |                | 11                 | -11      |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 2-12-22.03(2) |                |                    | 1        | line         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| -20 d8m       | wayobian       | 1/                 | 1        |              | PEAK            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| -30 dett      | and the second | V.                 |          | PCC_BE_UND2  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|               |                | 1                  |          | h            | WALKAN WAL      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| e40 dBm       |                |                    |          | FCC_BE_UIZIZ | A RMS           | A BRANCH STREET, STREET, ST. OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | man Robert State Land |
|               |                |                    |          |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| _50-effin     |                |                    |          |              |                 | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| -60 d8m       |                | -                  |          |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|               |                | E 10               |          |              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| -70 d8m       |                | -                  |          | -51          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| CF 5.35 GHz   | 2              | L                  |          | 1000 pts     | 8 <sup>10</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 150.0 MHz        |
| Marker        | . A.           | 100                |          | 112 V.       |                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Type Ref      |                | X-value            | - 3412-  | Y-value      | Function        | Functio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on Result             |
| M1<br>M2      | 2              | 5.35263<br>5.35023 |          | -24.45 dBm   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| M2            | 1              | 5.35023            | GH2      | -43.31 dBm   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144                   |
| 13            | 18             |                    |          |              |                 | STREET, STREET |                       |

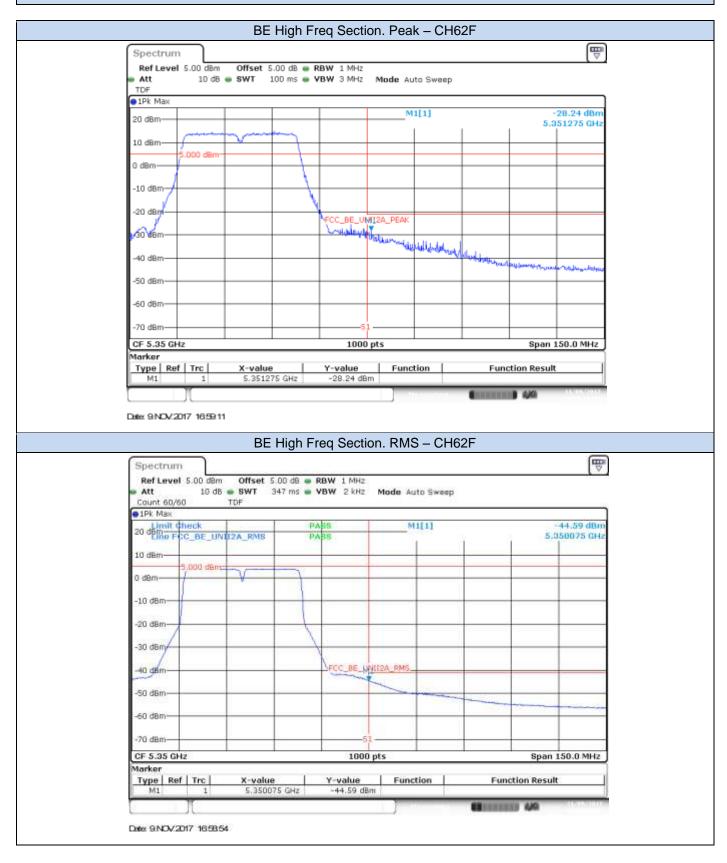


### 802.11n20. HT0 - Chain A Div1



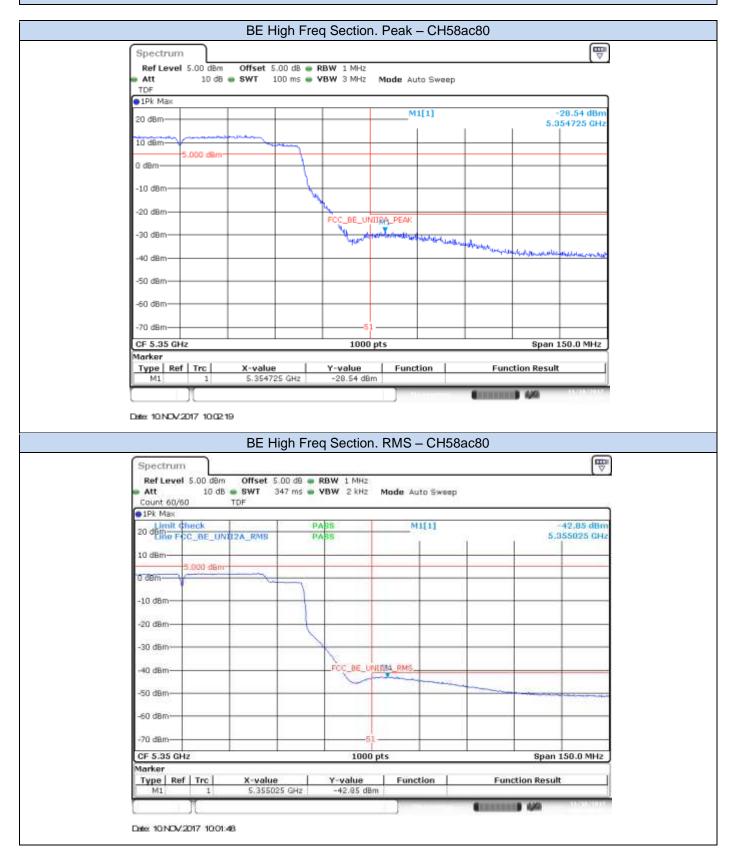

## 802.11n20. HT0 - Chain A Div2

| Ref Level 5<br>Att<br>Count 110/11 | 10 dB       |                   |       | RBW 1 MHz<br>VBW 3 MHz | Mode Au   | uto Sweep  |                   |             |                    |
|------------------------------------|-------------|-------------------|-------|------------------------|-----------|------------|-------------------|-------------|--------------------|
| • 1Pk Max•2R<br>20 dam<br>Line FCC |             |                   |       | ABS                    |           | 1[1]       |                   | 5.352       | .26 dBm<br>030 GHz |
| 10 d8m                             | 000 d8m-    | 1-                | -1    |                        | M         | 2[2]       |                   |             | .00 dBm<br>080 GHz |
| 0 dBm                              | new upin    | 1                 |       | V                      |           |            |                   |             | 1                  |
| -10 dBm                            |             | 1                 | /     | hadren .               | 11        |            |                   |             |                    |
| -20 dBm                            | hybritistic | /                 |       | FCC_BE_UN              | IZA_PEAK  |            |                   |             | -                  |
| -40 d8m                            | _           |                   | -     | FCC_BE_U               | 112A_RMS_ | a poly the |                   |             | and the second     |
| se dam-                            |             |                   |       |                        |           |            |                   |             | 2                  |
| -60 d8m                            |             |                   |       | -51                    |           |            |                   |             |                    |
| CF 5.35 GHz                        |             |                   |       | 1000                   | pts       |            |                   | Span 150    | .0 MHz             |
| Marker                             | - 55        | 3.5               | 0.55  |                        |           |            |                   |             |                    |
| Type Ref<br>M1                     | 1           | X-yalue<br>5.3520 |       | Y-value<br>-22.26 dBn  |           | tion       | Func              | tion Result |                    |
| M2                                 | 2           | 5.3500            | B GHz | -42.00 dBn             | 1         |            | <b>CONTRACTOR</b> |             |                    |



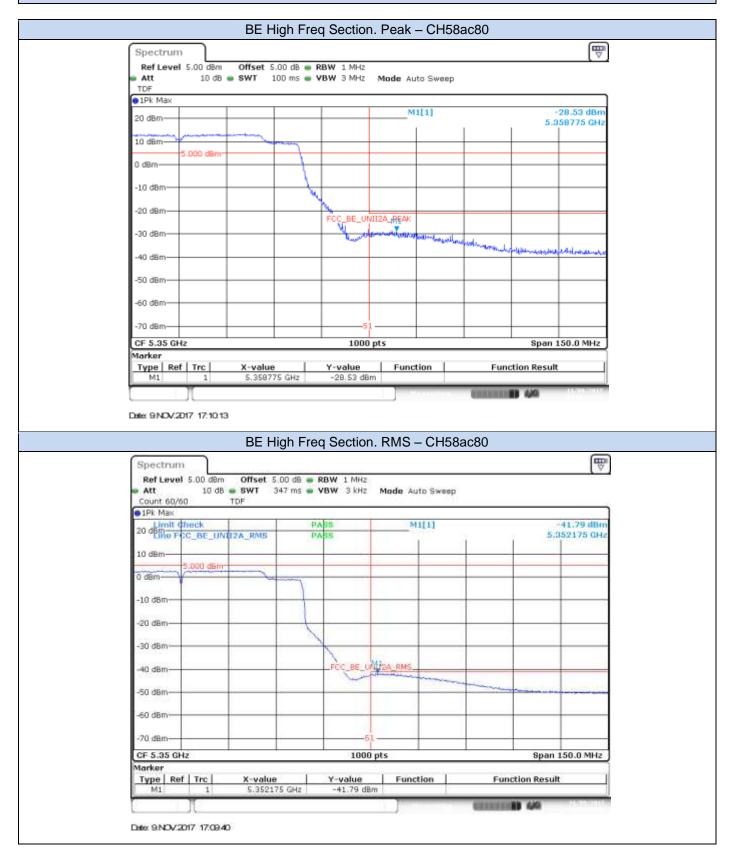

### 802.11n40. HT0 - Chain A Div1






### 802.11n40. HT0 - Chain A Div2






### 802.11ac80. VHT0 - Chain A Div1





### 802.11ac80. VHT0 - Chain A Div2

