

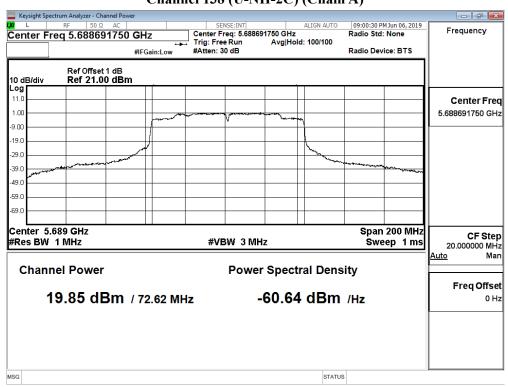
Channel 122 (Chain A)

Keysight S	pectrum Analyzer - Occupied B	W						
L	RF 50 Ω AC		SENSE:INT		ALIGN AUTO		M Jun 06, 2019	Frequency
enter	Freq 5.61000000		Center Freq: 5.61	0000000 GHz Avg Hold	10/10	Radio Std	: None	requency
		⊶ #IFGain:Low	#Atten: 30 dB	Avginoid	: 10/10	Radio Dev	ice: BTS	
	Ref Offset 1 dB							
0 dB/div	Ref 21.00 dBr	n			-			
. og 11.0								
		anter and a	Aller and a second second	marahan marana				Center Free
.00								5.61000000 GH
.00								
9.0		and the second s			u.			
9.0	And the man and the market	.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.mailway	L	
	1000 ····						and a relation of the	
9.0								
9.0								
9.0								
9.0								
0.0								
enter	5.61 GHz					Span	200 MHz	05.04-
Res BV	V 1 MHz		#VBW 3N	/IHz			ep 1 ms	CF Step 20.000000 MH
							<u> </u>	Auto Mar
Οςςι	upied Bandwid	th	Total	Power	27.5	5 dBm		
	. 7/	5.164 M	U-					
	13	5.164 IVI	пZ					Freq Offse
Trans	mit Freg Error	-55.002	kHz % of		ar 00	9.00 %		0 H:
	•			0.00111011				
x dB	Bandwidth	87.59 I	MHz xdB		-26.	00 dB		
G					STATU	S		

Channel 122 (Chain B)

		um Analyzer - Occ									
<mark>(X</mark> R Cen		RF 50 Ω req 5.61000		7		NSE:INT req: 5.61000	0000 GHz	ALIGN AUTO	03:59:17 P Radio Std	M Jun 06, 2019 : None	Frequency
001		104 0.0 1000		iain:Low	Trig: Fre #Atten: 3		Avg Hold	1:>10/10	Radio Dev	/ice: BTS	
				unicon.							
	B/div	Ref Offset Ref 21.00									
Log 11.0											Center Freq
1.00						۷ 	. And and a second	<u>\</u>			5.610000000 GHz
-9.00			ر اندر	, 				<u>k</u> .			
-19.0		where the ballion of	WWW PLAN W					When the second			
-29.0	JANNAN AN	ENGINE AND						~	Man and a start	and the state of t	
-39.0 -49.0											
-59.0											
-69.0											
Con	tor 5	.61 GHz							Enor	200 MHz	
		1 MHz			#VE	з мзмн	z			ep 1 ms	CF Step 20.000000 MHz
		nied Dond				Total P	ower	27 5	2 dBm		Auto Man
1	CCU	pied Band		05 NAI	1-	Totari	ower	27.2	ubm		
			10.3	35 MI	72						Freq Offset
T	ransı	mit Freq Err	or -	62.533 I	κHz	OBW P	ower	99	9.00 %		0 Hz
×	dB E	Bandwidth		90.38 N	1Hz	x dB		-26.	00 dB		
MEC								STATU	6		
MSG								STATU	3		

Channel 138 (Chain A)


	RF 50 Ω AC		SENSE:INT Center Freq: 5.6900		IGN AUTO	09:00:06 F	M Jun 06, 2019	Frequency
Center I	Freq 5.69000000			Avg Hold: 1	10/10	Radio Stu	. None	
		#IFGain:Low	#Atten: 30 dB			Radio Dev	vice: BTS	
10 dB/div	Ref Offset 1 dB Ref 21.00 dB	m			∆Mkr1		65 MHz 0169 dB	
Log 11.0		1Δ2		2				Center Freq
1.00			and the state of t	and the second				5.690000000 GHz
9.00		1						0.000000000000
		al and a second			M 1.			
29.0	Langer Handling to the first rear	A.				valuation	tradition of the states	
							W WORK LALANS	
49.0								
59.0								
69.0								
19.0								
	5.69 GHz V 1 MHz		#VBW 3 MH	łz			200 MHz eep 1 ms	CF Step 20.000000 MHz
Occu	ipied Bandwid	th	Total F	Power	27.2	dBm		<u>Auto</u> Man
	7	5.233 MH	lz					Freq Offset
Trans	mit Freq Error	70.692 k	Hz % of O	BW Power	- 9 9	.00 %		0 Hz
	Bandwidth	88.92 M	Hz x dB		-26 ()0 dB		
		00102 11			2011			
ISG					STATUS			

Channel 138 (Chain B)

Agilent Spect	rum Analyzer - Occu									
(X) Constan F	RF 50 Ω		-		ISE:INT req: 5.69000	0000 GHz	ALIGN AUTO	03:12:21 P	4 Jun 06, 2019 None	Frequency
Center F	red 2.69000	JUUU GH	Z ⊶			Avg Hold	I: 10/10	Raulo Stu.	None	
		#IFG	iain:Low	#Atten: 30) dB			Radio Dev	ice: BTS	
10 dB/div	Ref Offset 1 Ref 21.00						∆Mkr1		95 MHz 338 dB	
Log			1Δ2			\wedge	2			
			mary ray with the	البعديني فيعونهم والمعاور	ar Van All Marin	and a strange				Center Freq
1.00			1				\			5.69000000 GHz
-9.00		أيعره					h			
-19.0		h Martin					Bright Water			
-29.0	utorindaria Antonialiati	n/t ⁻¹					"Webs	and Martin and Andrews	عمالوهاس	
-39.0										
-49.0										
-59.0										
-69.0										
-00.0										
Center 5									200 MHz	CF Step
#Res BW	1 MHz			#VE	SW 3 MH	z		Swe	ep 1ms	20.000000 MHz
Occu	pied Bandv	vidth			Total P	ower	26.7	dBm		<u>Auto</u> Man
		75.2	59 Mł	Ηz						Freq Offset
Trane	mit Freg Erro	nr -	41.410	/U-7	OBW P	ower	00	.00 %		0 Hz
	•	л -				ower				
xdBB	Bandwidth		87.26 N	lHz	x dB		-26.	00 dB		
								1		
MSG							STATUS			

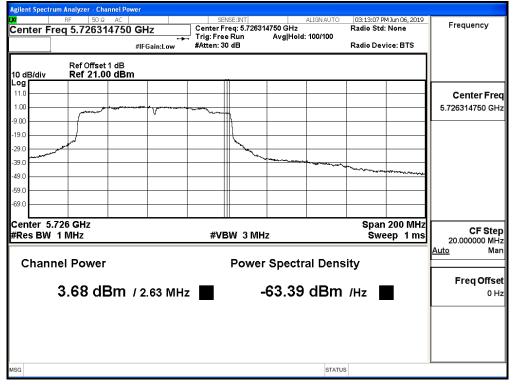
Maximum conducted output power:

Channel 138 (U-NII-2C) (Chain A)

Maximum conducted output power:

Channel 138 (U-NII-3) (Chain A)

	ctrum Analyzer - Ch									- 7
<mark>≭</mark> ⊥ Center Fr	RF 50 Ω eq 5.72630		Hz	Center F		08250 GHz	ALIGN AUTO	09:00:51 Pf Radio Std:	1Jun 06, 2019 None	Frequency
	04 011 2000			≓ Trig: Fre #Atten: 3		Avg Hol	d: 100/100	Radio Dev	ice: BTS	
10 dB/div	Ref Offset Ref 21.0									
Log 11.0										Center Freq
1.00	,	-				_				5.726308250 GHz
-9.00			V	-topes	* 1					
-19.0					₩					
-29.0	and the second				- March	un				
-39.0							when when man	- manana -		
-49.0									and a start of the	
-59.0										
-69.0										
Center 5. #Res BW			1	#\/	в змі	-17	1		200 MHz ep 1 ms	CF Step
nites bit	1 141112				511 511	12		0.00		20.000000 MHz Auto Man
Chanr	nel Power				Powe	r Spect	ral Dens	sitv		
						•				Freq Offset
	3.73 dl	3m / :	2.617 M	Hz		-63.21	dBm	/Hz		0 Hz
MSG							STATU	s		l


Maximum conducted output power:

Channel P R I 04:12:44 PM Jun 06, 2019 Center Freq: 5.688685250 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency Center Freq 5.688685250 GHz Radio Std: None Avg|Hold:>100/100 Ģ Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref 21.00 dBm 10 dB/div Log 11.0 **Center Freq** 1.00 5.688685250 GHz -9 NC -19.0 -29.0 -39.0 49.C 59.C -69 (Center 5.689 GHz Span 200 MHz CF Step 20.000000 MHz #Res BW 1 MHz #VBW 3 MHz . Sweep 1ms <u>Auto</u> Man **Channel Power Power Spectral Density** Freq Offset 19.56 dBm / 72.63 MHz -60.19 dBm /Hz 0 Hz STATUS

Channel 138 (U-NII-2C) (Chain B)

Maximum conducted output power:

Channel 138 (U-NII-3) (Chain B)

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Maximum conducted output power
- Test Date : 2019/06/11
- Test Mode : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps)

Chain A

Cable loss	=1.0dB			Ν	laximur	n condu	cted outp	put powe	er		
Channel Ma	Frequency				Ι	Data Rat	e (Mbps	5)			
Channel No	(MHz)	130	260	390	520	780	1040	1170	1300	1560	1733.3
50 (U-NII-1)	5250	7.59	7.42	7.31	7.15	7.01	6.83	6.73	6.66	6.48	6.38
50 (U-NII-2A)	5250	7.63	7.47	7.30	7.14	7.04	6.89	6.72	6.56	6.40	6.34
114	5570	17.73	17.58	17.45	17.35	17.28	17.1	16.99	16.83	16.71	16.57

Note: Maximum conducted output power Value =Reading value on Spectrum Analyzer + cable loss

Chain B

Cable loss	=1.0dB			Ma	ximum	conduct	ed outpu	ut powe	r		
Channel N.	Frequency				Da	ita Rate	(Mbps)				
Channel No	(MHz)	130	260	390	520	780	1040	1170	1300	1560	1733.3
50 (U-NII-1)	5250	7.06	6.93	6.84	6.76	6.58	6.50	6.43	6.36	6.26	6.12
50 (U-NII-2A)	5250	6.53	6.45	6.30	6.16	6.02	5.93	5.75	5.66	5.60	5.49
114	5570	17.17	17.07	16.94	16.88	16.78	16.69	16.55	16.47	16.35	16.28

Note: Maximum conducted output power Value =Reading value on Spectrum Analyzer + cable loss

Maximum conducted output power Measurement:

Channel No	Frequency Range	99% Bandwidth	Chain A Chain B Output Power Power Power		Outŗ	out Power Limit	Result	
	(MHz)	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	dBm+10log(BW)	
50(U-NII-1)	5250		7.59	7.06	10.34	24		Pass
50(U-NII-2A)	5250	76.565	7.63	6.53	10.13	24	29.84	Pass
114	5570	153.830	17.73	17.17	20.47	24	32.87	Pass

- 1. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))
- 2. 99% Bandwidth is the bandwidth of chain A or chain Bwhichever is less bandwidth, output power limitation is more stringent.

99% Occupied Bandwidth:

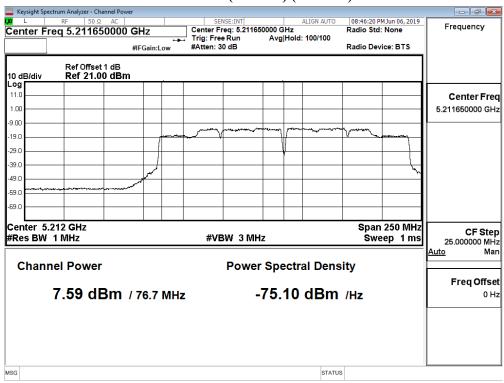
Channel 50 (Chain A)

🔤 Keysight Sp	ectrum Analyzer - Occ									
LXI L	RF 50 Ω	AC			NSE:INT		ALIGN AUTO		M Jun 06, 2019	Frequency
Center F	req 5.25000	0000 G	iHz		req: 5.25000		40/40	Radio Std	: None	riequency
			← FGain:Low	Trig: Free #Atten: 3		Avg Hold:	10/10	Radio Dev	ion BTS	
		#1	FGain:Low	#Atten. 5	U UD			Radio Dev	ICE. DT3	
	Ref Offset	1 48								
10 dB/div	Ref 21.0									
Log			· · · · · · · · · · · · · · · · · · ·							
11.0							_			Center Freq
1.00										5.25000000 GHz
			الاستينية المراجع المر المراجع المراجع	-www.hum	marature #14.8744	ul whither would be	ada.			5.25000000 GH2
-9.00		1			<u>۳</u> ـــــ					
-19.0							1			
-29.0							\			
		14					١.			
-39.0	mound in the property in the second	ي. مرابع					- ⁴ u		mouthelyna	
-49.0	and a life of the state of the		_							
-59.0										
-59.0										
-69.0			-				-			
Center 5									350 MHz	CF Step
#Res BW	2 MHz			#VE	3W 8 MH:	Z		Swe	ep 1 ms	35.000000 MHz
										Auto Man
Occu	pied Band	width			Total P	ower	17	.0 dBm		
		153	3.40 MI	ΗZ						Freq Offset
_										0 Hz
Trans	mit Freq Err	or	-165.61	kHz	% of OE	SW Powe	er g	9.00 %		0112
v dB B	Bandwidth		162.8 N		x dB		-26	6.00 dB		
	Sanuwiuun		102.0 1		X UD		-20	ub		
<u> </u>										
MSG							STAT	US		

Channel 50 (Chain B)

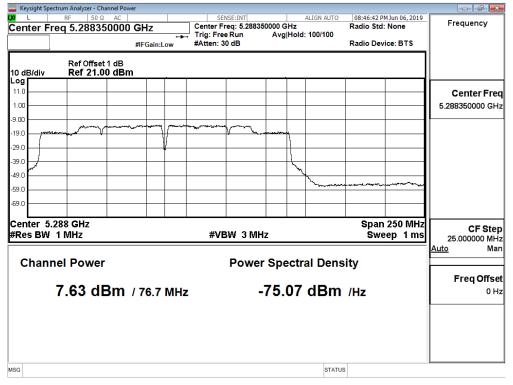
Agilent S		nalyzer - Occi							ć				
IXI O		F 50 Ω					NSE:INT req: 5.25000			IGN AUTO	02:58:11 P	M Jun 06, 2019	Frequency
Cente	er Freq	5.25000	0000 0	SHZ		ig:Free		Avg Hol	ld: 10	0/10	Radio Sto	i: None	,
			#	IFGain:Lov		tten: 30					Radio De	vice: BTS	
10 dB/	div	Ref Offset 7 Ref 21.00	1dB)dBm										
Log 11.0													Conton Eng
													Center Free
1.00 —				يتلح بالمار وحدار	Allow Alasta	www	herender	للمريبيه والمرا					5.25000000 GH
-9.00 —							ų						
-19.0 —			/							1			
-29.0 —			الر							<u> </u>			
-39.0										<u>``</u> \			
-49.0	₽ -₩₩₩₩₩₩	ware were and the second of th	la-1							~\r	en fige far i en faat weke de	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-59.0 —													
-69.0 —													
Cente	er 5.25	GH7									Snar	1 350 MHz	
	BW 21					#VE	SW 8 MH	z				eep 1 ms	CF Step
													35.000000 MH: Auto Mar
Oc	cupie	d Bandy	width				Total P	ower		16.2	2 dBm		Auto
				0 4 9	NALI-								
			15	3.13									Freq Offse
Tra	Insmit	Freq Erre	or	-57.0	59 kHz		OBW P	ower		99	9.00 %		0 H:
hx	B Band	dwidth		162	8 MHz		x dB			-26	00 dB		
_ ^ u	B Ball	amatri		102.	0 101112		A GB			20.	00 42		
MSG										STATU	S		
_													

Channel	114	(Chain A))
~		(


Image: Solution of the
Center Freq 5.570000000 GHZ Center freq 1.00 #IFGain:Low #Atten: 30 dB Ref Offset 1 dB 10 dB/div Ref 21.00 dBm Log 11.0 10.0 10.0
##FGain:Low #Atten: 30 dB Radio Device: BTS 10 dB/div Ref Offset 1 dB Ref 21.00 dBm Log Image: Control of the state of the stat
10 dB/div Ref 21.00 dBm Center F 11.0
10 dB/div Ref 21.00 dBm Center F 11.0
Log 11.0 1.00 -9.00
11.0 Center F 1.00
-19.0 -29.0 anyulfullari afressin altria and -
-39.0
-49.0
-59.0
-69.0
Center 5.57 GHz Span 350 MHz
#Res BW 2 MHz #VBW 8 MHz Sweep 1 ms 35.000000
Auto
Occupied Bandwidth Total Power 25.8 dBm
153.83 MHz
I 55.65 WITZ Freq Of
Transmit Freq Error 373.28 kHz % of OBW Power 99.00 %
x dB Bandwidth 213.4 MHz x dB -26.00 dB
MSG STATUS

Channel 114 (Chain B)

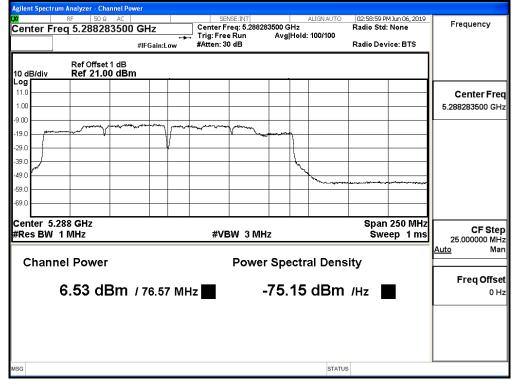
			1.1.000					-				
Agil	ent Spectri	u <mark>m Analyzer - Occ</mark> RF 50 Ω	AC		0.00	NSE:INT		01.7	GNAUTO	02/50/46 0	4 Jun 06, 2019	
<u>~</u>	nter Fr	reg 5.57000		2117			00000 GHz	ALI	GNAUTU	Radio Std:		Frequency
00		eq 5.57000		↔	🚽 Trig: Fre	e Run	Avg Hol	d: 10	//10			
			#	IFGain:Low	#Atten: 3	0 dB				Radio Dev	ice: BTS	
		Ref Offset	1 48									
10	dB/div	Ref 21.00										
Lo	-							T				
11.	.0			بهدستم	address market	all the production	he all and					Center Freq
1.0	10	_		And a standard and a standard and a standard and a standard a standard a standard a standard a standard a stand		¥	- WW	MM	<u> </u>			5.570000000 GHz
-9.0	0								1			
-19.	o		A						ι		11.1	
.29		and an his second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Warthand	Reliver and the state of the st	for the second	
-39.		VII										
-49.	-											
-59.	0											
-69.	0							_				
		57 GHz									350 MHz	CF Step
#R	es BW	2 IVIHZ			#VE	BW 8 MH	1Z			SWe	ep 1 ms	35.000000 MHz
	0000	bied Band	width			Total F	ower		25.3	dBm		<u>Auto</u> Man
1	Occur	Jeu Ballu								abiii		
			154	4.06 MI	Hz							Freq Offset
I.	Transmit Freq Error 175.17 kł				Hz OBW Power 9				99.00 %		0 Hz	
	Transn	nit Freq Erro	or	175.171	KHZ	OBW	ower		99	1.00 %		0112
:	x dB B	andwidth		164.0 M	/Hz	x dB			-26.	00 dB		
1												
	1											
MSG									STATUS	8		


Maximum conducted output power:

Channel 50 (U-NII-1) (Chain A)

Maximum conducted output power:

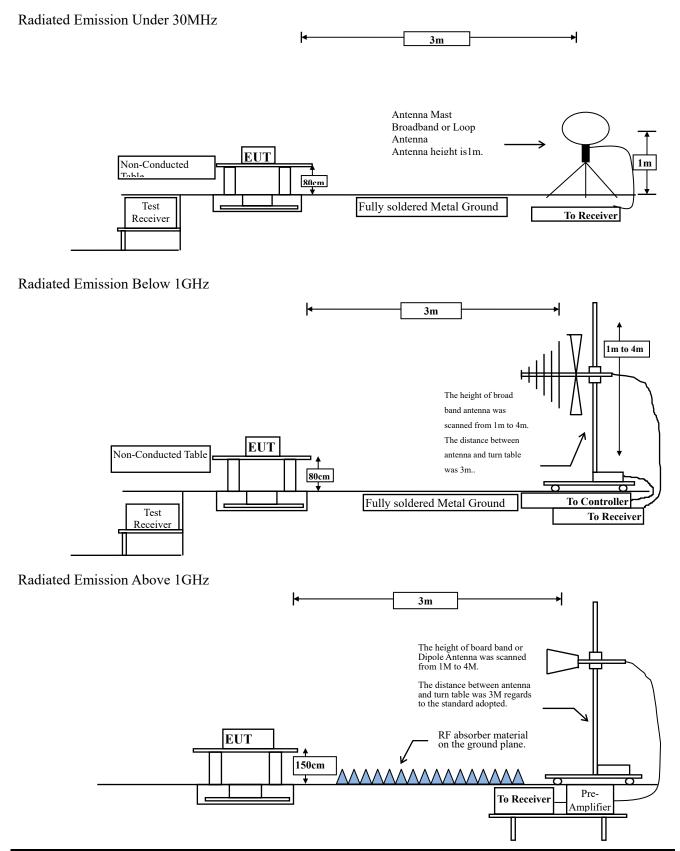
Channel 50 (U-NII-2A) (Chain A)


Maximum conducted output power:

gilent Spectrum Analyzer - Channel Po 04:14:45 PM Jun 06, 2019 Radio Std: None RL ALIGN AUTO Center Freq: 5.211716500 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency Center Freq 5.211716500 GHz Avg|Hold:>100/100 Ģ Radio Device: BTS #IFGain:Low Ref Offset 1 dB Ref 21.00 dBm 10 dB/div _og 11.0 **Center Freq** 1.00 5.211716500 GHz -9.00 19.0 -29.0 39 C 49.C 59.C 691 Center 5.212 GHz Span 250 MHz CF Step 25.000000 MHz #Res BW 1 MHz #VBW 3 MHz . Sweep 1ms Man <u>Auto</u> **Channel Power Power Spectral Density** Freq Offset 7.06 dBm / 76.57 мнz -74.61 dBm /Hz 0 Hz STATUS

Channel 50 (U-NII-1) (Chain B)

Maximum conducted output power:


Channel 50 (U-NII-2A) (Chain B)

3. Radiated Emission

3.1. Test Setup

3.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	Field strength	Measurement distance					
	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

3.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement

antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW \geq 3MHz.

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

VBW $\geq 1/T$, when duty cycle < 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

SISO A

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	97.10	2.0362	491	500
802.11n20	97.39	1.8942	528	1000
802.11n40	89.74	0.8870	1127	2000
802.11ac80	85.59	0.4304	2323	3000
802.11ac160	86.34	0.2565	3898	5000

Note: Duty Cycle Refer to Section 5

SISO B

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	97.12	2.0493	488	500
802.11n20	97.40	1.8971	527	1000
802.11n40	91.91	0.9058	1104	2000
802.11ac80	84.29	0.4275	2339	3000
802.11ac160	83.50	0.2493	4012	5000

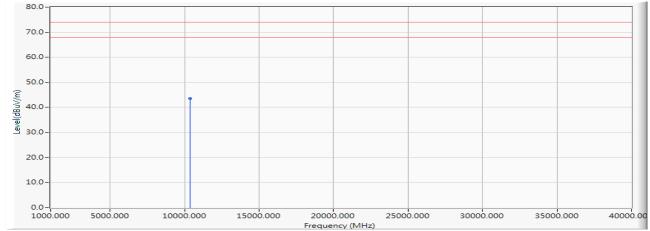
Note: Duty Cycle Refer to Section 5

MIMO

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11n20	94.37	0.9710	1030	2000
802.11n40	84.00	0.4565	2190	3000
802.11ac80	69.87	0.2420	4132	5000
802.11ac160	72.74	0.1508	6633	6800

Note: Duty Cycle Refer to Section 5

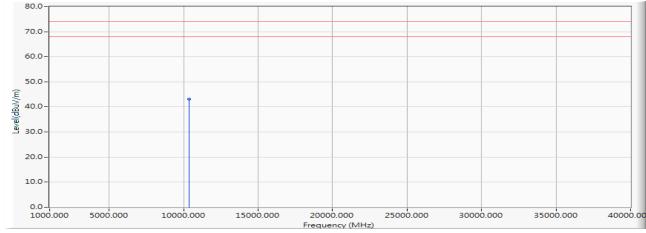
3.4. Uncertainty


- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz

3.5. Test Result of Radiated Emission

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5180MHz)

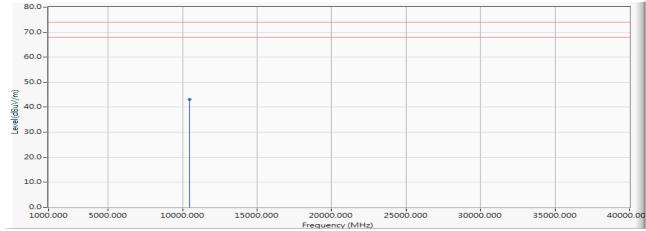
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.360	43.495	-30.505	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5180MHz)

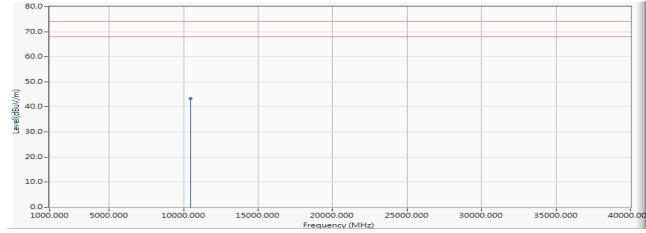
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	27.870	43.005	-30.995	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

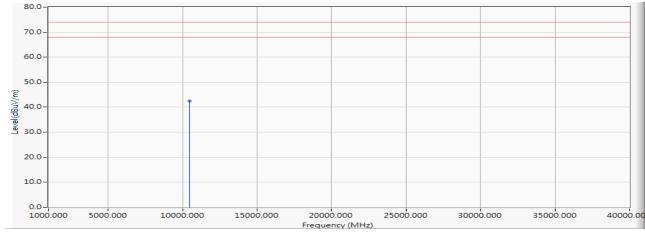
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5220MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	27.964	43.161	-30.839	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5220MHz)

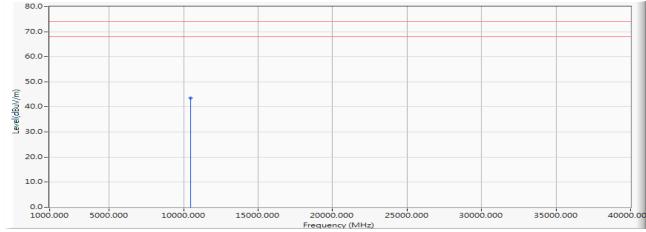
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	28.067	43.264	-30.736	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5240MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	27.292	42.465	-31.535	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

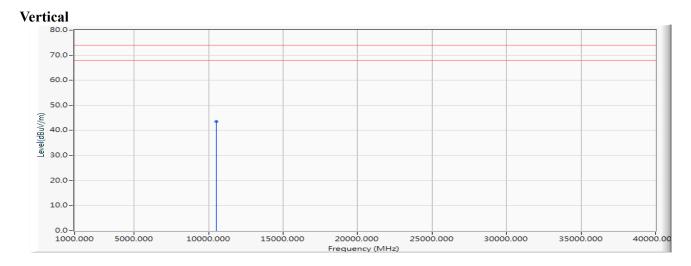
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a 6Mbps) (5240MHz)

Vertical

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	28.355	43.528	-30.472	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

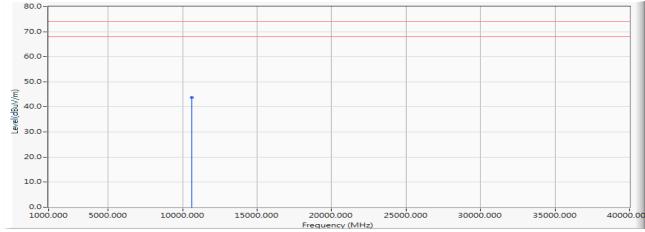
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5260MHz)


70.0-								
60.0 -								
50.0- ≘								
40.0-		•						
30.0-								
20.0-								
10.0-								
0.0	5000.000	10000.000	15000.000	20000.000	25000.000	30000.000	35000.000	40000

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	27.873	43.116	-30.884	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	28.216	43.459	-30.541	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5300MHz)

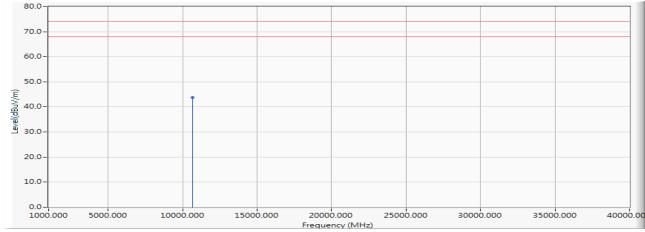
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	28.209	43.689	-30.311	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5300MHz)

Vertical

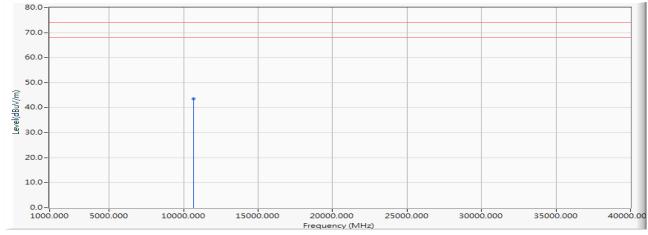


		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10600.000	15.480	27.674	43.154	-30.846	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5320MHz)

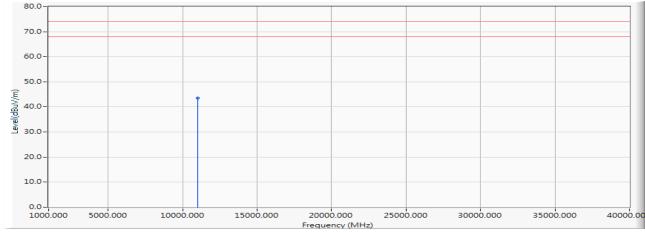
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.795	43.659	-30.341	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL	
Test Item	:	Harmonic Radiated Emission Data	
Test Date	:	2019/06/11	

Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5320MHz)

Vertical

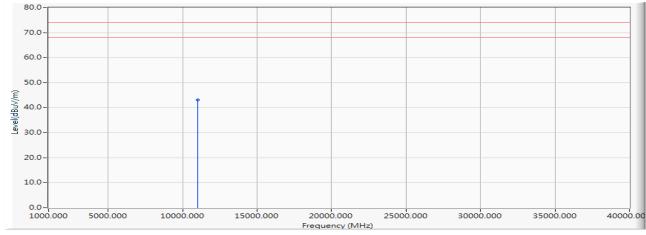


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.698	43.562	-30.438	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5500MHz)

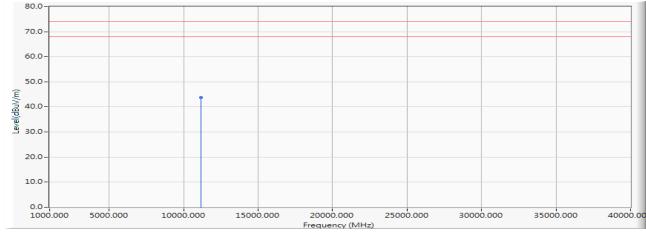
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.461	43.451	-30.549	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5500MHz)

Vertical

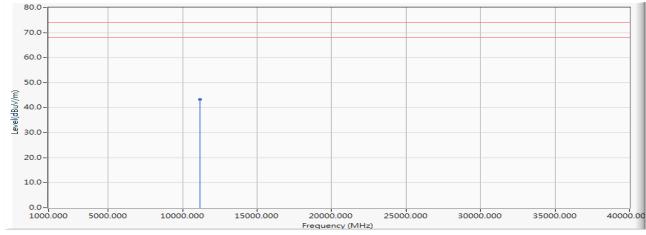


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.163	43.153	-30.847	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a 6Mbps) (5580MHz)

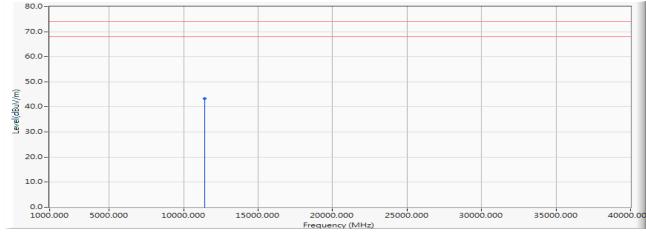
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	27.310	43.653	-30.347	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5580MHz)

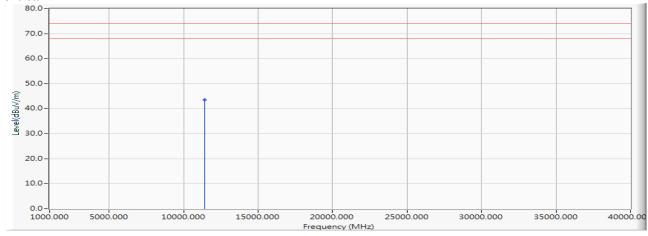
Vertical



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11160.000	16.343	27.059	43.402	-30.598	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

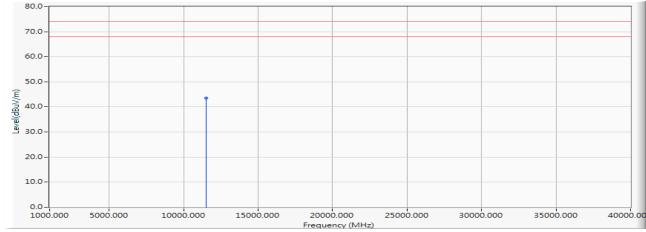
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a 6Mbps) (5700MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	26.968	43.401	-30.599	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5700MHz)

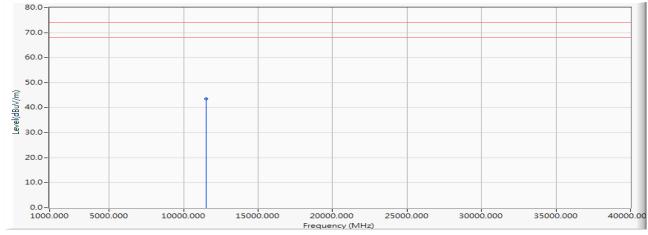
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.095	43.528	-30.472	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

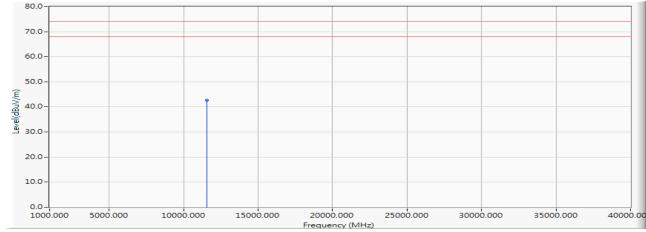
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5745MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	26.781	43.452	-30.548	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5745MHz)

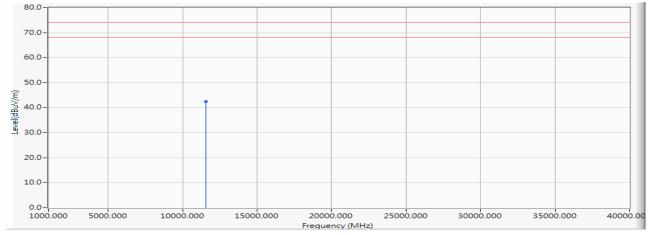
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	26.791	43.462	-30.538	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

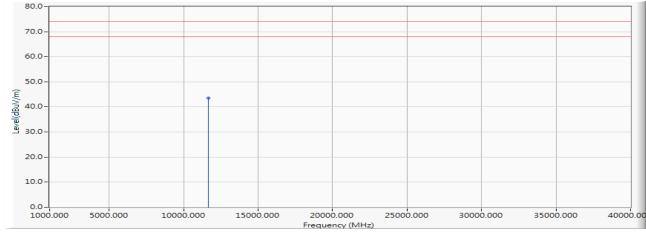
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5785MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	25.983	42.601	-31.399	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps) (5785MHz)

Vertical

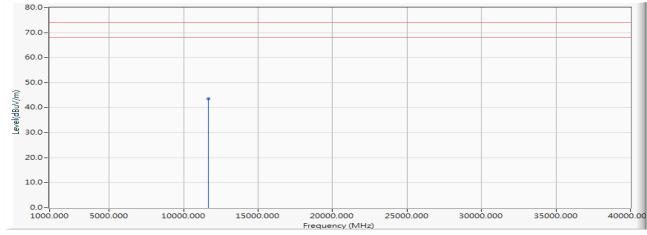

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	25.907	42.525	-31.475	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5825MHz)

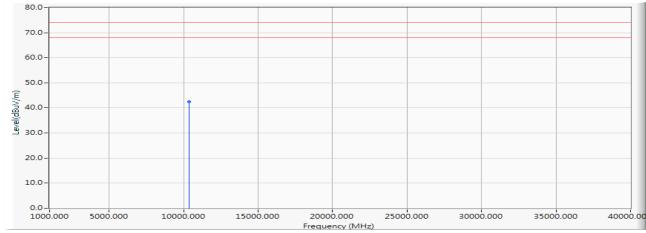
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	26.693	43.457	-30.543	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5825MHz)

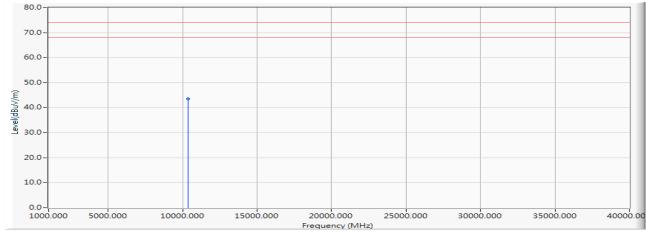
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	26.836	43.600	-30.400	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5180MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	27.279	42.414	-31.586	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2W
Product	:	Intel [®] Wireless-AC 9260D2W

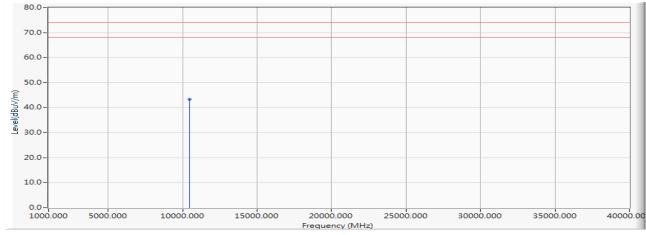
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.364	43.499	-30.501	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

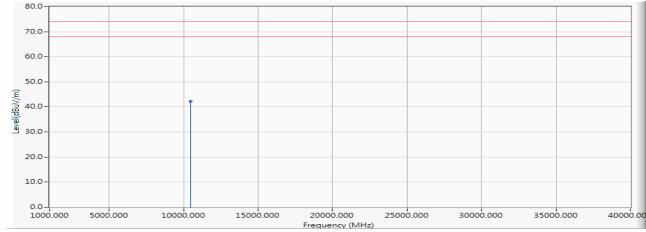
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5220MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	27.592	42.789	-31.211	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

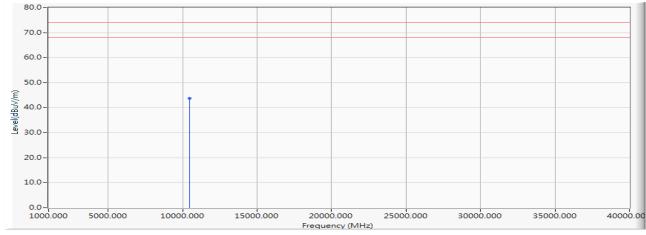
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	28.128	43.325	-30.675	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

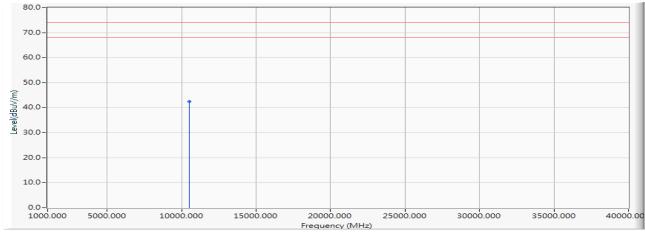
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 2 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	27.163	42.336	-31.664	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

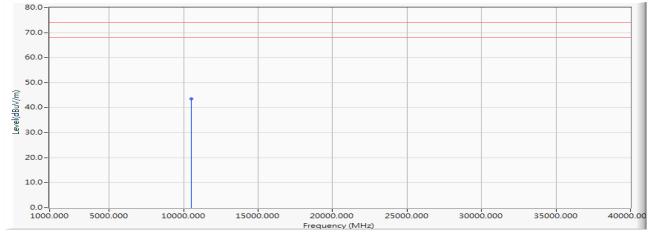
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5240MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	28.509	43.682	-30.318	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260I

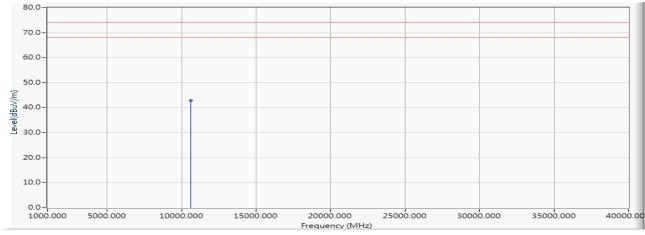
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5260MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	27.282	42.525	-31.475	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

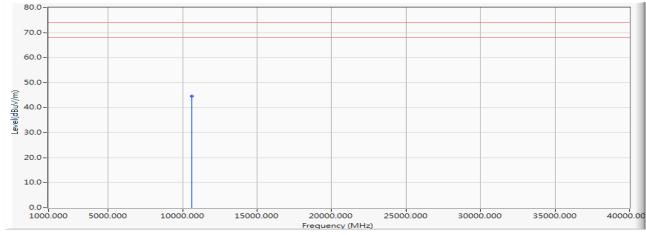
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5260MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	28.202	43.445	-30.555	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 92

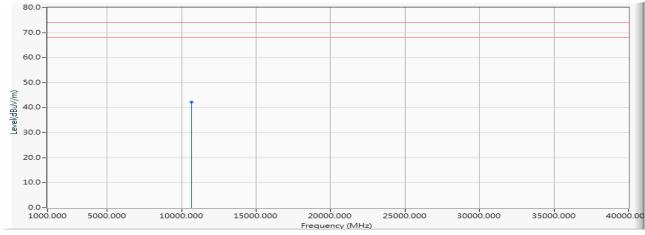
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	27.513	42.993	-31.007	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 926	0D2WI
1104400	•	110010 110000 110 920	02

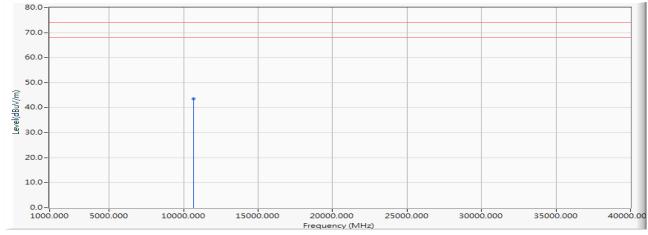
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	29.049	44.529	-29.471	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260I

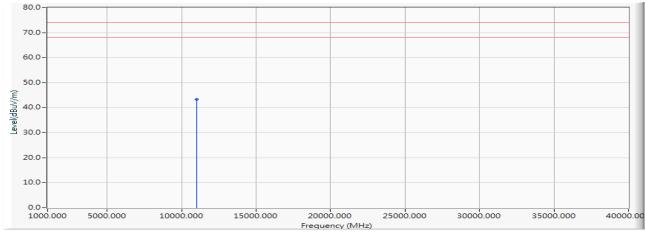
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5320MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	26.487	42.351	-31.649	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

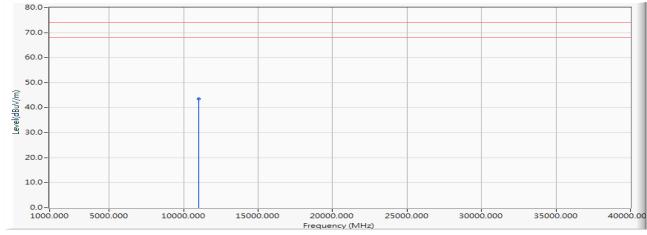
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5320MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.632	43.496	-30.504	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
rioduci	•	Intel® wheress-AC 9200D2 wh

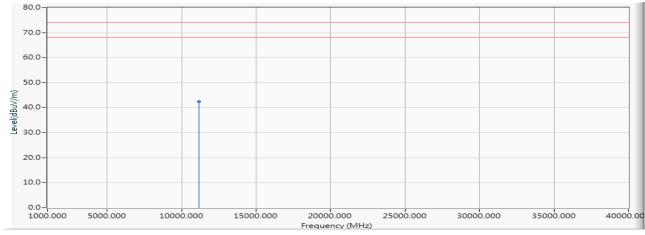
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5500MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.414	43.404	-30.596	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

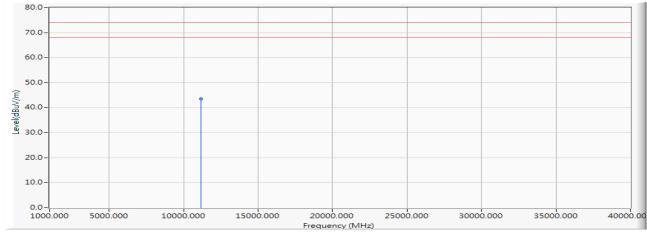
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5500MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.579	43.569	-30.431	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel [®] Wireless-AC 9260D2W

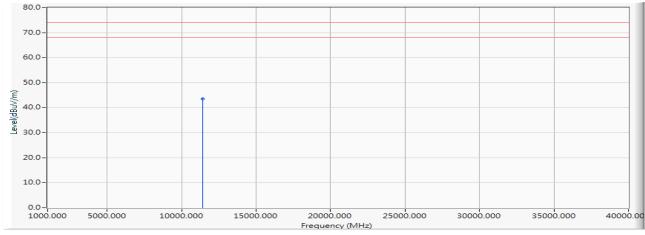
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)


		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11160.000	16.343	26.025	42.368	-31.632	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® wireless-AC 9260D2wi

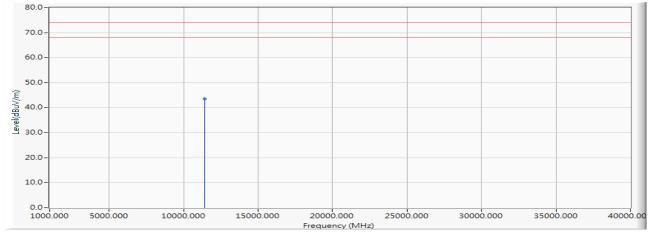
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	27.108	43.451	-30.549	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® wireless-AC 9260D2wi

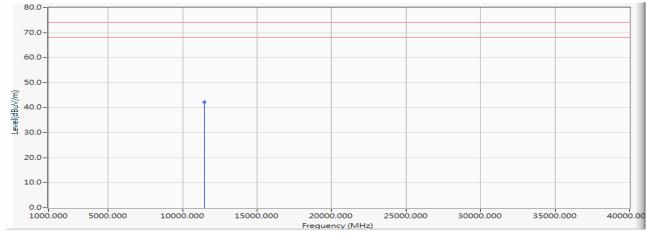
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5700MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.129	43.562	-30.438	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Product	•	Intel® wheless-AC 9200D2w1

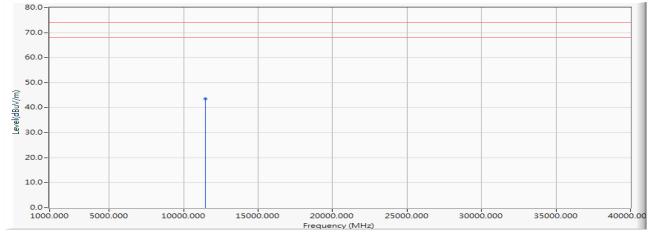
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5700MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.130	43.563	-30.437	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

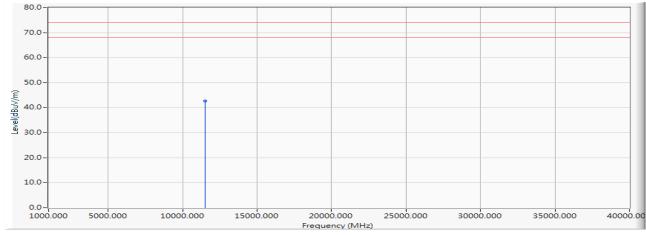
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	25.830	42.309	-31.691	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

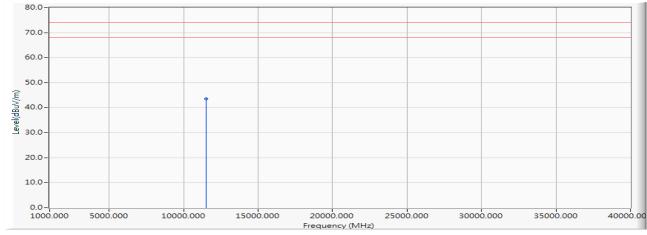
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	27.047	43.526	-30.474	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2WL	Product	:	Intel® Wireless-AC 9260D2WL
---------------------------------------	---------	---	-----------------------------

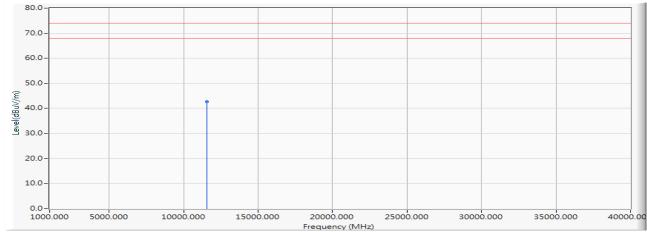
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5745MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	25.914	42.585	-31.415	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2W

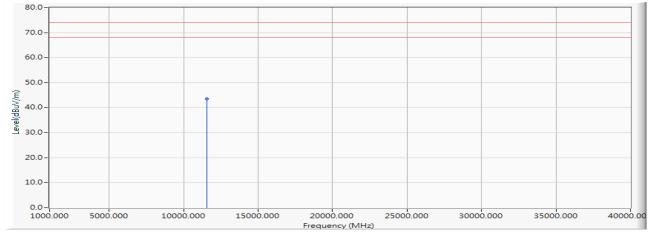
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5745MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	26.788	43.459	-30.541	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

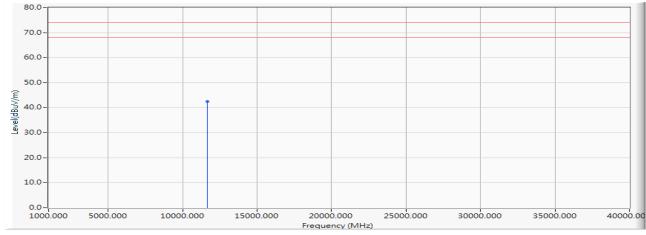
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.071	42.689	-31.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260I

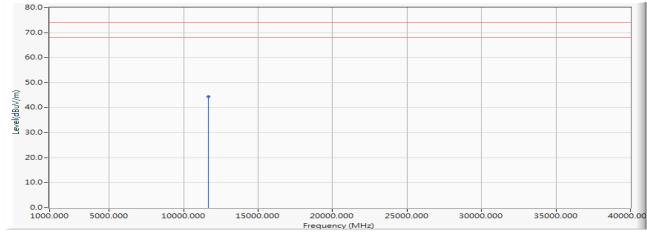
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.934	43.552	-30.448	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
rioduci	•	Intel® wheress-AC 9200D2 wh

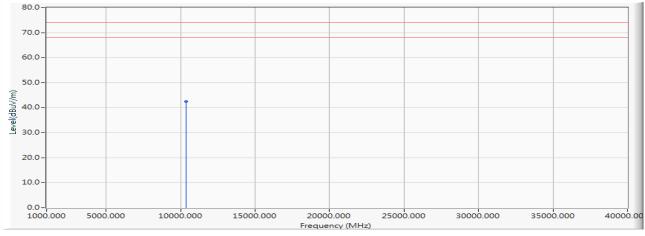
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5825MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	25.773	42.537	-31.463	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

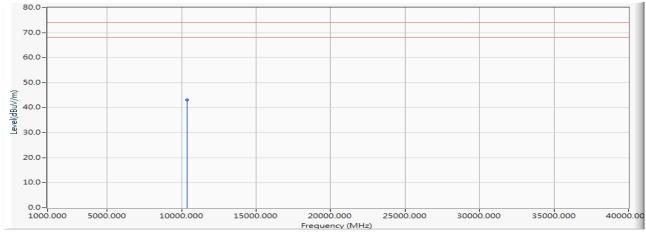
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5825MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	27.563	44.327	-29.673	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

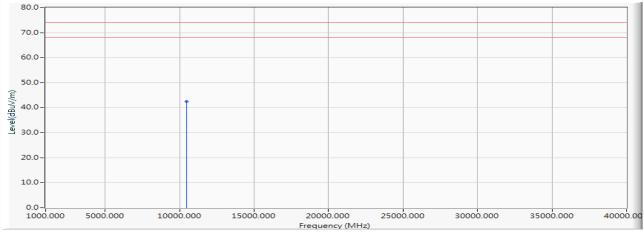
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5190MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	27.237	42.562	-31.438	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

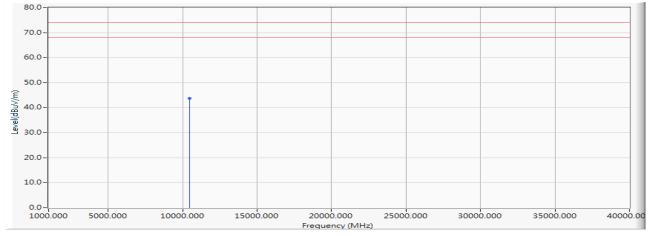
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5190MHz)


		Frequency		8	Measure Level	8	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10380.000	15.325	27.887	43.212	-30.788	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2W

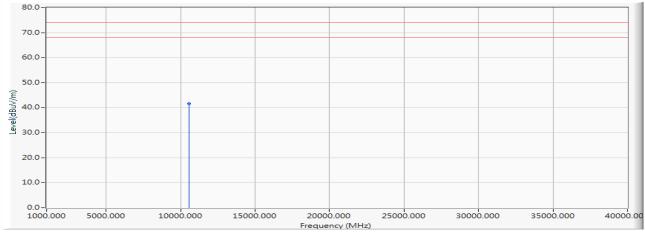
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	27.170	42.423	-31.577	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

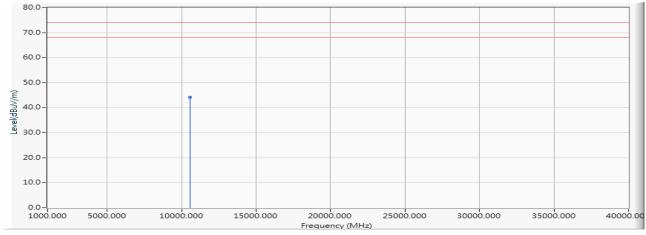
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	28.399	43.652	-30.348	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

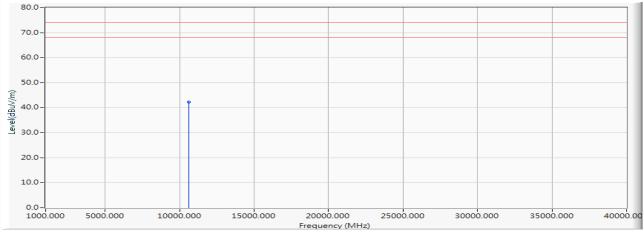
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5270MHz)



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10540.000	15.415	26.248	41.662	-32.338	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

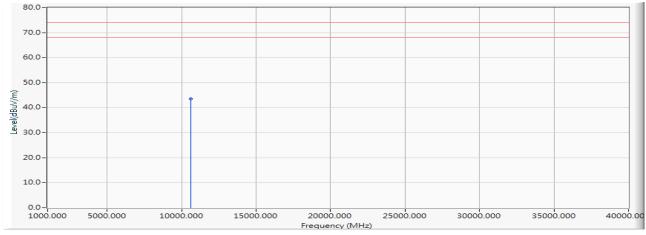
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5270MHz)


		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10540.000	15.415	28.755	44.169	-29.831	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2W

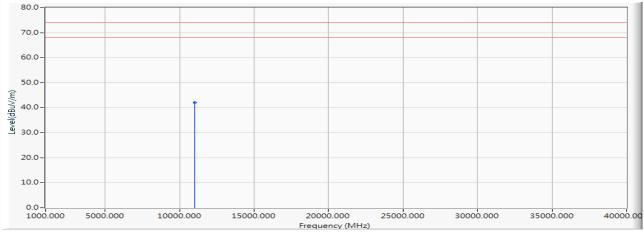
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5310MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10620.000	15.655	26.701	42.356	-31.644	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

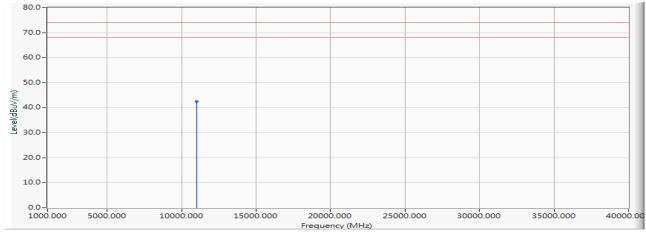
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5310MHz)


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10620.000	15.655	27.901	43.556	-30.444	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2W

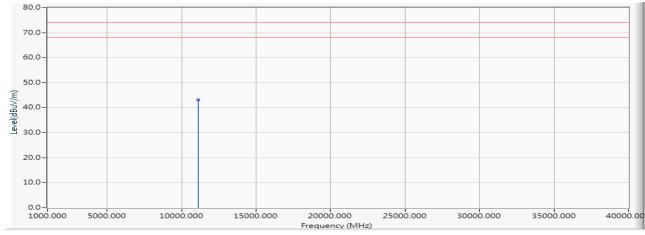
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5510MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11020.000	16.082	25.880	41.961	-32.039	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

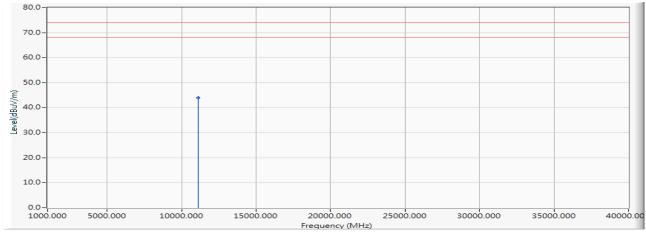
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5510MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11020.000	16.082	26.401	42.482	-31.518	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

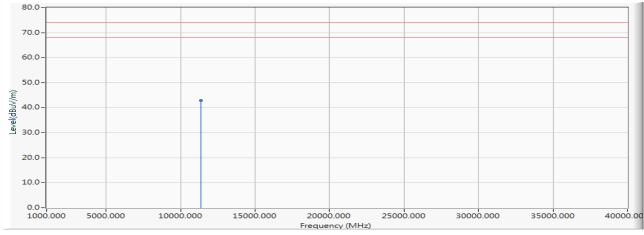
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5550MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11100.000	16.215	26.850	43.065	-30.935	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

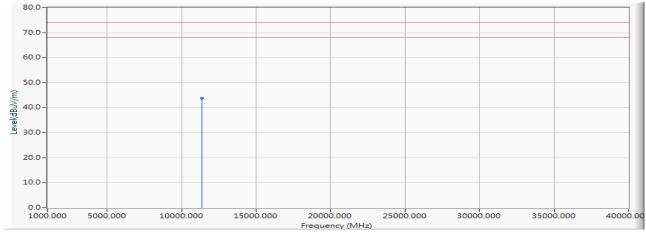
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5550MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11100.000	16.215	27.737	43.952	-30.048	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

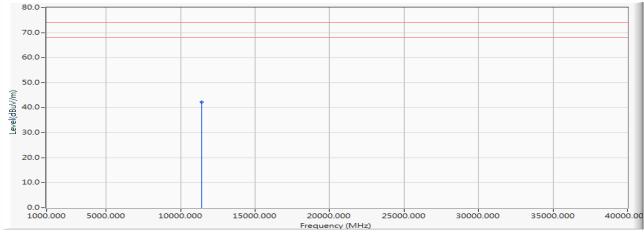
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5670MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	26.414	42.812	-31.188	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

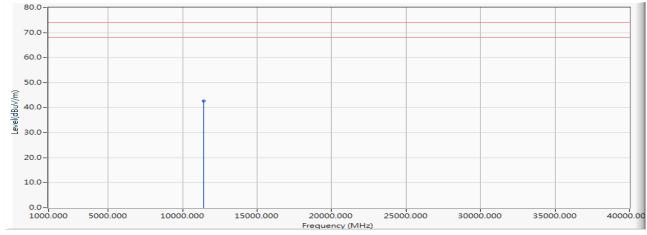
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5670MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	27.284	43.682	-30.318	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

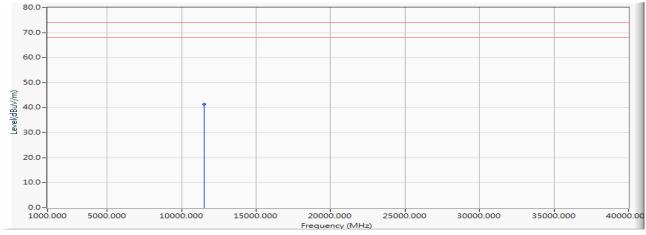
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11420.000	16.501	25.835	42.336	-31.664	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

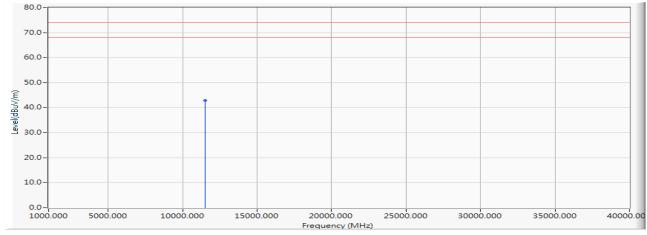
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
		(11112)	Factor (uD)	(uDuv)	(uDu v/m)	(uD)	(uDu v/m)	турс
1	*	11420.000	16.501	26.188	42.689	-31.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

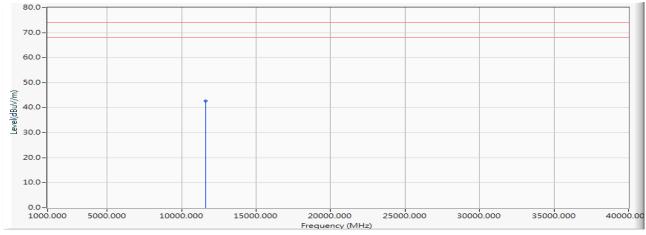
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5755MHz)



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11510.000	16.649	24.690	41.338	-32.662	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

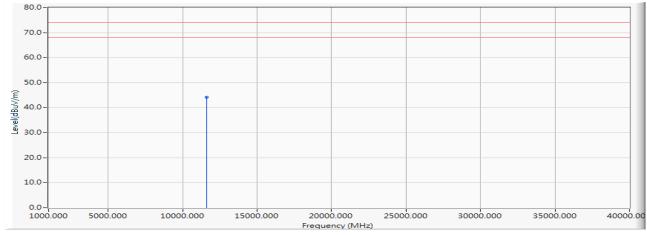
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5755MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11510.000	16.649	26.347	42.995	-31.005	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

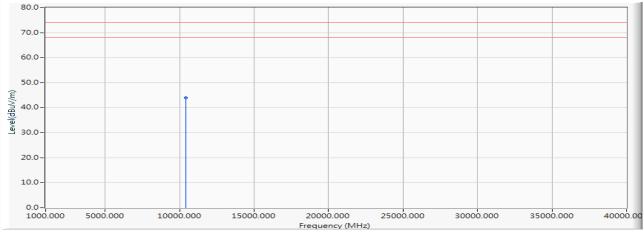
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11590.000	16.702	25.987	42.689	-31.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

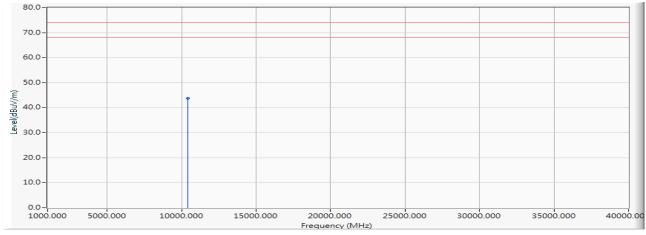
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
		(191112)	Factor (ub)	(ubuv)	(uBu v/III)	(uD)	(ubu v/m)	туре
1	*	11590.000	16.702	27.524	44.226	-29.774	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

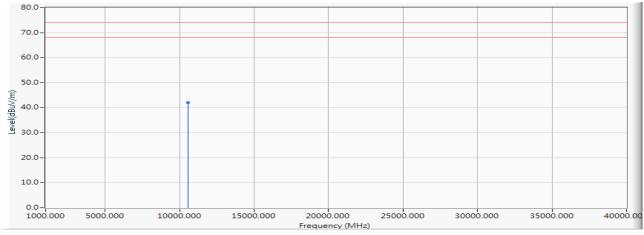
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10420.000	15.519	28.426	43.946	-30.054	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

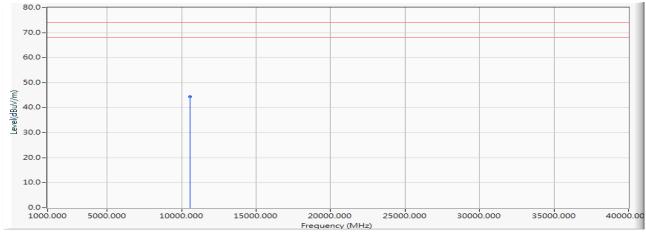
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency		0	Measure Level	0	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10420.000	15.519	28.285	43.805	-30.195	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

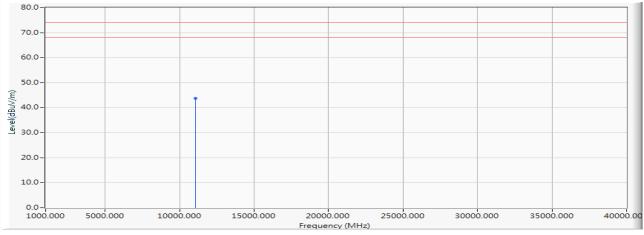
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10580.000	15.510	26.603	42.113	-31.887	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

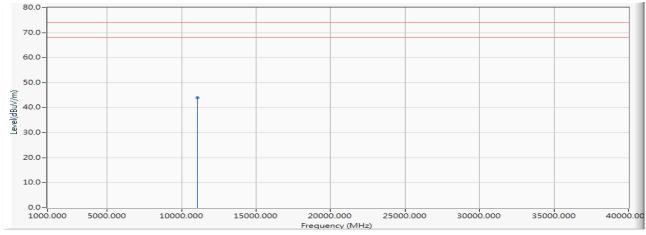
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency		8	Measure Level	8	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10580.000	15.510	28.962	44.472	-29.528	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

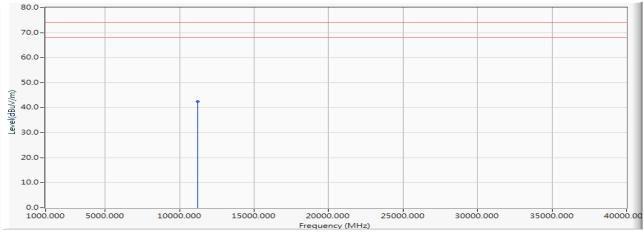
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11060.000	16.117	27.572	43.689	-30.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

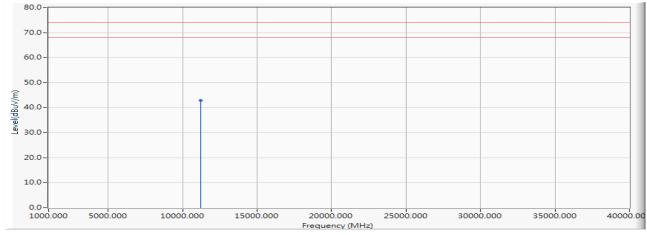
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)



		Frequency		Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11060.000	16.117	27.835	43.952	-30.048	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

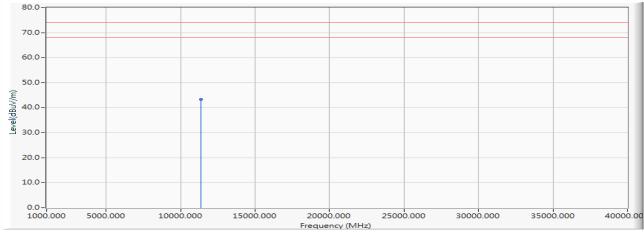
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5610MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	26.033	42.431	-31.569	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

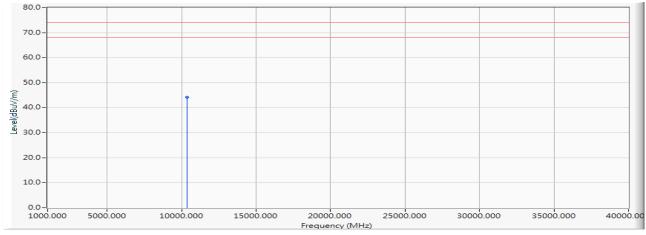
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5610MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	26.600	42.998	-31.002	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

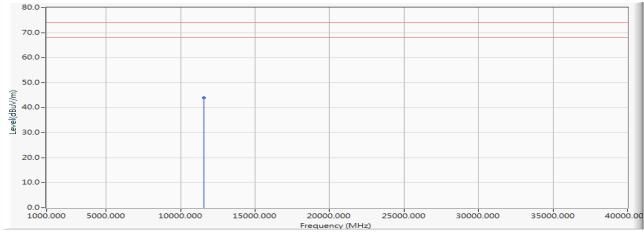
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5690MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11380.000	16.412	26.940	43.352	-30.648	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

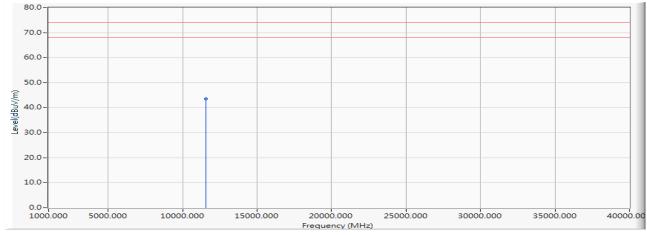
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5690MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	28.888	44.213	-29.787	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	27.248	43.972	-30.028	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

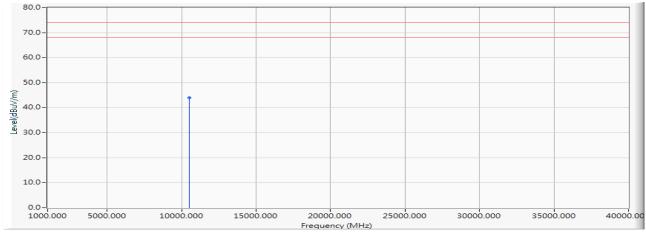
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	26.894	43.618	-30.382	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

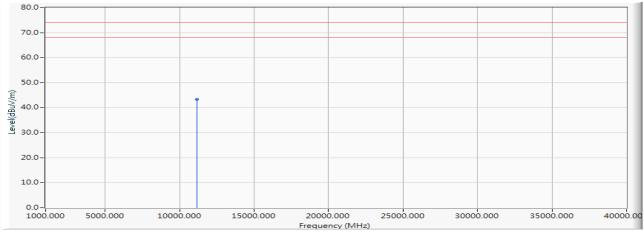
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5250MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10500.000	15.279	27.376	42.656	-31.344	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

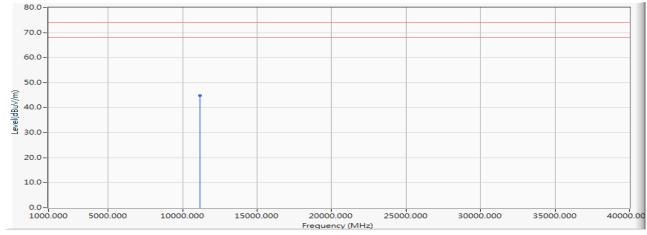
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5250MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10500.000	15.279	28.692	43.972	-30.028	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

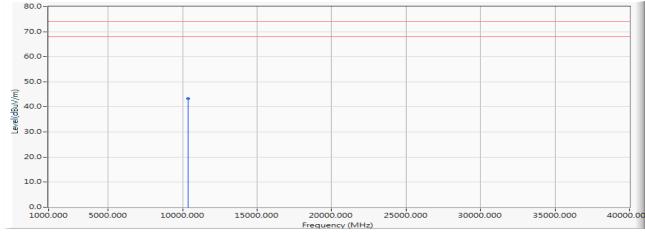
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5570MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	26.858	43.306	-30.694	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

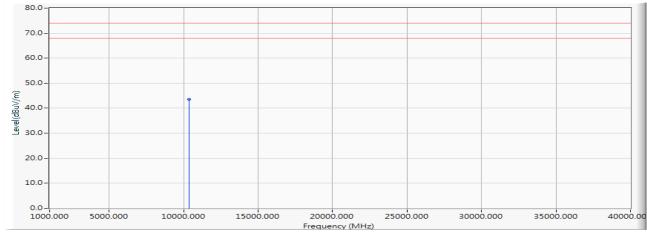
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5570MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	28.363	44.811	-29.189	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

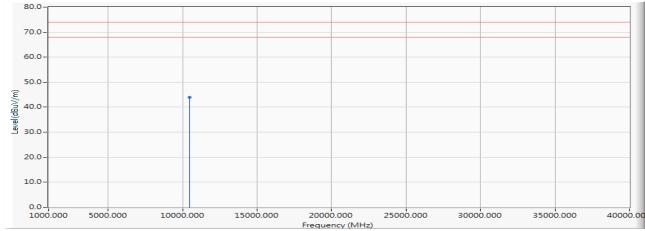
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.197	43.332	-30.668	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

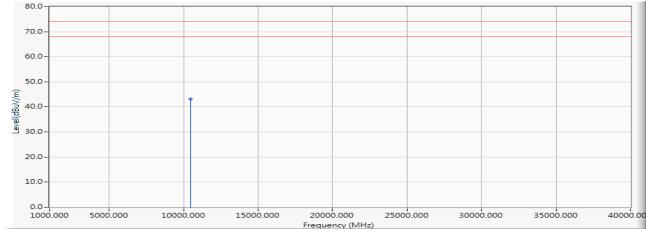
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.454	43.589	-30.411	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

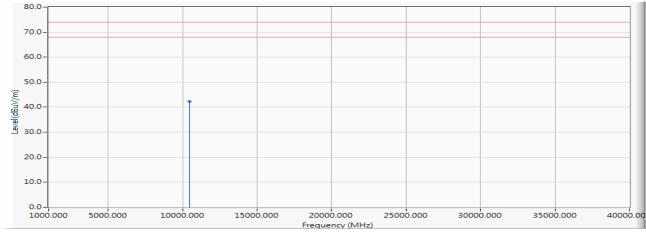
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	28.794	43.991	-30.009	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

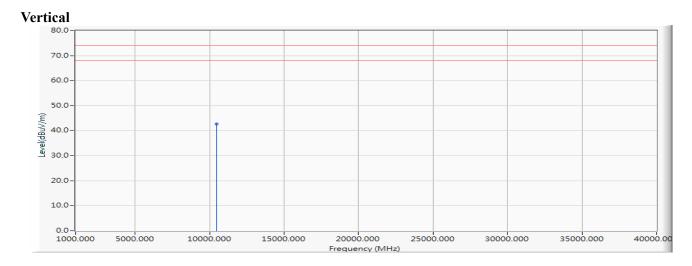
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a 6Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	27.966	43.163	-30.837	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

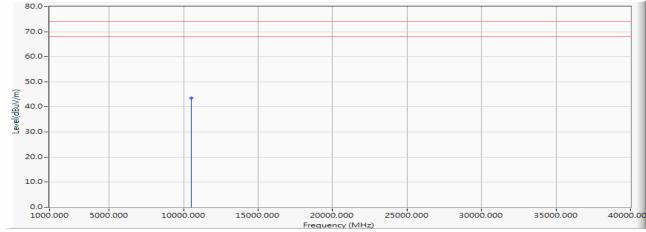
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5240MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	27.163	42.336	-31.664	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

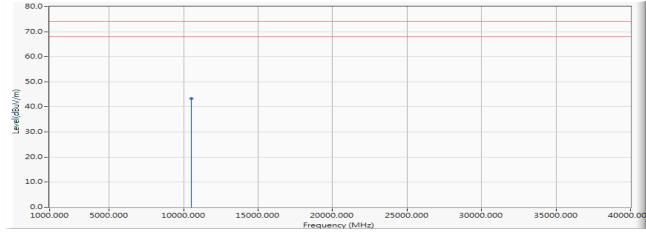
:	Intel® Wireless-AC 9260D2WL
:	Harmonic Radiated Emission Data
:	2019/06/11
:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5240MHz)
	: :



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	27.516	42.689	-31.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

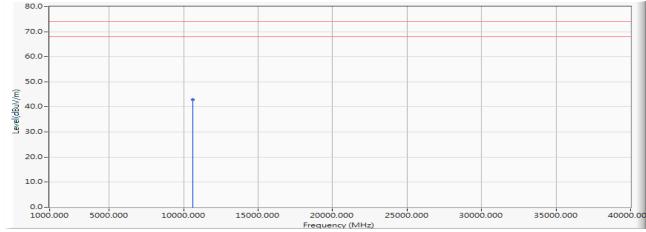
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	28.320	43.563	-30.437	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

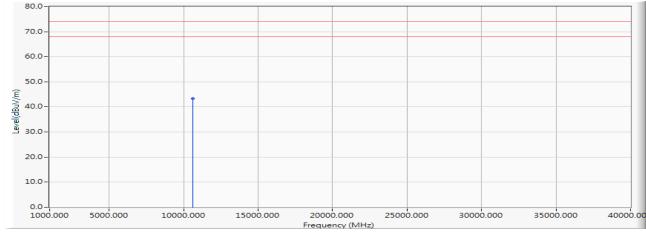
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	28.020	43.263	-30.737	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

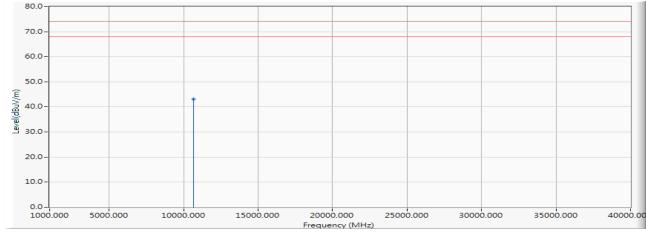
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	27.405	42.885	-31.115	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

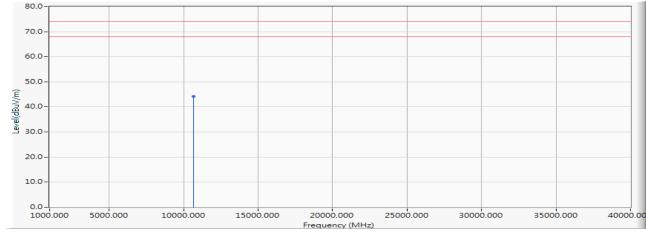
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	27.892	43.372	-30.628	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

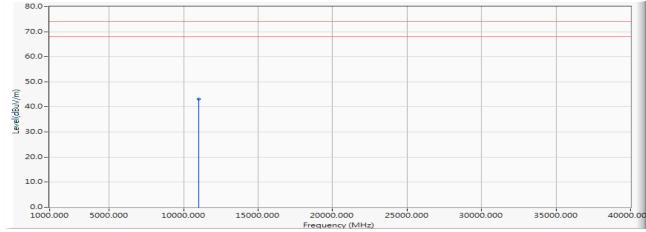
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.334	43.198	-30.802	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

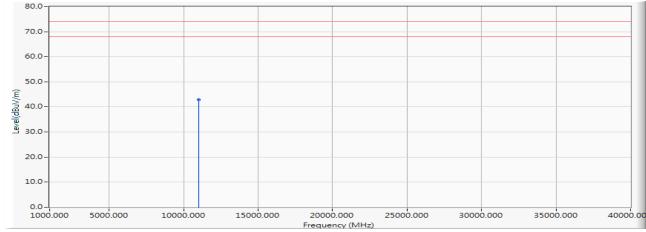
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	28.349	44.213	-29.787	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

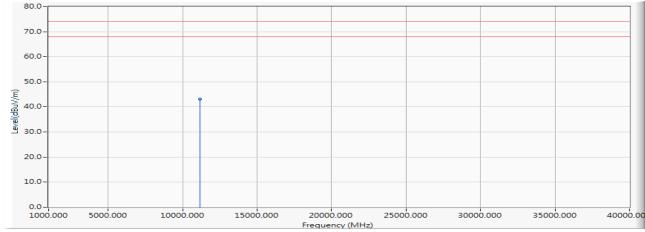
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a 6Mbps) (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.171	43.161	-30.839	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

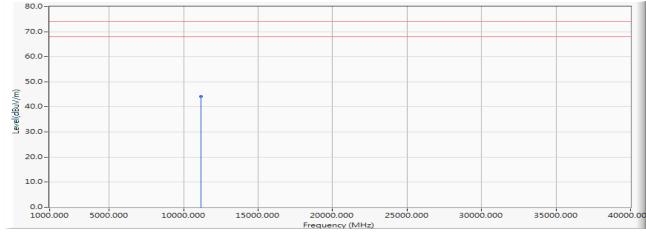
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	26.869	42.859	-31.141	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

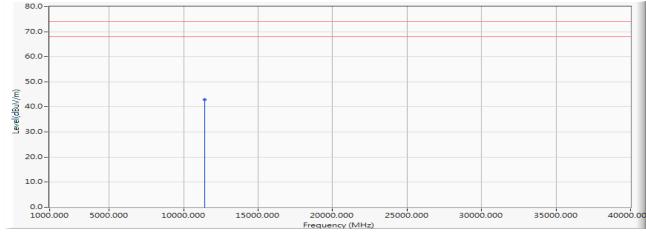
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a 6Mbps) (5580MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	26.780	43.123	-30.877	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

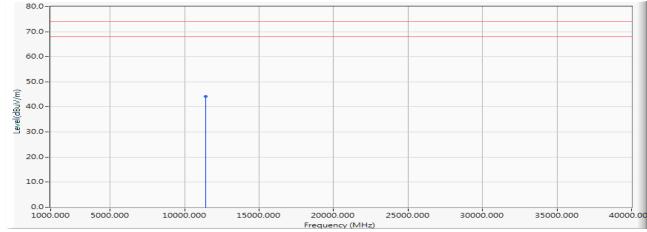
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a 6Mbps) (5580MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	27.859	44.202	-29.798	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

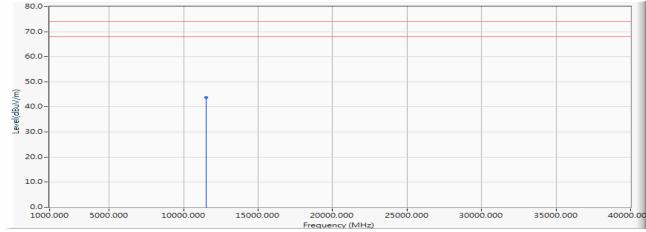
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5700MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	26.549	42.982	-31.018	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

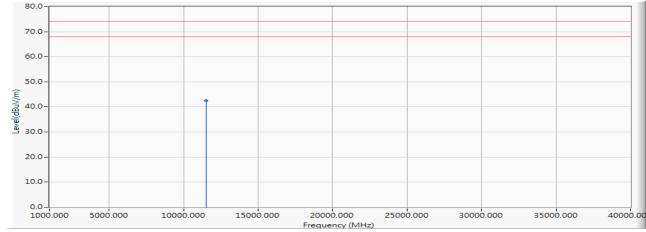
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5700MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.779	44.212	-29.788	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5745MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	27.118	43.789	-30.211	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

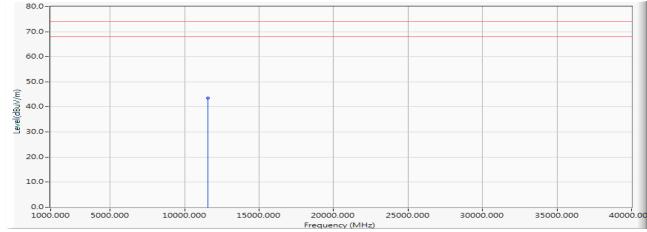
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5745MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	25.898	42.569	-31.431	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

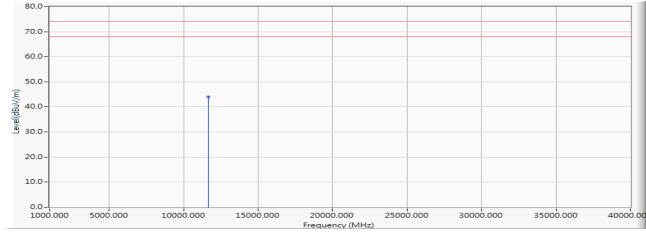
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a 6Mbps) (5785MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	25.637	42.255	-31.745	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

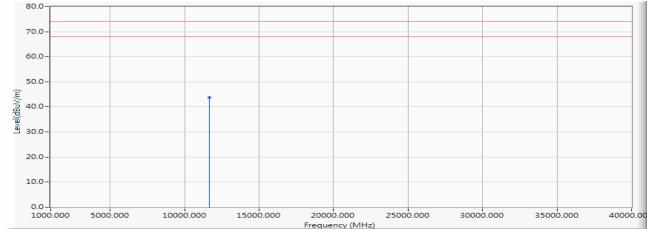
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5785MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.921	43.539	-30.461	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

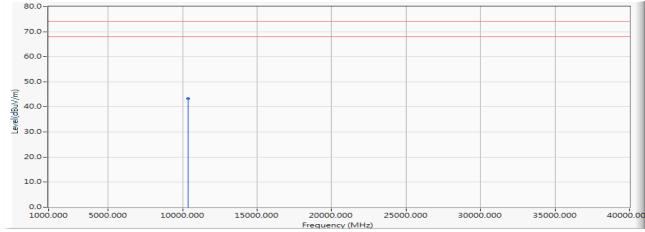
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5825MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	27.155	43.919	-30.081	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

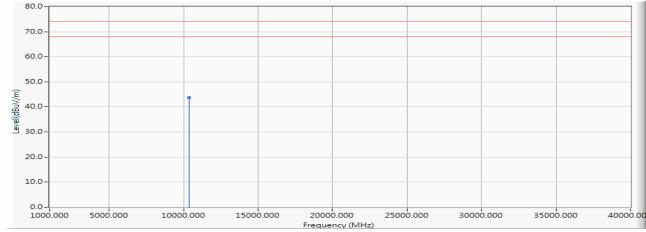
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps) (5825MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	27.014	43.778	-30.222	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

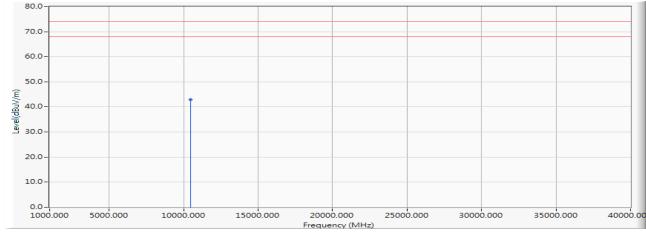
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.084	43.219	-30.781	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

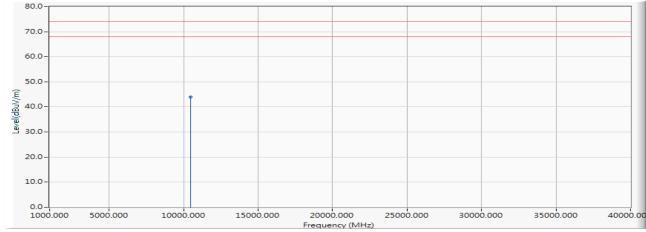
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.537	43.672	-30.328	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

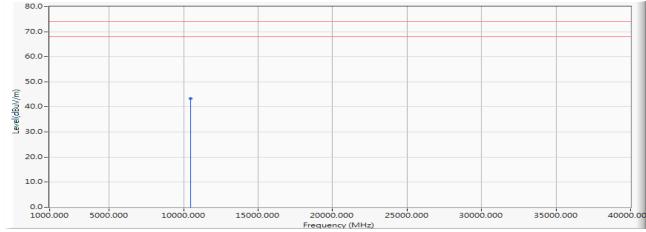
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	27.795	42.992	-31.008	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

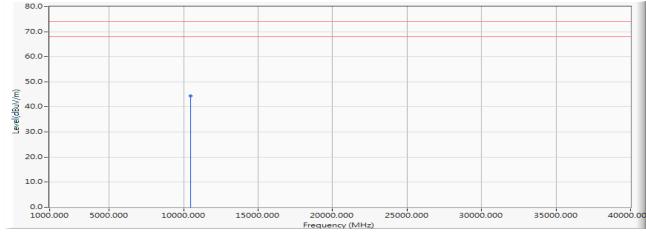
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	28.706	43.903	-30.097	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

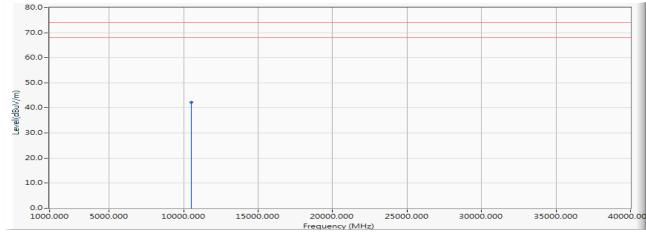
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5240MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	28.203	43.376	-30.624	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

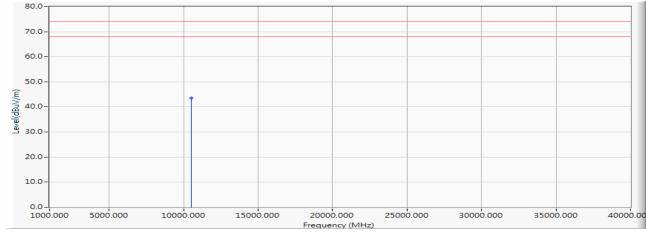
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5240MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	29.132	44.305	-29.695	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

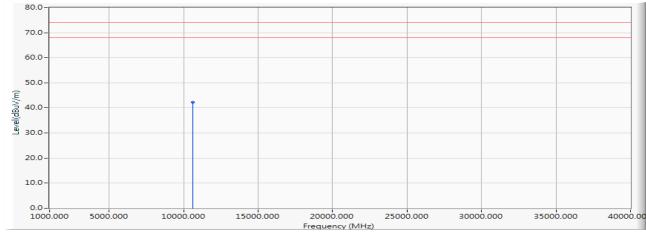
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	27.088	42.331	-31.669	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

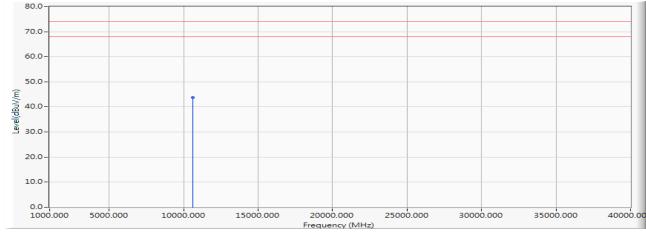
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	28.249	43.492	-30.508	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

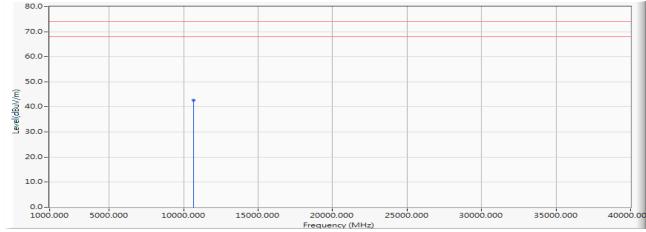
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	26.833	42.313	-31.687	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

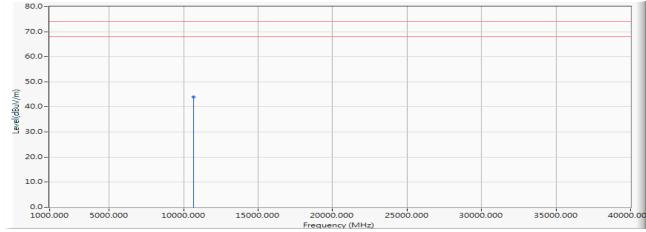
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	28.374	43.854	-30.146	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

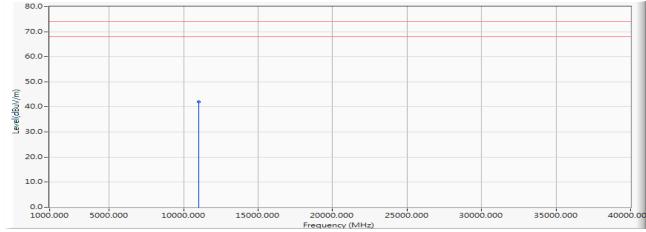
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	26.801	42.665	-31.335	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

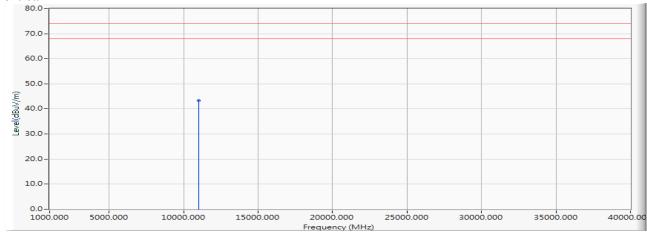
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	28.055	43.919	-30.081	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

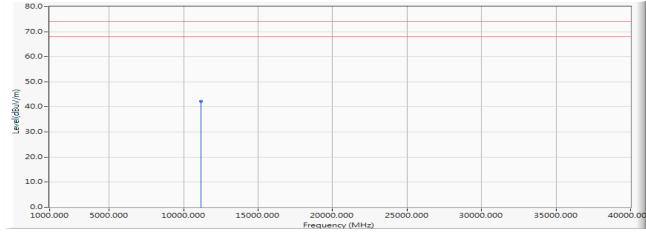
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	26.133	42.123	-31.877	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

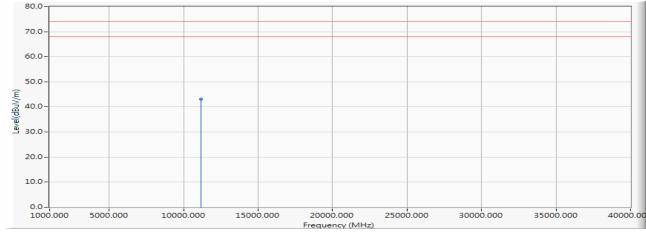
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.392	43.382	-30.618	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

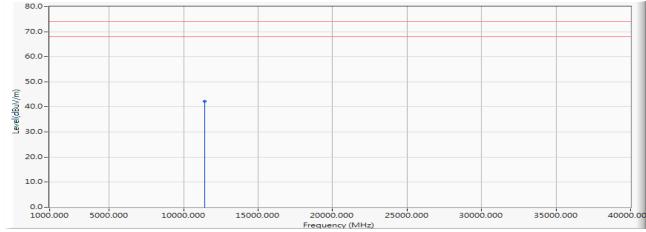
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	25.960	42.303	-31.697	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

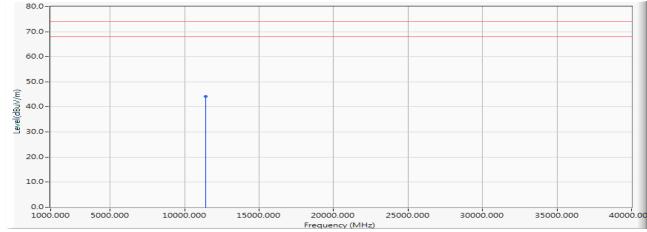
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	26.786	43.129	-30.871	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5700MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	25.923	42.356	-31.644	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

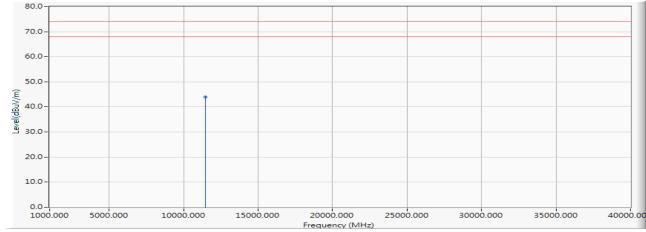
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5700MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.776	44.209	-29.791	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

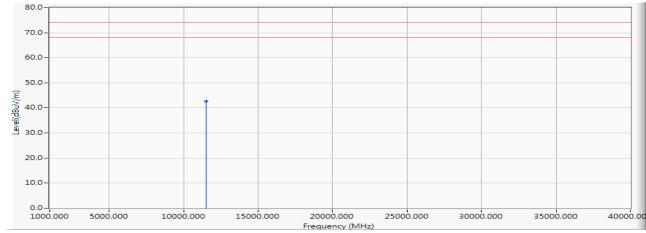
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW 7.2Mbps) (5720MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	26.427	42.906	-31.094	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

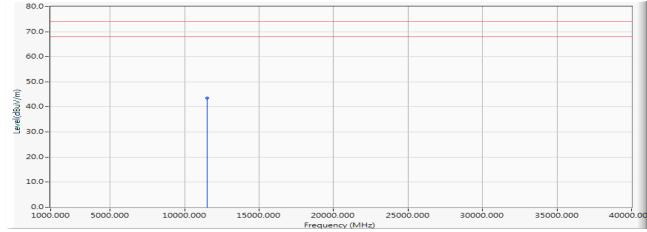
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	27.497	43.976	-30.024	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

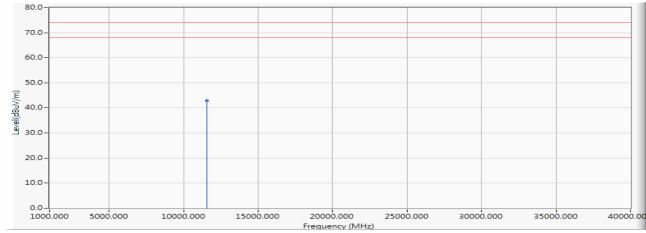
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5745MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	25.942	42.613	-31.387	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

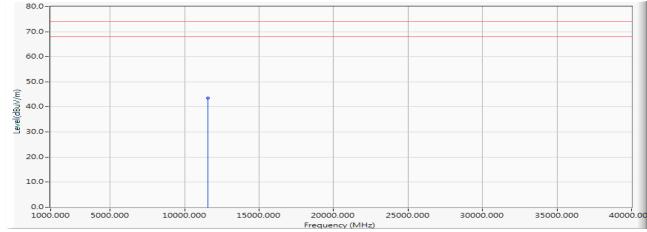
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5745MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	26.825	43.496	-30.504	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

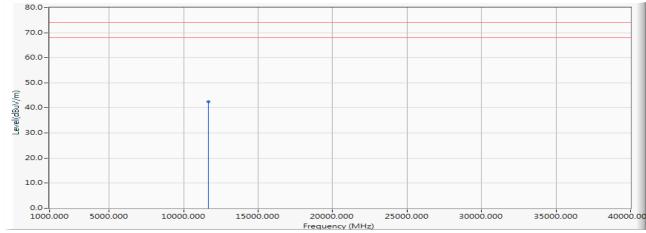
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.321	42.939	-31.061	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)

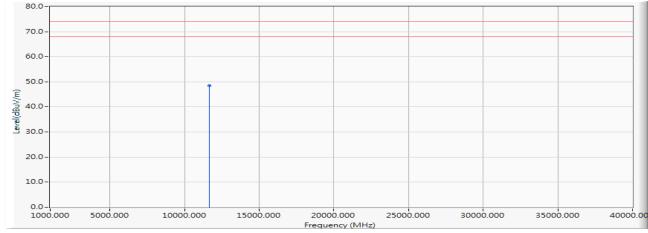


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	27.018	43.636	-30.364	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5825MHz)

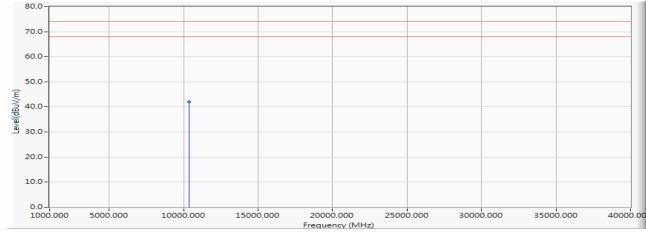
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	25.611	42.375	-31.625	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5825MHz)

Vertical

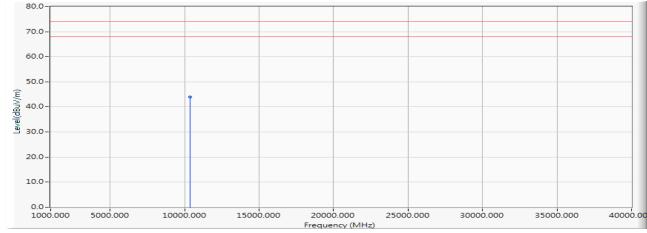

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	26.435	43.199	-30.801	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
-		0010/06/111

- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5190MHz)

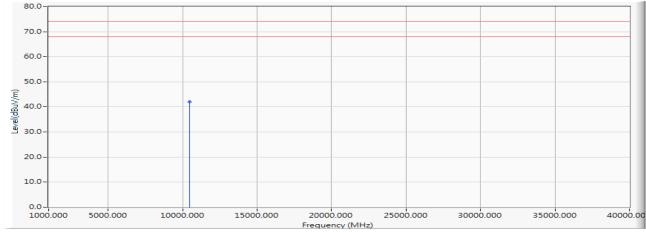
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	26.801	42.126	-31.874	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5190MHz)

Vertical

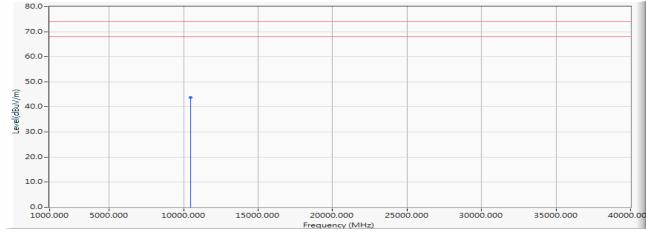


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	28.600	43.925	-30.075	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5230MHz)

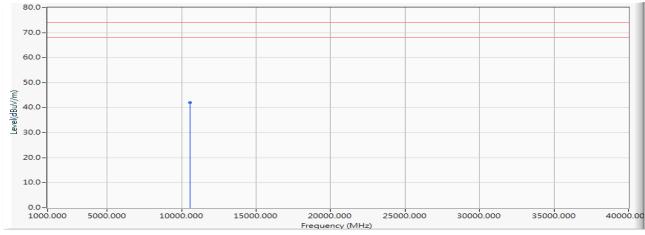
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	26.860	42.113	-31.887	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5230MHz)

Vertical

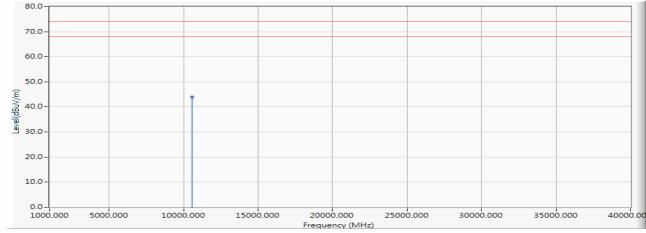

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	28.419	43.672	-30.328	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2W
Product	:	Intel [®] Wireless-AC 9260D2W

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5270MHz)

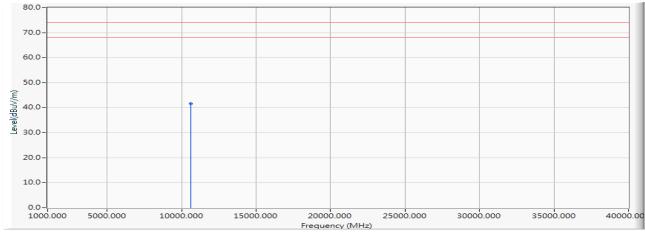
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10540.000	15.415	26.717	42.131	-31.869	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5270MHz)

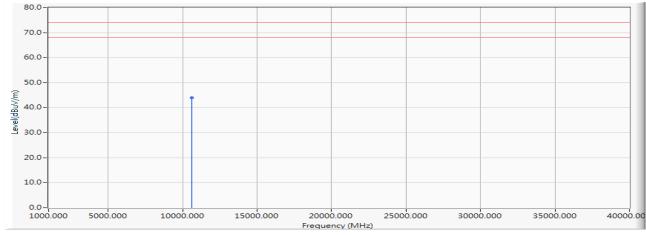
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10540.000	15.415	28.551	43.965	-30.035	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Product	•	Intel® wheless-AC 9200D2 wL

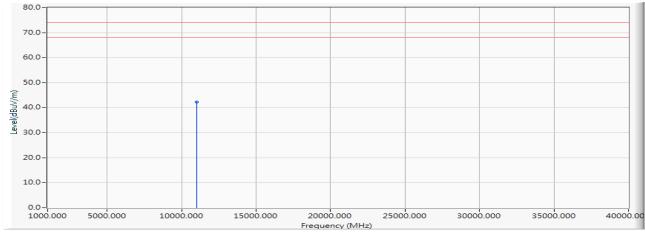
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5310MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10620.000	15.655	25.968	41.623	-32.377	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

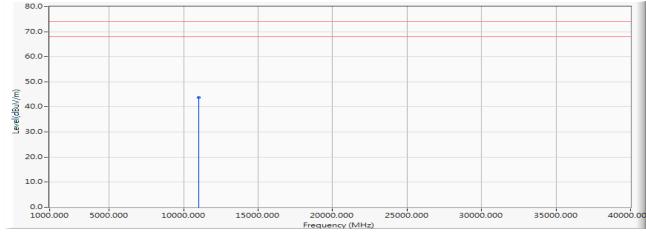
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5310MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10620.000	15.655	28.209	43.864	-30.136	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

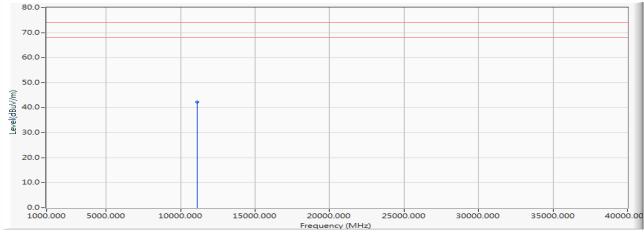
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5510MHz)


		Frequency		8	Measure Level	8	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11020.000	16.082	26.254	42.335	-31.665	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL	
Test Item	:	Harmonic Radiated Emission Data	
Test Data		2010/07/11	

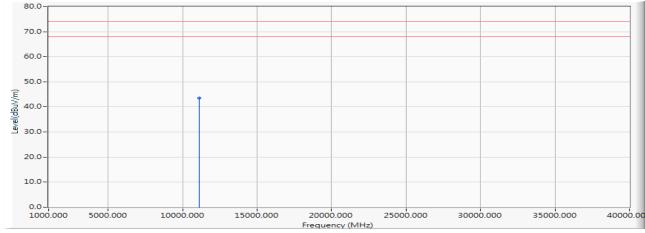
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5510MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11020.000	16.082	27.684	43.765	-30.235	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Product	•	Intel® wheless-AC 9200D2 wL

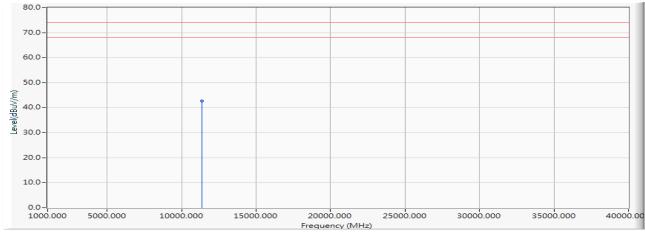
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5550MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11100.000	16.215	26.101	42.316	-31.684	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data

- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5550MHz)

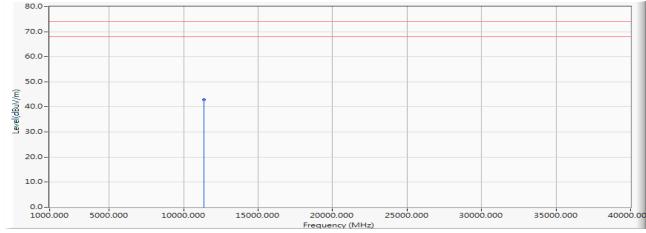

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11100.000	16.215	27.283	43.498	-30.502	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Int	el® Wireless-AC 9260D2WL
---------------	--------------------------

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5670MHz)

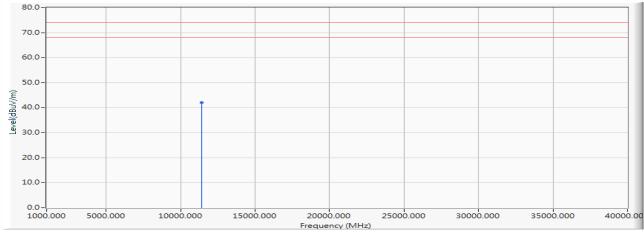
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	26.288	42.686	-31.314	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5670MHz)

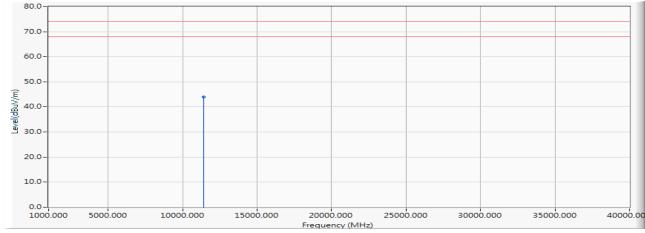
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	26.598	42.996	-31.004	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL	
Test Item	:	Harmonic Radiated Emission Data	

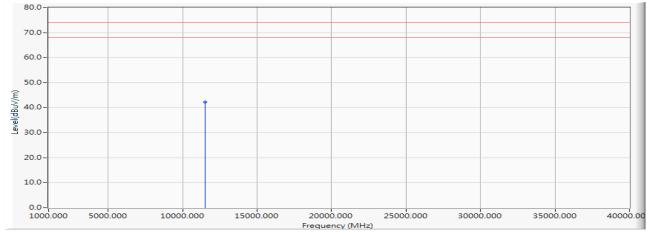
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5710MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11420.000	16.501	25.525	42.026	-31.974	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date		2019/06/11

- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5710MHz)

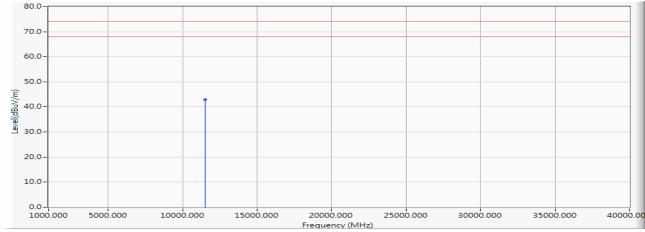

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11420.000	16.501	27.512	44.013	-29.987	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260I

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5755MHz)

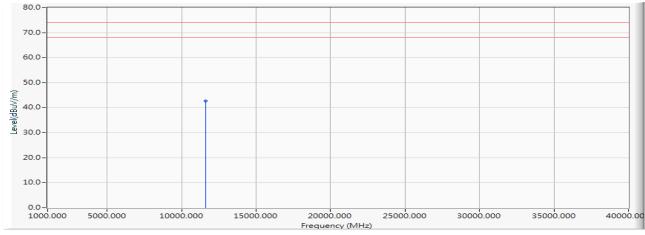
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11510.000	16.649	25.654	42.302	-31.698	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5755MHz)

Vertical

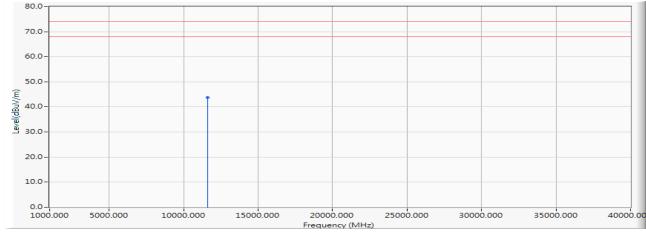

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11510.000	16.649	26.257	42.905	-31.095	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Troduct	•	Intel® Whereas-AC 7200D2 WL

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5795MHz)

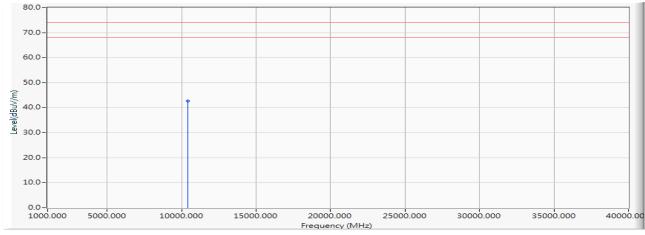
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11590.000	16.702	25.987	42.689	-31.311	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

Test Mode : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5795MHz)

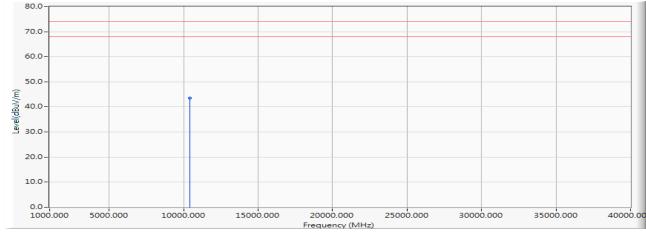
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11590.000	16.702	27.099	43.801	-30.199	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2W

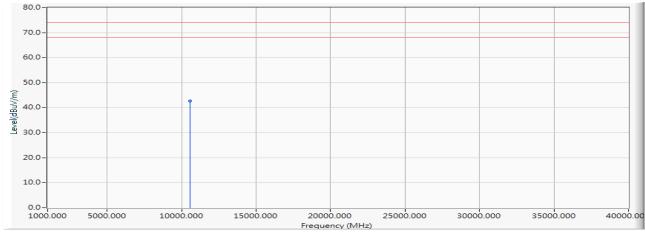
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10420.000	15.519	27.141	42.661	-31.339	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel®	Wiı	rele	ss-A	C 92	60	D2V	NL	
				_					_	

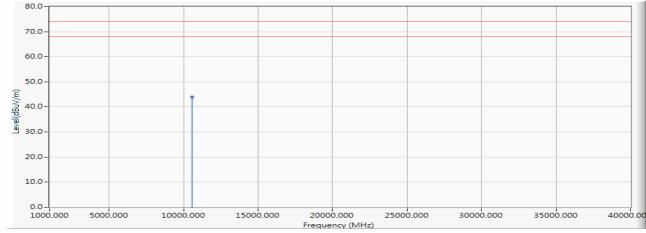
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10420.000	15.519	28.015	43.535	-30.465	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2W

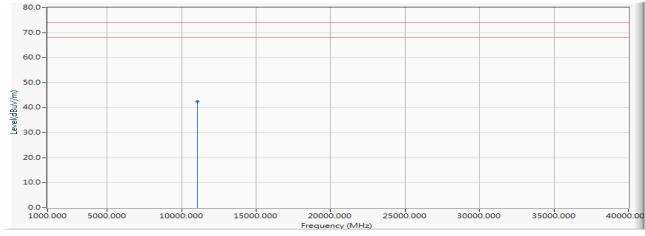
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10580.000	15.510	27.092	42.602	-31.398	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

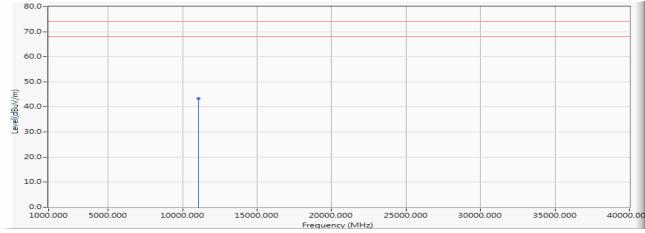
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10580.000	15.510	28.482	43.992	-30.008	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

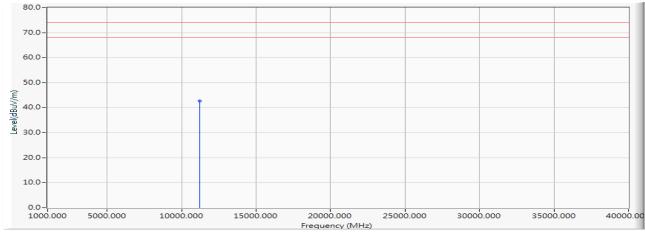
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11060.000	16.117	26.320	42.437	-31.563	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2WL	Product	:	Intel® Wireless-AC 9260D2WL
---------------------------------------	---------	---	-----------------------------

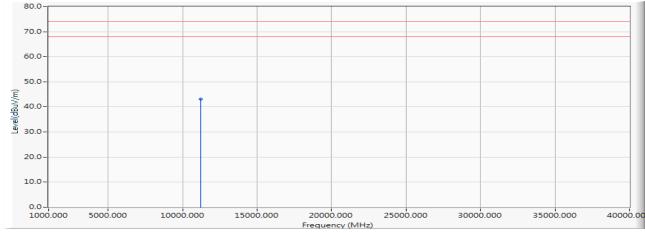
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11060.000	16.117	27.245	43.362	-30.638	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5610MHz)

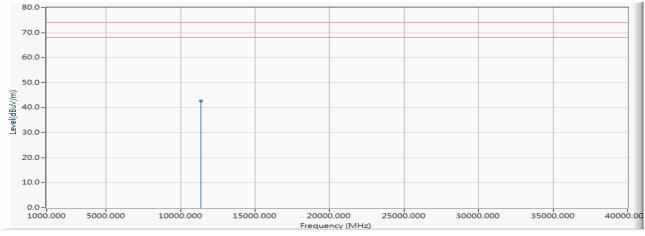

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	26.214	42.612	-31.388	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5610MHz)

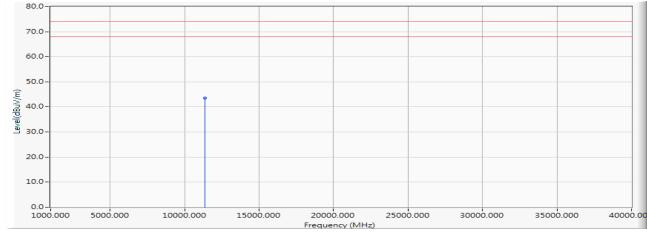
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	26.771	43.169	-30.831	74.000	PEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5690MHz)

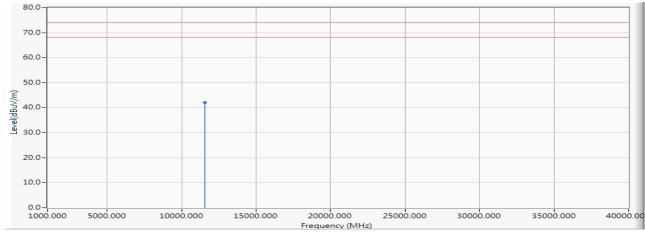
Test Mode


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11380.000	16.412	26.234	42.646	-31.354	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

less-AC 9260D2WL
less-AC 9260D2WL

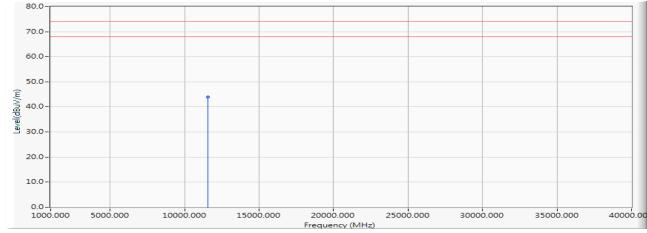
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5690MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11380.000	16.412	27.073	43.485	-30.515	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2W

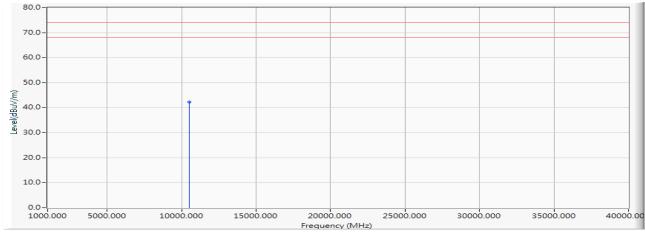
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	25.407	42.131	-31.869	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL	
T			

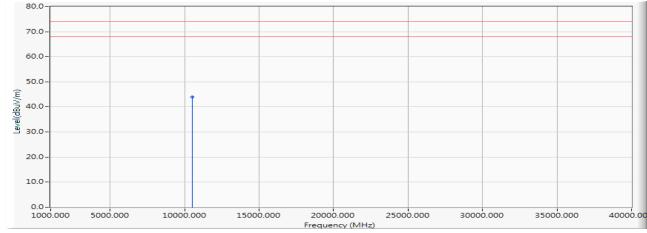
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	27.137	43.861	-30.139	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

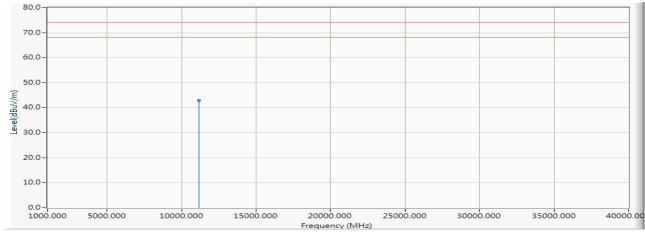
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5250MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10500.000	15.279	27.079	42.359	-31.641	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

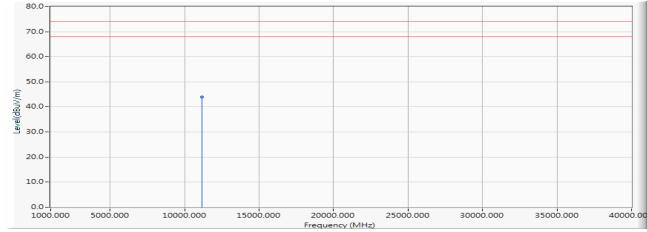
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5250MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10500.000	15.279	28.739	44.019	-29.981	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

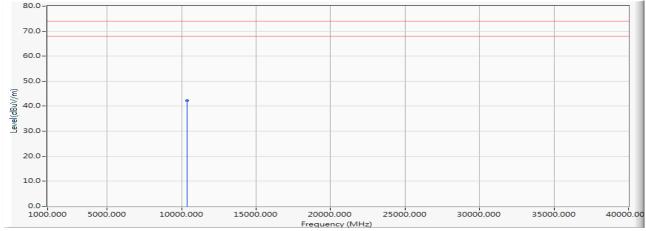
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5570MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	26.491	42.939	-31.061	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

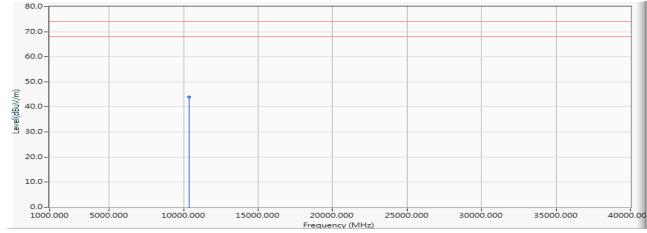
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5570MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	27.548	43.996	-30.004	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
1104000		

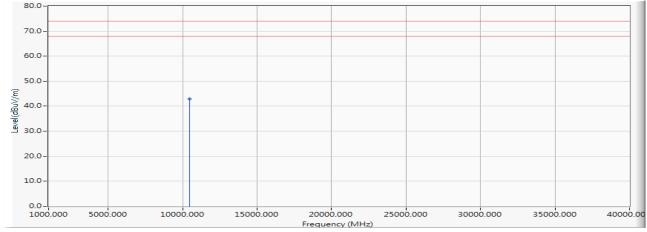
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	27.030	42.165	-31.835	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

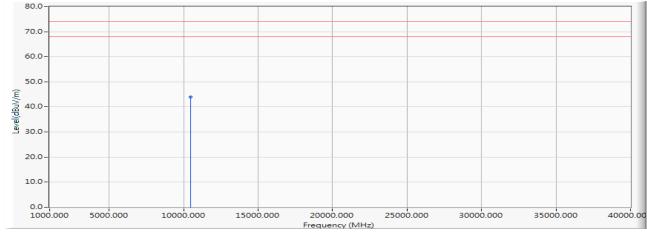
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5180MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10360.000	15.135	28.730	43.865	-30.135	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

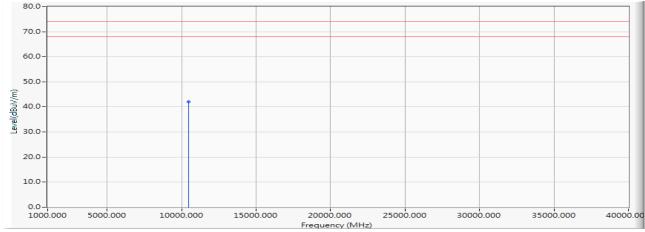
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	27.631	42.828	-31.172	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5220MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10440.000	15.197	28.784	43.981	-30.019	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

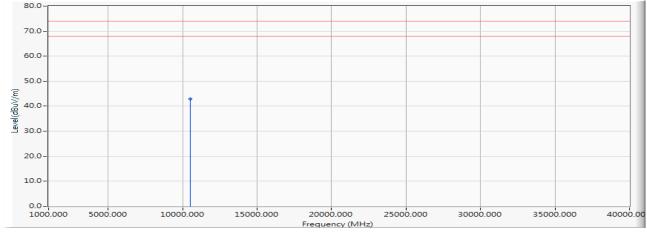
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11
Test Mode	:	Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5240MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	26.940	42.113	-31.887	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2V	VL
--------------------------------------	----

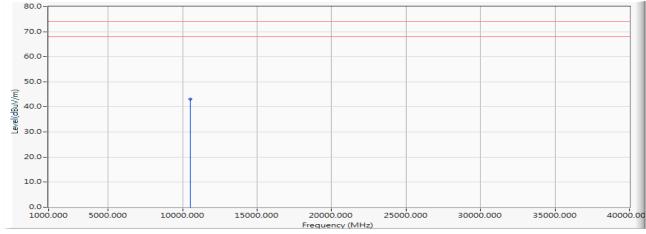
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5240MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10480.000	15.173	28.619	43.792	-30.208	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

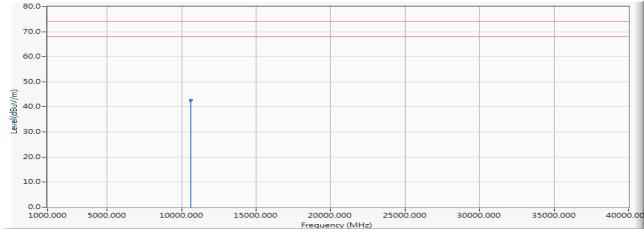
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5260MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	27.562	42.805	-31.195	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

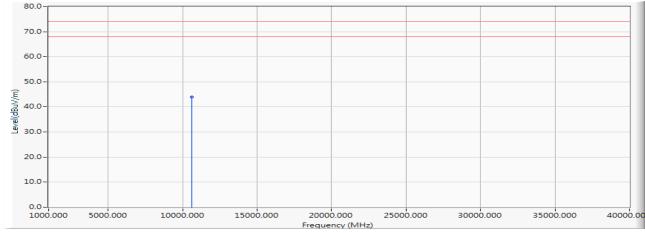
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5260MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10520.000	15.243	27.770	43.013	-30.987	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® wireless-AC 9260D2WI

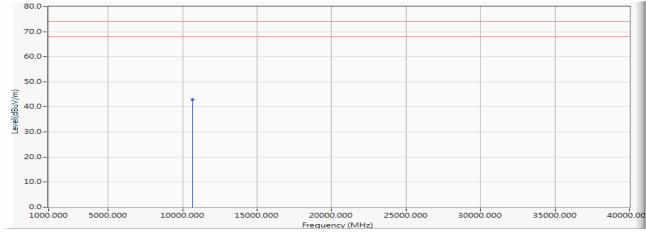
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5300MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	27.136	42.616	-31.384	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

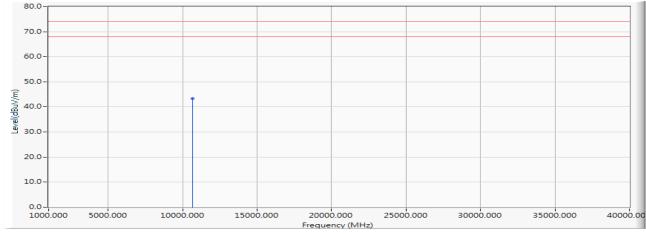
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5300MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10600.000	15.480	28.402	43.882	-30.118	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® wireless-AC 9260D2WI

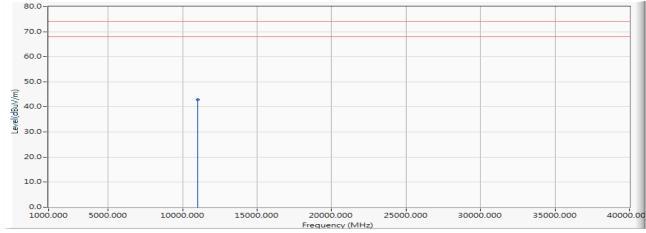
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5320MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.017	42.881	-31.119	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5320MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10640.000	15.864	27.488	43.352	-30.648	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® wireless-AC 9260D2WI

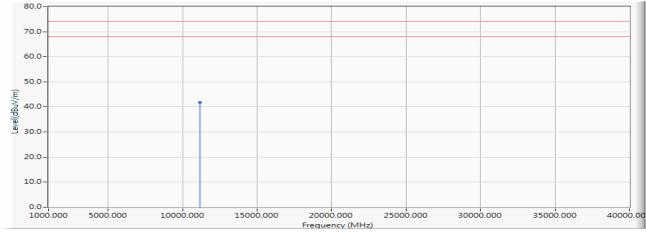
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5500MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	26.821	42.811	-31.189	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

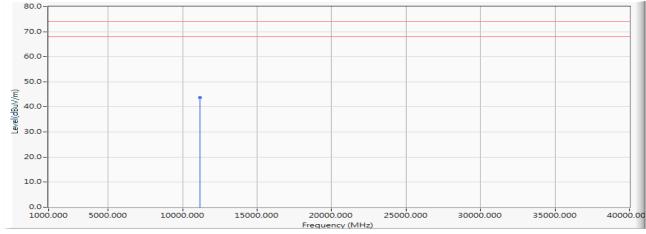
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5500MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11000.000	15.989	27.135	43.125	-30.875	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2W

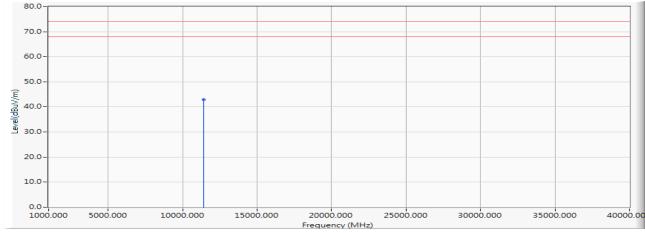
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5580MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	25.518	41.861	-32.139	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

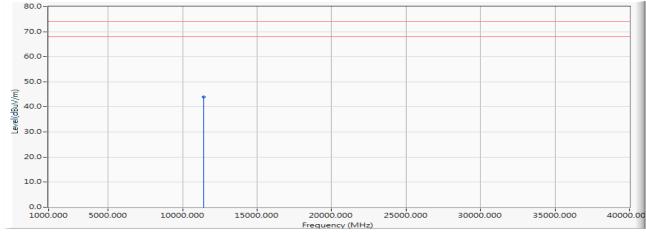
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5580MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11160.000	16.343	27.346	43.689	-30.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel	® Wireless-AC 9260D2WL	

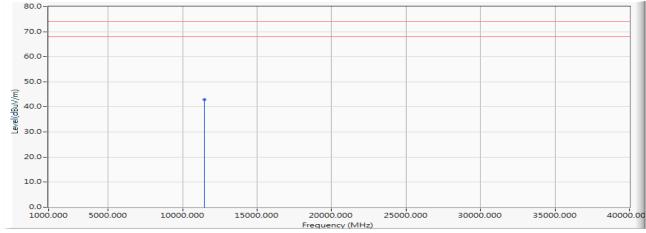
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5700MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	26.383	42.816	-31.184	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

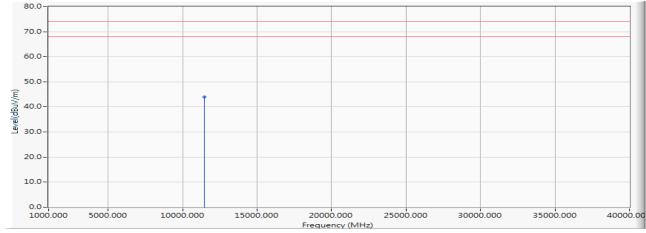
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5700MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11400.000	16.433	27.553	43.986	-30.014	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL	
-----------	-----------------------------	--

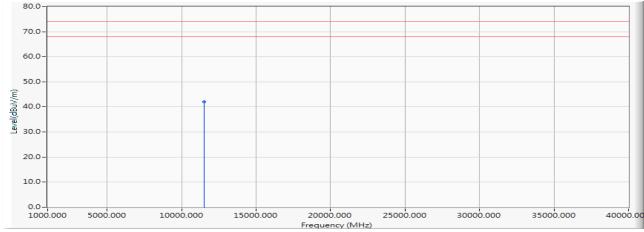
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5720MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	26.339	42.818	-31.182	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

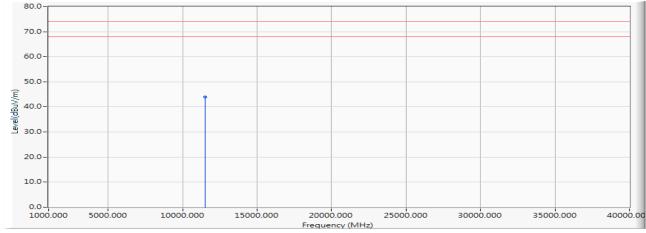
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5720MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11440.000	16.479	27.473	43.952	-30.048	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Harmonic Radiated Emission Data
Test Date	:	2019/06/11

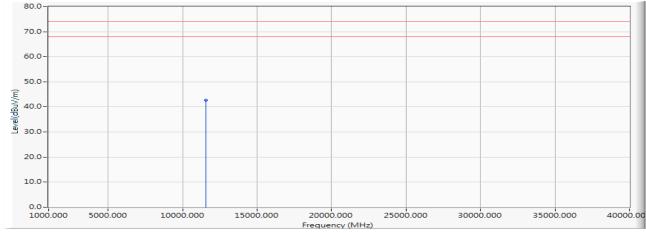
- Test Date : 2019
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5745MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	25.464	42.135	-31.865	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

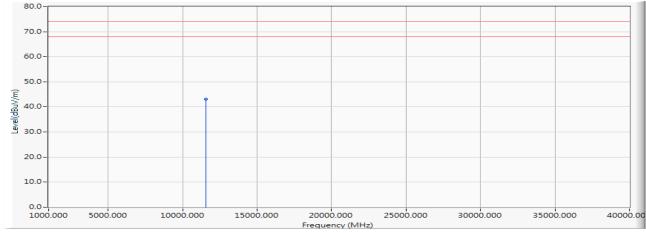
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5745MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11490.000	16.670	27.211	43.882	-30.118	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2WL	
---------------------------------------	--

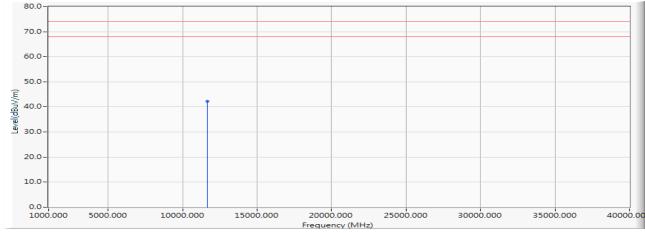
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5785MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.063	42.681	-31.319	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

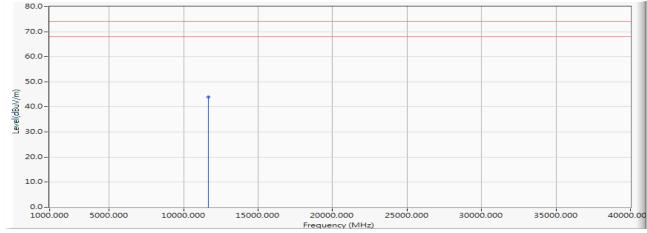
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5785MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11570.000	16.618	26.584	43.202	-30.798	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

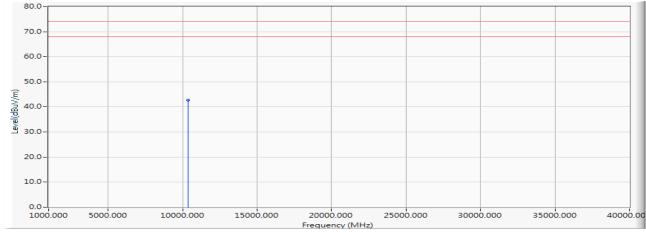
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5825MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	25.397	42.161	-31.839	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

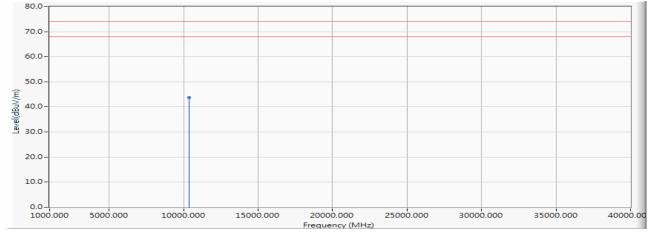
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5825MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11650.000	16.763	27.121	43.885	-30.115	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2WI

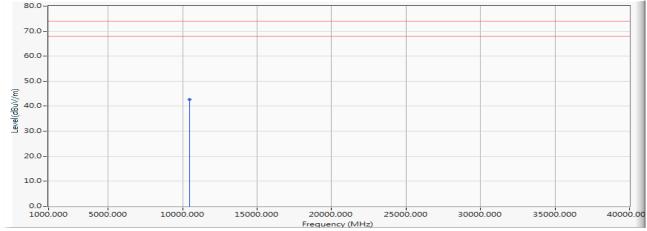
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5190MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	27.360	42.685	-31.315	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Intel® Wireless-AC 9260D2
Product : Intel® Wireless-AC 9260D2

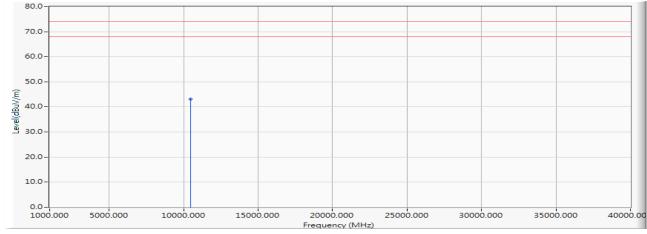
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5190MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10380.000	15.325	28.337	43.662	-30.338	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

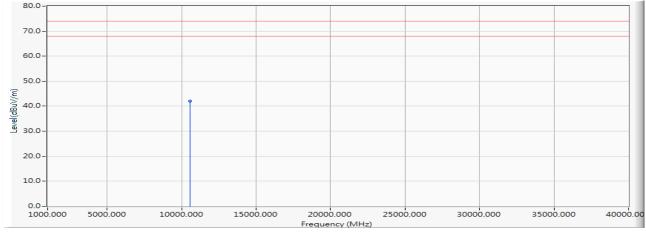
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5230MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	27.429	42.682	-31.318	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

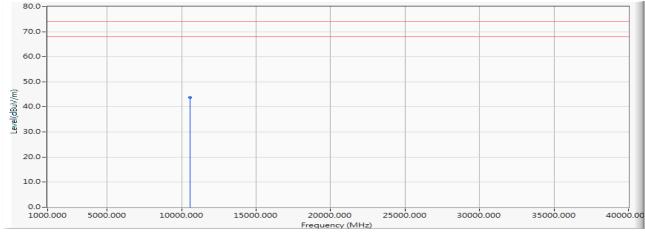
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5230MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10460.000	15.253	27.959	43.212	-30.788	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

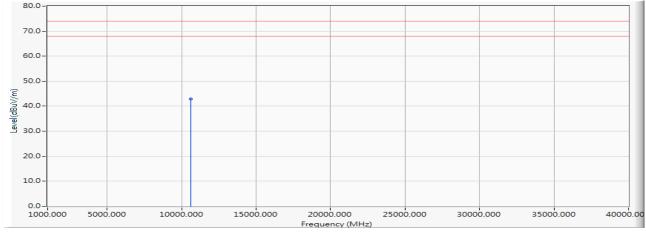
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5270MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10540.000	15.415	26.702	42.116	-31.884	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

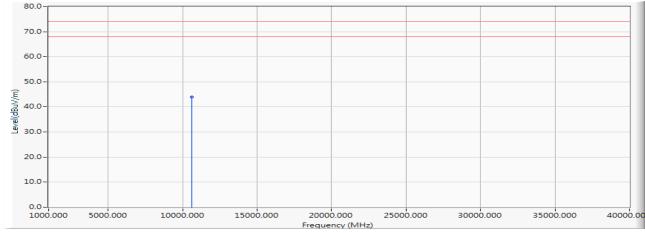
:	Intel® Wireless-AC 9260D2WL
:	Harmonic Radiated Emission Data
:	2019/06/11
:	Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5270MHz)
	:


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10540.000	15.415	28.268	43.682	-30.318	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5310MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10620.000	15.655	27.145	42.800	-31.200	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

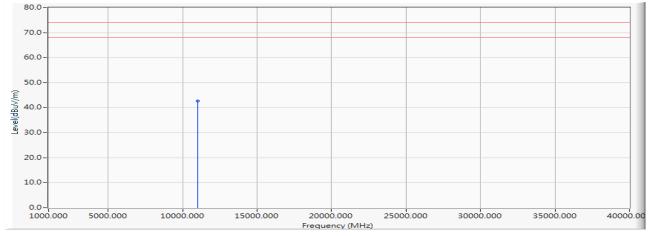
Product	:	Intel® Wireless-AC 9260D2W
Product	:	Intel® Wireless-AC 9260D2

- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5310MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	10620.000	15.655	28.259	43.914	-30.086	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

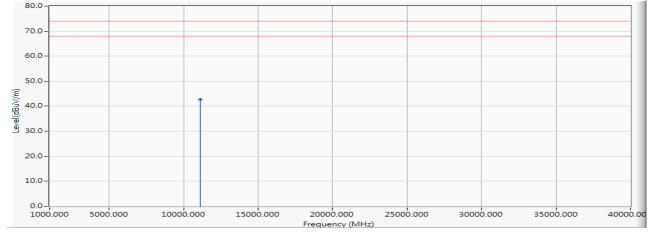
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5510MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11020.000	16.082	25.920	42.001	-31.999	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

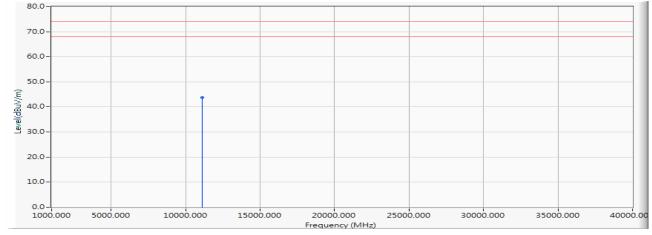
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5510MHz)



		Frequency (MHz)		8	Measure Level	0	Limit	Detector
		(МПZ)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11020.000	16.082	26.608	42.689	-31.311	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

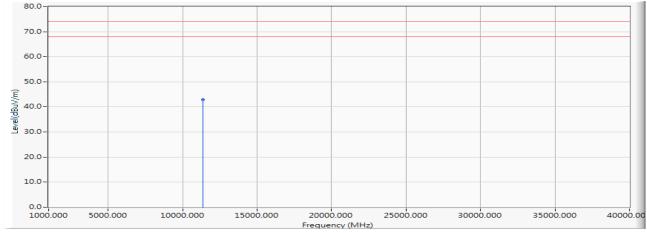
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5550MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	11100.000	16.215	26.447	42.662	-31.338	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

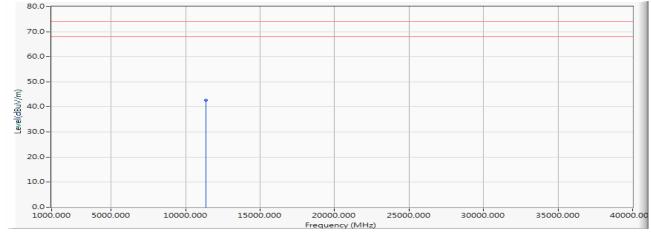
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5550MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11100.000	16.215	27.502	43.717	-30.283	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

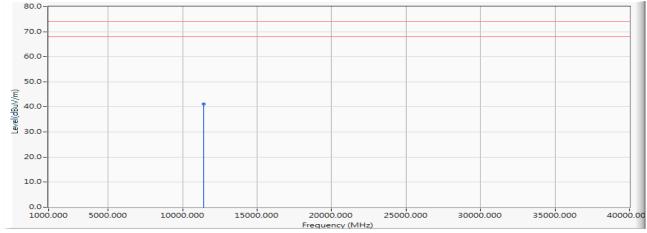
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5670MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	26.578	42.976	-31.024	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

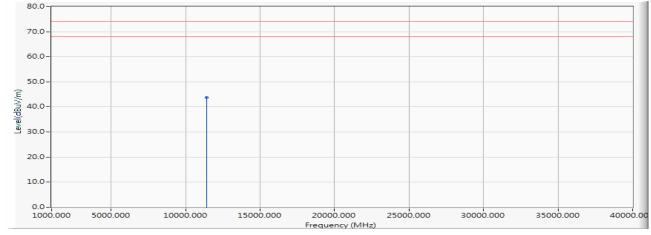
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5670MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11340.000	16.398	26.253	42.651	-31.349	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

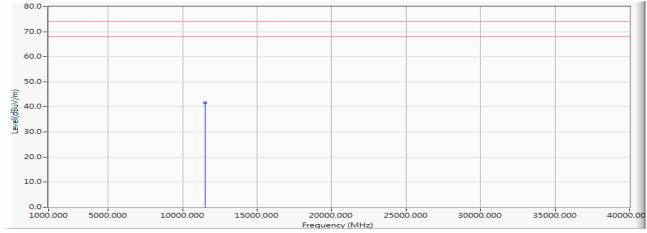
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5710MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11420.000	16.501	24.663	41.164	-32.836	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

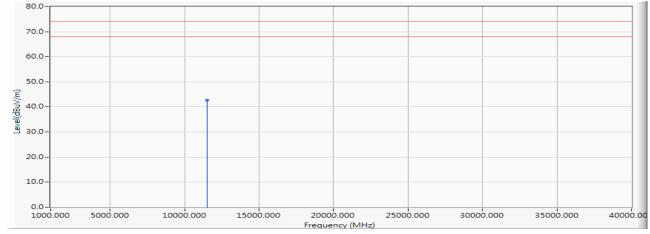
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5710MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11420.000	16.501	27.168	43.669	-30.331	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

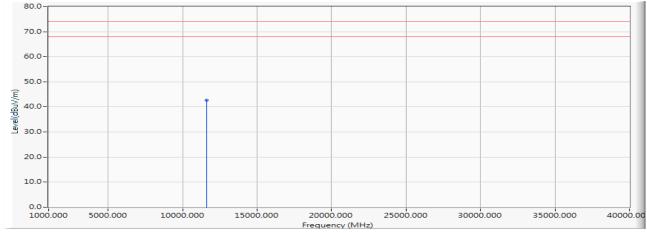
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5755MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11510.000	16.649	24.857	41.505	-32.495	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

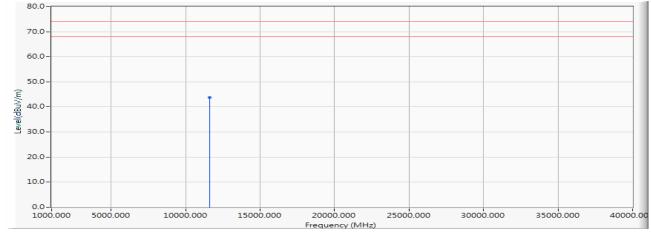
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5755MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11510.000	16.649	26.034	42.682	-31.318	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

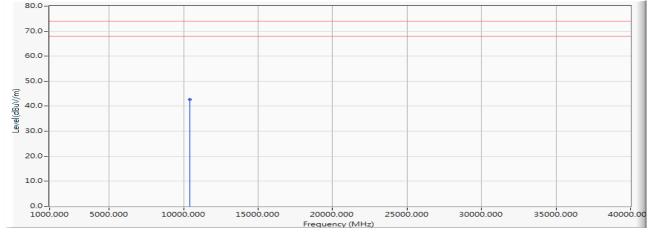
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5795MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11590.000	16.702	25.963	42.665	-31.335	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

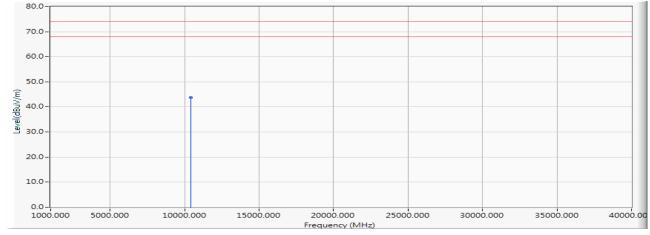
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5795MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11590.000	16.702	27.077	43.779	-30.221	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI

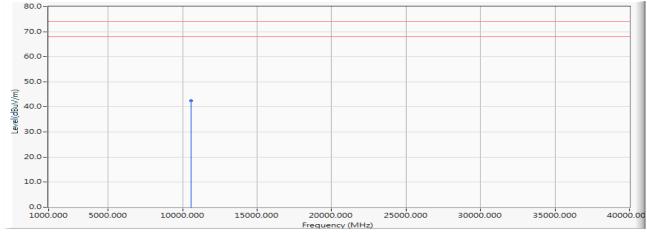
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5210MHz)


		Frequency	Correct	Reading Level	Measure Level	8	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	10420.000	15.519	27.126	42.646	-31.354	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WL

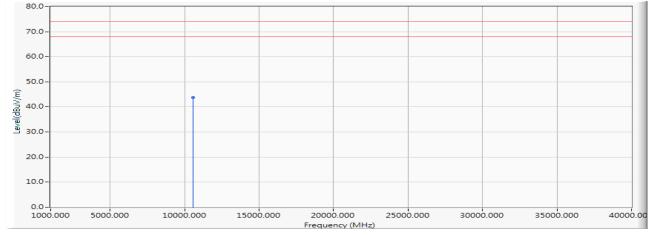
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5210MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10420.000	15.519	28.281	43.801	-30.199	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2V

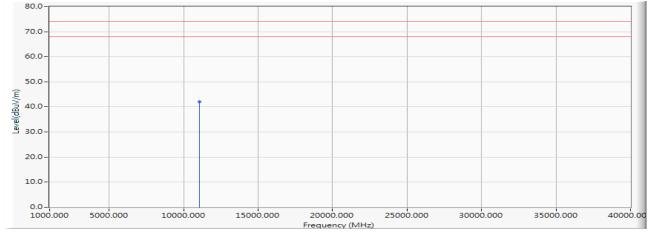
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5290MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10580.000	15.510	26.867	42.377	-31.623	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

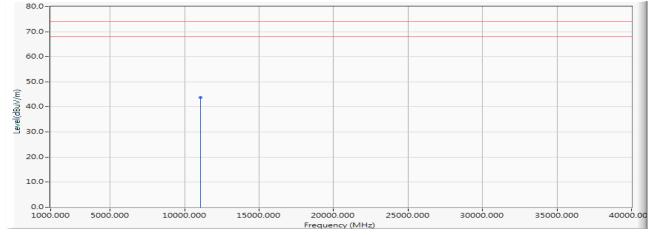
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5290MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	10580.000	15.510	28.276	43.786	-30.214	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Intel® Wireless-AC 9260D2WI
Product	:	Intel® Wireless-AC 9260D2V

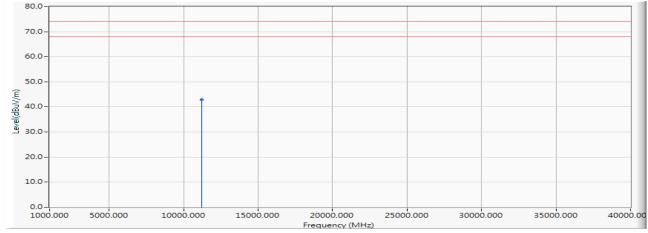
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5530MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11060.000	16.117	25.985	42.102	-31.898	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

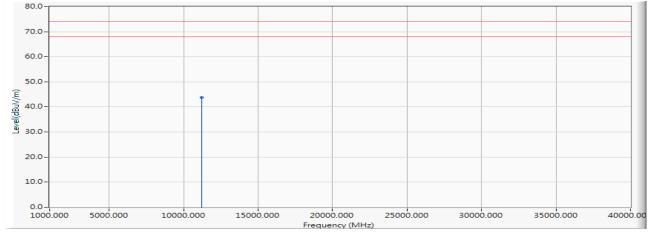
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5530MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11060.000	16.117	27.652	43.769	-30.231	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

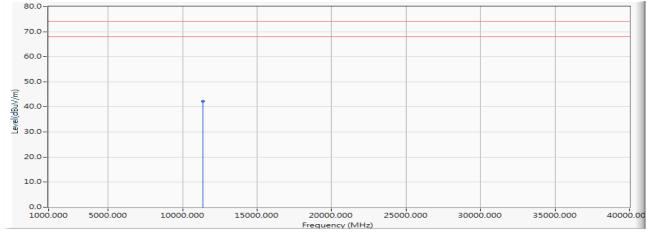
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5610MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	26.484	42.882	-31.118	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

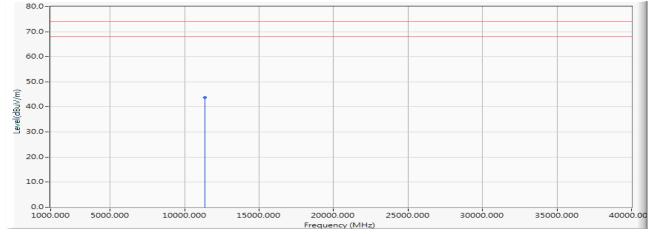
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode :
 - e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5610MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11220.000	16.399	27.394	43.792	-30.208	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

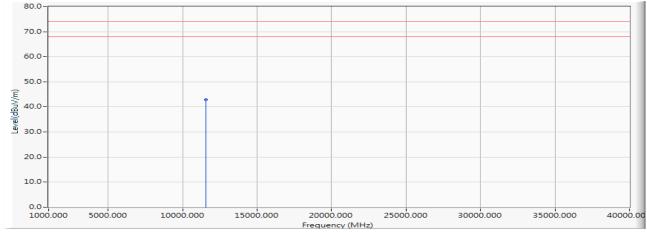
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5690MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11380.000	16.412	25.924	42.336	-31.664	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

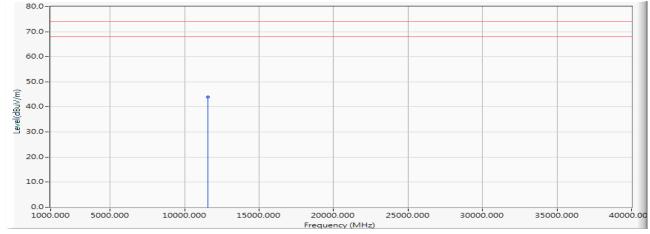
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode
 - e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5690MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	11380.000	16.412	27.284	43.696	-30.304	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

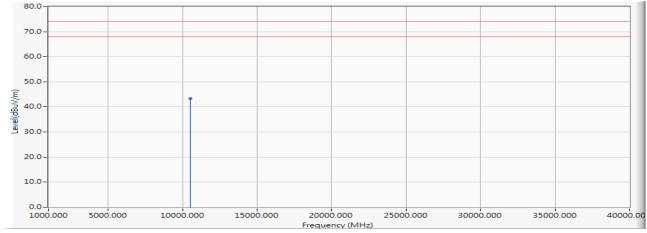
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5775MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	26.119	42.843	-31.157	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

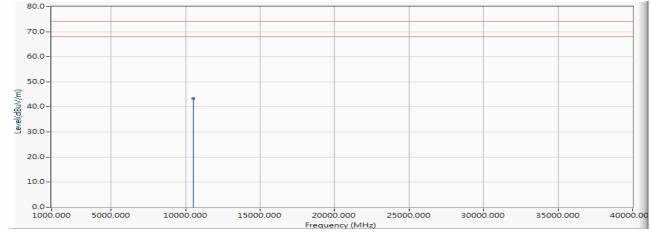
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5775MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	8	Limit (dBuV/m)	Detector Type
1	*	11550.000	16.725	27.289	44.013	-29.987	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

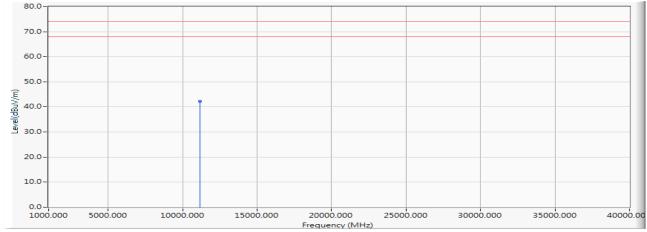
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5250MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10500.000	15.279	28.085	43.365	-30.635	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

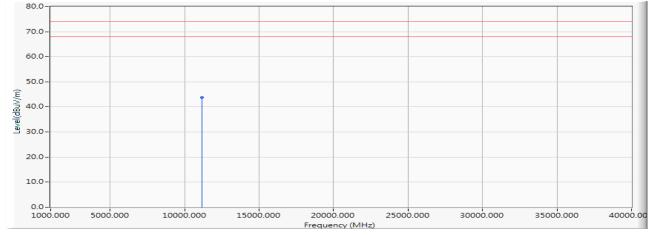
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5250MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	10500.000	15.279	28.085	43.365	-30.635	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

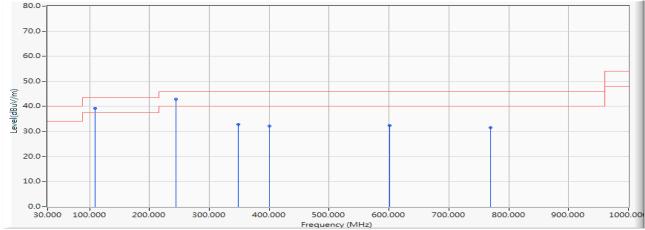
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5570MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	25.855	42.303	-31.697	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

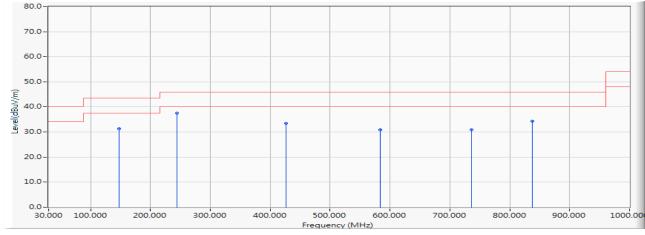
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Harmonic Radiated Emission Data
- Test Date : 2019/06/11
- Test Mode : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5570MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	11140.000	16.449	27.237	43.685	-30.315	74.000	PEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.

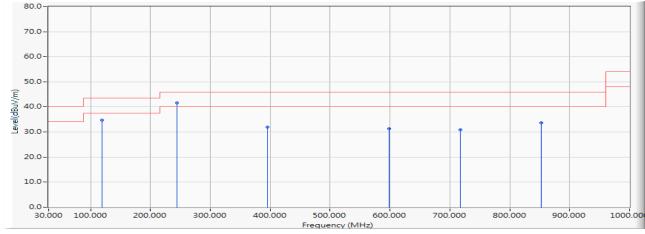
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/12
- Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	40.415	39.268	-4.232	43.500	QUASIPEAK
2	*	244.519	0.094	42.901	42.995	-3.005	46.000	QUASIPEAK
3		348.670	3.365	29.527	32.892	-13.108	46.000	QUASIPEAK
4		399.968	4.973	27.271	32.244	-13.756	46.000	QUASIPEAK
5		600.497	8.335	24.041	32.376	-13.624	46.000	QUASIPEAK
6		769.936	10.417	21.007	31.424	-14.576	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

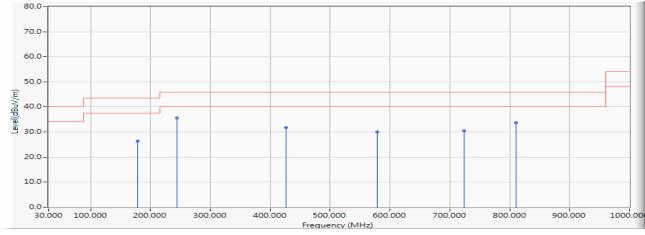
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/12
- Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	33.000	31.247	-12.253	43.500	QUASIPEAK
2	*	244.519	0.094	37.513	37.607	-8.393	46.000	QUASIPEAK
3		426.394	5.389	28.013	33.402	-12.598	46.000	QUASIPEAK
4		583.397	8.149	22.835	30.984	-15.016	46.000	QUASIPEAK
5		735.737	9.973	20.943	30.915	-15.085	46.000	QUASIPEAK
6		838.333	11.503	22.735	34.238	-11.762	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

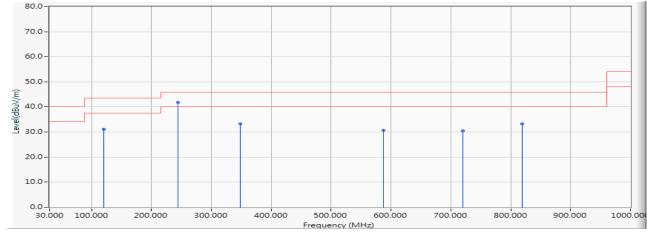
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	35.469	34.835	-8.665	43.500	QUASIPEAK
2	*	244.519	0.094	41.497	41.591	-4.409	46.000	QUASIPEAK
3		395.304	4.828	27.194	32.022	-13.978	46.000	QUASIPEAK
4		598.942	8.325	22.962	31.287	-14.713	46.000	QUASIPEAK
5		717.083	9.645	21.157	30.803	-15.197	46.000	QUASIPEAK
6		852.324	11.768	21.925	33.693	-12.307	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

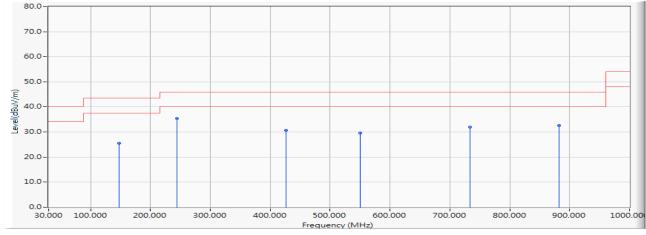
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		179.231	-3.060	29.396	26.336	-17.164	43.500	QUASIPEAK
2	*	244.519	0.094	35.446	35.540	-10.460	46.000	QUASIPEAK
3		426.394	5.389	26.330	31.719	-14.281	46.000	QUASIPEAK
4		578.734	8.093	21.995	30.088	-15.912	46.000	QUASIPEAK
5		723.301	9.757	20.727	30.485	-15.515	46.000	QUASIPEAK
6		810.353	10.968	22.766	33.734	-12.266	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

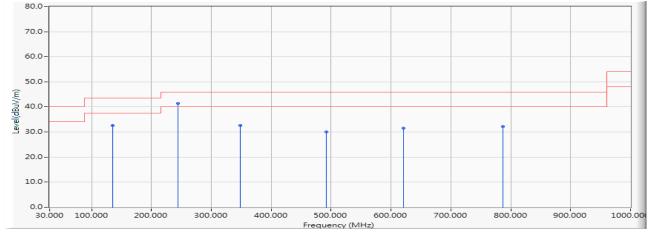
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode : N
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		120.160	-0.580	31.577	30.997	-12.503	43.500	QUASIPEAK
2	*	244.519	0.094	41.804	41.898	-4.102	46.000	QUASIPEAK
3		348.670	3.365	29.808	33.173	-12.827	46.000	QUASIPEAK
4		588.061	8.195	22.485	30.680	-15.320	46.000	QUASIPEAK
5		720.192	9.706	20.853	30.560	-15.440	46.000	QUASIPEAK
6		819.679	11.150	22.085	33.235	-12.765	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

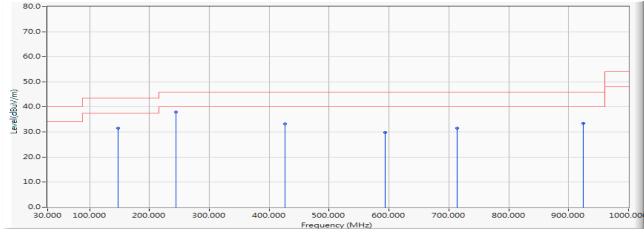
- Product Intel® Wireless-AC 9260D2WL :
- Test Item : General Radiated Emission
- Test Date 2019/06/04 :
- Test Mode
 - Mode 1 SISO A: Transmit (802.11a_6Mbps) (5580MHz) :



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	27.303	25.550	-17.950	43.500	QUASIPEAK
2	*	244.519	0.094	35.352	35.446	-10.554	46.000	QUASIPEAK
3		426.394	5.389	25.354	30.743	-15.257	46.000	QUASIPEAK
4		550.753	7.768	21.859	29.627	-16.373	46.000	QUASIPEAK
5		734.183	9.947	22.060	32.007	-13.993	46.000	QUASIPEAK
6		881.859	11.982	20.644	32.626	-13.374	46.000	QUASIPEAK

- All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average 1. measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 4.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

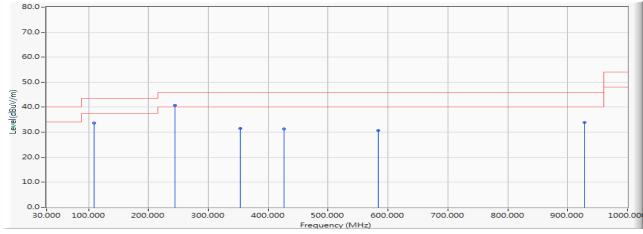
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		135.705	-0.967	33.580	32.613	-10.887	43.500	QUASIPEAK
2	*	244.519	0.094	41.390	41.484	-4.516	46.000	QUASIPEAK
3		348.670	3.365	29.292	32.657	-13.343	46.000	QUASIPEAK
4		491.683	6.545	23.529	30.073	-15.927	46.000	QUASIPEAK
5		620.705	8.684	22.949	31.632	-14.368	46.000	QUASIPEAK
6		787.035	10.628	21.640	32.268	-13.732	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

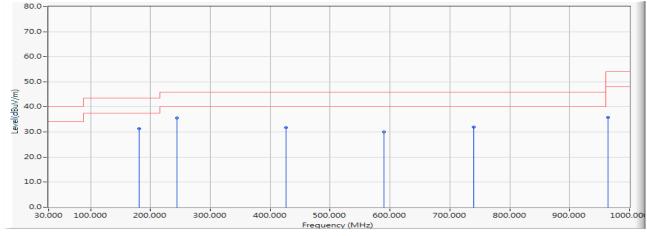
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 1 SISO A: Transmit (802.11a_6Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	33.309	31.556	-11.944	43.500	QUASIPEAK
2	*	244.519	0.094	37.771	37.865	-8.135	46.000	QUASIPEAK
3		426.394	5.389	27.954	33.343	-12.657	46.000	QUASIPEAK
4		594.279	8.269	21.640	29.909	-16.091	46.000	QUASIPEAK
5		713.974	9.594	21.982	31.577	-14.423	46.000	QUASIPEAK
6		923.830	12.507	20.873	33.380	-12.620	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

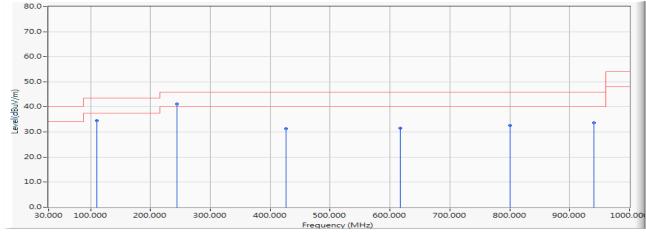
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW 7.2Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	34.729	33.582	-9.918	43.500	QUASIPEAK
2	*	244.519	0.094	40.705	40.799	-5.201	46.000	QUASIPEAK
3		353.333	3.517	28.054	31.570	-14.430	46.000	QUASIPEAK
4		426.394	5.389	25.879	31.268	-14.732	46.000	QUASIPEAK
5		583.397	8.149	22.620	30.769	-15.231	46.000	QUASIPEAK
6		928.494	12.593	21.243	33.836	-12.164	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

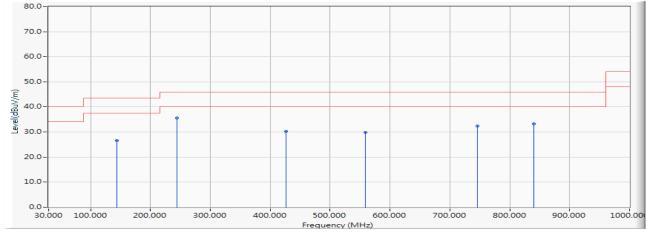
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	34.409	31.310	-12.190	43.500	QUASIPEAK
2	*	244.519	0.094	35.435	35.529	-10.471	46.000	QUASIPEAK
3		426.394	5.389	26.257	31.646	-14.354	46.000	QUASIPEAK
4		589.615	8.222	21.758	29.981	-16.019	46.000	QUASIPEAK
5		740.401	10.055	21.903	31.958	-14.042	46.000	QUASIPEAK
6		964.247	13.072	22.731	35.803	-18.197	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

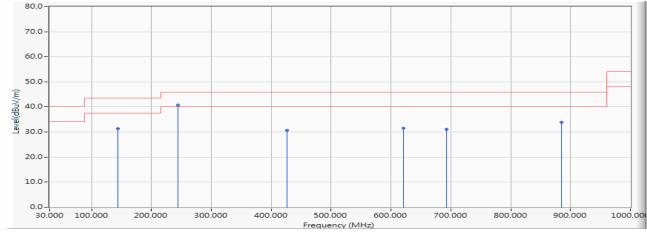
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	35.589	34.580	-8.920	43.500	QUASIPEAK
2	*	244.519	0.094	40.990	41.084	-4.916	46.000	QUASIPEAK
3		426.394	5.389	25.918	31.307	-14.693	46.000	QUASIPEAK
4		617.596	8.623	22.890	31.513	-14.487	46.000	QUASIPEAK
5		801.026	10.784	21.768	32.553	-13.447	46.000	QUASIPEAK
6		940.929	12.793	20.779	33.572	-12.428	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

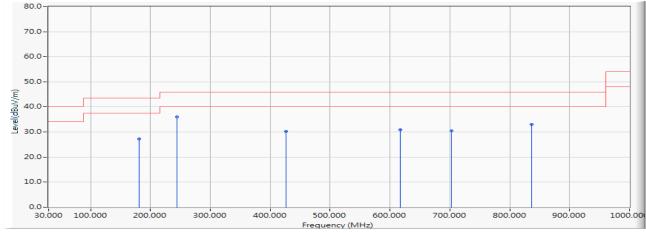
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	28.033	26.626	-16.874	43.500	QUASIPEAK
2	*	244.519	0.094	35.605	35.699	-10.301	46.000	QUASIPEAK
3		426.394	5.389	24.876	30.265	-15.735	46.000	QUASIPEAK
4		558.526	7.860	22.060	29.919	-16.081	46.000	QUASIPEAK
5		746.619	10.163	22.312	32.475	-13.525	46.000	QUASIPEAK
6		839.888	11.541	21.665	33.207	-12.793	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

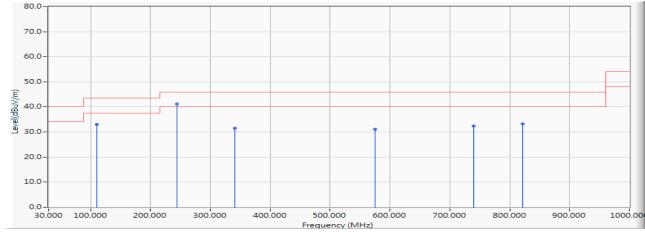
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	32.794	31.387	-12.113	43.500	QUASIPEAK
2	*	244.519	0.094	40.665	40.759	-5.241	46.000	QUASIPEAK
3		426.394	5.389	25.186	30.575	-15.425	46.000	QUASIPEAK
4		620.705	8.684	22.900	31.583	-14.417	46.000	QUASIPEAK
5		692.212	9.334	21.842	31.176	-14.824	46.000	QUASIPEAK
6		884.968	11.997	21.993	33.990	-12.010	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

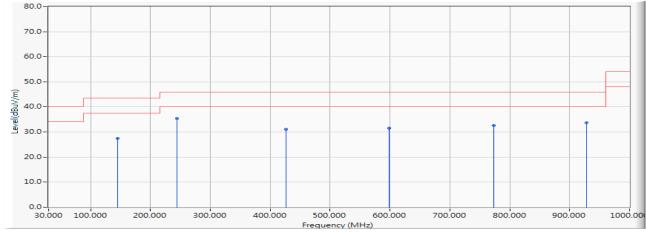
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	30.351	27.252	-16.248	43.500	QUASIPEAK
2	*	244.519	0.094	35.850	35.944	-10.056	46.000	QUASIPEAK
3		426.394	5.389	24.942	30.331	-15.669	46.000	QUASIPEAK
4		617.596	8.623	22.220	30.843	-15.157	46.000	QUASIPEAK
5		703.093	9.418	21.115	30.533	-15.467	46.000	QUASIPEAK
6		836.779	11.475	21.549	33.024	-12.976	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

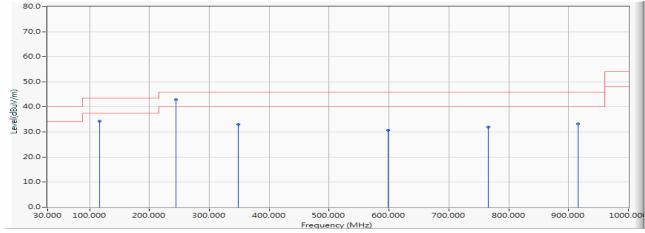
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	33.965	32.956	-10.544	43.500	QUASIPEAK
2	*	244.519	0.094	41.090	41.184	-4.816	46.000	QUASIPEAK
3		340.897	3.097	28.416	31.513	-14.487	46.000	QUASIPEAK
4		575.625	8.066	23.015	31.081	-14.919	46.000	QUASIPEAK
5		740.401	10.055	22.228	32.283	-13.717	46.000	QUASIPEAK
6		821.234	11.178	22.034	33.212	-12.788	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

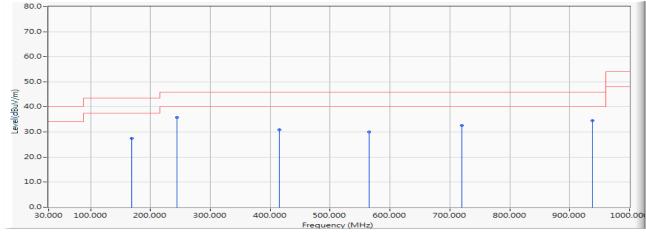
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		145.032	-1.523	29.041	27.518	-15.982	43.500	QUASIPEAK
2	*	244.519	0.094	35.391	35.485	-10.515	46.000	QUASIPEAK
3		426.394	5.389	25.706	31.095	-14.905	46.000	QUASIPEAK
4		598.942	8.325	23.306	31.631	-14.369	46.000	QUASIPEAK
5		773.045	10.457	22.059	32.517	-13.483	46.000	QUASIPEAK
6		928.494	12.593	21.054	33.647	-12.353	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

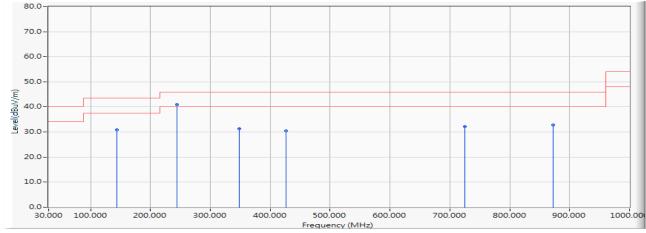
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		117.051	-0.707	35.011	34.304	-9.196	43.500	QUASIPEAK
2	*	244.519	0.094	42.707	42.801	-3.199	46.000	QUASIPEAK
3		348.670	3.365	29.703	33.068	-12.932	46.000	QUASIPEAK
4		598.942	8.325	22.305	30.630	-15.370	46.000	QUASIPEAK
5		765.272	10.369	21.635	32.004	-13.996	46.000	QUASIPEAK
6		916.058	12.384	20.923	33.307	-12.693	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

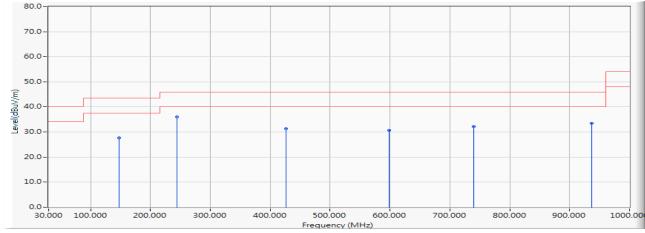
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		168.349	-2.733	30.127	27.394	-16.106	43.500	QUASIPEAK
2	*	244.519	0.094	35.636	35.730	-10.270	46.000	QUASIPEAK
3		415.513	5.223	25.613	30.836	-15.164	46.000	QUASIPEAK
4		564.744	7.938	22.096	30.034	-15.966	46.000	QUASIPEAK
5		720.192	9.706	22.971	32.678	-13.322	46.000	QUASIPEAK
6		937.821	12.745	21.844	34.589	-11.411	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

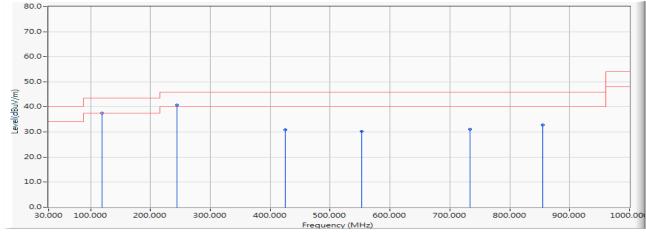
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	32.299	30.892	-12.608	43.500	QUASIPEAK
2	*	244.519	0.094	40.768	40.862	-5.138	46.000	QUASIPEAK
3		348.670	3.365	27.891	31.256	-14.744	46.000	QUASIPEAK
4		426.394	5.389	25.061	30.450	-15.550	46.000	QUASIPEAK
5		724.856	9.784	22.318	32.102	-13.898	46.000	QUASIPEAK
6		872.532	11.909	21.010	32.919	-13.081	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

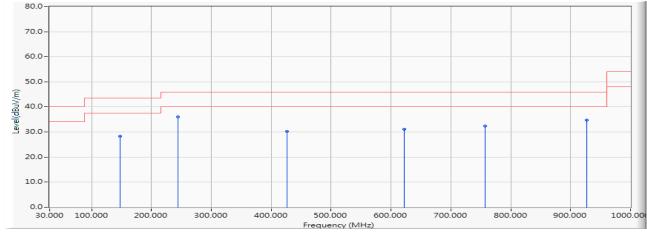
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.452	27.699	-15.801	43.500	QUASIPEAK
2	*	244.519	0.094	35.908	36.002	-9.998	46.000	QUASIPEAK
3		426.394	5.389	25.859	31.248	-14.752	46.000	QUASIPEAK
4		598.942	8.325	22.374	30.699	-15.301	46.000	QUASIPEAK
5		740.401	10.055	22.084	32.139	-13.861	46.000	QUASIPEAK
6		936.266	12.719	20.660	33.379	-12.621	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5310MHz)

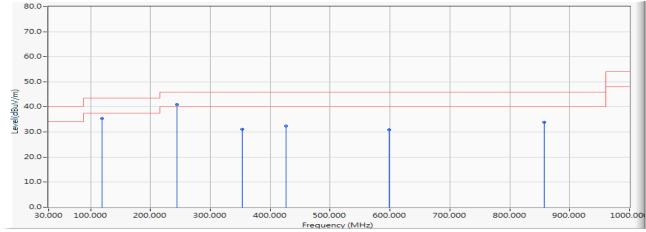


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	38.212	37.578	-5.922	43.500	QUASIPEAK
2	*	244.519	0.094	40.692	40.786	-5.214	46.000	QUASIPEAK
3		424.840	5.361	25.573	30.933	-15.067	46.000	QUASIPEAK
4		552.308	7.778	22.452	30.230	-15.770	46.000	QUASIPEAK
5		734.183	9.947	21.079	31.026	-14.974	46.000	QUASIPEAK
6		855.433	11.797	21.024	32.820	-13.180	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5310MHz)

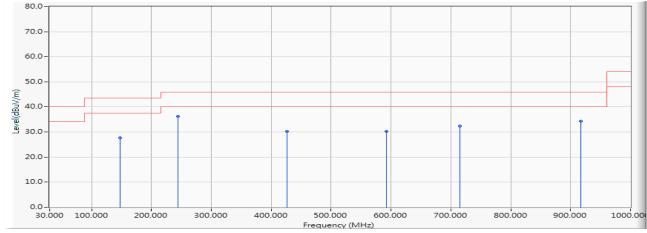
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.163	28.410	-15.090	43.500	QUASIPEAK
2	*	244.519	0.094	36.009	36.103	-9.897	46.000	QUASIPEAK
3		426.394	5.389	24.906	30.295	-15.705	46.000	QUASIPEAK
4		622.260	8.710	22.452	31.161	-14.839	46.000	QUASIPEAK
5		757.500	10.295	22.196	32.491	-13.509	46.000	QUASIPEAK
6		926.939	12.564	22.225	34.789	-11.211	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5550MHz)

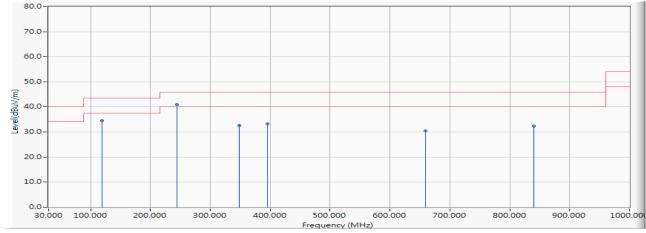
Horizontal



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	35.980	35.346	-8.154	43.500	QUASIPEAK
2	*	244.519	0.094	40.889	40.983	-5.017	46.000	QUASIPEAK
3		353.333	3.517	27.657	31.173	-14.827	46.000	QUASIPEAK
4		426.394	5.389	26.969	32.358	-13.642	46.000	QUASIPEAK
5		598.942	8.325	22.613	30.938	-15.062	46.000	QUASIPEAK
6		856.987	11.810	22.074	33.884	-12.116	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

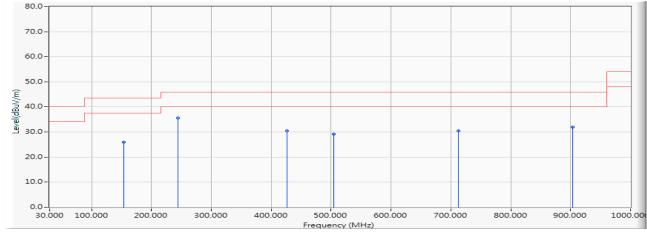
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5550MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.386	27.633	-15.867	43.500	QUASIPEAK
2	*	244.519	0.094	36.113	36.207	-9.793	46.000	QUASIPEAK
3		426.394	5.389	24.747	30.136	-15.864	46.000	QUASIPEAK
4		592.724	8.250	22.074	30.325	-15.675	46.000	QUASIPEAK
5		715.529	9.623	22.835	32.458	-13.542	46.000	QUASIPEAK
6		917.612	12.413	22.007	34.419	-11.581	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

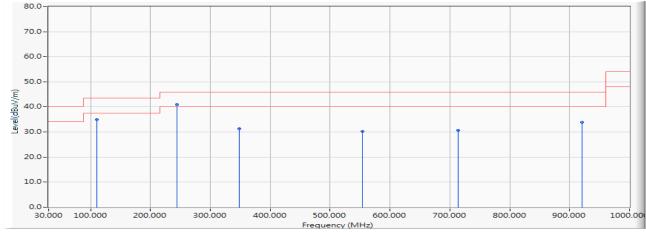
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	35.061	34.427	-9.073	43.500	QUASIPEAK
2	*	244.519	0.094	40.944	41.038	-4.962	46.000	QUASIPEAK
3		348.670	3.365	29.228	32.593	-13.407	46.000	QUASIPEAK
4		395.304	4.828	28.394	33.222	-12.778	46.000	QUASIPEAK
5		659.567	9.181	21.322	30.503	-15.497	46.000	QUASIPEAK
6		839.888	11.541	20.929	32.471	-13.529	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

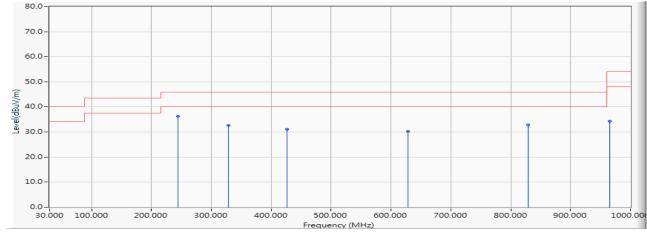
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		154.359	-2.076	28.113	26.037	-17.463	43.500	QUASIPEAK
2	*	244.519	0.094	35.557	35.651	-10.349	46.000	QUASIPEAK
3		426.394	5.389	25.116	30.505	-15.495	46.000	QUASIPEAK
4		504.119	6.782	22.495	29.276	-16.724	46.000	QUASIPEAK
5		712.420	9.565	20.833	30.398	-15.602	46.000	QUASIPEAK
6		903.622	12.171	19.701	31.872	-14.128	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

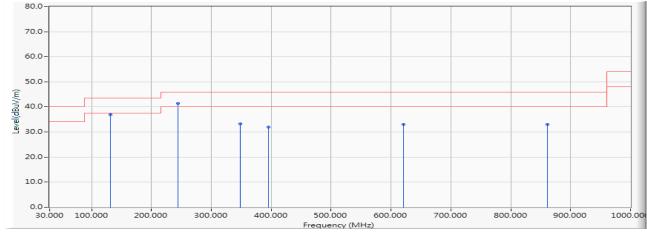
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	35.921	34.912	-8.588	43.500	QUASIPEAK
2	*	244.519	0.094	40.781	40.875	-5.125	46.000	QUASIPEAK
3		348.670	3.365	28.026	31.391	-14.609	46.000	QUASIPEAK
4		553.862	7.809	22.367	30.175	-15.825	46.000	QUASIPEAK
5		713.974	9.594	21.142	30.737	-15.263	46.000	QUASIPEAK
6		920.721	12.460	21.520	33.980	-12.020	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

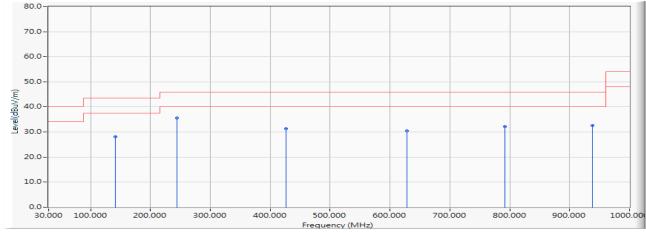
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	244.519	0.094	36.104	36.198	-9.802	46.000	QUASIPEAK
2		328.462	2.651	29.881	32.532	-13.468	46.000	QUASIPEAK
3		426.394	5.389	25.723	31.112	-14.888	46.000	QUASIPEAK
4		628.478	8.800	21.425	30.225	-15.775	46.000	QUASIPEAK
5		829.006	11.330	21.420	32.751	-13.249	46.000	QUASIPEAK
6		965.801	13.100	21.146	34.246	-19.754	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

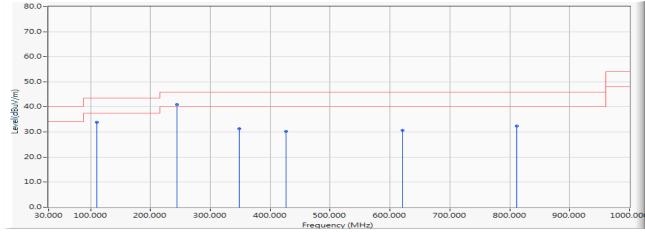
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.042	-0.754	37.677	36.922	-6.578	43.500	QUASIPEAK
2	*	244.519	0.094	41.233	41.327	-4.673	46.000	QUASIPEAK
3		348.670	3.365	29.915	33.280	-12.720	46.000	QUASIPEAK
4		395.304	4.828	27.076	31.904	-14.096	46.000	QUASIPEAK
5		620.705	8.684	24.397	33.080	-12.920	46.000	QUASIPEAK
6		861.651	11.843	21.227	33.070	-12.930	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

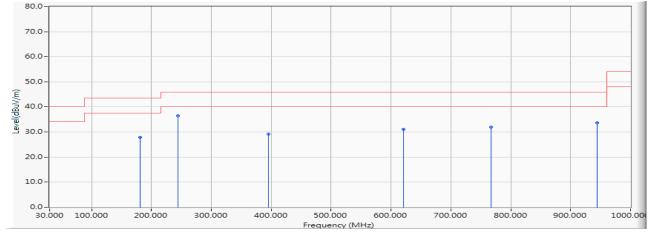
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		141.923	-1.291	29.465	28.174	-15.326	43.500	QUASIPEAK
2	*	244.519	0.094	35.581	35.675	-10.325	46.000	QUASIPEAK
3		426.394	5.389	25.916	31.305	-14.695	46.000	QUASIPEAK
4		628.478	8.800	21.658	30.458	-15.542	46.000	QUASIPEAK
5		791.699	10.675	21.586	32.260	-13.740	46.000	QUASIPEAK
6		937.821	12.745	19.794	32.539	-13.461	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

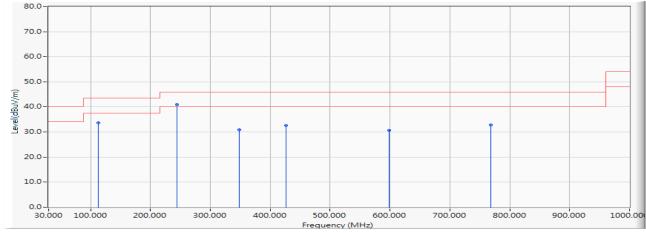
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	34.903	33.894	-9.606	43.500	QUASIPEAK
2	*	244.519	0.094	40.784	40.878	-5.122	46.000	QUASIPEAK
3		348.670	3.365	27.856	31.221	-14.779	46.000	QUASIPEAK
4		426.394	5.389	24.912	30.301	-15.699	46.000	QUASIPEAK
5		620.705	8.684	21.957	30.640	-15.360	46.000	QUASIPEAK
6		811.907	10.996	21.452	32.448	-13.552	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

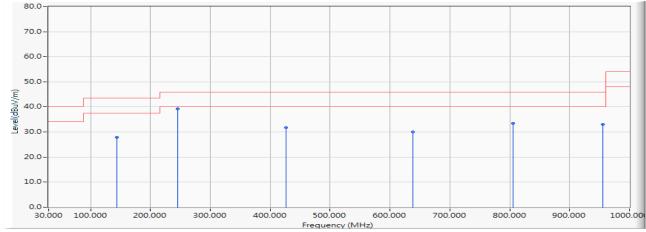
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	30.978	27.879	-15.621	43.500	QUASIPEAK
2	*	244.519	0.094	36.349	36.443	-9.557	46.000	QUASIPEAK
3		395.304	4.828	24.389	29.217	-16.783	46.000	QUASIPEAK
4		620.705	8.684	22.386	31.069	-14.931	46.000	QUASIPEAK
5		766.827	10.386	21.478	31.864	-14.136	46.000	QUASIPEAK
6		944.038	12.842	20.751	33.593	-12.407	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

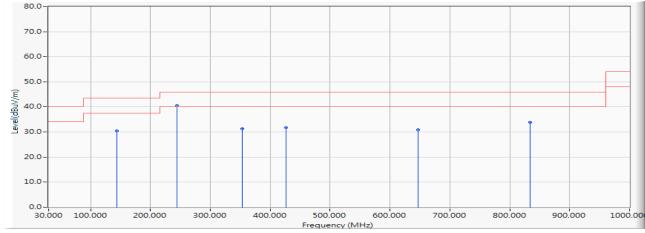
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		112.388	-0.929	34.581	33.653	-9.847	43.500	QUASIPEAK
2	*	244.519	0.094	40.869	40.963	-5.037	46.000	QUASIPEAK
3		348.670	3.365	27.555	30.920	-15.080	46.000	QUASIPEAK
4		426.394	5.389	27.309	32.698	-13.302	46.000	QUASIPEAK
5		598.942	8.325	22.308	30.633	-15.367	46.000	QUASIPEAK
6		768.381	10.404	22.431	32.835	-13.165	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

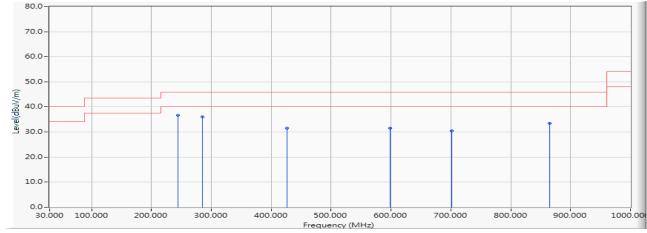
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	29.195	27.788	-15.712	43.500	QUASIPEAK
2	*	246.074	0.204	39.050	39.254	-6.746	46.000	QUASIPEAK
3		426.394	5.389	26.363	31.752	-14.248	46.000	QUASIPEAK
4		637.804	8.942	21.157	30.099	-15.901	46.000	QUASIPEAK
5		805.689	10.879	22.489	33.368	-12.632	46.000	QUASIPEAK
6		954.920	12.994	20.114	33.108	-12.892	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

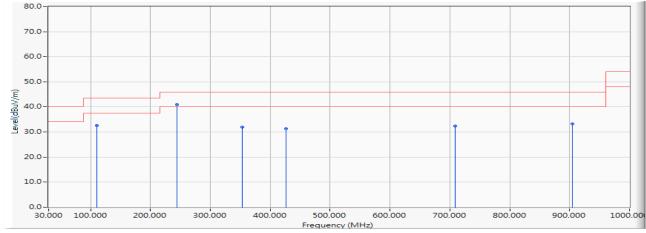
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	31.848	30.441	-13.059	43.500	QUASIPEAK
2	*	244.519	0.094	40.546	40.640	-5.360	46.000	QUASIPEAK
3		353.333	3.517	27.901	31.417	-14.583	46.000	QUASIPEAK
4		426.394	5.389	26.342	31.731	-14.269	46.000	QUASIPEAK
5		647.131	9.086	21.895	30.981	-15.019	46.000	QUASIPEAK
6		833.670	11.415	22.555	33.970	-12.030	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

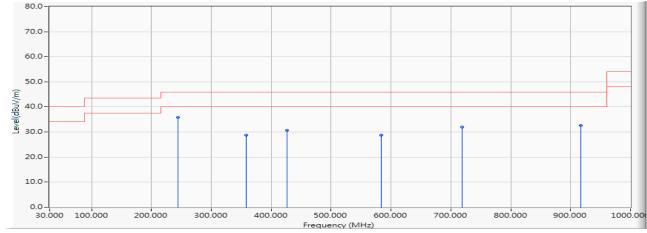
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	244.519	0.094	36.496	36.590	-9.410	46.000	QUASIPEAK
2		284.936	1.296	34.721	36.017	-9.983	46.000	QUASIPEAK
3		426.394	5.389	26.175	31.564	-14.436	46.000	QUASIPEAK
4		598.942	8.325	23.186	31.511	-14.489	46.000	QUASIPEAK
5		701.538	9.386	21.134	30.521	-15.479	46.000	QUASIPEAK
6		864.760	11.855	21.668	33.523	-12.477	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

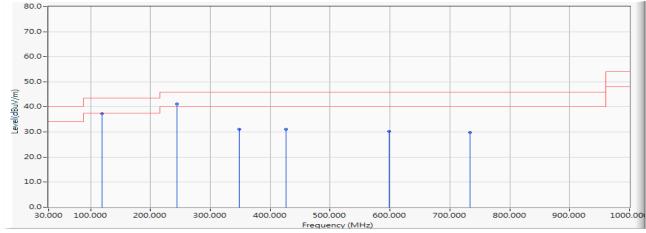
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5250MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	33.612	32.603	-10.897	43.500	QUASIPEAK
2	*	244.519	0.094	40.853	40.947	-5.053	46.000	QUASIPEAK
3		353.333	3.517	28.520	32.036	-13.964	46.000	QUASIPEAK
4		426.394	5.389	25.949	31.338	-14.662	46.000	QUASIPEAK
5		709.311	9.519	22.864	32.383	-13.617	46.000	QUASIPEAK
6		905.176	12.195	21.071	33.267	-12.733	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5250MHz)



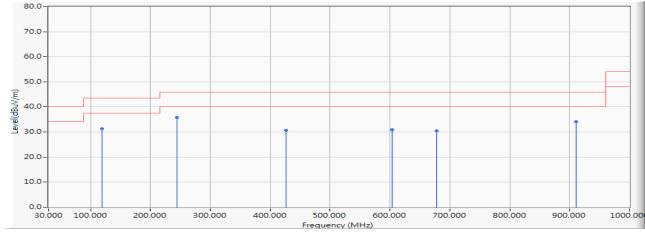
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	244.519	0.094	35.748	35.842	-10.158	46.000	QUASIPEAK
2		357.997	3.659	25.114	28.773	-17.227	46.000	QUASIPEAK
3		426.394	5.389	25.186	30.575	-15.425	46.000	QUASIPEAK
4		583.397	8.149	20.580	28.729	-17.271	46.000	QUASIPEAK
5		718.638	9.672	22.252	31.924	-14.076	46.000	QUASIPEAK
6		917.612	12.413	20.124	32.536	-13.464	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5570MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	37.918	37.284	-6.216	43.500	QUASIPEAK
2	*	244.519	0.094	41.055	41.149	-4.851	46.000	QUASIPEAK
3		348.670	3.365	27.645	31.010	-14.990	46.000	QUASIPEAK
4		426.394	5.389	25.706	31.095	-14.905	46.000	QUASIPEAK
5		598.942	8.325	21.870	30.195	-15.805	46.000	QUASIPEAK
6		734.183	9.947	19.877	29.824	-16.176	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

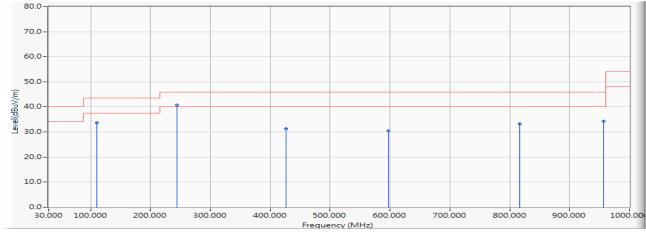


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04

Test Mode

: Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps) (5570MHz)

Vertical

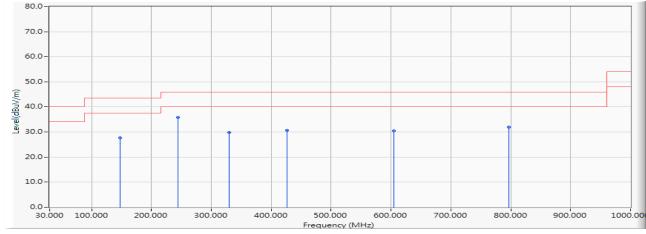


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	32.045	31.411	-12.089	43.500	QUASIPEAK
2	*	244.519	0.094	35.756	35.850	-10.150	46.000	QUASIPEAK
3		426.394	5.389	25.198	30.587	-15.413	46.000	QUASIPEAK
4		603.606	8.391	22.410	30.801	-15.199	46.000	QUASIPEAK
5		678.221	9.266	21.297	30.563	-15.437	46.000	QUASIPEAK
6		911.394	12.298	21.713	34.011	-11.989	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5220MHz)

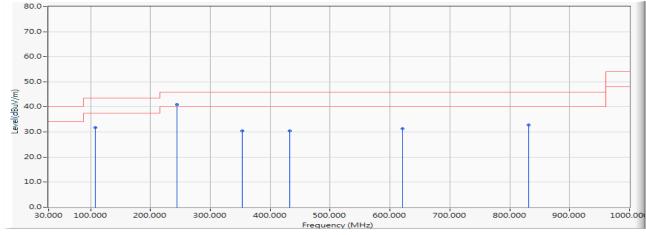
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	34.651	33.642	-9.858	43.500	QUASIPEAK
2	*	244.519	0.094	40.616	40.710	-5.290	46.000	QUASIPEAK
3		426.394	5.389	25.911	31.300	-14.700	46.000	QUASIPEAK
4		597.388	8.306	22.232	30.539	-15.461	46.000	QUASIPEAK
5		816.571	11.091	22.232	33.323	-12.677	46.000	QUASIPEAK
6		956.474	13.012	21.208	34.220	-11.780	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :

: Mode 6 SISO B: Transmit (802.11a_6Mbps) (5220MHz)

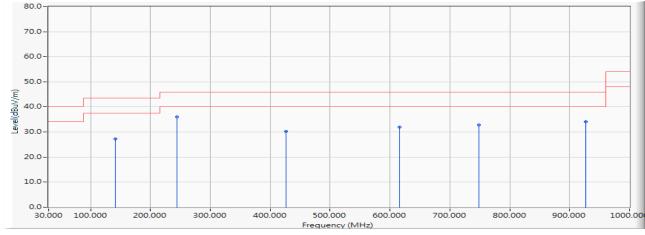
Vertical



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.504	27.751	-15.749	43.500	QUASIPEAK
2	*	244.519	0.094	35.813	35.907	-10.093	46.000	QUASIPEAK
3		330.016	2.714	27.067	29.781	-16.219	46.000	QUASIPEAK
4		426.394	5.389	25.257	30.646	-15.354	46.000	QUASIPEAK
5		605.160	8.409	21.970	30.380	-15.620	46.000	QUASIPEAK
6		796.362	10.729	21.143	31.872	-14.128	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

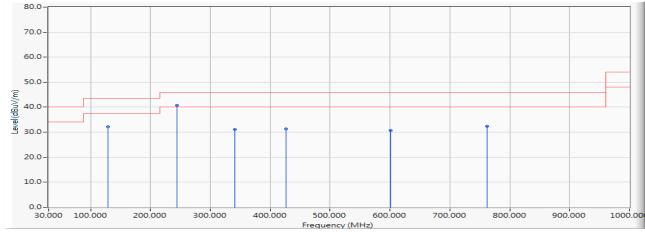
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		107.724	-1.349	33.038	31.689	-11.811	43.500	QUASIPEAK
2	*	244.519	0.094	40.792	40.886	-5.114	46.000	QUASIPEAK
3		353.333	3.517	26.927	30.443	-15.557	46.000	QUASIPEAK
4		432.612	5.487	24.863	30.350	-15.650	46.000	QUASIPEAK
5		620.705	8.684	22.659	31.342	-14.658	46.000	QUASIPEAK
6		832.115	11.391	21.478	32.869	-13.131	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

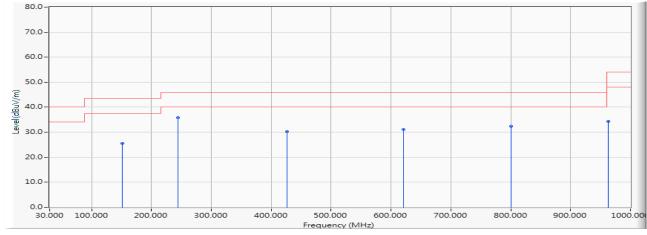
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		141.923	-1.291	28.588	27.297	-16.203	43.500	QUASIPEAK
2	*	244.519	0.094	35.980	36.074	-9.926	46.000	QUASIPEAK
3		426.394	5.389	24.776	30.165	-15.835	46.000	QUASIPEAK
4		616.042	8.603	23.355	31.957	-14.043	46.000	QUASIPEAK
5		748.173	10.191	22.689	32.879	-13.121	46.000	QUASIPEAK
6		926.939	12.564	21.632	34.196	-11.804	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

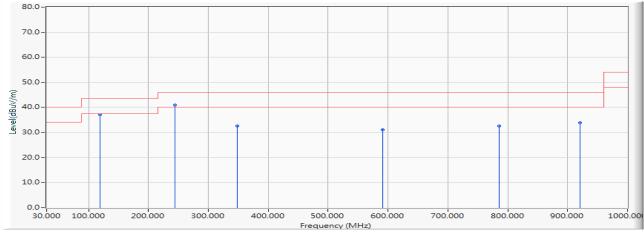
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		129.487	-0.703	32.929	32.225	-11.275	43.500	QUASIPEAK
2	*	244.519	0.094	40.726	40.820	-5.180	46.000	QUASIPEAK
3		340.897	3.097	28.104	31.201	-14.799	46.000	QUASIPEAK
4		426.394	5.389	25.849	31.238	-14.762	46.000	QUASIPEAK
5		600.497	8.335	22.377	30.712	-15.288	46.000	QUASIPEAK
6		762.163	10.337	22.077	32.414	-13.586	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

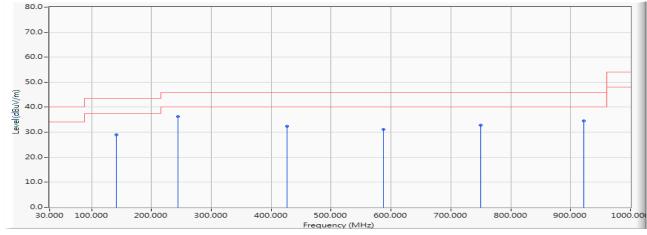
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		151.250	-1.938	27.504	25.566	-17.934	43.500	QUASIPEAK
2	*	244.519	0.094	35.701	35.795	-10.205	46.000	QUASIPEAK
3		426.394	5.389	24.874	30.263	-15.737	46.000	QUASIPEAK
4		620.705	8.684	22.322	31.005	-14.995	46.000	QUASIPEAK
5		801.026	10.784	21.499	32.284	-13.716	46.000	QUASIPEAK
6		962.692	13.061	21.173	34.234	-19.766	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

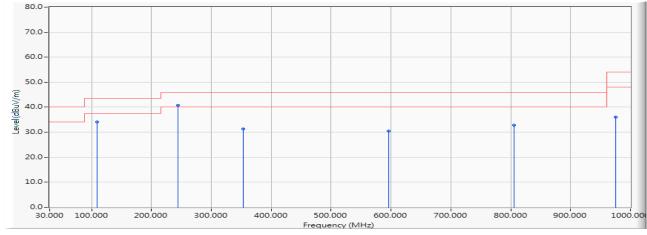
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :
- Mode 6 SISO B: Transmit (802.11a 6Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	37.752	37.118	-6.382	43.500	QUASIPEAK
2	*	244.519	0.094	40.927	41.021	-4.979	46.000	QUASIPEAK
3		348.670	3.365	29.252	32.617	-13.383	46.000	QUASIPEAK
4		591.170	8.237	22.919	31.156	-14.844	46.000	QUASIPEAK
5		785.481	10.601	22.084	32.685	-13.315	46.000	QUASIPEAK
6		920.721	12.460	21.390	33.850	-12.150	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

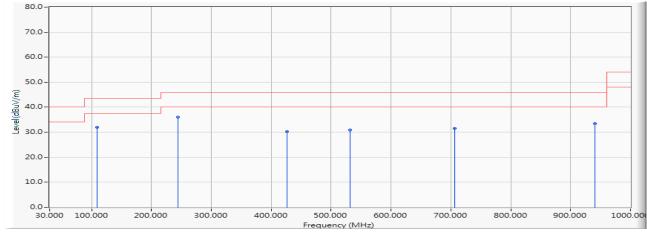
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 6 SISO B: Transmit (802.11a_6Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		141.923	-1.291	30.270	28.979	-14.521	43.500	QUASIPEAK
2	*	244.519	0.094	36.256	36.350	-9.650	46.000	QUASIPEAK
3		426.394	5.389	26.909	32.298	-13.702	46.000	QUASIPEAK
4		588.061	8.195	22.803	30.998	-15.002	46.000	QUASIPEAK
5		749.728	10.221	22.653	32.873	-13.127	46.000	QUASIPEAK
6		922.276	12.479	22.131	34.609	-11.391	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

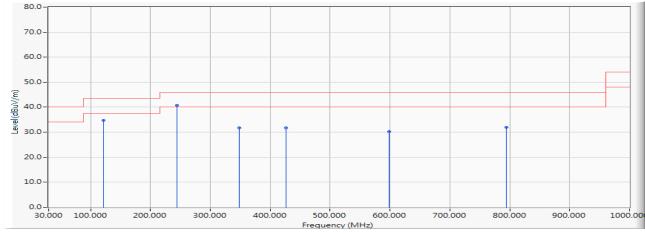
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	35.350	34.203	-9.297	43.500	QUASIPEAK
2	*	244.519	0.094	40.672	40.766	-5.234	46.000	QUASIPEAK
3		353.333	3.517	27.743	31.259	-14.741	46.000	QUASIPEAK
4		595.833	8.281	22.177	30.458	-15.542	46.000	QUASIPEAK
5		805.689	10.879	22.034	32.913	-13.087	46.000	QUASIPEAK
6		975.128	13.178	22.849	36.026	-17.974	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

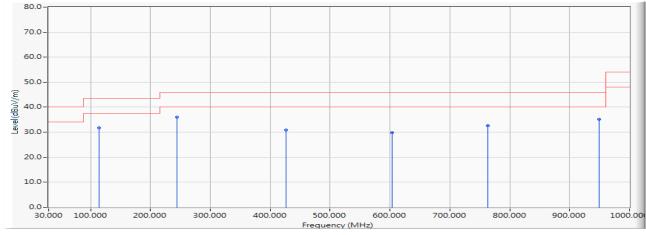
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5220MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	33.195	32.048	-11.452	43.500	QUASIPEAK
2	*	244.519	0.094	35.905	35.999	-10.001	46.000	QUASIPEAK
3		426.394	5.389	24.799	30.188	-15.812	46.000	QUASIPEAK
4		532.099	7.360	23.436	30.797	-15.203	46.000	QUASIPEAK
5		706.202	9.464	22.046	31.510	-14.490	46.000	QUASIPEAK
6		940.929	12.793	20.701	33.494	-12.506	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

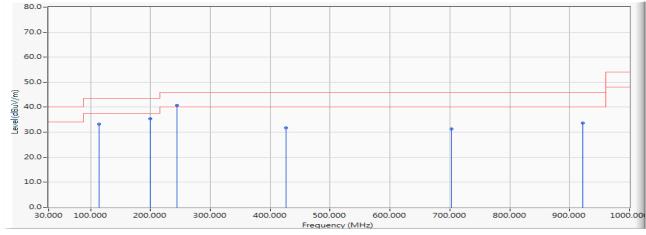
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		121.715	-0.594	35.297	34.703	-8.797	43.500	QUASIPEAK
2	*	244.519	0.094	40.625	40.719	-5.281	46.000	QUASIPEAK
3		348.670	3.365	28.349	31.714	-14.286	46.000	QUASIPEAK
4		426.394	5.389	26.254	31.643	-14.357	46.000	QUASIPEAK
5		598.942	8.325	21.913	30.238	-15.762	46.000	QUASIPEAK
6		794.808	10.712	21.184	31.895	-14.105	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

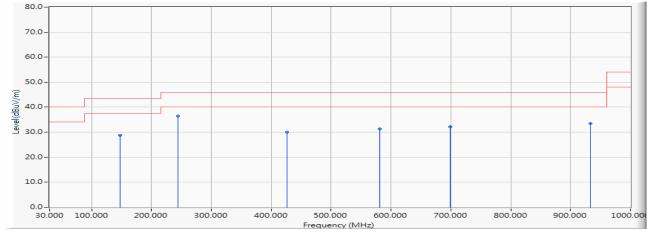
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5300MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		113.942	-0.854	32.590	31.735	-11.765	43.500	QUASIPEAK
2	*	244.519	0.094	35.909	36.003	-9.997	46.000	QUASIPEAK
3		426.394	5.389	25.584	30.973	-15.027	46.000	QUASIPEAK
4		603.606	8.391	21.526	29.917	-16.083	46.000	QUASIPEAK
5		763.718	10.356	22.290	32.647	-13.353	46.000	QUASIPEAK
6		948.702	12.926	22.312	35.238	-10.762	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

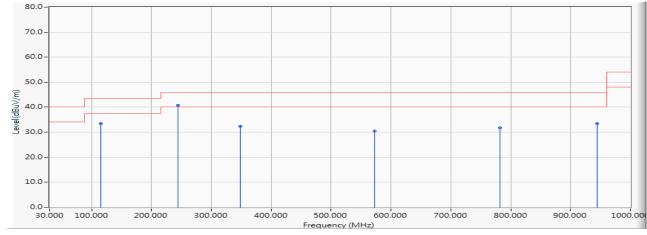
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		113.942	-0.854	34.030	33.175	-10.325	43.500	QUASIPEAK
2		199.439	-2.426	37.912	35.485	-8.015	43.500	QUASIPEAK
3	*	244.519	0.094	40.612	40.706	-5.294	46.000	QUASIPEAK
4		426.394	5.389	26.337	31.726	-14.274	46.000	QUASIPEAK
5		703.093	9.418	21.863	31.281	-14.719	46.000	QUASIPEAK
6		922.276	12.479	21.142	33.620	-12.380	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

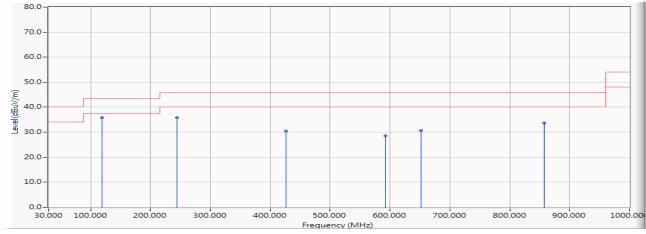
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5580MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.459	28.706	-14.794	43.500	QUASIPEAK
2	*	244.519	0.094	36.342	36.436	-9.564	46.000	QUASIPEAK
3		426.394	5.389	24.698	30.087	-15.913	46.000	QUASIPEAK
4		581.843	8.130	23.169	31.299	-14.701	46.000	QUASIPEAK
5		698.429	9.364	22.764	32.128	-13.872	46.000	QUASIPEAK
6		933.157	12.660	20.844	33.504	-12.496	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

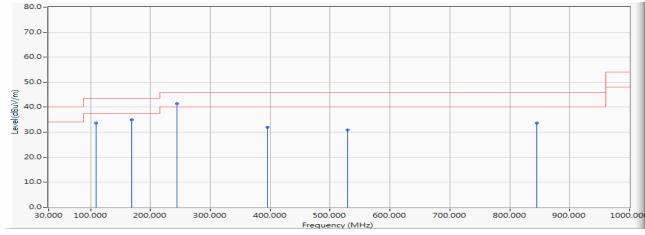
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		115.497	-0.781	34.168	33.387	-10.113	43.500	QUASIPEAK
2	*	244.519	0.094	40.658	40.752	-5.248	46.000	QUASIPEAK
3		348.670	3.365	28.921	32.286	-13.714	46.000	QUASIPEAK
4		572.516	8.029	22.458	30.487	-15.513	46.000	QUASIPEAK
5		782.372	10.569	21.270	31.840	-14.160	46.000	QUASIPEAK
6		944.038	12.842	20.661	33.503	-12.497	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5720MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	118.606	-0.634	36.356	35.722	-7.778	43.500	QUASIPEAK
2		244.519	0.094	35.702	35.796	-10.204	46.000	QUASIPEAK
3		426.394	5.389	25.151	30.540	-15.460	46.000	QUASIPEAK
4		592.724	8.250	20.324	28.575	-17.425	46.000	QUASIPEAK
5		651.795	9.144	21.425	30.569	-15.431	46.000	QUASIPEAK
6		856.987	11.810	21.946	33.756	-12.244	46.000	QUASIPEAK

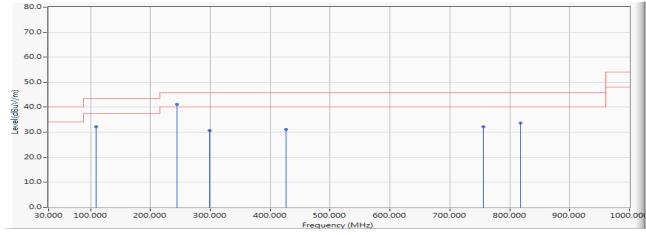
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	34.874	33.727	-9.773	43.500	QUASIPEAK
2		168.349	-2.733	37.612	34.879	-8.621	43.500	QUASIPEAK
3	*	244.519	0.094	41.238	41.332	-4.668	46.000	QUASIPEAK
4		395.304	4.828	27.236	32.064	-13.936	46.000	QUASIPEAK
5		528.990	7.291	23.693	30.984	-15.016	46.000	QUASIPEAK
6		844.551	11.638	21.938	33.577	-12.423	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

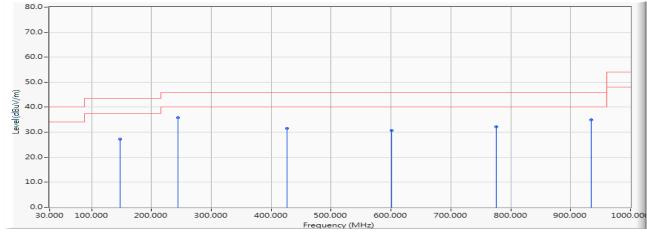
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps) (5785MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.089	27.336	-16.164	43.500	QUASIPEAK
2	*	244.519	0.094	35.800	35.894	-10.106	46.000	QUASIPEAK
3		426.394	5.389	25.480	30.869	-15.131	46.000	QUASIPEAK
4		511.891	6.942	23.015	29.957	-16.043	46.000	QUASIPEAK
5		645.577	9.056	22.549	31.605	-14.395	46.000	QUASIPEAK
6		835.224	11.449	21.121	32.570	-13.430	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

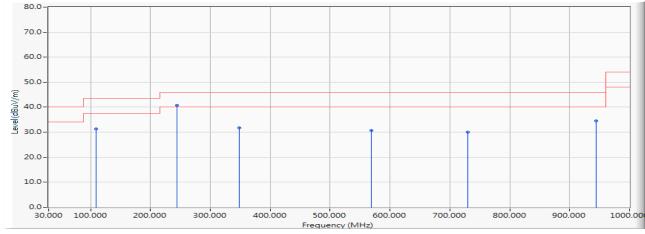
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	33.416	32.269	-11.231	43.500	QUASIPEAK
2	*	244.519	0.094	41.144	41.238	-4.762	46.000	QUASIPEAK
3		298.926	1.615	29.060	30.675	-15.325	46.000	QUASIPEAK
4		426.394	5.389	25.713	31.102	-14.898	46.000	QUASIPEAK
5		755.946	10.278	21.917	32.195	-13.805	46.000	QUASIPEAK
6		818.125	11.121	22.608	33.729	-12.271	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

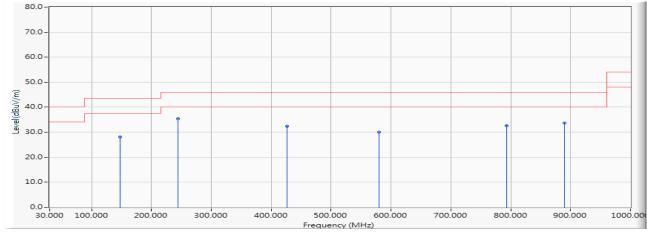
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5230MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.024	27.271	-16.229	43.500	QUASIPEAK
2	*	244.519	0.094	35.772	35.866	-10.134	46.000	QUASIPEAK
3		426.394	5.389	26.116	31.505	-14.495	46.000	QUASIPEAK
4		600.497	8.335	22.312	30.647	-15.353	46.000	QUASIPEAK
5		776.154	10.498	21.692	32.190	-13.810	46.000	QUASIPEAK
6		934.712	12.694	22.298	34.992	-11.008	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

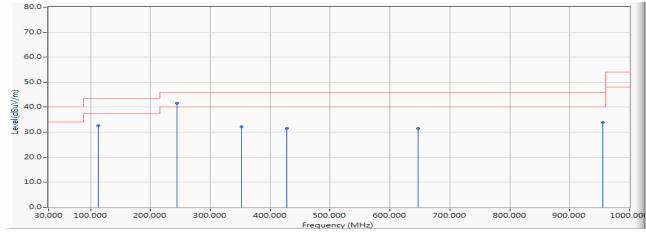
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5310MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	32.402	31.255	-12.245	43.500	QUASIPEAK
2	*	244.519	0.094	40.718	40.812	-5.188	46.000	QUASIPEAK
3		348.670	3.365	28.382	31.747	-14.253	46.000	QUASIPEAK
4		569.407	7.992	22.722	30.713	-15.287	46.000	QUASIPEAK
5		729.519	9.861	20.154	30.014	-15.986	46.000	QUASIPEAK
6		944.038	12.842	21.653	34.495	-11.505	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

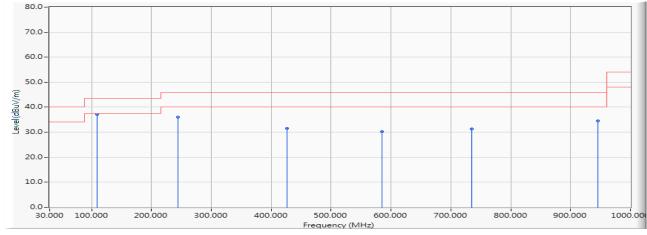
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5310MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.805	28.052	-15.448	43.500	QUASIPEAK
2	*	244.519	0.094	35.359	35.453	-10.547	46.000	QUASIPEAK
3		426.394	5.389	27.086	32.475	-13.525	46.000	QUASIPEAK
4		580.288	8.112	21.859	29.971	-16.029	46.000	QUASIPEAK
5		793.253	10.693	21.938	32.631	-13.369	46.000	QUASIPEAK
6		889.631	12.035	21.628	33.663	-12.337	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

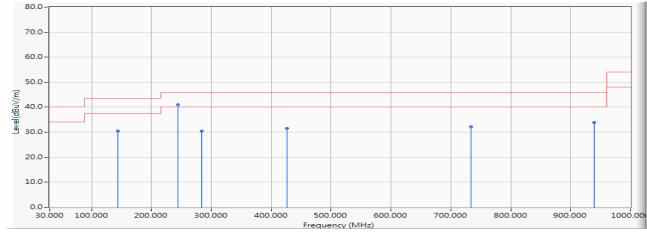
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5550MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		113.084	-0.895	33.413	32.518	-10.982	43.500	QUASIPEAK
2	*	244.519	0.094	41.426	41.520	-4.480	46.000	QUASIPEAK
3		352.184	3.481	28.705	32.187	-13.813	46.000	QUASIPEAK
4		427.684	5.405	26.143	31.548	-14.452	46.000	QUASIPEAK
5		647.541	9.091	22.457	31.548	-14.452	46.000	QUASIPEAK
6		954.814	12.993	20.847	33.840	-12.160	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

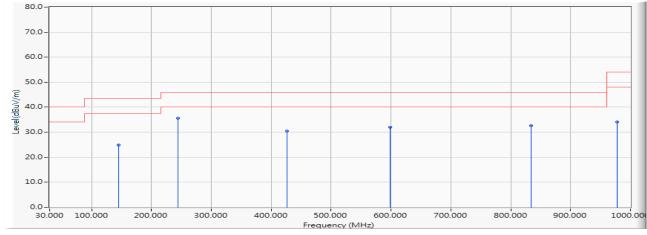
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5550MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	109.487	-1.120	38.304	37.184	-6.316	43.500	QUASIPEAK
2		244.519	0.094	35.854	35.948	-10.052	46.000	QUASIPEAK
3		426.584	5.391	26.163	31.554	-14.446	46.000	QUASIPEAK
4		584.574	8.163	22.021	30.184	-15.816	46.000	QUASIPEAK
5		734.847	9.955	21.329	31.284	-14.716	46.000	QUASIPEAK
6		945.874	12.881	21.677	34.558	-11.442	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

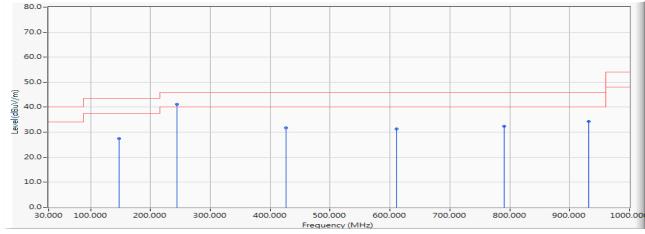
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	31.918	30.511	-12.989	43.500	QUASIPEAK
2	*	244.519	0.094	40.826	40.920	-5.080	46.000	QUASIPEAK
3		283.381	1.256	29.125	30.382	-15.618	46.000	QUASIPEAK
4		426.394	5.389	26.107	31.496	-14.504	46.000	QUASIPEAK
5		734.183	9.947	22.245	32.192	-13.808	46.000	QUASIPEAK
6		939.375	12.768	21.162	33.930	-12.070	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

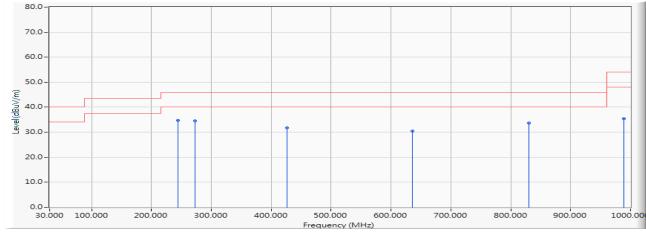
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5710MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		145.032	-1.523	26.472	24.949	-18.551	43.500	QUASIPEAK
2	*	244.519	0.094	35.595	35.689	-10.311	46.000	QUASIPEAK
3		426.394	5.389	25.089	30.478	-15.522	46.000	QUASIPEAK
4		598.942	8.325	23.616	31.941	-14.059	46.000	QUASIPEAK
5		833.670	11.415	21.142	32.557	-13.443	46.000	QUASIPEAK
6		978.237	13.211	20.799	34.010	-19.990	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

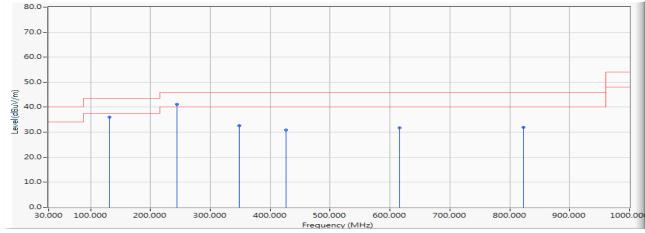
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.278	27.525	-15.975	43.500	QUASIPEAK
2	*	244.519	0.094	41.111	41.205	-4.795	46.000	QUASIPEAK
3		426.394	5.389	26.250	31.639	-14.361	46.000	QUASIPEAK
4		611.378	8.522	22.760	31.281	-14.719	46.000	QUASIPEAK
5		790.144	10.659	21.643	32.302	-13.698	46.000	QUASIPEAK
6		931.603	12.640	21.643	34.283	-11.717	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

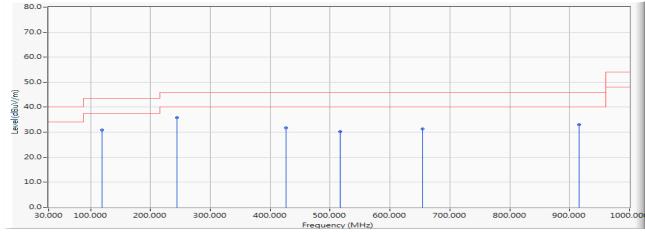
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 8 SISO B: Transmit (802.11n-40BW_15Mbps) (5795MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	244.519	0.094	34.559	34.653	-11.347	46.000	QUASIPEAK
2		272.500	1.045	33.513	34.558	-11.442	46.000	QUASIPEAK
3		426.394	5.389	26.387	31.776	-14.224	46.000	QUASIPEAK
4		636.250	8.910	21.632	30.542	-15.458	46.000	QUASIPEAK
5		830.561	11.357	22.257	33.614	-12.386	46.000	QUASIPEAK
6		989.119	13.302	22.105	35.407	-18.593	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

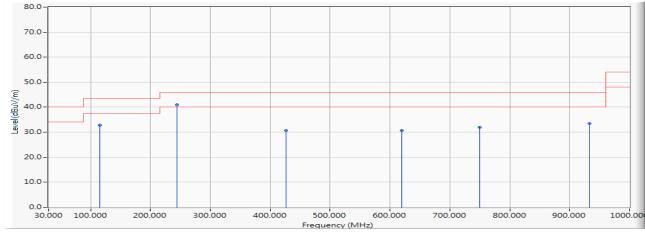
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.042	-0.754	36.842	36.087	-7.413	43.500	QUASIPEAK
2	*	244.519	0.094	40.995	41.089	-4.911	46.000	QUASIPEAK
3		348.670	3.365	29.286	32.651	-13.349	46.000	QUASIPEAK
4		426.394	5.389	25.444	30.833	-15.167	46.000	QUASIPEAK
5		616.042	8.603	23.238	31.840	-14.160	46.000	QUASIPEAK
6		822.788	11.208	20.768	31.976	-14.024	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

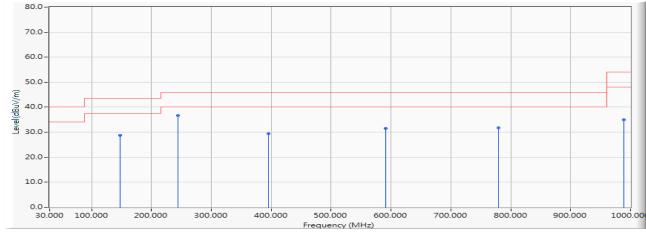
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5210MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	31.491	30.857	-12.643	43.500	QUASIPEAK
2	*	244.519	0.094	35.827	35.921	-10.079	46.000	QUASIPEAK
3		426.394	5.389	26.280	31.669	-14.331	46.000	QUASIPEAK
4		516.554	7.028	23.147	30.175	-15.825	46.000	QUASIPEAK
5		654.904	9.161	22.189	31.350	-14.650	46.000	QUASIPEAK
6		916.058	12.384	20.547	32.931	-13.069	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

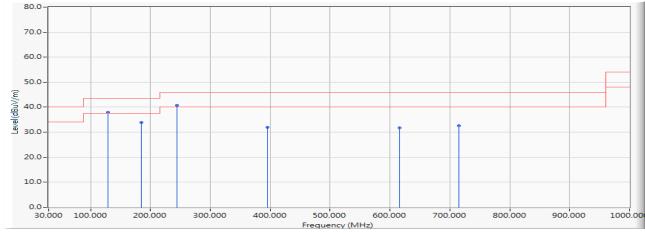
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		115.497	-0.781	33.680	32.899	-10.601	43.500	QUASIPEAK
2	*	244.519	0.094	40.881	40.975	-5.025	46.000	QUASIPEAK
3		426.394	5.389	25.198	30.587	-15.413	46.000	QUASIPEAK
4		619.151	8.663	21.932	30.595	-15.405	46.000	QUASIPEAK
5		749.728	10.221	21.666	31.886	-14.114	46.000	QUASIPEAK
6		933.157	12.660	20.886	33.546	-12.454	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

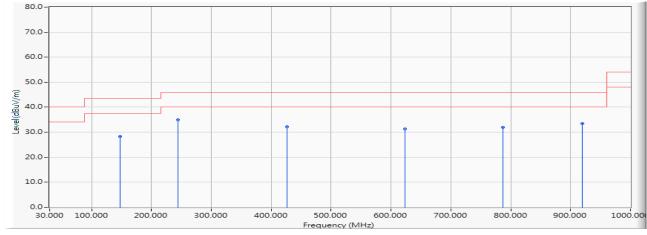
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5290MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.474	28.721	-14.779	43.500	QUASIPEAK
2	*	244.519	0.094	36.538	36.632	-9.368	46.000	QUASIPEAK
3		395.304	4.828	24.531	29.359	-16.641	46.000	QUASIPEAK
4		591.170	8.237	23.237	31.474	-14.526	46.000	QUASIPEAK
5		779.263	10.533	21.118	31.651	-14.349	46.000	QUASIPEAK
6		989.119	13.302	21.598	34.900	-19.100	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)

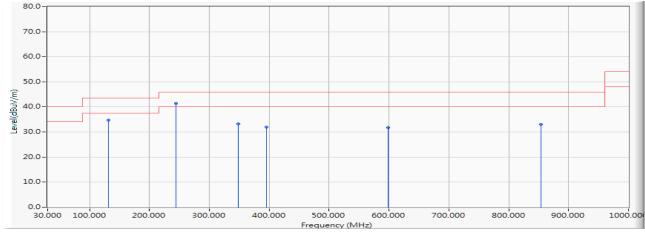


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		129.487	-0.703	38.770	38.066	-5.434	43.500	QUASIPEAK
2		185.449	-3.159	37.041	33.881	-9.619	43.500	QUASIPEAK
3	*	244.519	0.094	40.687	40.781	-5.219	46.000	QUASIPEAK
4		395.304	4.828	27.089	31.917	-14.083	46.000	QUASIPEAK
5		616.042	8.603	23.132	31.734	-14.266	46.000	QUASIPEAK
6		715.529	9.623	22.911	32.534	-13.466	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5530MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.039	28.286	-15.214	43.500	QUASIPEAK
2	*	244.519	0.094	34.962	35.056	-10.944	46.000	QUASIPEAK
3		426.394	5.389	26.733	32.122	-13.878	46.000	QUASIPEAK
4		623.814	8.734	22.518	31.252	-14.748	46.000	QUASIPEAK
5		787.035	10.628	21.383	32.011	-13.989	46.000	QUASIPEAK
6		919.167	12.431	21.082	33.513	-12.487	46.000	QUASIPEAK

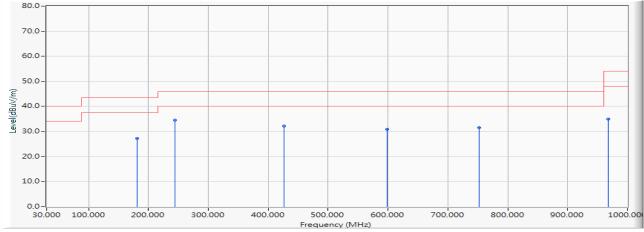

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.042	-0.754	35.526	34.771	-8.729	43.500	QUASIPEAK
2	*	244.519	0.094	41.290	41.384	-4.616	46.000	QUASIPEAK
3		348.670	3.365	29.965	33.330	-12.670	46.000	QUASIPEAK
4		395.304	4.828	27.103	31.931	-14.069	46.000	QUASIPEAK
5		598.942	8.325	23.336	31.661	-14.339	46.000	QUASIPEAK
6		853.878	11.776	21.313	33.089	-12.911	46.000	QUASIPEAK

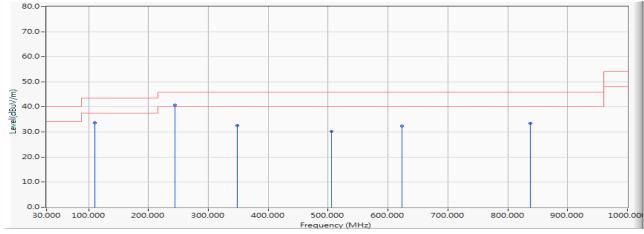

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 9 SISO B: Transmit (802.11ac-80BW_32.5Mbps) (5775MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	30.441	27.342	-16.158	43.500	QUASIPEAK
2	*	244.519	0.094	34.499	34.593	-11.407	46.000	QUASIPEAK
3		426.394	5.389	26.741	32.130	-13.870	46.000	QUASIPEAK
4		598.942	8.325	22.478	30.803	-15.197	46.000	QUASIPEAK
5		752.837	10.252	21.244	31.496	-14.504	46.000	QUASIPEAK
6		967.356	13.109	21.860	34.970	-19.030	54.000	QUASIPEAK

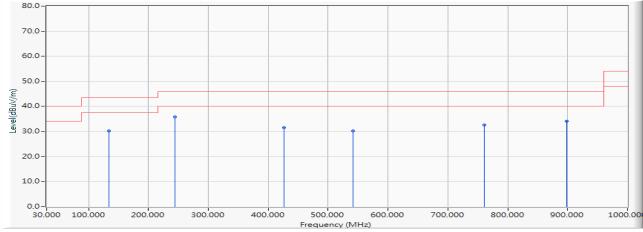

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5250MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	34.738	33.729	-9.771	43.500	QUASIPEAK
2	*	244.519	0.094	40.748	40.842	-5.158	46.000	QUASIPEAK
3		348.670	3.365	29.271	32.636	-13.364	46.000	QUASIPEAK
4		505.673	6.813	23.494	30.307	-15.693	46.000	QUASIPEAK
5		623.814	8.734	23.686	32.420	-13.580	46.000	QUASIPEAK
6		838.333	11.503	22.003	33.506	-12.494	46.000	QUASIPEAK

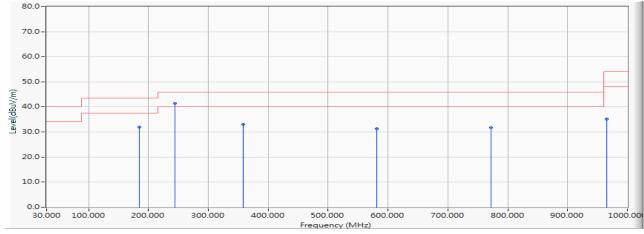

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5250MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		134.151	-0.893	31.133	30.240	-13.260	43.500	QUASIPEAK
2	*	244.519	0.094	35.827	35.921	-10.079	46.000	QUASIPEAK
3		426.394	5.389	26.035	31.424	-14.576	46.000	QUASIPEAK
4		541.426	7.568	22.668	30.236	-15.764	46.000	QUASIPEAK
5		760.609	10.321	22.369	32.690	-13.310	46.000	QUASIPEAK
6		898.958	12.109	21.888	33.997	-12.003	46.000	QUASIPEAK

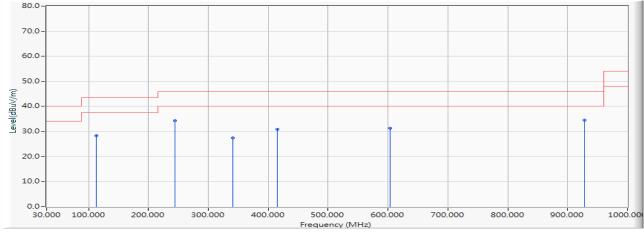

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5570MHz)

Horizontal

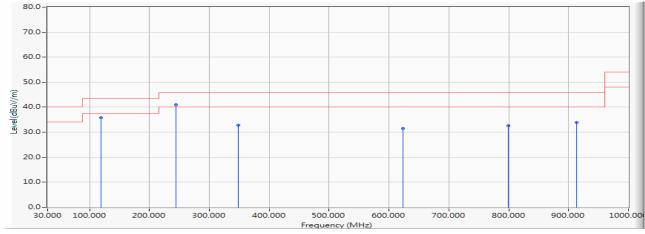
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		185.449	-3.159	35.063	31.903	-11.597	43.500	QUASIPEAK
2	*	244.519	0.094	41.288	41.382	-4.618	46.000	QUASIPEAK
3		357.997	3.659	29.300	32.959	-13.041	46.000	QUASIPEAK
4		581.843	8.130	23.285	31.415	-14.585	46.000	QUASIPEAK
5		771.490	10.443	21.259	31.702	-14.298	46.000	QUASIPEAK
6		965.801	13.100	22.145	35.245	-18.755	54.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 10 SISO B: Transmit (802.11ac-160BW_65Mbps) (5570MHz)

Vertical

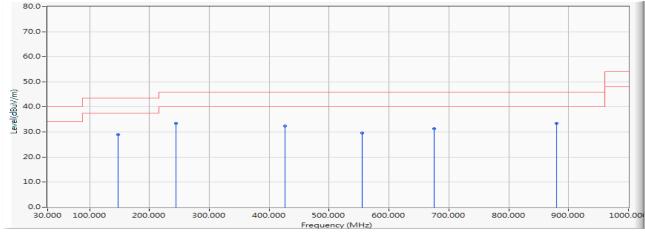

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		112.388	-0.929	29.303	28.375	-15.125	43.500	QUASIPEAK
2		244.519	0.094	34.250	34.344	-11.656	46.000	QUASIPEAK
3		340.897	3.097	24.419	27.516	-18.484	46.000	QUASIPEAK
4		415.513	5.223	25.588	30.811	-15.189	46.000	QUASIPEAK
5		603.606	8.391	22.852	31.243	-14.757	46.000	QUASIPEAK
6	*	928.494	12.593	21.834	34.427	-11.573	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
- : Mode 11 MIMO: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	36.423	35.789	-7.711	43.500	QUASIPEAK
2	*	244.519	0.094	40.801	40.895	-5.105	46.000	QUASIPEAK
3		348.670	3.365	29.441	32.806	-13.194	46.000	QUASIPEAK
4		623.814	8.734	22.793	31.527	-14.473	46.000	QUASIPEAK
5		799.471	10.765	21.750	32.515	-13.485	46.000	QUASIPEAK
6		912.949	12.327	21.586	33.913	-12.087	46.000	QUASIPEAK

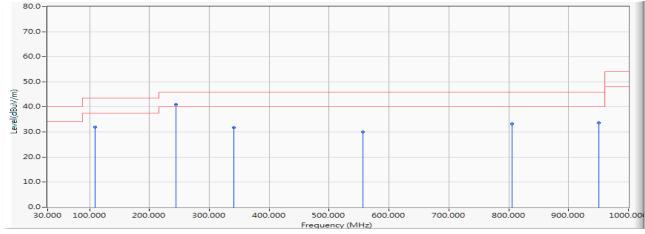

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5220MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.637	28.884	-14.616	43.500	QUASIPEAK
2		244.519	0.094	33.277	33.371	-12.629	46.000	QUASIPEAK
3		426.394	5.389	27.018	32.407	-13.593	46.000	QUASIPEAK
4		555.417	7.829	21.699	29.528	-16.472	46.000	QUASIPEAK
5		675.112	9.256	22.071	31.327	-14.673	46.000	QUASIPEAK
6	*	880.304	11.960	21.556	33.516	-12.484	46.000	QUASIPEAK

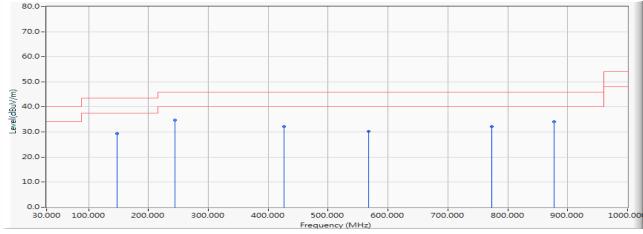

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5300MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	33.090	31.943	-11.557	43.500	QUASIPEAK
2	*	244.519	0.094	40.888	40.982	-5.018	46.000	QUASIPEAK
3		340.897	3.097	28.653	31.750	-14.250	46.000	QUASIPEAK
4		556.971	7.839	22.283	30.122	-15.878	46.000	QUASIPEAK
5		805.689	10.879	22.304	33.183	-12.817	46.000	QUASIPEAK
6		950.256	12.945	20.667	33.613	-12.387	46.000	QUASIPEAK

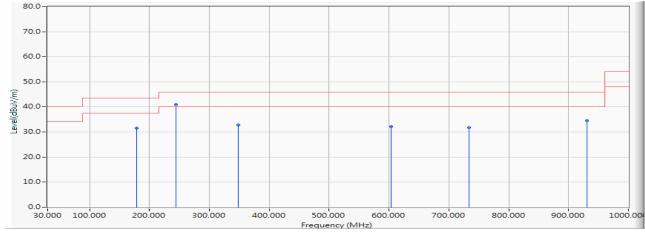

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5300MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	31.098	29.345	-14.155	43.500	QUASIPEAK
2	*	244.519	0.094	34.659	34.753	-11.247	46.000	QUASIPEAK
3		426.394	5.389	26.741	32.130	-13.870	46.000	QUASIPEAK
4		567.853	7.977	22.240	30.216	-15.784	46.000	QUASIPEAK
5		773.045	10.457	21.730	32.188	-13.812	46.000	QUASIPEAK
6		877.196	11.944	22.201	34.145	-11.855	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5580MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		179.231	-3.060	34.565	31.505	-11.995	43.500	QUASIPEAK
2	*	244.519	0.094	40.883	40.977	-5.023	46.000	QUASIPEAK
3		348.670	3.365	29.535	32.900	-13.100	46.000	QUASIPEAK
4		603.606	8.391	23.760	32.151	-13.849	46.000	QUASIPEAK
5		734.183	9.947	21.710	31.657	-14.343	46.000	QUASIPEAK
6		930.048	12.612	21.881	34.492	-11.508	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5580MHz)

Vertical

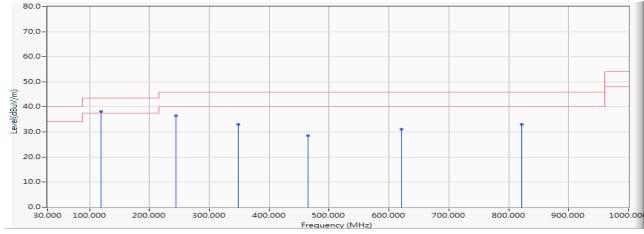
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		151.250	-1.938	30.599	28.661	-14.839	43.500	QUASIPEAK
2	*	244.519	0.094	34.284	34.378	-11.622	46.000	QUASIPEAK
3		426.394	5.389	27.284	32.673	-13.327	46.000	QUASIPEAK
4		550.753	7.768	22.165	29.933	-16.067	46.000	QUASIPEAK
5		684.439	9.297	20.132	29.429	-16.571	46.000	QUASIPEAK
6		909.840	12.280	21.055	33.334	-12.666	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5720MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	40.267	37.168	-6.332	43.500	QUASIPEAK
2	*	244.519	0.094	41.005	41.099	-4.901	46.000	QUASIPEAK
3		340.897	3.097	29.354	32.451	-13.549	46.000	QUASIPEAK
4		515.000	7.000	22.335	29.335	-16.665	46.000	QUASIPEAK
5		620.705	8.684	22.868	31.551	-14.449	46.000	QUASIPEAK
6		923.830	12.507	21.816	34.323	-11.677	46.000	QUASIPEAK

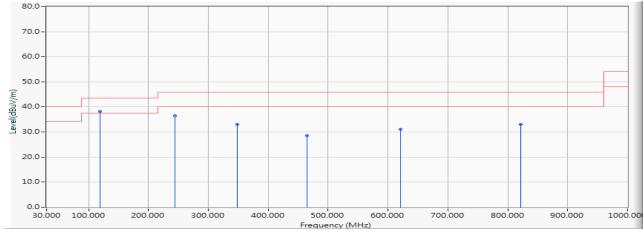

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5720MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	118.606	-0.634	38.756	38.122	-5.378	43.500	QUASIPEAK
2		244.519	0.094	36.410	36.504	-9.496	46.000	QUASIPEAK
3		348.670	3.365	29.753	33.118	-12.882	46.000	QUASIPEAK
4		465.256	6.063	22.522	28.585	-17.415	46.000	QUASIPEAK
5		620.705	8.684	22.428	31.111	-14.889	46.000	QUASIPEAK
6		821.234	11.178	21.834	33.012	-12.988	46.000	QUASIPEAK

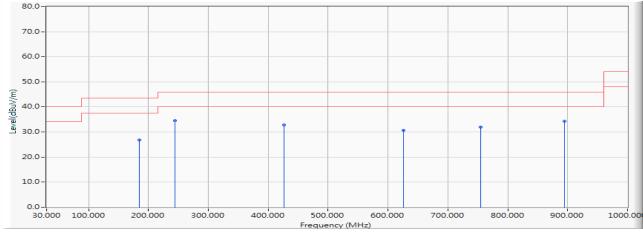

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5785MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	118.606	-0.634	38.756	38.122	-5.378	43.500	QUASIPEAK
2		244.519	0.094	36.410	36.504	-9.496	46.000	QUASIPEAK
3		348.670	3.365	29.753	33.118	-12.882	46.000	QUASIPEAK
4		465.256	6.063	22.522	28.585	-17.415	46.000	QUASIPEAK
5		620.705	8.684	22.428	31.111	-14.889	46.000	QUASIPEAK
6		821.234	11.178	21.834	33.012	-12.988	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 11 MIMO: Transmit (802.11n-20BW_14.4Mbps) (5785MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		185.449	-3.159	30.033	26.873	-16.627	43.500	QUASIPEAK
2	*	244.519	0.094	34.462	34.556	-11.444	46.000	QUASIPEAK
3		426.394	5.389	27.455	32.844	-13.156	46.000	QUASIPEAK
4		625.369	8.758	22.017	30.775	-15.225	46.000	QUASIPEAK
5		754.391	10.261	21.758	32.019	-13.981	46.000	QUASIPEAK
6		894.295	12.073	22.159	34.232	-11.768	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

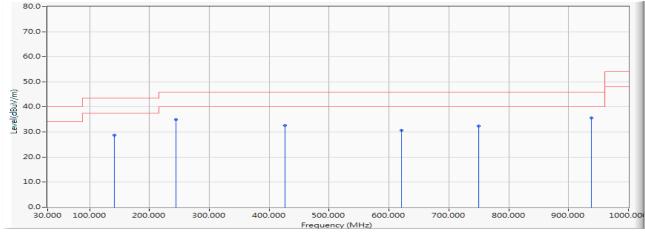
: Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5230MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		129.487	-0.703	35.009	34.305	-9.195	43.500	QUASIPEAK
2	*	244.519	0.094	40.612	40.706	-5.294	46.000	QUASIPEAK
3		348.670	3.365	29.527	32.892	-13.108	46.000	QUASIPEAK
4		426.394	5.389	25.741	31.130	-14.870	46.000	QUASIPEAK
5		620.705	8.684	23.330	32.013	-13.987	46.000	QUASIPEAK
6		888.077	12.023	21.232	33.255	-12.745	46.000	QUASIPEAK

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

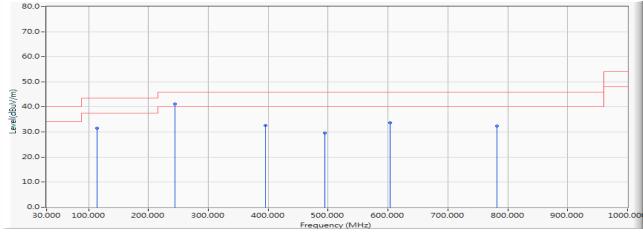

- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5230MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		141.923	-1.291	29.937	28.646	-14.854	43.500	QUASIPEAK
2		244.519	0.094	34.826	34.920	-11.080	46.000	QUASIPEAK
3		426.394	5.389	27.270	32.659	-13.341	46.000	QUASIPEAK
4		620.705	8.684	22.010	30.693	-15.307	46.000	QUASIPEAK
5		749.728	10.221	22.190	32.410	-13.590	46.000	QUASIPEAK
6	*	937.821	12.745	22.838	35.583	-10.417	46.000	QUASIPEAK

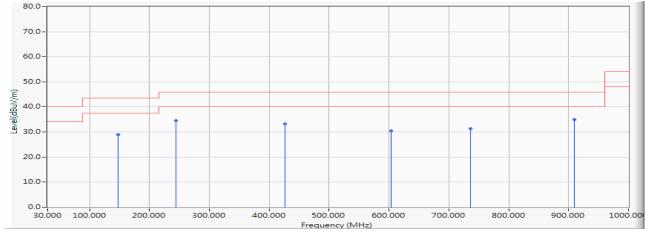

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5310MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		113.942	-0.854	32.489	31.634	-11.866	43.500	QUASIPEAK
2	*	244.519	0.094	41.071	41.165	-4.835	46.000	QUASIPEAK
3		395.304	4.828	27.734	32.562	-13.438	46.000	QUASIPEAK
4		494.792	6.596	23.046	29.643	-16.357	46.000	QUASIPEAK
5		603.606	8.391	25.367	33.758	-12.242	46.000	QUASIPEAK
6		782.372	10.569	21.724	32.294	-13.706	46.000	QUASIPEAK

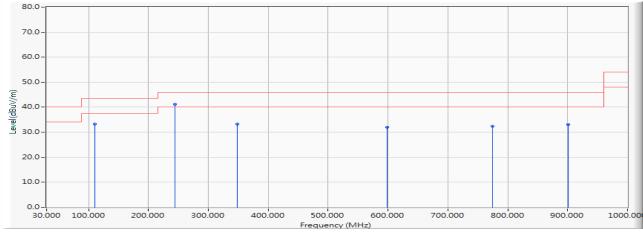

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5310MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.761	29.008	-14.492	43.500	QUASIPEAK
2		244.519	0.094	34.433	34.527	-11.473	46.000	QUASIPEAK
3		426.394	5.389	27.846	33.235	-12.765	46.000	QUASIPEAK
4		603.606	8.391	22.039	30.430	-15.570	46.000	QUASIPEAK
5		735.737	9.973	21.279	31.251	-14.749	46.000	QUASIPEAK
6	*	909.840	12.280	22.783	35.062	-10.938	46.000	QUASIPEAK

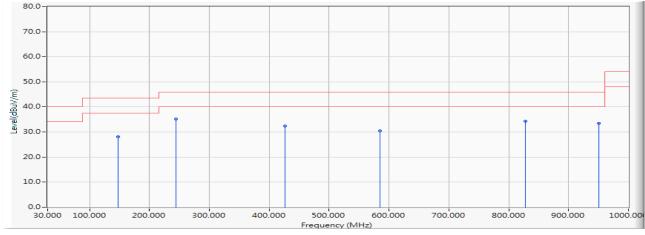

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04

Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5550MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		110.833	-1.008	34.244	33.235	-10.265	43.500	QUASIPEAK
2	*	244.519	0.094	41.046	41.140	-4.860	46.000	QUASIPEAK
3		348.670	3.365	29.782	33.147	-12.853	46.000	QUASIPEAK
4		598.942	8.325	23.592	31.917	-14.083	46.000	QUASIPEAK
5		774.599	10.478	21.874	32.352	-13.648	46.000	QUASIPEAK
6		900.513	12.117	20.951	33.069	-12.931	46.000	QUASIPEAK

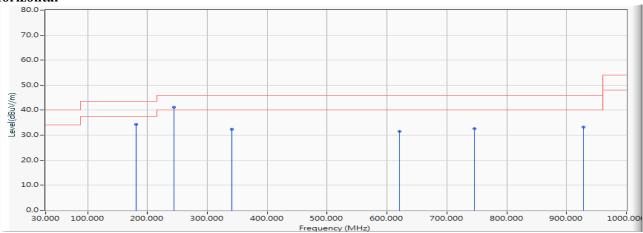

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5550MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.801	28.048	-15.452	43.500	QUASIPEAK
2	*	244.519	0.094	35.061	35.155	-10.845	46.000	QUASIPEAK
3		426.394	5.389	26.990	32.379	-13.621	46.000	QUASIPEAK
4		584.952	8.167	22.270	30.438	-15.562	46.000	QUASIPEAK
5		827.452	11.299	23.034	34.333	-11.667	46.000	QUASIPEAK
6		950.256	12.945	20.526	33.472	-12.528	46.000	QUASIPEAK

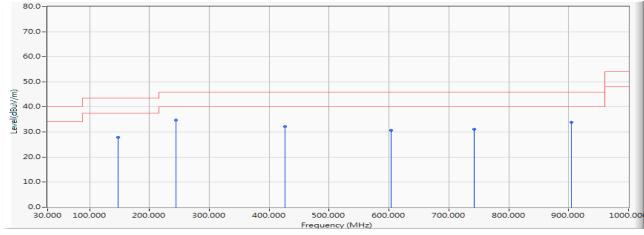

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04

Test Mode : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5710MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		180.785	-3.099	37.509	34.410	-9.090	43.500	QUASIPEAK
2	*	244.519	0.094	41.146	41.240	-4.760	46.000	QUASIPEAK
3		340.897	3.097	29.327	32.424	-13.576	46.000	QUASIPEAK
4		620.705	8.684	22.819	31.502	-14.498	46.000	QUASIPEAK
5		746.619	10.163	22.393	32.556	-13.444	46.000	QUASIPEAK
6		928.494	12.593	20.576	33.169	-12.831	46.000	QUASIPEAK

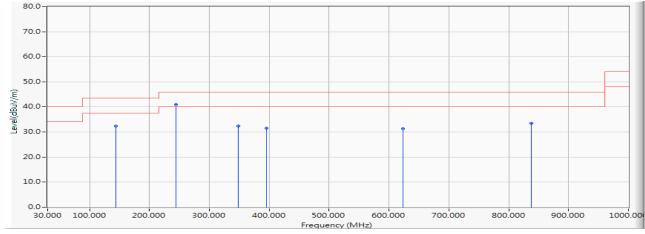

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5710MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	29.630	27.877	-15.623	43.500	QUASIPEAK
2	*	244.519	0.094	34.720	34.814	-11.186	46.000	QUASIPEAK
3		426.394	5.389	26.806	32.195	-13.805	46.000	QUASIPEAK
4		603.606	8.391	22.256	30.647	-15.353	46.000	QUASIPEAK
5		741.955	10.075	21.018	31.093	-14.907	46.000	QUASIPEAK
6		905.176	12.195	21.746	33.942	-12.058	46.000	QUASIPEAK

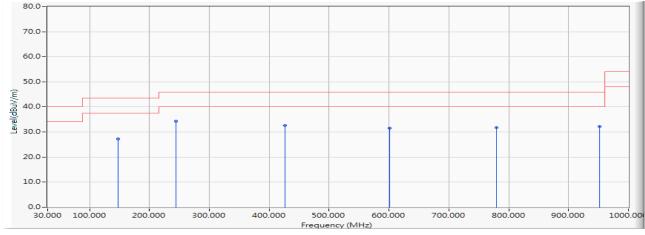

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5795MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	33.832	32.425	-11.075	43.500	QUASIPEAK
2	*	244.519	0.094	40.876	40.970	-5.030	46.000	QUASIPEAK
3		348.670	3.365	29.092	32.457	-13.543	46.000	QUASIPEAK
4		395.304	4.828	26.654	31.482	-14.518	46.000	QUASIPEAK
5		623.814	8.734	22.605	31.339	-14.661	46.000	QUASIPEAK
6		838.333	11.503	21.942	33.445	-12.555	46.000	QUASIPEAK

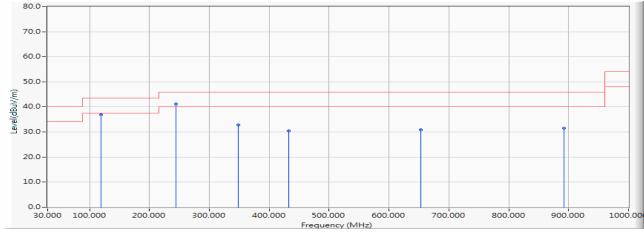

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 12 MIMO: Transmit (802.11n-40BW_30Mbps) (5795MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	28.900	27.147	-16.353	43.500	QUASIPEAK
2	*	244.519	0.094	34.275	34.369	-11.631	46.000	QUASIPEAK
3		426.394	5.389	27.180	32.569	-13.431	46.000	QUASIPEAK
4		600.497	8.335	23.219	31.554	-14.446	46.000	QUASIPEAK
5		779.263	10.533	21.213	31.746	-14.254	46.000	QUASIPEAK
6		951.811	12.962	19.273	32.235	-13.765	46.000	QUASIPEAK

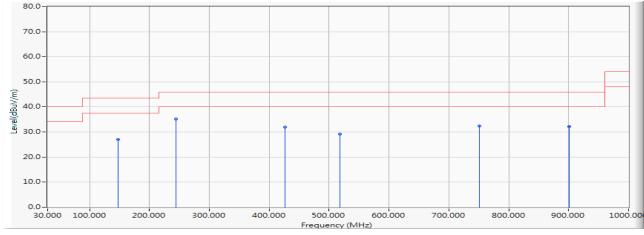

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5210MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	37.534	36.900	-6.600	43.500	QUASIPEAK
2	*	244.519	0.094	41.176	41.270	-4.730	46.000	QUASIPEAK
3		348.670	3.365	29.389	32.754	-13.246	46.000	QUASIPEAK
4		432.612	5.487	24.980	30.467	-15.533	46.000	QUASIPEAK
5		653.349	9.148	21.789	30.937	-15.063	46.000	QUASIPEAK
6		892.740	12.060	19.495	31.555	-14.445	46.000	QUASIPEAK

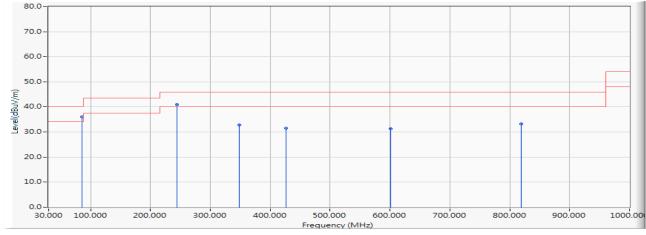

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5210MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	28.783	27.030	-16.470	43.500	QUASIPEAK
2	*	244.519	0.094	35.033	35.127	-10.873	46.000	QUASIPEAK
3		426.394	5.389	26.569	31.958	-14.042	46.000	QUASIPEAK
4		518.109	7.069	22.176	29.245	-16.755	46.000	QUASIPEAK
5		751.282	10.233	22.133	32.366	-13.634	46.000	QUASIPEAK
6		900.513	12.117	20.030	32.148	-13.852	46.000	QUASIPEAK

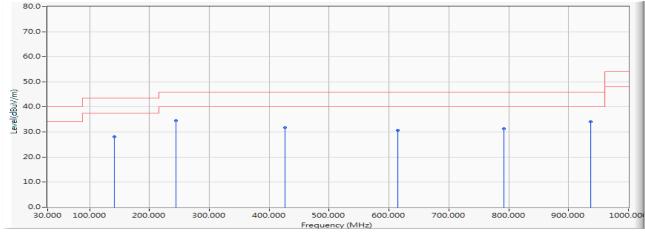

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5290MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	85.962	-4.806	40.880	36.074	-3.926	40.000	QUASIPEAK
2		244.519	0.094	40.921	41.015	-4.985	46.000	QUASIPEAK
3		348.670	3.365	29.511	32.876	-13.124	46.000	QUASIPEAK
4		426.394	5.389	26.138	31.527	-14.473	46.000	QUASIPEAK
5		600.497	8.335	22.962	31.297	-14.703	46.000	QUASIPEAK
6		819.679	11.150	22.134	33.284	-12.716	46.000	QUASIPEAK

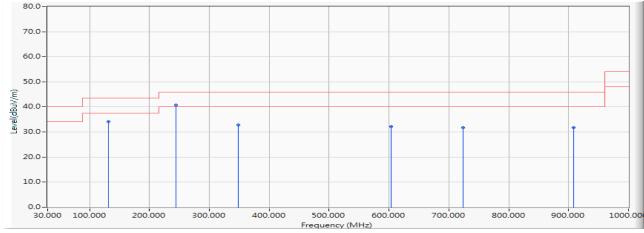

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

: Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5290MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		141.923	-1.291	29.422	28.131	-15.369	43.500	QUASIPEAK
2	*	244.519	0.094	34.376	34.470	-11.530	46.000	QUASIPEAK
3		426.394	5.389	26.307	31.696	-14.304	46.000	QUASIPEAK
4		614.487	8.578	21.995	30.573	-15.427	46.000	QUASIPEAK
5		791.699	10.675	20.713	31.387	-14.613	46.000	QUASIPEAK
6		936.266	12.719	21.473	34.192	-11.808	46.000	QUASIPEAK

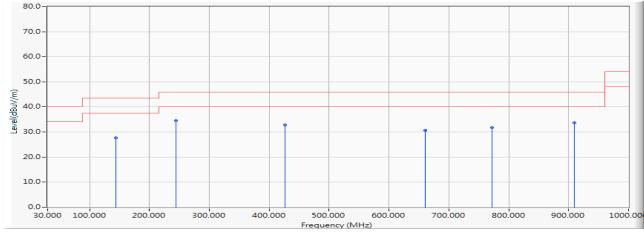

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5530MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		131.042	-0.754	34.903	34.148	-9.352	43.500	QUASIPEAK
2	*	244.519	0.094	40.657	40.751	-5.249	46.000	QUASIPEAK
3		348.670	3.365	29.489	32.854	-13.146	46.000	QUASIPEAK
4		603.606	8.391	23.792	32.183	-13.817	46.000	QUASIPEAK
5		723.301	9.757	21.978	31.736	-14.264	46.000	QUASIPEAK
6		908.285	12.250	19.481	31.732	-14.268	46.000	QUASIPEAK

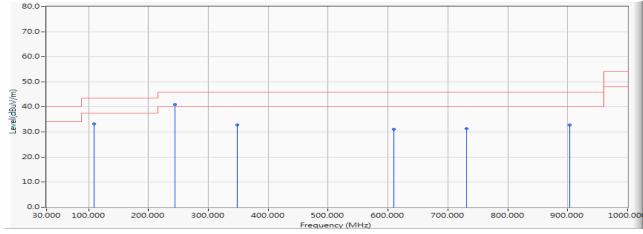

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5530MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		143.478	-1.407	29.170	27.763	-15.737	43.500	QUASIPEAK
2	*	244.519	0.094	34.491	34.585	-11.415	46.000	QUASIPEAK
3		426.394	5.389	27.390	32.779	-13.221	46.000	QUASIPEAK
4		661.122	9.185	21.546	30.731	-15.269	46.000	QUASIPEAK
5		771.490	10.443	21.240	31.683	-14.317	46.000	QUASIPEAK
6		909.840	12.280	21.452	33.731	-12.269	46.000	QUASIPEAK

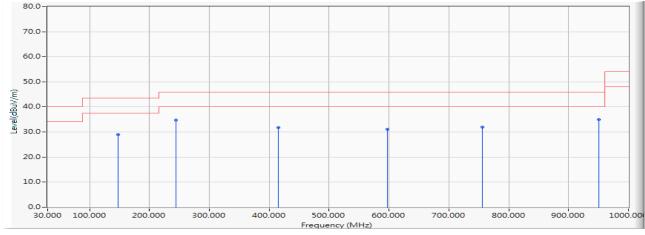

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5775MHz)

Horizontal

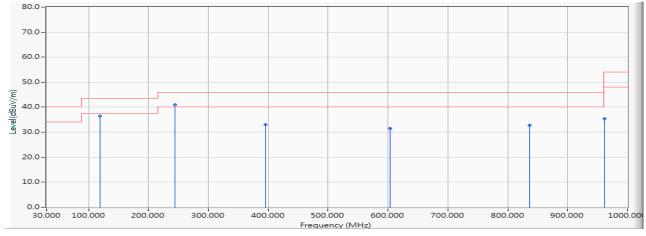
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		109.279	-1.147	34.464	33.317	-10.183	43.500	QUASIPEAK
2	*	244.519	0.094	40.969	41.063	-4.937	46.000	QUASIPEAK
3		348.670	3.365	29.457	32.822	-13.178	46.000	QUASIPEAK
4		609.824	8.499	22.673	31.171	-14.829	46.000	QUASIPEAK
5		731.074	9.896	21.348	31.244	-14.756	46.000	QUASIPEAK
6		903.622	12.171	20.623	32.794	-13.206	46.000	QUASIPEAK


- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode

e : Mode 13 MIMO: Transmit (802.11ac-80BW_65Mbps) (5775MHz)

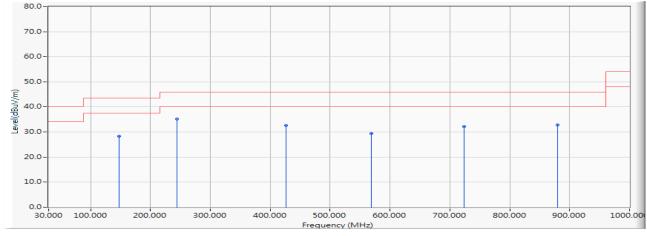
Vertical


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.794	29.041	-14.459	43.500	QUASIPEAK
2		244.519	0.094	34.707	34.801	-11.199	46.000	QUASIPEAK
3		415.513	5.223	26.553	31.776	-14.224	46.000	QUASIPEAK
4		597.388	8.306	22.841	31.148	-14.852	46.000	QUASIPEAK
5		755.946	10.278	21.720	31.998	-14.002	46.000	QUASIPEAK
6	*	950.256	12.945	22.031	34.977	-11.023	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5250MHz)

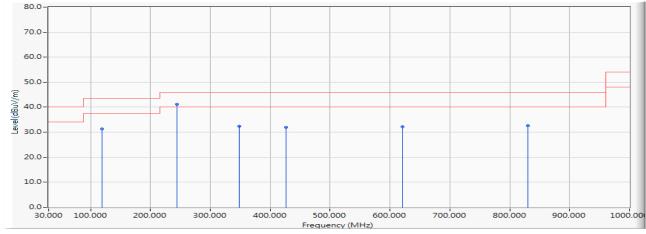
H Horizontal


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	37.087	36.453	-7.047	43.500	QUASIPEAK
2	*	244.519	0.094	40.951	41.045	-4.955	46.000	QUASIPEAK
3		395.304	4.828	28.167	32.995	-13.005	46.000	QUASIPEAK
4		603.606	8.391	23.075	31.466	-14.534	46.000	QUASIPEAK
5		836.779	11.475	21.306	32.781	-13.219	46.000	QUASIPEAK
6		961.138	13.052	22.435	35.487	-18.513	54.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5250MHz)

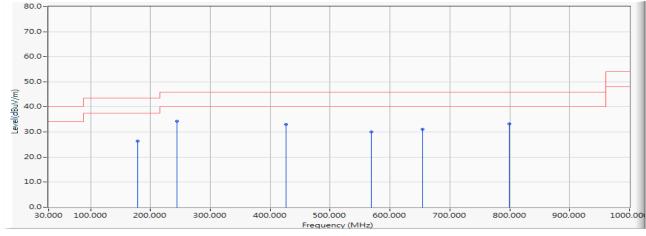
Vertical


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		148.141	-1.754	30.005	28.252	-15.248	43.500	QUASIPEAK
2	*	244.519	0.094	34.989	35.083	-10.917	46.000	QUASIPEAK
3		426.394	5.389	27.227	32.616	-13.384	46.000	QUASIPEAK
4		569.407	7.992	21.333	29.324	-16.676	46.000	QUASIPEAK
5		723.301	9.757	22.386	32.144	-13.856	46.000	QUASIPEAK
6		880.304	11.960	20.929	32.889	-13.111	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode :
 - e : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5570MHz)

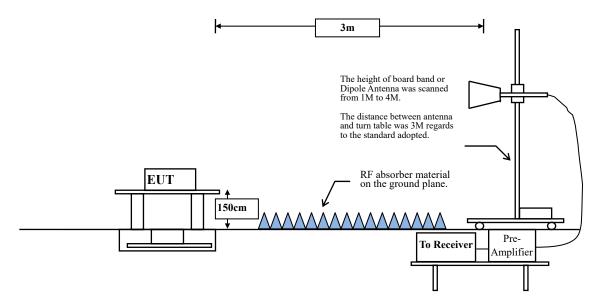
Horizontal


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		118.606	-0.634	31.943	31.309	-12.191	43.500	QUASIPEAK
2	*	244.519	0.094	41.051	41.145	-4.855	46.000	QUASIPEAK
3		348.670	3.365	28.939	32.304	-13.696	46.000	QUASIPEAK
4		426.394	5.389	26.532	31.921	-14.079	46.000	QUASIPEAK
5		620.705	8.684	23.548	32.231	-13.769	46.000	QUASIPEAK
6		830.561	11.357	21.244	32.601	-13.399	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : General Radiated Emission
- Test Date : 2019/06/04
- Test Mode
 - : Mode 14 MIMO: Transmit (802.11ac-160BW_130Mbps) (5570MHz)

Vertical


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		179.231	-3.060	29.416	26.356	-17.144	43.500	QUASIPEAK
2	*	244.519	0.094	34.292	34.386	-11.614	46.000	QUASIPEAK
3		426.394	5.389	27.699	33.088	-12.912	46.000	QUASIPEAK
4		569.407	7.992	22.074	30.065	-15.935	46.000	QUASIPEAK
5		654.904	9.161	21.892	31.053	-14.947	46.000	QUASIPEAK
6		799.471	10.765	22.582	33.347	-12.653	46.000	QUASIPEAK

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.

4. Band Edge

4.1. Test Setup

4.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m @3m	dBµV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

RBW and VBW Parameter setting:

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz. RBW = 1MHz.

VBW \geq 3MHz.

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle \ge 98 %

VBW $\geq 1/T$, when duty cycle < 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

SISO A

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	97.10	2.0362	491	500
802.11n20	97.39	1.8942	528	1000
802.11n40	89.74	0.8870	1127	2000
802.11ac80	85.59	0.4304	2323	3000
802.11ac160	86.34	0.2565	3898	5000

Note: Duty Cycle Refer to Section 5

SISO B

5GHz band	GHz band Duty Cycle		1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11a	97.12	2.0493	488	500
802.11n20	97.40	1.8971	527	1000
802.11n40	91.91	0.9058	1104	2000
802.11ac80	84.29	0.4275	2339	3000
802.11ac160	83.50	0.2493	4012	5000

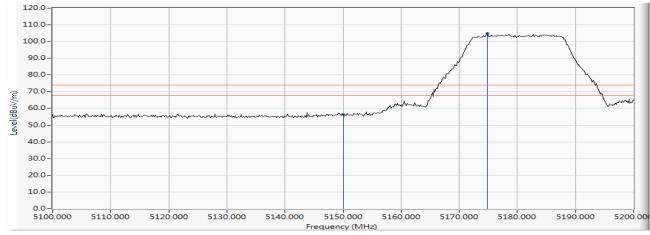
Note: Duty Cycle Refer to Section 5

MIMO

5GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
802.11n20	94.37	0.9710	1030	2000
802.11n40	84.00	0.4565	2190	3000
802.11ac80	69.87	0.2420	4132	5000
802.11ac160	72.74	0.1508	6633	6800

Note: Duty Cycle Refer to Section 5

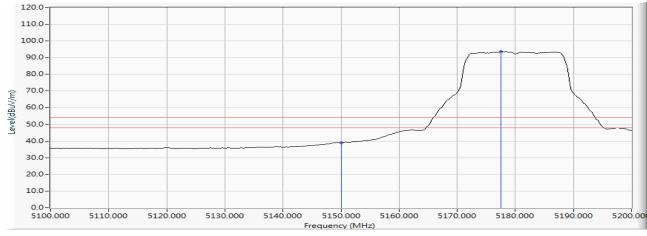
4.4. Uncertainty


- ± 4.08 dB above 1GHz
- ± 4.22 dB below 1GHz

4.5. Test Result of Band Edge

Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Band Edge Data
Test Date	:	2019/06/01
Test Mode	:	Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)

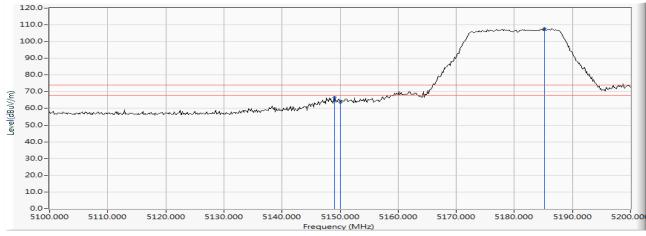
Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	45.832	56.303	-17.697	74.000	PEAK
2	*	5174.783	10.407	94.357	104.765			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	28.394	38.865	-15.135	54.000	AVERAGE
2	*	5177.536	10.400	83.240	93.640			AVERAGE

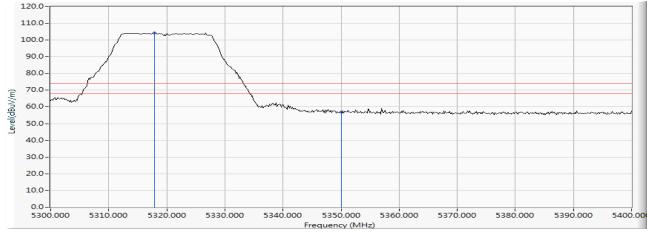
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5148.986	12.386	54.246	66.633	-7.367	74.000	PEAK
2		5150.000	12.390	51.367	63.757	-10.243	74.000	PEAK
3	*	5185.217	12.521	95.401	107.922			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

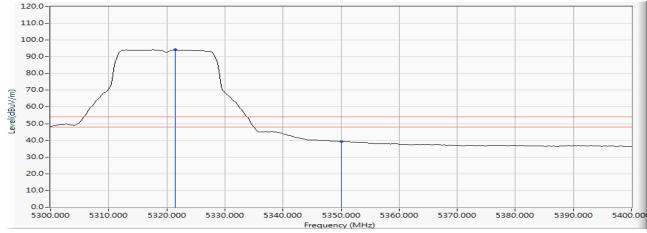
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	33.172	45.562	-8.438	54.000	AVERAGE
2	*	5186.377	12.525	84.322	96.847			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

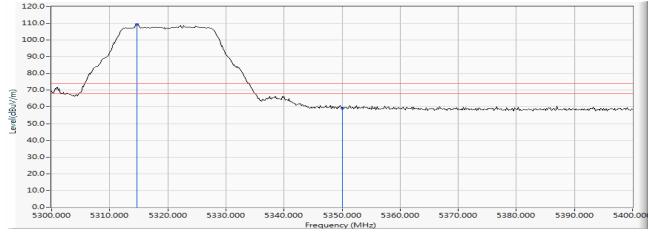
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5317.826	11.107	93.226	104.332			PEAK
2		5350.000	11.024	46.013	57.037	-16.963	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

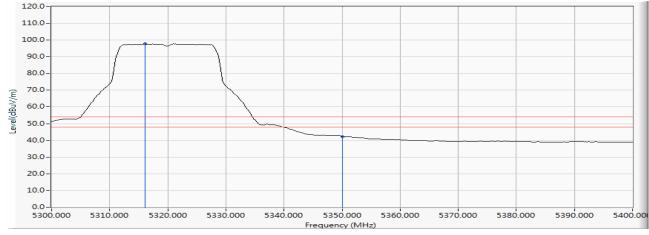
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5321.449	11.097	83.045	94.142			AVERAGE
2		5350.000	11.024	28.297	39.321	-14.679	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

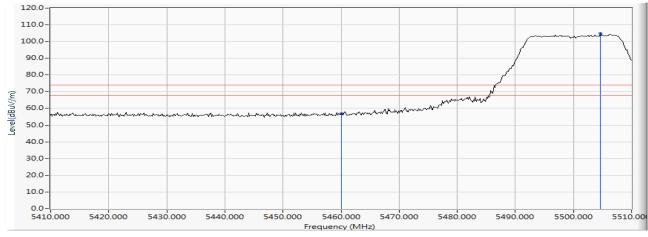
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5314.638	13.021	96.324	109.345			PEAK
2		5350.000	12.999	46.096	59.095	-14.905	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

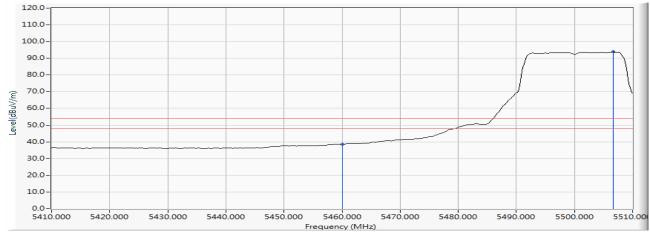
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5316.087	13.020	84.677	97.697			AVERAGE
2		5350.000	12.999	29.298	42.297	-11.703	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

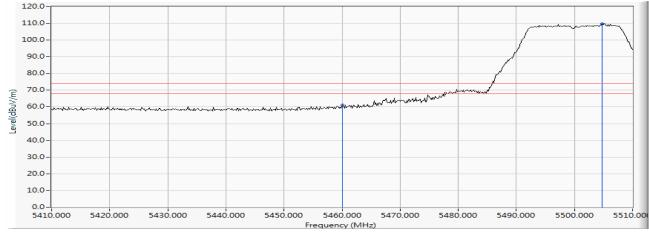
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	45.134	56.837	-17.163	74.000	PEAK
2	*	5504.638	12.202	92.712	104.913			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

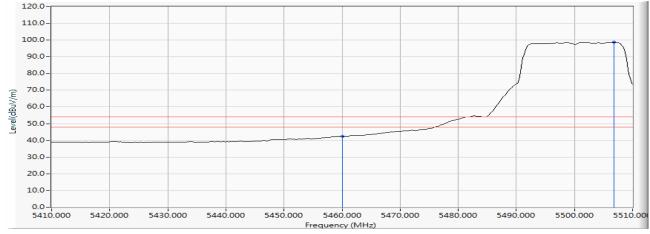
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector
1		5460.000	11.703	26.978	38.681	-15.319	54.000	Type AVERAGE
2	*	5506.667	12.190	81.665	93.855			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

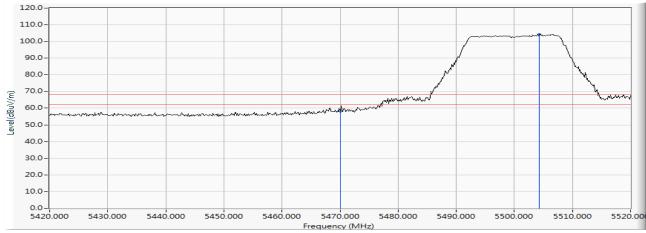
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	47.846	61.236	-12.764	74.000	PEAK
2	*	5504.783	13.644	96.185	109.829			PEAK

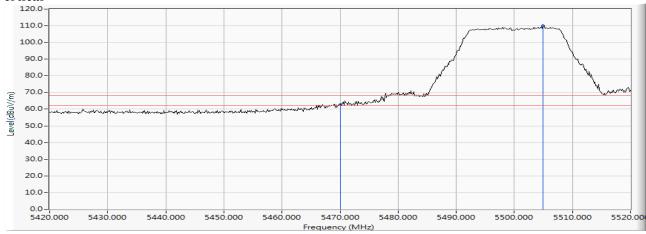
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)

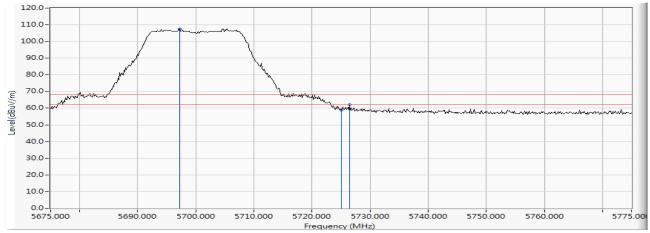


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	28.934	42.324	-11.676	54.000	AVERAGE
2	*	5506.812	13.633	85.009	98.642			AVERAGE

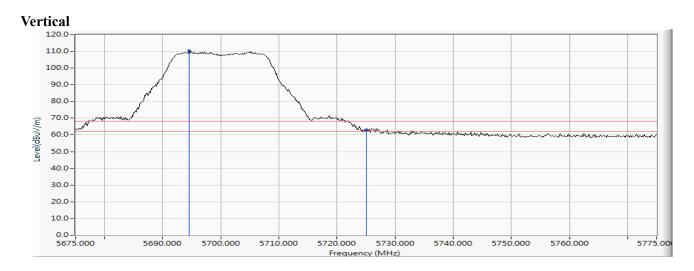
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	46.355	58.193	-10.027	68.220	PEAK
2	*	5504.348	12.199	92.195	104.394			PEAK


- Product :
- Intel® Wireless-AC 9260D2WL : Band Edge Data
- Test Item Test Date 2019/06/01 :
- Test Mode
 - Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz) :

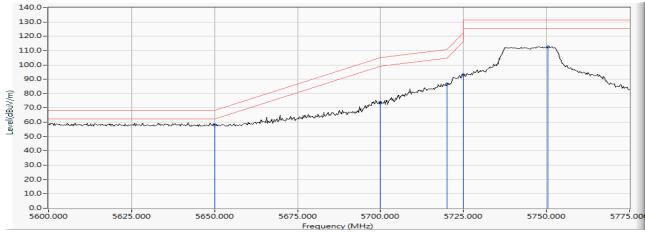
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	13.462	49.286	62.748	-5.472	68.220	PEAK
2	*	5504.928	13.644	96.284	109.929			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 140 (5700MHz)

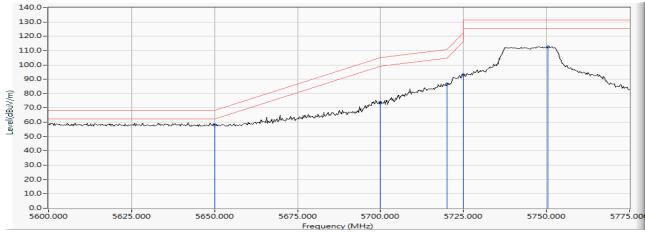
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5697.174	11.649	95.743	107.392			PEAK
2		5725.000	11.592	47.299	58.891	-9.329	68.220	PEAK
3		5726.449	11.588	50.385	61.972	-6.248	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 140 (5700MHz)

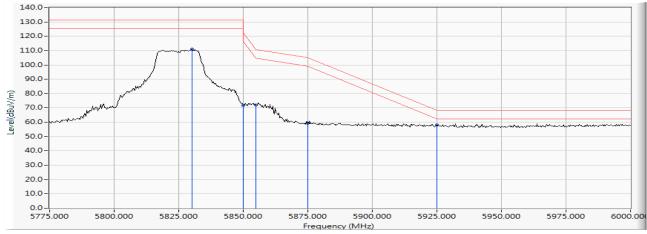
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5694.565	13.013	97.433	110.447			PEAK
2		5725.000	12.930	50.022	62.952	-5.268	68.220	PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 149 (5745MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	44.195	55.750	-12.470	68.220	PEAK
2		5700.000	11.647	60.572	72.219	-32.981	105.200	PEAK
3		5720.000	11.607	72.454	84.061	-26.739	110.800	PEAK
4		5725.000	11.592	78.704	90.296	-31.904	122.200	PEAK
5		5747.101	11.521	99.712	111.233			PEAK

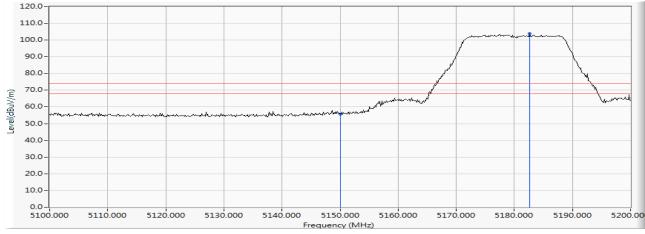

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode :
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 149 (5745MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	44.195	55.750	-12.470	68.220	PEAK
2		5700.000	11.647	60.572	72.219	-32.981	105.200	PEAK
3		5720.000	11.607	72.454	84.061	-26.739	110.800	PEAK
4		5725.000	11.592	78.704	90.296	-31.904	122.200	PEAK
5		5747.101	11.521	99.712	111.233			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode :
 - e : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 165 (5825MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	44.195	55.750	-12.470	68.220	PEAK
2		5700.000	11.647	60.572	72.219	-32.981	105.200	PEAK
3		5720.000	11.607	72.454	84.061	-26.739	110.800	PEAK
4		5725.000	11.592	78.704	90.296	-31.904	122.200	PEAK
5		5747.101	11.521	99.712	111.233			PEAK

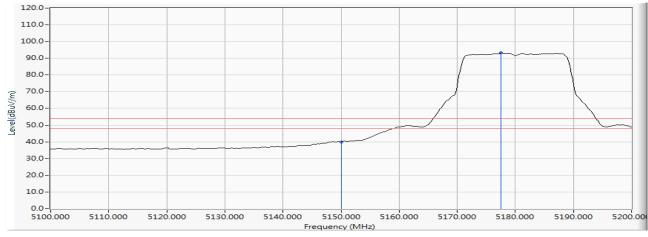
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 1 SISO A: Transmit (802.11a_6Mbps)-Channel 165 (5825MHz)


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5830.109	12.732	98.255	110.987			PEAK
2		5850.000	12.774	58.865	71.639	-50.561	122.200	PEAK
3		5855.000	12.784	59.361	72.145	-38.655	110.800	PEAK
4		5875.000	12.825	46.340	59.165	-46.035	105.200	PEAK
5	*	5925.000	12.911	45.272	58.183	-10.037	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 36 (5180MHz)

Horizontal

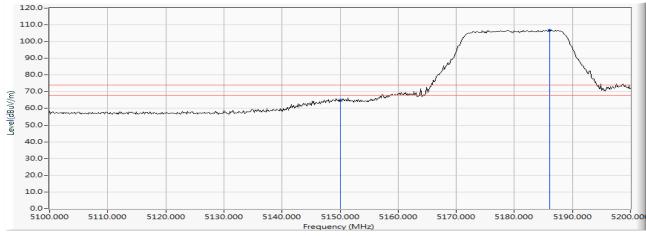


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	45.290	55.761	-18.239	74.000	PEAK
2	*	5182.609	10.386	93.395	103.782			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 36 (5180MHz)

		Frequency		0	Measure Level	0	Limit	Detector
1		(MHz) 5150.000	Factor (dB) 10.470	(dBuV) 29.480	(dBuV/m) 39.951	(dB) -14.049	(dBuV/m) 54.000	Type AVERAGE
2	*	5177.536	10.400	82.776	93.176			AVERAGE


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 36 (5180MHz)

Vertical

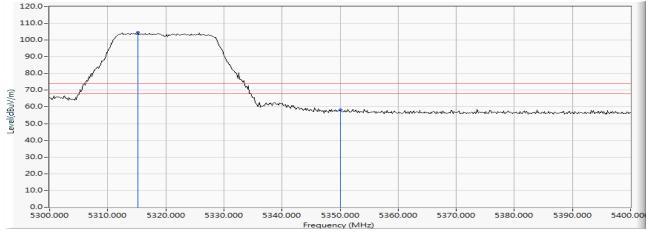
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	52.562	64.952	-9.048	74.000	PEAK
2	*	5186.087	12.524	94.312	106.836			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 36 (5180MHz)

Vertical

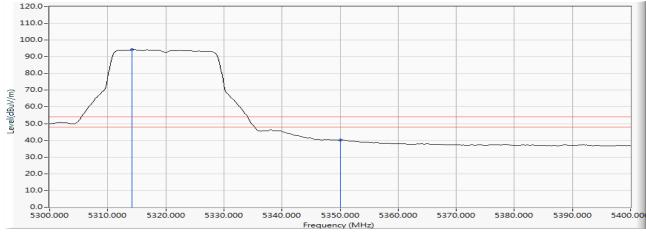


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	34.239	46.629	-7.371	54.000	AVERAGE
2	*	5187.391	12.529	83.864	96.393			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)

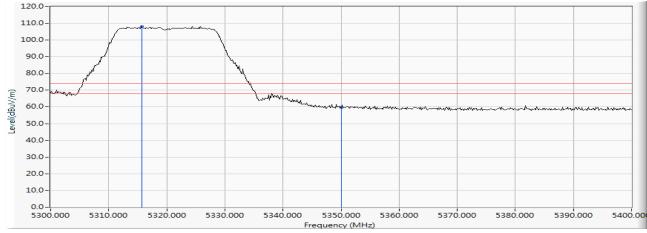
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5315.217	11.113	93.483	104.596			PEAK
2		5350.000	11.024	47.046	58.070	-15.930	74.000	PEAK


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)

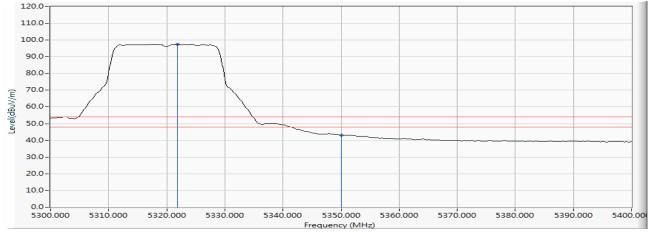
Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	5314.203	11.115	83.115	94.231			AVERAGE
2		5350.000	11.024	29.085	40.109	-13.891	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)

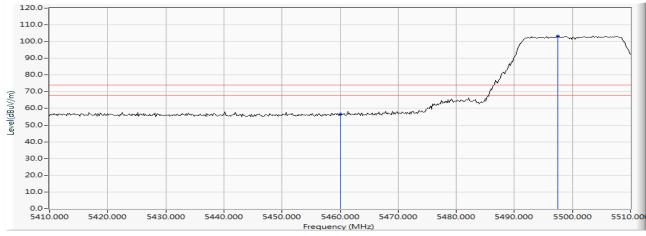


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5315.652	13.020	95.217	108.237			PEAK
2		5350.000	12.999	46.531	59.530	-14.470	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5321.884	13.017	84.617	97.633			AVERAGE
2		5350.000	12.999	30.126	43.125	-10.875	54.000	AVERAGE

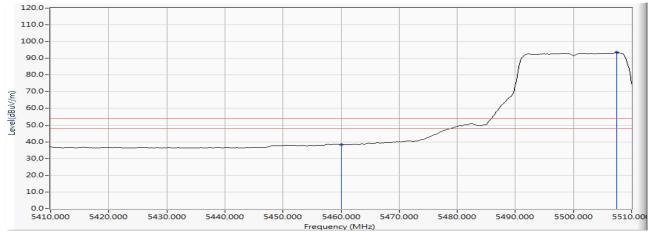

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

Horizontal

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	44.866	56.569	-17.431	74.000	PEAK
2	*	5497.536	12.151	91.233	103.385			PEAK

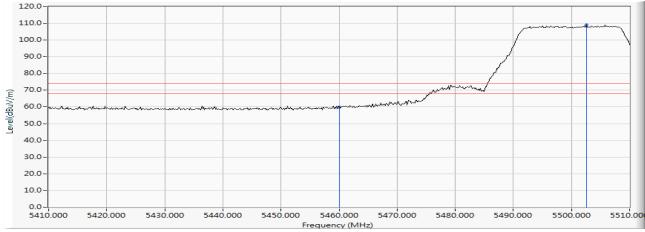

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

Horizontal

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	26.593	38.296	-15.704	54.000	AVERAGE
2	*	5507.391	12.185	81.275	93.459			AVERAGE

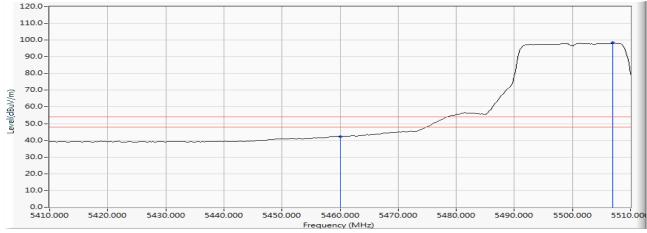

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode :

: Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

Vertical

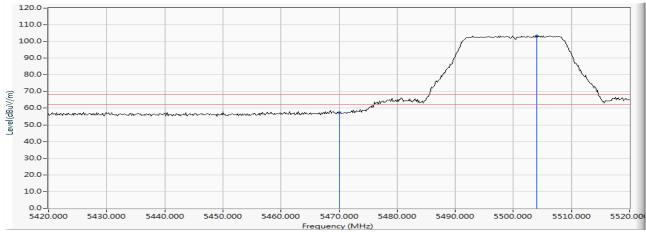
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	46.599	59.989	-14.011	74.000	PEAK
2	*	5502.609	13.638	95.560	109.197			PEAK


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode :

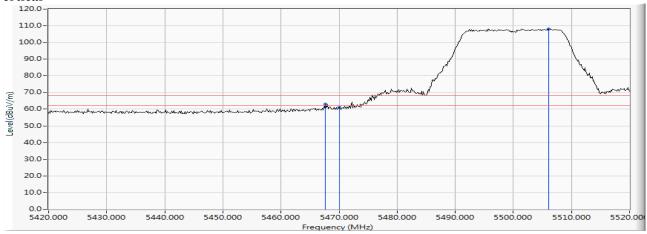
e : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

Vertical

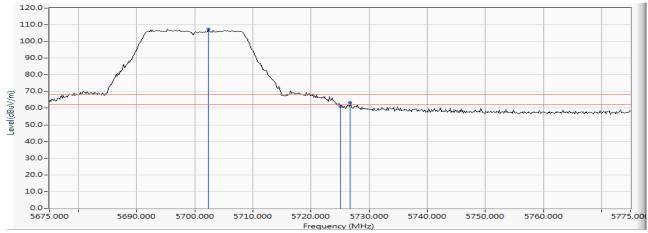


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	28.874	42.264	-11.736	54.000	AVERAGE
2	*	5506.957	13.633	84.662	98.294			AVERAGE

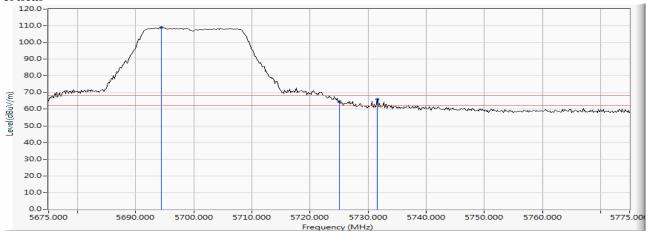
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	45.313	57.151	-11.069	68.220	PEAK
2	*	5504.058	12.197	91.215	103.412			PEAK

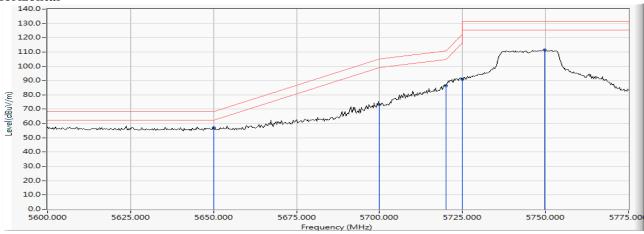

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5467.681	13.445	49.767	63.212	-5.008	68.220	PEAK
2		5470.000	13.462	47.771	61.233	-6.987	68.220	PEAK
3	*	5506.087	13.638	94.530	108.168			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 140 (5700MHz)

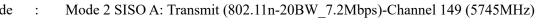
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5702.391	11.646	95.740	107.386			PEAK
2		5725.000	11.592	49.518	61.110	-7.110	68.220	PEAK
3		5726.739	11.587	51.865	63.452	-4.768	68.220	PEAK

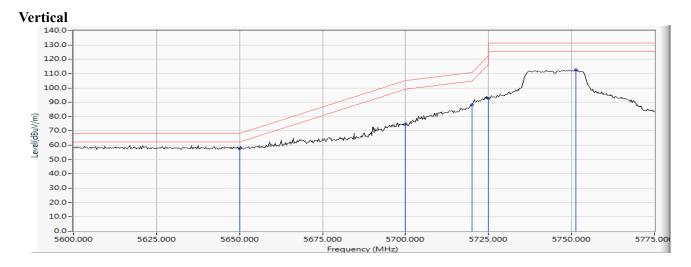
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 140 (5700MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5694.420	13.014	96.098	109.112			PEAK
2		5725.000	12.930	51.584	64.514	-3.706	68.220	PEAK
3		5731.522	12.908	53.088	65.996	-2.224	68.220	PEAK

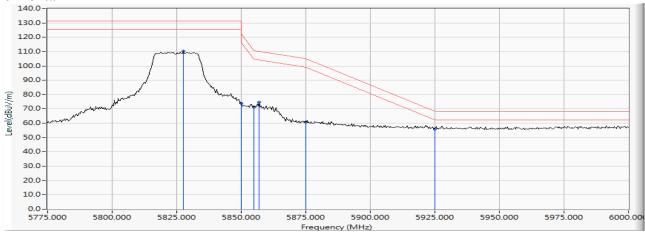
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01


Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 149 (5745MHz)

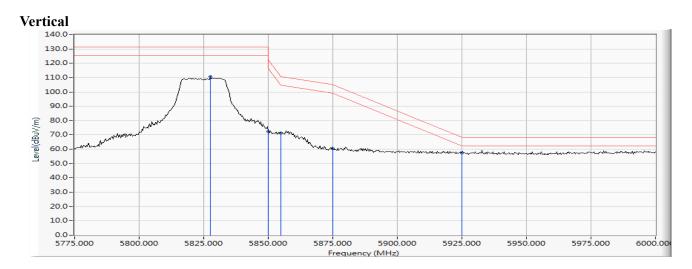


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	45.490	57.045	-11.175	68.220	PEAK
2		5700.000	11.647	61.356	73.003	-32.197	105.200	PEAK
3		5720.000	11.607	74.770	86.377	-24.423	110.800	PEAK
4		5725.000	11.592	79.175	90.767	-31.433	122.200	PEAK
5		5749.638	11.514	99.783	111.296			PEAK

- Product Intel® Wireless-AC 9260D2WL :
- Band Edge Data Test Item :
- Test Date : 2019/06/01
- Test Mode :

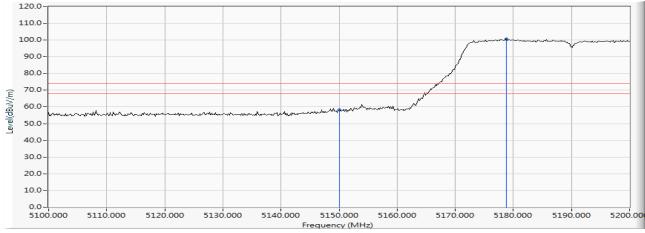


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	13.029	44.628	57.657	-10.563	68.220	PEAK
2		5700.000	13.003	61.800	74.803	-30.397	105.200	PEAK
3		5720.000	12.947	75.379	88.326	-22.474	110.800	PEAK
4		5725.000	12.930	79.650	92.580	-29.620	122.200	PEAK
5		5751.413	12.837	99.746	112.584			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 165 (5825MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5827.500	11.545	98.859	110.404			PEAK
2		5850.000	11.701	62.150	73.851	-48.349	122.200	PEAK
3		5855.000	11.735	59.637	71.372	-39.428	110.800	PEAK
4		5856.848	11.747	63.006	74.754	-35.529	110.283	PEAK
5		5875.000	11.873	48.989	60.862	-44.338	105.200	PEAK
6	*	5925.000	12.068	43.994	56.063	-12.157	68.220	PEAK

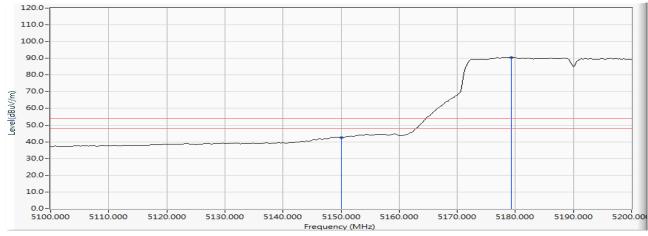
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 2 SISO A: Transmit (802.11n-20BW_7.2Mbps)-Channel 165 (5825MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5827.500	12.727	97.921	110.647			PEAK
2		5850.000	12.774	59.601	72.375	-49.825	122.200	PEAK
3		5855.000	12.784	58.396	71.180	-39.620	110.800	PEAK
4		5875.000	12.825	47.447	60.272	-44.928	105.200	PEAK
5	*	5925.000	12.911	44.469	57.380	-10.840	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

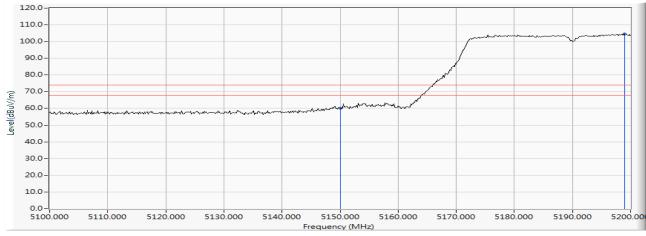
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	47.790	58.261	-15.739	74.000	PEAK
2	*	5178.841	10.397	90.171	100.568			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

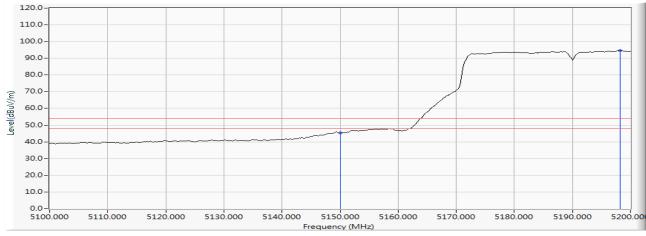
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	31.921	42.392	-11.608	54.000	AVERAGE
2	*	5179.275	10.396	80.158	90.554			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

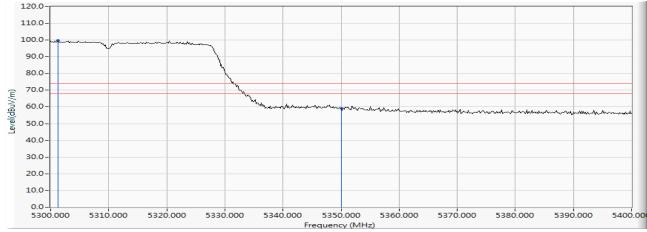
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	47.704	60.094	-13.906	74.000	PEAK
2	*	5198.986	12.562	91.944	104.506			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

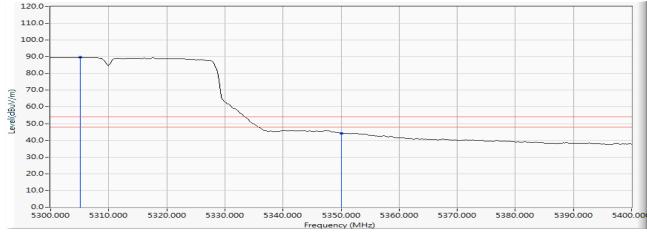
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	32.816	45.206	-8.794	54.000	AVERAGE
2	*	5198.261	12.560	82.009	94.569			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

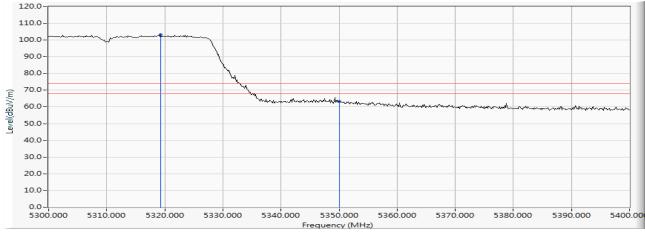
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5301.304	11.148	88.706	99.854			PEAK
2		5350.000	11.024	48.276	59.300	-14.700	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

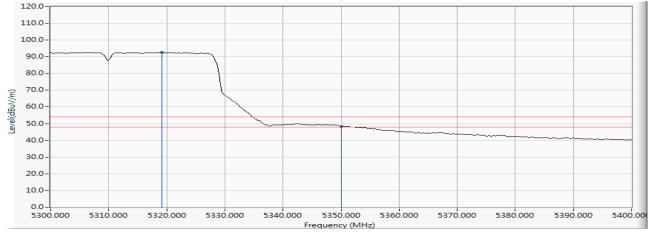
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5305.072	11.139	78.500	89.639			AVERAGE
2		5350.000	11.024	33.180	44.204	-9.796	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

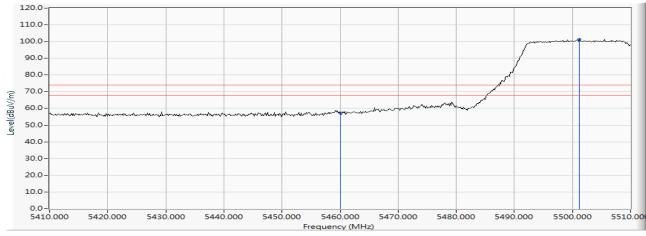
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5319.275	13.018	90.147	103.165			PEAK
2		5350.000	12.999	50.322	63.321	-10.679	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

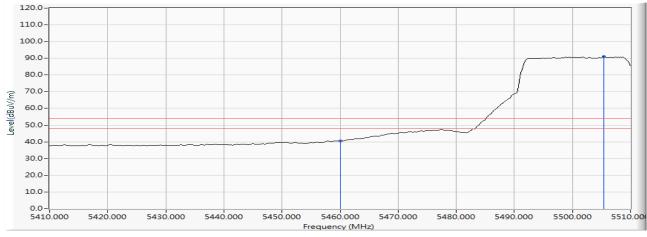
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 62 (5310MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5319.130	13.018	79.728	92.746			AVERAGE
2		5350.000	12.999	35.260	48.259	-5.741	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

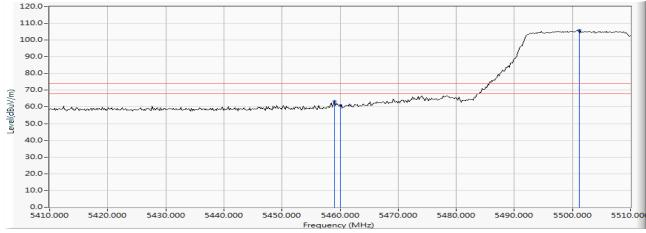
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	45.415	57.118	-16.882	74.000	PEAK
2	*	5501.159	12.177	89.078	101.255			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

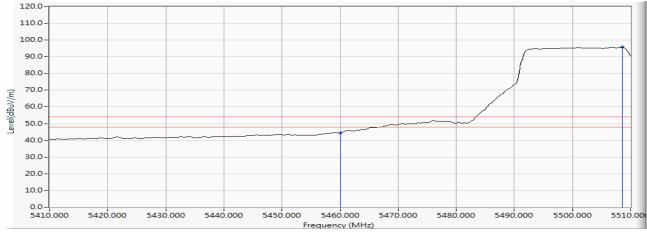
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	28.701	40.404	-13.596	54.000	AVERAGE
2	*	5505.362	12.201	78.707	90.908			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : 1

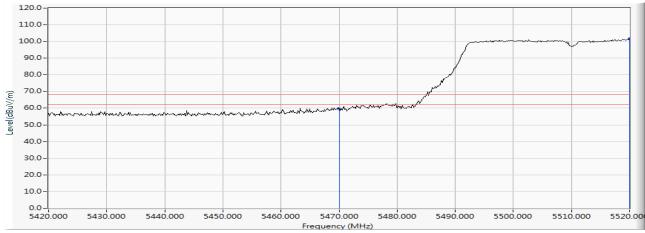
Vertical


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5458.986	13.383	49.910	63.292	-10.708	74.000	PEAK
2		5460.000	13.390	47.334	60.724	-13.276	74.000	PEAK
3	*	5501.159	13.633	92.234	105.867			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

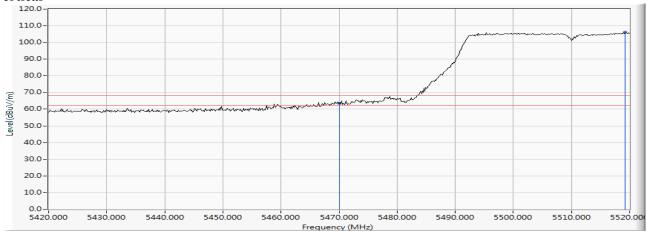
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode :

Vertical

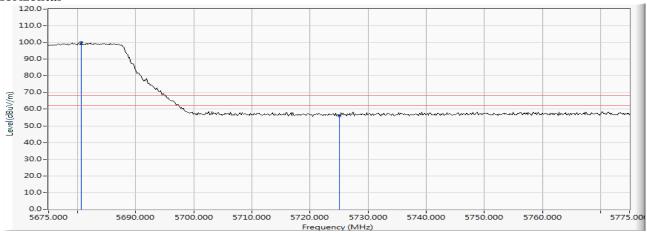


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	31.132	44.522	-9.478	54.000	AVERAGE
2	*	5508.551	13.622	82.127	95.749			AVERAGE

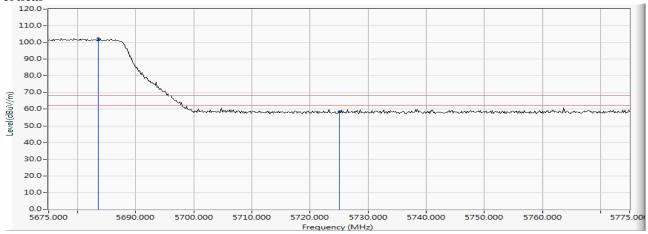
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 102 (5510MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	47.802	59.640	-8.580	68.220	PEAK
2	*	5520.000	12.083	89.567	101.650			PEAK

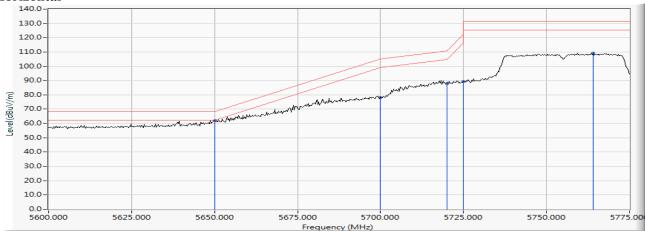

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 102 (5510MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	13.462	50.029	63.491	-4.729	68.220	PEAK
2	*	5519.275	13.553	92.679	106.232			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 134 (5670MHz)

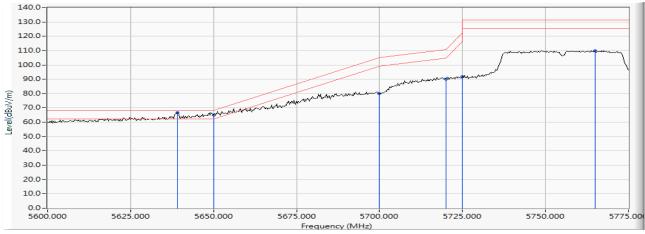
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5680.652	11.626	88.279	99.905			PEAK
2		5725.000	11.592	44.517	56.109	-12.111	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 134 (5670MHz)

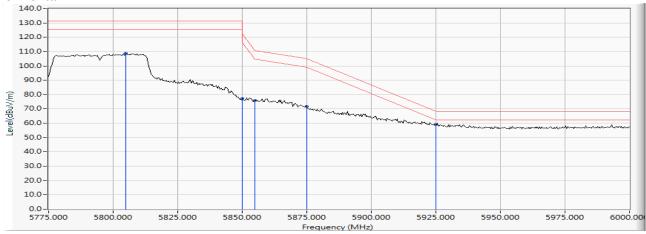


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5683.551	13.021	89.345	102.366			PEAK
2		5725.000	12.930	45.535	58.465	-9.755	68.220	PEAK

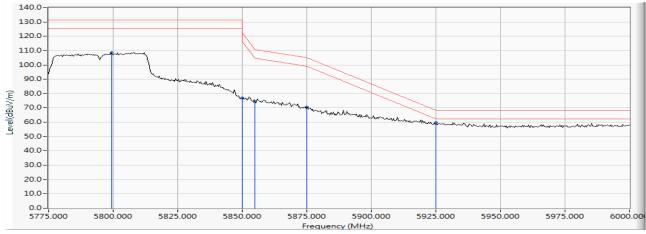
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01


Test Mode : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 151 (5755MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	50.357	61.912	-6.308	68.220	PEAK
2		5700.000	11.647	66.451	78.098	-27.102	105.200	PEAK
3		5720.000	11.607	76.053	87.660	-23.140	110.800	PEAK
4		5725.000	11.592	77.589	89.181	-33.019	122.200	PEAK
5		5764.094	11.468	97.621	109.089			PEAK

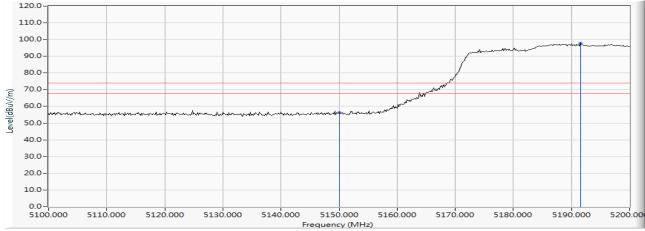

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 151 (5755MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5639.058	13.031	53.908	66.940	-1.280	68.220	PEAK
2		5650.000	13.029	52.017	65.046	-3.174	68.220	PEAK
3		5700.000	13.003	66.846	79.849	-25.351	105.200	PEAK
4		5720.000	12.947	77.298	90.245	-20.555	110.800	PEAK
5		5725.000	12.930	78.921	91.851	-30.349	122.200	PEAK
6		5764.855	12.791	97.342	110.133			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 159 (5795MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5805.000	11.409	97.411	108.820			PEAK
2		5850.000	11.701	65.444	77.145	-45.055	122.200	PEAK
3		5855.000	11.735	63.929	75.664	-35.136	110.800	PEAK
4		5875.000	11.873	59.771	71.644	-33.556	105.200	PEAK
5	*	5925.000	12.068	47.121	59.190	-9.030	68.220	PEAK

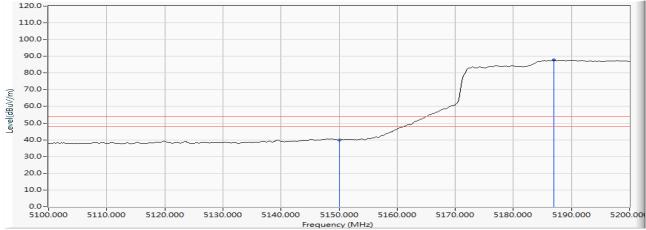
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 3 SISO A: Transmit (802.11n-40BW_15Mbps)-Channel 159 (5795MHz)


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5799.457	12.684	95.736	108.420			PEAK
2		5850.000	12.774	64.136	76.910	-45.290	122.200	PEAK
3		5855.000	12.784	61.440	74.224	-36.576	110.800	PEAK
4		5875.000	12.825	57.637	70.462	-34.738	105.200	PEAK
5	*	5925.000	12.911	46.753	59.664	-8.556	68.220	PEAK

Page: 511 of 702

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

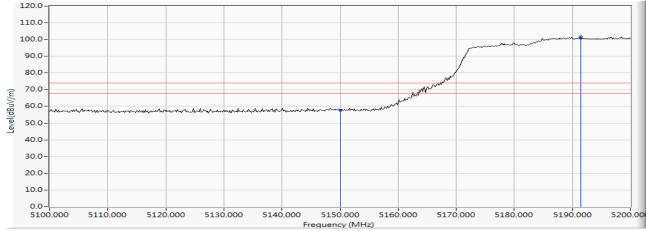
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	45.842	56.313	-17.687	74.000	PEAK
2	*	5191.594	10.361	87.402	97.763			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

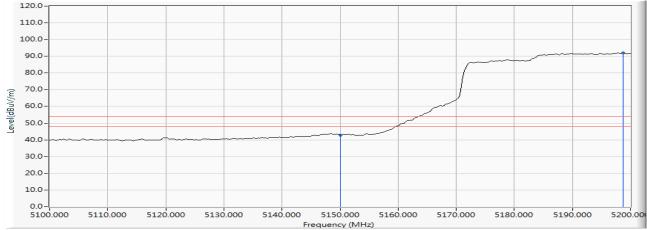
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	29.328	39.799	-14.201	54.000	AVERAGE
2	*	5186.957	10.376	77.295	87.671			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

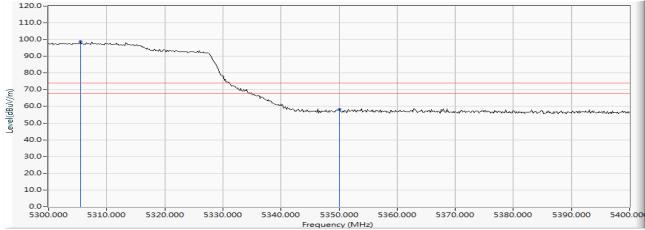
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	45.318	57.708	-16.292	74.000	PEAK
2	*	5191.449	12.541	89.167	101.708			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

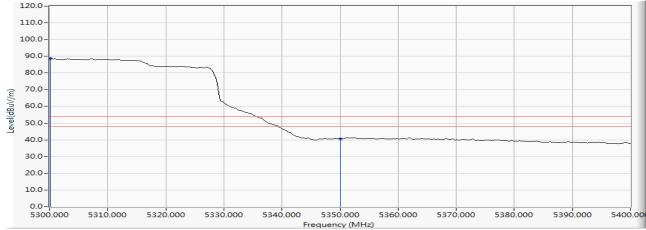
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	30.516	42.906	-11.094	54.000	AVERAGE
2	*	5198.696	12.561	79.530	92.091			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

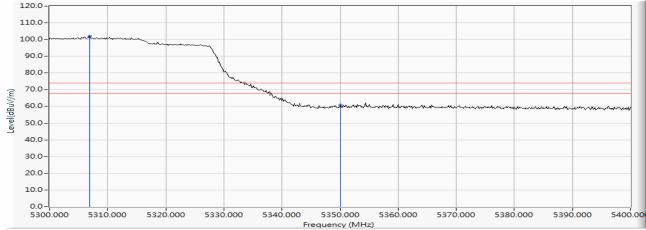
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	5305.507	11.138	87.506	98.644			PEAK
2		5350.000	11.024	47.153	58.177	-15.823	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

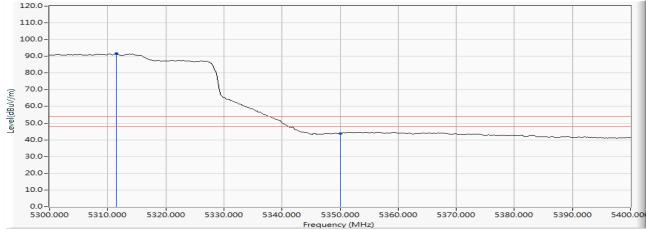
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5300.145	11.143	77.493	88.636			AVERAGE
2		5350.000	11.024	29.594	40.618	-13.382	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

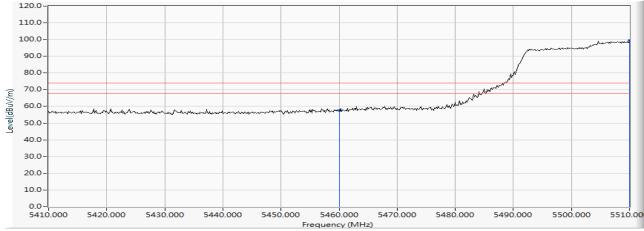
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5306.957	13.026	89.058	102.084			PEAK
2		5350.000	12.999	47.714	60.713	-13.287	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

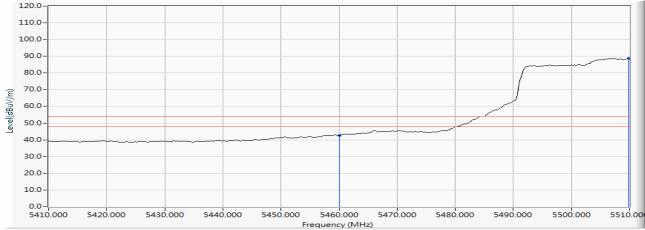
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5311.449	13.023	78.509	91.532			AVERAGE
2		5350.000	12.999	30.674	43.673	-10.327	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

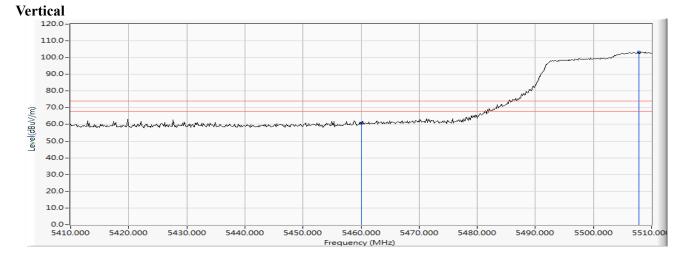
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	45.798	57.501	-16.499	74.000	PEAK
2	*	5510.000	12.164	87.171	99.334			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

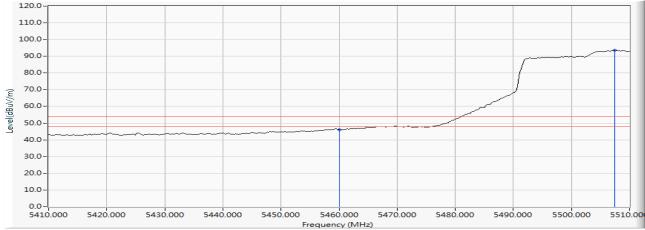
Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	30.869	42.572	-11.428	54.000	AVERAGE
2	*	5509.855	12.165	76.579	88.744			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

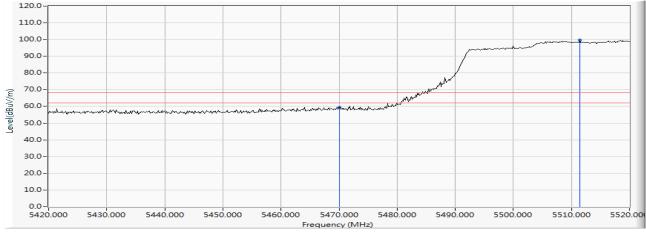
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	47.052	60.442	-13.558	74.000	PEAK
2	*	5507.826	13.627	89.679	103.306			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

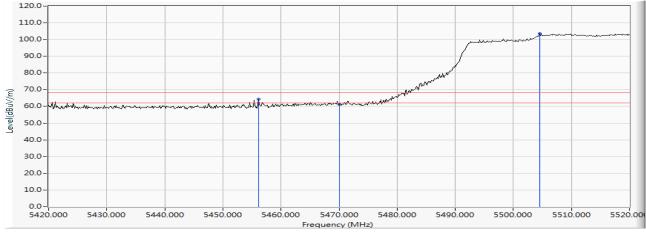
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	32.671	46.061	-7.939	54.000	AVERAGE
2	*	5507.391	13.630	79.913	93.542			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

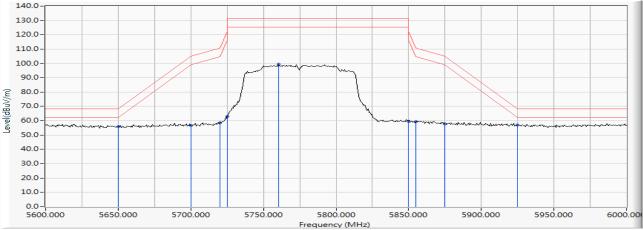
Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	47.667	59.505	-8.715	68.220	PEAK
2	*	5511.449	12.151	87.606	99.758			PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Vertical

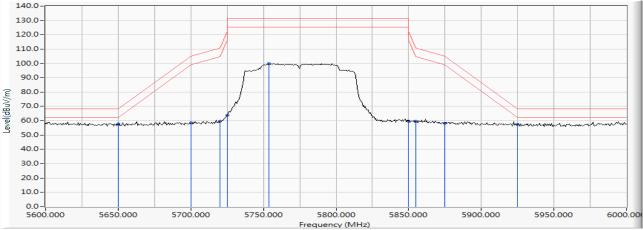


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5456.087	13.361	50.847	64.209	-4.011	68.220	PEAK
2		5470.000	13.462	47.642	61.104	-7.116	68.220	PEAK
3	*	5504.493	13.642	89.795	103.438			PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5650.000	11.554	44.253	55.808	-12.412	68.220	PEAK
2		5700.000	11.647	45.047	56.694	-48.506	105.200	PEAK
3		5720.000	11.607	46.932	58.539	-52.261	110.800	PEAK
4		5725.000	11.592	51.443	63.035	-59.165	122.200	PEAK
5		5760.580	11.479	87.828	99.307			PEAK
6		5850.000	11.701	47.955	59.656	-62.544	122.200	PEAK
7		5855.000	11.735	47.484	59.219	-51.581	110.800	PEAK
8		5875.000	11.873	45.956	57.829	-47.371	105.200	PEAK
9	*	5925.000	12.068	44.809	56.878	-11.342	68.220	PEAK



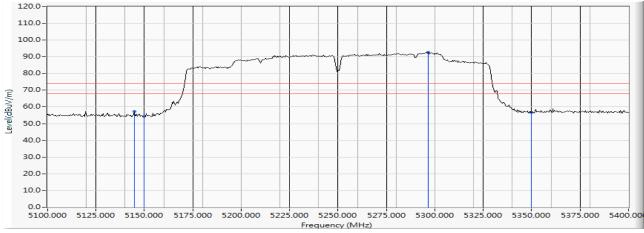
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Test Mode

le : Mode 4 SISO A: Transmit (802.11ac-80BW_32.5Mbps)-Channel 155 (5775MHz)

Vertical

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	13.029	44.909	57.938	-10.282	68.220	PEAK
2		5700.000	13.003	45.423	58.426	-46.774	105.200	PEAK
3		5720.000	12.947	46.794	59.741	-51.059	110.800	PEAK
4		5725.000	12.930	50.715	63.645	-58.555	122.200	PEAK
5		5753.623	12.829	87.019	99.849			PEAK
6		5850.000	12.774	46.985	59.759	-62.441	122.200	PEAK
7		5855.000	12.784	46.745	59.529	-51.271	110.800	PEAK
8		5875.000	12.825	45.494	58.319	-46.881	105.200	PEAK
9		5925.000	12.911	44.665	57.576	-10.644	68.220	PEAK



- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

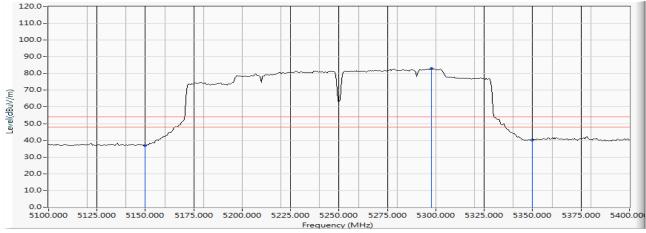
Test Mode

: Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 50 (5250MHz)

Horizontal

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5144.783	10.484	46.867	57.351	-16.649	74.000	PEAK
2		5150.000	10.470	43.961	54.432	-19.568	74.000	PEAK
3	*	5296.522	11.116	81.379	92.495			PEAK
4		5350.000	11.024	45.751	56.775	-17.225	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

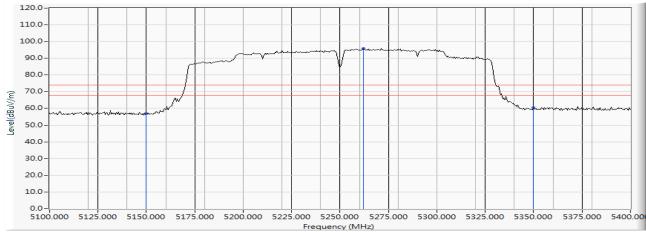


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22

Test Mode

: Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 50 (5250MHz)

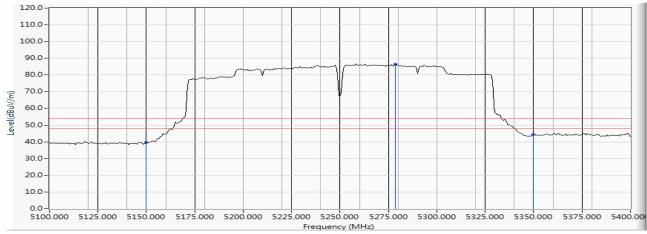
Horizontal



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	10.470	26.460	36.931	-17.069	54.000	AVERAGE
2	*	5297.826	11.126	71.864	82.989			AVERAGE
3		5350.000	11.024	29.161	40.185	-13.815	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

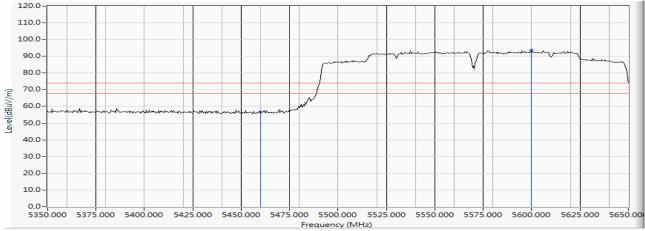
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22
- Test Mode
- : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 50 (5250MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	12.390	44.509	56.899	-17.101	74.000	PEAK
2	*	5262.174	12.858	83.139	95.997			PEAK
3		5350.000	12.999	47.445	60.444	-13.556	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

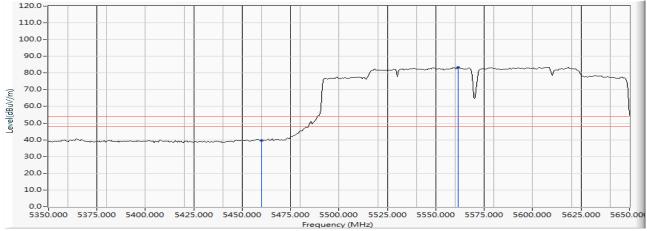
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/22
- Test Mode
- : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 50 (5250MHz)


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5150.000	12.390	27.042	39.432	-14.568	54.000	AVERAGE
2	*	5278.696	12.933	73.751	86.684			AVERAGE
3		5350.000	12.999	31.470	44.469	-9.531	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

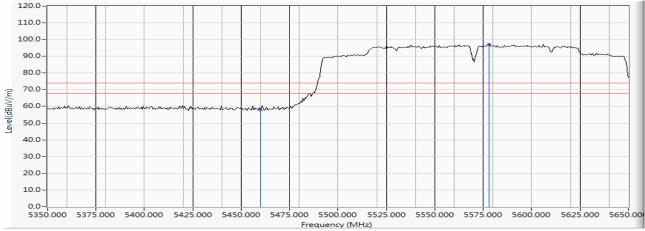
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	44.858	56.561	-17.439	74.000	PEAK
2	*	5600.000	11.467	82.009	93.476			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

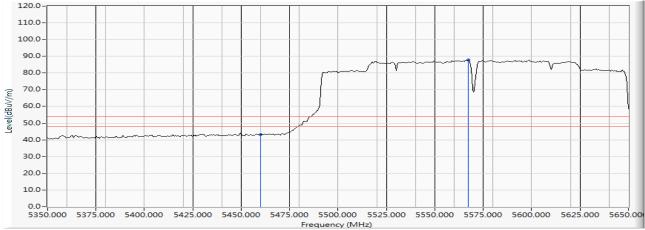
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	28.000	39.703	-14.297	54.000	AVERAGE
2	*	5561.304	11.750	71.712	83.462			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	44.579	57.969	-16.031	74.000	PEAK
2	*	5577.826	13.182	83.983	97.165			PEAK

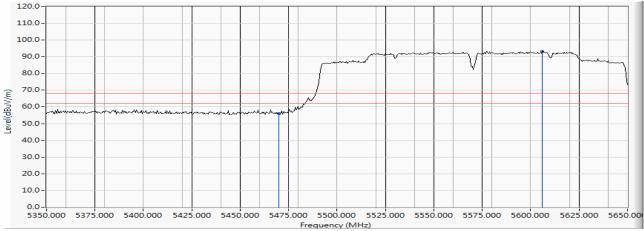
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Vertical

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	29.789	43.179	-10.821	54.000	AVERAGE
2	*	5567.391	13.249	74.474	87.722			AVERAGE

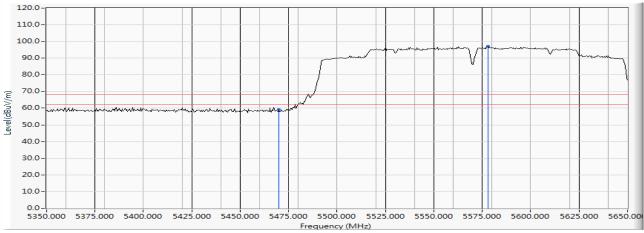
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection


Product : Intel® Wireless-AC 9260D2WL

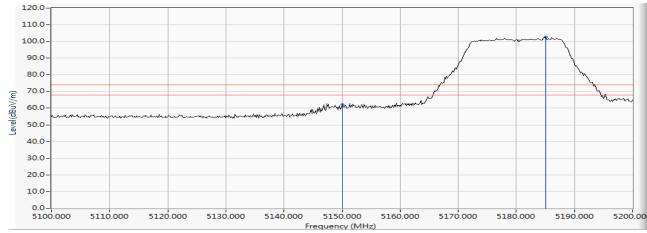
- Test Item : Band Edge Data
- Test Date : 2019/06/01

Test Mode

: Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 114 (5570MHz)

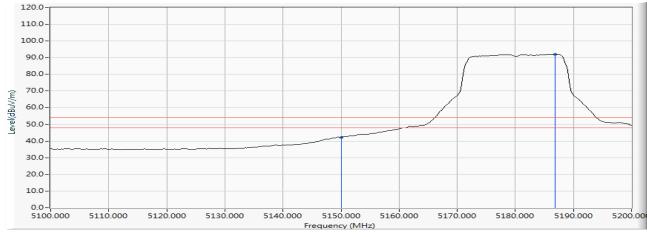

Horizontal

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	44.253	56.091	-12.129	68.220	PEAK
2	*	5606.087	11.455	81.991	93.446			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - le : Mode 5 SISO A: Transmit (802.11ac-160BW_65Mbps)-Channel 114 (5570MHz)

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
2	5470.000	16.200	48.894	65.094	-8.879	68.220	PEAK
2	5470.000	16.200	48.894	65.094			PEAK

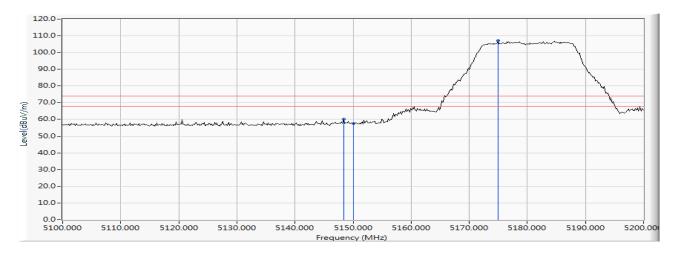
Product	:	Intel® Wireless-AC 9260D2WL
Test Item	:	Band Edge Data
Test Date	:	2019/05/25
Test Mode	:	Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	51.559	62.030	-11.970	74.000	PEAK
2	*	5185.072	10.381	92.373	102.754			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

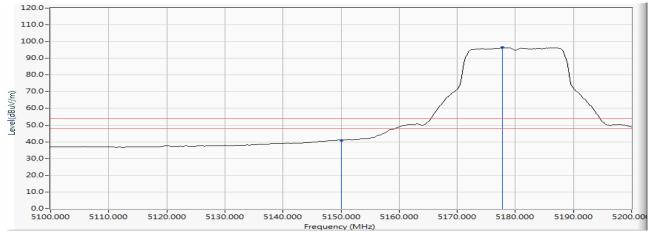
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode : Mod
 - le : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	31.787	42.258	-11.742	54.000	AVERAGE
2	*	5186.812	10.377	81.753	92.130			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------

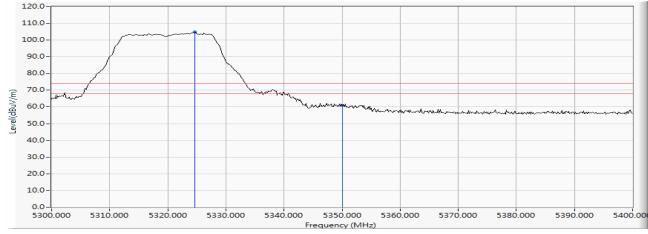
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5148.406	12.385	47.670	60.054	-13.946	74.000	PEAK
2		5150.000	12.390	45.218	57.608	-16.392	74.000	PEAK
3	*	5174.928	12.483	94.536	107.019			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

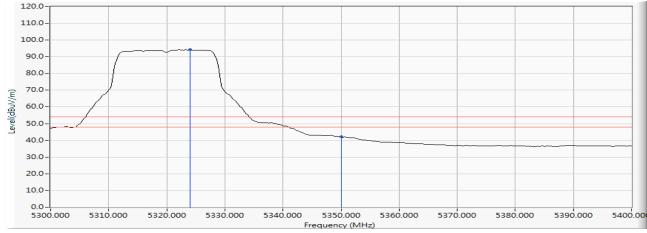
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 36 (5180MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	28.515	40.905	-13.095	54.000	AVERAGE
2	*	5177.826	12.494	83.891	96.384			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

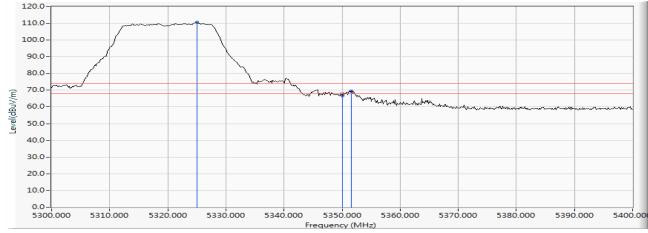
- Product Intel® Wireless-AC 9260D2WL :
- Test Item Band Edge Data :
- Test Date 2019/05/26 :
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a 6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5324.638	11.088	93.878	104.967			PEAK
2		5350.000	11.024	49.860	60.884	-13.116	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 3. detection.

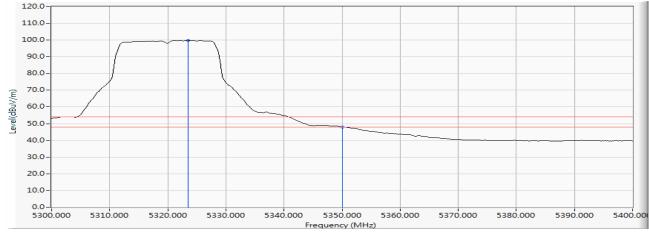
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode :
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5324.058	11.090	83.083	94.173			AVERAGE
2		5350.000	11.024	31.000	42.024	-11.976	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5325.072	13.015	97.555	110.569			PEAK
2		5350.000	12.999	53.580	66.579	-7.421	74.000	PEAK
3		5351.594	12.998	56.625	69.623	-4.377	74.000	PEAK

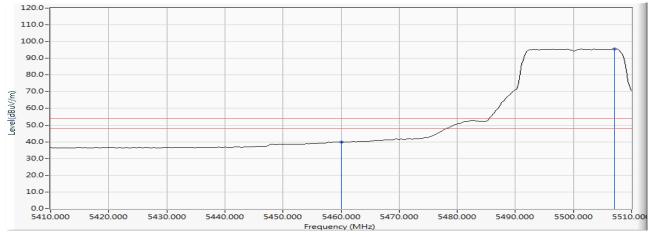
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 64 (5320MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5323.478	13.015	86.835	99.850			AVERAGE
2		5350.000	12.999	34.980	47.979	-6.021	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

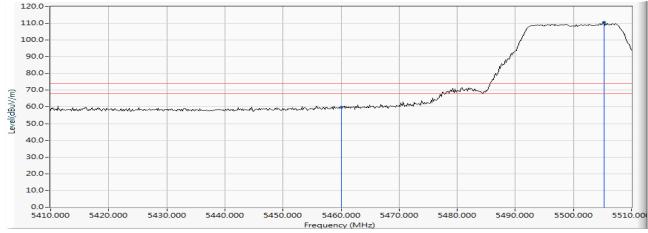
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	45.142	56.845	-17.155	74.000	PEAK
2	*	5504.928	12.203	95.070	107.273			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

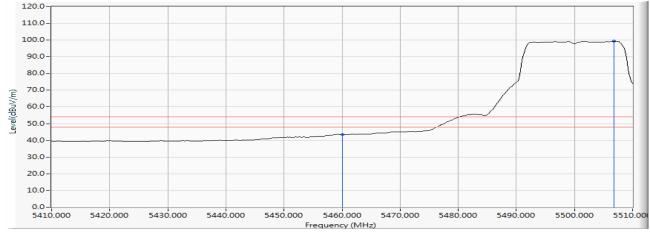
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	28.093	39.796	-14.204	54.000	AVERAGE
2	*	5507.101	12.187	83.386	95.573			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

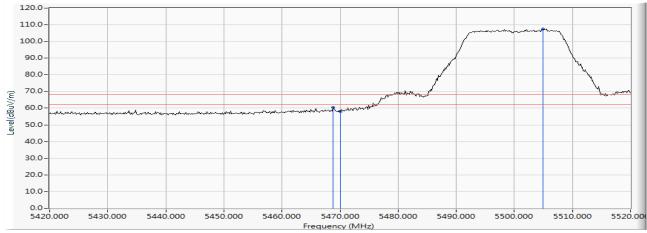
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	46.497	59.887	-14.113	74.000	PEAK
2	*	5505.217	13.644	96.976	110.619			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

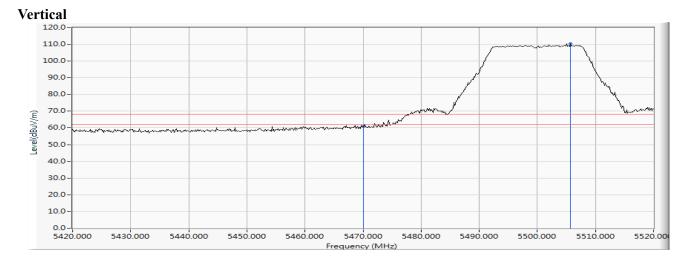
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode
 - e : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	29.964	43.354	-10.646	54.000	AVERAGE
2	*	5506.812	13.633	85.645	99.278			AVERAGE

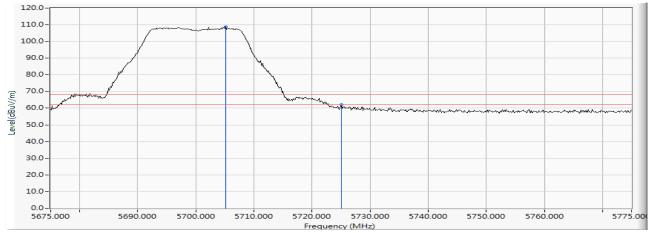
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)

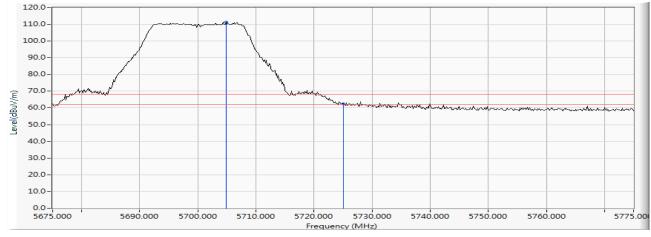


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5468.841	11.823	48.769	60.592	-7.628	68.220	PEAK
2		5470.000	11.838	45.987	57.825	-10.395	68.220	PEAK
3	*	5504.928	12.203	95.269	107.472			PEAK

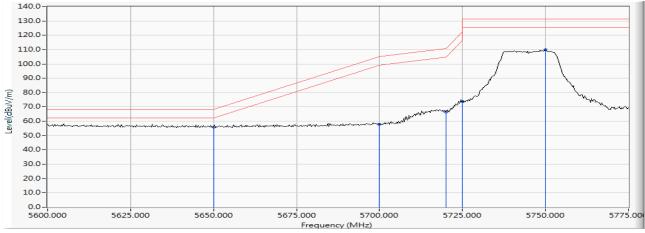
Product :	Intel® Wireless-AC 9260D2WL
-----------	-----------------------------


- Test Item : Band Edge Data
- Test Date : 2019/05/26
- Test Mode :
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 100 (5500MHz)

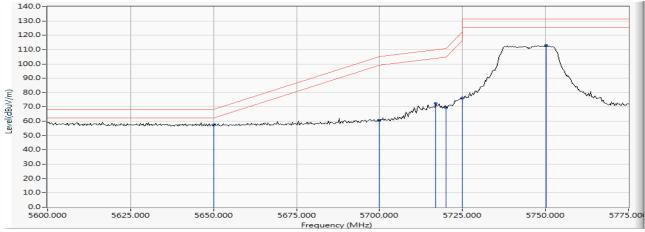
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	13.462	47.187	60.649	-7.571	68.220	PEAK
2	*	5505.652	13.641	96.661	110.302			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 140 (5700MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1	*	5705.145	11.643	96.975	108.619			PEAK
2		5725.000	11.592	50.488	62.080	-6.140	68.220	PEAK

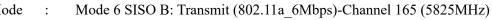

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
 - e : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 140 (5700MHz)

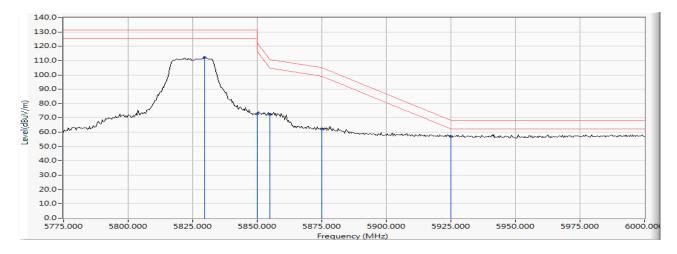
		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5704.855	12.993	98.269	111.263			PEAK
2		5725.000	12.930	49.523	62.453	-5.767	68.220	PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 149 (5745MHz)

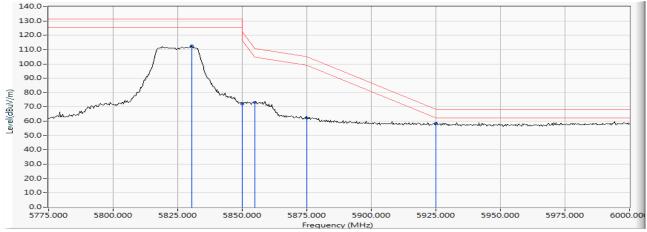
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	44.434	55.989	-12.231	68.220	PEAK
2		5700.000	11.647	46.270	57.917	-47.283	105.200	PEAK
3		5720.000	11.607	54.978	66.585	-44.215	110.800	PEAK
4		5725.000	11.592	62.522	74.114	-48.086	122.200	PEAK
5		5749.891	11.513	98.549	110.062			PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 149 (5745MHz)



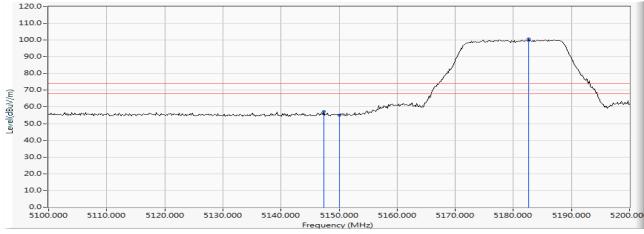

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	13.029	44.224	57.253	-10.967	68.220	PEAK
2		5700.000	13.003	47.285	60.288	-44.912	105.200	PEAK
3		5716.920	12.958	59.404	72.362	-37.576	109.938	PEAK
4		5720.000	12.947	56.650	69.597	-41.203	110.800	PEAK
5		5725.000	12.930	63.219	76.149	-46.051	122.200	PEAK
6		5750.145	12.843	100.231	113.073			PEAK

- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
- : 2019/05/29



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5829.457	11.559	100.671	112.230			PEAK
2		5850.000	11.701	61.285	72.986	-49.214	122.200	PEAK
3		5855.000	11.735	60.832	72.567	-38.233	110.800	PEAK
4		5875.000	11.873	50.431	62.304	-42.896	105.200	PEAK
5	*	5925.000	12.068	45.147	57.216	-11.004	68.220	PEAK

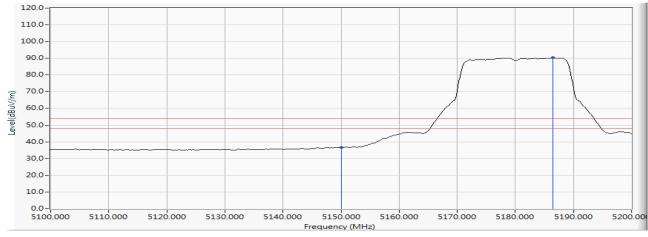
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
 - : Mode 6 SISO B: Transmit (802.11a_6Mbps)-Channel 165 (5825MHz)



		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5830.435	12.732	99.852	112.585			PEAK
2		5850.000	12.774	59.391	72.165	-50.035	122.200	PEAK
3		5855.000	12.784	60.500	73.284	-37.516	110.800	PEAK
4		5875.000	12.825	49.509	62.334	-42.866	105.200	PEAK
5	*	5925.000	12.911	45.505	58.416	-9.804	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode

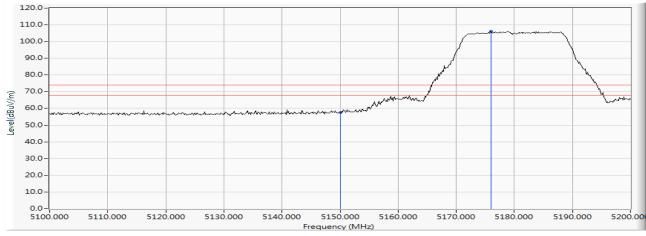
Horizontal


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5147.391	10.478	46.780	57.257	-16.743	74.000	PEAK
2		5150.000	10.470	44.614	55.085	-18.915	74.000	PEAK
3	*	5182.609	10.386	90.293	100.680			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode

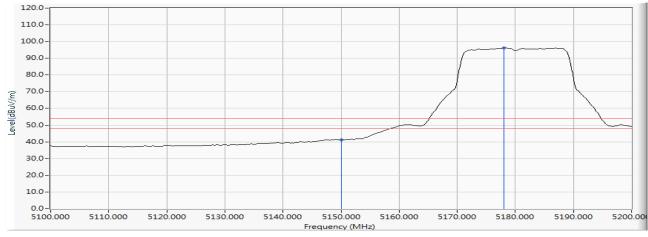
Horizontal


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	10.470	26.179	36.650	-17.350	54.000	AVERAGE
2	*	5186.522	10.378	79.916	90.293			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

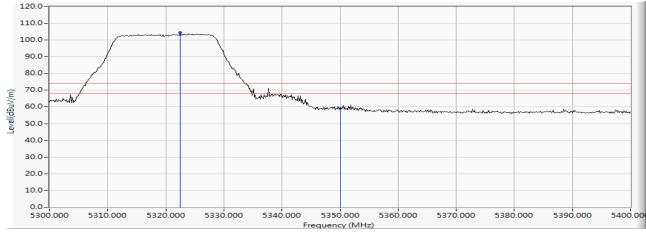
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	45.179	57.569	-16.431	74.000	PEAK
2	*	5175.942	12.486	93.589	106.076			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

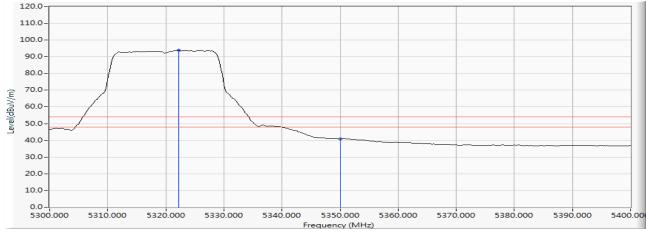
Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5150.000	12.390	28.759	41.149	-12.851	54.000	AVERAGE
2	*	5177.971	12.493	83.671	96.165			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

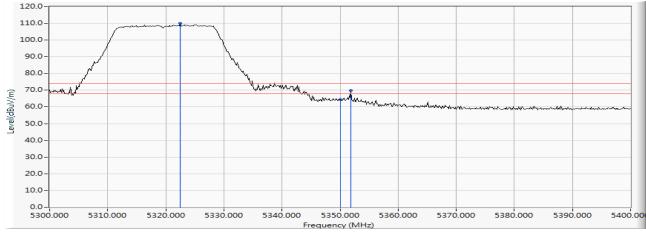
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
 - : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5322.464	11.094	93.498	104.593			PEAK
2		5350.000	11.024	48.325	59.349	-14.651	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5322.174	11.095	82.788	93.883			AVERAGE
2		5350.000	11.024	29.851	40.875	-13.125	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

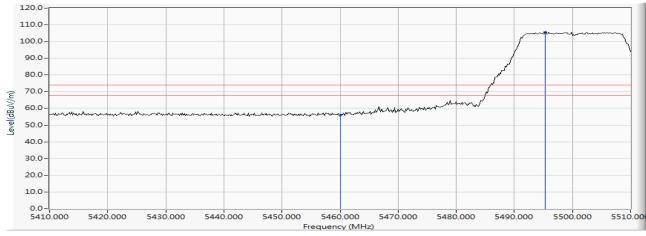
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 64 (5320MHz)


		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5322.464	13.015	97.076	110.092			PEAK
2		5350.000	12.999	51.453	64.452	-9.548	74.000	PEAK
3		5351.884	12.998	56.863	69.861	-4.139	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/25
- Test Mode

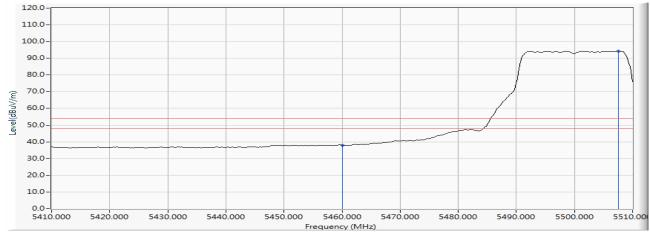
Vertical


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5322.319	13.016	86.226	99.242			AVERAGE
2		5350.000	12.999	33.703	46.702	-7.298	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

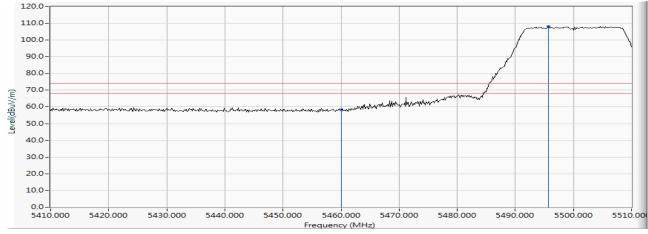
Horizontal



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	44.268	55.971	-18.029	74.000	PEAK
2	*	5495.362	12.137	93.391	105.527			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

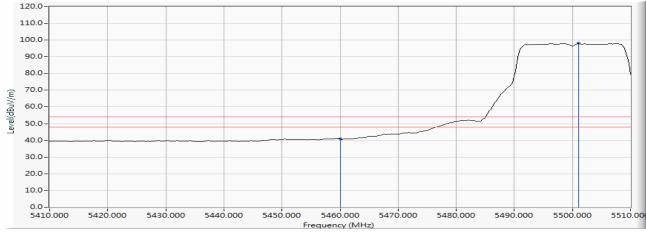
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	11.703	26.287	37.990	-16.010	54.000	AVERAGE
2	*	5507.536	12.183	82.040	94.223			AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

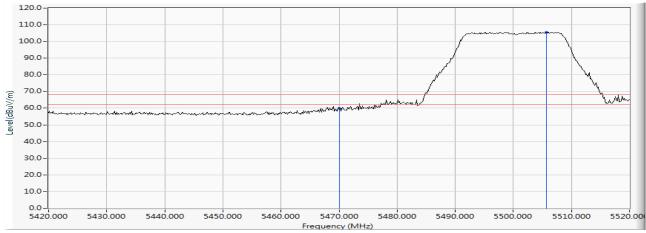
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	U	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	44.872	58.262	-15.738	74.000	PEAK
2	*	5495.652	13.615	94.569	108.185			PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.

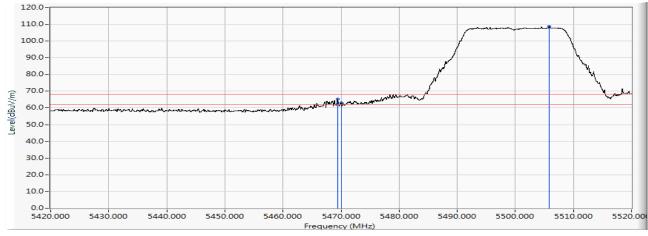
- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

Vertical



		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5460.000	13.390	27.469	40.859	-13.141	54.000	AVERAGE
2	*	5501.014	13.632	84.515	98.148			AVERAGE

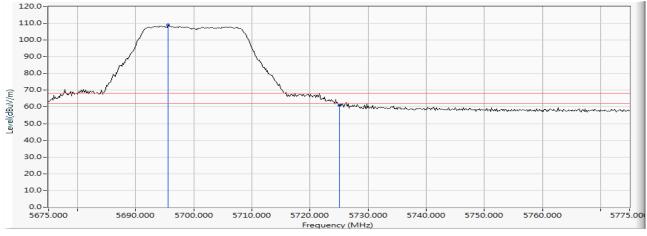
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. The average measurement was not performed when the peak measured data under the limit of average detection.


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 100 (5500MHz)

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1		5470.000	11.838	47.887	59.725	-8.495	68.220	PEAK
2	*	5505.652	12.198	93.419	105.617			PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/06/01
- Test Mode

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5469.420	13.457	51.907	65.365	-2.855	68.220	PEAK
2		5470.000	13.462	49.706	63.168	-5.052	68.220	PEAK
3	*	5505.797	13.639	94.943	108.583			PEAK

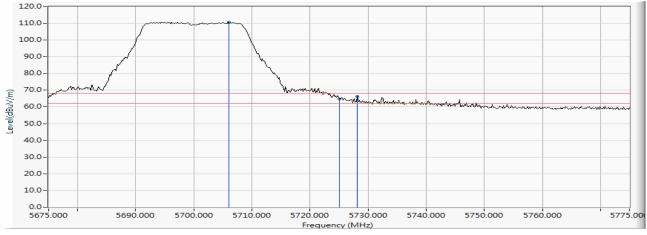


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29

:

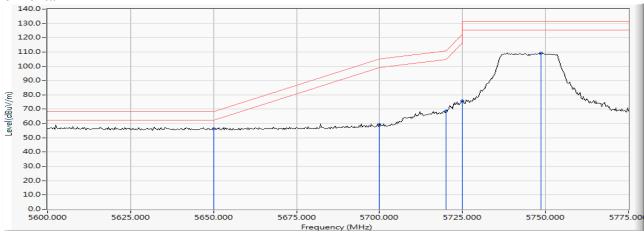
- Test Mode
- Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 140 (5700MHz)

Horizontal

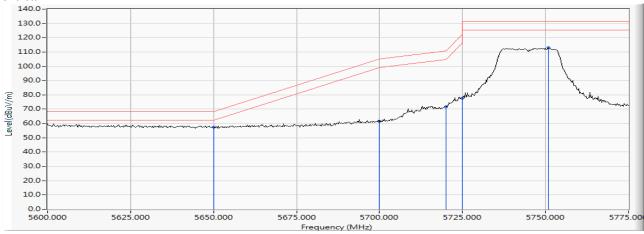

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	0	Limit (dBuV/m)	Detector Type
1	*	5695.580	11.650	97.340	108.990			PEAK
2		5725.000	11.592	49.264	60.856	-7.364	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29

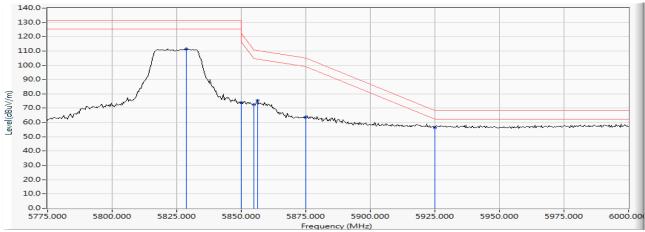
:


- Test Mode
- Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 140 (5700MHz)

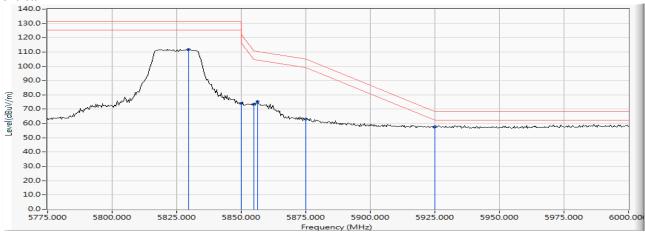
		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5706.014	12.991	97.767	110.758			PEAK
2		5725.000	12.930	51.773	64.703	-3.517	68.220	PEAK
3		5728.188	12.919	53.334	66.253	-1.967	68.220	PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 149 (5745MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	11.554	44.789	56.344	-11.876	68.220	PEAK
2		5700.000	11.647	47.753	59.400	-45.800	105.200	PEAK
3		5720.000	11.607	57.170	68.777	-42.023	110.800	PEAK
4		5725.000	11.592	64.059	75.651	-46.549	122.200	PEAK
5		5748.623	11.516	97.810	109.327			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 149 (5745MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1	*	5650.000	13.029	44.500	57.529	-10.691	68.220	PEAK
2		5700.000	13.003	48.733	61.736	-43.464	105.200	PEAK
3		5720.000	12.947	58.778	71.725	-39.075	110.800	PEAK
4		5725.000	12.930	64.756	77.686	-44.514	122.200	PEAK
5		5750.906	12.839	100.041	112.880			PEAK


- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 165 (5825MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5828.804	11.554	99.897	111.451			PEAK
2		5850.000	11.701	62.307	74.008	-48.192	122.200	PEAK
3		5855.000	11.735	60.834	72.569	-38.231	110.800	PEAK
4		5856.196	11.744	63.535	75.279	-35.186	110.465	PEAK
5		5875.000	11.873	51.844	63.717	-41.483	105.200	PEAK
6	*	5925.000	12.068	44.241	56.310	-11.910	68.220	PEAK

- Product : Intel® Wireless-AC 9260D2WL
- Test Item : Band Edge Data
- Test Date : 2019/05/29
- Test Mode
- : Mode 7 SISO B: Transmit (802.11n-20BW_7.2Mbps)-Channel 165 (5825MHz)

		Frequency	Correct	Reading Level	Measure Level	Margin	Limit	Detector
		(MHz)	Factor (dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	Туре
1		5829.457	12.731	99.046	111.777			PEAK
2		5850.000	12.774	61.038	73.812	-48.388	122.200	PEAK
3		5855.000	12.784	60.931	73.715	-37.085	110.800	PEAK
4		5856.196	12.787	62.574	75.360	-35.105	110.465	PEAK
5		5875.000	12.825	50.202	63.027	-42.173	105.200	PEAK
6	*	5925.000	12.911	44.828	57.739	-10.481	68.220	PEAK