

Date of Issue: 2014-01-16 1 / 127 Page:

SAR TEST REPORT

Equipment Under Test Intel Dual Band Wireless-N7260, 802.11ABGN+BT M.2

Model No. 7260SDW Host PC Name NP930X5J

Applicant Intel Mobile Communications

Intel Mobile Communications 100 Center Point Circle Suite Address of Applicant

200 Columbia, SC 29210 USA

PD97260SD FCC ID IC ID 1000M-7260SD **Device Category** Portable Device

General Population/Uncontrolled Exposure **Exposure Category**

Date of Receipt 2013-12-24

 $2014-01-04 \sim 2014-01-10$ Date of Test(s)

Date of Issue 2014-01-16

Standards:

FCC 47 CFR Part 2 (2.1093) **IEEE 1528, 2003 ANSI/IEEE C95.1, C95.3**

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Korea Co., Ltd. or testing done by SGS Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Korea Co., Ltd. in writing.

Minhyuk Han **Tested by** 2014-01-16

Approved by 2014-01-16 : Nicky You

Date of Issue: 2014-01-16 2 / 127 Page:

Contents

1. General Information Testing Laboratory.... 3 1.2 Details of Applicant..... 3 Version of Report. 3 1.3 3 1.4 Description of EUT(s). 1.5 Maximum Output Power Specifications..... 4 1.6 Test Environment. 6 1.7 Operation description. 6 Host PC Information. 6 1.8 SAR Measurement Procedures. 1.9 6 The SAR Measurement System. 7 1.10 1.11 System Components. 9 1.12 SAR System Verification. 10 Tissue Simulant Fluid for the Frequency Band..... 1.13 12 1.14 Test System Validation. 14 Test Standards and Limits. 1.15 14 2. Instruments List..... 16 3. Summary of Results..... 17 3 1 17 FCC Power Measurement Procedures. 3.2 Measured and Reported SAR..... 17 3.3 RF Conducted Power 17 3.4 SAR Test Configuration. 21 3.5 SAR Test Exclusions Applied.... 22 3.6 SAR Data Summary..... 23 FCC Multi-TX SAR considerations 3.7 26 3 7 1 Introduction.... 26 Simultaneous Transmission Procedures. 26 3.7.3 The Simultaneous Transmission possibilities are listed as below..... 26 3.7.4 Body SAR Simultaneous Transmission Analysis.... 26 3.8 27 Repeated SAR Measurement....

APPENDIX

- A. DASY4 SAR Report
- B. Uncertainty Analysis
- C. Calibration certificate

Date of Issue: 2014-01-16 3 / 127 Page:

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

Wireless Div. 2FL, 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, 435-040 Republic

of Korea

Telephone : +82 +31 428 5700 **FAX** : +82 +31 427 2371

Homepage : All SGS services are rendered in accordance with the applicable

SGS conditions of service available on request and accessible at

http://www.sgs.com/en/Terms-and-Conditions.aspx

1.2 Details of Manufacturer

Applicant : Intel Mobile Communications

Address : Intel Mobile Communications 100 Center Point Circle Suite 200 Columbia,

SC 29210 USA

: steven.c.hackett@intel.com Email

Phone No. : 803-216-2344

1.3 Version of Report

Version Number	Date	Revision		
00	2014-01-16	Initial issue		

1.4 Description of EUT(s)

EUT T	ype	: Intel Dual Band Wireless-1	N7260, 802.11ABGN+BT M.2			
Mode	el	: 7260SDW				
Host PC	Name	: NP930X5J				
Serial Nu	ımber	: JKHA91KDC00071Y				
Mode of Op	peration	: WLAN, Bluetooth				
Duty C	ycle	: 1(WLAN)				
Body worn A	Accessory	: None				
		: 2412 MHz \sim 2462 MHz (WL	$AN_11b/g/n$)			
T- F	D	$5180 \text{ MHz} \sim 5240 \text{ MHz}, 5260$	MHz ~ 5320 MHz (WLAN_11a/n/ac)			
Tx Frequenc	cy Kange	$5500 \text{ MHz} \sim 5700 \text{ MHz}, 5745 \text{ MHz} \sim 5825 \text{ MHz} (WLAN 11a/n/ac)$				
		2402 MHz ~ 2480 MHz (Bluetooth)				
Battery '	Type	: 7.6 V d.c. (Lithum-ion Bat	tery)			
•		The highest reported S	AR values			
Equipment Class		Band	Reported SAR			
Equipment Class		Danu	1g Body-Worn (W/kg)			
DTS		2.45 GHz WLAN	0.938			
DIS	5.8 GHz WLAN		0.984			
		5.2 GHz WLAN	0.328			
NII		5.3 GHz WLAN	0.708			
	5.5 GHz WLAN		1.008			
DSS		Bluetooth	N/A			
Simultaneo	ous SAR per k	DB 690783 D01v01r02	1.134			

Date of Issue: 2014-01-16 4 / 127 Page:

1.5 Maximum Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 44798 D01v05.

			Average power	r for Production (dB m)	
Band (Mt)	BW (MHz)	Channel	Frequency	Chain1	Chain2
		1	2412	15.5	14.5
02.11b	20	6	2437	15.5	14.5
002.110		11	2462	15.5	14.5
		1	2412	13.5	13.0
02.11g	20	6	2437	16.5	16.5
		11	2462	14.5	14.5
		1	2412	13.5	13.0
02.11n	20	6	2437	16.5	16.5
		11	2462	14.0	14.0
		3	2422	12.0	10.5
02.11n	40	6	2437	16.0	14.0
		9	2452	14.5	13.0
		36	5180	14.0	14.0
00 11	20	40	5200	15.0	15.0
02.11a	20	44	5220	15.0	15.0
		48	5240	15.0	15.0
		36	5180	14.0	14.0
	20	40	5200	15.0	15.0
02.11n	20	44	5220	15.0	15.0
		48	5240	15.0	15.0
00.11	40	38	5190	11.5	11.5
02.11n	40	46	5230	15.5	15.5
)2.11ac	80	42	5210	10.5	10.5
		52	5260	15.0	15.0
00.11	20	56	5280	15.0	15.0
02.11a	20	60	5300	15.0	15.0
		64	5320	15.0	15.0
		52	5260	15.0	15.0
02.11	20	56	5280	15.0	15.0
02.11n	20	60	5300	15.0	15.0
		64	5320	15.0	15.0
00.11	40	54	5270	15.0	15.0
02.11n	40	62	5310	15.0	15.0
)2.11ac	80	58	5290	12.5	12.5

2014-01-16 Date of Issue: 5 / 127 Page:

Average power for Production (dB m)							
Band (Mtz)	BW (MHz)	Channel	Frequency	Chain1	Chain2		
		100	5500	12.0	12.0		
		104	5520	16.5	16.5		
		108	5540	16.5	16.5		
002.11	20	112	5560	16.5	16.5		
802.11a	20	116	5580	16.5	16.5		
		132	5660	16.5	16.5		
		136	5680	16.5	16.5		
		140	5700	12.0	13.5		
		100	5500	12.0	12.0		
		104	5520	16.5	16.5		
		108	5540	16.5	16.5		
002 11	20	112	5560	16.5	16.5		
802.11n	20	116	5580	16.5	16.5		
		132	5660	16.5	16.5		
	-	136	5680	16.5	16.5		
		140	5700	12.0	13.5		
	40	110	5550	10.0	10.0		
802.11n		118	5590	16.5	16.5		
		134	5670	16.0	15.0		
802.11ac	20	114	5720	16.5	16.5		
802.11ac	40	142	5710	16.5	16.5		
002 11	00	106	5530	9.0	9.0		
802.11ac	80	138	5690	15.0	15.0		
		149	5745	16.5	16.0		
		153	5765	16.5	16.5		
802.11a	20	157	5785	16.5	16.5		
		161	5805	16.5	16.5		
		165	5825	16.5	16.5		
		149	5745	16.5	16.5		
		153	5765	16.5	16.5		
802.11n	20	157	5785	16.5	16.5		
		161	5805	16.5	16.5		
		165	5825	16.5	16.5		
000 11	40	151	5755	16.5	16.5		
802.11n	40	159	5795	16.5	16.5		
802.11ac	80	155	5775	16.5	16.5		
	lerance: -	1.5 dB / + 1.	5 dB				

Average power for Production (dBm)								
Mode	Mode GFSK PI/4DQPSK 8DPSK LE							
Bluetooth	5.0	4.0	1.0	4.5				
Tune-up Tolerand	Tune-up Tolerance: -1.5 dB / + 1.5 dB							

Date of Issue: 2014-01-16 6/127Page:

1.6 Test Environment

Ambient temperature	: (22 ± 2) ° C
Tissue Simulating Liquid	: (22 ± 2) ° C
Relative Humidity	: (55 ± 5) % R.H.

1.7 Operation Configuration

The client provided a special driver and test program which can control the frequency and power of the WLAN module. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing E-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

1.8 Host PC Information

Model Name	NP930X5J			
Serial No	JKHA91KDC00071Y			
Manufacturer	Samsung Electronics Co., Ltd.			

1.9 SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2 and 3: Area Scan & Zoom Scan Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea (+82 31 428 5700 (+82 31 427 2370 www.ee.sgs.com/korea

Date of Issue: 2014-01-16 7 / 127 Page:

< Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01 >

			≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0,5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°	
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3-4$ GHz: ≤ 12 mm $4-6$ GHz: ≤ 10 mm	
Maximum area scan sp	eatial resol	ution: Δx_{Arms} Δy_{Arms}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan s	spatial reso	olution: Δx_{2com} , Δy_{2com}	≤2 GHz; ≤8 mm 2 – 3 GHz; ≤5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: $\Delta z_{Zeen}(n)$		≤ 5 mm	3 - 4 GHz: ≤4 mm 4 - 5 GHz: ≤3 mm 5 - 6 GHz: ≤2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zeon} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid \[\Delta z_{Zoon}(n>1): \] between subsequent points		≤1.5·∆z _{Zeen} (n-1)		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: 8 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Date of Issue: 2014-01-16 8 / 127 Page:

1.10 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag DASY 4 professional system). A Model EX3DV4 3791 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

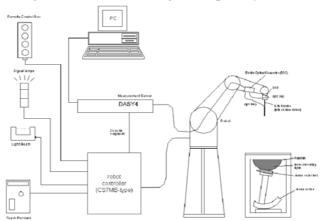


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows XP.
- DASY4 software: V4.7 Build80.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The flat phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

SGS Korea Co., Ltd. #2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea t+82 31 428 5700 f+82 31 427 2370 www.ee.sgs.com/korea

Date of Issue: 2014-01-16 9 / 127 Page:

1.11 System Components

Construction : Symmetrical design with triangular core.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

: Basic Broad Band Calibration in air Conversion Factors (CF) for **Calibration**

HSL 835 and HSL1900.

Additional CF-Calibration for other liquids and frequencies upon

request.

Frequency : 10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity : ± 0.3 dB in HSL (rotation around probe axis)

 ± 0.5 dB in tissue material (rotation normal to probe axis)

: $10\mu W/g$ to > 100 m W/g; **Dynamic Range**

Linearity: ± 0.2 dB(noise: typically $< 1 \mu W/g$)

Dimensions : Overall length: 337 mm (Tip length: 20 mm)

> Tip diameter: 2.5 mm (Body diameter: 12 mm) Distance from probe tip to dipole centers: 1 mm

Application : High precision dosimetric measurements in any exposure scenario

> (e.g,very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of

better 30%

Construction Symmetrical design with triangular core.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Fig. 1.11 EX3DV4 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX C" for the Calibration Certification Report.

Date of Issue: 2014-01-16 Page: 10 / 127

ELI Phantom

Construction:

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 Mbz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4,

but has reinforced top structure

Dimensions Major axis: 600 mm

Minor axis: 400 mm

ELI Phantom

DEVICE HOLDER

Construction

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (a.q., laptops, Cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioned.

Device Holder

1.12 SAR System verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10 % from the target SAR values. These tests were done at 2450 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz. The tests for EUT were conducted within 24 hours after each verification. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range (22 ± 2) ° C, the relative humidity was in the range (55 \pm 5) % R.H. and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea (+82 31 428 5700 f+82 31 427 2370 www.ee.sgs.com/korea

Member of SGS Group(Société Générale de Surveillance)

Date of Issue: 2014-01-16 11 / 127 Page:

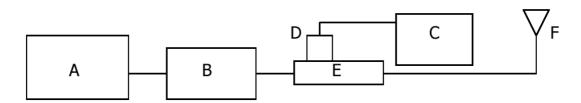


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4438C Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. EMPOWER Model 2092-BBS5K9CAJ Amplifier
- D. Agilent Model E4419B Power Meter
- E. Agilent Model 9300H Power Sensor
- F. Agilent Model 86205A Directional RF Bridges
- G. Reference dipole Antenna

Photo of the dipole Antenna

System Verification Results

Verification Kit	Probe S/N	Tissue	Target SAR 1 g from Calibration Certificate (1 W)	Measured SAR 1 g (0.1 W)	Normalized SAR 1 g (1 W)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 S/N: 892	3791	2450 MHz Body	50.1 W/kg	5.36 W/kg	53.6 W/kg	6.99	2014-01-04	21.5
D5 GHz V2 S/N: 1106	3791	5200 MHz Body	74.9 W/kg	7.87 W/kg	78.7 W/kg	5.07	2014-01-06	22.0
D5 GHz V2 S/N: 1106	3791	5300 MHz Body	76.8 W/kg	7.65 W/kg	76.5 W/kg	-0.39	2014-01-08	22.4
D5 GHz V2 S/N: 1106	3791	5600 MHz Body	81.4 W/kg	8.24 W/kg	82.4 W/kg	1.23	2014-01-09	22.4
D5 GHz V2 S/N: 1106	3791	5800 MHz Body	75.1 W/kg	7.03 W/kg	70.3 W/kg	-6.39	2014-01-10	21.9

Table 1. Results system verification

Date of Issue: 2014-01-16 12 / 127 Page:

1.13 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Speag Model DAK-3.5 Dielectric Probe in conjunction with Agilent E5071C Network Analyzer(300 kHz - 6 GHz) by using a procedure detailed in Section V.

	T:		Dielectric Parameters				
f (Mtz)	Tissue type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()		
		Measured, 01-04-2014	50.5	1.98	21.5		
2450		Recommended Limits	52.7	1.95	21.0 ~ 23.0		
		Deviation (%)	-4.17	1.54	-		
2412		Measured, 01-04-2014	50.7	1.92	21.5		
2412	Body	Deviation (%)	-3.80	-1.54	-		
2427	1	Measured, 01-04-2014	50.6	1.96	21.5		
2437		Deviation (%)	-3.98	0.51	-		
2462		Measured, 01-04-2014	50.5	1.99	21.5		
2402		Deviation (%)	-4.17	2.05	_		
		Measured, 01-06-2014	50.8	5.30	21.5		
5200		Recommended Limits	49.0	5.30	21.0 ~ 23.0		
		Deviation (%)	3.67	0.00	-		
5180		Measured, 01-06-2014	50.9	5.27	21.5		
3180	Body	Deviation (%)	3.88	<u>-0.57</u>	-		
5220		Measured, 01-06-2014	50.8	5.34	21.5		
5220		Deviation (%)	3.67	0.75	-		
5240		Measured, 01-06-2014	50.8	5.37	21.5		
3240		Deviation (%)	3.67	<u>1.32</u>	-		
		Measured, 01-08-2014	49.5	5.22	22.0		
5300		Recommended Limits	49.0	5.30	21.0 ~ 23.0		
		Deviation (%)	<u>1.02</u>	<u>-1.51</u>	-		
5260		Measured, 01-08-2014	49.5	5.18	22.0		
3200	Body	Deviation (%)	1.02	-2.26	-		
5280		Measured, 01-08-2014	49.5	5.20	22.0		
3280		Deviation (%)	<u>1.02</u>	<u>-1.89</u>	-		
5320		Measured, 01-08-2014	49.4	5.25	22.0		
3320		Deviation (%)	0.82	-0.94	-		
		Measured, 01-09-2014	50.5	5.72	22.4		
5600		Recommended Limits	48.5	5.77	21.0 ~ 23.0		
		Deviation (%)	4.12	-0.87	-		
5520		Measured, 01-09-2014	50.6	5.61	22.4		
3320		Deviation (%)	4.33	<u>-2.77</u>	-		
5590		Measured, 01-09-2014	50.5	5.69	22.4		
5580	Body	Deviation (%)	4.12	<u>-1.39</u>	-		
5660		Measured, 01-09-2014	50.30	5.79	22.4		
2000	_	<u>Deviation (%)</u>	<u>3.71</u>	0.35	-		
5680		Measured, 01-09-2014	50.3	5.82	22.4		
2080		Deviation (%)	3.71	0.87	-		
5700		Measured, 01-09-2014	50.3	5.85	22.4		
3700		Deviation (%)	3,71	1.39	-		

Date of Issue: 2014-01-16 13 / 127 Page:

	Tissue		Dielectric Parameters						
f (MHz) type		Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()				
		Measured, 01-10-2014	48.9	5.85	21.9				
5800			Recommended Limits	48.2	6.00	21.0 ~ 23.0			
		Deviation (%)	1.45	<u>-2.50</u>	-				
5745						Measured, 01-10-2014	49.0	5.78	21.9
3743	Body	Deviation (%)	<u>1.66</u>	<u>-3.67</u>	-				
£70£		Measured, 01-10-2014	48.9	5.82	21.9				
5785		Deviation (%)	<u>1.45</u>	<u>-3.00</u>	-				
5025		Measured, 01-10-2014	48.9	5.87	21.9				
5825		Deviation (%)	1.45	<u>-2.17</u>	-				

The composition of the brain & muscle tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (Mz)									
(% by weight)	4:	50	83	35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 + 9% Pure Sodium Chloride Sugar: 98 + Pure Sucrose

Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral Oil	11
Emulsifiers	9
Additives and Salt	2

Date of Issue: 2014-01-16 14 / 127 Page:

1.14 Test System Validation

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the require tissue-equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01v01. Since frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters has been included.

f	Dete	Probe	Probe	Lissue		lissiie l		Probe Tissue Para		Dielectric Parameters CW Validat		W Validation	on	Modula	Modulated Validation	
(MHz)	Date	S/N	Cal point	Type	Permitt ivity	Condu ctivity	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR				
2450	06/20/2013	3791	2450	Body	50.9	1.97	PASS	PASS	PASS	OFDM	N/A	PASS				
5200	06/16/2013	3791	5200	Body	49.1	5.33	PASS	PASS	PASS	OFDM	N/A	PASS				
5300	06/16/2013	3791	5300	Body	48.8	5.45	PASS	PASS	PASS	OFDM	N/A	PASS				
5600	06/18/2013	3791	5600	Body	49.9	5.82	PASS	PASS	PASS	OFDM	N/A	PASS				
5800	06/19/2013	3791	5800	Body	48.6	6.20	PASS	PASS	PASS	OFDM	N/A	PASS				

< SAR System Validation Summary>

1.15 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3-2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea t+82 31 428 5700 f+82 31 427 2370 www.ee.sgs.com/korea

Date of Issue: 2014-01-16 15 / 127 Page:

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .2 RF exposure limits

Date of Issue: 2014-01-16 16 / 127 Page:

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Cal Date	Cal Interval	Cal Due
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A	N/A	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3791	06/04/2013	Annual	06/04/2014
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	892	09/26/2013	Biennial	09/26/2015
Schmid& Partner Engineering AG	5000 MHz System Validation Dipole	D5GHzV2	1106	03/15/2013	Biennial	03/15/2015
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	01/25/2013	Annual	01/25/2014
Schmid& Partner Engineering AG	Software	DASY4 V4.7	-	N/A	N/A	N/A
Schmid& Partner Engineering AG	Phantom	ELI Phantom	TP-1169	TP-1169 N/A		N/A
Agilent	Network Analyzer	E5071C	MY46111535	06/27/2013	Annual	06/27/2014
Schmid& Partner Engineering AG	Dielectric Assessment Kit	DAK-3.5	1108	03/05/2013	Annual	03/05/2014
Agilent	Power Meter	E4419B	GB43311715	06/26/2013	Annual	06/26/2014
Agilent	Power Sensor	Е9300Н	MY41495314 MY41495307	09/10/2013 09/10/2013	Annual Annual	09/10/2014 09/10/2014
Agilent	Signal Generator	E4438C	MY42082477	03/28/2013	Annual	03/28/2014
Empower RF Systems	Power Amplifier	2001-BBS3Q7ECK	1032 D/C 0336	03/29/2013	Annual	03/29/2014
Empower RF Systems	Power Amplifier	2092-BBS5K8CAJ	1010	09/09/2013	Annual	09/09/2014
Agilent	Directional RF Bridges	86205A	MY31402302	06/29/2013	Annual	06/29/2014
Microlab	LP Filter	LA-30N LA-60N	N/A	09/09/2013	Annual	09/09/2014
Agilent	Attenuator	8491B	50566	09/09/2013	Annual	09/09/2014
JUMBP	Hygro- Thermometer	RT-811E	SGS-RSS- TM02	04/01/2013	Annual	04/01/2014
LKM Electronic	Digital Thermometer	DTM3000	3027	07/01/2013	Annual	07/01/2014

Date of Issue: 2014-01-16 17 / 127 Page:

3. Summary of Results

3.1 FCC Power Measurement Procedures

The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

3.2 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. Test highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

3.3 RF Conducted Power

WLAN 2.4 GHz

Mode	Freq.	Ch. #	Rate	Measured Power [dB m]		
	(m L)			Main	AUX	
	2412	1	1	15.36	13.91	
802.11b	2437	6	1	15.49	14.38	
	2462	11	1	15.39	14.15	
	2412	1	6	13.29	12.55	
802.11g	2437	6	6	16.16	16.20	
	2462	11	6	14.28	14.30	
002.11	2412	1	HT4	11.17	10.81	
802.11n HT20	2437	6	HT4	14.49	13.36	
11120	2462	11	HT4	11.48	10.69	
000.11	2422	3	HT4	11.25	9.46	
802.11n HT40	2437	6	HT4	14.50	12.38	
H140	2452	9	HT4	10.80	10.41	

2014-01-16 Date of Issue: 18 / 127 Page:

5.2 GHz

Mode	Freq.	Ch. #	Rate		ed Power m]
	(MFZ)			Main	AUX
	5180	36	6	13.48	13.70
802.11a	5200	40	6	14.66	14.61
802.11a	5220	44	6	14.91	14.98
	5240	48	6	14.75	14.78
	5180	36	HT4	13.44	13.48
802.11n	5200	40	HT4	14.75	14.62
HT20	5220	44	HT4	14.85	14.71
	5240	48	HT4	14.56	14.62
802.11n	5190	38	HT4	11.07	11.17
HT40	5230	46	HT4	14.85	14.88
802.11ac VTH80	5210	42	VHT6	10.01	9.58

5.3 GHz

Mode	Freq.	Ch. #	Rate	Measured Power [dB m]		
	(MHz)			Main	AUX	
	5260	52	6	14.72	14.60	
802.11a	5280	56	6	14.79	14.73	
802.11a	5300	60	6	14.66	14.99	
	5320	64	6	14.09	13.72	
	5260	52	HT4	14.81	14.73	
802.11n	5280	56	HT4	14.82	14.65	
HT20	5300	60	HT4	14.74	14.87	
	5320	64	HT4	14.08	13.66	
802.11n	5270	54	HT4	14.87	14.78	
HT40	5310	62	HT4	14.80	14.81	
802.11ac VTH80	5290	58	VHT6	12.44	12.17	

2014-01-16 Date of Issue: 19 / 127 Page:

5.5 GHz

Ewas				Measure	d Power
Mode	Freq. (Mtz)	Ch. #	Rate	[dB	m]
	(MIL)			Main	AUX
	5500	100	6	11.69	11.70
	5520	104	6	16.37	16.28
	5540	108	6	16.29	16.21
802.11a	5560	112	6	16.11	16.36
002.11a	5580	116	6	16.39	16.41
	5660	132	6	16.45	16.35
	5680	136	6	16.38	16.38
	5700	140	6	11.15	13.34
	5500	100	HT4	11.62	11.74
	5520	104	HT4	16.22	16.22
	5540	108	HT4	16.32	16.32
802.11n	5560	112	HT4	16.32	16.22
HT20	5580	116	HT4	16.23	16.41
	5660	132	HT4	16.27	16.32
	5680	136	HT4	16.17	16.30
	5700	140	HT4	11.75	13.37
002.11	5510	102	HT4	9.00	9.27
802.11n HT40	5550	110	HT4	16.30	16.31
П140	5670	134	HT4	15.37	14.60
802.11ac VTH20	5720	144	VHT0	16.31	16.32
802.11ac VTH40	5710	142	VHT0	16.33	16.28
802.11ac	5530	106	VHT6	8.53	8.76
VTH80	5690	138	VHT6	13.07	12.98

5.8 GHz

Mode	Freq.	Ch. #	Rate	Measure [dB	
	(MEL)			Main	AUX
	5745	149	6	16.28	16.34
	5765	153	6	16.25	16.24
802.11a	5785	157	6	16.48	16.48
	5805	161	6	16.21	16.36
	5825	165	6	16.24	16.38
	5745	149	HT4	16.28	16.32
802.11n	5765	153	HT4	16.25	16.33
802.11h HT20	5785	157	HT4	16.21	16.31
11120	5805	161	HT4	16.27	16.35
	5825	165	HT4	16.33	16.36
802.11n	5755	151	HT4	16.35	16.38
HT40	5795	159	HT4	16.41	16.38
11ac VTH80	5775	155	VHT6	15.98	15.90

Date of Issue: 2014-01-16 20 / 127 Page:

Bluetooth

Channel	Frequency (Mt)	GFSK (dB m)	4DPSK (dB m)	8DPSK (dB m)	LE (dB m)
Low	2402	3.11	2.48	-1.91	3.26
Middle	2441	4.00	3.11	-1.07	3.78
High	2480	4.71	3.71	-0.09	4.35

Note:

The modes with highest output power channel were chosen for the conducted output power.

Date of Issue: 2014-01-16 21 / 127 Page:

3.4 SAR Test Configuration

IEEE 802.11 Transmitters

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channel 1, 6, and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the $5.15 \sim 5.25$ GHz band, channels 52 and 64 in the $5.25 \sim 5.35$ GHz band, channels 104, 116, 124 and 136 in the $5.470 \sim 5.725$ GHz band, and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz $\S 15.247$ is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

				Turbo	"De	fault Test	Channel	s"
Mode		GHz	Channel	Channel		247	UN	
				Chaime	S02.11b	S02.11g		
		2.412	1*		4	▽		
802.1	l b/g	2.437	6	6	4	⊽		
		2.462	11*		4	₹		
		5.18	36				- 1	
		5.20	40	42 (5.21 GHz)				•
		5.22	44	10 (5.01 5125)				
		5.24	48	50 (5.25 GHz)			4	
	_	5.26	52	20 (2.22 212)			4	
	- 48	5.28	56	58 (5.29 GHz)		1		•
	- 40	5.30	60					•
		5.32	64		_		4	
		5.500	100					•
	UNII	5.520	104				4	
	100	5.540	108					•
802.11a	100	5.560	112			4		•
	-	5.580	116				4	
	1	5.600	120	Unknown				•
		5.620	124		-		4	
		5.640	128			1		•
1		5.660	132			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*
The same of		5.680	136				4	
1		5.700	140					•
-	UNII	5.745	149	100 (000 000)	٧.		4	
	OF	5.765	153	152 (5.76 GHz)	-1	•		•
	§15.247	5.785	157	140 (6 00 0114)	4	_	4	•
	C15 247	5.805	161	160 (5.80 GHz)	-1	•	-4	
	§15.247	5.825	165		4			

- √ = "default test channels"
- = possible 802.11 a channels with maximum average output > the "default test channels"
- ▼ = possible 802.11g channels with maximum average output ¼ dB ≥ the "default test channels"
- # = when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea t+82 31 428 5700 f+82 31 427 2370 www.ee.sgs.com/korea

Member of SGS Group(Société Générale de Surveillance)

Date of Issue: 2014-01-16 22 / 127 Page:

3.5 SAR Test Exclusions Applied

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Distance (mm)}} * \sqrt{\text{Frequency(GHz)}} \le 3.0$$

Based on the maximum tune-up tolerance limit of Bluetooth the antenna to use separation distance, Bluetooth SAR was not required: $(3.2/5 * \sqrt{2.480} = 1.0 < 3.0)$

<The Distance information of Antenna to Edges of EUT>

3.6 SAR Data Summary

Report File No.: F690501/RF-SAR002147

Date of Issue: 2014-01-16 Page: 23 / 127

Ambient Temperature (°C)	23.0
Liquid Temperature (°C)	21.5
Date	01/04/2013

WLAN 2.45 GHz Body SAR

T	Antonno EUT		Traffic Channel		Distance	Power	(dBm)	1-g SAR (W/kg)		1 g				
Test Mode	Antenna (Chain)	EUT Position	Frequency	Channel	(mm)	Measured Power	Tune-Up Limit	Measured SAR	Scaled SAR	SAR Limits (W/kg)				
802.11b	Main		2437	6	0	15.49	15.5	0.296	0.297					
802.110	Aux		2437	6	0	14.38	14.5	0.525	0.540					
							2437	6	0	16.16	16.5	0.351	0.380	
	Main	Base	2412	1	0	13.29	13.5	0.161	0.169					
902.11~		Dase	2462	11	0	14.28	14.5	0.272	0.286					
802.11g			2437	6	0	16.20	16.5	0.875	0.938	1.6				
	Aux		2412	1	0	12.55	14.5	0.323	0.506					
			2462	11	0	14.30	14.5	0.617	0.646					
902.11a	Main	Back	2437	6	5	16.20	16.5	0.004	0.004					
802.11g	Aux	Screen	2437	6	5	16.20	16.5	0.009	0.010					
802.11g	Aux	Base	2437	6	0	16.20	16.5	0.817	0.875					

Ambient Temperature (°C)	22.7
Liquid Temperature (°C)	21.5
Date	01/06/2014

WLAN 5.2 GHz Body SAR

Test	Antonno	EUT	Traffic Channel		Distance	Power(dBm)		1-g SAR (W/kg)		1 g SAR
Mode	Antenna (Chain)	Position	Frequency (Mtz)	Channel	(mm)	Measured Power	Tune-Up Limit	Measured SAR	Scaled SAR	Limits (W/kg)
	Main		5220	44	0	14.91	15.0	0.321	0.328	
	Maiii	Base	5200	40	0	14.66	15.0	0.273	0.295	
802.11a	Aux		5220	44	0	14.98	15.0	0.274	0.275	
	Main	Back	5220	44	5	14.91	15.0	0.006	0.006	1.6
	Aux	Screen	5220	44	5	14.98	15.0	0.011	0.011	
802.11ac	Main	Dana	5210	42	0	10.01	10.5	0.074	0.083	
802.11ac	Aux	Base	5210	42	0	9.58	10.5	0.056	0.069	

WLAN 5.3 GHz Body SAR

Ambient Temperature (°C)	23.3
Liquid Temperature (°C)	22.0
Date	01/08/2013

Test	Antenna (Chain)	EUT Position	Traffic Channel		Distance	Power(dBm)		1-g SAR (W/kg)		1 g SAR
Mode			Frequency (MHz)	Channel	(mm)	Measured Power	Tune-Up Limit	Measured SAR	Scaled SAR	Limits (W/kg)
	Main		5280	56	0	14.79	15.00	0.662	0.695	
	Iviain	Base	5300	60	0	14.66	15.00	0.655	0.708	
002.11-			5300	60	0	14.99	15.00	0.467	0.468	
802.11a	Aux		5280	56	0	14.73	15.00	0.353	0.376	1.6
	Main	Back	5280	56	5	14.79	15.00	0.016	0.017	1.6
	Aux	Screen	5300	60	5	14.99	15.00	0.011	0.011	
802.11ac	Main	D	5290	58	0	12.44	15.00	0.170	0.307	
802.11ac	Aux	Base	5290	58	0	12.17	15.00	0.217	0.416	

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea (+82 31 428 5700 (f+82 31 427 2370 www.ee.sgs.com/korea

Date of Issue: 2014-01-16 24 / 127 Page:

Ambient Temperature (°C)	23.8
Liquid Temperature (°C)	22.4
Date	01/09/2014

WLAN 5.5 GHz Body SAR

Toot	Test Antenna		Traffic C	hannel	Distance	Power(dBm)		1-g SAR (W/kg)		1 g SAR
Mode	(Chain)	EUT Position	Frequency (MHz)	Channel	(mm)	Measured Power	Tune-Up Limit	Measured SAR	Scaled SAR	Limits (W/kg)
			5660	132	0	16.45	16.5	0.738	0.747	
	Main		5580	116	0	16.39	16.5	0.983	1.008	
	Iviaiii		5520	104	0	16.37	16.5	0.919	0.947	
		Base x	5680	136	0	16.38	16.5	0.636	0.654	
802.11a	Aux		5580	116	0	16.41	16.5	0.411	0.420	
			5520	104	0	16.28	16.5	0.455	0.479	
			5680	136	0	16.38	16.5	0.876	0.901	1.6
	Main	Back	5580	132	5	16.45	16.5	0.012	0.012	
	Aux	Screen	5520	116	5	16.41	16.5	0.001	0.001	
002 11	Main	Dana	5690	138	0	13.07	15.0	0.340	0.530	
802.11ac	Aux	Base	5690	138	0	12.98	15.0	0.517	0.823	
902.11-	Main	Dana	5580	116	0	16.39	16.5	0.889	0.912	
802.11a	Aux	Base	5680	136	0	16.38	16.5	0.870	0.894	

	=	
	Liquid Temperature (°C)	21.9
N 5.8 GHz Body SAR	Date	01/10/2014

Ambient Temperature (°C)

WLAN 5.8 GHz Body SAR

Toot	Antonno	EUT Position	Traffic C	hannel	Distance	Power	(dBm)	1-g SAR (W/kg)		1 g SAR
Test Mode	Antenna (Chain)		Frequency	Channel	(mm)	Measured Power	Tune-Up Limit	Measured SAR	Scaled SAR	Limits (W/kg)
			5785	157	0	16.48	16.5	0.804	0.808	
	Main		5745	149	0	16.28	16.5	0.863	0.908	
		Dono	5825	165	0	16.24	16.5	0.751	0.797	
802.11a		Aux	5785	157	0	16.48	16.5	0.753	0.756	
	Aux		5745	149	0	16.34	16.5	0.948	0.984	
			5825	165	0	16.38	16.5	0.527	0.542	1.6
	Main	Back	5785	157	5	16.48	16.5	0.010	0.010	1.6
	Aux	Screen	5785	157	5	16.48	16.5	0.014	0.014	
802.11ac	Main	Dogo	5775	155	0	15.98	16.5	0.708	0.798	
002.11ac	Aux	Base	5775	155	0	15.90	16.5	0.760	0.873	
802.11a	Main	Daga	5745	149	0	16.28	16.5	0.886	0.932	
602.11a	Aux	Base	5745	149	0	16.48	16.5	0.914	0.918	

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC KDB Publication 865664 D01v02 and FCC KDB Publication 447498 D01v05.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings and the standard batteries are the only options.
- 4. The EUT is tested 2^{nd} hot-spot peak, if it is less than 2 dB below the highest peak.

SGS Korea Co., Ltd. # 2FL, 4, LS - ro 182beon - gil, Gunpo - gil, Gunpo - si, Gyeonggi - do, 435 - 040 Republic of Korea (+ 82 31 428 5700 f + 82 31 427 2370 www.ee.sgs.com/korea

23.1 21.9

Date of Issue: 2014-01-16 25 / 127 Page:

- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 7. Per FCC KDB Publication 865664 D01v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see section 3.8 for variability analysis.
- 8. Back screen Position tested according to RSS-102 (Issue 4) standard.

WLAN Notes:

- 1. For 2.4 GHz, justification for reduced test configuration for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b modes
- 2. For 5 GHz, justification for reduced test configuration for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n HT20 MHz and HT40, VHT20, VHT40) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11a modes
- 3. For 802.11ac SAR evaluation for each frequency band, 802.11ac VHT80 will verified at the worst case found in 802.11a SAR testing.
- 4. According to KDB248227 D01v01, when the maximum average output channel in each frequency band is not include in the "default test channels", the maximum average output power channel should be tested instead of an adjacent "default test channels".
- 5. According to KDB447498 D01v05 the 1-g SAR for the highest output channel is less than 0.8 W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.
- 6. According to KDB447498 D01v05 the 1-g SAR for the highest output channel is less than 0.4 W/kg, where the transmission band corresponding to all channels is $\leq 200~\text{MHz}$, testing for the other channels is not required.
- 7. WLAN transmission was verified using a spectrum analyzer.

Date of Issue: 2014-01-16 26 / 127 Page:

3.7 FCC Multi-TX SAR considerations

3.7.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with builtin unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

3.7.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is require. Per FCC KDB 447498 D01v05 IV.C.1,iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is 1.6 W/kg. When standalone SAR is not required to be measured per FCC KDB 447498 D01v05 4.3.2.2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Mode	Frequency	Maximum Allowed Power	Separation Distance	Estimated SAR	
1,1040	[MHz]	[dBm]	[mm]	[W/kg]	
Bluetooth	2480	5.0	0	0.126	
Diuetootii	2480	5.0	5	0.126	

<Tablet.3 Estimated SAR >

3.7.3 The Simultaneous Transmission possibilities are listed as below

No	Capable TX Configuration	Body SAR
1	Wi-Fi (Main Antenna) + Bluetooth	Yes
2	Wi-Fi (Aux Antenna) + Bluetooth	N/A

3.7.4 Body SAR Simultaneous Transmission Analysis

Simultaneous Transmission Summation Scenario with Wi-Fi and Bluetooth

Simultaneous TX	configuration	Wi-Fi SAR(W/kg)	Bluetooth SAR (W/kg)	∑SAR (W/kg)
Dodo	Base	1.008	0.126	1.134
Body	Back Screen	0.017	0.126	0.143

Notes.

- 1. The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. Therefore, no volumetric SAR summation is required since the numerical sums are below the limit.
- 2. Bluetooth SAR was not required to be measured per KDB 447498D01v05.

Date of Issue: 2014-01-16 27 / 127 Page:

3.8 Repeated SAR Measurement

Test Mode	Antenna (Chain)	EUT Position	Traffic Channel		D' (Measured	1 st	5
			Frequency (Mt)	Channel	Distance (mm)	1 g SAR (W/kg)	Repeated 1 g SAR (W/kg)	Deviation (%)
802.11g	Aux	Base	2437	6	0	0.875	0.817	6.63
802.11a	Main	Base	5580	116	0	0.949	0.856	9.80
802.11a	Main	Base	5680	136	0	0.983	0.889	9.56
802.11a	Aux	Base	5580	116	0	0.876	0.870	0.68
802.11a	Main	Base	5745	149	0	0.863	0.886	-2.67
802.11a	Aux	Base	5745	149	0	0.948	0.914	3.59

<Note>

- Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8 W/kg.
- 2. Per KDB 865664 D01v01, if the deviation among the repeated measurement is ≤ 20% and the measured SAR < 1.45 W/kg, only one repeated measurement is required.
- 3. The deviation is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Date of Issue: 2014-01-16 28 / 127 Page:

Appendix

List

Appendix A	DASY4 Report (Plots of the SAR Measurements)	- 2450 MHz, 5.2 GHz, 5.3 GHz, 5.6 GHz, 5.8 GHz Verification Test - WLAN Test
Appendix B	Uncertainty Analysis	
Appendix C	Calibration Certificate	- PROBE - DAE
		- DIPOLE

Date of Issue: 2014-01-16 29 / 127 Page:

Appendix A

Test Plot – DASY4 Report

Date of Issue: 2014-01-16 30 / 127 Page:

2450 Mt Verification Test

Date: 2014-01-04

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: 2450MHz Body Verification.da4

Input Power: 100 mW

Ambient Temp: 23.0 °C Tissue Temp: 21.5 °C

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:892

Program Name: 2450MHz Body Verification

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

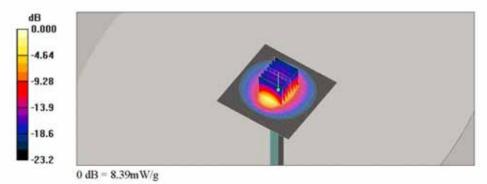
Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ mho/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(6.62, 6.62, 6.62); Calibrated: 2013-06-04
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2013-01-25
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz Body Verification/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 8.73 mW/g


2450MHz Body Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 65.8 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 11.6 W/kg

SAR(1 g) = 5.36 mW/g; SAR(10 g) = 2.41 mW/g

Maximum value of SAR (measured) = 8.39 mW/g

Date of Issue: 2014-01-16 31 / 127 Page:

5200 Mt Verification Test

Date: 2014-01-06

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Verification Body 5200 MHz.da4

Input Power: 100 mW

Ambient Temp: 22.7 °C Tissue Temp: 21.5 °C

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106

Program Name: Verification

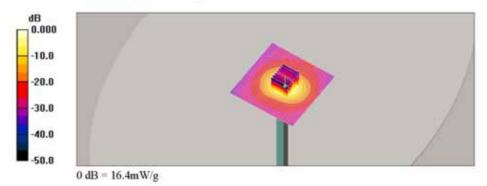
Communication System: CW; Frequency: 5200 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.3 \text{ mho/m}$; $\varepsilon_r = 50.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(4.23, 4.23, 4.23); Calibrated: 2013-06-04
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2013-01-25
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Verification Body 5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.9 mW/g

Verification Body 5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 53.3 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 7.87 mW/g; SAR(10 g) = 2.2 mW/g Maximum value of SAR (measured) = 16.4 mW/g

Date of Issue: 2014-01-16 32 / 127 Page:

5300 Mt Verification Test

Date: 2014-01-08

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Verification Body 5300 MHz.da4

Input Power: 100 mW

Ambient Temp: 23.3 °C Tissue Temp: 22.0 °C

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106

Program Name: Verification

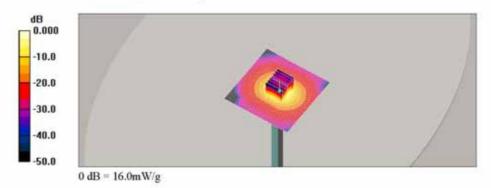
Communication System: CW; Frequency: 5300 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.22$ mho/m; $\varepsilon_r = 49.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(4.07, 4.07, 4.07); Calibrated: 2013-06-04
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2013-01-25
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Verification Body 5300 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.8 mW/g

Verification Body 5300 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.7 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 7.65 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 16.0 mW/g

Date of Issue: 2014-01-16 33 / 127 Page:

5600 Mt Verification Test

Date: 2014-01-09

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Verification Body 5600 MHz.da4

Input Power: 100 mW

Ambient Temp: 23.8 °C Tissue Temp: 22.4 °C

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106

Program Name: Verification

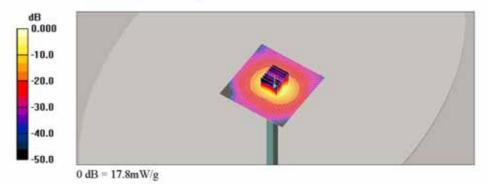
Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.72 \text{ mho/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(3.79, 3.79, 3.79); Calibrated: 2013-06-04
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2013-01-25
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Verification Body 5600 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 17.3 mW/g

Verification Body 5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 54.6 V/m; Power Drift = -0.085 dB

Peak SAR (extrapolated) = 38.8 W/kg

SAR(1 g) = 8.24 mW/g; SAR(10 g) = 2.23 mW/g Maximum value of SAR (measured) = 17.8 mW/g

Date of Issue: 2014-01-16 34 / 127 Page:

5800 Mt Verification Test

Date: 2014-01-10

Test Laboratory: SGS Korea (Gunpo Laboratory) File Name: Verification Body 5800 MHz.da4

Input Power: 100 mW

Ambient Temp: 23.1 °C Tissue Temp: 21.9 °C

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1106

Program Name: Verification

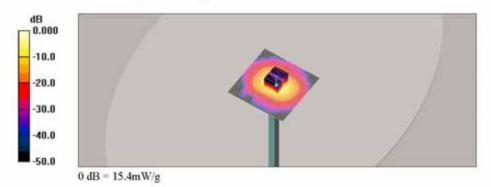
Communication System: CW; Frequency: 5800 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.85$ mho/m; $\varepsilon_r = 48.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3791; ConvF(4, 4, 4); Calibrated: 2013-06-04
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2013-01-25
- Phantom: ELI v4.0 Phantom TP:1169; Type: ELI v4.0 Phantom; Serial: TP:1169
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Verification Body 5800 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 14.7 mW/g

Verification Body 5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 51.6 V/m; Power Drift = -0.109 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.03 mW/g; SAR(10 g) = 1.93 mW/gMaximum value of SAR (measured) = 15.4 mW/g

