

IC Test Report (Class II Permissive Change)

Product Name	Intel® Dual Band Wireless-AC 7260		
Model No.	7260NGW, 7260NGW AN, 7260NGW NB, 7260NGW BN		
IC ID	1000M-7260NG		

Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA

Date of Receipt	Oct. 01, 2014
Issued Date	Nov. 06, 2014
Report No.	14A0104R-RFCAP17V00-A
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: Nov. 06, 2014

Report No.: 14A0104R-RFCAP17V00-A

Product Name	Intel® Dual Band Wireless-AC 7260			
Applicant	Intel Mobile Communications			
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA			
Manufacturer	Intel Mobile Communications			
Model No.	7260NGW, 7260NGW AN, 7260NGW NB, 7260NGW BN			
EUT Rated Voltage	DC 3.3V (via Mini-PCI Express slot)			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	Intel			
Applicable Standard	RSS-210 Issue 8, Annex 8 (Dec, 2010)			
	ANSI C63.10: 2009, FCC KDB 558074			
Test Result	Complied			

Documented By : Dita Huang

(Senior Adm. Specialist / Rita Huang)

Tested By : Andy Lin

(Engineer / Andy Lin)

Approved By :

(Director / Vincent Lin)

TABLE OF CONTENTS

Description		Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description.	
1.2.	Operational Description	
1.3.	Tested System Datails	
1.4.	Configuration of tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Peak Power Output	9
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	9
2.4.	Test Procedure	9
2.5.	Uncertainty	9
2.6.	Test Result of Peak Power Output	10
3.	Radiated Emission	11
3.1.	Test Equipment	11
3.2.	Test Setup	11
3.3.	Limits	12
3.4.	Test Procedure	13
3.5.	Uncertainty	13
3.6.	Test Result of Radiated Emission	14
4.	Band Edge	18
4.1.	Test Equipment	18
4.2.	Test Setup	
4.3.	Limits	19
4.4.	Test Procedure	
4.5.	Uncertainty	19
4.6.	Test Result of Band Edge	
5.	EMI Reduction Method During Compliance Testing	24
	- · ·	

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Intel® Dual Band Wireless-AC 7260		
Trade Name	Intel		
Model No.	7260NGW, 7260NGW AN, 7260NGW NB, 7260NGW BN		
IC ID	1000M-7260NG		
Frequency Range	2402 – 2480MHz		
Channel Number	V4.0: 40CH		
Type of Modulation	V4.0: GFSK(1Mbps)		
Antenna Type	Dipole Antenna		
Channel Control	Auto		
Antenna Gain	Refer to the table "Antenna List"		
Contain Module	Intel / 7260HMW		

Antenna List

	No.	Manufacturer	Part No.	Antenna Type	Peak Gain
Ī	1	WIESON Technologies co., ltd	GY121HT0321-003-H (External)	Dipole	2.89dBi for 2.4GHz

Note: Only the higher gain antenna was tested and recorded in this report.

Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00:	2402 MHz	Channel 01:	2404 MHz	Channel 02:	2406 MHz	Channel 03:	2408 MHz
Channel 04:	2410 MHz	Channel 05:	2412 MHz	Channel 06:	2414 MHz	Channel 07:	2416 MHz
Channel 08:	2418 MHz	Channel 09:	2420 MHz	Channel 10:	2422 MHz	Channel 11:	2424 MHz
Channel 12:	2426 MHz	Channel 13:	2428 MHz	Channel 14:	2430 MHz	Channel 15:	2432 MHz
Channel 16:	2434 MHz	Channel 17:	2436 MHz	Channel 18:	2438 MHz	Channel 19:	2440 MHz
Channel 20:	2442 MHz	Channel 21:	2444 MHz	Channel 22:	2446 MHz	Channel 23:	2448 MHz
Channel 24:	2450 MHz	Channel 25:	2452 MHz	Channel 26:	2454 MHz	Channel 27:	2456 MHz
Channel 28:	2458 MHz	Channel 29:	2460 MHz	Channel 30:	2462 MHz	Channel 31:	2464 MHz
Channel 32:	2466 MHz	Channel 33:	2468 MHz	Channel 34:	2470 MHz	Channel 35:	2472 MHz
Channel 36:	2474 MHz	Channel 37:	2476 MHz	Channel 38:	2478 MHz	Channel 39:	2480 MHz

Note:

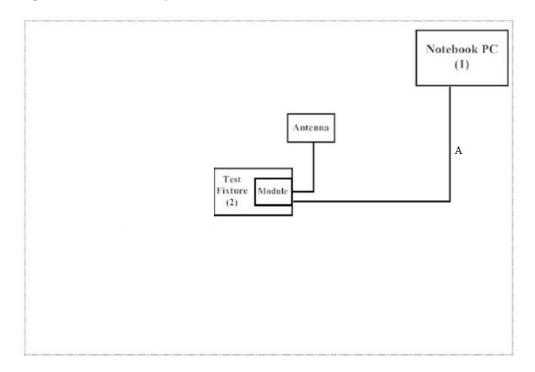
- 1. The EUT is an Intel® Dual Band Wireless-AC 7260 with a built-in WLAN and Bluetooth V4.0 V3.0, V2.1+EDR transceiver, this report for Bluetooth V4.0.
- 2. The EUT is including four models for different marketing requirement.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of transmitter with RSS-210 Issue 8, Annex 8 for spread spectrum devices.
- 5. This is to request a Class II permissive change for IC ID: 1000M-7260NG, originally granted on 04/22/2013.

The major change filed under this application is:

Change #1: Addition new antenna, antenna type is different with the original application.

(Antenna type: Dipole antenna)

Test Mode	Mode 1: Transmit - BLE


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	N/A	N/A	N/A
2	Test Fixture	INTEL	N/A	N/A	N/A

Signal Cable Type		Signal cable Description	
A	Test Fixture Line	Non-Shielded, 1.0m	

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute "DRTU Ver 1.6.1-556" program on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start transmits continually.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: http://www.quietek.com/tw/ctg/cts/accreditations.htm

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

Site Description: File on

Certification and Engineering Bureau 3701 Carling Ave., Building 94

P.O. Box 11490, Station "H"

Ottawa, Ontario

K2H 8S2

File No.: 46405-4075 Test Site: IC 4075A-3 Submission: 124599

Site Name: Quietek Corporation Site Address: No.5-22, Ruishukeng,

Linkou Dist. New Taipei City 24451,

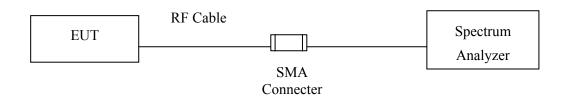
Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

2. Peak Power Output

2.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Power Meter	Anritsu	ML2495A/6K00003357	May, 2014
	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2014
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2014

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

Conduction Power Measurement

2.3. Limits

According to RSS-210 Issue 8, Annex 8,4(2) (Dec. 2010), The maximum peak power shall be less 1 Watt.

2.4. Test Procedure

The EUT was tested according to DTS test procedure of KDB 558074 for compliance to RSS-210 Annex 8 requirements. The maximum peak conducted output power using KDB 558074 section 9.1.3 PKPM1 Peak power meter method.

2.5. Uncertainty

± 1.27 dB

2.6. Test Result of Peak Power Output

Product : Intel® Dual Band Wireless-AC 7260

Test Item : Peak Power Output

Test Site : No.3 OATS

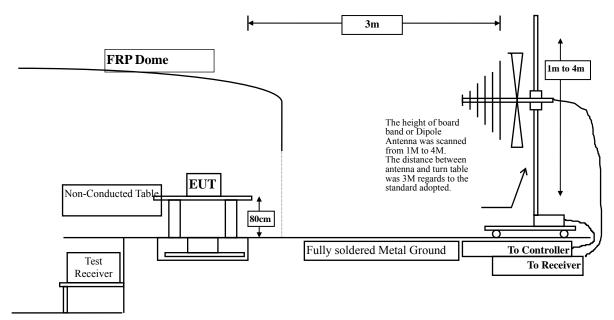
Test Mode : Mode 1: Transmit - BLE

Channel No.	nnel No. Frequency		Required Limit	Result
	(MHz)	(dBm)		
Channel 00	2402.00	4.42	1 Watt= 30 dBm	Pass
Channel 19	2440.00	6.71	1 Watt= 30 dBm	Pass
Channel 39	2480.00	6.96	1 Watt= 30 dBm	Pass

3. Radiated Emission

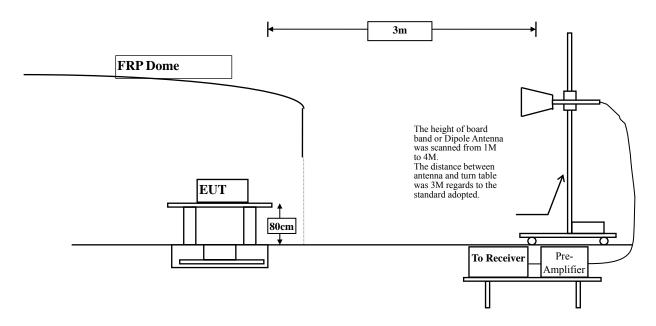
3.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2014
	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
	X Horn Antenna		Schwarzbeck	BBHA9170/208	Jul., 2014
	X Pre-Amplifier		Agilent	8447D/2944A09549	Sep., 2014
	X Spectrum Analyzer		Agilent	E4407B / US39440758	May, 2014
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

- 1. All instruments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.


3.2. Test Setup

Below 1GHz

Above 1GHz

3.3. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in Section 7.2.5, whichever is the lesser attenuation.

RSS-Gen Issue 3 Section 7.2.5							
Frequency	Field strength	Measurement distance					
MHz	(microvolts/meter)	(meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks: 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- + 3.8 dB below 1GHz

3.6. Test Result of Radiated Emission

Product : Intel® Dual Band Wireless-AC 7260

Test Item : Harmonic Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit - BLE(2402MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4804.000	3.327	36.590	39.917	-34.083	74.000
7206.000	10.136	35.690	45.826	-28.174	74.000
9608.000	13.706	35.690	49.396	-24.604	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4804.000	6.638	36.590	43.227	-30.773	74.000
7206.000	11.005	36.150	47.155	-26.845	74.000
9608.000	14.103	36.320	50.423	-23.577	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit - BLE(2440MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4880.000	3.010	36.150	39.160	-34.840	74.000
7320.000	11.833	36.150	47.984	-26.016	74.000
9760.000	12.580	36.510	49.091	-24.909	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4880.000	5.738	36.050	41.788	-32.212	74.000
7320.000	12.703	36.320	49.023	-24.977	74.000
9760.000	13.052	36.150	49.202	-24.798	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit - BLE(2480MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4960.000	2.760	36.520	39.280	-34.720	74.000
7440.000	12.567	35.540	48.106	-25.894	74.000
9920.000	13.456	35.290	48.746	-25.254	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4960.000	2.760	36.520	39.280	-34.720	74.000
7440.000	12.567	35.540	48.106	-25.894	74.000
9920.000	13.456	35.290	48.746	-25.254	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : General Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit - BLE(2440MHz)

Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
				_
-9.621	39.720	30.099	-13.401	43.500
-3.585	39.935	36.350	-9.650	46.000
1.195	34.424	35.619	-10.381	46.000
2.175	35.921	38.096	-7.904	46.000
4.712	32.232	36.944	-9.056	46.000
6.893	26.116	33.009	-12.991	46.000
-6.201	42.328	36.126	-7.374	43.500
-6.855	39.935	33.080	-12.920	46.000
-0.852	34.678	33.826	-12.174	46.000
-4.705	35.921	31.216	-14.784	46.000
2.861	29.562	32.423	-13.577	46.000
6.621	27.090	33.711	-12.289	46.000
	Factor dB -9.621 -3.585 1.195 2.175 4.712 6.893 -6.201 -6.855 -0.852 -4.705 2.861	Factor Level dBuV -9.621 39.720 -3.585 39.935 1.195 34.424 2.175 35.921 4.712 32.232 6.893 26.116 -6.201 42.328 -6.855 39.935 -0.852 34.678 -4.705 35.921 2.861 29.562	Factor Level dBuV dBuV/m -9.621 39.720 30.099 -3.585 39.935 36.350 1.195 34.424 35.619 2.175 35.921 38.096 4.712 32.232 36.944 6.893 26.116 33.009 -6.201 42.328 36.126 -6.855 39.935 33.080 -0.852 34.678 33.826 -4.705 35.921 31.216 2.861 29.562 32.423	Factor dB Level dBuV Level dBuV/m dB -9.621 39.720 30.099 -13.401 -3.585 39.935 36.350 -9.650 1.195 34.424 35.619 -10.381 2.175 35.921 38.096 -7.904 4.712 32.232 36.944 -9.056 6.893 26.116 33.009 -12.991 -6.201 42.328 36.126 -7.374 -6.855 39.935 33.080 -12.920 -0.852 34.678 33.826 -12.174 -4.705 35.921 31.216 -14.784 2.861 29.562 32.423 -13.577

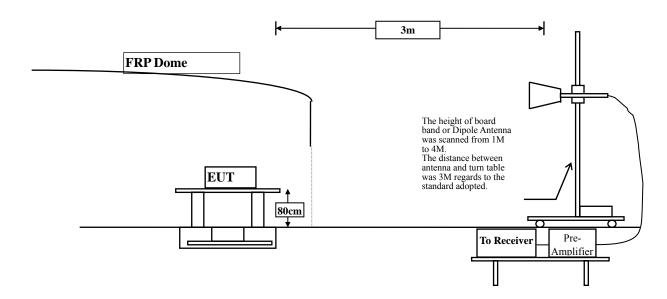
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

4. Band Edge

4.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2014
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2014
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2014
	X Pre-Amplifier		Agilent	8447D/2944A09549	Sep., 2014
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2014
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2014
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2014
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

4.2. Test Setup

RF Radiated Measurement:

4.3. Limits

Attenuation below the general limits specified in Tables 1 is not required. In addition, radiated emissions which fall in the restricted bands of RSS-210 Section 2.7 Table 1 must also comply with the radiated emission limits specified in RSS-210 Section 2.7 Tables 2 and 3.

RSS-210 Issue 8 Section 2.7(Table 2)							
Frequency MHz	Field strength (microvolts/meter)	Measurement distance (meter)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30	30	30					
30-88	100	3					
88-216	150	3					
216-960	200	3					
Above 960	500	3					

Remarks

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30)is 120 kHz, above 1GHz are 1 MHz.

4.5. Uncertainty

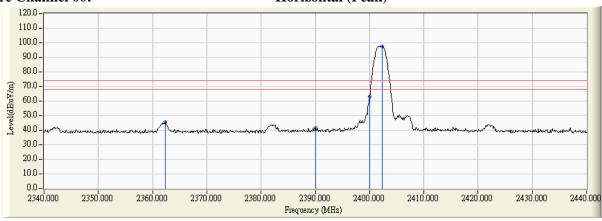
Conducted is $\pm 1 \text{ MHz}$

Radiated is ± 3.9 dB

4.6. Test Result of Band Edge

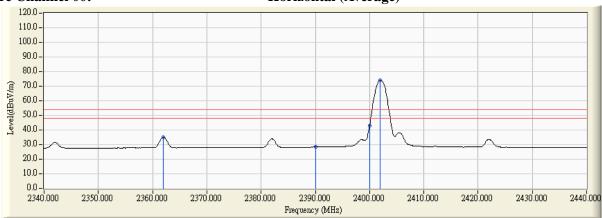
Product : Intel® Dual Band Wireless-AC 7260

Test Item : Band Edge Test Site : No.3 OATS


Test Mode : Mode 1: Transmit - BLE

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
00 (Peak)	2362.300	-2.809	48.188	45.379	74.00	54.00	Pass
00 (Peak)	2390.000	-2.687	44.307	41.620	74.00	54.00	Pass
00 (Peak)	2400.000	-2.660	65.418	62.758	74.00	54.00	Pass
00 (Peak)	2402.300	-2.657	100.207	97.550			
00 (Average)	2362.000	-2.810	37.811	35.001	74.00	54.00	Pass
00 (Average)	2390.000	-2.687	31.067	28.380	74.00	54.00	Pass
00 (Average)	2400.000	-2.660	45.674	43.014	74.00	54.00	Pass
00 (Average)	2402.000	-2.657	76.724	74.067			-


Figure Channel 00:

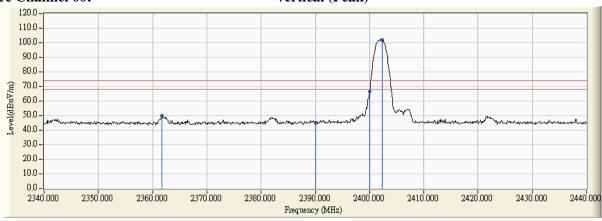
Horizontal (Peak)

Figure Channel 00:

Horizontal (Average)

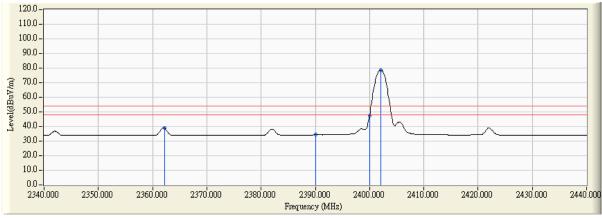
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Test Site : No.3 OATS


Test Mode : Mode 1: Transmit - BLE

RF Radiated Measurement (Vertical):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
00 (Peak)	2361.700	-4.062	54.173	50.111	74.00	54.00	Pass
00 (Peak)	2390.000	-4.159	48.945	44.786	74.00	54.00	Pass
00 (Peak)	2400.000	-4.171	70.740	66.569	74.00	54.00	Pass
00 (Peak)	2402.300	-4.171	105.951	101.780			
00 (Average)	2362.200	-4.064	42.857	38.793	74.00	54.00	Pass
00 (Average)	2390.000	-4.159	38.437	34.278	74.00	54.00	Pass
00 (Average)	2400.000	-4.171	51.874	47.703	74.00	54.00	Pass
00 (Average)	2402.100	-4.171	82.883	78.712			


Figure Channel 00:

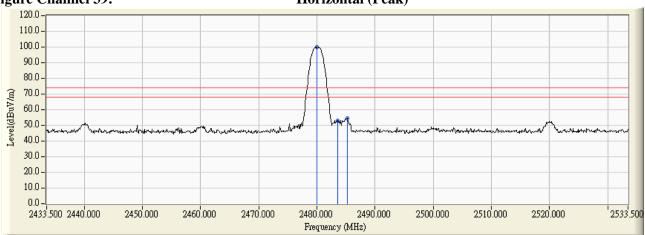
Vertical (Peak)

Figure Channel 00:

Vertical (Average)

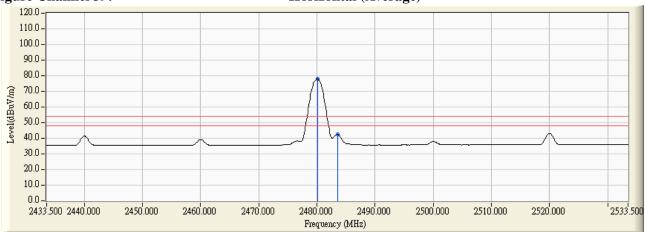
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Test Site : No.3 OATS


Test Mode : Mode 1: Transmit - BLE

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Arerage Limit (dBuV/m)	Result
39 (Peak)	2480.000	-2.605	102.371	99.766		(dBd v/III)	
39 (Peak)	2483.500	-2.601	55.614	53.012	74.00	54.00	Pass
39 (Peak)	2485.200	-2.600	57.144	54.544	74.00	54.00	Pass
39 (Average)	2480.100	-2.605	80.434	77.829			
39 (Average)	2483.500	-2.601	45.001	42.399	74.00	54.00	Pass


Figure Channel 39:

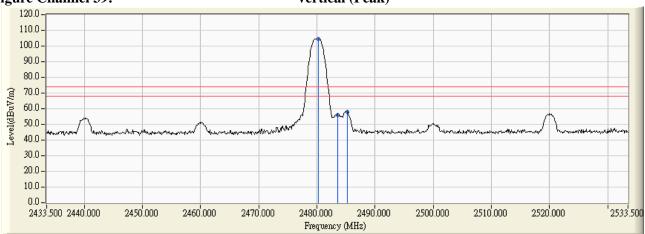
Horizontal (Peak)

Figure Channel 39:

Horizontal (Average)

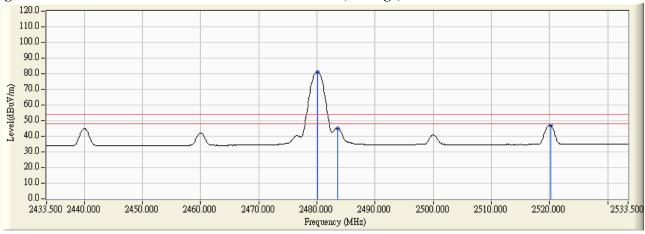
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Test Site : No.3 OATS


Test Mode : Mode 1: Transmit - BLE

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
39 (Peak)	2480.300	-3.977	108.699	104.722			
39 (Peak)	2483.500	-3.966	60.206	56.239	74.00	54.00	Pass
39 (Peak)	2485.200	-3.961	61.761	57.800	74.00	54.00	Pass
39 (Average)	2480.100	-3.977	85.190	81.213			
39 (Average)	2483.500	-3.966	49.170	45.203	74.00	54.00	Pass
39 (Average)	2520.200	-3.814	50.683	46.870	74.00	54.00	Pass


Figure Channel 39:

Vertical (Peak)

Figure Channel 39:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs