

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Intel® Centrino® Advanced-N 6235, Models 6235ANHMRW and 6235ANHRU

IC CERTIFICATION #: 1000M-6235ANHR and 1000M-6235ANHRU

FCC ID: PD96235ANHR and PD96235ANHRU

APPLICANT: Intel Corporation

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: May 24, 2012

FINAL TEST DATES: April 23, 24, 25, 26, 28 and 29 and May 2, 7, 9,

10, 11, 12 and 20, 2012

TOTAL NUMBER OF PAGES: 220

PROGRAM MGR /

TECHNICAL REVIEWER:

David W. Bare Chief Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	05-24-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	0
ADDITIONAL MEASUREMENTS	
MEASUREMENT UNCERTAINTIES	
EOUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	14
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	16
TEST PROCEDURES	17
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITSRECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS — LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	220

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N 6235, Models 6235ANHMRW and 6235ANHRU, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC KDB 789033)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC UNII test procedure KDB 789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation Intel® Centrino® Advanced-N 6235, Models 6235ANHMRW and 6235ANHRU complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation Intel® Centrino® Advanced-N 6235, Models 6235ANHMRW and 6235ANHRU and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

operation in the		9110 DWIIG			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (2)		26dB Bandwidth	> 20MHz for all modes	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a: 37 mW 802.11n20: 35 mW 802.11n40: 30 mW (Max eirp: 0.115 W) Note 1	17dBm (50mW)	Complies
15.407 (a) (1)	-		802.11a: 3.3 dBm/MHz	4 dBm/MHz	Complies
-	- A9.5 (2) Power Spectral Density		802.11n20: 2.7dBm/MHz 802.11n40: 2.2 dBm/MHz	6.4 dBm/MHz	Complies
					Į.

Note 1: EIRP calculated using antenna gain of 3.6 dBi for the highest EIRP system.

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz for all modes	N/A – limits output power if $< 20MHz$	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 41 mW 802.11n20: 41 mW 802.11n40: 31 mW (Max eirp: 0.104 W) Note 1	24dBm (250mW)	Complies
15.407(a) (2)	-		802.11a: 3.7 dBm/MHz	11 dBm/MHz	Complies
-	A9.2(2) / A9.5 (2)	Power Spectral Density	802.11n20: 3.6 dBm/MHz 802.11n40: 1.5 dBm/MHz	11 dBm / MHz	Complies

Note 1: EIRP calculated using antenna gain of 3.7 dBi for the highest EIRP system.

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz for all modes	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 37 mW 802.11n20: 41.6 mW 802.11n40: 42.3 mW (Max eirp: 0.252 W)	24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a) (2))			802.11a: 3.0 dBm/MHz	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density	802.11n20MHz: 3.8 dBm/MHz 802.11n40MHz: 1.2 dBm/MHz	11 dBm / MHz	Complies
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate in the 5600 – 5650 MHz band –refer to Operational Description and 20dB BW plots Com		

Requirements for all U-NII/LELAN bands

		ELAN bands		I	T
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz 38.0 dBμV/m @ 58.48 MHz			Complies (-2.0 dB)
15.407(b) (5) / 15.209	A9.3	Spurious Emissions above 1GHz	53.6 dBμV/m @ 5459.8 MHz	Refer to page 24	Complies (-0.4 dB)
15.407(a)(6)	-	Peak Excursion Ratio	11.5 dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	Complies
15		Chamer Selection	Measurements on three channels in each band	and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description page 9)	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 20ppm (Operational Description page 9)	Signal shall remain within the allocated band	Complies
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R87446	Channel move time < 10s Channel closing transmission time < 260ms	Complies
	A9.9g	User Manual information	Refer to pages 11 and 2 of the user's manual for details	Warning regarding interference from Satellite Systems	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique connector used	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	39.7 dBμV @ 15.416 MHz	Refer to page 21	Complies (-20.3dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to SAR report, RSS 102 declaration and User Manual pages 11, 14 and 15	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to page 11 of the user's manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth Chain A	802.11a: 18.8 MHz 802.11n20: 19.3 MHz 802.11n40: 36.9 MHz	Information only	N/A

ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.209	RSS 210	Spurious emissions	46.1 dBμV/m @ 10400.0 MHz	15.209 in restricted bands, all others < -20dBc	Complies (-7.9dB)

Signal was actually second harmonic of 802.11 signal and not an inter-modulation product, but this was the highest level signal observed with both Bluetooth and Wi-Fi transmitters operational simultaneously.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field	dBμV/m	25 to 1000 MHz	± 3.6 dB
strength)	42 pt 1 / 111	1000 to 40000 MHz	$\pm 6.0 \text{ dB}$
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	$\pm 2.4 dB$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation Intel® Centrino® Advanced-N 6235, Models 6235ANHMRW and 6235ANHRU are PCIe Half Mini Card form factor Bluetooth/IEEE 802.11a/b/g/n wireless network adapters. The card supports MIMO (2x2) for 802.11n modes and MISO (1x2) for 802.11a/b/g modes.

Bluetooth operates on a single chain and supports Basic rate, Enhanced data rate and Low Energy modes. The Basic and Enhanced data rates fully support frequency hopping while the Low Energy (LE) mode can operate in both hoping and non-hopping modes. The LE mode was evaluated under the rules for digital modulation systems while the other modes were evaluated as FHSS.

When Bluetooth is operational then 802.11b/g/n modes operate as SISO (1x1). 802.11a/n modes still operate as MIMO (2x2) with Bluetooth operational.

The card is sold under two different FCC/IC ID numbers (see table below). The ID's ending in "U" are intended to allow user install conditions and host systems must be provided with a BIOS locking feature that prevents installation of unauthorized devices. For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on April 16, 2012 and tested on April 23, 24, 25, 26, 28 and 29 and May 2, 7, 9, 10, 11, 12 and 20, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
		PCIe Half Mini		PD96235ANHR
	6235ANHMRW	Card form factor		PD96235ANHRU
Intel	0233ANHWIKW	Bluetooth /		1000M-
Corporation			IEEE	44850006303D
Corporation	6235ANHRU	802.11a/b/g/n		1000M-
		wireless		6235ANHRU
		network adapter		UZJJANIKU

ANTENNA SYSTEM

The EUT antenna is a a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel	-	Test Fixture		N/A
Corporation				
Dell	PP17L	Laptop PC	CN-ONF743-	N/A
			48643-7B6-	
			0727	
Agilent	E3610A	DC Supply	100708	N/A

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Por	rt	Cable(s)				
From	То	Description	Shielded/Unshielded	Length(m)		
Laptop USB	Fixture USB	USB cable	Shielded	1.5		
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	0.7		
DC Power	Fixture DC power	2-wire	unshielded	0.7		

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes –802.11a, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used for all tests were the lowest data rates for each 802.11 mode – 6Mb/s for 802.11a, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements – refer to test data for actual measurements). Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s.

The field strength at the band edges was evaluated for each mode and on each chain individually on the lowest and highest channels at the rated power for the channel under test. Where the power at the edge channels was lower than the power at the center channels additional measurements were made at the adjacent channels. MIMO and SISO modes were fully evaluated.

Spurious emissions measurements at frequencies away from the band edges were made at the highest power rating for the band in each mode. For 802.11n modes both chains were active (MIMO mode) but with each chain at the highest power rating per chain (MIMO power setting) to cover both modes of operation at the same time.

The PC was using the Intel test utility DRTU Version 1.5.4.0399 and the device driver was version 15.1.0.99.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location	
Site	FCC	Canada	Location	
Chamber 3	769238	2845B-3		
Chamber 4	211948	2845B-4	41039 Boyce Road	
Chamber 5	211948	2845B-5	Fremont,	
Chamber 7	A2LA	2845B-7	CA 94538-2435	
Chamber /	accreditation	2043D-7		

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

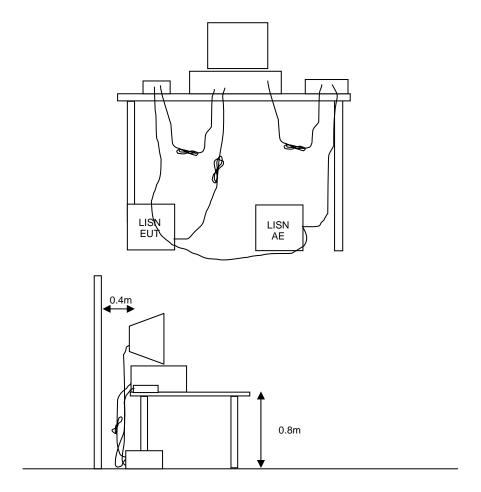
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

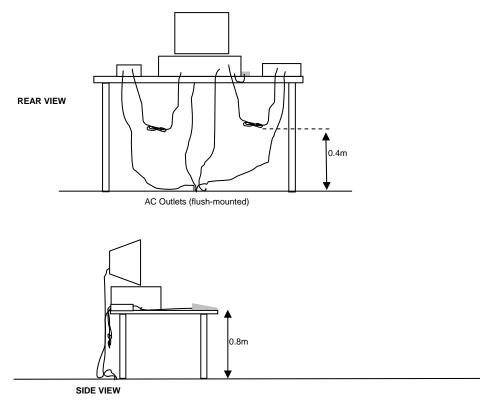
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

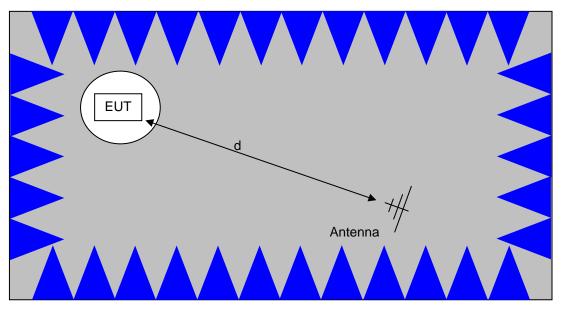
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

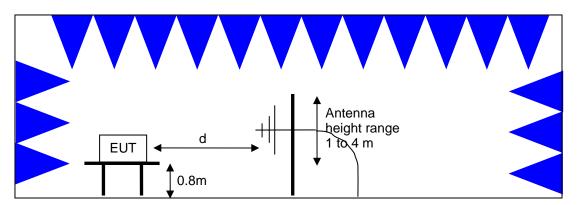

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

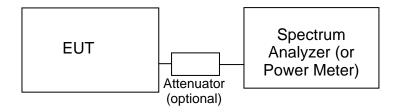
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

² If EIRP exceeds 500mW the device must employ TPC ³ If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed –7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

T87211

Manufacturer Radiated Emissions	<u>Description</u> 1000 - 6,500 MHz, 17-Apr-12	<u>Model</u>	Asset #	Cal Due
EMCO Rohde & Schwarz	Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-7 GHz	3115 ESIB7	868 1630	6/8/2012 6/8/2012
Radiated Emissions.	1000 - 6,500 MHz, 18-Apr-12			
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
Radiated Emissions, 7 EMCO Rohde & Schwarz	1,000 - 6,500 MHz, 19-Apr-12 Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESIB40 (1088.7490.40)	868 2493	6/8/2012 12/9/2012
Radiated Emissions, I Rohde & Schwarz EMCO	Band Edge, 23-Apr-12 EMI Test Receiver, 20 Hz-7 GHz Antenna, Horn, 1-18 GHz	ESIB7 3115	1538 1561	12/6/2012 6/22/2012
Radiated Emissions, 6 EMCO Rohde & Schwarz	1000 - 6,500 MHz, 24-Apr-12 Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	3115 ESIB7	487 1630	7/6/2012 6/8/2012
Radiated Emissions, 6 EMCO	1000 - 6,500 MHz, 24-Apr-12 Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	6/8/2012
Radiated Emissions, I EMCO Rohde & Schwarz	Band Edge, 24-Apr-12 Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-40 GHz	3115 ESIB40 (1088.7490.40)	868 2493	6/8/2012 12/9/2012
	30 - 18,000 MHz, 25-Apr-12	0.4405		0/00/0040
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Sunol Sciences Hewlett Packard	Biconilog, 30-3000 MHz SpecAn 9 kHz - 40 GHz, (SA40) Purple	JB3 8564E (84125C)	1657 1771	5/28/2012 3/23/2013
Micro-Tronics	Band Reject Filter, 5150-5350	BRC50703-02	2239	10/4/2012
Micro-Tronics	MHz Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2012
Com-Power Corp. Rohde & Schwarz	Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-40 GHz	PA-103A ESIB40 (1088.7490.40)	2359 2493	2/14/2013 12/9/2012
Radiated Emissions, American Hewlett Packard	1000 - 26,500 MHz, 25-Apr-12 Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012

		Re	pori Duie. N	14y 24, 2012
Manufacturer Hewlett Packard	<u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple	Model 8564E (84125C)	Asset # 1771	<u>Cal Due</u> 3/23/2013
A.H. Systems Micro-Tronics	Blue System Horn, 18-40GHz Band Reject Filter, 2400-2500 MHz	SAS-574, p/n: 2581 BRM50702-02	2159 2249	5/23/2012 10/11/2012
Padiated Emissions	1,000 - 18,000 MHz, 25-Apr-12			
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/19/2013
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/23/2013
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radiated Emissions.	1000 - 40000MHz, 27-Apr-12			
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	9/8/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	11/22/2012
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	10/4/2012
Radiated Spurious En	nissions, 1000 - 40,000 MHz, 27-A	nr-12		
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	6/24/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	8/5/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radiated Emissions,	1,000 - 18,000 MHz, 28-Apr-12			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz High Pass filter, 8.2 GHz (Purple System)	ESIB7 P/N 84300-80039 (84125C)	1630 1767	6/8/2012 11/29/2012
Radiated Emissions, Hewlett Packard	1000 - 26,500 MHz, 30-Apr-12 Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz	3115	1386	9/21/2012
Rohde & Schwarz Micro-Tronics	(SA40-Blu) EMI Test Receiver, 20 Hz-7 GHz Band Reject Filter, 2400-2500 MHz	ESIB7 BRM50702-02	1630 1683	6/8/2012 8/3/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	3/23/2013
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	5/23/2012

		1101		1007 2 1, 2012
Manufacturer Radiated Emissions,	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
30 - 1,000 MHz, 01- May-12				
Engineer: Chris Groat Manufacturer Rohde & Schwarz	Description EMI Test Receiver, 20 Hz-7 GHz	Model # ESIB7	Asset # 1538	Cal Due 12/6/2012
Sunol Sciences Hewlett Packard	Biconilog, 30-3000 MHz 9KHz-1300MHz pre-amp	JB3 8447F	1548 2328	6/24/2012 3/16/2013
Tiewiett Fackard	Six 12 1300Wi 12 pro amp	04471	CG0177	3/10/2013
Conducted Emissions Rohde & Schwarz	s - AC Power Ports, 01-May-12 Pulse Limiter	ESH3 Z2	1401	5/12/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538 2000	12/6/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09		10/18/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	2/15/2013
Radiated Emissions, ' Hewlett Packard	1000 - 10,000 MHz, 02-May-12 Microwave Preamplifier, 1-	9440B	262	2/20/2042
Hewlett Packard	26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Rohde & Schwarz Micro-Tronics	EMI Test Receiver, 20 Hz-7 GHz Band Reject Filter, 2400-2500	ESIB7 BRM50702-02	1630 1683	6/8/2012 8/3/2012
	MHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	3/23/2013
	1000 - 15,000 MHz, Simultaneous			0/00/0040
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	3/29/2013
EMCO	Antenna, Horn, 1-18GHz	3115 B/N 04200 00020	868	6/8/2012
Hewlett Packard Micro-Tronics	High Pass filter, 8.2 GHz Band Reject Filter, 2400-2500 MHz	P/N 84300-80039 BRM50702-02	1156 1683	6/24/2012 8/3/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	3/30/2013
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	10/4/2012
Radio Antenna Port (F	Power and Spurious Emissions), (04-Mav-12		
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	3/30/2013
Radiated Emissions, 1 EMCO	1 ,000- 6,500 MHz, 09-May-12 Antenna, Horn, 1-18 GHz	3115	1386	9/21/2012
	(SA40-Blu)		1300	9/2 1/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	12/9/2012
	30 - 1,000 MHz, 11-May-12			
Sunol Sciences Com-Power Corp.	Biconilog, 30-3000 MHz Preamplifier, 30-1000 MHz	JB3 PA-103A	1657 2359	5/28/2012 2/14/2013
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40	ESIB40	2359 2493	12/9/2012
	GHz	(1088.7490.40)		
	10D D / // 15			

File: R87750

Conducted Emissions - AC Power Ports, 11-May-12

Manufacturer Rohde & Schwarz	<u>Description</u> Pulse Limiter	Model ESH3 Z2	Asset # 1594	<u>Cal Due</u> 5/17/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2-	2000	10/18/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	2/15/2013
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	12/9/2012
Radiated Emissions. 3	30 - 1,000 MHz, 21-May-12			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
Sunol Sciences Hewlett Packard	Biconilog, 30-3000 MHz 9KHz-1300MHz pre-amp	JB3 8447F	1548 2328	6/24/2012 5/2/2013
Conducted Emissions	s - AC Power Ports, 21-May-12			
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	5/15/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2000	10/18/2012
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	2/15/2013

T87656 Radio Antenna Port (Power and Spurious Emissions), 2-May-12				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	01-May-13
Radio Antenna Por	t (Power and Spurious Emissions), 3-	May-12		
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Dual Channel Power Sensor 100 uW - 2 Watts use	NRVD	10 7 1	26-May-12
Rohde & Schwarz	with 20dB attenuator sn:100059 only	NRV-Z32	1423	01-Sep-12
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	23-Feb-13
Radio Antenna Por	t (Power and Spurious Emissions), 4-	May-12		
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Dual Channel Power Sensor 100 uW - 2 Watts use	NRVD	1071	26-May-12
Rohde & Schwarz	with 20dB attenuator sn:100059 only	NRV-Z32	1423	01-Sep-12
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	23-Feb-13
Radio Antenna Por	t (Power and Spurious Emissions), 7-	May-12		
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Dual Channel Power Sensor 100 uW - 2 Watts use	NRVD	1071	26-May-12
Rohde & Schwarz	with 20dB attenuator sn:100059 only	NRV-Z32	1423	01-Sep-12
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	23-Feb-13
Radio Antenna Por	t (Power and Spurious Emissions), 9-	May-12		
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Dual Channel Power Sensor 100 uW - 2 Watts use	NRVD	10 7 1	26-May-12
Rohde & Schwarz	with 20dB attenuator sn:100059 only	NRV-Z32	1423	01-Sep-12
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	23-Feb-13

Appendix B Test Data

T87211 Pages 32 – 143 T87656 Pages 144 - 219

Ellio AN AND AND	tt	E	MC Test Data
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247, 15.407	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6235

Date of Last Test: 5/22/2012

R87750 Cover Page 32

An IALES company		
Client: Intel Corporation	Job Number:	J87129
Model: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	Account Manger:	Christine Krebill
Contact: Steve Hackett		
Emissions Standard(s): FCC 15.247, 15.407	Class:	В
Immunity Standard(s): -	Environment:	-

Power vs. Data Rate

In normal operating modes the card uses power settings stored on EEPROM to set the output power. For a given nominal output power the actual transmit power is redcued as the data rate increases, therefore testing was performed at the lowest data rate in each mode as this data rate to determine compliance with the requirements at the highest power seting.

The following power measurements were made using an average power meter and the with the device configured in a continuous transmit mode on Chain A at the various data rates in each mode to verify this:

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Date of Test: 5/20/2012 Config. Used: 1
Test Engineer: Jack Liu Config Change: none
Test Location: FT Chamber#4 Host Unit Voltage 120V/60Hz

802.11 DTS 2.4GHz ChainA

Mode	Data Rate	Power (dBm)	Power setting
	1	16.5	
802.11b	2	16.4	22.5
002.110	5.5	16.5	22.5
	11	16.4	
	6	16.5	
	9	16.4	
	12	16.4	
802.11g	18	16.4	28.5
002.11g	24	16.3	20.5
	36	16.2	
	48	16.2	
	54	16.2	
	6.5	15.9	
	13	15.8	
	19.5	15.9	
802.11n 20MHz	26	15.8	28.0
002.1111 ZUIVII 1Z	39	15.8	20.0
	52	15.8	
	58.5	15.7	
	65	15.7	
	13.5	12.9	
	27	12.8	
	40.5	12.7	
802.11n 40MHz	54	12.5	24.0
OUZ. I III 4 OIVILIZ	81	12.4	24.0
	108	12.3	
	121.5	12.4	
	135	12.3	

Note: Power setting - the software power setting used during testing, included for reference only.

The state of the s							
Client:	Intel Corporation	Job Number:	J87129				
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211				
	intel® Centilino® Advanced-N 0255	Account Manager:	Christine Krebill				
Contact:	Steve Hackett						
Standard:	FCC 15.247, 15.407	Class:	N/A				

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/10/2012 Config. Used: Modular Test
Test Engineer: Joseph Cadigal Config Change: None
Test Location: FT Chamber#5 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 21 °C Rel. Humidity: 34 %

Summary of Results

MAC Address: 44850006301F DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions	FCC 15.209 / RSS 210	Pass	38.0 dBµV/m @ 58.48 MHz (-2.0
	30 - 1000 MHz	1 CC 13.2077 N.3.3 210	Pa55	dB)

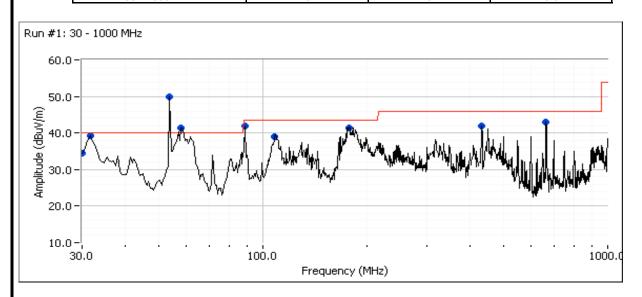
Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data rate).

Modifications Made During Testing

No modifications were made to the EUT during testing

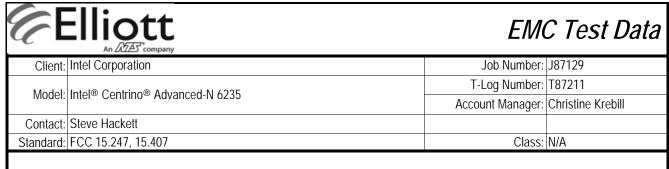
Deviations From The Standard

No deviations were made from the requirements of the standard.



The state of the s							
Client:	Intel Corporation	Job Number:	J87129				
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211				
	IIIIei Ceiliiiio Advanceu-N 0233	Account Manager:	Christine Krebill				
Contact:	Steve Hackett						
Standard:	FCC 15.247, 15.407	Class:	N/A				

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz


Configured to TX, 802.11b 16.5dBm on each chain (settings 22.5) on channel 6, Bluetooth 7dBm, 1Mb/s (settings 8.0)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
30 - 1000 MHz	3	3	0.0	

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
54.342	50.0	V	40.0	10.0	Peak	0	2.5	
31.815	39.3	V	40.0	-0.7	Peak	2	1.5	
431.996	41.9	Н	46.0	-4.1	Peak	12	1.0	
178.100	41.3	V	43.5	-2.2	Peak	29	1.0	
663.571	43.1	V	46.0	-2.9	Peak	87	1.0	
30.022	34.6	V	40.0	-5.4	Peak	138	1.0	
108.350	38.9	Η	43.5	-4.6	Peak	267	3.0	
58.477	41.5	V	40.0	1.5	Peak	279	1.0	
89.397	41.9	V	43.5	-1.6	Peak	286	1.5	

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC 15.209	7 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
58.477	38.0	V	40.0	-2.0	QP	280	1.0	QP (1.00s)
108.350	38.1	Н	43.5	-5.4	QP	270	3.0	QP (1.00s)
431.996	40.0	Н	46.0	-6.0	QP	13	1.0	QP (1.00s)
31.815	33.6	V	40.0	-6.4	QP	6	1.5	QP (1.00s)
178.100	36.7	V	43.5	-6.8	QP	33	1.0	QP (1.00s)
30.022	30.8	V	40.0	-9.2	QP	141	1.0	QP (1.00s)
663.571	35.0	V	46.0	-11.0	QP	90	1.0	QP (1.00s)
54.342	24.4	V	40.0	-15.6	QP	0	2.5	QP (1.00s)
89.397	26.1	V	43.5	-17.4	QP	287	1.5	QP (1.00s)

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wouei.	III(e) Ceritiiio Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/10/2012 Config. Used: Modular Test
Test Engineer: Joseph Cadigal Config Change: None
Test Location: FT Chamber#5 Host Unit Voltage 120V/60Hz

General Test Configuration

The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 34 %

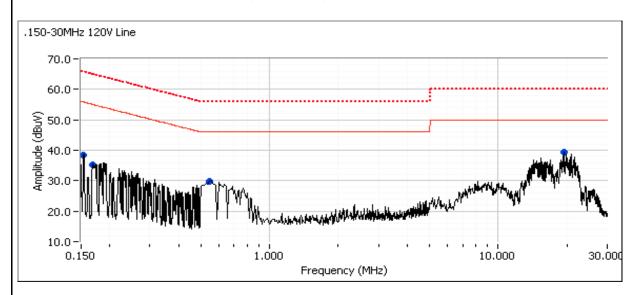
Summary of Results

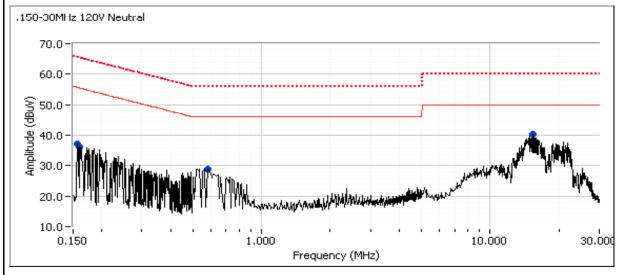
MAC Address: 44850006301F DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	RSS 210 / 15.207	Pass	39.7 dBμV @ 15.416 MHz (-20.3 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

	All Delta Company		107400
Client:	Intel Corporation	Job Number:	J8/129
Madali	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	intel® Centilino® Advanceu-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	В

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

	Intel Corpor	ation					Job Number:	J87129
Model	Intol® Cont	rino® Advanc	od N 6225				T-Log Number:	T87211
			eu-IN 0233				Account Manager:	Christine Krebill
	Steve Hack							
Standard:	FCC 15.247	7, 15.407					Class:	В
reliminary	neak readi	nas canture	d during pre	-scan (neak	readings v	s. average limi))	
Frequency	Level	AC AC) / 15.207	Detector	Comments	.,	
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.153	38.5	Line 1	55.8	-17.3	Peak			
19.320	39.4	Line 1	50.0	-10.6	Peak			
0.553	29.9	Line 1	46.0	-16.1	Peak			
0.168	35.2	Line 1	55.0	-19.8	Peak			
0.157	37.1	Neutral	55.6	-18.5	Peak			
15.416	40.3	Neutral	50.0	-9.7	Peak			
0.573	28.9	Neutral	46.0	-17.1	Peak			
0.161	36.1	Neutral	55.4	-19.3	Peak			
	-	verage readi		1/15 207	Dotoctor	Comments		
requency	Level	AC	RSS 210	/ 15.207 Margin	Detector	Comments		
requency MHz	Level dBµV	AC Line	RSS 210 Limit	Margin	QP/Ave			
requency MHz 15.416	Level dB _µ V 39.7	AC Line Neutral	RSS 210 Limit 60.0	Margin -20.3	QP/Ave QP	QP (1.00s)		
MHz 15.416 19.320	Level dB _µ V 39.7 28.9	AC Line Neutral Line 1	RSS 210 Limit 60.0 50.0	Margin -20.3 -21.1	QP/Ave QP AVG	QP (1.00s) AVG (0.10s)		
MHz 15.416 19.320 19.320	Level dBµV 39.7 28.9 36.0	AC Line Neutral Line 1	RSS 210 Limit 60.0 50.0 60.0	Margin -20.3 -21.1 -24.0	QP/Ave QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
MHz 15.416 19.320 19.320 0.553	Level dBµV 39.7 28.9 36.0 21.5	AC Line Neutral Line 1 Line 1 Line 1	RSS 210 Limit 60.0 50.0 60.0 56.0	Margin -20.3 -21.1 -24.0 -34.5	QP/Ave QP AVG QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
MHz 15.416 19.320 19.320	Level dBµV 39.7 28.9 36.0	AC Line Neutral Line 1 Line 1	RSS 210 Limit 60.0 50.0 60.0	Margin -20.3 -21.1 -24.0	QP/Ave QP AVG QP	QP (1.00s) AVG (0.10s) QP (1.00s)		
mHz 15.416 19.320 19.320 0.553 0.153	Level dBµV 39.7 28.9 36.0 21.5 30.6	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Line 1	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8	Margin -20.3 -21.1 -24.0 -34.5 -35.2	QP/Ave QP AVG QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
mHz 15.416 19.320 19.320 0.553 0.153 0.573	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5	QP/Ave QP AVG QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
mHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Line 1	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8	QP/Ave QP AVG QP QP QP QP QP QP QP QP QP	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
MHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168 0.157 0.161 0.553	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3 26.9 26.3 4.2	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1 65.6 65.4 46.0	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8 -38.7 -39.1 -41.8	QP/Ave QP AVG QP QP QP QP QP QP QP AVG	QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
mHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168 0.157 0.161 0.553 0.573	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3 26.9 26.3 4.2 3.8	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral Neutral Neutral Neutral	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1 65.6 65.4 46.0 46.0	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8 -38.7 -39.1 -41.8 -42.2	QP/Ave QP AVG QP QP QP QP QP QP AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
mHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168 0.157 0.161 0.553 0.573 0.153	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3 26.9 26.3 4.2 3.8 11.4	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1 65.6 65.4 46.0 46.0 55.8	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8 -38.7 -39.1 -41.8 -42.2 -44.4	QP/Ave QP AVG QP QP QP QP QP QP AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168 0.157 0.161 0.553 0.573 0.153	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3 26.9 26.3 4.2 3.8 11.4 9.8	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1 65.6 65.4 46.0 46.0 55.8 55.1	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8 -38.7 -39.1 -41.8 -42.2 -44.4 -45.3	QP/Ave QP AVG QP QP QP QP QP QP AVG AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
mHz 15.416 19.320 19.320 0.553 0.153 0.573 0.168 0.157 0.161 0.553 0.573 0.153	Level dBµV 39.7 28.9 36.0 21.5 30.6 20.5 28.3 26.9 26.3 4.2 3.8 11.4	AC Line Neutral Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Neutral Neutral Neutral Line 1 Neutral Line 1 Neutral	RSS 210 Limit 60.0 50.0 60.0 56.0 65.8 56.0 65.1 65.6 65.4 46.0 46.0 55.8	Margin -20.3 -21.1 -24.0 -34.5 -35.2 -35.5 -36.8 -38.7 -39.1 -41.8 -42.2 -44.4	QP/Ave QP AVG QP QP QP QP QP QP AVG AVG AVG	QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		

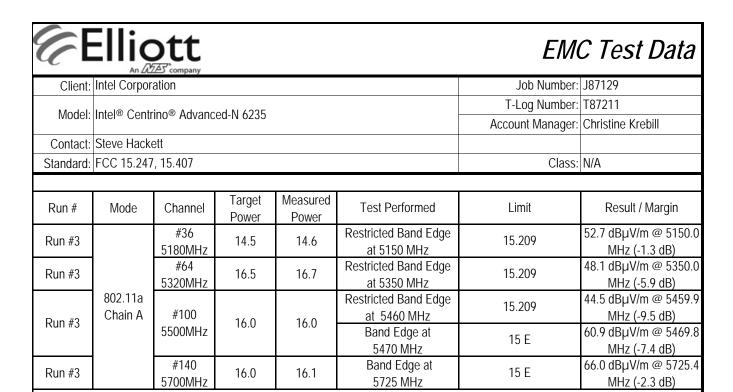
	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	intel® Centinio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration


The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with cables routed beneath the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin	
Run #1		#36 5180MHz	14.5	14.8	Restricted Band Edge at 5150 MHz	15.209	50.0 dBµV/m @ 5150.0 MHz (-4.0 dB)	
Run #1		#64 5320MHz	16.5	16.7	Restricted Band Edge at 5350 MHz	15.209	49.2 dBµV/m @ 5350.0 MHz (-4.8 dB)	
Run #1	n20 Chain A	#100	16.5	16.6	Restricted Band Edge at 5460 MHz	15.209	48.4 dBµV/m @ 5460.0 MHz (-5.6 dB)	
Rull#1		5500MHz	10.5	10.0	Band Edge at 5470 MHz	15 E	65.0 dBµV/m @ 5467.0 MHz (-3.3 dB)	
Run #1		#140 16.0 16.0 Band Edge at 5700MHz		Band Edge at 5725 MHz	15 E	66.8 dBµV/m @ 5726.4 MHz (-1.5 dB)		
Run #2		#38 5190MHz	11.5	11.6	Restricted Band Edge at 5150 MHz	15.209	48.5 dBµV/m @ 5150.0 MHz (-5.5 dB)	
Run #2		#62 5310MHz	11.5	11.6	Restricted Band Edge at 5350 MHz	15.209	48.6 dBµV/m @ 5350.0 MHz (-5.4 dB)	
Run #2	n40 Chain A			14.5	14.5	Restricted Band Edge at 5460 MHz	15.209	53.6 dBµV/m @ 5459.8 MHz (-0.4 dB)
IXuII#Z		5510MHz	14.0	14.5	Band Edge at 5470 MHz	15 E	67.6 dBµV/m @ 5468.4 MHz (-0.7 dB)	
Run #2		#134 5670MHz	16.0	16.1	Band Edge at 5725 MHz	15 E	62.3 dBµV/m @ 5725.1 MHz (-6.0 dB)	

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Modifications Made During Testing

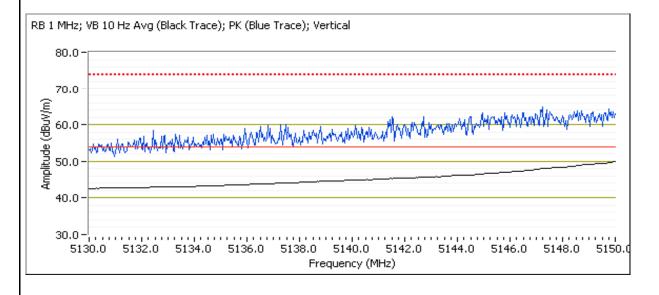
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Ambient Conditions:

Temperature: 24 °C Rel. Humidity: 38 %

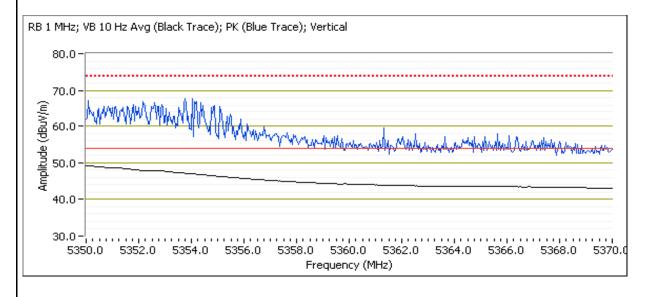

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	intel® Centillio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1, Band Edge Field Strength - HT20, Chain A Run #1a, EUT on Channel #36 5180MHz - HT20, Chain A

Date of Test: 4/29/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Power Setting: 27.0 Target: 14.5

O TOO MITTEE	100 Mile Baria Eago Orgina Madiatou i 1014 Ottorigti										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5149.990	50.0	V	54.0	-4.0	AVG	85	1.0	B 1 MHz; VB: 10 Hz			
5148.680	64.3	V	74.0	-9.7	PK	85	1.0	B 1 MHz; VB: 3 MHz			
5149.990	47.7	Н	54.0	-6.3	AVG	29	1.0	B 1 MHz; VB: 10 Hz			
5148.320	62.0	Н	74.0	-12.0	PK	29	1.0	B 1 MHz; VB: 3 MHz			


	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	intel® Centillio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

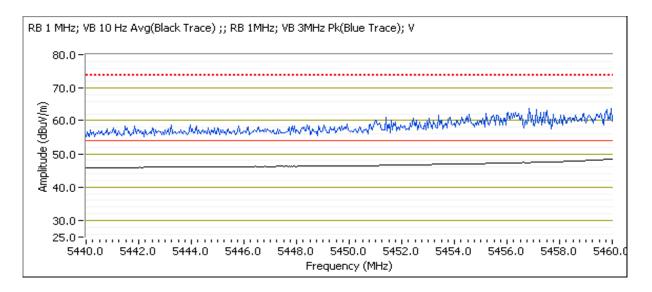
Run #1b, EUT on Channel #64 5320MHz - HT20, Chain A

Date of Test: 4/29/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Power Setting: 29.5 Target: 16.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5350.000	49.2	V	54.0	-4.8	AVG	154	1.0	B 1 MHz; VB: 10 Hz			
5351.760	67.8	V	74.0	-6.2	PK	154	1.0	B 1 MHz; VB: 3 MHz			
5350.010	48.0	Н	54.0	-6.0	AVG	261	1.0	B 1 MHz; VB: 10 Hz			
5350.630	64.4	Н	74.0	-9.6	PK	261	1.0	B 1 MHz; VB: 3 MHz			

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	intel® Centillio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

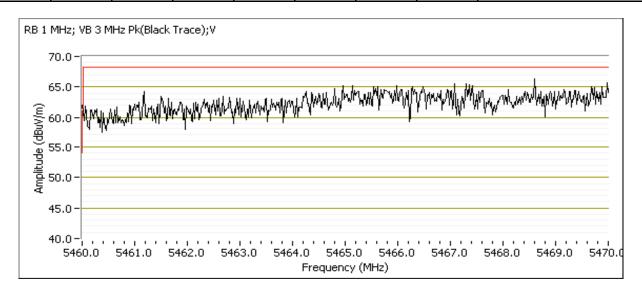

Run #1c, EUT on Channel #100 5500MHz - HT20, Chain A

Date of Test: 5/2/2012 Test Engineer: Jack Liu Test Location: FT5

Power Setting: 29.0 Target: 16.5

5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5460.000	48.4	V	54.0	-5.6	AVG	68	1.0	POS; RB 1 MHz; VB: 10 Hz		
5457.400	62.0	V	74.0	-12.0	PK	68	1.0	POS; RB 1 MHz; VB: 3 MHz		
5459.960	47.4	Н	54.0	-6.6	AVG	144	1.0	POS; RB 1 MHz; VB: 10 Hz		
5452.460	60.6	Н	74.0	-13.4	PK	144	1.0	POS; RB 1 MHz; VB: 3 MHz		

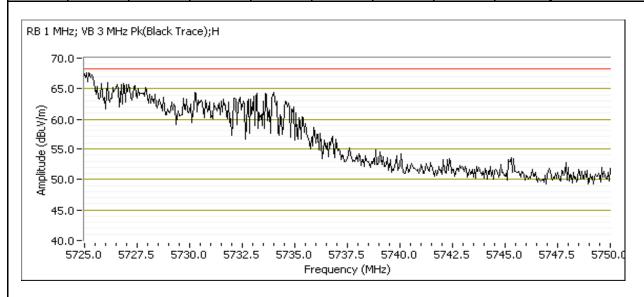

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1d, EUT on Channel #100 5500 MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 29.0

J470 WILIZ L	3470 Will Z Band Edge Signal Radiated Field Strength									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5467.030	65.0	V	68.3	-3.3	PK	182	1.0	B 1 MHz; VB: 3 MHz		
5467.030	62.3	Н	68.3	-6.0	PK	266	1.1	B 1 MHz; VB: 3 MHz		



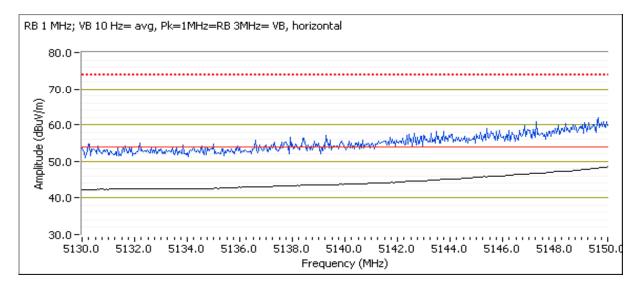
	All Dilles Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number: T87211	
Model.	intel® Centinio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1e, EUT on channel #140 5700 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012
Test Engineer: Jack Liu
Test Location: FT4
Power Setting: 30.0

J/ZJ WII IZ L	3723 Will Balla Lage Signal Radiated Field Strength									
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5726.400	66.8	Н	68.3	-1.5	PK	257	1.9	Pwr seeting 30		
5725.300	61.9	V	68.3	-6.4	PK	183	1.0	Pwr seeting 30		

Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wodel.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

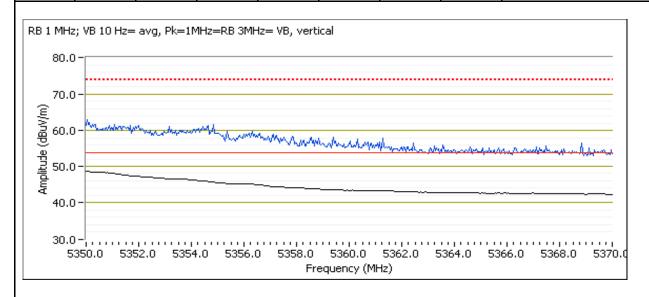

Run #2, Band Edge Field Strength - HT40, Chain A

Date of Test: 4/23/2012 Test Engineer: Joseph Cadigal Test Location: FT Chamber#3

Run #2a, EUT on Channel #38 5190MHz - HT40, Chain A

Power Setting: 23.5

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.000	48.5	Н	54.0	-5.5	AVG	26	1.0	POS; RB 1 MHz; VB: 10 Hz	
5149.720	59.9	Н	74.0	-14.1	PK	26	1.0	POS; RB 1 MHz; VB: 3 MHz	
5150.000	47.7	V	54.0	-6.3	AVG	128	1.0	POS; RB 1 MHz; VB: 10 Hz	
5148.080	58.5	V	74.0	-15.5	PK	128	1.0	POS; RB 1 MHz; VB: 3 MHz	

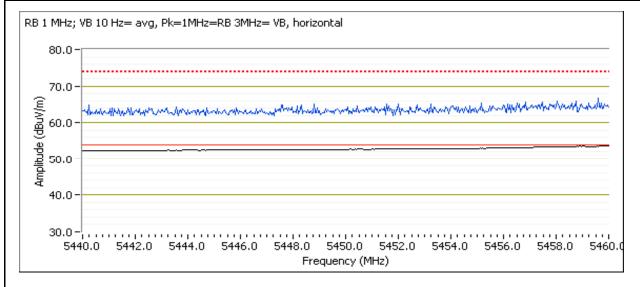


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2b, EUT on Channel #62 5310MHz - HT40, Chain A

Power Setting: 22.5

COCC MILIE B	boot III Iz Band Edgo Olghai Madiatod Flora Cirongan									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.000	48.6	V	54.0	-5.4	AVG	168	1.0	POS; RB 1 MHz; VB: 10 Hz		
5350.800	60.7	V	74.0	-13.3	PK	168	1.0	POS; RB 1 MHz; VB: 3 MHz		
5350.000	47.7	Н	54.0	-6.3	AVG	263	1.0	POS; RB 1 MHz; VB: 10 Hz		
5354.410	60.9	Н	74.0	-13.1	PK	263	1.0	POS; RB 1 MHz; VB: 3 MHz		

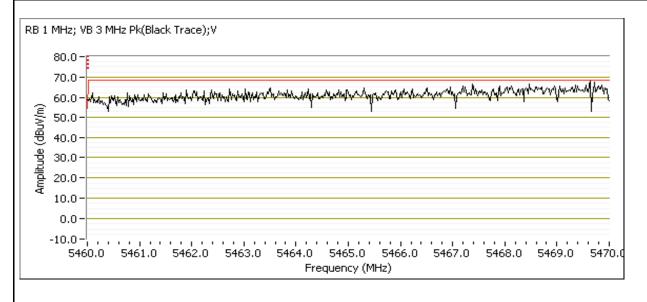

	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	intel® Centinio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2c, EUT on Channel #102 5510MHz - HT40, Chain A

Power Setting: 26.5

5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.800	53.6	Н	54.0	-0.4	AVG	260	1.0	POS; RB 1 MHz; VB: 10 Hz
5451.780	65.1	Н	74.0	-8.9	PK	260	1.0	POS; RB 1 MHz; VB: 3 MHz
5458.680	49.9	V	54.0	-4.1	AVG	123	1.2	POS; RB 1 MHz; VB: 10 Hz
5459.800	66.1	V	74.0	-7.9	PK	123	1.2	POS; RB 1 MHz; VB: 3 MHz

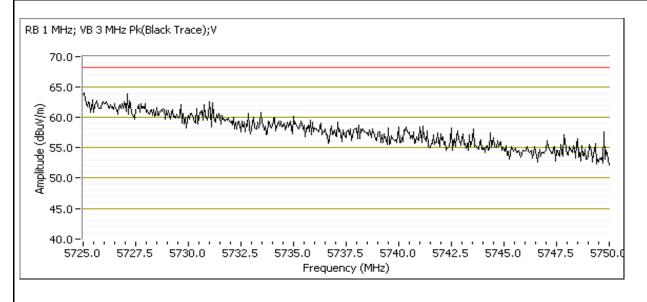

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2d, EUT on Channel #102 5510MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 26.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.440	67.6	V	68.3	-0.7	PK	75	1.0	B 1 MHz; VB: 3 MHz
5469.900	63.4	Н	68.3	-4.9	PK	315	0.9	B 1 MHz; VB: 3 MHz


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

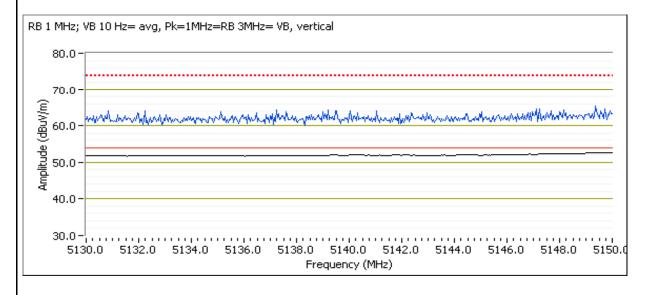
Run #2e, EUT on channel #134 5670 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 31.0

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.100	62.3	V	68.3	-6.0	PK	105	1.0	POS; RB 1 MHz; VB: 3 MHz
5725.350	61.6	Н	68.3	-6.7	PK	315	1.2	POS; RB 1 MHz; VB: 3 MHz

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	intel® Centillio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

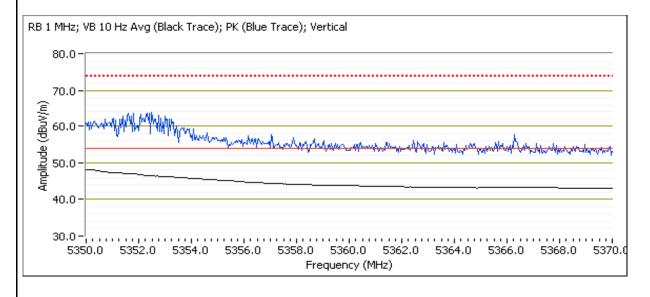

Run #3, Band Edge Field Strength - 802.11a, Chain A

Date of Test: 4/23/2012 Test Engineer: Joseph Cadigal Test Location: FT Chamber#3

Run #3a, EUT on Channel #36 5180MHz - 802.11a, Chain A

Power Setting: 26.5

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5150.000	52.7	V	54.0	-1.3	AVG	88	1.0	POS; RB 1 MHz; VB: 10 Hz		
5147.270	64.3	V	74.0	-9.7	PK	88	1.0	POS; RB 1 MHz; VB: 3 MHz		
5150.000	46.1	Н	54.0	-7.9	AVG	35	1.0	POS; RB 1 MHz; VB: 10 Hz		
5149.320	60.4	Н	74.0	-13.6	PK	35	1.0	POS; RB 1 MHz; VB: 3 MHz		


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

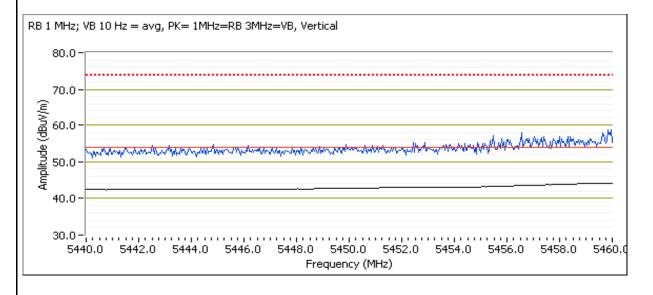
Run #3b, EUT on Channel #64 5320MHz - 802.11a, Chain A

Date of Test: 4/29/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Power Setting: 29.0 Target: 16.5

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.000	48.1	V	54.0	-5.9	AVG	154	1.0	B 1 MHz; VB: 10 Hz		
5352.000	63.4	V	74.0	-10.6	PK	154	1.0	B 1 MHz; VB: 3 MHz		
5350.000	46.8	Н	54.0	-7.2	AVG	261	1.1	B 1 MHz; VB: 10 Hz		
5352.200	61.6	Н	74.0	-12.4	PK	261	1.1	B 1 MHz; VB: 3 MHz		

	All Dilles Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	intel® Centinio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

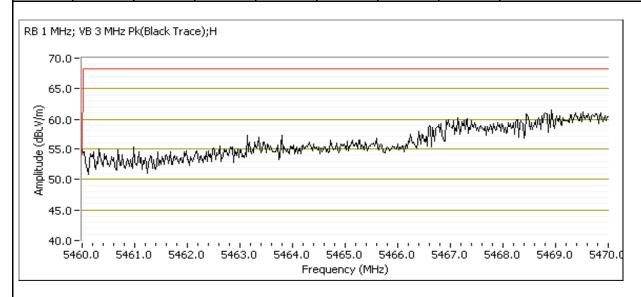

Run #3c, EUT on Channel #100 5500MHz - 802.11a, Chain A

Date of Test: 4/23/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Power Setting: 28.0

5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5459.880	44.5	V	54.0	-9.5	AVG	120	1.1	POS; RB 1 MHz; VB: 10 Hz	
5457.560	57.9	V	74.0	-16.1	PK	120	1.1	POS; RB 1 MHz; VB: 3 MHz	
5460.000	44.2	Н	54.0	-9.8	AVG	256	1.0	POS; RB 1 MHz; VB: 10 Hz	
5458.840	56.0	Н	74.0	-18.0	PK	256	1.0	POS; RB 1 MHz; VB: 3 MHz	

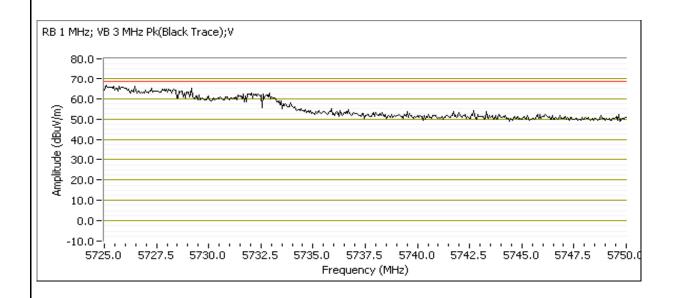

	All Dilles Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	intel® Centinio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3d, EUT on Channel #100 5500 MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 27.5

JATONII IZ D	347 Olili 12 Bana Luge Signar Radiated Field Strength									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5469.840	60.9	Н	68.3	-7.4	PK	61	1.0	B 1 MHz; VB: 3 MHz		
5468.900	55.9	V	68.3	-12.4	PK	70	1.0	B 1 MHz; VB: 3 MHz		


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3e, EUT on channel #140 5700 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 30.0

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.400	66.0	V	68.3	-2.3	PK	181	1.6	POS; RB 1 MHz; VB: 3 MHz
5725.850	62.8	Н	68.3	-5.5	PK	236	1.4	POS; RB 1 MHz; VB: 3 MHz

	Elliott An AZAS company	
Client:	Intel Corporation	
Model:	Intel® Centrino® Advanced-N 6235	

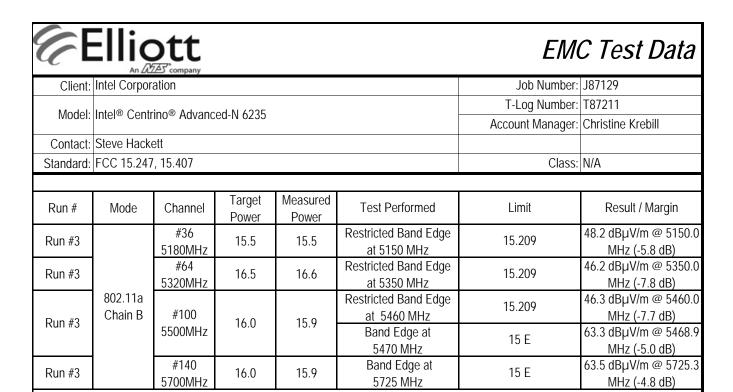
	· · · · · · · · · · · · · · · · · · ·		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	IIItel® Celitiiio® Auvanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration


The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with cables routed beneath the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin	
Run #1		#36 5180MHz	15.0	15.2	Restricted Band Edge at 5150 MHz	15.209	49.0 dBµV/m @ 5150.0 MHz (-5.0 dB)	
Run #1		#64 5320MHz	16.5	16.7	Restricted Band Edge at 5350 MHz	15.209	47.1 dBµV/m @ 5350.0 MHz (-6.9 dB)	
Run #1	n20 Chain B	#100	16.5	16.5	Restricted Band Edge at 5460 MHz	15.209	48.2 dBµV/m @ 5460.0 MHz (-5.8 dB)	
IXuII # I			5500MHz	10.5	10.5	Band Edge at 5470 MHz	15 E	64.3 dBµV/m @ 5466.6 MHz (-4.0 dB)
Run #1		#140 5700MHz	16.0	16.2	Band Edge at 5725 MHz	15 E	64.6 dBµV/m @ 5726.2 MHz (-3.7 dB)	
Run #2		#38 5190MHz	11.5	11.8	Restricted Band Edge at 5150 MHz	15.209	50.0 dBµV/m @ 5150.0 MHz (-4.0 dB)	
Run #2	n40 Chain B	#62 5310MHz	12.0	12.1	Restricted Band Edge at 5350 MHz	15.209	49.3 dBµV/m @ 5350.0 MHz (-4.7 dB)	
Dun #2				B #102 14.5	14.5	Restricted Band Edge at 5460 MHz	15.209	48.2 dBµV/m @ 5460.0 MHz (-5.8 dB)
Run #2		5510MHz 14.5		14.5	Band Edge at 5470 MHz	15 E	65.1 dBµV/m @ 5469.4 MHz (-3.2 dB)	
Run #2		#134 5670MHz	16.0	16.2	Band Edge at 5725 MHz	15 E	57.8 dBµV/m @ 5725.6 MHz (-30.5 dB)	

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Modifications Made During Testing

No modifications were made to the EUT during testing

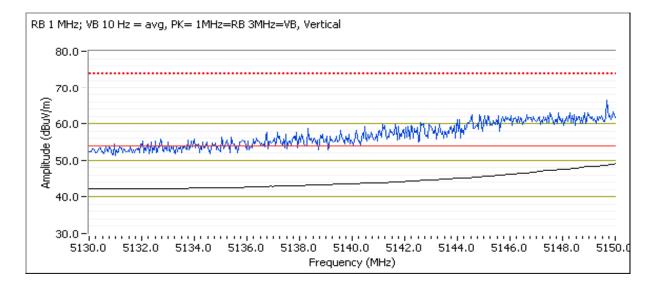
Deviations From The Standard

No deviations were made from the requirements of the standard.

Ambient Conditions:

Temperature: 20 °C Rel. Humidity: 35 %

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	inter® Centino® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

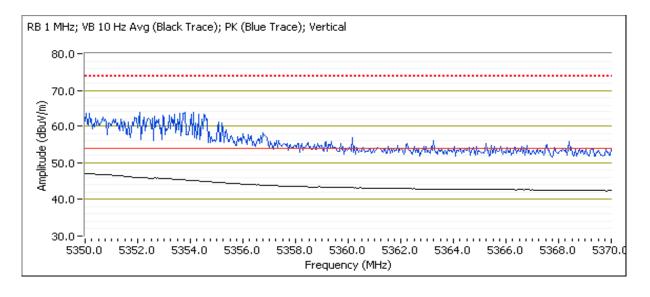

Run #1, Band Edge Field Strength - HT20, Chain B

Date of Test: 4/23/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Run #1a, EUT on Channel #36 5180MHz - HT20, Chain B

Power Setting: 25.0

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5150.000	49.0	V	54.0	-5.0	AVG	147	1.1	B 1 MHz; VB: 10 Hz		
5149.680	62.4	V	74.0	-11.6	PK	147	1.1	B 1 MHz; VB: 3 MHz		
5150.000	47.3	Н	54.0	-6.7	AVG	106	1.4	B 1 MHz; VB: 10 Hz		
5149.520	60.5	Н	74.0	-13.5	PK	106	1.4	B 1 MHz; VB: 3 MHz		


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

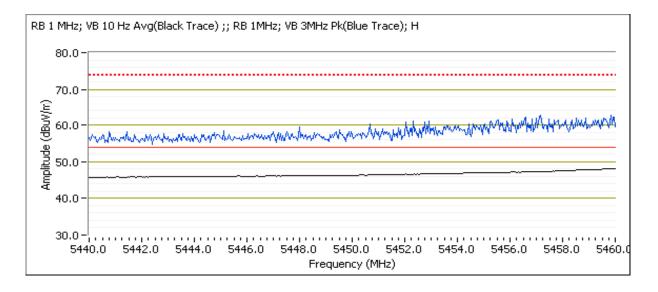
Run #1b, EUT on Channel #64 5320MHz - HT20, Chain B

Date of Test: 4/29/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Power Setting: 28.0 Target: 16.5

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.010	47.1	V	54.0	-6.9	AVG	142	1.2	B 1 MHz; VB: 10 Hz		
5352.280	64.3	V	74.0	-9.7	PK	142	1.2	B 1 MHz; VB: 3 MHz		
5350.000	46.4	Н	54.0	-7.6	AVG	108	1.0	B 1 MHz; VB: 10 Hz		
5350.280	62.0	Н	74.0	-12.0	PK	108	1.0	B 1 MHz; VB: 3 MHz		

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	inter® Centino® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

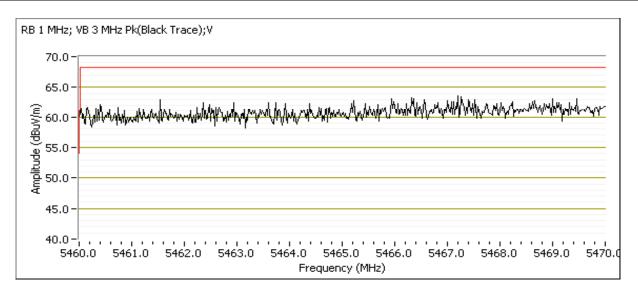

Run #1c, EUT on Channel #100 5500MHz - HT20, Chain B

Date of Test: 5/2/2012 Test Engineer: Jack Liu Test Location: FT5

Power Setting: 29.0 Target: 16.5

5460 MHz Restricted Band Edge Signal Radiated Field Strength

O TOO MITTE	Too mile Restricted Band Edge Signal Radiated Flord Chongan									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5460.000	48.2	Н	54.0	-5.8	AVG	95	1.1	POS; RB 1 MHz; VB: 10 Hz		
5459.680	61.0	Н	74.0	-13.0	PK	95	1.1	POS; RB 1 MHz; VB: 3 MHz		
5460.000	47.4	V	54.0	-6.6	AVG	158	1.1	POS; RB 1 MHz; VB: 10 Hz		
5453.350	59.5	V	74.0	-14.5	PK	158	1.1	POS; RB 1 MHz; VB: 3 MHz		

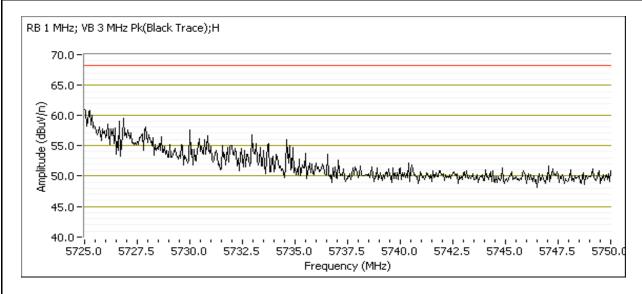

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1d, EUT on Channel #100 5500 MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 28.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5466.610	64.3	V	68.3	-4.0	PK	224	0.9	B 1 MHz; VB: 3 MHz
5469.820	59.8	Н	68.3	-8.5	PK	105	1.0	B 1 MHz; VB: 3 MHz


	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

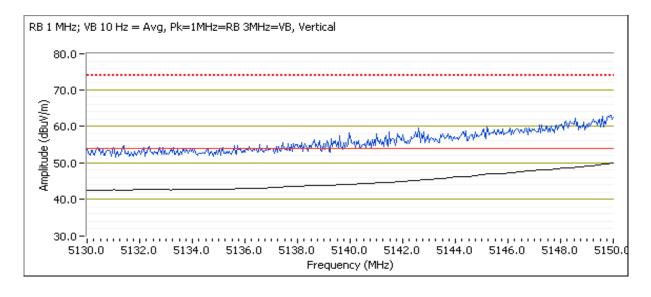
Run #1e, EUT on channel #140 5700 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 29.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5726.200	64.6	Н	68.3	-3.7	PK	103	1.3	B 1 MHz; VB: 3 MHz
5725.500	59.5	V	68.3	-8.8	PK	182	1.0	B 1 MHz; VB: 3 MHz

	All Dates Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel Ceritilio Advanceu-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

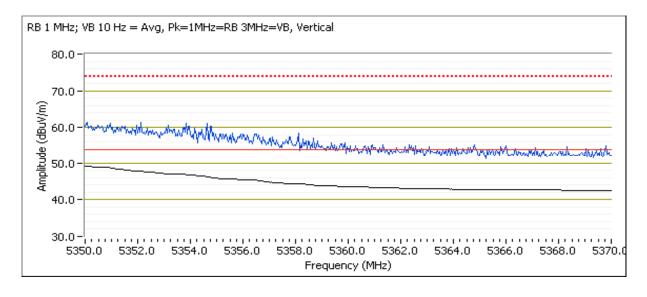

Run #2, Band Edge Field Strength - HT40, Chain B

Date of Test: 4/23/2012 Test Engineer: Rafael Varelas Test Location: FT Chamber#3

Run #2a, EUT on Channel #38 5190MHz - HT40, Chain B

Power Setting: 21.5

				· <i>y</i> ·				
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5150.000	50.0	V	54.0	-4.0	AVG	137	1.1	POS; RB 1 MHz; VB: 10 Hz
5148.360	60.8	V	74.0	-13.2	PK	137	1.1	POS; RB 1 MHz; VB: 3 MHz
5150.000	48.9	Н	54.0	-5.1	AVG	104	1.0	POS; RB 1 MHz; VB: 10 Hz
5149.180	61.5	Н	74.0	-12.5	PK	104	1.0	POS; RB 1 MHz; VB: 3 MHz

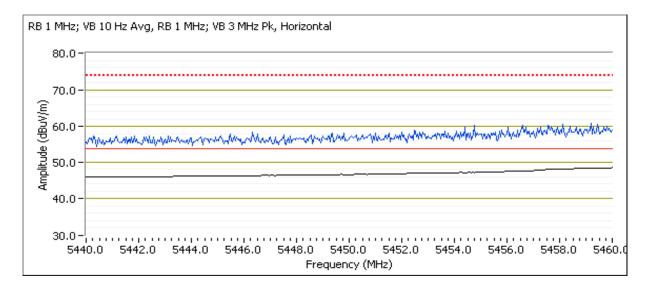


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2b, EUT on Channel #62 5310MHz - HT40, Chain B

Power Setting: 22.0

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	49.3	V	54.0	-4.7	AVG	152	1.5	POS; RB 1 MHz; VB: 10 Hz	
5350.480	60.4	V	74.0	-13.6	PK	152	1.5	POS; RB 1 MHz; VB: 3 MHz	
5350.000	49.1	Н	54.0	-4.9	AVG	105	1.0	POS; RB 1 MHz; VB: 10 Hz	
5350.280	61.8	Н	74.0	-12.2	PK	105	1.0	POS; RB 1 MHz; VB: 3 MHz	

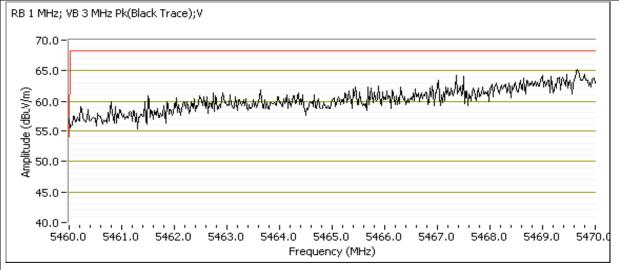

	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2c, EUT on Channel #102 5510MHz - HT40, Chain B

Power Setting: 26.0

5460 MHz Restricted Band Edge Signal Radiated Field Strength

						J			
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5460.000	48.2	V	54.0	-5.8	AVG	293	1.0	POS; RB 1 MHz; VB: 10 Hz	
5458.360	60.4	V	74.0	-13.6	PK	293	1.0	POS; RB 1 MHz; VB: 3 MHz	
5149.650	48.0	Н	54.0	-6.0	AVG	191	1.0	POS; RB 1 MHz; VB: 10 Hz	
5148.260	60.3	Н	74.0	-13.7	PK	191	1.0	POS; RB 1 MHz; VB: 3 MHz	

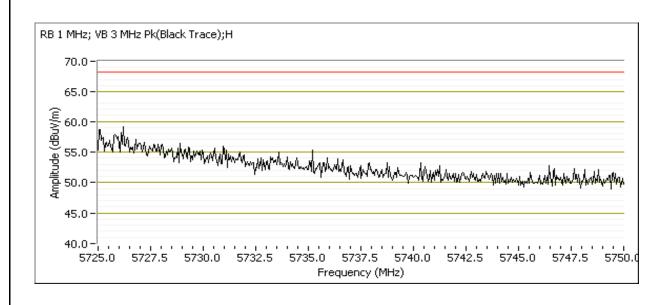

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2d, EUT on Channel #102 5510MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 26.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.400	65.1	V	68.3	-3.2	PK	182	1.0	B 1 MHz; VB: 3 MHz
5469.900	64.6	Н	68.3	-3.7	PK	120	1.5	B 1 MHz; VB: 3 MHz


	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2e, EUT on channel #134 5670 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

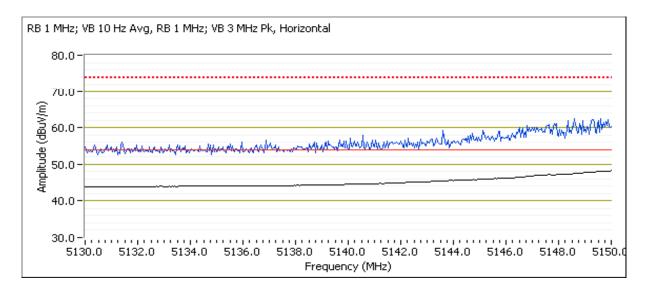
Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: 30.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.600	57.8	Н	88.3	-30.5	PK	107	1.3	B 1 MHz; VB: 3 MHz
5725.350	54.7	V	88.3	-33.6	PK	170	1.0	B 1 MHz; VB: 3 MHz

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Certifilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3, Band Edge Field Strength - 802.11a, Chain B

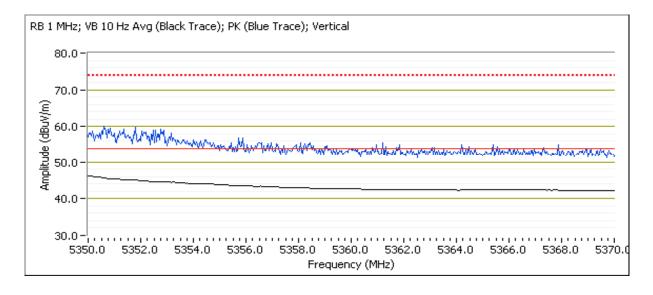

Date of Test: 4/24/2012 Test Engineer: David Bare

Test Location: Fremont Chamber #5

Run #3a, EUT on Channel #36 5180MHz - 802.11a, Chain B

Power Setting: 24.0

	\boldsymbol{y}										
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5150.000	47.6	V	54.0	-6.4	AVG	236	1.0	POS; RB 1 MHz; VB: 10 Hz			
5148.840	61.3	V	74.0	-12.7	PK	236	1.0	POS; RB 1 MHz; VB: 3 MHz			
5150.000	48.2	Н	54.0	-5.8	AVG	194	1.0	POS; RB 1 MHz; VB: 10 Hz			
5147.640	61.9	Н	74.0	-12.1	PK	194	1.0	POS; RB 1 MHz; VB: 3 MHz			

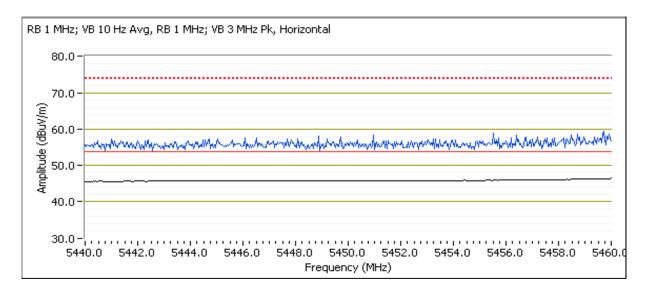

	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3b, EUT on Channel #64 5320MHz - 802.11a, Chain B

Power Setting: 27.5

Target: 16.5

3330 WHZ Band Edge Signal Nadiated Field Strength									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.040	46.2	V	54.0	-7.8	AVG	192	1.3	B 1 MHz; VB: 10 Hz	
5352.810	59.1	V	74.0	-14.9	PK	192	1.3	B 1 MHz; VB: 3 MHz	
5350.050	46.1	Н	54.0	-7.9	AVG	108	1.0	B 1 MHz; VB: 10 Hz	
5352.060	59.4	Н	74.0	-14.6	PK	108	1.0	B 1 MHz; VB: 3 MHz	

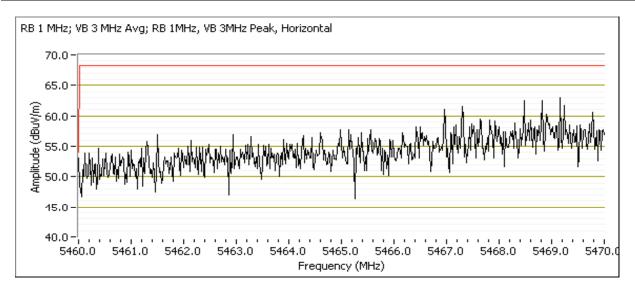

	741 Days company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	Illitel® Certifilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3c, EUT on Channel #100 5500MHz - 802.11a, Chain B

Power Setting: 26.5

5460 MHz Restricted Band Edge Signal Radiated Field Strength

					J			
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.800	46.1	V	54.0	-7.9	AVG	210	1.4	POS; RB 1 MHz; VB: 10 Hz
5447.090	57.4	V	74.0	-16.6	PK	210	1.4	POS; RB 1 MHz; VB: 3 MHz
5460.000	46.3	Н	54.0	-7.7	AVG	190	1.0	POS; RB 1 MHz; VB: 10 Hz
5442.320	57.6	Н	74.0	-16.4	PK	190	1.0	POS; RB 1 MHz; VB: 3 MHz

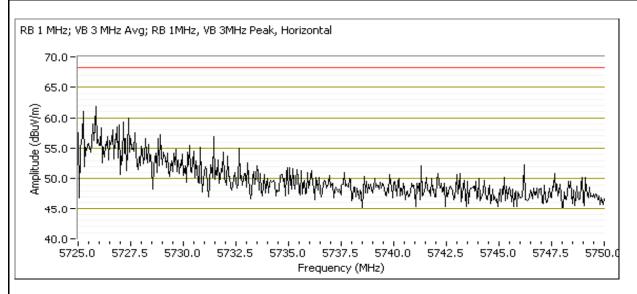

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3d, EUT on Channel #100 5500 MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Power Setting: 26.5

5470 MHz Non-Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.860	63.3	Н	68.3	-5.0	PK	112	1.0	POS; RB 1 MHz; VB: 3 MHz
5468.680	59.1	V	68.3	-9.2	PK	242	1.0	POS; RB 1 MHz; VB: 3 MHz


Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wodei.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3e, EUT on channel #140 5700 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Power Setting: 30.0

5725 MHz Non-Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.300	63.5	Н	68.3	-4.8	PK	100	1.0	POS; RB 1 MHz; VB: 3 MHz
5747.240	61.3	V	68.3	-7.0	PK	191	1.0	POS; RB 1 MHz; VB: 3 MHz

	Eliott An AZAS company	EM	C Test Data
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	IIIIei Ceilliio Auvanceu-ii 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber with cables routed beneath the floor.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Mode	Channel	Target	Measured	Test Performed	Limit	Result / Margin
Rull#	wode	Channel	Power	Power	rest renomieu	LIIIIII	Result / Maryin
Run #1		#36	A: 13.0	A: 12.9	Restricted Band Edge	15.209	50.4 dBµV/m @ 5150.0
Rull # I		5180MHz	B: 13.0	B: 12.9	at 5150 MHz	15.209	MHz (-3.6 dB)
Run #1		#64	A: 13.5	A: 13.4	Restricted Band Edge	15.209	45.2 dBµV/m @ 5350.1
Ruii # i		5320MHz	B: 13.5	B: 13.4	at 5350 MHz	13.207	MHz (-8.8 dB)
	n20				Restricted Band Edge	15.209	46.2 dBµV/m @ 5459.6
Run #1	Chain A+B	#100	A: 13.5	A: 13.4	at 5460 MHz	15.209	MHz (-7.8 dB)
IXuII π I		5500MHz	B: 13.5	B: 13.4	Band Edge at	15 E	60.9 dBµV/m @ 5469.7
					5470 MHz	IJ L	MHz (-7.4 dB)
Run #1		#140	A: 13.5	A: 13.6	Band Edge at	15 E	62.8 dBµV/m @ 5725.3
Rull#1		5700MHz	B: 13.5	B: 13.5	5725 MHz	IJ L	MHz (-5.5 dB)
Run #2		#38	A: 9.5	A: 9.6	Restricted Band Edge	15.209	52.8 dBµV/m @ 5150.0
Ruii #2		5190MHz	B: 9.5	B: 9.7	at 5150 MHz	13.207	MHz (-1.2 dB)
Run #2		#62	A: 10.0	A: 10.1	Restricted Band Edge	15.209	45.9 dBµV/m @ 5350.3
IXUII #Z		5310MHz	B: 10.0	B: 10.1	at 5350 MHz	13.207	MHz (-8.1 dB)
	n40				Restricted Band Edge	15.209	49.7 dBµV/m @ 5460.0
Run #2	Chain A+B	#102	A: 12.5	A: 12.5	at 5460 MHz	13.207	MHz (-4.3 dB)
Kull#2		5510MHz	B: 12.5	B: 12.4	Band Edge at	15 E	66.4 dBµV/m @ 5468.0
					5470 MHz	IJ L	MHz (-1.9 dB)
Run #2		#134	A: 13.5	A: 13.4	Band Edge at	15 E	61.3 dBµV/m @ 5748.3
IXuII #Z		5670MHz	B: 13.5	B: 13.5	5725 MHz	IJ L	MHz (-7.0 dB)

	Elliott An AZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Certifilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Ambient Conditions:

Temperature: 19 °C Rel. Humidity: 42 %

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	inter® Centino® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1, Band Edge Field Strength - HT20, Chain A+B

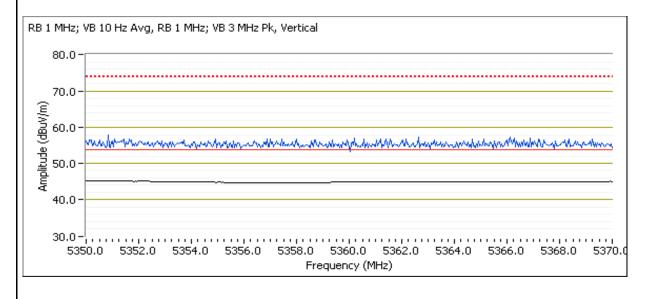

Date of Test: 4/24/2012 Test Engineer: David Bare

Test Location: Fremont Chamber #5

Run #1a, EUT on Channel #36 5180MHz - HT20, Chain A+B

Power Setting: A: 30.5, B:28.0

o roo Will Balla Eage Olghai Radiatea i lela Otterigui										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5150.000	50.4	V	54.0	-3.6	AVG	238	1.1	POS; RB 1 MHz; VB: 10 Hz		
5149.800	62.2	V	74.0	-11.8	PK	238	1.1	POS; RB 1 MHz; VB: 3 MHz		
5150.000	48.9	Н	54.0	-5.1	AVG	338	1.2	POS; RB 1 MHz; VB: 10 Hz		
5148.280	60.7	Н	74.0	-13.3	PK	338	1.2	POS; RB 1 MHz; VB: 3 MHz		

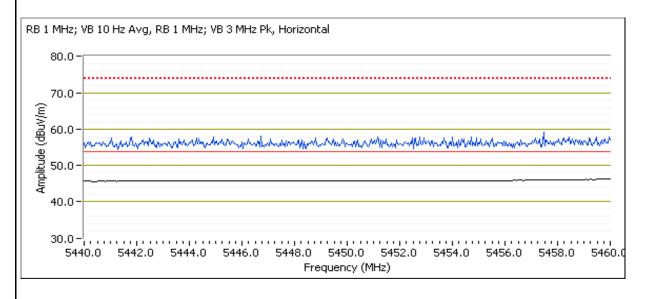


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centino® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1b, EUT on Channel #64 5320MHz - HT20, Chain A+B

Power Setting: A: 30.0, B:28.5

	J J								
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.080	45.2	V	54.0	-8.8	AVG	307	1.0	POS; RB 1 MHz; VB: 10 Hz	
5356.410	55.8	V	74.0	-18.2	PK	307	1.0	POS; RB 1 MHz; VB: 3 MHz	
5369.840	45.0	Н	54.0	-9.0	AVG	96	1.2	POS; RB 1 MHz; VB: 10 Hz	
5354.650	56.9	Н	74.0	-17.1	PK	96	1.2	POS; RB 1 MHz; VB: 3 MHz	

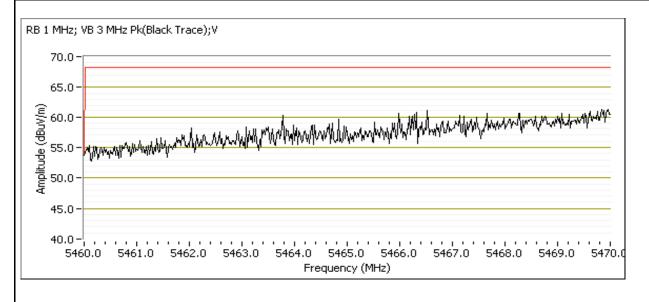

Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	Illitel® Certifilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1c, EUT on Channel #100 5500MHz - HT20, Chain A+B

Power Setting: A:30.0, B:30.0

5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.960	46.0	V	54.0	-8.0	AVG	195	1.0	POS; RB 1 MHz; VB: 10 Hz
5458.480	57.9	V	74.0	-16.1	PK	195	1.0	POS; RB 1 MHz; VB: 3 MHz
5459.640	46.2	Н	54.0	-7.8	AVG	93	1.0	POS; RB 1 MHz; VB: 10 Hz
5453.590	58.0	Н	74.0	-16.0	PK	93	1.0	POS; RB 1 MHz; VB: 3 MHz

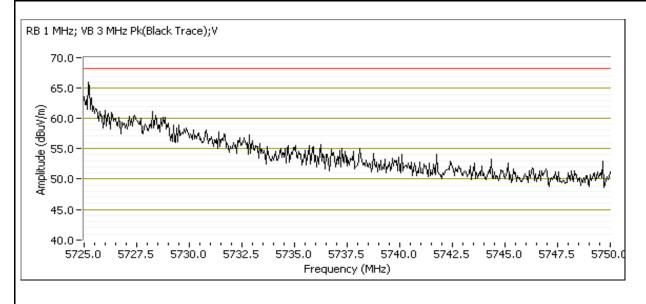

	All Deed Company		
Client:	Intel Corporation	Job Number:	J87129
Madal	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel Ceritilio Advanceu-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1d, EUT on Channel #100 5500MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: A:31.5 , B:31

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.660	60.9	V	68.3	-7.4	PK	224	1.2	B 1 MHz; VB: 3 MHz
5469.660	59.3	Н	68.3	-9.0	PK	146	0.9	B 1 MHz; VB: 3 MHz


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centino® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1e, EUT on channel #140 5700 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

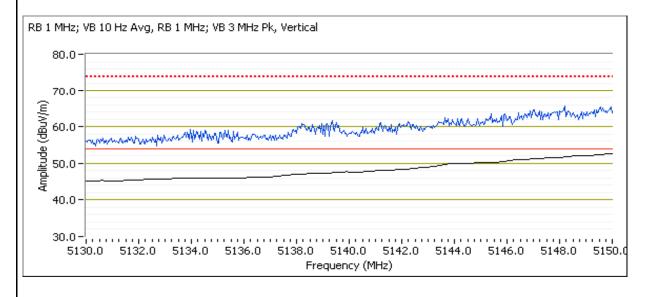
Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: A:34, B:33

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.250	62.8	V	68.3	-5.5	PK	111	1.0	B 1 MHz; VB: 3 MHz
5725.550	58.3	Н	68.3	-10.0	PK	238	1.0	B 1 MHz; VB: 3 MHz

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centino® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2, Band Edge Field Strength - HT40, Chain A+B

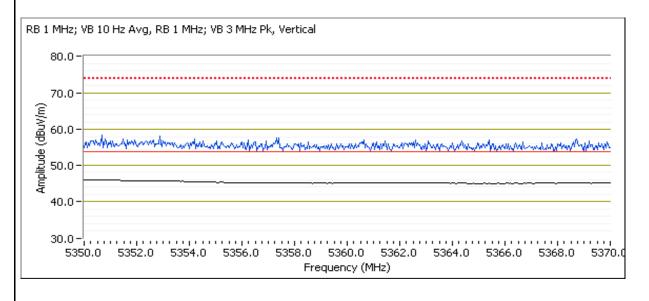

Date of Test: 4/24/2012 Test Engineer: David Bare

Test Location: Fremont Chamber #5

Run #2a, EUT on Channel #38 5190MHz - HT40, Chain A+B

Power Setting: A:27.0, B:25.0

	<u> </u>	<u> </u>		<u> </u>				
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5150.000	52.8	V	54.0	-1.2	AVG	233	1.0	POS; RB 1 MHz; VB: 10 Hz
5147.880	63.0	V	74.0	-11.0	PK	233	1.0	POS; RB 1 MHz; VB: 3 MHz
5149.960	50.6	Н	54.0	-3.4	AVG	186	1.2	POS; RB 1 MHz; VB: 10 Hz
5147.680	63.0	Н	74.0	-11.0	PK	186	1.2	POS; RB 1 MHz; VB: 3 MHz

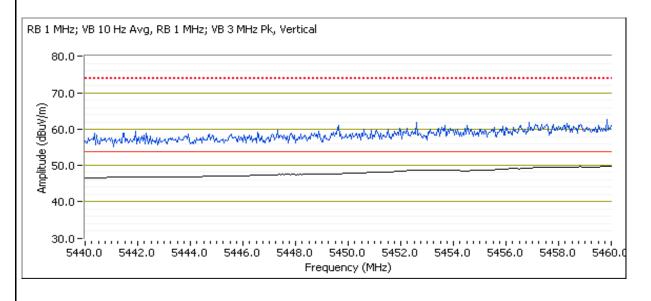


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centino® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2b, EUT on Channel #62 5310MHz - HT40, Chain A+B

Power Setting: A:26.5, B:25.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.280	45.9	V	54.0	-8.1	AVG	306	1.0	POS; RB 1 MHz; VB: 10 Hz
5352.560	56.8	V	74.0	-17.2	PK	306	1.0	POS; RB 1 MHz; VB: 3 MHz
5350.120	45.4	Н	54.0	-8.6	AVG	94	1.2	POS; RB 1 MHz; VB: 10 Hz
5350.720	56.6	Н	74.0	-17.4	PK	94	1.2	POS; RB 1 MHz; VB: 3 MHz

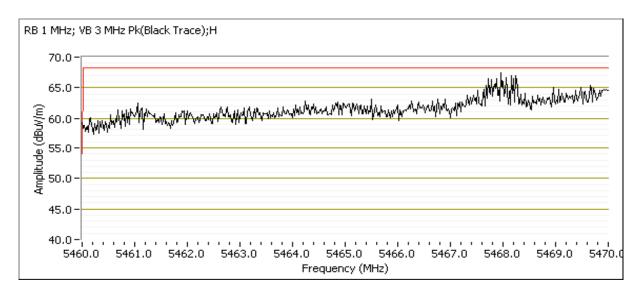

	The second secon		
Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2c, EUT on Channel #102 5510MHz - HT40, Chain A+B

Power Setting: A:30.0, B:29.5

5460 MHz Restricted Band Edge Signal Radiated Field Strength

					3			
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5460.000	49.7	V	54.0	-4.3	AVG	133	1.0	POS; RB 1 MHz; VB: 10 Hz
5456.870	61.0	V	74.0	-13.0	PK	133	1.0	POS; RB 1 MHz; VB: 3 MHz
5458.800	48.9	Н	54.0	-5.1	AVG	95	1.0	POS; RB 1 MHz; VB: 10 Hz
5458.400	61.2	Н	74.0	-12.8	PK	95	1.0	POS; RB 1 MHz; VB: 3 MHz

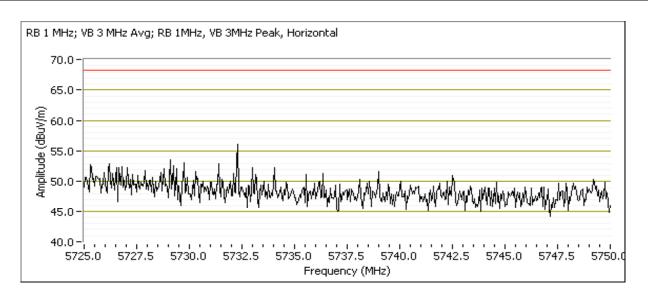

Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2d, EUT on Channel #102 5510MHz - 5460-5470 MHz Band Edge Signal Radiated Field Strength

Date of Test: 5/20/2012 Test Engineer: Jack Liu Test Location: FT4

Power Setting: A:30 , B:29.5

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5467.960	66.4	Н	68.3	-1.9	PK	104	1.0	B 1 MHz; VB: 3 MHz
5468.500	65.8	V	68.3	-2.5	PK	103	1.0	B 1 MHz; VB: 3 MHz



Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	III(e) Ceritiii) Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2e, EUT on channel #134 5670 MHz - 5725 MHz Band Edge Signal Radiated Field Strength

Power Setting: A:35.5 , B:34.5

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5748.300	61.3	Н	68.3	-7.0	PK	69	1.0	POS; RB 1 MHz; VB: 3 MHz
5727.000	58.0	V	68.3	-10.3	PK	106	1.0	POS; RB 1 MHz; VB: 3 MHz

	An (ATA) company		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	III(e) Ceriliiii) Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Rel. Humidity: 30-35 %

Temperature: 17-20 °C

Summary of Results

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Mode	Channel	Target power	Measured Power	Test Performed	Limit	Result / Margin
Scans on	center chanr	nel in all thre	e OFDM mod	des in each o	peratintg band were used	I to determine the worst of	case. Note that for n20
and n40 n	nodes the ou	itput power w	as set to the	single chain	power per chain. The ma	ximum power per chain i	n MIMO mode is always
lower than	n the single o	hain power b	out the scans	were run at	the higher single-chain po	ower level but with both cl	hains active to cover
both MIM	O and MISO	modes.					
	802.11a	#40	16.0	16.0			>10dB margin
	Chain A	5200MHz	10.0	10.0			>10db margin
	802.11a	#40	14.0	1/ 1			40.1 dBµV/m @ 2485.0
	Ohala D	E2001411-	16.0	16.1	Dadiated Emissions		MIL (12 0 JD)

	002.11a	π40	16.0	16.0			>10dB margin					
	Chain A	5200MHz	10.0	10.0			Froug margin					
	802.11a	#40	16.0	16.1			40.1 dBµV/m @ 2485.0					
<u> </u>	Chain B	5200MHz	10.0	10.1	Radiated Emissions,	FCC 15.209 / 15 E	MHz (-13.9 dB)					
Run #1 (5150-5250MHz Band)	n20	#40	A: 16.0	A: 16.0	1 - 40 GHz	FCC 15.2097 15 E	37.6 dBµV/m @ 2485.1					
)-5:	Chain A+B	5200MHz	B: 16.0	B: 15.9			MHz (-16.4 dB)					
Run 250	n40	#38	A: 11.5	A: 11.5			37.2 dBµV/m @ 2494.2					
_#1 MH	Chain A+B	5190MHz	B: 11.5	B: 11.6			MHz (-16.8 dB)					
z B	Worst cas	Worst case mode - top and bottom channels. As the worst case mode was 802.11n20MHz, 5180MHz in n20 mode was										
anc	evaluated	for the low c	hannel and 5	5240MHz in r	n20 mode was evaluated	as high channel.						
)		#36	A: 14.5	A: 14.6			33.4 dBµV/m @ 1660.6					
	n20	5180MHz	B: 15	B: 15.1	Radiated Emissions,	FCC 15.209 / 15 E	MHz (-20.6 dB)					
	Chain A+B	#48	A: 16.5	A: 15.5	1 - 40 GHz	1 00 15.2097 15 E	33.0 dBµV/m @ 1331.9					
		5240MHz	B: 16.5	B: 15.5			MHz (-21.0 dB)					

MHz (-12.8 dB)

39.6dBµV/m @

11340.0MHz (-14.4dB)

FCC 15.209 / 15 E

	An At	A company				LIVI	C TEST Data	
Client:	Intel Corpora					Job Number:	J87129	
Marilal	L-1-1@ O 1-	' ® A d	I NI / 22E			T-Log Number:	T87211	
Model:	Intel® Centr	ino® Advano	Ced-IN 6235		Account Manager:	Christine Krebill		
Contact:	Steve Hacke	ett						
Standard:	FCC 15.247	, 15.407				Class:	N/A	
Run #	Mode	Channel	Target power	Measured Power	Test Performed	Limit	Result / Margin	
	802.11a Chain A	#60 5300MHz	16.0	15.9			30.4 dBµV/m @ 2497.9 MHz (-23.6 dB)	
(52	802.11a Chain B	#60 5300MHz	16.0	16.0	Radiated Emissions, 1 - 40 GHz	Radiated Emissions,	FCC 15.209 / 15 E	43.8 dBµV/m @ 1330.0 MHz (-10.2 dB)
Run #2 (5250-5350MHz Band)	n20	#60	A: 16.0	A: 16.0		FCC 15.2097 15 E	33.6 dBµV/m @ 1328.3	
Ru 535	Chain A+B		B: 16.0	B: 15.9			MHz (-20.4 dB)	
Run #2	n40	#62	A: 11.5	A: 11.5 B: 12.1			34.4 dBµV/m @ 1000.0	
lz B	Chain A+B		B: 12.0 2.11a) - top a		MHz (-19.6 dB)			
and	VVUISICAS	#52	2.11a) - 10p a	Ind bollom Ci	idilileis.		32.6 dBµV/m @ 1593.6	
	802.11a	#32 5260MHz	16.0	16.1	Radiated Emissions,	FCC 15.209 / 15 E	MHz (-21.4 dB)	
	Chain B	#64 5320MHz	16.5	16.6	1 - 40 GHz	FCC 13.2097 13 E	35.9 dBµV/m @ 1596.8 MHz (-18.1 dB)	
	802.11a Chain A	#116 5580MHz	16.0	16.1			39.5 dBµV/m @ 3720.0 MHz (-14.5 dB)	
(52	802.11a Chain B	#116 5580MHz	16.0	16.1	Radiated Emissions,	FCC 15.209 / 15 E	32.1 dBµV/m @ 1329.6 MHz (-21.9 dB)	
170-	n20	#116	A: 16.0	A: 16.1	1 - 40 GHz	FCC 15.2097 15 E	36.4 dBµV/m @ 1329.6	
Ru 572	Chain A+B	5580MHz	B: 16.0	B: 16.3			MHz (-17.6 dB)	
Run #3 725MH	n40	#110	A: 16.0	A: 16.0			42.5dBµV/m @	
3 Hz I	Chain A+B		B: 16.0	B: 16.1			11093.3MHz (-11.5dB)	
Run #3 (5470-5725MHz Band)	Worst cas		· ·	ottom channe	els.		I	
<u>a</u>	40	#102	A: 14.5	A: 14.5	De Patert Fortestana		41.2 dBµV/m @ 1330.0	

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using "GAIN CONTROL" mode in the DRTU tool.

Radiated Emissions,

1 - 40 GHz

Modifications Made During Testing

No modifications were made to the EUT during testing

5510MHz

#134

5670MHz

Deviations From The Standard

n40

Chain A+B

No deviations were made from the requirements of the standard.

B: 14.5

A: 16.0

B: 16.0

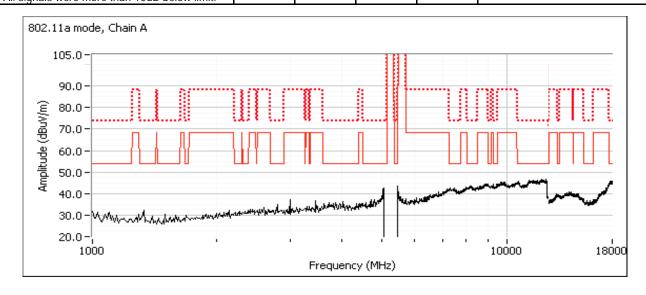
B: 14.6

A: 15.0

B: 15.5

An ZAZES company							
Client:	Intel Corporation	Job Number:	J87129				
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211				
iviouei.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill				
Contact:	Steve Hackett						
Standard:	FCC 15.247, 15.407	Class:	N/A				

Run #1, Radiated Spurious Emissions, 1-40GHz, Center Channl 5150-5250MHz - 802.11a, n20, n40, Chain A, B

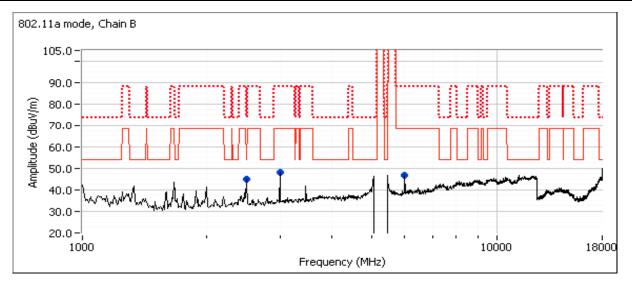

Date of Test: 4/25/2012 Test Location: FT Chamber #3
Test Engineer: M. Birgani Config Change: None

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m) Peak.

Run #1a: Channel #40 5200MHz - 802.11a, Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.0	16.0	30.5

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
All signals	were more t	han 10dB be	low limit					



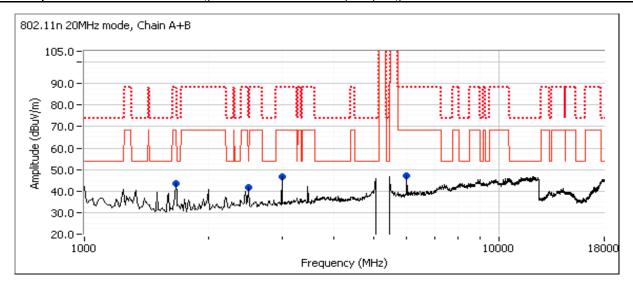
	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1b: Channel #40 5200MHz - 802.11a,Chain B

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain B	16.0	16.1	26.5				

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.000	40.1	Н	54.0	-13.9	AVG	230	1.0	
2998.330	48.0	Н	68.3	-20.3	Peak	187	1.0	
6005.000	46.9	V	68.3	-21.4	Peak	159	1.0	
2485.000	48.9	Н	74.0	-25.1	PK	230	1.0	

	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

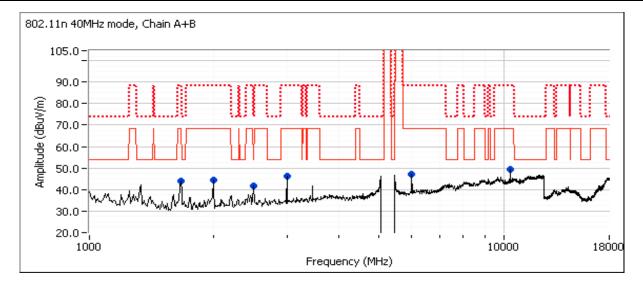

Run #1c: Channel #40 5200MHz - 802.11n20,Chain A + B

	Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	Α	В	С	Total	Α	В	С	Total				
Chain	16.0	16.0		19.0	16.0	15.9		19.0	38.5, 35.5			

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2485.100	37.6	Н	54.0	-16.4	AVG	169	1.0	
6005.000	47.1	V	68.3	-21.2	Peak	158	1.0	
2998.330	46.8	Н	68.3	-21.5	Peak	191	1.0	
1660.000	43.5	V	68.3	-24.8	Peak	199	1.0	
2485.240	47.6	Н	74.0	-26.4	PK	169	1.0	

Note 1: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

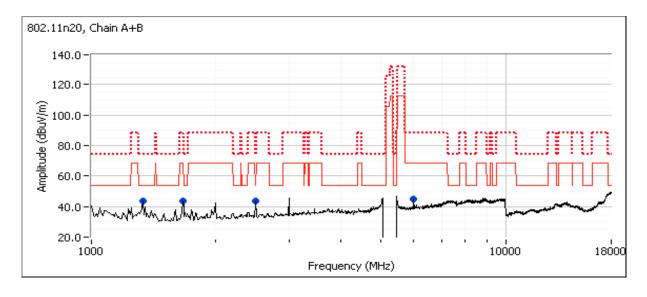


	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1d: Channel #38 5190MHz - 802.11n40, Chain A+B

	Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	Α	В	С	Total	Α	В	С	Total				
	11.5	11.5		14.5	11.5	11.5		14.5	32.0, 30.5			

oparious	Mudiated El	moorono.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2494.170	37.2	V	54.0	-16.8	Peak	147	1.0	
10390.000	49.6	V	68.3	-18.7	Peak	66	1.0	
6005.000	47.1	V	68.3	-21.2	Peak	159	1.0	
2998.330	46.1	Н	68.3	-22.2	Peak	193	1.0	
1990.000	44.4	V	68.3	-23.9	Peak	221	1.3	
1660.000	43.8	V	68.3	-24.5	Peak	209	1.0	
2494.190	46.2	V	74.0	-27.8	Peak	147	1.0	

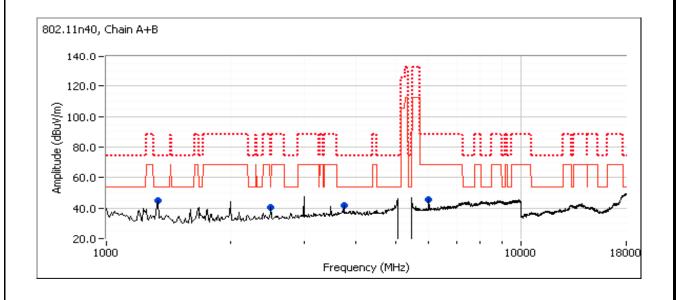


	All Date Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	Intel® Centino® Advanced-in 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1e: Channel #36 5180MHz - 802.11n20,Chain A + B

		Power Settings										
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	А	В	С	Total	Α	В	С	Total				
CHAIH	14.5	15.0		17.8	14.6	15.1		17.9	33,32.5			

opanious n	purious Rudiated Efficiency										
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1660.640	33.4	V	54.0	-20.6	AVG	292	1.0	RB 1 MHz;VB 10 Hz;Peak			
1328.460	30.4	Н	54.0	-23.6	AVG	317	1.0	RB 1 MHz;VB 10 Hz;Peak			
1660.720	49.5	V	74.0	-24.5	PK	292	1.0	RB 1 MHz;VB 3 MHz;Peak			
2490.530	28.5	Н	54.0	-25.5	AVG	149	1.6	RB 1 MHz;VB 10 Hz;Peak			
1326.980	48.2	Н	74.0	-25.8	PK	317	1.0	RB 1 MHz;VB 3 MHz;Peak			
2493.240	42.2	Н	74.0	-31.8	PK	149	1.6	RB 1 MHz;VB 3 MHz;Peak			



	741 Days company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel Ceritilio Advanceu-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

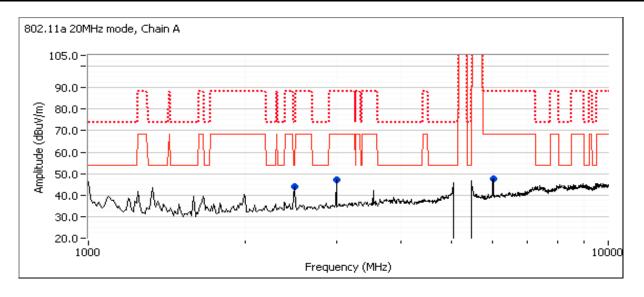
Run #1f: Channel #48 5240MHz - 802.11n20,Chain A + B

		Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting				
Chain	Α	В	С	Total	Α	В	С	Total					
	16.5	16.5		19.5	16.6	16.5		19.6	37.5,36				

opunous n	opunous Rudateu Emissions.										
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1331.890	33.0	V	54.0	-21.0	AVG	147	1.6	RB 1 MHz;VB 10 Hz;Peak			
3749.670	31.4	Н	54.0	-22.6	AVG	119	1.0	RB 1 MHz;VB 10 Hz;Peak			
1333.190	49.9	V	74.0	-24.1	PK	147	1.6	RB 1 MHz;VB 3 MHz;Peak			
2488.180	28.4	Н	54.0	-25.6	AVG	188	1.6	RB 1 MHz;VB 10 Hz;Peak			
2488.240	45.4	Н	74.0	-28.6	PK	188	1.6	RB 1 MHz;VB 3 MHz;Peak			
3749.630	42.2	Н	74.0	-31.8	PK	119	1.0	RB 1 MHz;VB 3 MHz;Peak			

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wodel.	IIIIel® Ceriliiiio® Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2, Radiated Spurious Emissions, 1-40GHz, Center Channel 5250-5350MHz - 802.11a, n20, n40, Chain A, B

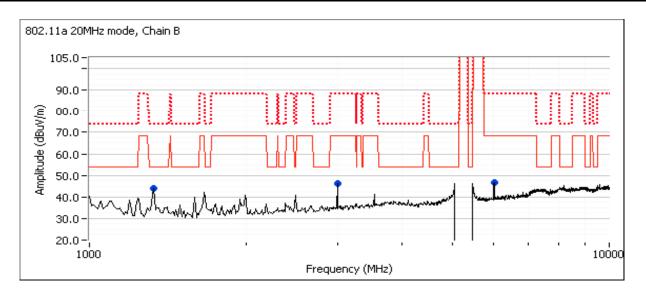

Date of Test: 4/26/2012 Test Location: FT#7
Test Engineer: Mark Hill Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m) Peak.

Run #2a: Channel #60 5300MHz - 802.11a, Chain A

		Power Settings							
	Target (dBm)	Target (dBm) Measured (dBm) Software Setting							
Chain A	16.0	15.9	28.0						

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2497.890	30.4	Н	54.0	-23.6	AVG	243	1.0	RB 1 MHz;VB 10 Hz;Peak
2500.410	52.4	Н	68.3	-15.9	PK	243	1.0	RB 1 MHz;VB 3 MHz;Peak
3000.280	50.7	Н	68.3	-17.6	PK	226	1.0	RB 1 MHz;VB 3 MHz;Peak
6000.810	51.1	V	68.3	-17.2	PK	258	1.0	RB 1 MHz;VB 3 MHz;Peak

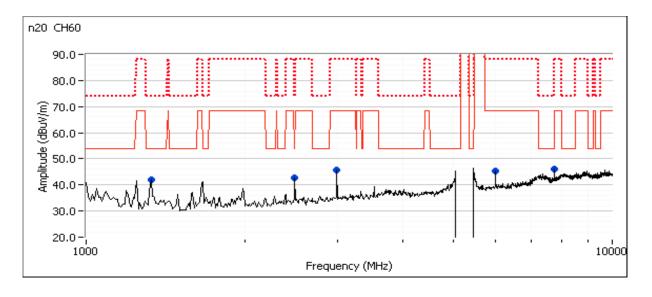


	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2b: Channel #60 5300MHz - 802.11a, Chain B

	Power Settings						
	Target (dBm) Measured (dBm) Software Setting						
Chain B	16.0	16.0	26.5				

oparious n	purious Radiated Emissions.									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1330.000	43.8	V	54.0	-10.2	Peak	198	1.0			
1330.790	35.3	V	54.0	-18.7	AVG	152	1.0			
1329.920	52.5	V	74.0	-21.5	PK	152	1.0			
6005.000	46.5	V	68.3	-21.8	Peak	265	1.0			
2998.330	46.3	Н	68.3	-22.0	Peak	192	1.0			



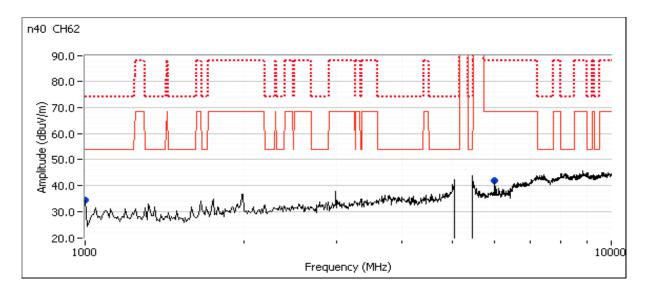
	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2c: Channel #60 5300MHz - 802.11n20, Chain A + B

	Power Settings										
		Target	(dBm)		Measured (dBm) Software Setting			Software Setting			
Chain	А	В	С	Total	Α	В	С	Total			
Chain	16.0	16.0		19.0	16.0	15.9		19.0	A: 36 B: 34		

oparious it	udiated Eiiii	3310113.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2494.170	42.7	Н	54.0	-11.3	Peak	123	1.3	
2998.330	45.8	Н	68.3	-22.5	Peak	183	1.0	
5995.830	45.5	V	68.3	-22.8	Peak	<i>258</i>	1.0	
1330.000	41.8	V	54.0	-12.2	Peak	165	1.6	
7765.830	46.0	V	68.3	-22.3	Peak	347	1.0	Could not find signal.
1328.330	33.6	V	54.0	-20.4	AVG	158	1.48	
1329.600	52.3	V	74.0	-21.7	PK	158	1.48	
2499.500	29.5	Н	54.0	-24.5	AVG	185	1.29	
2486.330	40.9	Н	74.0	-33.1	PK	185	1.29	

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Modol:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wouei.	inter Centino Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

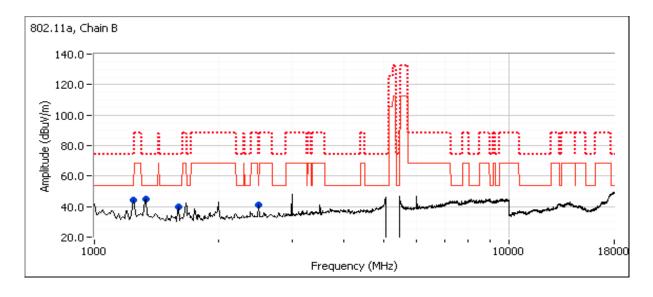

Run #2d: Channel #62 5310MHz - 802.11n40, Chain A+B

		Power Settings								
	Target (dBm)				Measured (dBm)				Software Setting	
Chain	Α	В	С	Total	А	В	С	Total		
Chain	11.5	12.0		14.8	11.5	12.1		14.8	A: 30.5 B: 29	

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1000.000	34.4	V	54.0	-19.6	Peak	28	1.0	
5995.830	41.9	V	68.3	-26.4	Peak	58	1.0	

Note 1: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

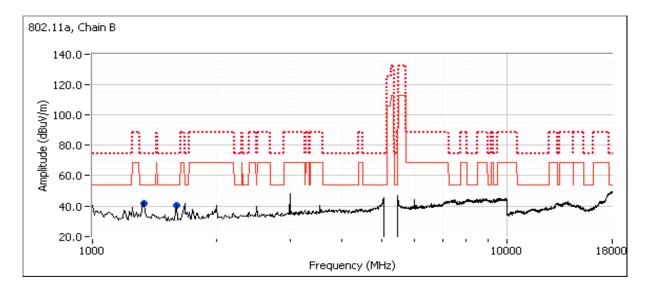

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2e: Channel #52 5260MHz - 802.11a, Chain B

Date of Test: 4/26/2012 Test Location: FT#7
Test Engineer: Joseph Cadigal Config Change: none

		Power Settings							
		Target (dBm)	Measured (dBm)	Software Setting					
Chain /	4	16.0	16.1	26.0					

- 1									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1593.620	32.6	V	54.0	-21.4	AVG	54	1.3	RB 1 MHz;VB 10 Hz;Peak	
1330.290	31.4	V	54.0	-22.6	AVG	328	1.9	RB 1 MHz;VB 10 Hz;Peak	
1328.790	49.8	V	74.0	-24.2	PK	328	1.9	RB 1 MHz;VB 3 MHz;Peak	
2497.770	29.0	Н	54.0	-25.0	AVG	169	1.0	RB 1 MHz;VB 10 Hz;Peak	
1593.140	46.1	V	74.0	-27.9	PK	54	1.3	RB 1 MHz;VB 3 MHz;Peak	
2497.800	45.8	Н	74.0	-28.2	PK	169	1.0	RB 1 MHz;VB 3 MHz;Peak	
1245.030	44.2	V	68.3	-24.1	PK	159	1.3	RB 1 MHz;VB 3 MHz;Peak	


	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2f: Channel #64 5320MHz - 802.11a, Chain B

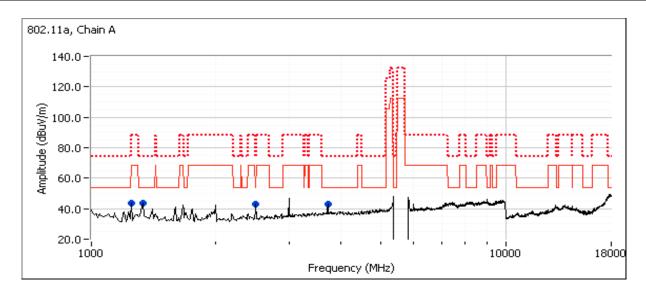
Date of Test: 4/26/2012 Test Location: FT#7
Test Engineer: Joseph Cadigal Config Change: none

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.6	27.5					

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1596.760	35.9	V	54.0	-18.1	AVG	212	1.0	RB 1 MHz;VB 10 Hz;Peak	
1330.460	33.2	V	54.0	-20.8	AVG	165	1.0	RB 1 MHz;VB 10 Hz;Peak	
1331.430	52.4	V	74.0	-21.6	PK	165	1.0	RB 1 MHz;VB 3 MHz;Peak	
1595.780	49.5	V	74.0	-24.5	PK	212	1.0	RB 1 MHz;VB 3 MHz;Peak	

	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3, Radiated Spurious Emissions, 1-40GHz, Center Channel 5470-5725MHz - 802.11a, n20, n40, Chain A, B

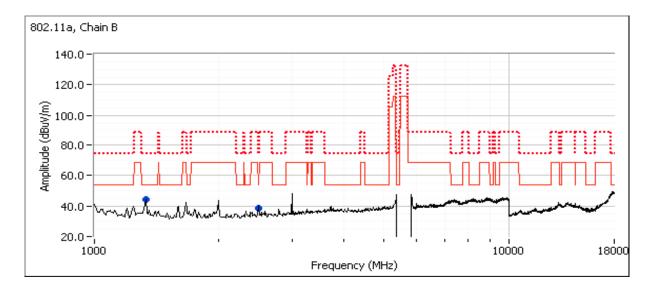

Date of Test: 4/26/2012 Test Location: FT#7
Test Engineer: Joseph Cadigal Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). As the power measured is average power this is considered an average limit so the peak limit would be 88.3dBuV/m at 3m.

Run #3a: Channel #116<u>5580MHz - 802.11a, Chain A</u>

Ī		Power Settings							
		Target (dBm)	Measured (dBm)	Software Setting					
	Chain A	16.0	16.1	28.0					

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3720.010	39.5	V	54.0	-14.5	AVG	220	1.6	RB 1 MHz;VB 10 Hz;Peak
1332.460	33.3	V	54.0	-20.7	AVG	161	1.0	RB 1 MHz;VB 10 Hz;Peak
1333.620	51.1	V	74.0	-22.9	PK	161	1.0	RB 1 MHz;VB 3 MHz;Peak
2494.990	29.0	Н	54.0	-25.0	AVG	170	1.3	RB 1 MHz;VB 10 Hz;Peak
3719.930	46.8	V	74.0	-27.2	PK	220	1.6	RB 1 MHz;VB 3 MHz;Peak
2494.330	44.6	Н	74.0	-29.4	PK	170	1.3	RB 1 MHz;VB 3 MHz;Peak

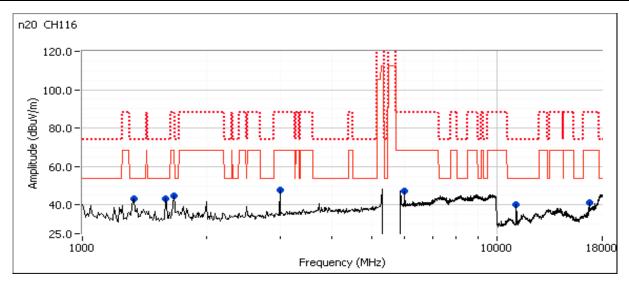


	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3b: Channel #116 5580MHz - 802.11a, Chain B

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain B	16.0	16.1	28.0					

opunous n	opunious Rudiated Emissions.								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1329.630	32.1	V	54.0	-21.9	AVG	335	1.9	NHz;VB 10 Hz;Peak	
1330.410	49.4	V	74.0	-24.6	PK	335	1.9	Hz;VB 3 MHz;Peak	
2488.430	28.6	V	54.0	-25.4	AVG	109	1.0	NHz;VB 10 Hz;Peak	
2489.690	45.1	V	74.0	-28.9	PK	109	1.0	IHz;VB 3 MHz;Peak	



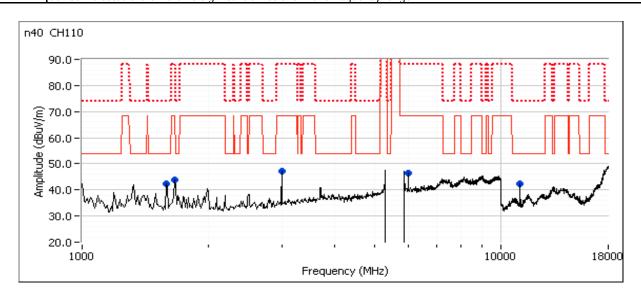
	741 Days company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	ilitel Ceritifilo Advanceu-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3c: Channel #116 5580MHz - 802.11n20, Chain A + B

		Power Settings										
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	Α	В	С	Total	Α	В	С	Total				
	16.0	16.0		19.0	16.1	16.3		19.2	38.5 / 38.5			

Sparious K	adiated Eiiii	3310113.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1329.550	36.4	V	54.0	-17.6	AVG	182	1.22	
11160.800	35.4	V	54.0	-18.6	AVG	204	1.24	RB 1 MHz;VB 10 Hz;Peak
1599.600	35.3	V	54.0	-18.7	AVG	146	1.59	
1663.470	35.1	V	54.0	-18.9	AVG	211	1.00	
1328.300	54.9	V	74.0	-19.1	PK	182	1.22	
2998.330	47.8	V	68.3	-20.5	Peak	209	1.0	
5995.830	47.2	V	68.3	-21.1	Peak	259	1.0	
1661.730	51.9	V	74.0	-22.1	PK	211	1.00	
1597.740	49.1	V	74.0	-24.9	PK	146	1.59	
16746.670	41.7	V	68.3	-26.6	Peak	171	1.29	
11160.930	46.5	V	74.0	-27.5	PK	204	1.24	RB 1 MHz;VB 3 MHz;Peak

	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

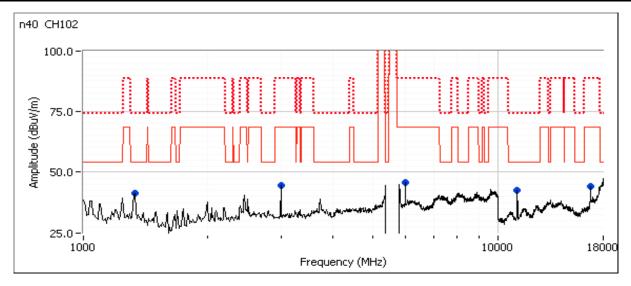

Run #3d: Channel #110 5550MHz - 802.11n40, Chain A+B

		Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting				
Chain	А	В	С	Total	Α	В	С	Total					
	16.0	16.0		19.0	16.0	16.1		19.1	39.0 / 39.0				

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11093.330	42.5	V	54.0	-11.5	Peak	296	1.0	
1664.930	36.2	V	54.0	-17.8	AVG	216	1.00	
1597.100	36.1	V	54.0	-17.9	AVG	212	1.00	
2998.330	47.1	V	68.3	-21.2	Peak	210	1.0	
1660.030	52.3	V	74.0	-21.7	PK	216	1.00	
5995.830	46.4	V	68.3	-21.9	Peak	261	1.0	
1596.000	48.2	V	74.0	-25.8	PK	212	1.00	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	•		_

Note 1 Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range.

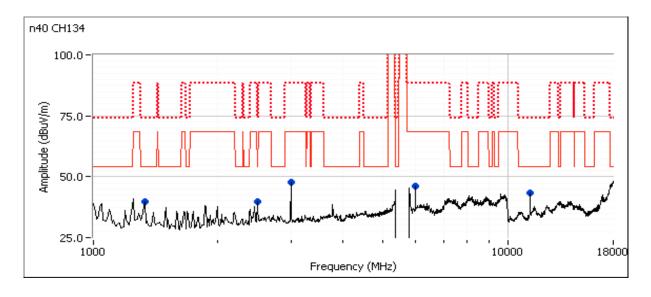


	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Intel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3e: Channel #102 5510 MHz - 802.11n40, Chain A + B

		Power Settings										
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	А	В	С	Total	Α	В	С	Total				
	14.5	14.5		17.5	14.5	14.6		17.6	36.0/ 36.0			

opanicas n	adiated Liii	00101101						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1330.000	41.2	Н	54.0	-12.8	Peak	146	1.3	
11159.330	38.5	V	54.0	-15.5	AVG	309	1.0	RB 1 MHz;VB 10 Hz;Peak
5995.830	45.9	V	68.3	-22.4	Peak	234	1.0	
11159.730	51.5	V	74.0	-22.5	PK	309	1.0	RB 1 MHz;VB 3 MHz;Peak
2998.330	44.7	Н	68.3	-23.6	Peak	188	1.6	
16746.670	44.2	V	68.3	-24.1	Peak	270	1.0	


	An 2022 company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wouei.	III.lei® Cerilliilo® Auvanceu-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3f: Channel #134 5670MHz - 802.11n40, Chain A + B

Date of Test: 4/28/2012 Test Location: FT Chamber #3
Test Engineer: Jack Liu Config Change: None

		Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting				
Chain	Α	В	С	Total	Α	В	С	Total					
	16.0	16.0		19.0	15.0	15.5		18.3	39.0/ 39.0				

opanicas n	aaiatea Eiiii	00101101						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11340.000	39.6	V	54.0	-14.4	AVG	68	1.1	
2490.900	54.0	Н	74.0	-20.0	PK	162	1.3	
11340.200	53.2	V	74.0	-20.8	PK	68	1.1	
1329.970	30.3	V	54.0	-23.7	AVG	345	1.3	
2490.020	29.2	Н	54.0	-24.8	AVG	162	1.3	
1329.070	48.0	V	74.0	-26.0	PK	345	1.3	
3000.250	51.4	Н	68.3	-16.9	PK	195	1.0	
6000.560	50.6	V	68.3	-17.7	PK	243	1.0	

	Elliott An ATAS company	EMC Test Data			
Client:	Intel Corporation	Job Number:	J87129		
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211		
Model.	III(e) Ceriliiii) Advanceu-ii 0255	Account Manager:	Christine Krebill		
Contact:	Steve Hackett				
Standard:	FCC 15.247, 15.407	Class:	N/A		

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bgn and Bluetooth LE - Transmitter Mode

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC).

Summary of Results

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band, both chains used in 5GHz bands. The channels and WiFi modes were selected based on the worst case results from evaluating the BLE, EDR and Basic-Rate Bluetooth modes. BT Basic was selected because basic has higher power.

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Mode	Channel	Target	Measured	Test Performed	Limit	Result / Margin		
1.011 //	111000	3110111101	Power	Power			11004117 11141 9111		
1	BT Basic 802.11b	2402MHz 2412MHz	7dBm 16.5dBm	4.5 16.6	Radiated Spurious Emissions	F(.(. 15 /4 /			
2	BT Basic 802.11b	2480MHz 2462MHz	7dBm 16.5dBm	5.1 16.54	Radiated Spurious Emissions	FCC 15.247	52.1 dBµV/m @ 7386.9 MHz (-1.9 dB)		
3	BT Basic 802.11g	2402MHz 2412MHz	7dBm 16.5dBm	4.5 16.47	Radiated Spurious Emissions	FCC 15.247	47.8 dBµV/m @ 7235.5 MHz (-6.2 dB)		
4	BT Basic 802.11g	2480MHz 2462MHz	7dBm 16.5dBm	5.1 16.48	Radiated Spurious Emissions	FCC 15.247	48.3 dBµV/m @ 3282.7 MHz (-5.7 dB)		
WiFi mode f	WiFi mode for the following runs based on worst case mode from runs 1 through 4								
5	BT Basic 802.11b	2402MHz 2437MHz	7dBm 16.5dBm	4.5 16.5	Radiated Emissions	FCC 15.247	44.9 dBµV/m @ 7311.7 MHz (-9.1 dB)		
6	BT Basic 802.11b	2440MHz 2412MHz	7dBm 16.5dBm	4.9 16.5	1- 10 GHz	FCC 15.247	42.5 dBµV/m @ 9001.0 MHz (-11.5 dB)		
7	BT Basic 802.11b	2440MHz 2462MHz	7dBm 16.5dBm	4.9 16.5	Radiated Emissions	FCC 15.247	44.1 dBµV/m @ 7386.6 MHz (-9.9 dB)		
8	BT Basic 802.11b	2480MHz 2437MHz	7dBm 16.5dBm	5.1 16.5	1- 10 GHz	FCC 15.247	45.1 dBµV/m @ 7310.1 MHz (-8.9 dB)		
			1	<u>l</u>			•		

CE!	Ellic	ott Arcompany				EN	IC Test Data		
Client:	Intel Corpor	ation				Job Number: J87129			
Model	Latal® Contribute ® Advisor and N / 225					T-Log Number: T87211			
Model.	inter® Centi	Intel® Centrino® Advanced-N 6235					Account Manager: Christine Krebill		
Contact:	Steve Hacke	ett							
Standard:	FCC 15.247	, 15.407				Clas	s: N/A		
WiFi mode a	and channel	and Bluetoot			orst case mode from runs	s 1 through 8			
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin		
9	BT 3Mb/s	3Mb/s 2480 MHz	7dBm	2.3	Radiated Emissions	FCC 15.247	46.0 dBµV/m @ 7386.6		
7	802.11b	2462 MHz	16.5dBm	16.5	1- 10 GHz	1 00 13.247	MHz (-8.0 dB)		
WiFi mode - channel, Ba		MHz with bot	h chains acti	ve at 16.5dB	m per chain, center chanr	nel in each 5GHz band.	Bluetooth on center		
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin		
10	BT Basic 802.11n20	2440MHz 5200MHz	7dBm 16.5/16.5	4.9 15.0 / 16.0		FCC 15.247	46.1 dBµV/m @ 10400.0 MHz (-7.9 dB)		
11	BT Basic 802.11n20	2440MHz 5300MHz	7dBm 16.5/16.5	4.9 15.9 / 16.3	Radiated Emissions	FCC 15.247	38.0 dBµV/m @ 4880.0 MHz (-16.0 dB)		
12	BT Basic			4.9	1- 15 GHz	FCC 15.247	32.8 dBµV/m @ 1660.7		
	802.11n20	2.11n20 5580MHz	16.5/16.5	16.5 16.2 / 16.4			MHz (-21.2 dB)		
13	BT Basic	2440MHz	7dBm	4.9		FCC 15 247	34.1 dBµV/m @ 4880.0		

FCC 15.247

. MHz (-19.9 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

802.11n20 5785MHz 16.5/16.5

Notes:

13

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

15.2 / 15.6

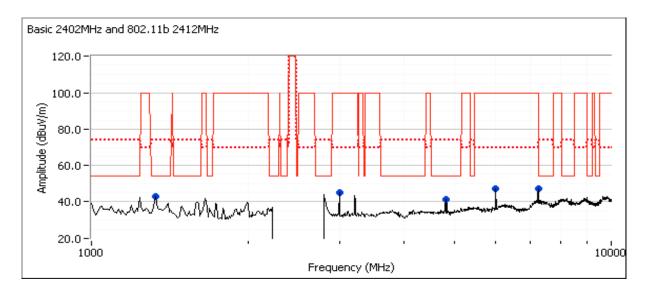
The maximum dwell time in a 100ms period is 4×3.125 ms = 12.5ms.

The average correction factor is, therefore, $20\log(12.5/100) = -18dB$

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the measured average value for frequency hopping radios.

All measurements in this data sheet do not include the average correction factor.

E E	lliott
	An ATAT company


An 2/2/23 company						
Client:	Intel Corporation	Job Number:	J87129			
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211			
	ilitel® Ceritililo® Advanceu-iv 0255	Account Manager:	Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247, 15.407	Class:	N/A			

Run # 1, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic @ 2402 MHz Chain B

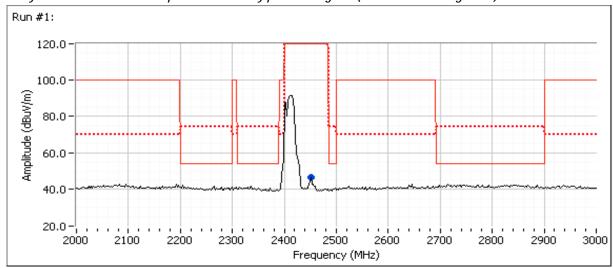
Date of Test: 5/1/2012 Test Engineer: Jack Liu Test Location: FT 5

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	16.6	23.5				
Chain B	7.0	4.5	8.0				

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1330.000	43.0	V	54.0	-11.0	Peak	317	1.3	
4804.170	41.1	V	54.0	-12.9	Peak	220	1.6	
2998.330	45.2	V	54.0	-8.8	Peak	206	1.0	
5995.830	46.9	V	54.0	-7.1	Peak	263	1.0	
7235.000	47.1	V	54.0	-6.9	Peak	82	1.6	


	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7235.230	45.9	V	54.0	-8.1	AVG	67	1.7	RB 1 MHz;VB 10 Hz;Peak
6000.650	44.9	V	54.0	-9.1	AVG	141	1.0	RB 1 MHz;VB 10 Hz;Peak
3000.280	44.4	V	54.0	-9.6	AVG	200	1.0	RB 1 MHz;VB 10 Hz;Peak
4803.940	39.4	V	54.0	-14.6	AVG	219	1.6	RB 1 MHz;VB 10 Hz;Peak
1345.250	32.5	V	54.0	-21.5	AVG	94	1.1	RB 1 MHz;VB 10 Hz;Peak
7235.050	51.8	V	74.0	-22.2	PK	67	1.7	RB 1 MHz;VB 3 MHz;Peak
6000.630	49.0	V	74.0	-25.0	PK	141	1.0	RB 1 MHz;VB 3 MHz;Peak
3000.230	48.4	V	74.0	-25.6	PK	200	1.0	RB 1 MHz;VB 3 MHz;Peak
4804.170	45.6	V	74.0	-28.4	PK	219	1.6	RB 1 MHz;VB 3 MHz;Peak
1346.900	44.5	V	74.0	-29.5	PK	94	1.1	RB 1 MHz;VB 3 MHz;Peak

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 30cm from the product to identify potential signals (Peak versus average limit)

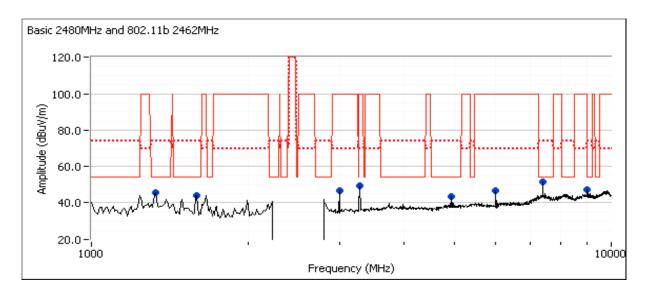
Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2450.900	46.7	Н	-	-	Peak	153	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	

EII	iott
-----	------


	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Madalı	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	linel® Centinio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run # 2, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic @ 2480 MHz Chain B

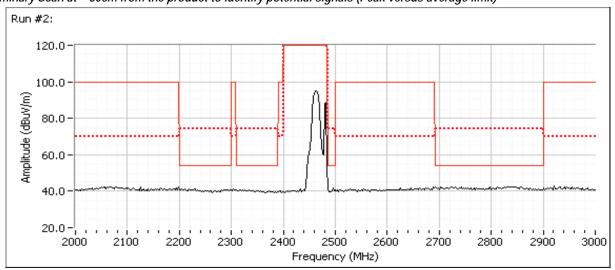
Date of Test: 5/1/2012 Test Engineer: Jack Liu Test Location: FT 5

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.5	23.5						
Chain B	7.0	5.1	8.0						

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

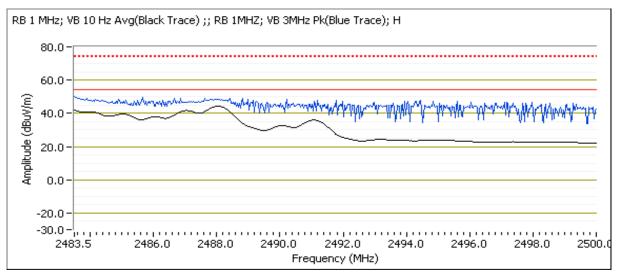
Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1330.000	45.7	V	54.0	-8.3	Peak	112	1.3	
1595.830	43.8	V	54.0	-10.2	Peak	179	1.0	
4923.330	43.4	V	54.0	-10.6	Peak	133	1.3	
9002.500	47.1	V	54.0	-6.9	Peak	145	1.0	
7386.670	51.4	V	54.0	-2.6	Peak	71	1.6	
2998.330	46.6	V	54.0	-7.4	Peak	193	1.0	
5995.830	46.8	V	54.0	-7.2	Peak	269	1.0	
3282.500	49.2	V	54.0	-4.8	Peak	89	1.0	



	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Final measurements at 3m


i mai measarements at sin									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7386.870	52.1	V	54.0	-1.9	AVG	63	1.6	RB 1 MHz;VB 10 Hz;Peak	
7385.870	58.1	V	74.0	-15.9	PK	63	1.6	RB 1 MHz;VB 3 MHz;Peak	
1329.380	35.4	V	54.0	-18.6	AVG	111	1.4	RB 1 MHz;VB 10 Hz;Peak	
1332.630	52.7	V	74.0	-21.3	PK	111	1.4	RB 1 MHz;VB 3 MHz;Peak	
1595.750	35.8	V	54.0	-18.2	AVG	210	1.0	RB 1 MHz;VB 10 Hz;Peak	
1593.210	48.8	V	74.0	-25.2	PK	210	1.0	RB 1 MHz;VB 3 MHz;Peak	
4924.050	42.7	V	54.0	-11.3	AVG	134	1.1	RB 1 MHz;VB 10 Hz;Peak	
4924.030	48.5	V	74.0	-25.5	PK	134	1.1	RB 1 MHz;VB 3 MHz;Peak	
9001.070	45.6	V	54.0	-8.4	AVG	177	1.0	RB 1 MHz;VB 10 Hz;Peak	
9001.190	53.7	V	74.0	-20.3	PK	177	1.0	RB 1 MHz;VB 3 MHz;Peak	
3000.360	47.1	V	54.0	-6.9	AVG	189	1.0	RB 1 MHz;VB 10 Hz;Peak	
3000.390	51.8	V	74.0	-22.2	PK	189	1.0	RB 1 MHz;VB 3 MHz;Peak	
3282.720	49.9	V	54.0	-4.1	AVG	82	1.0	RB 1 MHz;VB 10 Hz;Peak	
3282.850	52.3	V	74.0	-21.7	PK	82	1.0	RB 1 MHz;VB 3 MHz;Peak	
6000.800	46.7	V	54.0	-7.3	AVG	148	1.0	RB 1 MHz;VB 10 Hz;Peak	
6000.480	51.0	V	74.0	-23.0	PK	148	1.0	RB 1 MHz;VB 3 MHz;Peak	

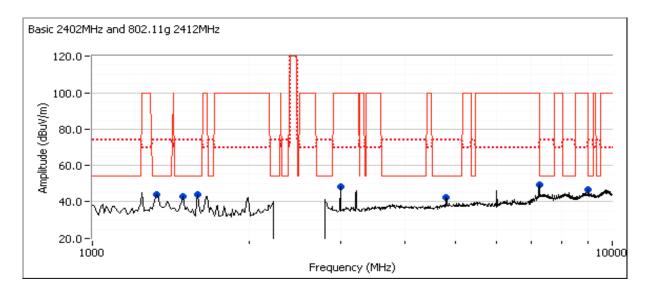
Spurious Radiated Emissions, 2 - 3GHz

	All Diffe Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2488.030	44.3	Н	54.0	-9.7	AVG	211	1.0	POS; RB 1 MHz; VB: 10 Hz
2483.530	49.0	Н	74.0	-25.0	PK	211	1.0	POS; RB 1 MHz; VB: 3 MHz
2483.500	30.9	V	54.0	-23.1	AVG	200	1.2	POS; RB 1 MHz; VB: 10 Hz
2489.820	42.9	V	74.0	-31.1	PK	200	1.2	POS; RB 1 MHz; VB: 3 MHz

C	ĿΙΙ	iott
		An AZAS company


	An Daz company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	Intel® Certifino® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run # 3, Jackson Peak 2x2: 1-10GHz, 802.11g @ 2412 MHz Chain A, BT Basic @ 2402 MHz Chain B

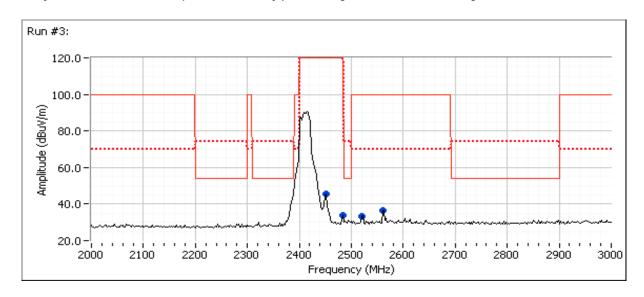
Date of Test: 5/1/2012 Test Engineer: Jack Liu Test Location: FT 5

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	29.5
Chain B	7.0	4.5	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1330.000	43.8	V	54.0	-10.2	Peak	317	1.6	
1595.830	44.1	Н	54.0	-9.9	Peak	130	1.6	
1495.000	42.9	Н	54.0	-11.1	Peak	125	1.0	
4795.000	42.5	Н	54.0	-11.5	Peak	150	1.0	
9002.500	46.6	V	54.0	-7.4	Peak	145	1.0	
2998.330	48.2	Н	54.0	-5.8	Peak	205	1.0	
7235.000	49.4	V	54.0	-4.6	Peak	226	1.6	



	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

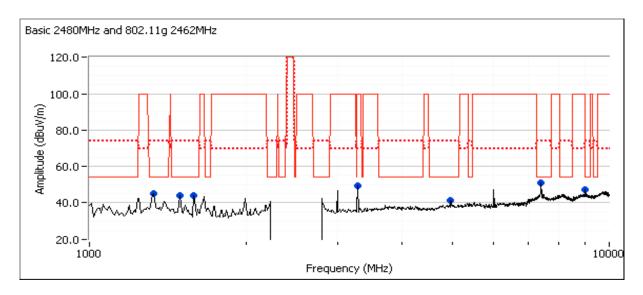
Final measurements at 3m

i iiiai iiioao	ai cilicilità ut	0.11.						
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7235.470	47.8	V	54.0	-6.2	AVG	222	1.6	RB 1 MHz;VB 10 Hz;Peak
3000.420	46.1	Н	54.0	-7.9	AVG	177	1.0	RB 1 MHz;VB 10 Hz;Peak
9001.100	45.8	V	54.0	-8.2	AVG	136	1.0	RB 1 MHz;VB 10 Hz;Peak
4804.020	42.6	Н	54.0	-11.4	AVG	144	1.0	RB 1 MHz;VB 10 Hz;Peak
7242.730	59.6	V	74.0	-14.4	PK	222	1.6	RB 1 MHz;VB 3 MHz;Peak
1593.830	36.8	Н	54.0	-17.2	AVG	133	1.0	RB 1 MHz;VB 10 Hz;Peak
1494.700	35.6	Н	54.0	-18.4	AVG	127	1.0	RB 1 MHz;VB 10 Hz;Peak
1333.250	35.5	V	54.0	-18.5	AVG	286	1.5	RB 1 MHz;VB 10 Hz;Peak
9000.490	53.3	V	74.0	-20.7	PK	136	1.0	RB 1 MHz;VB 3 MHz;Peak
1328.200	53.2	V	74.0	-20.8	PK	286	1.5	RB 1 MHz;VB 3 MHz;Peak
3000.000	51.3	Н	74.0	-22.7	PK	177	1.0	RB 1 MHz;VB 3 MHz;Peak
4803.850	49.3	Н	74.0	-24.7	PK	144	1.0	RB 1 MHz;VB 3 MHz;Peak
1495.570	49.2	Н	74.0	-24.8	PK	127	1.0	RB 1 MHz;VB 3 MHz;Peak
1597.700	49.1	Н	74.0	-24.9	PK	133	1.0	RB 1 MHz;VB 3 MHz;Peak

Spurious Radiated Emissions, 2 - 3GHz

Contact: Steve Hackett	Account Manager: Christine Krebi Contact: Steve Hackett Steve Hackett Class: N/A	Account Manager: Christine Krebi	Account Manager: Christine Krebi Account Manager: Account Ma	Client	Intel Corpor	ation						Job Number:	
Account Manager: Christine Krebit Contact: Steve Hackett Steve Hackett FCC 15.247, 15.407 Class: N/A	Account Manager: Christine Krebit Contact: Steve Hackett Contact: Steve Hackett FCC 15.247, 15.407 Class: N/A	Account Manager: Christine Krebi Account Manager: Christine Krebi	Account Manager: Christine Krebi Account Manager: Account	Model	Intol® Contr	ino® Advanc	od N 6235				T-	Log Number:	T87211
Class N/A	Class N/A Class N/A	minary measurements at ~ 30cm, RB=1MHz, VB=100kHz quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	minary measurements at ~ 30cm, RB=1MHz, VB=100kHz uency Level Pol 15.209/15.247 Detector Azimuth Height Comments HZ dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments				eu-iv 0233				Acco	unt Manager:	Christine Kreb
iminary measurements at ~ 30cm, RB=1MHz, VB=100kHz quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	iminary measurements at ~ 30cm, RB=1MHz, VB=100kHz quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	minary measurements at ~ 30cm, RB=1MHz, VB=100kHz quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	minary measurements at ~ 30cm, RB=1MHz, VB=100kHz uency Level Pol 15.209/15.247 Detector Azimuth Height Comments Hz dBμV/m V/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments										
Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	quency Level Pol 15.209/15.247 Detector Azimuth Height Comments ΛΗΖ dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	uency Level Pol 15.209/15.247 Detector Azimuth Height Comments Hz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments	tandard	FCC 15.247	, 15.407						Class:	N/A
Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	quency Level Pol 15.209/15.247 Detector Azimuth Height Comments ΛΗΖ dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	uency Level Pol 15.209/15.247 Detector Azimuth Height Comments Hz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments	liminar	ı moasuromı	onto at 20a	m DD_1ML	J- VD_100k	·U-7				
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	Hz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments							Azimuth	Heiaht	Comments	
50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	50.900 45.4 H 54.0 -8.6 Peak 336 1.5 32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 51.120 36.4 H 54.0 -17.6 Peak 199 1.0 Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 Comments	0.900 45.4 H 54.0 -8.6 Peak 336 1.5 2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 Level Pol 15.209/15.247 Detector Azimuth Height Comments	MHz								Comments	
32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 21.040	32.970 34.0 H 54.0 -20.0 Peak 222 1.0 21.040 33.3 H 54.0 -20.7 Peak 180 1.0 31.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	2.970 34.0 H 54.0 -20.0 Peak 222 1.0 1.040 33.3 H 54.0 -20.7 Peak 180 1.0 1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments	50.900									
1.120 36.4 H 54.0 -17.6 Peak 199 1.0 quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	1.120 36.4 H 54.0 -17.6 Peak 199 1.0 Quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	1.120 36.4 H 54.0 -17.6 Peak 199 1.0 Juency Level Pol 15.209/15.247 Detector Azimuth Height Comments	1.120 36.4 H 54.0 -17.6 Peak 199 1.0 uency Level Pol 15.209/15.247 Detector Azimuth Height Comments	82.970									
quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	quency Level Pol 15.209/15.247 Detector Azimuth Height Comments	juency Level Pol 15.209/15.247 Detector Azimuth Height Comments	uency Level Pol 15.209/15.247 Detector Azimuth Height Comments	21.040	33.3	Н	54.0	-20.7	Peak	180	1.0		
				61.120		Н	54.0		+	199	1.0		
				guency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
				MHz									
								Ŭ		Ö			

EI	liott
	An ATAT company


	An 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run # 4, Jackson Peak 2x2: 1-10GHz, 802.11g @ 2462 MHz Chain A, BT Basic @ 2480 MHz Chain B

Date of Test: 5/1/2012 Test Engineer: Jack Liu Test Location: FT 5

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	29.0
Chain B	7.0	5.1	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7386.670	50.8	V	54.0	-3.2	Peak	249	1.3	
9002.500	46.9	V	54.0	-7.1	Peak	137	1.0	
1330.000	45.0	V	54.0	-9.0	Peak	348	1.9	
1485.830	40.2	Н	54.0	-13.8	Peak	344	1.9	
1586.670	42.3	V	54.0	-11.7	Peak	118	1.6	
4960.000	42.4	V	54.0	-11.6	Peak	140	1.0	
3282.500	49.8	Н	54.0	-4.2	Peak	246	1.0	

Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Final measurements at 3m

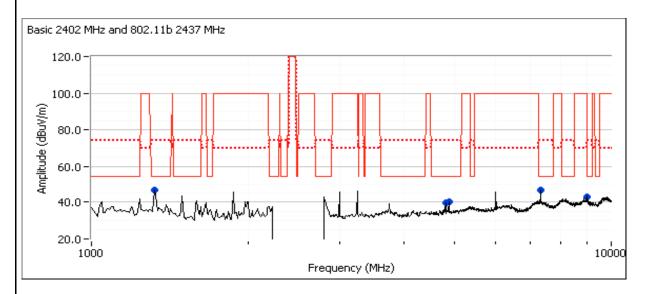
i mai measurements at sm								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3282.720	48.3	Н	54.0	-5.7	AVG	244	1.0	RB 1 MHz;VB 10 Hz;Peak
7385.000	47.2	V	54.0	-6.8	AVG	246	1.1	RB 1 MHz;VB 10 Hz;Peak
9001.050	45.3	V	54.0	-8.7	AVG	133	1.0	RB 1 MHz;VB 10 Hz;Peak
7380.540	59.6	V	74.0	-14.4	PK	246	1.1	RB 1 MHz;VB 3 MHz;Peak
4959.970	38.5	V	54.0	-15.5	AVG	85	1.0	RB 1 MHz;VB 10 Hz;Peak
1593.520	37.4	V	54.0	-16.6	AVG	104	1.6	RB 1 MHz;VB 10 Hz;Peak
1328.900	35.0	V	54.0	-19.0	AVG	351	1.9	RB 1 MHz;VB 10 Hz;Peak
9001.420	53.1	V	74.0	-20.9	PK	133	1.0	RB 1 MHz;VB 3 MHz;Peak
1495.130	32.3	Н	54.0	-21.7	AVG	333	1.7	RB 1 MHz;VB 10 Hz;Peak
3282.800	52.2	Н	74.0	-21.8	PK	244	1.0	RB 1 MHz;VB 3 MHz;Peak
1333.000	51.5	V	74.0	-22.5	PK	351	1.9	RB 1 MHz;VB 3 MHz;Peak
1597.800	50.2	V	74.0	-23.8	PK	104	1.6	RB 1 MHz;VB 3 MHz;Peak
4960.220	47.0	V	74.0	-27.0	PK	85	1.0	RB 1 MHz;VB 3 MHz;Peak
1497.830	44.7	Н	74.0	-29.3	PK	333	1.7	RB 1 MHz;VB 3 MHz;Peak

Spurious Radiated Emissions, 2 - 3GHz

E E)tt				EMO	C Test Data		
Client:	Intel Corpora	ation					Job Number:	J87129	
Madal	1 - 1 - 1 @ O 1 -		-I.M. (00F			T-	Log Number:	T87211	
Modei:	Intel® Centri	ino® Advanc	.ea-IV 6235			ļ	Accor	unt Manager:	Christine Krebill
Contact:	: Steve Hackett								
Standard:	FCC 15.247	, 15.407						Class:	N/A
<u>Preliminary</u>	y measureme	ents at ~ 30c	cm, RB=1MF	lz, VB=100k	:Hz				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2320.640	32.6	Н	54.0	-21.4	Peak	332	1.0		
2639.280	32.7	Н	54.0	-21.3	Peak	225	1.0		
Final meas	surements at	3m							
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2320.070	40.3	Н	54.0	-13.7	AVG	117	1.0	POS; RB 1 I	MHz; VB: 10 Hz
2319.890	45.3	Н	74.0	-28.7	PK	117	1.0	POS; RB 1 I	MHz; VB: 3 MHz
						•	-		

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	III(e) Ceriliiii) Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run # 5, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic @ 2402 MHz Chain B


Date of Test: 5/1/2012

Test Engineer: Jack Liu / Rafael Varelas

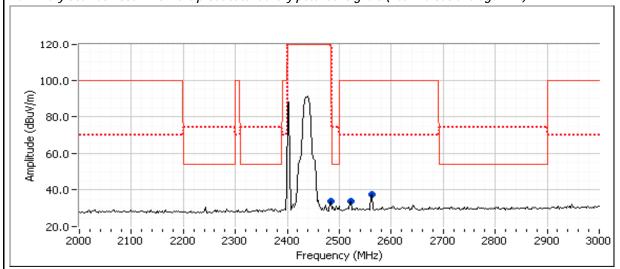
Test Location: FT 5

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.5	23.5					
Chain B	7.0	4.5	8.0					

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1320.830	46.6	V	54.0	-7.4	Peak	314	1.6	
4868.330	40.1	V	54.0	-13.9	Peak	108	1.6	
4804.170	39.8	V	54.0	-14.2	Peak	229	1.9	
7310.830	46.4	V	54.0	-7.6	Peak	249	1.9	
9002.500	43.1	V	54.0	-10.9	Peak	146	1.0	



	This company								
Client:	Intel Corporation	Job Number:	J87129						
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211						
wodel.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill						
Contact:	Steve Hackett								
Standard:	FCC 15.247, 15.407	Class:	N/A						

Final measurements at 3m

	That modern emerge at em							
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7311.700	44.9	V	54.0	-9.1	AVG	251	1.9	RB 1 MHz;VB 10 Hz;Pk
7311.960	50.6	V	74.0	-23.4	PK	251	1.9	RB 1 MHz;VB 3 MHz;Pk
1327.430	36.2	V	54.0	-17.8	AVG	318	1.7	RB 1 MHz;VB 10 Hz;Pk
1328.960	51.0	V	74.0	-23.0	PK	318	1.7	RB 1 MHz;VB 3 MHz;Pk
4873.900	40.3	V	54.0	-13.7	AVG	107	1.6	RB 1 MHz;VB 10 Hz;Pk
4873.880	44.7	V	74.0	-29.3	PK	107	1.6	RB 1 MHz;VB 3 MHz;Pk
4803.970	36.9	V	54.0	-17.1	AVG	227	1.9	RB 1 MHz;VB 10 Hz;Pk
4804.340	43.3	V	74.0	-30.7	PK	227	1.9	RB 1 MHz;VB 3 MHz;Pk
9000.980	43.4	V	54.0	-10.6	AVG	145	1.0	RB 1 MHz;VB 10 Hz;Pk
9000.940	49.2	V	74.0	-24.8	PK	145	1.0	RB 1 MHz;VB 3 MHz;Pk

Spurious Radiated Emissions, 2 - 3GHz

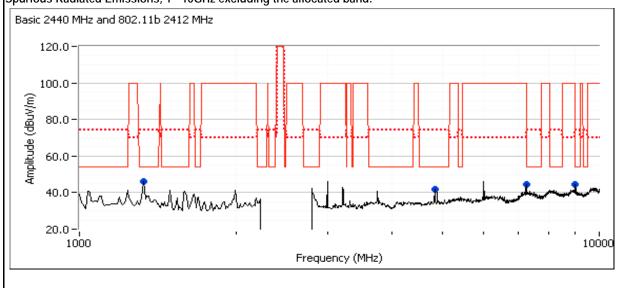
	The second secon								
Client:	Intel Corporation	Job Number:	J87129						
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211						
Model.	inter Centino Advanced-in 0255	Account Manager:	Christine Krebill						
Contact:	Steve Hackett								
Standard:	FCC 15.247, 15.407	Class:	N/A						

Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz

	moasar om	onico de oce	J, 112	12/ 12 1001				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2482.970	33.6	Н	54.0	-20.4	Peak	190	1.0	
2523.050	33.9	Н	54.0	-20.1	Peak	225	1.0	
2563.130	37.5	Н	54.0	-16.5	Peak	216	1.0	

Final measurements at 3m

 mai moao	ar orriorite at	•						
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	


Run # 6, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic @ 2440 MHz Chain B

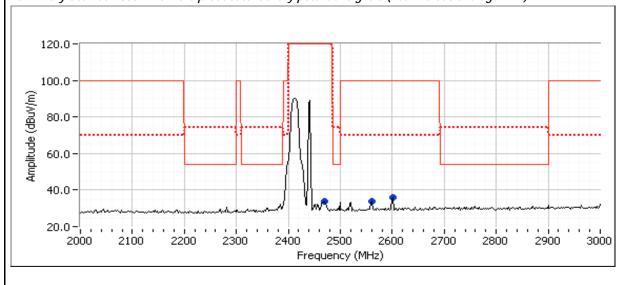
Date of Test: 5/1/2012 Test Engineer: Rafael Varelas

Test Location: FT3

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.5	23.5					
Chain B	7.0	4.9	8.0					

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A


Preliminary Measurements (Peak versus average limit)

	mode an emerica (i. earl reference are rage immy									
Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1328.930	46.0	V	54.0	-8.0	Peak	313	1.6			
4823.960	42.0	V	54.0	-12.0	Peak	120	1.6			
7234.010	44.3	V	54.0	-9.7	Peak	234	1.6			
9000.330	44.6	V	54.0	-9.4	Peak	186	1.0			

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
9001.040	42.5	V	54.0	-11.5	AVG	185	1.0	RB 1 MHz;VB 10 Hz;Pk
9001.070	49.4	V	74.0	-24.6	PK	185	1.0	RB 1 MHz;VB 3 MHz;Pk
4823.970	40.7	V	54.0	-13.3	AVG	120	1.7	RB 1 MHz;VB 10 Hz;Pk
4823.870	44.9	V	74.0	-29.1	PK	120	1.7	RB 1 MHz;VB 3 MHz;Pk
1330.730	35.6	V	54.0	-18.4	AVG	312	1.9	RB 1 MHz;VB 10 Hz;Pk
1329.600	54.4	V	74.0	-19.6	PK	312	1.9	RB 1 MHz;VB 3 MHz;Pk

Spurious Radiated Emissions, 2 - 3GHz

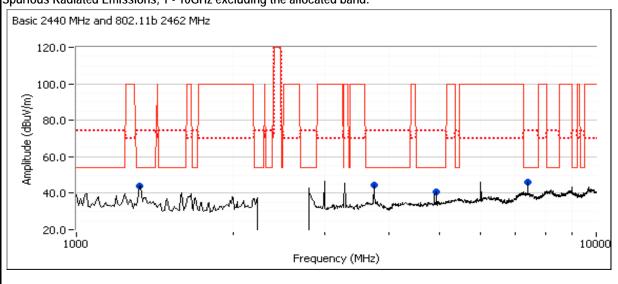
	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wodel.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz

i reminina y	measareme	neasarements at obeing RB-TWITE, VB-TOOKITE									
Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2468.940	34.0	Н	54.0	-20.0	Peak	197	1.0				
2561.120	34.0	Н	54.0	-20.0	Peak	227	1.0				
2601.200	36.0	Н	54.0	-18.0	Peak	219	1.0				

Final measurements at 3m

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	


Run # 7, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic @ 2440 MHz Chain B

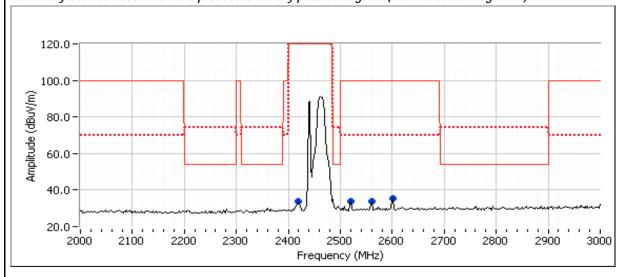
Date of Test: 5/1/2012 Test Engineer: Rafael Varelas

Test Location: FT3

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.5	23.5						
Chain B	7.0	4.9	8.0						

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

	The state of the s		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
	inter Centino Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A


Preliminary Measurements (Peak versus average limit)

	mode and more from the case at enage miny									
Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1320.830	44.0	V	54.0	-10.0	Peak	302	1.9			
3731.700	44.6	Н	54.0	-9.4	Peak	130	1.0			
4923.880	40.7	V	54.0	-13.3	Peak	105	1.3			
7386.150	45.8	V	54.0	-8.2	Peak	233	1.6			

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7386.620	44.1	V	54.0	-9.9	AVG	238	1.0	RB 1 MHz;VB 10 Hz;Pk
7386.850	49.9	V	74.0	-24.1	PK	238	1.0	RB 1 MHz;VB 3 MHz;Pk
1326.830	30.7	V	54.0	-23.3	AVG	272	2.0	RB 1 MHz;VB 10 Hz;Pk
1327.300	49.1	V	74.0	-24.9	PK	272	2.0	RB 1 MHz;VB 3 MHz;Pk
3750.700	29.1	Н	54.0	-24.9	AVG	124	1.0	RB 1 MHz;VB 10 Hz;Pk
3750.300	49.9	Н	74.0	-24.1	PK	124	1.0	RB 1 MHz;VB 3 MHz;Pk
4923.920	39.5	V	54.0	-14.5	AVG	78	1.0	RB 1 MHz;VB 10 Hz;Pk
4923.830	44.1	V	74.0	-29.9	PK	78	1.0	RB 1 MHz;VB 3 MHz;Pk

Spurious Radiated Emissions, 2 - 3GHz

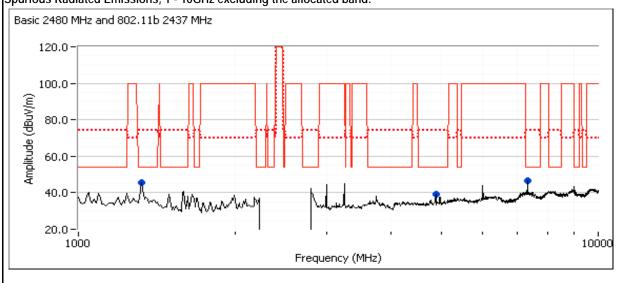
	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wodel.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2418.840	33.9	Н	54.0	-20.1	Peak	217	1.0	
2521.040	34.0	Н	54.0	-20.0	Peak	218	1.0	
2561.120	34.0	Н	54.0	-20.0	Peak	220	1.0	
2601.200	35.4	Н	54.0	-18.6	Peak	215	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				


Run # 8, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic @ 2480 MHz Chain B

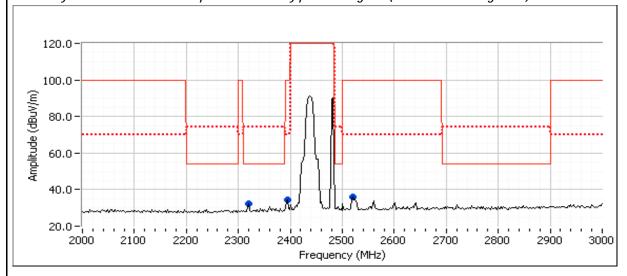
Date of Test: 5/1/2012 Test Engineer: Rafael Varelas

Test Location: FT3

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	23.5
Chain B	7.0	5.1	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number: T87211	
wouei.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A


Preliminary Measurements (Peak versus average limit)

i i ciii iii iai j	Micasarcino	omo (i cak v	CI SUS UVCIU	ge min,				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1319.980	45.5	V	54.0	-8.5	Peak	313	1.6	
4873.940	39.4	V	54.0	-14.6	Peak	152	1.3	
7310.210	46.4	V	54.0	-7.6	Peak	241	1.9	

Final measurements at 3m

		-						
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7310.140	45.1	V	54.0	-8.9	AVG	234	1.6	RB 1 MHz;VB 10 Hz;Pk
7311.880	50.6	V	74.0	-23.4	PK	234	1.6	RB 1 MHz;VB 3 MHz;Pk
4873.940	37.9	V	54.0	-16.1	AVG	169	1.5	RB 1 MHz;VB 10 Hz;Pk
4873.820	43.8	V	74.0	-30.2	PK	169	1.5	RB 1 MHz;VB 3 MHz;Pk
1331.850	34.7	V	54.0	-19.3	AVG	340	1.5	RB 1 MHz;VB 10 Hz;Pk
1330.910	52.1	V	74.0	-21.9	PK	340	1.5	RB 1 MHz;VB 3 MHz;Pk

Spurious Radiated Emissions, 2 - 3GHz

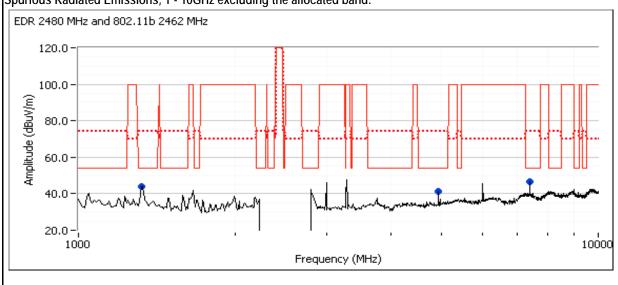
	Tingary company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number: T87211	
wouei.	Illitel® Cellillillo® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz

i i ciii iii iai j	measarem	onto at out	om, RD- mm	IZ, VD-100K	ACT IL				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2320.640	32.4	V	54.0	-21.6	Peak	80	1.3		
2394.790	34.6	V	54.0	-19.4	Peak	272	1.0		
2521.040	36.1	Н	54.0	-17.9	Peak	214	1.0		

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.050	39.9	V	54.0	-14.1	AVG	91	1.0	POS; RB 1 MHz; VB: 10 Hz
2319.700	46.4	V	74.0	-27.6	PK	91	1.0	POS; RB 1 MHz; VB: 3 MHz


Run # 9, Jackson Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, EDR Mode @ 2480 MHz Chain B

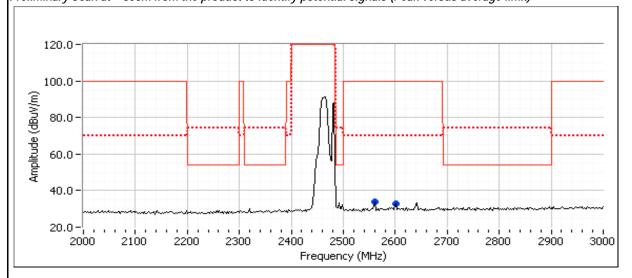
Date of Test: 5/1/2012 Test Engineer: Rafael Varelas

Test Location: FT3

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	23.5
Chain B	7.0	2.3	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	Advanced-N 6235 T-Log Number: T87211	T87211
Model.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A


Preliminary Measurements (Peak versus average limit)

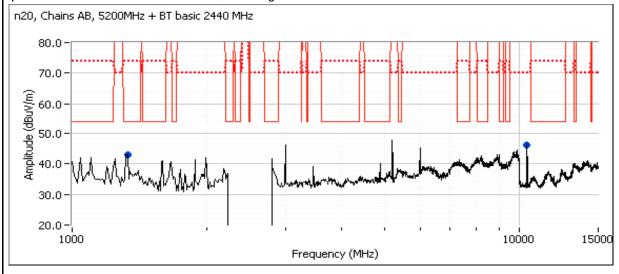
i i ciii iii iai j	Micasarcino	onio (i cak v	CI SUS UVCIU	ge min,				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1328.210	43.8	V	54.0	-10.2	Peak	296	1.9	
4923.880	41.1	V	54.0	-12.9	Peak	225	1.3	
7387.210	46.5	V	54.0	-7.5	Peak	235	1.6	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7386.610	46.0	V	54.0	-8.0	AVG	256	1.6	RB 1 MHz;VB 10 Hz;Pk
7383.680	51.1	V	74.0	-22.9	PK	256	1.6	RB 1 MHz;VB 3 MHz;Pk
1328.610	30.5	V	54.0	-23.5	AVG	269	1.6	RB 1 MHz;VB 10 Hz;Pk
1330.610	45.5	V	74.0	-28.5	PK	269	1.6	RB 1 MHz;VB 3 MHz;Pk
4923.860	40.2	V	54.0	-13.8	AVG	237	1.7	RB 1 MHz;VB 10 Hz;Pk
4923.950	44.7	V	74.0	-29.3	PK	237	1.7	RB 1 MHz;VB 3 MHz;Pk

Spurious Radiated Emissions, 2 - 3GHz

MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 61.120 33.6 H 54.0 -20.4 Peak 214 1.0 01.200 32.7 H 54.0 -21.3 Peak 215 1.0 al measurements at 3m equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	Olicit.	Intel Corpora	ation				Job Number:	J87129		
Account Manager: Christine Krebill	Model:	Intel® Centri	ino® ∆dvand	ed-N 6235				T-	Log Number:	T87211
Class: N/A Cla				Cu-11 0233	Acco	unt Manager:	Christine Krebill			
Iminary measurements at ~ 30cm, RB=1MHz, VB=100kHz										
Equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 61.120 33.6 H 54.0 -20.4 Peak 214 1.0 01.200 32.7 H 54.0 -21.3 Peak 215 1.0 al measurements at 3m Equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	Standard:	FCC 15.247	, 15.407					Class: N/A		
61.120 33.6 H 54.0 -20.4 Peak 214 1.0 01.200 32.7 H 54.0 -21.3 Peak 215 1.0 al measurements at 3m equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	equency	Level	Pol	15.209	/15.247	Detector			Comments	
61.120 33.6 H 54.0 -20.4 Peak 214 1.0 01.200 32.7 H 54.0 -21.3 Peak 215 1.0 al measurements at 3m equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	MHz								Comments	
al measurements at 3m equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	561.120									
equency Level Pol 15.209/15.247 Detector Azimuth Height Comments	601.200	32.7	Н	54.0	-21.3	Peak	215	1.0		
	equency MHz								Comments	


	An 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run # 10, Jackson Peak 2x2: 1-15 GHz, 802.11n20 @ 5200 MHz, Chains A + B, & BT basic @ 2440 MHz.

Date of Test: 5/2/2012 Test Engineer: John Caizzi Test Location: FT5

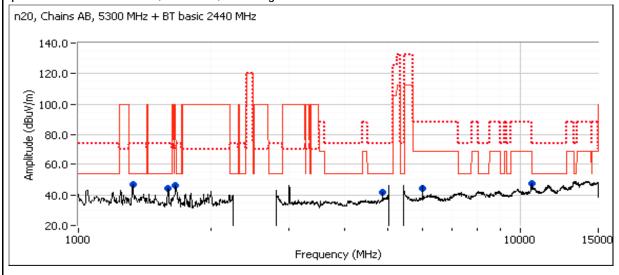
	Power Settings					
	Target (dBm)	Measured (dBm)	Software Setting			
Chain A	16.5	15.0	39.0			
Chain B	16.5 / 7	16.0 / 4.9	39.0 / 8.0			

Spurious Radiated Emissions, 1 - 15 GHz, excluding the allocated band.

Client:	Intel Corpora	还 [*] company tion						Job Number:	J87129
			1.11.7005				T-	Log Number:	T87211
Model:	Intel® Centri	no® Advanc	ed-N 6235				Acco	unt Manager:	Christine Krebil
Contact:	Steve Hacke	tt						-	
Standard:	FCC 15.247,	15.407						Class:	N/A
	/ Measureme				1 1			To .	
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz 10400.000	dΒμV/m <i>46.1</i>	v/h <i>V</i>	Limit 54.0	Margin - 7.9	Pk/QP/Avg Peak	degrees 65	meters 1.0	Note 2	
1330.000	42.9		54.0	-7.9	Peak	172	1.0	Note 1	
inal moas	urements at 3	2m							
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
			Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz	dBμV/m	v/h							
	dBμV/m	V/N	Liiiii	Ŭ	Ĭ				
MHz				, in the second			l 0		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re	egardless of b		I, & mode.		
MHz	Not an interm	nodulation p	roduct. Sign	al present re	egardless of b WiFi fundame		l, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		
MHz Note 1	Not an interm	nodulation p	roduct. Sign	al present re			I, & mode.		

	An 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

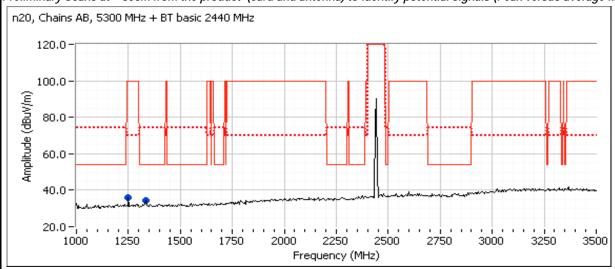
Run # 11, Jackson Peak 2x2: 1-15 GHz, 802.11n20 @ 5300 MHz, Chains A + B, & BT basic @ 2440 MHz.

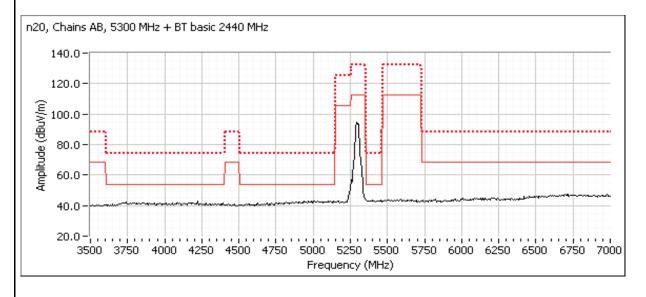

Date of Test: 5/2/2012

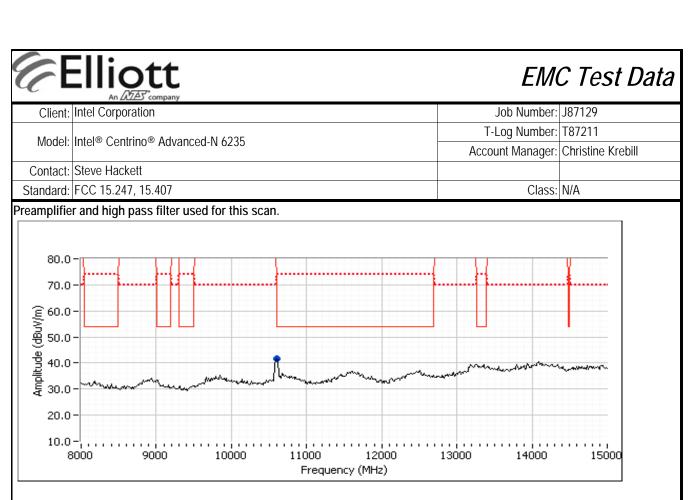
Test Engineer: John Caizzi / Joseph Cadigal

Test Location: FT5

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	15.9	39.0				
Chain B	16.5 / 7	16.3 / 4.9	39.0 / 8.0				


Spurious Radiated Emissions, 1 - 15 GHz, excluding the allocated band.




	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel® Ceritililo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

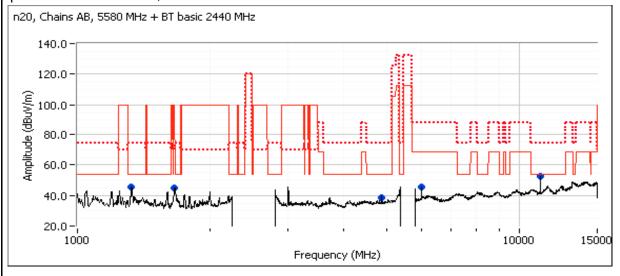
	Intel Corpora	ott Ar company ation						Job Number:	J87129
Model.	Intel® Centrino® Advanced-N 6235							Log Number:	
							Acco	unt Manager:	Christine Krebill
	Steve Hackett								
Standard:	FCC 15.247,	, 15.407						Class:	N/A
Preliminary	measureme								
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz 1253.490	dBμV/m 35.8	v/h V	Limit 54.0	Margin -18.2	Pk/QP/Avg Peak	degrees 162	meters 1.0		
1331.570	34.3	V	54.0	-18.2	Peak	341	1.0		
		<u> </u>	2		. 34.1			1	
	urements at		15 200	115 0 47	D.LL.	A = '	11.2.1.1		
Frequency MHz	Level	Pol		/15.247	Detector Pk/QP/Avg	Azimuth	Height	Comments	
IVITIZ	dBμV/m	v/h	Limit	Margin	PK/QP/AVg	degrees	meters		

Preliminary	Measurements	(Peak versus	average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10601.670	41.8	V	54.0	-12.2	Peak	151	1.6	Note 1
1328.340	46.7	V	54.0	-7.3	Peak	163	1.0	
1592.340	44.0	V	54.0	-10.0	Peak	194	1.0	
1658.720	45.9	V	54.0	-8.1	Peak	209	1.0	
6001.410	46.2	V	54.0	-7.8	Peak	135	1.0	
4880.110	41.8	Н	54.0	-12.2	Peak	159	1.0	
inal measu	urements at	3m						
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4879.980	38.0	Н	54.0	-16.0	AVG	158	1.0	RB 1 MHz;VB 10 Hz;Peak
10601.330	37.1	V	54.0	-16.9	AVG	233	1.5	RB 1 MHz;VB 10 Hz;Peak
1328.330	33.4	V	54.0	-20.6	AVG	160	1.0	RB 1 MHz;VB 10 Hz;Peak
1659.770	49.2	V	70.0	-20.8	PK	210	1.0	RB 1 MHz;VB 3 MHz;Peak
1660.030	32.5	V	54.0	-21.5	AVG	210	1.0	RB 1 MHz;VB 10 Hz;Peak
1593.310	31.6	V	54.0	-22.4	AVG	198	1.0	RB 1 MHz;VB 10 Hz;Peak
1328.570	51.1	V	74.0	-22.9	PK	160	1.0	RB 1 MHz;VB 3 MHz;Peak
10600.120	50.5	V	74.0	-23.5	PK	233	1.5	RB 1 MHz;VB 3 MHz;Peak
4879.840	44.7	Н	74.0	-29.3	PK	158	1.0	RB 1 MHz;VB 3 MHz;Peak
1593.310	44.4	V	74.0	-29.6	PK	198	1.0	RB 1 MHz;VB 3 MHz;Peak
6000.560	48.6	V	68.3	-19.7	PK	133	1.0	RB 1 MHz;VB 3 MHz;Peak

Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
iviouei.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

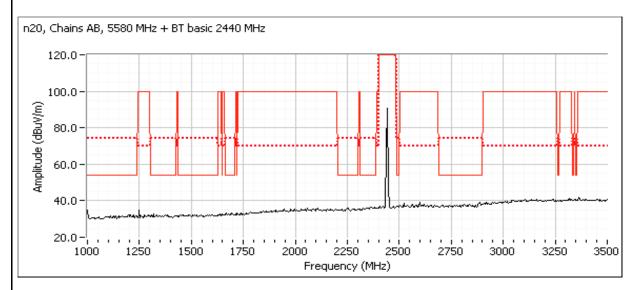
Run # 12, Jackson Peak 2x2: 1-15GHz, 802.11n20 @ 5580 MHz Chain A + B, BT basic @ 2440 MHz.

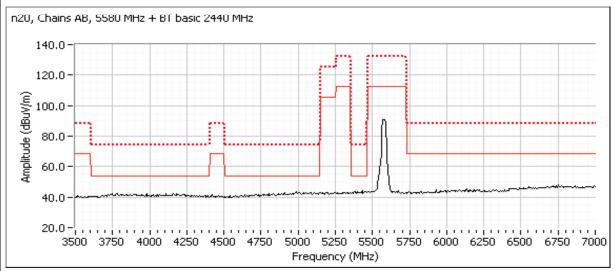

Date of Test: 5/2/2012

Test Engineer: John Caizzi / Joseph Cadigal

Test Location: FT5

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	16.2	39.0				
Chain B	16.5 / 7	16.4 / 4.9	39.0 / 8.0				


Spurious Radiated Emissions, 1 - 15 GHz:



	An 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

	Ellic	tt						EM	C Test Data
Client:	Intel Corpora	立。company tion		Job Number: J87129					
	Intel® Centrino® Advanced-N 6235							Log Number:	T87211
								unt Manager:	Christine Krebill
Contact: Steve Hackett									
Standard: FCC 15.247, 15.407								Class:	N/A
Preliminary measurements at ~ 30cm, RB=1MHz, VB=100kHz								1.	
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
inal moasi	urements at 3	2m			<u>. </u>	•			
requency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		

Client: Intel Corporation Model: Intel® Centrino® Advanced-N 6235 Contact: Steve Hackett Standard: FCC 15.247, 15.407 Client: Intel® Centrino® Advanced-N 6235 Contact: Steve Hackett Standard: FCC 15.247, 15.407 Class: N/A Preamplifier and high pass filter used for this scan.

80.0 - 70.0 - 60.0 - 90.0 10000 11000 12000 13000 14000 15000 Frequency (MHz)

Preliminary Meas	surements (Peal	versus a	verage limit)
II I CIIIIIIIII V IVICAS	oui cilicilis (i car	vcisus a	vciauc iiiiiii

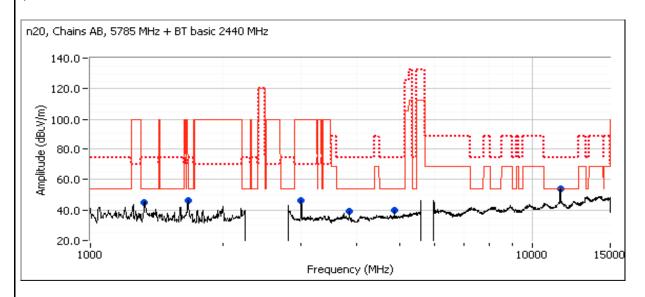
Frequency	Level	Pol	15.209/15	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11160.040	52.4	V	54.0	-1.6	Peak	289	1.0	Note 1
4880.360	38.7	Н	54.0	-15.3	Peak	119	1.0	
6000.650	45.4	V	68.3	-22.9	Peak	134	1.0	
1661.160	44.8	V	70.0	-25.2	Peak	204	1.0	
1328.770	45.7	V	54.0	-8.3	Peak	292	1.5	
Final measurements at 3m								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1660.730	32.8	V	54.0	-21.2	AVG	208	1.0	RB 1 MHz;VB 10 Hz;Peak
4880.020	32.1	Н	54.0	-21.9	AVG	115	1.0	RB 1 MHz;VB 10 Hz;Peak
1328.160	31.7	V	54.0	-22.3	AVG	295	1.5	RB 1 MHz;VB 10 Hz;Peak
1327.730	49.6	V	74.0	-24.4	PK	295	1.5	RB 1 MHz;VB 3 MHz;Peak
5999.920	41.6	V	68.3	-26.7	AVG	134	1.0	RB 1 MHz;VB 10 Hz;Peak
4879.570	41.0	Н	74.0	-33.0	PK	115	1.0	RB 1 MHz;VB 3 MHz;Peak
1659.890	49.4	V	68.3	-18.9	PK	208	1.0	RB 1 MHz;VB 3 MHz;Peak
5999.940	47.0	V	68.3	-21.3	PK	134	1.0	RB 1 MHz;VB 3 MHz;Peak

Note 1 Not an intermodulation product. 2nd harmonic of WiFi fundamental.

Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
wiodei.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

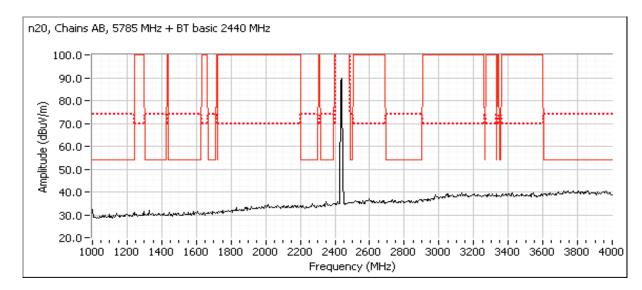
Run # 13, Jackson Peak 2x2: 1-15GHz, 802.11n20 @ 5785 MHz Chain A + B, BT basic @ 2440 MHz.

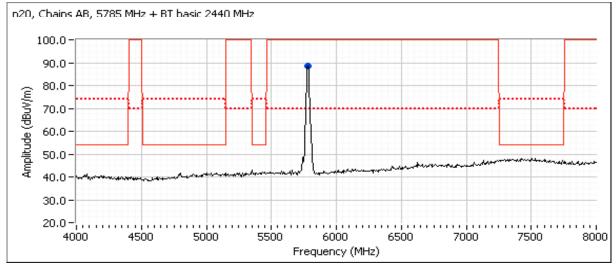

Date of Test: 5/2/2012

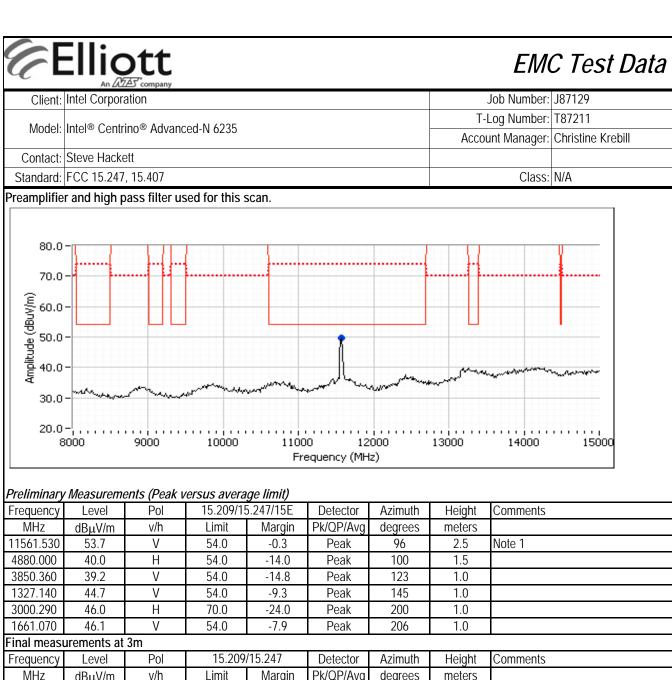
Test Engineer: John Caizzi / Joseph Cadigal

Test Location: FT5

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	16.2	39.0				
Chain B	16.5 / 7	16.4 / 4.9	39.0 / 8.0				


Spurious Radiated Emissions, 1 - 15 GHz:




	An 2023 Company		
Client:	Intel Corporation	Job Number:	J87129
Model	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87211
Model.	ilitel® Celitilio® Advanced-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 4GHz and 4 - 8GHz)

		company							C Test L
Client:	Intel Corporat	tion			Job Number: J87129 T-Log Number: T87211				
Model:	Intel® Centrino® Advanced-N 6235							•	
Contact:	Steve Hackett							uni ivianager:	Christine Krebill
Contact: Steve Hackett tandard: FCC 15.247, 15.407								Class:	N/A
taridara	. 00 10.21.7							0.000.	,, .
eliminary equency	measuremer Level	<u>nts at ~ 300</u> Pol		1z, VB=1001 /15.247	kHz Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
80.000	88.5	V	-	-	Peak	247	1.0		
_									
al meas equency	urements at 3 Level	B m Pol	15 209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commicities	
	abprim	.,		in gar	l III g	are green			
te 1:	For emissions measurement					For all othe	er emissions	s, the limit is -	30dBc for peak
te 1:						For all othe	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
te 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -	30dBc for peak
e 1:						For all other	er emissions	s, the limit is -:	30dBc for peak

4880.000	40.0	Н	54.0	-14.0	Peak	100	1.5		
3850.360	39.2	V	54.0	-14.8	Peak	123	1.0		
1327.140	44.7	V	54.0	-9.3	Peak	145	1.0		
3000.290	46.0	Н	70.0	-24.0	Peak	200	1.0		
1661.070	46.1	V	54.0	-7.9	Peak	206	1.0		
Final measu	Final measurements at 3m								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4880.000	34.1	Н	54.0	-19.9	AVG	107	1.5	RB 1 MHz;VB 10 Hz;Peak	
1661.810	32.9	V	54.0	-21.1	AVG	207	1.0	RB 1 MHz;VB 10 Hz;Peak	
1328.560	31.9	V	54.0	-22.1	AVG	144	1.0	RB 1 MHz;VB 10 Hz;Peak	
1327.800	49.7	V	74.0	-24.3	PK	144	1.0	RB 1 MHz;VB 3 MHz;Peak	
1660.670	49.0	V	74.0	-25.0	PK	207	1.0	RB 1 MHz;VB 3 MHz;Peak	
3850.470	28.4	V	54.0	-25.6	AVG	123	1.0	RB 1 MHz;VB 10 Hz;Peak	
4880.290	42.0	Н	74.0	-32.0	PK	107	1.5	RB 1 MHz;VB 3 MHz;Peak	
3851.510	39.3	V	74.0	-34.7	PK	123	1.0	RB 1 MHz;VB 3 MHz;Peak	
3000.190	48.5	Н	68.3	-19.8	PK	203	1.0	RB 1 MHz;VB 3 MHz;Peak	
Note 1 Not an intermodulation product. 2nd harmonic of WiFi fundamental.									

Ellio AN AND AN AND AN AND AN AND AN AND AND	Company	Ei	MC Test Data
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247, 15.407	Class:	В
Immunity Standard(s)	_	Environment:	_

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6235

Date of Last Test: 5/22/2012

R87750 Cover Page 144

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Flouuci.	III(el Celitilio Advanced-N 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements - Chain A Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/7/2012 Config. Used: 1
Test Engineer: Jack Liu, Joseph Cadigal Config Change: none
Test Location: FT Lab3 Host Unit Voltage 120V/60Hz

Summary of Results - Chain A

MAC Address: 44850006301F DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Test Performed	Limit	Pass / Fail	Result / Margin		
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 19 mW 802.11n 20MHz: 19 mW 802.11n 40MHz: 16 mW		
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 0.3 dBm/MHz 802.11n 20MHz: 0.1dBm/MHz 802.11n 40MHz: -2.9 dBm/MHz		
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 25 mW 802.11n 20MHz: 24 mW 802.11n 40MHz: 18 mW		
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 1.4 dBm/MHz 802.11n 20MHz: 1.1 dBm/MHz 802.11n 40MHz: -2.9 dBm/MHz		
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 37 mW 802.11n 20MHz: 36 mW 802.11n 40MHz: 33 mW		
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 3.0 dBm/MHz 802.11n20MHz: 2.8 dBm/MHz 802.11n40MHz: 0.2 dBm/MHz		
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes		
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11a: 17.4 MHz 802.11n 20MHz: 18.5 MHz 802.11n 40MHz: 36.4 MHz		
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	9.2dB		
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit		

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
FTOUUCI.	ilitel® Celitilio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature: 25 °C Rel. Humidity: 40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

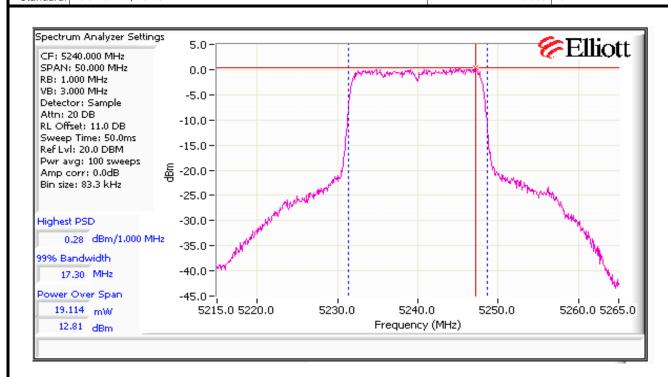
	All DOES Company		
Client:	Intel Corporation	Job Number:	J87129
Draduati	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
FTOUUCI.	III(el © Celitifilo © Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #1: Bandwidth, Output Power and Power Spectral Density - Single Chain Systems

	Output power measured using a spectrum analyzer (see piots below). RBW=1MHZ, VB=3 MHZ, # of points in Sweep ≥
Note 1:	2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50/100
	MHz (method SA-1 of KDB 789033).

Note 2: Measured using the same analyzer settings used for output power.

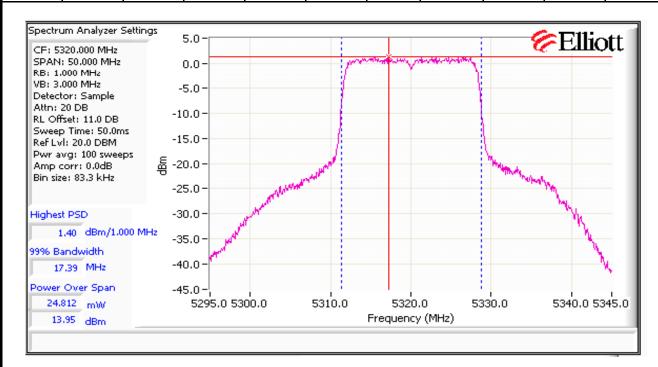
For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.


Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

Single Chain Operation, 5150-5250MHz Band

og.o oa.	Antenna	a Gain (dBi):	3.6		EIRP:	43.8	mW	16.4	dBm	
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/MF	łz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Resuit
802.11a										
5180	27.0	37.2	17.1	10.9	17.0	0.012	-1.5	4.0	6.4	Pass
5200	29.5	40.7	17.2	12.4	17.0	0.017	-0.2	4.0	6.4	Pass
5240	29.5	38.7	17.3	12.8	17.0	0.019	0.3	4.0	6.4	Pass
802.11n 20N	ЛHz									
5180	27.0	40.9	18.1	10.7	17.0	0.012	-2.1	4.0	6.4	Pass
5200	29.5	44.8	18.4	12.3	17.0	0.017	-0.5	4.0	6.4	Pass
5240	29.5	44.2	18.3	12.8	17.0	0.019	0.1	4.0	6.4	Pass
802.11n 40N	ЛHz									
5190	23.5	46.3	36.1	7.7	17.0	0.006	-7.6	4.0	6.4	Pass
5230	29.5	70.2	36.3	12.2	17.0	0.016	-2.9	4.0	6.4	Pass

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Droducti	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	III(e) Ceritiii) Auvanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A



	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Flouuci.	III(el Celitilio Advanced-N 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Single Chain Operation, 5250-5350 MHz Band

J	Antenna	a Gain (dBi):	3.7		EIRP:	58.2	mW	17.7	dBm		
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	P.	SD ² dBm/MF	łz	Result	
(MHz)	Setting	26dB	$99\%^{4}$	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result	
802.11a											
5260	29.0	38.5	17.3	13.2	24.0	0.021	0.7	11.0	11.0	Pass	
5300	28.5	38.4	17.3	13.3	24.0	0.021	0.8	11.0	11.0	Pass	
5320	29.5	38.9	17.4	14.0	24.0	0.025	1.4	11.0	11.0	Pass	
802.11n 20N	ЛHz										
5260	29.0	45.3	18.3	13.0	24.0	0.020	0.1	11.0	11.0	Pass	
5300	28.5	44.0	18.3	13.1	24.0	0.020	0.5	11.0	11.0	Pass	
5320	29.5	44.3	18.5	13.8	24.0	0.024	1.1	11.0	11.0	Pass	
802.11n 40N	802.11n 40MHz										
5270	29.0	71.7	36.4	12.5	24.0	0.018	-2.9	11.0	11.0	Pass	
5310	23.0	46.5	36.1	8.9	24.0	0.008	-6.3	11.0	11.0	Pass	

Client: Intel Corporation Product: Intel® Centrino® Advanced-N 6235 Contact: Steve Hackett Standard: FCC 15.247, 15.407 Single Chain Operation, 5470- 5725 MHz Band Antenna Gain (dBi): 4.8 EIRP: 112.2 mW Dob Number: J87129 T-Log Number: T87656 Account Manager: Christine Krebill Class: N/A

	Antenna	a Gain (dBi):	4.8		EIRP:	112.2	mW	20.5	dBm	
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	P:	SD ² dBm/MF	lz	Result
(MHz)	Setting	26dB	$99\%^{4}$	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
802.11a										
5500	27.5	36.8	17.0	15.7	24.0	0.037	3.0	11.0	11.0	Pass
5580	27.5	36.5	17.0	14.7	24.0	0.030	2.0	11.0	11.0	Pass
5700	30.0	37.0	17.2	15.2	24.0	0.033	2.6	11.0	11.0	Pass
802.11n 20N	ЛHz									
5500	28.0	43.3	18.1	15.6	24.0	0.036	2.8	11.0	11.0	Pass
5580	27.5	41.8	18.1	14.4	24.0	0.028	1.5	11.0	11.0	Pass
5700	30.0	28.9	18.2	15.1	24.0	0.032	2.3	11.0	11.0	Pass
802.11n 40N	ЛHz									
5510	26.5	40.1	36.2	13.7	24.0	0.023	-1.6	11.0	11.0	Pass
5550	28.5	69.2	36.2	14.8	24.0	0.030	-0.3	11.0	11.0	Pass
5670	31.0	67.6	36.5	15.2	24.0	0.033	0.2	11.0	11.0	Pass

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
FTOUUCI.	ilitel® Celitilio® Advanced-in 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2: Peak Excursion Measurement

802.11a: Device meets the requirement for the peak excursion

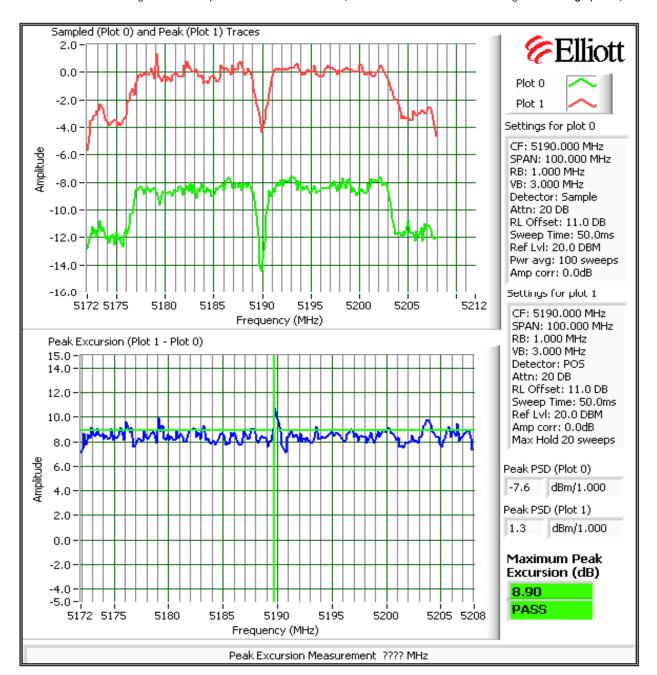
Freq	Peak Exc	ursion(dB)	Freq	Peak Excu	ırsion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.0	13.0	5260	8.5	13.0	5500	8.5	13.0
5200	8.4	13.0	5300	8.6	13.0	5580	8.4	13.0
5240	8.4	13.0	5320	8.3	13.0	5700	9.2	13.0

n 20MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Excu	ırsion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.1	13.0	5260	8.4	13.0	5500	8.1	13.0
5200	8.2	13.0	5300	8.4	13.0	5580	8.1	13.0
5240	8.2	13.0	5320	8.4	13.0	5700	8.8	13.0

n 40MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Excu	ırsion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190	8.9	13.0	5270	8.7	13.0	5510	9.0	13.0
5230	8.3	13.0	5310	8.3	13.0	5550	8.4	13.0
						5670	8.9	13.0



	An ZAZZED company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

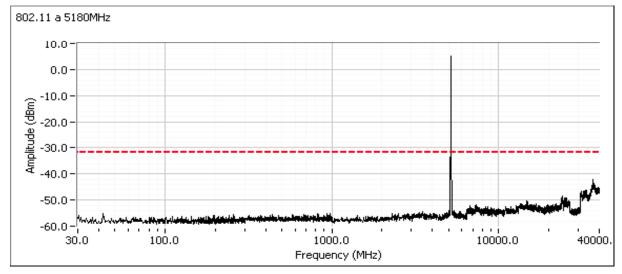
	An ZAZEO company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	III(e) Ceritiii) Auvanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

802.11a

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

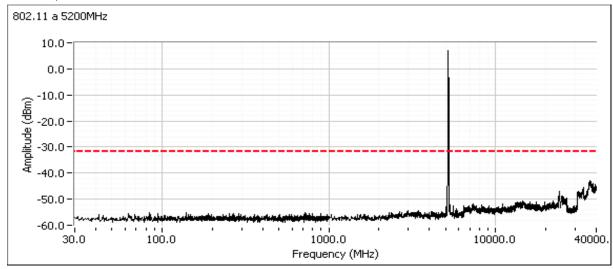
Spurious Limit: -27.0 dBm/MHz eirp

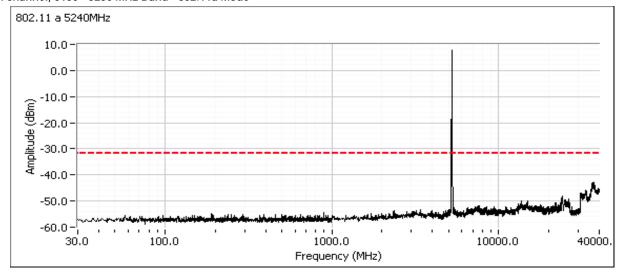

Limit Used On Plots Note 1: -31.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into
	consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals
Note 1.	more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is
	not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11a Mode Emissions (RBW=VBW=1MHz)

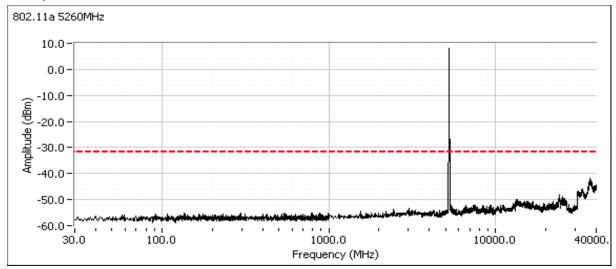
Low channel, 5150 - 5250 MHz Band - 802.11a Mode

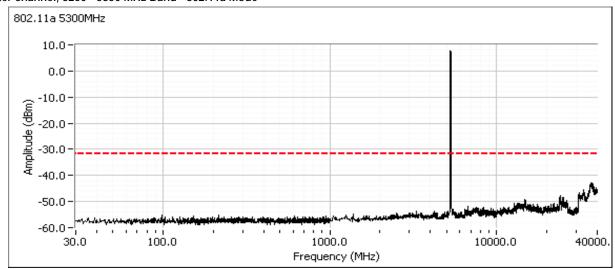

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



All Date Company				
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
	intel® Centinio® Advanced-N 0255	Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

Center channel, 5150 - 5250 MHz Band - 802.11a Mode

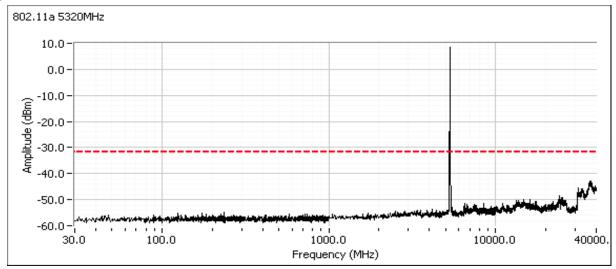

High channel, 5150 - 5250 MHz Band - 802.11a Mode



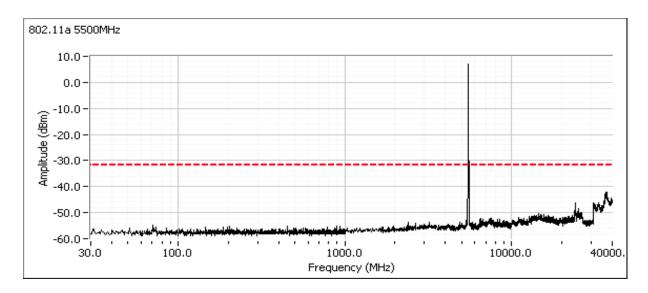
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	IIIIel® Ceriliiio® Advanced-N 0235	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11a Mode

Center channel, 5250 - 5350 MHz Band - 802.11a Mode



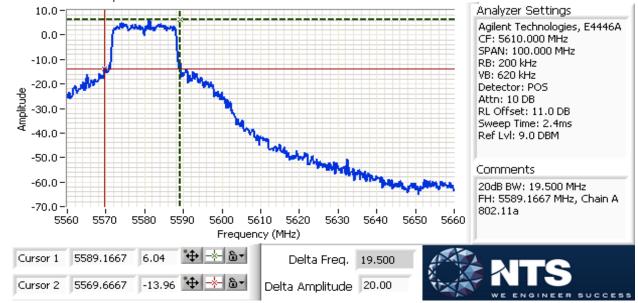
	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	III(el® Ceritifilo® Advanced-N 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

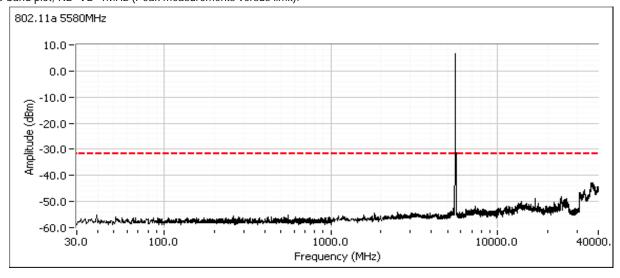

High channel, 5250 - 5350 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

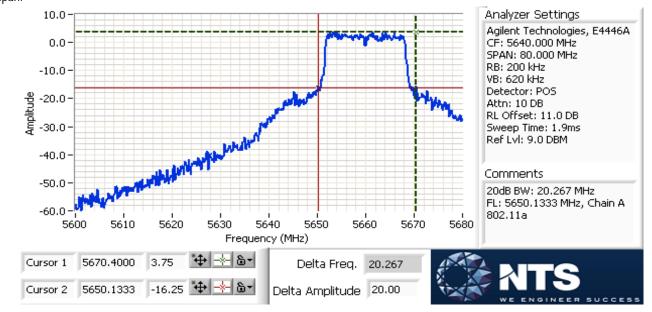


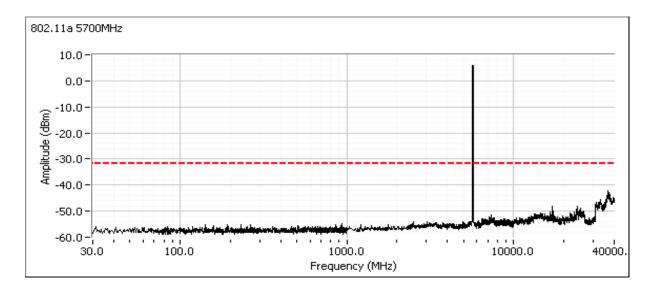

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	IIIIel® Ceriliiio® Advanced-N 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11a Mode

For **master** devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).




	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	III(el® Ceritifilo® Advanced-N 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11a Mode

	An ZAZZZZ company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	intel® Centinio® Advanced-iv 0233	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

802.11n Modes - n 20MHz

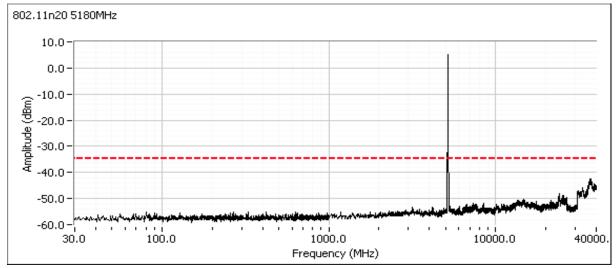
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains: 2

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp

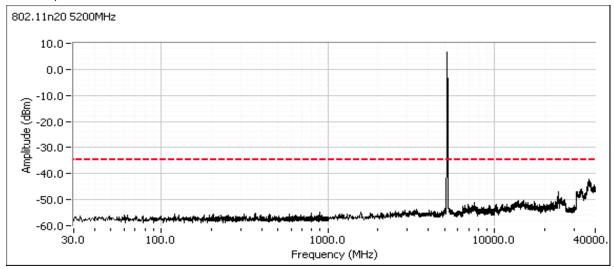
Limit Used On Plots Note 1: -34.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

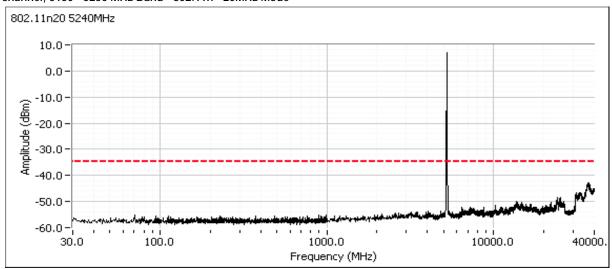

Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

Note 2: All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11n - 20MHz Mode Emissions (RBW=VBW=1MHz)

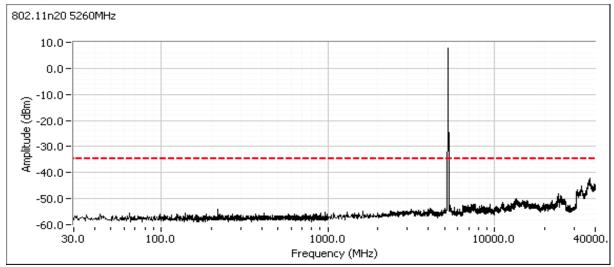
Low channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

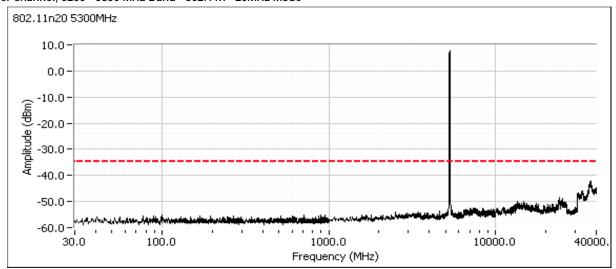

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



Client:	Intel Corporation	Job Number:	J87129		
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656		
	ilitel® Celitililo® Advanced-N 0255	Account Manager:	Christine Krebill		
Contact:	Steve Hackett				
Standard:	FCC 15.247, 15.407	Class:	N/A		

Center channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

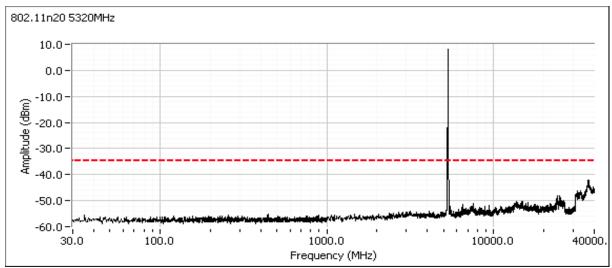

High channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode



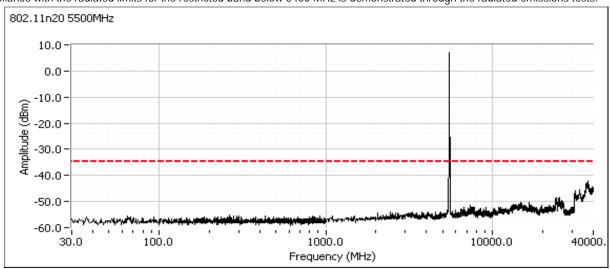
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

Center channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode



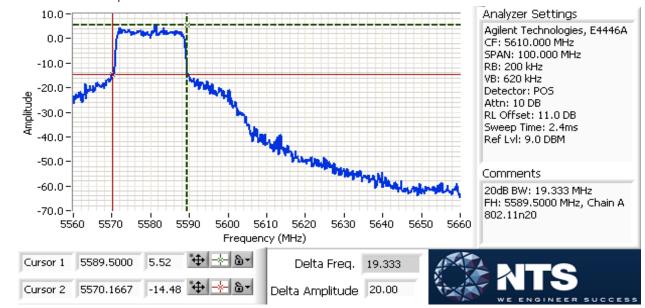
	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

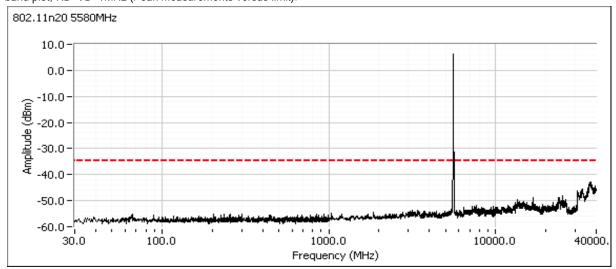

High channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

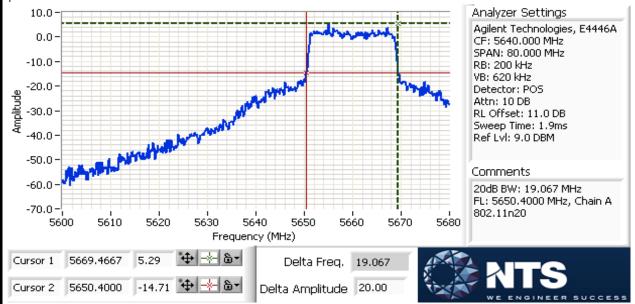


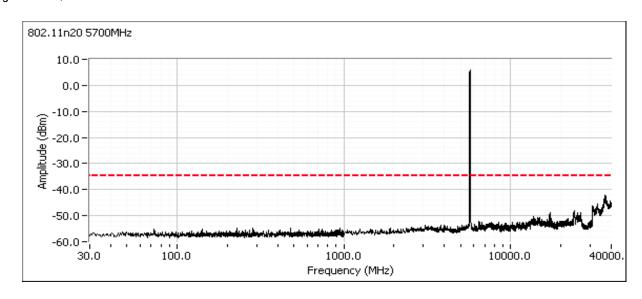

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode (use 5580 MHz)

For **master** devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).




	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

An ZAZES Company				
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

802.11n Modes - n40MHz

MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

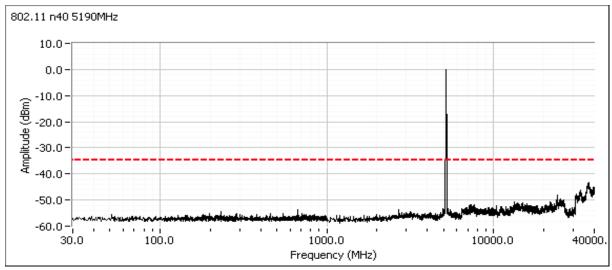
Number of transmit chains: 2

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp

Limit Used On Plots Note 1: -34.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

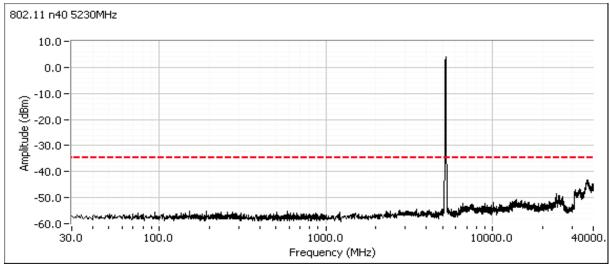
Note 1:

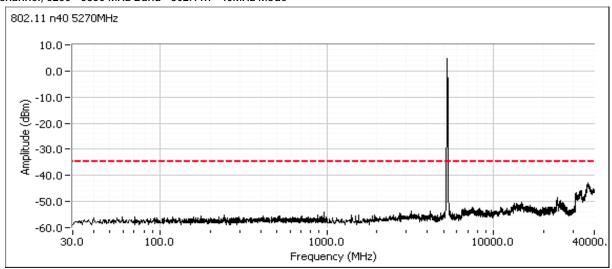

The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

Note 2: All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11n - 40MHz Mode Emissions (RBW=VBW=1MHz)

Low channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

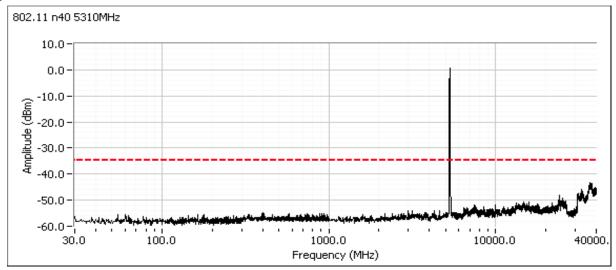

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



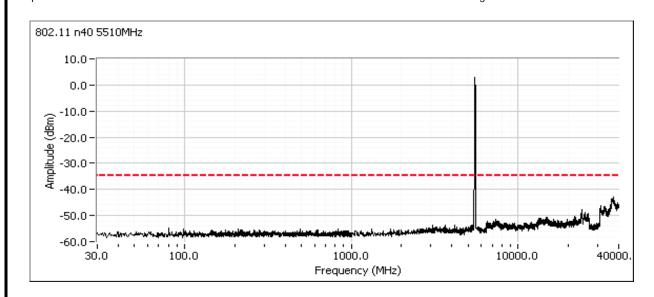
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

High channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

Low channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode



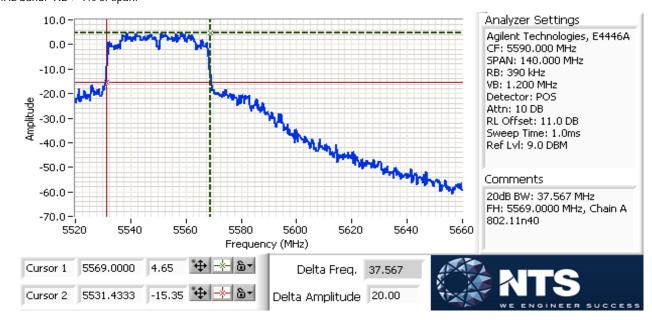
An ZAZES Company				
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

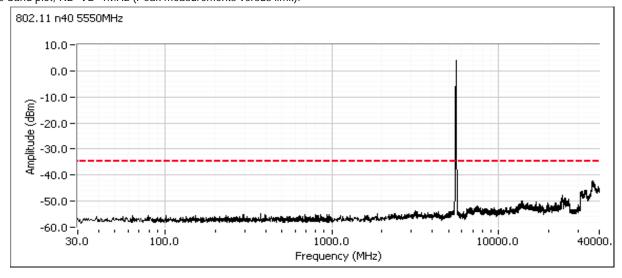

High channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

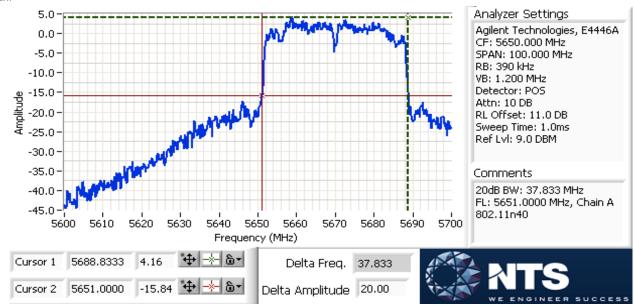


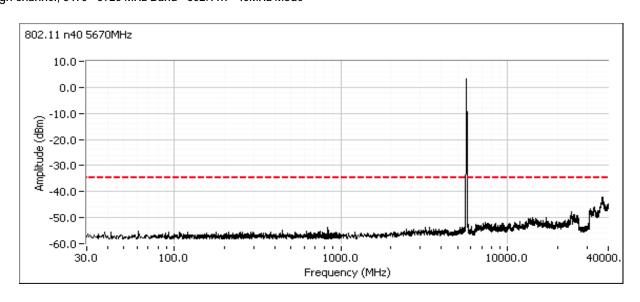

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470-5725MHz Band - 802.11n 40MHz Mode

For **master** devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).




	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

An 2/22 company				
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements - Chain B Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/9 & 5/10/2012 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: none
Test Location: FT Lab #4 Host Unit Voltage 120V/60Hz

Summary of Results - Chain B

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

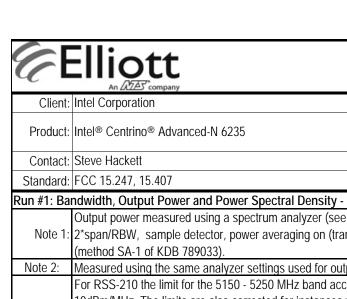
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 37 mW 802.11n 20MHz: 35 mW
				802.11n n40MHz: 30 mW
	DOD 5450 5050141	45 407() (4) (0)	_	802.11a: 3.3 dBm/MHz
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 2.7 dBm/MHz
				802.11n n40MHz: -0.5 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 41 mW 802.11n 20MHz: 41 mW
'	1 OWEI, 3230 - 3330WHZ	13.407(a) (1), (2)	F 033	802.11n n40MHz: 31 mW
				802.11a: 3.7 dBm/MHz
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 3.6 dBm/MHz
	·	() () ()		802.11n n40MHz: -0.3 dBm/MHz
				802.11a: 36 mW
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 37 mW
				802.11n n40MHz: 35 mW
4	DOD 5430 53051411	45 407() (4) (0)	_	802.11a: 3.0 dBm/MHz
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 2.9 dBm/MHz
		15.407		802.11n n40MHz: 0.5 dBm/MHz
1	26dB Bandwidth	(Information only)	-	> 20MHz for all modes
1	000/ Davida Silib	RSS 210	N1/A	802.11a: 18.8MHz
1	99% Bandwidth	(Information only)	N/A	802.11n 20MHz: 19.3MHz 802.11n n40MHz: 36.9MHz
2	Dook Eveureian Envolone	15.407(a) (6)	Docc	8.6 dB
Z	Peak Excursion Envelope	13dB	Pass	0.0 UD
2	Antenna Conducted - Out of Band	15.407(b)	Pass	All emissions below the
3	Spurious	-27dBm/MHz	Pass	-27dBm/MHz limit
			1	L

Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:


Temperature: 22.3 °C Rel. Humidity: 34 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ZZZZZ company							
Client:	Intel Corporation	Job Number:	J87129					
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656					
Product.	III(e) Ceritiii) Advanceu-iv 0255	Account Manager:	Christine Krebill					
Contact:	Steve Hackett							
Standard:	FCC 15.247, 15.407	Class:	N/A					
Run #1: Bandwidth, Output Power and Power Spectral Density - Single Chain Systems								

Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥ Note 1: 2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz

Measured using the same analyzer settings used for output power.

For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average Note 3: PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.

99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB Note 4:

Single Chain Operation, 5150-5250MHz Band

	Antenna	a Gain (dBi):	3.6		EIRP:	85.1	mW	19.3	dBm	
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	Р	PSD ² dBm/MHz		Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
802.11a	02.11a									
5180	29.5	40.1	17.5	14.0	17.0	0.025	1.5	4.0	6.4	Pass
5200	30.5	41.9	18.4	15.7	17.0	0.037	3.3	4.0	6.4	Pass
5240	30.5	42.2	18.2	15.4	17.0	0.035	3.0	4.0	6.4	Pass
802.11n 20N	ЛHz									
5180	29.0	44.7	18.4	14.4	17.0	0.028	1.6	4.0	6.4	Pass
5200	30.5	46.0	18.9	15.4	17.0	0.035	2.5	4.0	6.4	Pass
5240	30.5	46.2	19.0	15.4	17.0	0.035	2.7	4.0	6.4	Pass
802.11n 40N	ЛHz									
5190	24.5	55.9	36.2	11.0	17.0	0.013	-4.1	4.0	6.4	Pass
5230	30.5	73.1	36.9	14.8	17.0	0.030	-0.5	4.0	6.4	Pass

E E	Ellic	ott Arcompany						EM	C Test	Data
Client:	Intel Corpor	ation						Job Number:	J87129	
Б			LN (005				T-Log Number: T87656			
Product:	Intel® Centr	ino® Advano	ced-IN 6235				Accou	ınt Manager:	Christine Kre	ebill
Contact:	Steve Hacke	eve Hackett								
	FCC 15.247							Class:	N/A	
Single Chain Operation, 5250-5350 MHz Band Antenna Gain (dBi): 3.7 EIRP: 95.5 mW 19.8 dBm										
Frequency	Software	Band	lwidth	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/Ml	Ηz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
802.11a	•						•			
5260	30.5	41.4	18.5	15.6	24.0	0.036	3.2	11.0	11.0	Pass
5300	30.5	41.1	18.2	16.0	24.0	0.039	3.3	11.0	11.0	Pass
5320	31.0	41.7	18.8	16.1	24.0	0.041	3.7	11.0	11.0	Pass
802.11n 20l	MHz									
5260	30.5	46.5	19.0	15.6	24.0	0.036	2.7	11.0	11.0	Pass
5300	30.5	46.0	19.0	15.9	24.0	0.039	3.4	11.0	11.0	Pass
5320	31.0	46.4	19.3	16.1	24.0	0.041	3.6	11.0	11.0	Pass
802.11n 40l										
5270	30.5	73.5	36.6	14.9	24.0	0.031	-0.3	11.0	11.0	Pass

24.0

0.014

-3.5

11.0

11.0

Pass

36.3

11.5

5310

24.5

54.8

		Company						EM	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J87129	
Product:	Intel® Centr	ino® Advanc	ed-N 6235				T-Log Number: T87656 Account Manager: Christine Krebill			ebill
Contact:	Steve Hacke	ett								
	: FCC 15.247, 15.407 Class: N/A									
		a Gain (dBi):	4.8		EIRP:	107.2			dBm	
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power		SD ² dBm/Ml	_	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	- Nesult
802.11a						·	·			,
5500	26.5	36.3	16.9	14.9	24.0	0.031	2.3	11.0	11.0	Pass
5580	29.5	39.4	17.1	15.5	24.0	0.035	2.9	11.0	11.0	Pass
5700	30.0	38.3	17.1	15.6	24.0	0.036	3.0	11.0	11.0	Pass
802.11n 20N										
5500	29.0	30.4	18.2	15.7	24.0	0.037	2.9	11.0	11.0	Pass
5580	29.5	43.6	18.2	15.4	24.0	0.035	2.7	11.0	11.0	Pass
	20 F			1	24.0	0.032	2.2	11.0	11.0	Pass
5700	29.5	35.3	18.1	15.1	24.0	0.032	۷.۷	11.0	11.0	газз
802.11n 40N	ИНz									
5700 802.11n 40 N 5510 5550		40.3 70.4	36.1 36.3	13.3 15.5	24.0	0.032 0.021 0.035	-1.9 0.5	11.0 11.0	11.0 11.0 11.0	Pass Pass

24.0

0.032

-0.1

11.0

Pass

11.0

30.5

5670

69.9

36.3

15.1

Client:	Intel Corporation	Job Number:	J87129
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	III(e) Ceritiii) Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Run #2: Peak Excursion Measurement

802.11a: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.4	13.0	5260	8.4	13.0	5500	8.1	13.0
5200	8.0	13.0	5300	8.6	13.0	5580	8.5	13.0
5240	8.5	13.0	5320	8.5	13.0	5700	8.1	13.0

n 20MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.6	13.0	5260	8.6	13.0	5500	8.0	13.0
5200	8.5	13.0	5300	8.2	13.0	5580	8.6	13.0
5240	8.5	13.0	5320	8.1	13.0	5700	8.1	13.0

n 40MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190	8.5	13.0	5270	8.3	13.0	5510	8.6	13.0
5230	8.5	13.0	5310	8.0	13.0	5550	8.5	13.0
						5670	8.6	13.0

	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J87129
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	III(e) Cerilinio Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

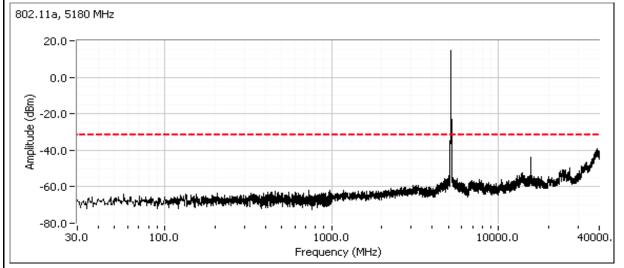
Run #3: Out Of Band Spurious Emissions - Antenna Conducted

802.11a

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp

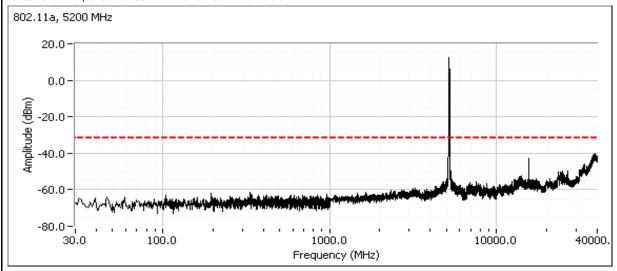
Limit Used On Plots Note 1: -31.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

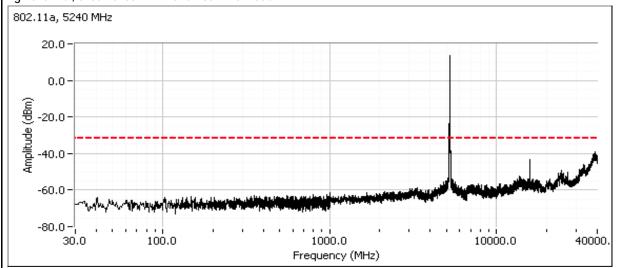

The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

Note 2: All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11a Mode Emissions (RBW=VBW=1MHz)

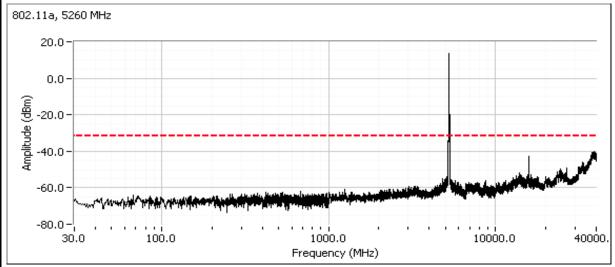
Low channel, 5150 - 5250 MHz Band - 802.11a Mode

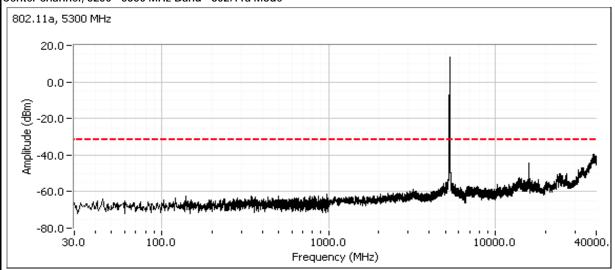

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

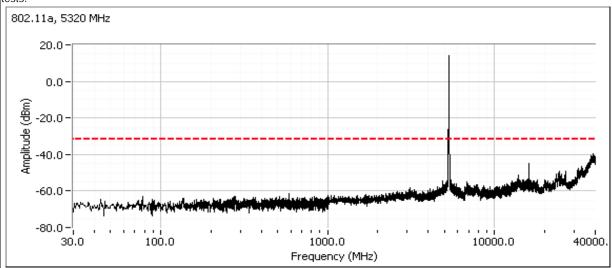
Center channel, 5150 - 5250 MHz Band - 802.11a Mode


High channel, 5150 - 5250 MHz Band - 802.11a Mode

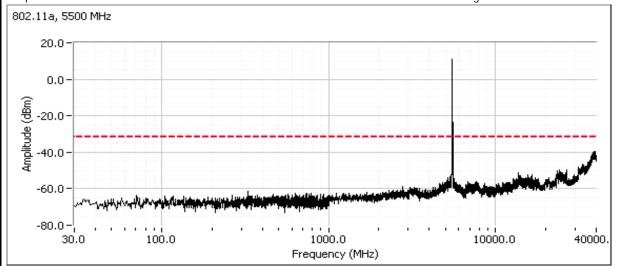


	An 2022 Company		
Client:	Intel Corporation	Job Number:	J87129
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	ilitel® Certifillo® Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11a Mode


Center channel, 5250 - 5350 MHz Band - 802.11a Mode

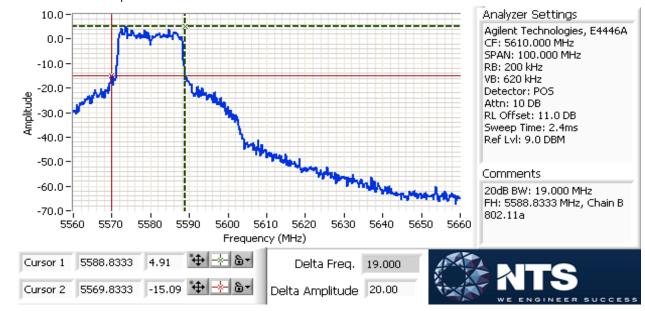
	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	III(e) Cerilinio Advanceu-ii 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

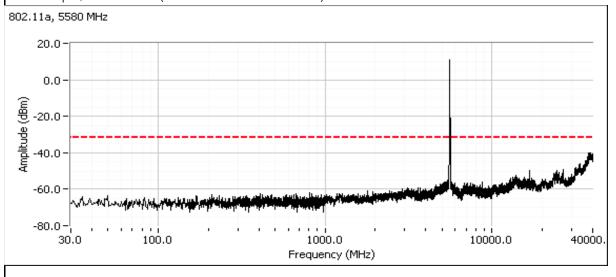

High channel, 5250 - 5350 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

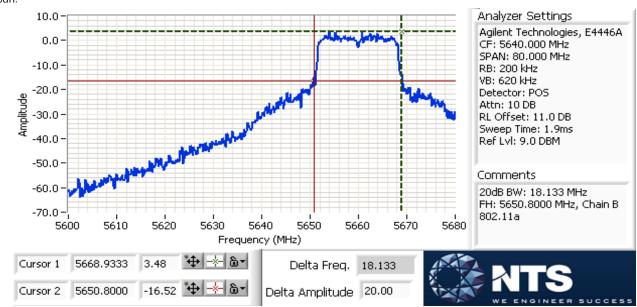


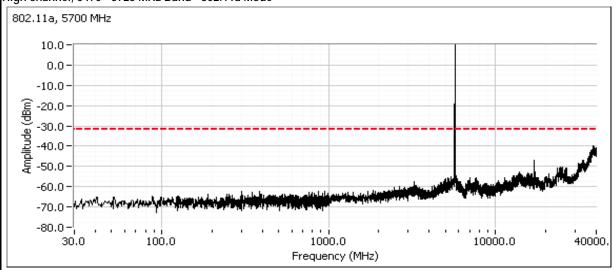

An 2025 Company			
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11a Mode

For **master** devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).




	An ZAZZZ Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11a Mode

An Z(Z=2) company			
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

802.11n Modes - n 20MHz

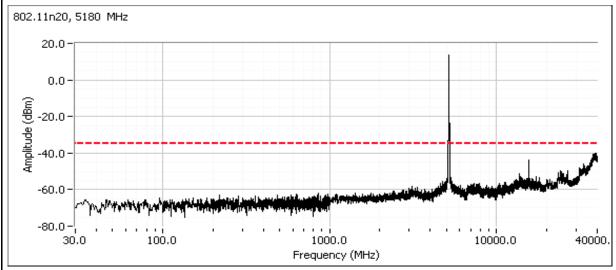
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains: 2

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp

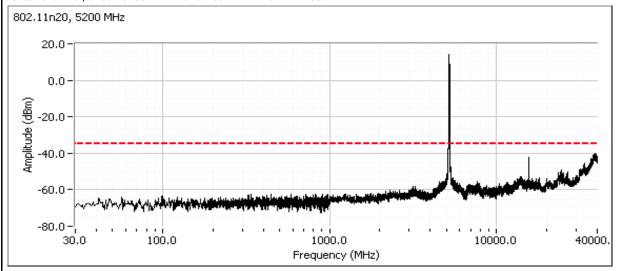
Limit Used On Plots Note 1: -34.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

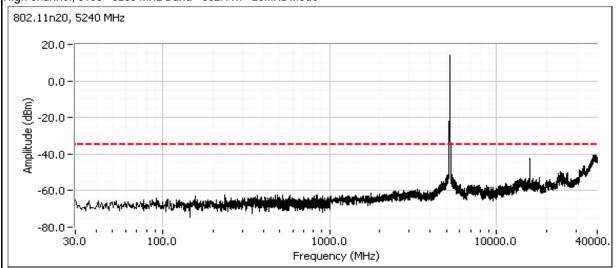

The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

Note 2: All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11n - 20MHz Mode Emissions (RBW=VBW=1MHz)

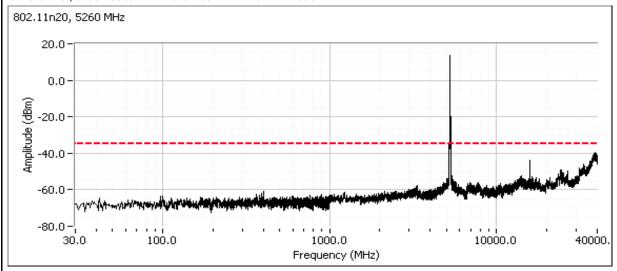
Low channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

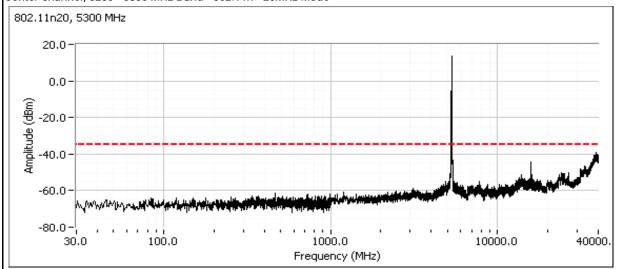

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



	An ZAZZZ Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

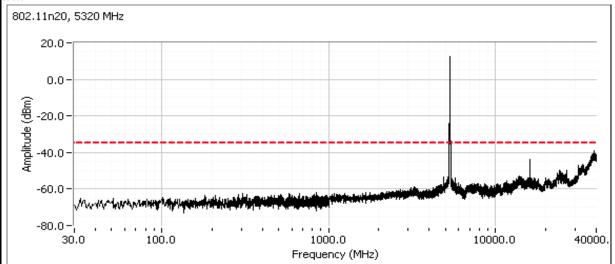
Center channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode


High channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

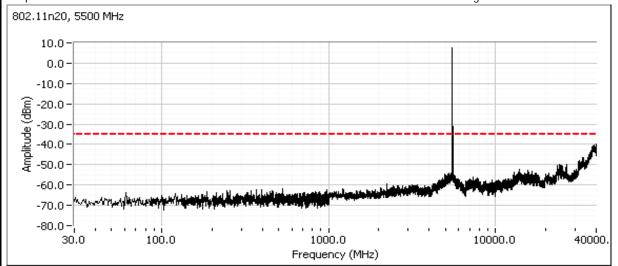


	All DLES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode


Center channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

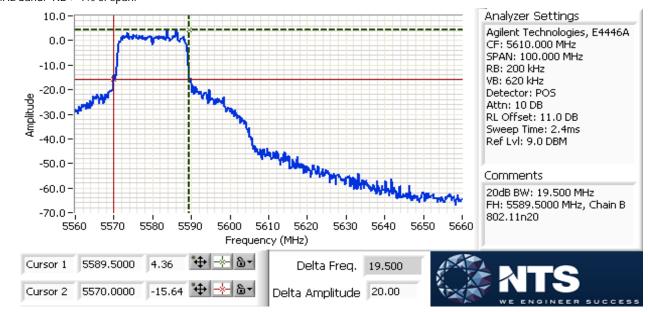
	An ACCES company			
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

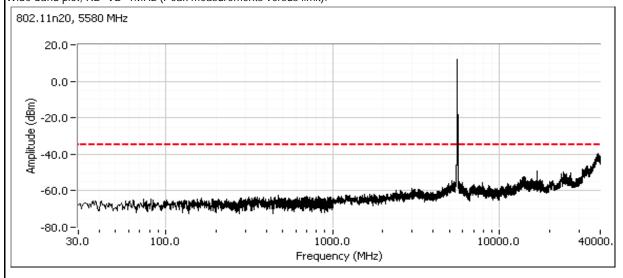

High channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

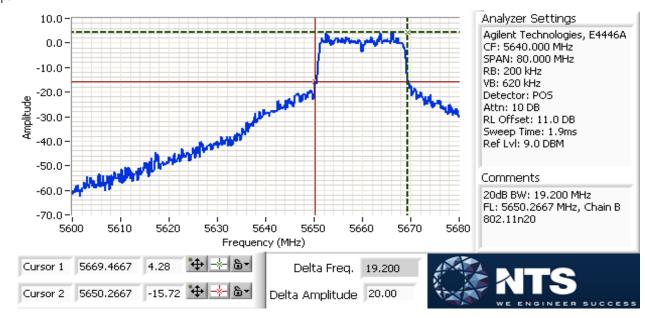


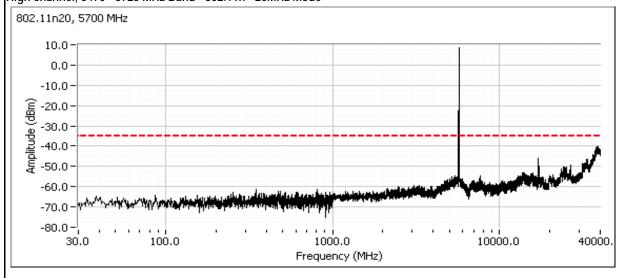


	All Dazz Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode (use 5580 MHz)

For **master** devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.




	All Dazz Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

	An ZAZES company			
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

802.11n Modes - n40MHz

MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains:

Maximum Antenna Gain:

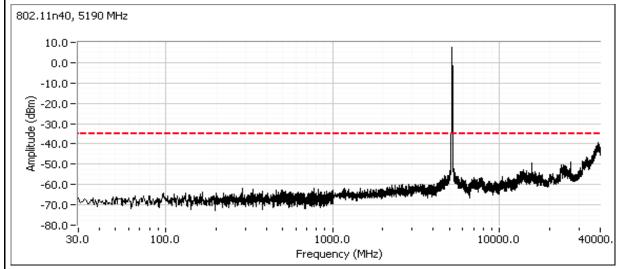
Spurious Limit:

Limit Used On Plots Note 1:

4.8 dBi (worst case for all 3 bands)

-27.0 dBm/MHz eirp

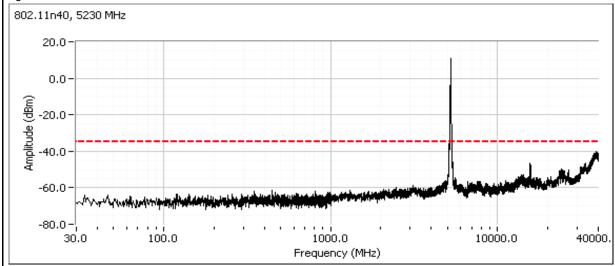
-34.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

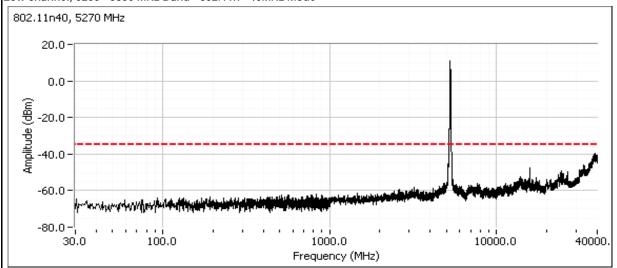

The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

Note 2: All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11n - 40MHz Mode Emissions (RBW=VBW=1MHz)

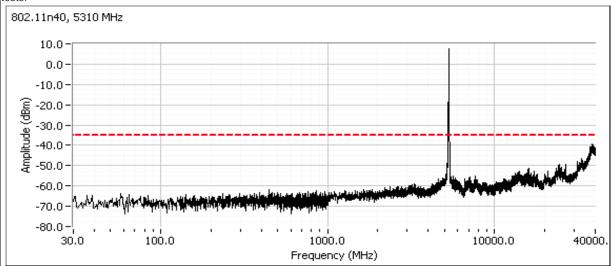
Low channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode


Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

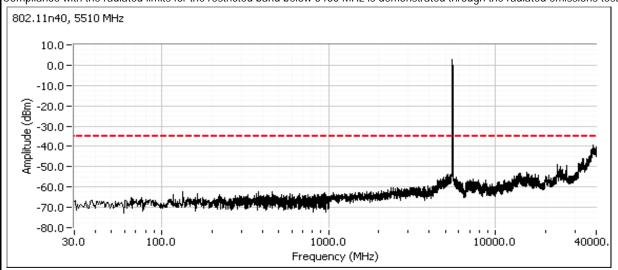


	An ZAZZZ Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

High channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

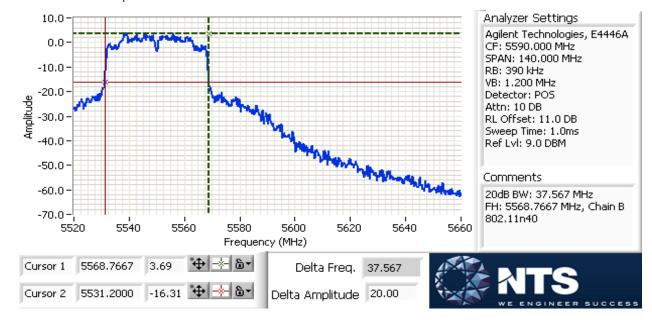

Low channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

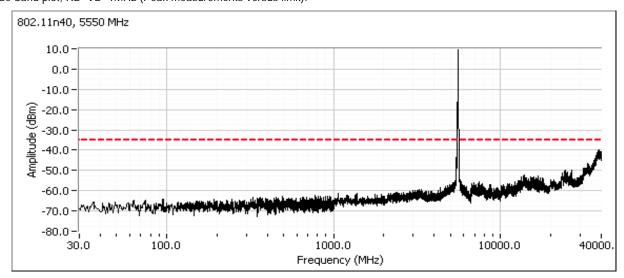
	An ACCES company			
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	


High channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

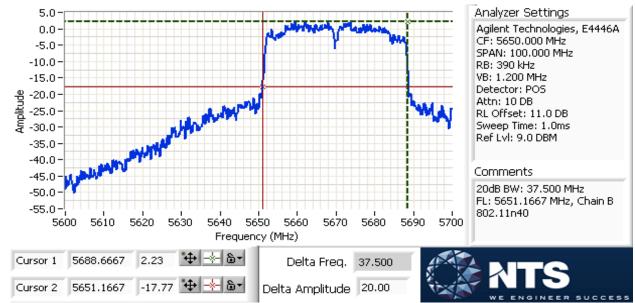
Low channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

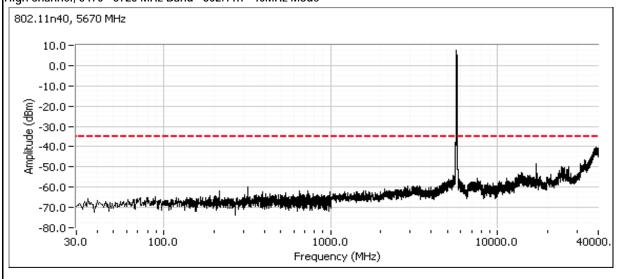

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.



	All DEES Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5470-5725MHz Band - 802.11n 40MHz Mode (20MHz channel use 5580MHz, 40MHz channel use 5550MHz)
For master devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.




	An ACCES company			
Client:	Intel Corporation	Job Number:	J87129	
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	

Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band. RB > 1% of span.

High channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J87129
Droducti	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product.	III(e) Ceriliii) Advanceu-iv 0255	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/10/2012, 5/11/12, 5/12/12 Config. Used: 1
Test Engineer: J. Cadigal / R. Varelas/ J. Liu Config Change: none
Test Location: FT Lab #2, FT 3, FT 4 EUT Voltage: 120V/60Hz

Summary of Results

MAC Address: 44850006303D DRTU Tool Version 1.5.4.0399 Driver version 15.1.0.99

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 25.1 mW 802.11n n40MHz: 19.3 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 1.3 dBm/MHz 802.11n n40MHz: -2.2 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 22.2 mW 802.11n n40MHz: 21.7 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 0.9 dBm/MHz 802.11n n40MHz: -1.5 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 41.6 mW 802.11n n40MHz: 42.3 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 3.8 dBm/MHz 802.11n n40MHz: 1.2 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11n 20MHz: 18.3 MHz 802.11n n40MHz: 36.5 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	11.5 dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit
	1			·

Elliott An ATE Company	EMO	C Test Data
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product. Inter® Centrino® Advanced-N 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature: 22.3 °C Rel. Humidity: 35 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥
Note 1:	2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz
	(method SA-1 of KDB 789033).
Note 2:	Measured using the same analyzer settings used for output power.
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Noto 3:	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average
NOIC 3.	PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that
	the measured value exceeds the average by more than 3dB.
Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB
	For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains
	(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating
Noto 5:	mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine
NOIG J.	the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each
	chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and
	the EIRP is the product of the effective gain and total power.

		Company							C Test	
Client:	Intel Corpor	ation						Job Number:		
Product.	Intel® Centr	ino® Advanc	ed-N 6235					Log Number:		
i roddot.	inter ocni	ino navane	Cd 11 0255				Acco	unt Manager:	Christine Kre	bill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, 15.407						Class:	N/A	
MIMO Devi	ce - 5150-52	50 MHz Band		Chain 1	Chain 2	Caharant	 5	TIDD (m)M)	CIDD (dDm)	
	A	- C-! (-ID!)	Chain 1	Chain 2	Chain 3	Coherent		` /	EIRP (dBm)	
D	Antenna	a Gain (dBi):	3.6	3.6		Yes	6.6	115.2	20.6	
Power	Software	26dB BW		10	1 15	1 7	otal		May Dawar	Dass or
Frequency (MHz)	Setting	(MHz)	Measure Chain 1	d Output Pov Chain 2	wer' dBm Chain 3	mW I	otai dBm	Limit (dBm)	Max Power (W)	Pass of Fail
(IVITZ) 20MHz Mod		(IVITIZ)	Chain	CHAIH Z	CHain 3	IIIVV	UDIII		(VV)	Fall
5180	33,31	39.3	10.7	10.9		24.0	13.8	16.4		PASS
5200	31.5,30	33.1	10.0	10.5		21.3	13.3	16.4	0.025	PASS
5240	31.5,30	31.3	11.2	10.8		25.1	14.0	16.4		PASS
40MHz Mod	de			I.					l	
5190	29,28.5	44.7	7.6	9.3		14.2	11.5	16.4	0.019	PASS
5230	35,34	72.0	9.8	9.9		19.3	12.9	16.4	0.019	PASS
PSD										
Frequency	99% ⁴	Total	Р	SD ² dBm/MF	łz	Tot	al PSD	Lir	nit	Pass or
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Fail
20MHz Mod	de									
5180	17.0	13.8	-1.9	-1.8		1.3	1.2	3.4	3.4	PASS
5200	17.0	13.3	-2.6	-2.1		1.2	0.7	3.4	3.4	PASS
5240	17.0	14.0	-1.5	-2.0		1.3	1.3	3.4	3.4	PASS
40MHz Mod				ī				ī		
5190	34.0	11.5 12.9	-7.3 -5.2	-5.7 -5.2		0.5 0.6	-3.4 -2.2	3.4	3.4	PASS PASS
5230	36.5									

E	Ellic	ott A company						EMO	C Test	Data
Client:	Intel Corpora							Job Number:	J87129	
Decelerat	Latal® O anto		I.N. / 00E				T-	Log Number:	T87656	
Product:	Intel® Centr	ino® Advanc	ed-N 6235				Accol	unt Manager:	Christine Kre	ebill
Contact:	Steve Hacke	ett						-		
Standard:	FCC 15.247	, 15.407						Class:	N/A	
MIMO Device - 5250-5350 MHz Band										
			Chain 1	Chain 2	Chain 3	Coherent		` '	EIRP (dBm)	
	Antenna	a Gain (dBi):	3.7	3.7		Yes	6.7	104.1	20.2	
Power	l a s				1					
Frequency	Software	26dB BW	Measure	d Output Pov			Total	Limit (dBm)	Max Power	Pass or
(MHz) 20MHz Mod	Setting To	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm		(W)	Fail
5260	33.5,32.5	35.1	10.5	10.0		21.2	13.3	23.3		PASS
5300	34,33	34.7	10.3	9.9		20.5	13.1	23.3	0.022	PASS
5320	34,33.5	36.5	10.3	10.6		22.2	13.5	23.3	•	PASS
40MHz Mod	de									
5270	35,34	73.6	10.0	10.5		21.2	13.3	23.3	0.021	PASS
5310	29,28	40.3	6.5	6.3		8.7	9.4	23.3	0.021	PASS
PSD	ı					ı		T		
Frequency	99% ⁴	Total	Р	SD ² dBm/MH	łz	Total PSD		Limit		Pass or
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Fail
20MHz Mod	de									
5260	18.3	13.3	-2.4	-2.8		1.1	0.4	10.3	11.0	PASS
5300	18.3	13.1	-2.4	-3.0		1.1	0.3	10.3	11.0	PASS
5320	18.3	13.5	-2.3	-1.9		1.2	0.9	10.3	11.0	PASS
40MHz Mod		10.0	4.0	4.0		0.7	4.5	10.0	14.0	DAGG
5270	36.5	13.3	-4.8	-4.3		0.7	-1.5	10.3	11.0	PASS
5310	36.2	9.4	-8.5	-8.9		0.3	-5.7	10.3	11.0	PASS

	Ellic	DTT A company						EM0	C Test	Data
Client:	Intel Corpora	ation					Job Number:	J87129		
Dandund	Intal® Canto	!	- 4 N (22F				T-	Log Number:	T87656	
Product:	Intel® Centr	ino® Advanc	ea-N 6235				Acco	unt Manager:	Christine Kre	ebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	, 15.407						Class:	N/A	
MIMO Devid	ce - 5470-572	25 MHz Band	d							
			Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	4.8	4.8		Yes	7.8	251.5	24.0	
Power						1		1		
Frequency (MHz)	Software Setting	26dB BW (MHz)	Measure Chain 1	d Output Pov Chain 2	wer ¹ dBm Chain 3	mW	Fotal dBm	Limit (dBm)	Max Power (W)	Pass or Fail
20MHz Mod		,							· · ·	
5500	31.5,31.0	22.5	13.3	12.1		37.6	15.8	22.2		PASS
5580	34,33.5	31.3	13.2	13.2		41.6	16.2	22.2	0.042	PASS
5700	34,.33	22.0	12.9	12.7		38.1	15.8	22.2		PASS
40MHz Mod										
5510	30.0,29.5	39.4	11.4	10.7		25.6	14.1	22.2	0.000	PASS
5550	34.5,34	61.7	13.0	12.9		39.5	16.0	22.2	0.039	PASS
5670 PSD	35.5,34.5	66.5	13.3	13.2		42.3	16.3	22.2		PASS
Frequency	4			SD ² dBm/MF	J-7	Tot	al PSD	l lir	mit	
(MHz)	99% ⁴ BW	Total Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass or Fail
20MHz Mod	de							<u>L</u>		
5500	18.0	15.8	0.9	-0.3		2.2	3.3	9.2	11.0	PASS
5580	18.0	16.2	1.0	0.6		2.4	3.8	9.2	11.0	PASS
5700	18.1	15.8	0.0	0.1		2.0	3.1	9.2	11.0	PASS
40MHz Mod	de			•				•	· · · · · · · · · · · · · · · · · · ·	
5510	36.2	14.1	-3.6	-3.8		0.9	-0.7	9.2	11.0	PASS
5550	36.3	16.0	-1.7	-1.9		1.3	1.2	9.2	11.0	PASS
5670	36.2	16.3	-1.9	-1.8		1.3	1.2	9.2	11.0	PASS

All 2022 Company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Floudet. Inter® Centino® Advanced-in 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

Run #2: Peak Excursion Measurement

20MHz: Device meets the requirement for the peak excursion

Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	9.93/9.62	13.0	5260	10.4/10.1	13.0	5500	9.34/8.83	13.0
5200	10.08/10.10	13.0	5300	10.4/11.5	13.0	5580	8.96/9.17	13.0
5240	9.40/9.63	13.0	5320	10.5/9.9	13.0	5700	9.23/8.73	13.0

40MHz: Device meets the requirement for the peak excursion

	Freq	Peak Excursion(dB)		Freq	Freq Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
	(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
	5190	9.7	13.0	5270	9.9/10.0	13.0	5510	8.51/8.8	13.0
ſ	5230	10.6/10.5	13.0	5310	10.5/10.7	13.0	5550	8.2/8.33	13.0
ſ							5670	7.52/8.61	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

n20 Mode

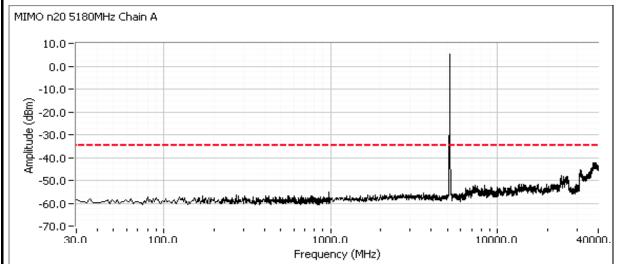
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

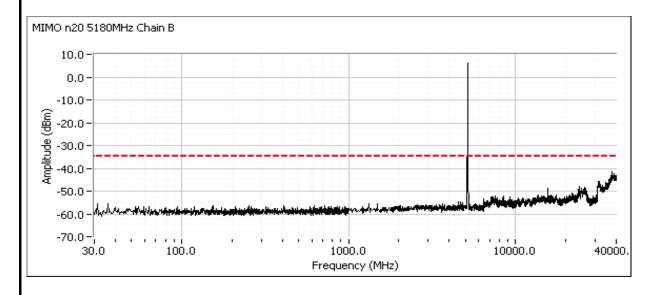
> Number of transmit chains: Maximum Antenna Gain: 4.8 dBi

Spurious Limit: -27.0 dBm/MHz eirp
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.

Limit Used On Plots Note 1: -34.8 dBm/MHz Peak Limit (RB=1MHz VB=3MHz)

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

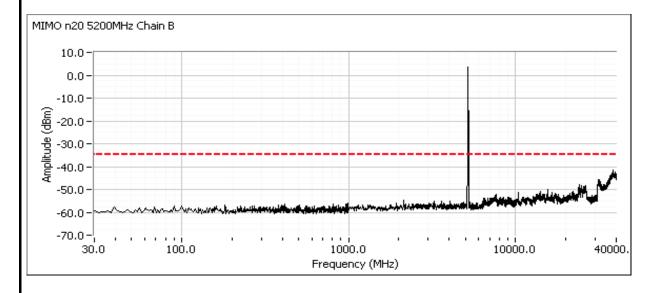



	An ZAZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product:		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

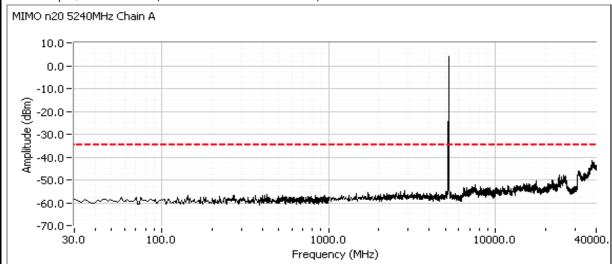
Low channel, 5150 - 5250 MHz Band

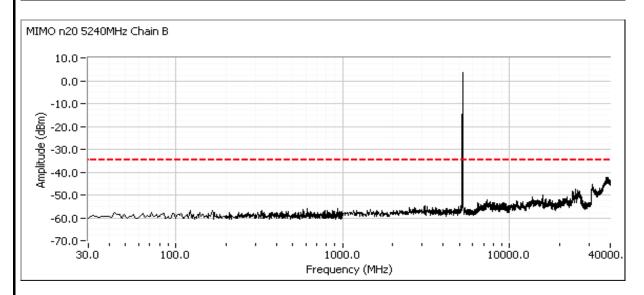
Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



An 2012 company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Floudet. Intel® Centino® Advanced-in 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

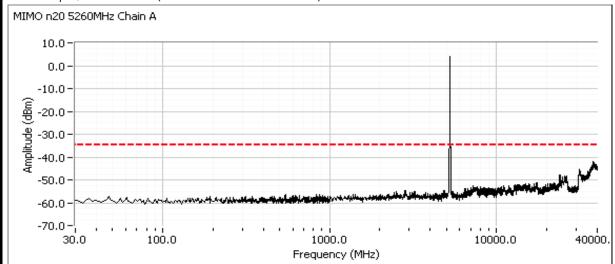
Center channel, 5150 - 5250 MHz Band

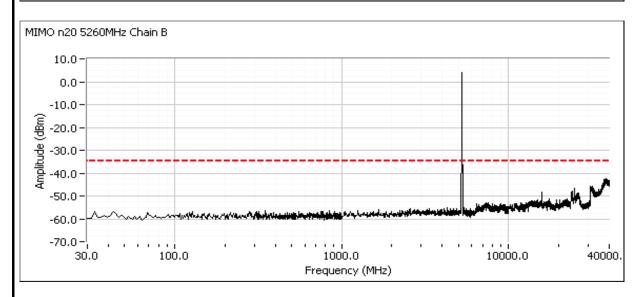




An 2022 Company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product. Inter® Centino® Advanced-N 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

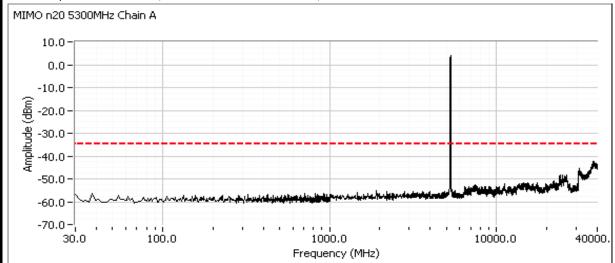
High channel, 5150 - 5250 MHz Band

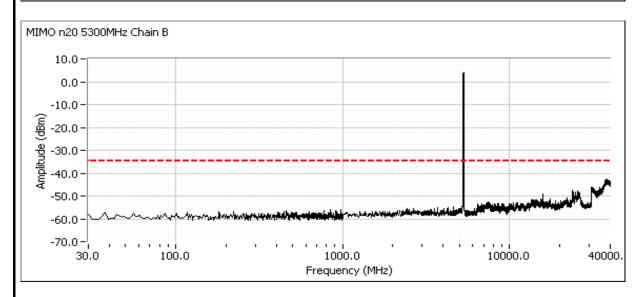




	An ZAZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product:		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

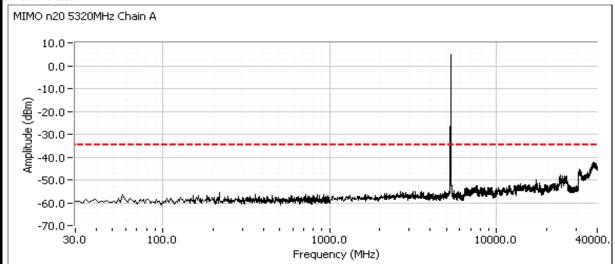
Low channel, 5250 - 5350 MHz Band

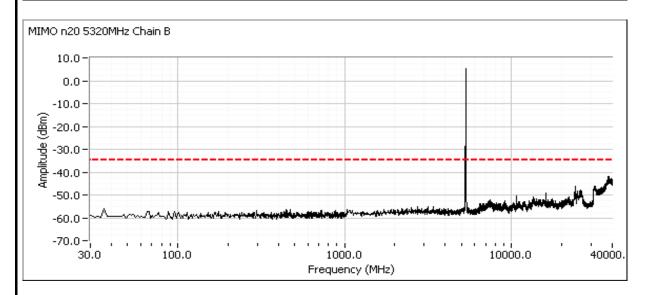




	An ZAZES company		
Client:	Intel Corporation	Job Number:	J87129
Droduct	: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product:		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Center channel, 5250 - 5350 MHz Band

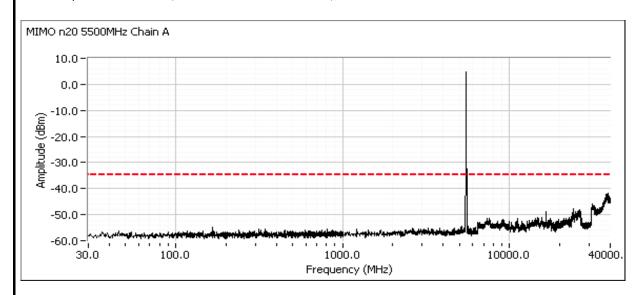


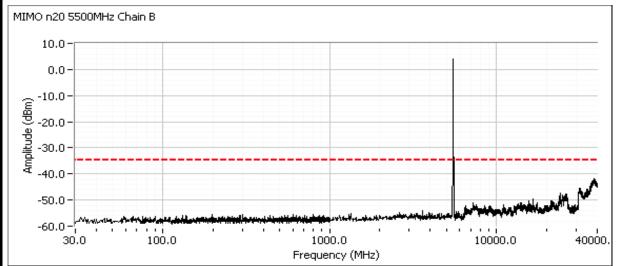


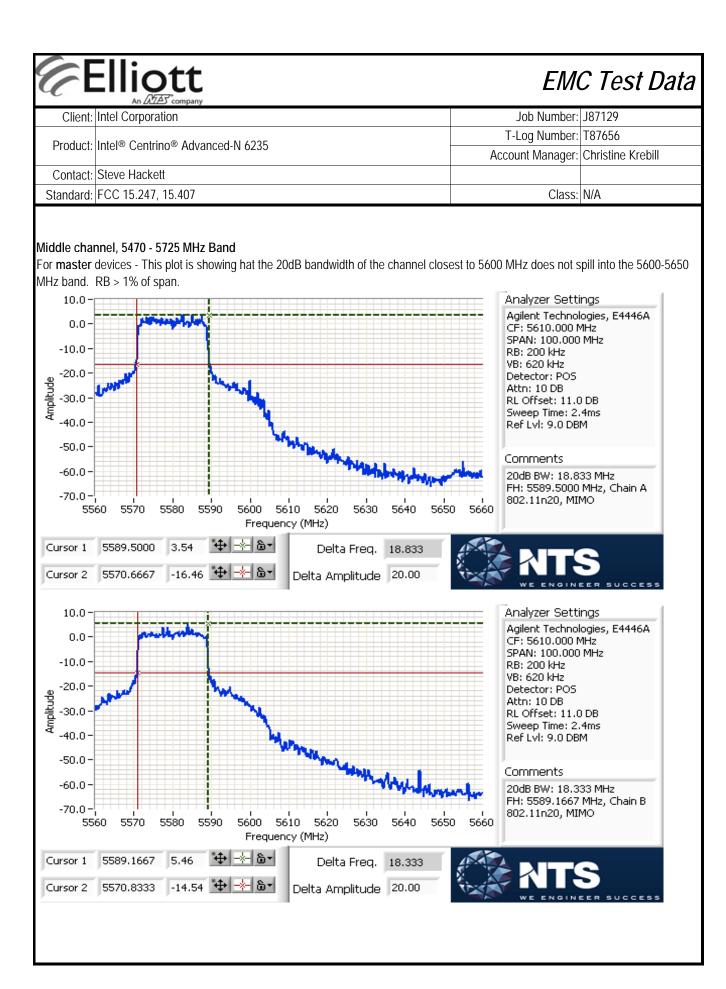
An 2022 Company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product. Inter® Centino® Advanced-N 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

High channel, 5250 - 5350 MHz Band

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

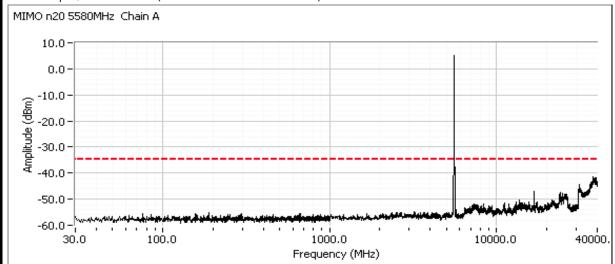


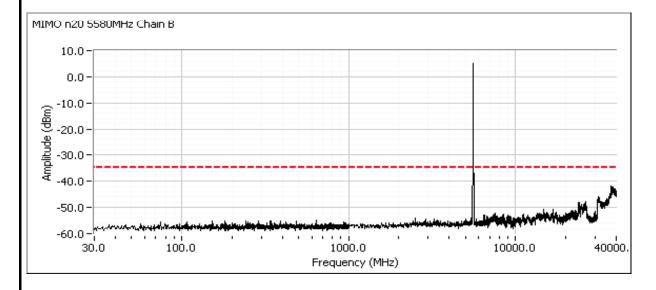


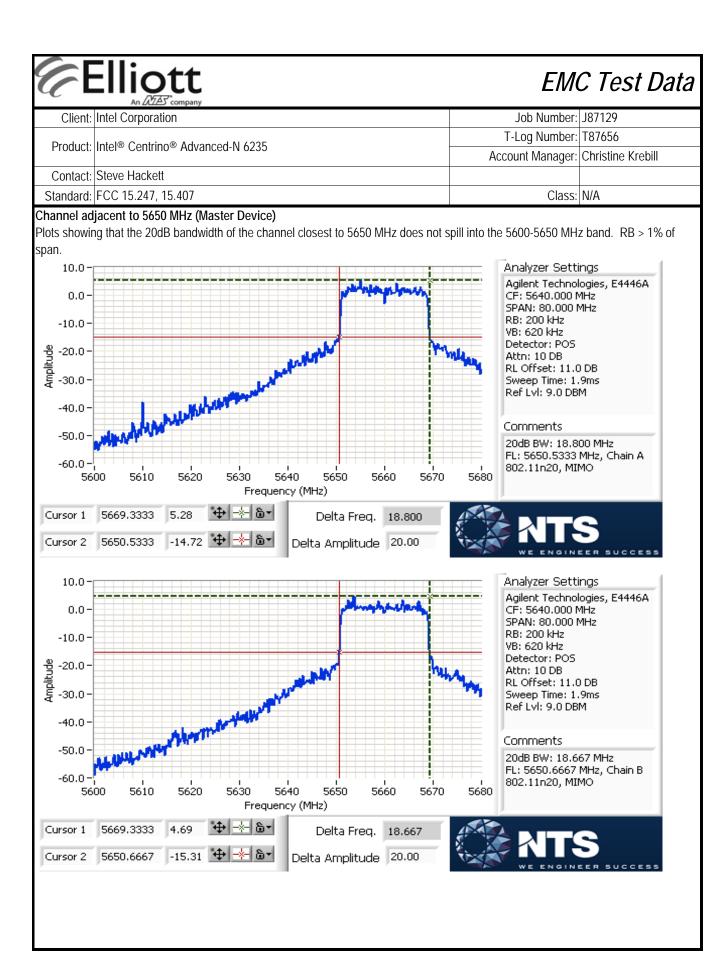


An ACE company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product. Inter® Centino® Advanced-N 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

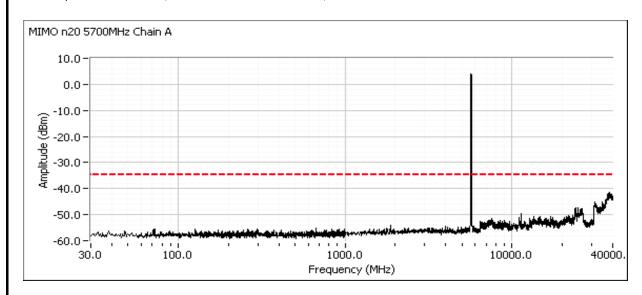
Low channel, 5470 - 5725 MHz Band

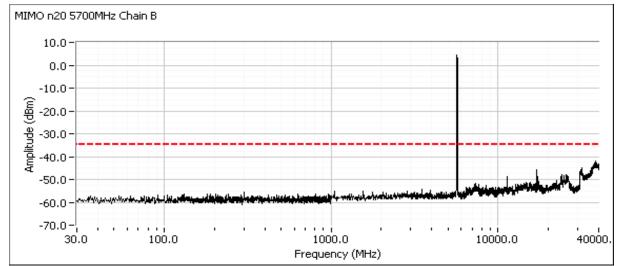






	An DCZ Company		
Client:	Intel Corporation	Job Number:	J87129
Product:	: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A





An 2022 Company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product. Inter® Centino® Advanced-N 0255	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

High channel, 5470 - 5725 MHz Band

Elliott EMC Test L		C Test Data		
	Intel Corporation	Job Number:	J87129	
Droducti	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656	
Product.		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247, 15.407	Class:	N/A	
n40 Mode MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for				

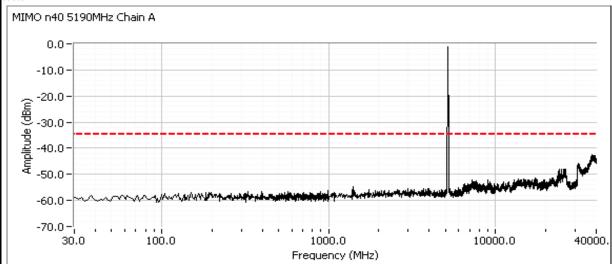
each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

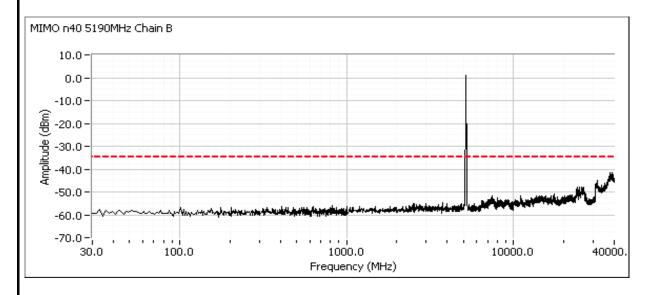
2 Number of transmit chains:

Maximum Antenna Gain:
Spurious Limit:
-27.0 dBm/MHz eirp
-3.0 dB adjustment for multiple chains.

Limit Used On Plots Note 1:
-34.8 dBi
-27.0 dBm/MHz eirp
-3.0 dB adjustment for multiple chains.

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into
	consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals
NOIC 1.	more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is
	not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

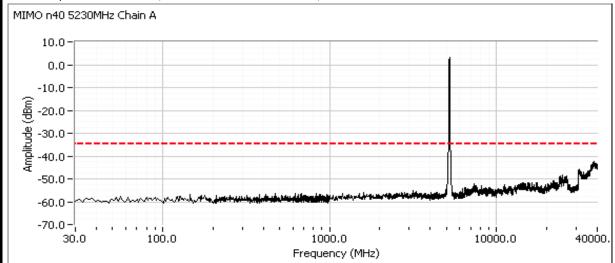

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

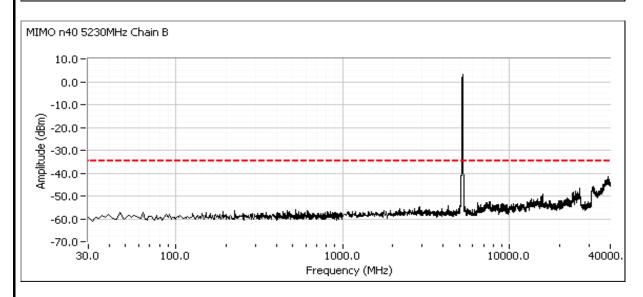


	An 2/2/25 company		
Client:	Intel Corporation	Job Number:	J87129
Droducti	: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product:		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

Low channel, 5150 - 5250 MHz Band

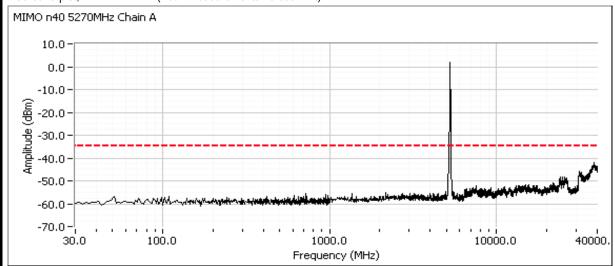
Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

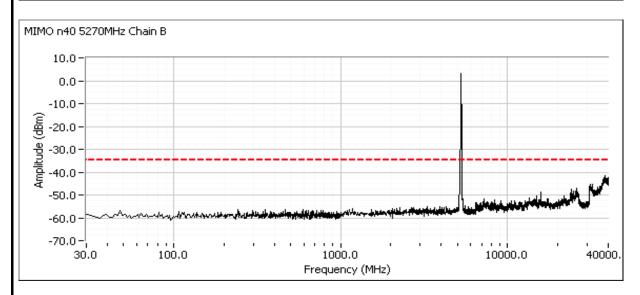




An DCZEO company			
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

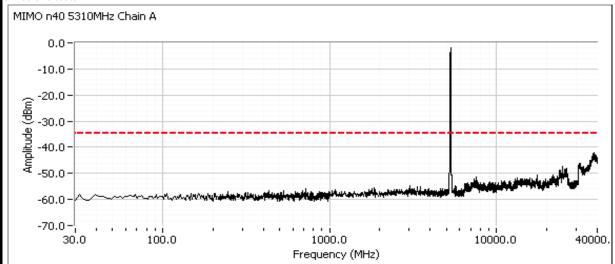
High channel, 5150 - 5250 MHz Band

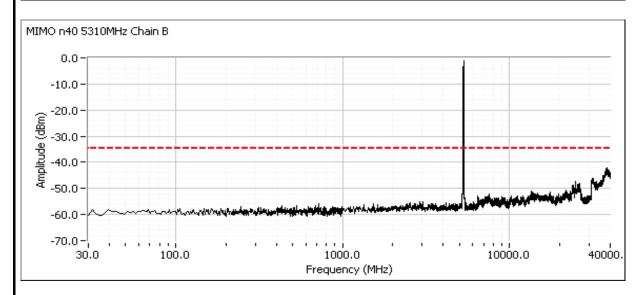




An ZCZES company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
Product: Intel® Centino® Advanced-N 6235	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

Low channel, 5250 - 5350 MHz Band

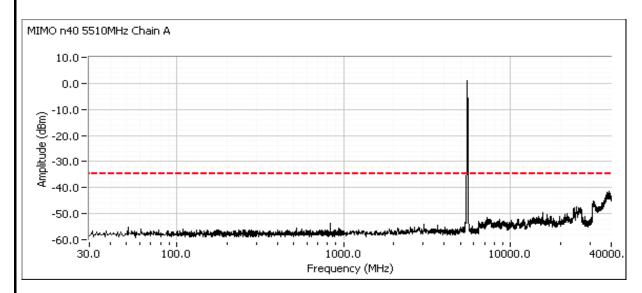


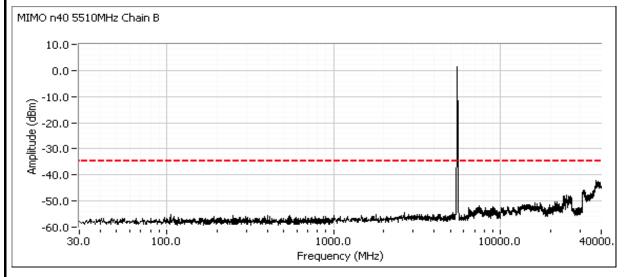


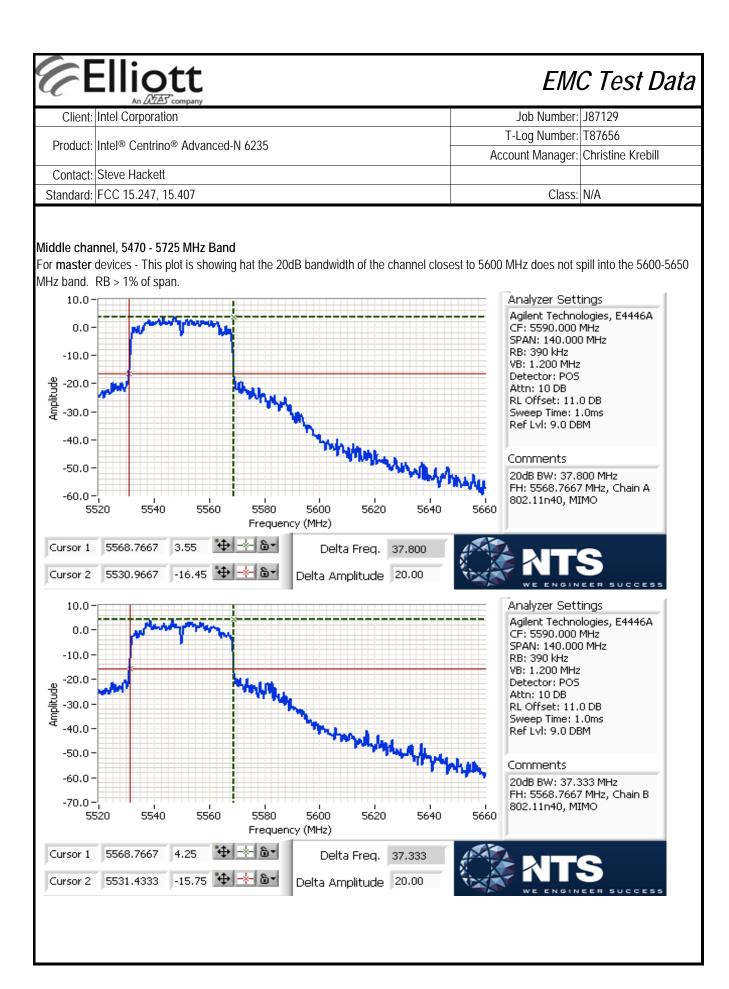
An (ATA) company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

High channel, 5250 - 5350 MHz Band

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

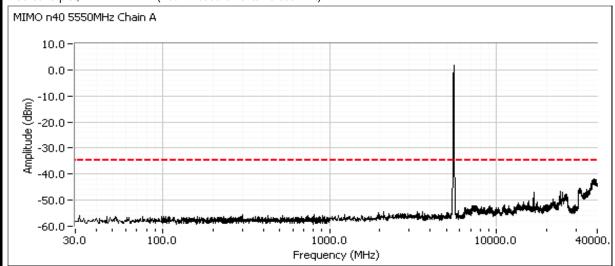


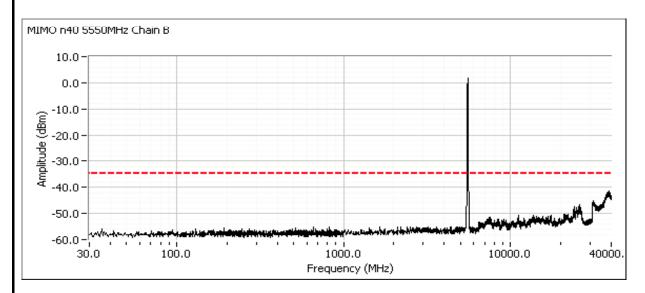


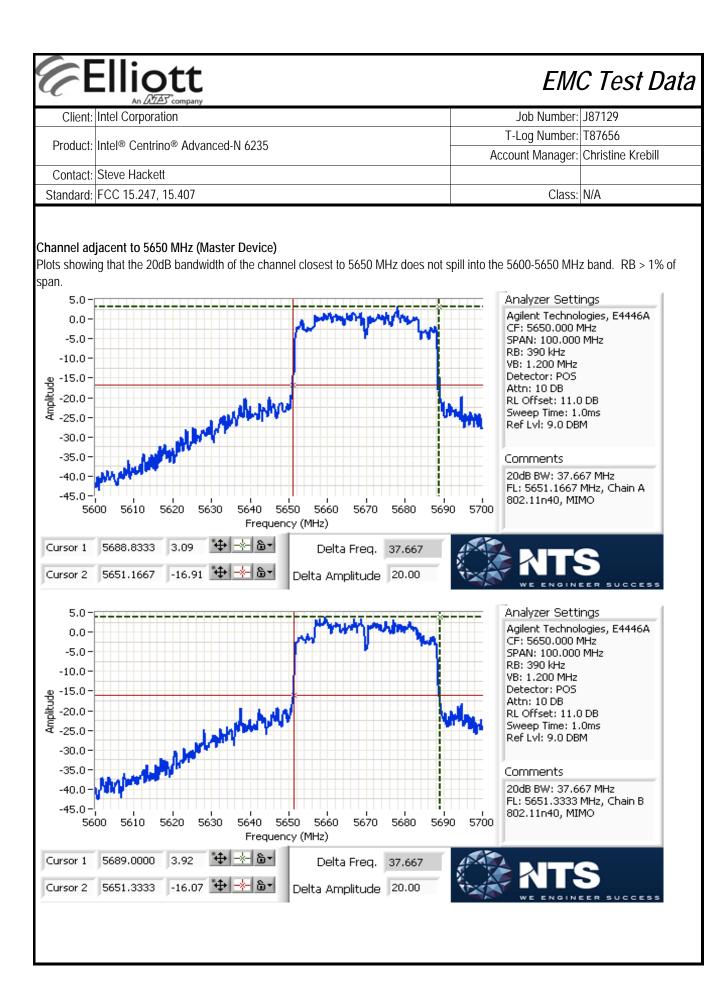


An (ATA) company		
Client: Intel Corporation	Job Number:	J87129
Product: Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
	Account Manager:	Christine Krebill
Contact: Steve Hackett		
Standard: FCC 15.247, 15.407	Class:	N/A

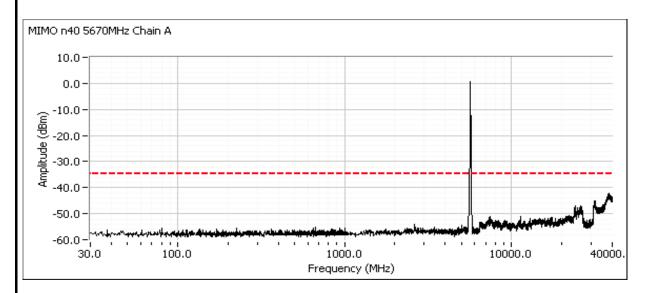
Low channel, 5470 - 5725 MHz Band

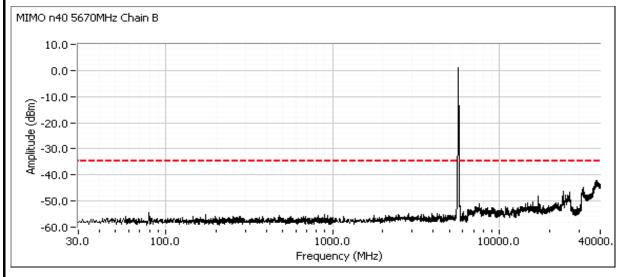






	An ZAZES company		
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A





An ACAP company			
Client:	Intel Corporation	Job Number:	J87129
Product:	Intel® Centrino® Advanced-N 6235	T-Log Number:	T87656
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247, 15.407	Class:	N/A

High channel, 5470 - 5725 MHz Band

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R87750 Page 220