

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003 SAR EVALUATION REPORT (WIMAX PORTION)

FOR

Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)

MODEL: 622ANXHMW

FCC ID: PD9622ANXHU

REPORT NUMBER: 10U13597-2B

ISSUE DATE: March 23, 2011

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History							
Rev.	Issue Date	Revisions	Revised By				
	March 2, 2011	Initial Issue					
A	March 16, 2011	Correct host model number and add Bluetooth collocation justification statement on page 9	S.Shih				
В	March 23, 2011	Additional test for Secondary Portrait configuration.	S. Shih				

Page 2 of 41

TABLE OF CONTENTS

1.	A٦	ITESTATION OF TEST RESULTS	5
2.	TE		6
3.	FA	ACILITIES AND ACCREDITATION	6
4.	C	ALIBRATION AND UNCERTAINTY	7
4	4.1.	MEASURING INSTRUMENT CALIBRATION	7
4	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EC	QUIPMENT UNDER TEST	9
6.	S١	STEM DESCRIPTION1	D
7.	СС	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	1
8.	SI	MULATING LIQUID DIELECTRIC PARAMETERS12	2
8	8.1.	SIMULATING LIQUID CHECK RESULTS1	3
9.	S١	STEM VERIFICATION	6
ç	9.1.	SYSTEM PERFORMANCE CHECK RESULTS1	6
10.		RF OUTPUT POWER VERIFICATION	7
11.		PEAK TO AVERAGE RATIO1	7
12.		WIMAX / 802.16e DEVICE SPECIFICATION18	8
1	2.1	. WiMAX Zone Types	8
1	2.2	DUTY FACTOR CONSIDERATIONS1	9
13.		TEST SOFTWARE	D
14.		SIGNAL GENERATEOR DETAILS	1
15.		VECTOR SIGNAL GENERATOR TEST SET DETAILS	3
16.		SUMMARY OF SAR TEST RESULTS24	4
1	6.1	. Bottom Face	5
1	6.2	. Edge - Secondary Landscape	6
1	6.3	. Edge - Secondary Portrait2	7
17.		WORST-CASE SAR PLOTS	8

Page 3 of 41

18.	PAR AND SAR ERROR CONSIDERATION	. 30
19.	ATTACHMENTS	. 37
20.	ANTENNA LOCATIONS AND SEPARATION DISTANCES	. 38
21.	TEST SETUP PHOTOS	.40

Page 4 of 41

Pass

1. ATTESTATION OF TEST RESULTS

Company name:	INTEL CORPORATION	INTEL CORPORATION						
	2111 N.E. 25TH AVENUE							
	HILLSBORO, OR 97124	, USA						
EUT Description:	Intel® Centrino® Advan	ced-N + WiMAX 6250						
	(Tested inside of Lenov	o TP00019A)						
Model number:	622ANXHMW							
Device Category:	Portable	Portable						
Exposure category:	General Population/Unco	ontrolled Exposure						
Date of tested:	February 9-11, 2011							
	March 22, 2011 (Addition	nal testing for Secondary portrait)						
FCC rule part	Freq. range (MHz)	Highest 1-g SAR (W/kg)	Limit (W/kg)					
27	2498.5 – 2687.5 0.554 W/kg (5 MHz_QPSK)							
	Annianala Otavala	und n	Test Desults					
Applicable Standards Test Results								

FCC OET Bulletin 65 Supplement C 01-01 and the following test procedures:

- KDB 615223 802.16e WiMax SAR Guidance
 KDB 616217 Laptop with Screen Ant
- 447498 D01 Mobile Portable RF Exposure v04

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Suray Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS)

Tested By:

Devin Chang EMC Engineer Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01 and the following specific FCC test procedures:

- KDB 615223 D01 802.16e WiMax SAR Guidance v01
- KDB 616217 D01 Laptop with Screen Ant v01r01
- KDB 616217 D02 SAR Polcy with Screen Ant v01r01
- KDB 616217 D03 SAR Supp Note and Netbook Laptop v01
- 447498 D01 Mobile Portable RF Exposure v04

2a. Control Signal Description

During normal operation of the Intel 6250 as a mobile WiMAX system the control channels may occupy up to 5 slots. A slot is a sub-channel with the duration of 3 symbols A maximum of two simultaneous Fast Channel Feedback (CQICH) reports used to feedback channel state information are possible, which can occupy up to two slots. A maximum of three slots can be used for Hybrid Automatic Repeat Request (HARQ) ACK/NAK by the five possible DL HARQ bursts in the previous DL frame. The 5 ACK/NAK bits each occupy ¹/₂ slot.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com

Page 6 of 41

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufactures	Turne (N Acaded	Quriel No	Cal. Due date			
Name of Equipment	Manufacturer	i ype/iviodei	Serial No.	MM	DD	Year	
E-Field Probe	SPEAG	EX3DV4	3686	1	24	2012	
Data Acquisition Electronics	SPEAG	DAE4	1239	11	11	2011	
System Validation Dipole	SPEAG	D2600V2	1006	4	22	2009	
Simulating Liquid	SPEAG	MSL2600	N/A	Within 24 hrs of first te		rs of first test	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8 2 2		2011	
ESG Vector Signal Generator	Agilent	E4438C	US44271971	9	28	2011	
Dielectric Probe Kits	Agilent	85070E	2569	N/A		N/A	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	

* **Note:** Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5 Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1)	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement (Body 2600 MHz)	2.46	Normal	1	0.64	1.57
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement uncertainty (Body 26000 MHz)	-1.48	Normal	1	0.6	-0.89
		Combined Standard	d Uncerta	inty Uc(y) =	9.61
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	19.22	%
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	1.53	dB

Page 8 of 41

5. EQUIPMENT UNDER TEST

Intel® Centrino® Advanced-N + WiMAX 6250.

Model number: 622ANXHMW (Tested inside of Lenovo TP00019A)

Intel® Centrino® Advanced-N + WiMAX 6250 is an embedded IEEE 802.16e and 802.11a/b/g/n wireless network adapter that operates in the 2.4 GHz and 5 GHz spectra for WiFi and 2.6 GHz for WiMAX. The adapter is installed inside the Lenovo TP00019A. This adapter is capable of delivering up to 300 Mbps Tx/Rx over WiFi and up to 4 Mbps UL/10 Mbps DL over WiMAX.

WiMAX and 802.11 a/b/g/n co-location conditions:

The 802.16e WiMAX and 802.11 a/b/g/n WiFi radio will not transmit simultaneously. When the 622ANXHMW is installed in the typical laptop computer, once the network is chosen by the end user during WiMAX/WiFi network, only the WiMAX radio or WiFi radio will transmit.

Normal operation:	 Laptop mode (with display open at 90° to the keyboard) bottom face, and edges: Multiple display orientations supporting both portrait and landscape configurations 					
Antenna tested:	Manufactured Part number Vageo Corp Main (A) Antonna: 25 00415 011					
	rageo corp. Main (A) Antenna. 23.90ATE.0TT					
Antenna-to-antenna/user separation distances:	See Section 20 for details of antenna locations and separation distances					
Assessment for SAR	WIMAX – WLAN					
transmission:	The 802.16e WiMAX and 802.11a/b/g/n WiFi radio will not transmit simultaneously.					
	WiMAX – Bluetooth					
	Simultaneous Bluetooth SAR evaluation is not necessary due to the BT power < 60/f and WiMAX antenna-to-Bluetooth antenna distance = 109.5mm."					

Page 9 of 41

6. SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 10 of 41

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)											
(% by weight)	450		835		915		1900		2450		2600	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.05	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	27.2	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	2.16	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 $M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 11 of 41

8. SIMULATING LIQUID DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body				
raiget requeitcy (winz)	ε _r	σ (S/m)			
2450	52.7	1.95			
2500	52.6	2.02			
2600	52.5	2.16			
2690	52.4	2.29			

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. SIMULATING LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Measured by: Devin Chang

Simulating Liquid				Paramotoro	Maggurod	Target	Doviation $(\%)$	$\lim_{n \to \infty} (0/n)$
f (MHz)	Depth (cm)			Falameters	iviea sui eu	Target	Deviation (%)	LIIIII (70)
2500	15	e'	52.2281	Relative Permittivity (ε_r):	52.2281	52.6	-0.71	± 5
2300	15	e"	14.6546	Conductivity (o):	2.03814	2.02	0.90	± 5
2500	15	e'	51.9260	Relative Permittivity (ε_r):	51.9260	52.5	-1.09	± 5
2090	15	e"	15.0031	Conductivity (<i>o</i>):	2.16172	2.15	0.55	± 5
2600	15	e'	51.8932	Relative Permittivity (ε_r):	51.8932	52.5	-1.18	± 5
2600	ID	e"	15.0428	Conductivity (o):	2.17581	2.16	0.69	± 5
2600	15	e'	51.5704	Relative Permittivity (ε_r):	51.5704	52.4	-1.58	± 5
2090	15	e"	15.3942	Conductivity (o):	2.30371	2.29	0.60	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 39% February 09, 2011 01:48 PM

Frequency	e'	e"
2450000000.	52.4022	14.4624
2460000000.	52.3683	14.4998
2470000000.	52.3344	14.5367
2480000000.	52.2974	14.5768
2490000000.	52.2653	14.6172
2500000000.	52.2281	14.6546
2510000000.	52.1942	14.6937
2520000000.	52.1616	14.7311
2530000000.	52.1289	14.7700
2540000000.	52.0970	14.8090
2550000000.	52.0633	14.8453
2560000000.	52.0307	14.8859
2570000000.	51.9983	14.9217
2580000000.	51.9620	14.9612
2590000000.	51.9260	15.0031
260000000.	51.8932	15.0428
2610000000.	51.8590	15.0843
2620000000.	51.8258	15.1232
2630000000.	51.7908	15.1616
2640000000.	51.7552	15.1999
2650000000.	51.7221	15.2389
2660000000.	51.6858	15.2770
2670000000.	51.6471	15.3155
2680000000.	51.6080	15.3607
2690000000.	51.5704	15.3942
2700000000.	51.5282	15.4478
2710000000.	51.4937	15.4746
2720000000.	51.4559	15.5074
2730000000.	51.4194	15.5443
The conductivity	(σ) can be given as:	
$\sigma = \omega \varepsilon_0 e^{-\omega} = 2 \pi i$	$E_0 e^{-2}$	
where $\mathbf{r} = target$	T ~ 10°	
ε ₀ = 8.854	* 10'''	

Page 13 of 41 COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS. Simulating Liquid Dielectric Parameter Check Result @ Body 2600 MHz Measured by: Devin Chang

Simulating Liquid		Doromotoro			Maggurod	Torget	Doviation (9/)	$\lim_{n \to \infty} (0/n)$	
f (MHz)	Depth (cm)			Falameters	iviea sui eu	Taryer	Deviation (%)	LIIIII (70)	
2500	15	e'	51.8195	Relative Permittivity (ε_r):	51.8195	52.6	-1.48	± 5	
2000	15	e"	14.8822	Conductivity (o):	2.06979	2.02	2.46	± 5	
2500 15	15	e'	51.4693	Relative Permittivity (ε_r):	51.4693	52.5	-1.96	± 5	
2090	15	e"	15.2203	Conductivity (o):	2.19302	2.15	2.00	± 5	
2600	15	e'	51.4338	Relative Permittivity (ε_r):	51.4338	52.5	-2.05	± 5	
2000	15	15	e"	15.2578	Conductivity (o):	2.20691	2.16	2.13	± 5
2600	15	e'	51.0914	Relative Permittivity (ε_r):	51.0914	52.4	-2.50	± 5	
2090		e"	15.5976	Conductivity (o):	2.33415	2.29	1.93	± 5	

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 39% February 10, 2011 11:14 AM

Frequency	e'	e"
2450000000.	52.0127	14.6776
2460000000.	51.9767	14.7192
2470000000.	51.9376	14.7624
2480000000.	51.8949	14.8017
2490000000.	51.8571	14.8414
2500000000.	51.8195	14.8822
2510000000.	51.7808	14.9201
2520000000.	51.7428	14.9596
2530000000.	51.7057	14.9952
2540000000.	51.6658	15.0308
2550000000.	51.6267	15.0702
2560000000.	51.5869	15.1036
2570000000.	51.5455	15.1448
2580000000.	51.5067	15.1790
2590000000.	51.4693	15.2203
260000000.	51.4338	15.2578
261000000.	51.3989	15.2960
2620000000.	51.3664	15.3329
263000000.	51.3311	15.3675
264000000.	51.2922	15.4088
2650000000.	51.2539	15.4458
266000000.	51.2134	15.4814
2670000000.	51.1699	15.5196
268000000.	51.1308	15.5565
269000000.	51.0914	15.5976
2700000000.	51.0553	15.6362
2710000000.	51.0185	15.6768
2720000000.	50.9814	15.7150
2730000000.	50.9470	15,7513

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)	
2/22/2011	Rody 2500	e'	52.2683	Relative Permittivity (ε_r):	52.27	52.64	-0.70	5	
3/22/2011	BOUY 2500	e"	14.5071	Conductivity (σ):	2.02	2.02	-0.18	5	
2/00/0044	Dedu 0500	e'	51.9305	Relative Permittivity (c _r):	51.93	52.52	-1.13	5	
3/22/2011	Body 2590	e"	14.9312	Conductivity (o):	2.15	2.15	0.16	5	
0/00/0044	Dealer 0000	e'	51.9037	Relative Permittivity (c _r):	51.90	52.51	-1.16	5	
3/22/2011	Body 2600	e"	14.9669	Conductivity (o):	2.16	2.16	0.14	5	
		e'	51.5538	Relative Permittivity (ε_r):	51.55	52.40	-1.61	5	
3/22/2011	Body 2690	e"	15.3264	Conductivity (σ):	2.29	2.29	0.22	5	
	(, , , ,					
Ambient tem	v perature: 24 d	dea.	. C: Liquid te	emperature: 23 deg. C					
March 22, 20	011 08:40 PM		o,						
Frequency	e'			e"					
2450000000		52.4	1118	14,2886					
2460000000		52.3	3876	14 3587					
2470000000		52.3	3654	14 4150					
2480000000		52.3	3422	14 4654					
2490000000		52.2	2985	14 5133					
2500000000		52.2	2683	14.5170					
2510000000	-	52.2	2445	14 5612					
2520000000		52.2	2154	14.5012					
2530000000	-	52.2	1654	14.6252					
2540000000		52.1	1265	14.6505	14.6505				
2550000000	-	52.0	1200	14.0000					
2560000000		52.0)540	14.7415					
2570000000	-	52.C	1230	14.7415					
258000000	-	52.C	0203	14.0104					
2580000000	-	51.8 54 (97 94 0205	14.0043					
2590000000	-	51.3 54 (0027	14.9312					
261000000	-	51.3 51 0	2606	14.9099					
201000000	-	51.0	2424	15.0007					
2620000000		01.0 54.0	0404	15.0240					
2630000000		51.0	7200	15.0562					
265000000		51.7	700	15.0009					
2650000000		51.7 51.7	7041	15.1010					
2660000000		51.7 54.6	2470	10.1407					
2670000000		51.0 51.0	0479 074	15.2025					
200000000		51.0 E4 6	5074	15.2009					
209000000	-	51.5	530 5405	15.3204					
2700000000		51.C	1075	15.3594					
2710000000		51.4	1975	15.3924					
2720000000		51.4	+/89	15.4211					
2730000000		51.4	+573	15.4482					
2740000000	740000000 51.4328 15.4603 750000000 51.4033 15.4768								
	ivity (a) can b	 ام ما		10.47.00					
	uvity (0) Call D = 2 ∓ f c ⊲'	e yı ,	10011 05.						
$v = w \epsilon_0 e^{-t}$	-211200								
	$a_1 y = 1 + 10$								
E ₀ = 8	5.054 "10"								

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 SN3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal data	SAR Avg (mW/g)		
validation dipole		Cal. uale	Tissue:	Head	Body
	D2600V2-1006_Apr09	4/22/09	SAR _{1g} :		57.6
D2000V2			SAR _{10g} :		25.8

9.1. SYSTEM PERFORMANCE CHECK RESULTS

Ambient Temperature = 24°C; Relative humidity = 39%					Measured by: David Lee		
System	Data Tastad	Measured (N	ormalized to 1 W)	Torget	Delta (%)	Tolerance	
validation dipole	Dale Tesleu	Tissue:	Body	Taiyei		(%)	
	02/00/11	SAR _{1g} :	55.2	57.6	-4.17	+10	
D2600V2	02/09/11	SAR _{10g} :	23.8	25.8	-7.75	ΞĪŪ	
D2600V2	02/10/11	SAR _{1g} :	56.4	57.6	-2.08	+10	
		SAR _{10g} :	24.5	25.8	-5.04	ΞĪŪ	
D2600V2	03/22/11	SAR _{1g} :	55.8	57.6	-3.13	110	
		SAR _{10g} :	24.2	25.8	-6.20	±10	

Page 16 of 41

10. RF OUTPUT POWER VERIFICATION

The maximum conducted output power is measured for the uplink burst in the difference modulation and channel bandwidth. The output power is measured for the uplink bursts through triggering and gating.

Modo		Toot Vootor filo namo	Freq.	Conducted of	output power
IVIC	iviode l'est vec		(MHz)	(dBm)	(mW)
			2498.5	22.10	162.18
5MHz	QPSK	DQ64_56_UQ4_12_5M	2593.0	22.20	165.96
			2687.5	22.10	162.18
			2498.5	22.40	173.78
5MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	22.40	173.78
			2687.5	22.10	162.18
		DQ4_12_UQ64_56_5M	2498.5	21.90	154.88
5MHz	64QAM		2593.0	21.90	154.88
			2687.5	21.90	154.88
		DQ64_UQ4_12_21S_10M	2501.0	23.30	213.80
10MHz	QPSK		2593.0	22.90	194.98
			2685.0	22.90	194.98
			2501.0	22.90	194.98
10MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	23.20	208.93
			2685.0	22.80	190.55
			2501.0	20.50	112.20
10MHz	64QAM	DQ4_12_UQ64_56_10M	2593.0	20.50	112.20
			2685.0	20.50	112.20

11. PEAK TO AVERAGE RATIO

Peak and Average Output power measurements were made with Power Meter.

Mode Test Vector file name		Ch No	f (M⊔→)	Conducted F	Peak-to-average	
NIUUE		CII. NO	(IVII 12)	Peak	Average	ratio (PAR)
QPSK	DQ64_56_UQ4_12_5M	378	2593	30.00	22.20	7.80
16QAM	DQ4_12_UQ16_34_5M	378	2593	31.09	22.40	8.69
64QAM	DQ4_12_UQ64_56_5M	378	2593	29.06	21.90	7.16
QPSK	DQ64_UQ4_12_21S_10M	368	2593	31.90	22.90	9.00
16QAM	DQ4_12_UQ16_12_10M	368	2593	32.08	23.20	8.88
64QAM	DQ4_12_UQ64_56_10M	368	2593	29.15	20.50	8.65

Page 17 of 41

12. WIMAX / 802.16e DEVICE SPECIFICATION

12.1. WiMAX Zone Types

The device and its system are both transmitting using only PUSC zone type. This enables multiple users to transmit simultaneously within the system. FUSC, AMC and other zone types are not used by WiMAX 6250 for uplink transmission. The maximum DL:UL symbol ratio can be determined according to the PUSC requirements. The system transmit an odd number of symbols using DL-PUSL consisting of even multiples of traffics and control symbols plus one symbol for the preamble. Multiples of three symbols are transmitted by the device using UL-PUSC. The OFDMA symbol time allows up to 48 downlink and uplink symbols in each 5 ms frame. TTG and RTG are also included in each frame as DL/UL transmission gaps; therefore, the system can only allow 47 or less symbols per frame. The maximum DL:UL symbol ratio is determined according to these PUSC parameters for evaluating SAR compliance.

WiMAX chipset is capable of supporting the following Downlink / Uplink based upon 802.16e.

Description	Down Link	Up Link
	35	12
	34	13
	32	15
	31	16
Number of OFDM Symbols in Down Link and	30	17
	29	18
	28	19
	27	20
	26	21

12.2. DUTY FACTOR CONSIDERATIONS

- a. All Test Vector are performing with all UL symbols at maximum power.
- b. Although the chipset can supply higher downlink-to-uplink (DL/UL) symbol ratios, SAR values are scaled up or down based upon BRS/EBS WiMAX operators with agreements to transmit at a maximum DL/UL symbol ratio of 29:18 Vs actual UL traffic symbols were used during SAR measurement. Therefore, the maximum transmission duty factor supported by the chipset is not applicable for this device. The system can transmit up to 48 OFDMA symbols in each 5 ms frame, including 1.6 symbols for TTG and RTG.
- c. UL Burst Max. Average Power was measured using spectrum analyzer gated to measure the power only during Tx "On" stage.

Mode		Tost Voctor filo namo	Freq.	Conducted output power	
		Test vector me name	(MHz)	(dBm)	(mW)
	QPSK	DQ64_56_UQ4_12_5M	2593.0	22.20	165.96
5 MHz	16QAM	DQ4_12_UQ16_34_5M	2593.0	22.40	173.78
	64QAM	DQ4_12_UQ64_56_5M	2593.0	21.90	154.88
	QPSK	DQ64_UQ4_12_21S_10M	2593.0	22.90	194.98
10 MHz	16QAM	DQ4_12_UQ16_12_10M	2593.0	23.20	208.93
	64QAM	DQ4_12_UQ64_56_10M	2593.0	20.50	112.20

- d. The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 35 slots in the 10 MHz channel configuration
- e. The control channels may occupy up to 5 slots during normal operation. A slot is a sub-channel with the duration of 3 symbols. There are a total of 17 slots in the 5 MHz channel configuration.
- f. When the device is transmitting at max rated power, the output power for the control symbol and the target output power for UL:DL ratio of 29:18 is calculated as the following:

Waveform file	BW/Mode	DL:UL Ratio	DL:UL Ration SAR Scaling Factor
QD64_56_UQ4_12_5M	5MHz/QPSK	26:21	[(Max. Rated pwr*5/17*3)+Max. Rated pwr*15]/[Actual pwr*18]
DQ4_12_UQ16_34_5M	5MHz/16QAM	26:21	[(Max. Rated pwr*5/17*3)+Max. Rated pwr*15]/[Actual pwr*18]
DQ4_12_UQ64_36_5M	5MHz/64QAM	26:21	[(Max. Rated pwr*5/17*3)(Max. Rated pwr*15]/[Actual pwr*18]
DQ64_UQ4_12_21S_10M	10MHz/QPSK	23:24	[(Max. rated pwr*5/35*3)+max. rated pwr*15]/[Actual pwr*21]
DQ4_12_UQ16_12_10M	10MHz/16QAM	29:18	[(Max. rated pwr*5/35*3)+max. rated pwr*15]/[Actual pwr*15]
DQ4_12_UQ64_56_10M	10MHz/64QAM	23:24	[(Max. rated pwr*5/35*3)+max. rated pwr*15]/[Actual pwr*21]

Page 19 of 41

13. TEST SOFTWARE

The test software tool (WiMAX VaTU SW application) is installed on the host device, WiMAX, to transmit at max. output power. During normal operation, the output power of WiMAX client module is controlled by a WiMAX basestation, which also determines the characteristics of the transmission. For testing purposes, the device output power is kept at this max. using WiMAX VATU SW application loaded in the host device. The uplink transmission is maintained at a stable condition by the radio profile loaded in Vector signal generator. This enables the WiMAX module to transmit at max. power with a constant duty factor according to the specific radio profile. The test software serves only one purpose, to configure the WiMAX module to transmit at the max. power during SAR measurement.

The EUT driver software installed in the host support equipment during testing was WiMAX VaTU, version: 5.0.0.1

		VVIIVI	AA VATU		- 🖄
Mair	n Menu Setup				
Configuration R Pr	eload Start Stop Save Sn. rofiles	apshot Configuration			
	RX/TX Test mode				
Rx/Tx Test Mod	Regulatory Power	NVM Layout View Fie	lds View Prod Lock	Internal Calibrations	Gpio Control
Band P	rofile				
	Radio Profile		Test Vector File		-
	Prof3.A_2.496-10	•	C:\HvT\Test Vectors\10MHz	1	
	Channel BW [MHz] / FFT	Center Frequency Step [kHz]	Start Frequency [MHz]		
	10 / 1024	250	2501	(intol)	
	🔵 All Channels 🛛 💿 Partial	Channel No. / Freq [MHz] 368 / 2593	VCO Sub Band	(inter	
Rx				Tx	
Rx Chain 1 I-Dac	✓ Ch Enabled R× C Q-Dac I-Da	Chain 2	O	Power Out [dBm] 24 📦 Tx Selection Main_Antenna 💌	30 Tpc
Digital Att [dB] IF Att [dB] RF Att [dB]	Freq Off	set [Hz]			.40
Total Att [dB]				Pout Digital [dBm]	
MRC RSSI [dBm]	CINR [dB] [Frames] 100	EFD [Frames] 100		RF Att [dB]	
0.1.				DA CHIE FUDI	

WiMAX VaTU SW Application

Page 20 of 41

SIGNAL GENERATEOR DETAILS 14.

Frame Profile loaded in Vector Signal Generator:

Waveform file	Ch. BW	Modulation	DL:UL Ration	Duty Cycle (Calculated)
QD64_56_UQ4_12_5M	5 MHz	QPSK	26:21	37.0%
DQ4_12_UQ16_34_5M	5 MHz	16QAM	26:21	37.0%
DQ4_12_UQ64_36_5M	5 MHz	64QAM	26:21	37.0%
DQ64_UQ4_12_21S_10M	10 MHz	QPSK	23:24	43.2%
DQ4_12_UQ16_12_10M	10 MHz	16QAM	29:18	30.9%
DQ4_12_UQ64_56_10M	10 MHz	64QAM	23:24	43.2%

Connection Diagram- RF conducted Power Measurement

Page 21 of 41

Agilent ESG Vector Signal Generator / Model:E4438C is used in conjunction with Intel supplied radio profile to configure the WiMAX module for the SAR evaluation. ESG Vector Signal Generator is loaded with the downlink signal, containing the respective FCH, DL-MAP and UL-MAP required by the test device to configure the uplink transmission. The waveform is configured for a DL:UL symbol ratio of 32:15 for 10 MHz/16WAM; 23:24 for 10MHz/QPSK and 26:21 for 5 MHz/16WAM/QPSK using Intel Signal Waveform Software for 802.16 WiMAX, on the PC and downloaded to the VSG. The test device can synchronize itself to the signal received from VSG, both in frequency and time. It then modulates the DL-MAP and UL-MAP transmitted in the downlink sub-frame and determine the DL:UL symbol ratio. The downlink burst is repeated in each frame, every 5 ms, to simulate the normal transmission from a WiMAX base station. The UL-MAP received by the device is used to configure the uplink burst with all data symbols and sub-channels active. Since this is a one-way communication configuration, control channel transmission is neither requested nor transmitted.

For TDD systems, both uplink and downlink transmissions are at the same frequency. The output power of the VSG is kept at least 80 dB lower than the test device to avoid interfering with the SAR measurements. In addition, a horn antenna is used for the VSG and it is kept more than 1 meter away from the test device to further minimize unnecessary pickup by the SAR probe.

Page 22 of 41

15. VECTOR SIGNAL GENERATOR TEST SET DETAILS

Modulation and channel bandwidth selection is loaded to Vector Signal Generator. For example, when evaluating 16QAM with 10 MHz channel Bandwidth, radio profile name "DQ4_12_UQ16_12_10M " is active on the Vector Signal Generator.

	Frame definition for 10 MHz RCT					
Parameter /Value	Test ve					
	DQ4_12_UQ16_12_10M	DQ4_12_UQ16_12_10M DQ64_UQ4_12_21S_10M				
Band Width	10MHz	10MHz				
FFT size	1024	1024				
UL Traffic Symbols	12 21					
Down link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS	MCS : QPSK R1/2	MCS : QAM64 R5/6	Single DIUC			
Up link						
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone			
Burst profile / MCS	MCS : QAM16 R3/4	MCS : QPSK R1/2	Single DIUC			

		Frame definition for 5MHz RC	т
Parameter /Value	Test ve	ctor name	
	DQ4_12_UQ16_34_5M	DQ64_56_UQ4_12_5M	Remarks
Band Width	5MHz	5MHz	
FFT size	512	512	
UL traffic symbols	18	18	
Down link			
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone
Burst profile / MCS	MCS: QPSK R1/2	MCS : QAM64 R5/6	Single DIUC
Up link			
Zone profiles	Zone 1 – PUSC	Zone 1 – PUSC	single zone
Burst profile / MCS	MCS: QAM16 R3/4	MCS : QPSK R1/2	Single DIUC

Page 23 of 41

16. SUMMARY OF SAR TEST RESULTS

Configuration	Antenna-to- User distance	SAR Require	Comment
Laptop mode: Lap-held	231.3 mm	No	This configuration does not require SAR assessment as the antenna-to-user separation distance is greater then 20 cm which meets the exemption requirement as indicated in FCC OET Bulletin 65 Supplement C: 2001-01.
Laptop mode: By Stander (nearby person)	-	No	This configuration does not require SAR assessment as the closest antenna-to-user configuration was covered by Edge Secondary Landscape' and is within 2.5 cm from By Stander.
Bottom Face	23.6 mm	Yes	SAR evaluation
Edge - Primary Landscape	211.18 mm	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Edge - Secondary Landscape	2.0 mm	Yes	SAR evaluation This is the most conservative antenna-to-user distance at edge mode
Edge - Primary Portrait	180 mm	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Edge - Secondary Portrait	95 mm	Yes	SAR measurements to be performed due to WiMax can simultaneous transmission with WWAN.

Page 24 of 41

16.1. **Bottom Face**

5 MHz Bandwidth

26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]

	•	Calcu	ulated		/-	Output	power			$1 \circ SAP (W/ka)$	
Mada	Toot vootor filo nomo	Duty	Croot	Freq.	Freg. Actual		Max. Rated		Scale	T Y SAR (W/RY)	
		Cycle (%)	Factor	(MHz)	dBm	mW	dBm	mW	Factors	Measured	Scaled
				2498.5	22.10	162.2	24.3	269.15			
QPSK DQ64_56_UQ4_12_5M	37	2.70	2593.0	22.20	166.0	24.3	269.15	1.43	0.017	0.024	
				2687.5	22.10	162.2	24.3	269.15			
				2498.5	22.40	173.8	24.3	269.15			
16QAM	DQ4_12_UQ16_34_5M	37	2.70	2593.0	22.40	173.8	24.3	269.15	1.37	0.015	0.020
				2687.5	22.10	162.2	24.3	269.15			
				2498.5	21.90	154.9	24.3	269.15			
64QAM DQ4_1	DQ4_12_UQ64_56_5M	37	2.70	2593.0	21.90	154.9	24.3	269.15	1.53	0.001	0.002
				2687.5	21.90	154.9	24.3	269.15			

Note(s):

- Scale Factor for 26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]
- "*cf*" = 1/(15/48) = 3.2 for 5 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).

10 MHz Bandwidth

23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)

		Calcu	ulated			Output	power			1a SAR (W/ka)	
Mode	Test vector file name	Duty	Crest	Freq.	Act	tual	Max.	Rated	Scale	IS OUL	(**/kg)
Mode	Test vector nie name	Cycle (%)	Factor	(MHz)	dBm	mW	dBm	mW	Factors	Measured	Scaled
				2501.0	23.30	213.8	23.6	229.09			
QPSK	DQ64_UQ4_12_21S_10M	43.2	2.31	2593.0	22.90	195.0	23.6	229.09	0.86	0.022	0.019
				2685.0	22.60	182.0	23.6	229.09			
29:18 UL	.:DL Ratio = [(Max. rated pw	r*5/35*3)	+ (max. r	ated pwr*	15)] / Act	ual pwr*1	5)				
				2501.0	22.90	195.0	23.6	229.09			
16QAM	DQ4_12_UQ16_12_10M	30.9	3.24	2593.0	23.20	208.9	23.6	229.09	1.13	0.010	0.011
				2685.0	22.80	190.5	23.6	229.09			
23:24 UL	.:DL Ratio = [(Max. rated pw	r*5/35*3)	+ (max. r	ated pwr*	15)] / Act	ual pwr*2	1)				
				2501.0	20.50	112.2	23.6	229.09			
64QAM	DQ4_12_UQ64_56_10M	43.2	2.31	2593.0	20.50	112.2	23.6	229.09	1.50	0.015	0.023
				2685.0	20.40	109.6	23.6	229.09			

Note(s):

Scale Factor for 23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)]

29:18 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*15)]

- "*cf*" = 1/(12/48) = 4.0 for 10 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).
- SAR level measured was closed to noise floor due to device separation distance from the antenna-to-phantom flat section.

16.2. Edge - Secondary Landscape

5 MHz Bandwidth

26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]

		Calc	ulated			Output	t power			1 a SAE	(M/ka)
Mada	Toot vootor filo nomo	Duty	Croat	Freq.	Freq. Actual		Max. Rated		Scale	r g oAr (wrkg)	
woue		Cycle (%)	Factor	(MHz)	dBm	mW	dBm	mW	Factors	Measured	Scaled
				2498.5	22.10	162.2	24.3	269.15			
QPSK DQ64_56_UQ4_12_5M	37	2.70	2593.0	22.20	166.0	24.3	269.15	1.43	0.387	0.554	
				2687.5	22.10	162.2	24.3	269.15			
				2498.5	22.40	173.8	24.3	269.15			
16QAM	DQ4_12_UQ16_34_5M	37	2.70	2593.0	22.40	173.8	24.3	269.15	1.37	0.371	0.507
				2687.5	22.10	162.2	24.3	269.15			
				2498.5	21.90	154.9	24.3	269.15			
64QAM DQ	DQ4_12_UQ64_56_5M	37	2.70	2593.0	21.90	154.9	24.3	269.15	1.53	0.196	0.301
				2687.5	21.90	154.9	24.3	269.15			

Note(s):

- Scale Factor for 26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]
- "*cf*" = 1/(15/48) = 3.2 for 5 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).
- SAR level measured was closed to noise floor due to device separation distance from the antenna-to-phantom flat section.

10 MHz Bandwidth

23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)

		Calci	ulated			Output	power			10 SAD	(M/ka)
Mode	Test vestor file name	Duty	Croat	Freq.	Freq. Actual		Max. Rated		Scale	ig OAIX (W/Kg)	
Mode	Test vector me name	Cycle (%)	Factor	(MHz)	dBm	mW	dBm	mW	Factors	Measured	Scaled
				2501	23.30	213.8	23.6	229.09			
QPSK	DQ64_UQ4_12_21S_10M	43.2	2.31	2593	23.30	213.8	23.6	229.09	0.79	0.426	0.335
				2685	22.60	182.0	23.6	229.09			
29:18 UL	.:DL Ratio = [(Max. rated pw	/r*5/35*3)	+ (max. ra	ated pwr*	15)] / Act	ual pwr*1	5)				
				2501	22.90	195.0	23.6	229.09			
16QAM	DQ4_12_UQ16_12_10M	30.9	3.24	2593	23.20	208.9	23.6	229.09	1.13	0.272	0.307
				2685	22.80	190.5	23.6	229.09			
23:24 UL	.:DL Ratio = [(Max. rated pw	/r*5/35*3)	+ (max. ra	ated pwr*	15)] / Act	ual pwr*2	1)				
				2501	20.50	112.2	23.6	229.09			
64QAM	DQ4_12_UQ64_56_10M	43.2	43.2 2.31	2593	20.50	112.2	23.6	229.09	1.50	0.249	0.374
				2685	20.40	109.6	23.6	229.09			

Note(s):

- Scale Factor for 23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)]
 - 29:18 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*15)]
- "*cf*" = 1/(12/48) = 4.0 for 10 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).
- SAR level measured was closed to noise floor due to device separation distance from the antenna-to-phantom flat section.

16.3. Edge - Secondary Portrait

5 MHz Bandwidth

26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]

		Calculated			Output power					$1 \circ SAP (M/ko)$	
Mode Test vector	Test vester file nome	Duty	Crest Factor	Freq. (MHz)	Freq. Actual		Max. Rated		Scale	TY SAR (W/KY)	
		Cycle (%)			dBm	mW	dBm	mW	Factors	Measured	Scaled
				2498.5	22.10	162.2	24.3	269.15			
QPSK	DQ64_56_UQ4_12_5M	37 2.7	2.70	2593.0	22.20	166.0	24.3	269.15	1.43	0.133	0.190
				2687.5	22.10	162.2	24.3	269.15			

Note(s):

 Per SAR_RF_Exosure_Procedures_Updates_101910-KC, QPSK SAR is leas than 0.8 W/kg, 16QAM SAR is not needed.

- Scale Factor for 26:21 UL:DL Ratio = [(Max. Rated pwr*5/17*3) + (Max. Rated pwr*15)] / Actual pwr*18)]
- "*cf*" = 1/(15/48) = 3.2 for 5 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).
- SAR level measured was closed to noise floor due to device separation distance from the antenna-to-phantom flat section.

10 MHz Bandwidth

23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)

Mode Test	Tost vector file name	Calculated			Output power						
		Duty	Crest Factor	Freq. (MHz)	Actual		Max. Rated		Scale	IS OAN (WING)	
	Test vector nie name	Cycle (%)			dBm	mW	dBm	mW	Factors	Measured	Scaled
				2501	23.30	213.8	23.6	229.09			
QPSK	DQ64_UQ4_12_21S_10M	43.2	2.31	2593	23.30	213.8	23.6	229.09	0.79	0.209	0.165
				2685	22.60	182.0	23.6	229.09			

Note(s):

- Per SAR_RF_Exosure_Procedures_Updates_101910-KC, QPSK SAR is leas than 0.8 W/kg, 16QAM SAR is not needed.
- Scale Factor for 23:24 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*21)]
- 29:18 UL:DL Ratio = [(Max. rated pwr*5/35*3) + (max. rated pwr*15)] / Actual pwr*15)]
- "*cf*" = 1/(12/48) = 4.0 for 10 MHz
- SAR test was performed in the middle channel only as the measured level was < 5% of the SAR limit (1.6W/kg).
- SAR level measured was closed to noise floor due to device separation distance from the antenna-to-phantom flat section.

17. WORST-CASE SAR PLOTS

Worst-case SAR Test Plot

Date/Time: 2/9/2011 8:13:14 PM

Test Laboratory: UL CCS

Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: WiMAX 2.6GHz 5M; Frequency: 2593 MHz;Duty Cycle: 1:3.20627 Medium parameters used (interpolated): f = 2593 MHz; σ = 2.166 mho/m; ϵ_r = 51.916; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.78, 6.78, 6.78); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

5M_QPSK/ch_378/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.587 mW/g

5M_QPSK/ch_378/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 17.353 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.629 W/kg SAR(1 g) = 0.387 mW/g; SAR(10 g) = 0.146 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.741 mW/g

5M_QPSK/ch_378/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.642 mW/g

Page 28 of 41

Page 29 of 41

18. PAR AND SAR ERROR CONSIDERATION

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power levels, from approximately 12.5 mW at approx. 3 dB steps, until the maximum power is reached.

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power levels, from approximately 10 mW at approx. 3 dB steps, until the maximum power is reached.

Procedure:

- Position the EUT at flat phantom with 0 cm separation distance (Secondary landscape). (w/ 2.0 mm distance from WiMax main antenna-to-phantom)
- 2) Perform single point SAR evaluation with EUT power to be tuned at 10 15 mW.
- 3) Record the highest single point SAR value for each power setting as indicated above.
- 4) Without changing probe and EUT position increase the EUT power by 3 dB steps.

Assumption:

- 1. First single point SAR at power = 0 mW the SAR = 0 W/kg
- 2. SAR is linear to power only when the measurement probe sensors are operating within the squarelaw region.

Linear Line:

The actual measure output power has an tolerance due to the accuracy of the power sensors, RF cable and attenuator therefore the measure power will exhibited a +/- 0.05 % error. When power is set to 10 mW and SAR value "x" is known the next value on the Linear Line at approximately 3 dB up can be calculated as follow:

SAR_{3dB} = (SAR_{Before} x Power_{3dB}) / Power_{Before}

Measurement Result for 5 MHz, QPSK

5M_QPSK

Average Power (dBm):	10	13	16	19	22
Average Power (mW):	10.0	20.0	39.8	79.4	158.5
Single Point SAR:	0.035	0.075	0.147	0.299	0.604
Linear line:	0.035	0.070	0.139	0.278	0.555
Estimated (%):	0.000	7.397	5.499	7.548	8.885
Average Power (mW): Single Point SAR: Linear line: Estimated (%):	10.0 0.035 0.035 0.000	20.0 0.075 0.070 7.397	39.8 0.147 0.139 5.499	79.4 0.299 0.278 7.548	158.5 0.604 0.555 8.885

Procedure in establishing linear line (SAR):

- First reference Point = $\underline{0}$ when power = 0
- Second reference Point: <u>0.035</u> W/kg @ <u>10</u> mW
- Third reference point: (0.035*20)/10 = 0.07
- Fourth reference point: (0.07*39.8)/20 = <u>0.139</u>
- Fifth h reference point: (0.139*79.4)/39.8 = 0.278
- Sixth reference point: (0.278*158.5)/79.4= 0.555

Draw a reference line from first reference point to sixth reference point

Page 31 of 41

Measurement Result for 5 MHz, 16QAM

5M_16QAM					
Average Power (dBm):	10.3	13.3	16.3	19.3	22.4
Average Power (mW):	10.7	21.4	42.7	85.1	173.8
Single Point SAR:	0.036	0.075	0.156	0.305	0.620
Linear line:	0.036	0.072	0.143	0.286	0.584
Estimated (%):	0.000	4.414	8.848	6.659	6.191

Procedure in establishing linear line (SAR):

- First reference Point = <u>0</u> when power = 0
- Second reference Point: 0.036 W/kg @ 10.7 mW
- Third reference point: (0.036*21.4)/10.7 = 0.072
- Fourth reference point: (0.072*42.7)/21.4 = 0.143
- Fifth h reference point: (0.143*85.1)/42.7 = 0.286
- Sixth reference point: (0.286*173.8)/85.1= 0.584

Draw a reference line from first reference point to sixth reference point

Page 32 of 41

Measurement Result for 5 MHz, 64QAM

5M_64QAM

Average Power (dBm):	10	13	16	19	21.9
Average Power (mW):	10.0	20.0	39.8	79.4	154.9
Single Point SAR:	0.033	0.067	0.132	0.286	0.557
Linear line:	0.033	0.066	0.131	0.262	0.511
Estimated (%):	0.000	1.756	0.475	9.107	8.979

Procedure in establishing linear line (SAR):

- First reference Point = <u>0</u> when power = 0
- Second reference Point: <u>0.033</u> W/kg @ <u>10</u> mW
- Third reference point: (0.033*20)/10 = <u>0.066</u>
- Fourth reference point: (0.066*39.8)/20 = 0.131
- Fifth h reference point: (0.131*79.4)/39.8 = 0.262
- Sixth reference point: (0.262*154.9)/79.4 = 0.511

Draw a reference line from first reference point to sixth reference point

Page 33 of 41

Measurement Result for 10 MHz, QPSK

10M_QPSK

Average Power (dBm):	10.3	13.3	16.3	19.3	23.3
Average Power (mW):	10.7	21.4	42.7	85.1	213.8
Single Point SAR:	0.032	0.066	0.138	0.274	0.721
Linear line:	0.032	0.064	0.127	0.254	0.638
Estimation (%):	0.000	3.370	8.325	7.795	12.924

Procedure in establishing linear line (SAR):

- First reference Point = <u>0</u> when power = 0
- Second reference Point: 0.032 W/kg @ 10 mW
- Third reference point: (0.032*21.4)/10.7 = 0.064
- Fourth reference point: (0.066*42.7)/21.4 = 0.127
- Fifth h reference point: (0.127*85.1)/42.7 = 0.254
- Sixth reference point: (0.254*213.8)/85.1 = 0.638

Draw a reference line from first reference point to sixth reference point.

Page 34 of 41

Measurement Result for 10 MHz, 16QAM

10M_16QAM								
Average Power (dBm):	11.2	14.2	17.2	20.2	23.2			
Average Power (mW):	13.2	26.3	52.5	104.7	208.9			
Single Point SAR:	0.025	0.052	0.106	0.220	0.462			
Linear line:	0.025	0.050	0.100	0.199	0.396			
Estimation (%):	0.000	4.247	6.504	10.785	16.601			

Procedure in establishing linear line (SAR):

- First reference Point = $\underline{0}$ when power = 0
- Second reference Point: <u>0.025</u> W/kg @ <u>13.2</u> mW
- Third reference point: (0.025*26.3)/13.2 = 0.050
- Fourth reference point: (0.050*52.5)/26.3 = <u>0.100</u>
- Fifth h reference point: (0.100*104.7)/52.5 = 0.199
- Sixth reference point: (0.199*208.9)/104.7 = 0.396

Draw a reference line from first reference point to sixth reference point.

Page 35 of 41

Measurement Result for 10 MHz, 64QAM

10M 64QAM

Average Power (dBm):	10	13.1	16.1	19.1	20.5
Average Power (mW):	10.0	20.4	40.7	81.3	112.2
Single Point SAR:	0.038	0.082	0.168	0.338	0.457
Linear line:	0.038	0.078	0.155	0.309	0.426
Estimation (%):	0.000	5.689	8.524	9.429	7.185

Procedure in establishing linear line (SAR):

- First reference Point = <u>0</u> when power = 0
- Second reference Point: <u>0.038</u> W/kg @ <u>10</u> mW
- Third reference point: (0.038*20.4)/10 = 0.078
- Fourth reference point: (0.078*40.7)/20.4 = 0.155
- Fifth h reference point: (0.155*81.3)/40.7 = 0.309
- Sixth reference point: (0.309*112.2)/81.3 = 0.426

Draw a reference line from first reference point to sixth reference point.

Page 36 of 41

19. ATTACHMENTS

<u>No.</u>	Contents	No. of page (s)
1	System Check Plots D2600V2 SN 1006	6
2	SAR Test Plots	18
3	Certificate of E-Field Probe EX3DV3 SN 3686	11
4	Certificate of System Validation Dipole D2600V2 SN:1006	7
	(with extended calibration verification data)	

Page 37 of 41