

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003 CLASS II PERMISSIVE CHANGE

SAR EVALUATION REPORT (WiFi Portion)

For

Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)

MODEL: 622ANXHMW FCC ID: PD9622ANXHU REPORT NUMBER: 10U13597-1, Revision A

ISSUE DATE: March 16, 2011

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	March 3, 2011	Initial Issue	
А	March 16, 2011	Correct host model	S. Shih

Page 2 of 37

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	СА	LIBRATION AND UNCERTAINTY	6
4	.1.	MEASURING INSTRUMENT CALIBRATION	6
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	QUIPMENT UNDER TEST	8
6.	SY	STEM SPECIFICATIONS	9
7.	со	MPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	0
8.	TIS	SSUE DIELECTRIC PARAMETERS1	1
8	.1.	TISSUE PARAMETERS CHECK RESULTS1	2
9.	SY	STEM VERIFICATION	6
9	.1.	SYSTEM CHECK RESULTS1	7
10.	:	SAR MEASUREMENT PROCEDURES1	8
11.		RF OUTPUT POWER VERIFICATION1	9
12.	:	SUMMARY OF SAR TEST RESULTS2	:0
1	2.1.	2.4 GHZ BAND	21
1	2.2.	5 GHZ BANDS	2
13.		ATTACHMENTS	4
14.		ANTENNA LOCATIONS AND SEPARATION DISTANCES	5
15.		TEST SETUP PHOTOS	7

Page 3 of 37

1. ATTESTATION OF TEST RESULTS

Company name:INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USAEUT Description:Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USAEUT Description:Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
HILLSBORO, OR 97124, USAEUT Description:Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SAR15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
EUT Description:Intel® Centrino® Advanced-N + WiMAX 6250 (Tested inside of Lenovo TP00019A)Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
(Tested inside of Lenovo TP00019A)Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SAR15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
Model number:622ANXHMWDevice Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
Device Category:PortableExposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
Exposure category:General Population/Uncontrolled ExposureDate of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
Date of tested:February 14 - 23, 2011FCC Rule PartsFreq. Range [MHz]The Highest 1g SARLimit (mW/g15 2472400 - 2483.50.791 mW/g (Secondary landscape)					
FCC Rule Parts Freq. Range [MHz] The Highest 1g SAR Limit (mW/g 15 247 2400 – 2483.5 0.791 mW/g (Secondary landscape)					
15 247 2400 – 2483.5 0.791 mW/g (Secondary landscape)					
5725 – 5850 1.170 mW/g (Secondary landscape)					
5150 – 5250 1.100 mW/g (Secondary landscape) 1.6					
15.407 5250 – 5350 0.862 mW/g (Secondary landscape)					
5470 – 5725 1.110 mW/g (Secondary landscape)					
Applicable Standards Test Result					
OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003 and the following specific					

- KDB 248227 SAR Measurement Procedures for 802.11a/b/g Transmitters

- KDB 447498 D01 Mobile Portable RF Exposure v04, Suppl to KDB 616217 D03

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

nay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

own Char

Devin Chang EMC Engineer Compliance Certification Services (UL CCS)

Page 4 of 37

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01 IEEE 1528: 2003 and the following specific FCC test procedures:

- KDB 248227 D01 SAR meas for 802 11 a b g v01r02
- KDB 447498 D01 Mobile Portable RF Exposure v04,
- KDB 616217 D03 SAR Supp Note and Netbook Laptop V01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>

Page 5 of 37

4. CALIBRATION AND UNCERTAINTY

4.1.MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment			Carial Na	Cal. Due date		
Name of Equipment	Manufacturer	i ype/iviodei	Serial No.	MM	DD	Year
E-Field Probe	SPEAG	EX3DV4	3686	1	24	2012
Data Acquisition Electronics	SPEAG	DAE4	1239	11	11	2011
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011
Simulating Liquid	SPEAG	NLS2450	N/A	Within 24 hrs of first test		rs of first test
Simulating Liquid	SPAEG	MLS5800	N/A	Within 24 hrs of first test		
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011
Dielectric Probe Kits	Agilent	85070E	2569	N/A		N/A
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012
Thermometer	ERTCO	639-1S	1718	7	19	2011
Power Meter	Giga-tronics	8651A	8651404	3	13	2012
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A

Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

Page 6 of 37

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Pro	be Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System						
Probe Calibration (k=1)	5.50)	Normal	1	1	5.50
Axial Isotropy	1.15	Re	ctangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Re	ctangular	1.732	0.7071	0.94
Boundary Effect	0.90	Re	ctangular	1.732	1	0.52
Probe Linearity	3.45	Re	ctangular	1.732	. 1	1.99
System Detection Limits	1.00	Re	ctangular	1.732	. 1	0.58
Readout Electronics	0.30)	Normal	1	1	0.30
Response Time	0.80	Re	ctangular	1.732	. 1	0.46
Integration Time	2.60	Re	ctangular	1.732	. 1	1.50
RF Ambient Conditions - Noise	3.00	Red	ctangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Re	ctangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Re	ctangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90		ctangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00		ctangular	1.732	1	0.58
Test Sample Related	0.00	_			Ļ	0.00
Test Sample Positioning	2.90	2	Normal	1	1	2.90
	3.60	1	Normai	1	1	3.60
Output Power Variation - SAR Drift	5.00	Red	ctangular	1.732	1	2.89
Phantom and Tissue Parameters	4.00			4 700		0.04
Phantom Uncertainty (snape and thickness)	4.00	Rec	ctangular	1.732		2.31
Liquid Conductivity - deviation from target	5.00	Red	ctangular	1.732	0.64	1.85
	-0.78		Nomai	1 722	0.64	-0.31
Liquid Permittivity - deviation from target	5.00	Rec	Normal	1.732	0.6	1.73
	-1.00		NUIIIai nhinod Standar	l d Lincortr	0.0	-1.00
Expanded Uncertainty U. Cover		001	1000000000000000000000000000000000000	idonoo -	$\frac{1111000(y) - 1001}{1001}$	9.51
Expanded Uncertainty U. Cover	aye Fac	or -	$\frac{2}{2}$ > 95 % Conf	idence -	19.01	70 dB
2 to 6 CUT everaged ever 1 gram	ayerac	- 10.	2, 295 /0 COII	luence -	1.51	uВ
			Distributions	Distant	0	11 ()() 0/
	erro	or, %	Distribution	Divisor	Sensitivity	U (XI), %
Measurement System						0.55
Probe Calibration (k=1) @ 5GHz		6.55	Normal	1	1	6.55
Axial Isotropy		<u>1.15</u>	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect		0.90	Rectangular	1.732	1	0.52
Probe Linearity		3.45	Rectangular	1.732	1	1.99
System Detection Limits		1.00	Rectangular	1.732	1	0.58
Readout Electronics		1.00	Normal	1	1	1.00
Response Time		0.80	Rectangular	1.732	1	0.46
Integration Time		2 60	Rectangular	1 732	1	1 50
RE Ambient Conditions - Noise		3.00	Rectangular	1 732	1	1.00
PE Ambient Conditions Peffections		3 00	Pectangular	1 732	1	1.70
Probe Desitioner Mechanical Teleranee		0.40	Dectorgular	1.732	1	0.00
Probe Positioner with regrest to Phanton		0.40	Rectangular	1.732	1	0.23
		2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration		3.90	Rectangular	1.732	1	2.25
Test Sample Related						
Test Sample Positioning		1.10	Normal	1	1	1.10
Device Holder Uncertainty		3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift		5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness)		4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target		5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement		0.39	Normal	1	0.64	0.25
Liquid Permittivity - deviation from target	1	0.00	Rectangular	1 732	0.6	3.46
Liquid Permittivity - measurement uncertainty		1 16	Normal	1.102	0.0	0.40
	6.0	n.+0 mhin	A Standard U	ncertaint		10.00
Evpanded Upcortainty U. Coverage E	actor = 1	1 06	> 95 % Confid		20 56	0/
		1.90,			20.00	٥/ م
Expanded Uncertainty U, Coverage Factor = 1.96, > 95 % Confidence = 1.62 dB						aв

Page 7 of 37

5. EQUIPMENT UNDER TEST

Intel® Centrino® Advanced-N + WiMAX 6250					
Model number 622ANXHMW	Model number 622ANXHMW (Tested inside of Lenovo TP00019A)				
Normal operation:	 Laptop mode (with display open at 90° to the keyboard) bottom face, and edges: Multiple display orientations supporting both portrait and landscape configurations 				
Antenna tested:	ManufacturedPart numberYageoMain (A) Antenna: 25.90A1E.011Aux (B) Antenna: 25.90A1F.011				
Antenna-to-antenna/user separation distances:	Refer to Sec. 14 for details of antenna locations and separation distances.				
Assessment for SAR evaluation for Simultaneous transmission:	WiFi can transmit simultaneously with Bluetooth. Due to Bluetooth's (FCC ID: QDS-BRCM1046) maximum output is 3.06 mW [<60/f(GHz) mW] and stand alone SAR is not required, thus WiFi and Bluetooth are not considered as co-located transmitters each other WWAN co-located RF exposure assessment will be addressed in a separate FCC application filed under WWAN application.				

Page 8 of 37

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 37

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4	450 835		915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium ChlorideSugar: 98+% Pure SucroseWater: De-ionized, 16 M Ω + resistivityHEC: Hydroxyethyl CelluloseDGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 10 of 37

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz) The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)				
Target Frequency (IVITIZ)	ε _r	σ (S/m)			
300	58.20	0.92			
450	56.70	0.94			
835	55.20	0.97			
900	55.00	1.05			
915	55.00	1.06			
1450	54.00	1.30			
1610	53.80	1.40			
1800 – 2000	53.30	1.52			
2450	52.70	1.95			
3000	52.00	2.73			
5800	48.20	6.00			

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: deionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired \pm 5% for the whole 5 to 5.8 GHz range.

f (M山云)	Body Tissue		Poforonco
1 (IVII 12)	rel. permitivity	conductivity	Relefence
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. TISSUE PARAMETERS CHECK RESULTS

Simulating Liqu	uid Diele	ctric Para	meter Check Result @	Body 2450	MHz M	leasured by:	David Lee
f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
2450	e'	51.83	Relative Permittivity (c _r):	51.827	52.7	-1.66	± 5
2430	e"	14.19	Conductivity (σ):	1.935	1.95	-0.79	± 5
Liquid Check							
Ambient tempe	rature: 24	4 deg. C; L	iquid temperature: 23 de	g. C; Relative	humidity = 4	1%	
February 14, 20	011 09:56	S AM					
Frequency		e'	e"				
2400000000.		51.9665	13.9993	3			
2405000000.		51.9536	14.0207	,			
2410000000.		51.9417	14.0392	2			
2415000000.		51.9264	14.0549)			
2420000000.		51.9104	14.0714	ŀ			
2425000000.		51.8990	14.0914	ŀ			
2430000000.		51.8847	14.1114	ŀ			
2435000000.		51.8695	14.1342	2			
2440000000.		51.8565	14.1532	2			
2445000000.		51.8412	14.1738	3			
2450000000.		51.8267	14.1943	6			
2455000000.		51.8119	14.2140)			
2460000000.		51.7966	14.2327	,			
2465000000.		51.7808	14.2491				
2470000000.		51.7676	14.2708	}			
2475000000.		51.7490	14.2974	ŀ			
2480000000.		51.7356	14.3184	ŀ			
2485000000.		51.7199	14.3395	5			
2490000000.		51.7022	14.3627	,			
2495000000.		51.6847	14.3854	ŀ			
2500000000.		51.6698	14.4064	ŀ			
The conductivit	y (σ) can	be given a	as:				
$\sigma = \omega \varepsilon_0 e'' = 2$	2 π f ε ₀	e″					
where f = targ	et f * 10 ⁶						
ε 0 = 8.83	54 * 10 ⁻¹²						

Page 12 of 37

± 10

± 5

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz Measured by: David Lee f (MHz) **Muscle Liquid Parameters** Measured Target Delta (%) Limit (%) Relative Permittivity (c_r) 47.696 47.6960 e' 49.0 -2.66 ± 10 5200 e" 17.6330 Conductivity (o) 5.10092 5.30 -3.76 ± 5 e' 47.1822 Relative Permittivity (cr) 47.1822 48.6 -2.92 ± 10 5500 e" 17.9880 Conductivity (o): 5.50382 5.65 -2.59 ±5

46.7134

6.02325

48.2

6.00

-3.08

0.39

Liquid Check

5800

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 40%

Relative Permittivity (c,

Conductivity (o):

repluary to, 2011	0, 2010 00.37 AIVI	
frequency	e'	e"
480000000.0000	48.2757	16.7099
485000000.0000	48.3012	16.8682
490000000.0000	48.1653	16.9121
495000000.0000	48.1269	17.1614
500000000.0000	47.9537	17.1507
505000000.0000	48.0015	17.2823
510000000.0000	47.8024	17.3631
515000000.0000	47.8174	17.4598
520000000.0000	47.6960	17.6330
525000000.0000	47.5263	17.5787
530000000.0000	47.3916	17.7378
535000000.0000	47.4020	17.8013
540000000.0000	47.2299	18.0262
545000000.0000	47.1833	18.0219
550000000.0000	47.1822	17.9880
5550000000.0000	47.0785	18.0813
560000000.0000	47.1181	18.2986
565000000.0000	46.9851	18.2559
570000000.0000	46.9433	18.4920
575000000.0000	46.8986	18.6358
580000000.0000	46.7134	18.6674
5850000000.0000	46.7325	18.8297
590000000.0000	46.5602	18.8953
595000000.0000	46.3562	19.0365
600000000.0000	46.4286	19.1562

46.7134

18.6674

e'

e"

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $f = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Page 13 of 37

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz Measured by: David I						David Lee	
f (MHz)		Muscle Liqu	id Parameters	Measured	Target	Delta (%)	Limit (%)
5200	e'	49.7156	Relative Permittivity (c _r):	49.7156	49.0	1.46	± 10
5200	e"	17.7357	Conductivity (σ):	5.13063	5.30	-3.20	± 5
5500	e'	49.088	Relative Permittivity (c _r):	49.0880	48.6	1.00	± 10
5500	e"	18.0154	Conductivity (o):	5.51221	5.65	-2.44	± 5
5000	e'	48.6649	Relative Permittivity (c _r):	48.6649	48.2	0.96	± 10
5800	e"	18.4453	Conductivity (σ):	5.95159	6.00	-0.81	± 5
Liquid Check Ambient tempera February 21, 20 Frequency 460000000. 465000000. 470000000. 475000000. 475000000. 485000000. 485000000. 485000000. 505000000. 505000000. 5150000000. 5250000000. 5350000000. 5450000000. 5550000000. 5550000000. 5650000000. 570000000. 5750000000. 5750000000.	e" ature: 25	18.4453 5 deg. C; Liq AM e' 50.8996 51.1438 50.6725 50.7332 50.4826 50.3641 50.3065 49.9118 50.1070 49.8355 50.0433 49.8386 49.7156 49.3712 49.3872 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.8891 49.0856 49.1989 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.6968 48.9713 48.69649 48.69649	Conductivity (σ): uid temperature: 24 de e" 16.7554 17.3636 16.8716 17.5110 17.0164 17.6332 17.1968 17.6733 17.6745 17.5530 18.0240 17.735 3 18.2803 17.8029 18.4136 17.8760 18.5224 18.015 4 18.6213 18.1703 18.7063 18.3135 18.4453	5.95159 g. C; Relative 5 5 5 7 7 8 7 8	6.00 humidity = 4	-0.81	±5
5850000000.		48.1491	19.0164	1			
5900000000.		48.5230	18.5786	3			
595000000.		47.9020	19.1640)			
6000000000.		48.3668	18.7196	6			
The conductivity	The conductivity (σ) can be given as:						
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$							
where f = targe	where $\mathbf{f} = target f * 10^6$						
ɛ ₀ = 8.85	4 * 10 ⁻¹²						

Simulating Liquid Dielectric Parameter Check Result @ Body 5 GHz Measured by: David						David Lee	
f (MHz)		Muscle Liqu	id Parameters	Measured	Target	Delta (%)	Limit (%)
5200	e'	47.9788	Relative Permittivity (c _r):	47.9788	49.0	-2.08	± 10
5200	e"	17.8550	Conductivity (σ):	5.16514	5.30	-2.54	±5
5500	e'	47.3965	Relative Permittivity (c _r):	47.3965	48.6	-2.48	± 10
5500	e"	18.2158	Conductivity (o):	5.57353	5.65	-1.35	±5
	e'	46.8601	Relative Permittivity (c _r):	46.8601	48.2	-2.78	± 10
5800	e"	18.6041	Conductivity (o):	6.00282	6.00	0.05	± 5
Liquid Check Ambient tempera February 23, 20 Frequency	ature: 25 11 07:12	5 deg. C; Liq 2 PM e'	uid temperature: 24 de e''	g. C; Relative	e humidity = 4	0%	
4600000000.		49.1547	16.8207	7			
4650000000.		49.1556	16.9392	2			
4700000000.		48.9971	17.0108	3			
4750000000.		48.9795	17.1182	2			
4800000000.		48.8401	17.189/	/ =			
4000000000		40.7237	17.2013				
4900000000.		40.0390	17.3030	7			
5000000000		48 4546	17.4177	7			
5050000000		48 3863	17.5979	,)			
5100000000.		48.2032	17.7297	7			
5150000000.		48.1669	17.7520)			
5200000000.		47.9788	17.8550)			
5250000000.		48.0041	17.9003	3			
5300000000.		47.7862	17.974 <i>°</i>	1			
5350000000.		47.7900	18.0525	5			
540000000.		47.6011	18.1039	9			
5450000000.		47.5613	18.1942	2			
5500000000.		47.3965	18.2158	3			
5550000000.		47.3084	18.3153	3			
5600000000.		47.2143	18.3354	4			
5650000000.		47.0976	18.4290)			
5700000000.		47.0384	18.4610)			
5750000000.		46.8955	18.5369	9			
580000000.		46.8601	18.6041	1			
5850000000.		46.7133	18.6390)			
5900000000.		46.6737	18.7475	5			
5950000000.		46.5499	18.7558	3			
6000000000.		46.4747	18.8982	2			
The conductivity	ν (σ) can	be given as	:				
$\sigma = \omega \varepsilon_0 e''= 2$	$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$						
where f = targe	where $\mathbf{f} = target f * 10^6$						
ɛ ₀ = 8.85	4 * 10 ⁻¹²						

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4 SN3686 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power

System	ystem Cal certificate # Cal date Cal. Fre		Cal. Freq.	SAR Avg (mW/g)			
validation dipole		Cal. Uale	(GHz)	Tissue:	Head	Body	
D2450V2	450V2 D2450V2 706 April 4/40/40 2.4		SAR _{1g} :	51.6	52.4		
SN 706	D2450V2-700_Apr10	4/19/10	۷.4	SAR _{10g} :	24.4	24.5	
	D5GHzV2-1075_Sep09	9/3/09	5.2	SAR _{1g} :		79.0	
			0.2	SAR _{10g} :	/	22.0	
			5.5	SAR _{1g} :		85.4	
D3G112V2			5.5	SAR _{10g} :		23.5	
			5.9	SAR _{1g} :		73.2	
			5.0	SAR _{10g} :		20.1	

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

9.1. SYSTEM CHECK RESULTS

System	Date	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Tested	Tissue:	Body	Taiyet		(%)
	0/14/11	SAR _{1g} :	53.9	52.4	2.86	110
D2430V2 SIN. 700	2/14/11	SAR _{10g} :	24.7	24.5	0.82	±ΙΟ
System	Date	Measured (N	ormalized to 1 W)	Torget	$D_{olto}(0/)$	Tolerance
validation dipole	Tested	Tissue:	Body	Target	Della (%)	(%)
D5GHzV2 SN 1075	02/16/11	SAR _{1g} :	74.6	79.0	-5.57	+10
5.2 GHz	02/10/11	SAR _{10g} :	21.1	22.0	-4.09	ΞĪŪ
D5GHzV2 SN 1075	02/21/11	SAR _{1g} :	79.1	79.0	0.13	+10
5.2 GHz	02/21/11	SAR _{10g} :	22.2	22.0	0.91	ΞĪŪ
D5GHzV2 SN 1075	02/21/11	SAR _{1g} :	85.9	85.4	0.59	+10
5.5 GHz	02/21/11	SAR _{10g} :	23.7	23.5	0.85	10
D5GHzV2 SN 1075	02/21/11	SAR _{1g} :	76.6	73.2	4.64	+10
5.8 GHz	02/21/11	SAR _{10g} :	21.0	20.1	4.48	10
D5GHzV2 SN 1075	02/22/11	SAR _{1g} :	79.2	79.0	0.25	±10
5.2 GHz	02/22/11	SAR _{10g} :	22.3	22.0	1.36	ΞĪŪ
D5GHzV2 SN 1075	02/22/11	SAR _{1g} :	82.5	85.4	-3.40	±10
5.5 GHz	02/22/11	SAR _{10g} :	22.9	23.5	-2.55	ΞĪŪ
D5GHzV2 SN 1075	02/22/11	SAR _{1g} :	77.2	79.0	-2.28	+10
5.2 GHz	02/23/11	SAR _{10g} :	22.1	22.0	0.45	ΞIU
D5GHzV2 SN 1075	02/23/11	SAR _{1g} :	73.5	73.2	0.41	+10
5.8 GHz	02/23/11	SAR _{10g} :	20.7	20.1	2.99	TIO

Page 17 of 37

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 18 of 37

11. **RF OUTPUT POWER VERIFICATION**

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, CRTU v5.20.1.0, which enable a user to control the frequency and output power of the module.

Results

Mode	Antenna	Ch #	f (MHz)	Avg Output Power (dBm)
		1	2412	17.00
	А	6	2437	17.10
000 116		11	2462	16.80
802.TTD		1	2412	17.10
	В	6	2437	17.10
		11	2462	16.80
802.11a				
	0	0. //		Avg Output
Iviode	Antenna	Cn. #	f (MHz)	Power (dBm)
		36	5180	16.9
	А	40	5200	17.2
802.11a		48	5240	16.9
(5.2GHz)	В	36	5180	16.7
(, ,		40	5200	16.9
		48	5240	16.8
	А	52	5260	17.2
		60	5300	17.3
802.11a		64	5320	17.2
(5.3GHz)	В	52	5260	16.9
· · ·		60	5300	17.3
		64	5320	17.0
		100	5500	17.1
	А	120	5600	17.2
802.11a		140	5700	16.8
(5.6GHz)		100	5500	17.0
`	В	120	5600	17.0
		140	5700	16.8
		149	5745	17.2
	A	157	5785	17.1
802.11a		165	5825	16.9
(5.8GHz)		149	5745	17.2
```	В	157	5785	17.2
		165	5825	16.9

**Note:** The modes with highest output power channel were chosen for the conducted output power measurement. Please refer to original report for Average Power information as documented in 10/01/2009 original filing.

#### 12. SUMMARY OF SAR TEST RESULTS

Configuration	Antenna-to-User distance	SAR Require	Comment
Laptop mode: Lap-held	231.3 mm	No	This configuration does not require SAR assessment as the antenna-to-user separation distance is greater then 20 cm which meets the exemption requirement as indicated in FCC OET Bulletin 65 Supplement C: 2001-01.
Laptop mode: By Stander (nearby person)	-	No	This configuration does not require SAR assessment as the closest antenna-to-user configuration was covered by Edge Secondary Landscape' and is within 2.5 cm from By Stander.
Bottom Face	23.6 mm	Yes	SAR evaluation
Edge - Primary Landscape	211.18 mm	No	This is not the most conservative antenna-to- user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Edge - Secondary	2.0 mm	Yes	SAR evaluation
Landscape			This is the most conservative antenna-to-user distance at edge mode
Edge - Primary Portrait	180 mm from Main antenna to edge. 95 mm from Aux antenna to edge	No	This is not the most conservative antenna-to- user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Edge - Secondary Portrait	95 mm from Main antenna to edge. 180 mm from Aux antenna to edge	No	This is not the most conservative antenna-to- user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

Page 20 of 37

## 12.1. 2.4 GHZ BAND

## **Bottom Face**

Modo	Channel	f (MU-7)	Antonno	Results (mW/g)	
MOde	Channel	1 (IVI112)	Antenna	1g-SAR	10g-SAR
	1	2412	A		
	6	2437	A	0.018	0.00879
802 11b	11	2462	A		
802.110	1	2412	В		
	6	2437	В	0.010	0.00463
	11	2462	В		

## **Edge - Secondary Landscape**

Mada	Channel	f (M14-)	Antonno	Results (mW/g)		
woue	Charmer		Antenna	1g-SAR	10g-SAR	
	1	2412	A			
	6	2437	А	0.791	0.298	
002 11h	11	2462	A			
802.110	1	2412	В			
	6	2437	В	0.404	0.161	
	11	2462	В			

Page 21 of 37

## 12.2. 5 GHZ BANDS

## **Bottom Face**

Pond	Mada	Channel f (MHz)	Antonno	Results (mW/g)		
Dallu	MOUE			Antenna	1g-SAR	10g-SAR
		36	5180	А		
		40	5200	А	0.021	0.008
	902 11a Logoov	48	5240	А		
5.2 GHZ	ouz. Ha Leyacy	36	5180	В		
		40	5200	В	0.017	0.0035
		48	5240	В		
		52	5260	А		
		60	5300	А	0.0022	0.0003
53CH7	802.11a Legacy	64	5320	A		
5.5 GHZ		52	5260	В		
		60	5300	В	0.030	0.011
		64	5320	В		
	802.11a Legacy	100	5500	А		
		120	5600	А	0.029	0.009
5 5 CH7		140	5700	А		
5.5 GHZ		100	5500	В		
		120	5600	В	0.057	0.024
		140	5700	В		
		149	5745	А		
		157	5785	А	0.019	0.008
	802 11a Logaov	165	5825	А		
э.ŏ GHZ	802.11a Legacy	149	5745	В		
		157	5785	В	0.015	0.0036
		165	5825	В		

Page 22 of 37

Dend	Mada	Charmal	f (N /IL I)	Antonno	Results (mW/g)		
Band	Mode	Channel	T (IVIHZ)	Antenna	1g-SAR	10g-SAR	
		36	5180	А			
		40	5200	А	0.630	0.243	
5 2 CU7	902 11a Logaay	48	5240	А			
5.2 GHZ	ouz. I la Leyacy	36	5180	В	0.934	0.275	
		40	5200	В	1.030	0.307	
		48	5240	В	1.100	0.308	
		52	5260	А			
	802.11a Legacy	60	5300	А	0.596	0.177	
53 CH7		64	5320	А			
5.5 GHZ		52	5260	В	0.802	0.281	
		60	5300	В	0.862	0.255	
		64	5320	В	0.767	0.236	
	802.11a Legacy	100	5500	А	1.050	0.320	
		120	5600	А	1.110	0.405	
		140	5700	А	0.701	0.239	
5.5 GHZ		100	5500	В	0.909	0.320	
		120	5600	В	0.906	0.370	
		140	5700	В	0.739	0.319	
		149	5745	A	1.170	0.430	
		157	5785	А	0.859	0.337	
	802 11a Logaov	165	5825	А	0.900	0.358	
J.0 GI IZ	ouz. I la Leyaly	149	5745	В			
		157	5785	В	0.692	0.302	
		165	5825	В			

Page 23 of 37

#### WORST-CASE SAR TEST PLOTS

#### WORST-CASE SAR PLOT FOR 2.4 GHZ

Date/Time: 2/14/2011 5:59:29 PM

Test Laboratory: UL CCS

#### Secondary Landscape

#### DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz;  $\sigma$  = 1.917 mho/m;  $\epsilon_r$  = 51.864;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(6.86, 6.86, 6.86); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

# **802.11b** Antenna A/ch_6/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.295 mW/g

**802.11b** Antenna A/ch_6/Area Scan (81x241x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.918 mW/g

802.11b Antenna A/ch_6/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 19.442 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 2.205 W/kg SAR(1 g) = 0.791 mW/g; SAR(10 g) = 0.298 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.318 mW/g



 $0 \, dB = 1.320 \, mW/g$ 

Page 24 of 37



Page 25 of 37

#### WORST-CASE SAR PLOT FOR 5.2 GHZ

Date/Time: 2/16/2011 5:07:02 AM

Test Laboratory: UL CCS

## 5 GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: IEEE 802.11a; Frequency: 5240 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5240 MHz;  $\sigma$  = 5.127 mho/m;  $\epsilon_r$  = 47.56;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(3.98, 3.98, 3.98); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11a_5.2G_Ant B/ch_48/Area Scan (101x231x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 2.191 mW/g

## 802.11a_5.2G_Ant B/ch_48/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 21.487 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.370 W/kg SAR(1 g) = 1.1 mW/g; SAR(10 g) = 0.308 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.299 mW/g



 $0 \, dB = 2.300 \, mW/g$ 

Page 26 of 37

### 5.2 GHZ – Z plot

Date/Time: 2/16/2011 5:24:59 AM

Test Laboratory: UL CCS

### 5 GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: IEEE 802.11a; Frequency: 5240 MHz; Duty Cycle: 1:1

#### 802.11a_5.2G_Ant B/ch_48/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.307 mW/g



Page 27 of 37

#### WORST-CASE SAR PLOT FOR 5.3 GHZ

Date/Time: 2/17/2011 1:58:31 AM, Date/Time: 2/17/2011 2:55:46 AM

Test Laboratory: UL CCS

## 5 GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.2-5.3GHz; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz;  $\sigma$  = 5.23 mho/m;  $\epsilon_r$  = 47.392;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(3.7, 3.7, 3.7); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11a 5.3G_Ant B/Ch 60/Area Scan (101x231x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.889 mW/g

## 802.11a 5.3G_Ant B/Ch 60/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 20.132 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 4.089 W/kg SAR(1 g) = 0.862 mW/g; SAR(10 g) = 0.255 mW/g Maximum value of SAR (measured) = 1.825 mW/g



 $0 \, dB = 1.830 \, mW/g$ 

### 5.3 GHZ – Z plot

Date/Time: 2/17/2011 3:14:28 AM

Test Laboratory: UL CCS

## 5 GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.2-5.3GHz; Frequency: 5300 MHz; Duty Cycle: 1:1

802.11a 5.3G_Ant B/Ch 60/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 1.849 mW/g



COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 29 of 37

#### WORST-CASE SAR PLOT FOR 5.6 GHZ

Date/Time: 2/22/2011 2:49:55 PM

Test Laboratory: UL CCS

## 5 GHz Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.5GHz; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.661 mho/m;  $\epsilon_r$  = 48.971;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(3.29, 3.29, 3.29); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

5.5G Ant A/Ch 120/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.622 mW/g

# 5.5G Ant A/Ch 120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 17.395 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 4.457 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.405 mW/g Maximum value of SAR (measured) = 2.103 mW/g



 $0 \, dB = 2.100 \, mW/g$ 

### 5.6 GHZ – Z plot

Date/Time: 2/22/2011 3:07:49 PM

Test Laboratory: UL CCS

## 5.GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.5GHz; Frequency: 5600 MHz;Duty Cycle: 1:1

#### 5.5G Ant A/Ch 120/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.058 mW/g



COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 31 of 37

#### WORST-CASE SAR PLOT FOR 5.8 GHZ

Date/Time: 2/22/2011 1:28:58 PM

Test Laboratory: UL CCS

## 5.GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.8GHz; Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz;  $\sigma$  = 5.997 mho/m;  $\epsilon_r$  = 48.349;  $\rho$  = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(3.7, 3.7, 3.7); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Fix Surface)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

#### 5.8G Ant A/Ch 149/Area Scan (81x141x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.964 mW/g

## 5.8G Ant A/Ch 149/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm

Reference Value = 17.120 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 6.205 W/kg SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.430 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.017 mW/g



 $0 \, dB = 2.020 \, mW/g$ 

Page 32 of 37

### 5.8 GHZ – Z plot

Date/Time: 2/22/2011 1:46:49 PM

Test Laboratory: UL CCS

### 5.GHz_Secondary Landscape

DUT: Lenovo; Type: Comet Tablet; Serial: R9-8V2Y 10/11

Communication System: 802.11a 5.8GHz; Frequency: 5745 MHz; Duty Cycle: 1:1

#### 5.8G Ant A/Ch 149/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.734 mW/g



Page 33 of 37

# 13. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1-1	SAR Test Plots for 2.4 GHz	8
1-2	SAR Test Plots for 5 GHz Bands	32
2-1	System Check Plots for D2450V2 SN 706	2
2-2	System Check Plots for D5GHzV2 SN 1075	
3	Certificate of E-Field Probe - EX3DV3 SN 3531	11
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole D5GHzV2 SN 1075	11

Page 34 of 37

## 14. ANTENNA LOCATIONS AND SEPARATION DISTANCES

