

## EMC Test Report

## Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E

#### Intel<sup>®</sup> Centrino<sup>®</sup> Advanced-N + WiMAX 6250, model 622ANXHMW

| FCC ID(s): | PD9622ANXH  |
|------------|-------------|
|            | PD9622ANXHU |
|            | E2K625ANXH  |

APPLICANT: Intel Corporation 2111 NE 25th Avenue JF3-302 Hillsboro, OR 97124

#### TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5

REPORT DATE: September 17, 2009

FINAL TEST DATES:

Aug 7, Aug 12-14, Aug 17, Aug 20-21, Aug 24-25, Aug 28, Sept 1, Sept 3 and Sept 9, 2009

AUTHORIZED SIGNATORY:

Mark Brig

Staff Engineer Elliott Laboratories.



Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

## **REVISION HISTORY**

| Rev# | Date | Comments      | Modified By |
|------|------|---------------|-------------|
|      |      | First release |             |

## TABLE OF CONTENTS

| REVISION HISTORY2TABLE OF CONTENTS3SCOPE5OBJECTIVE5STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS SUMMARY7UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11MODIFICATIONS11ENCLOSURE11MODIFICATIONS12EUT INTERFACE PORTS12EUT INTERFACE PORTS12EUT INTERFACE PORTS12EUT INFERFACE PORTS12EUT INFERFACE PORTS14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15EUCTOPER STEMENT INSTRUMENTATION15                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE OF CONTENTS3SCOPE5OBJECTIVE5OBJECTIVE5STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS SUMMARY7UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11EUT INTERFACE PORTS12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15BECEIVER SYSTEM15BECEIVER SYSTEM15                                                                                                                                                               |
| SCOPE5OBJECTIVE5STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS SUMMARY7UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11EUT INTERFACE PORTS12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15RECEIVER SYSTEM15                                                                                                                                                                                                                              |
| OBJECTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STATEMENT OF COMPLIANCE   6     DEVIATIONS FROM THE STANDARDS   6     TEST RESULTS SUMMARY   7     UNII / LELAN DEVICES   7     GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS   10     MEASUREMENT UNCERTAINTIES   10     EQUIPMENT UNDER TEST (EUT) DETAILS   10     GENERAL   11     GENERAL   11     ANTENNA SYSTEM   11     NODIFICATIONS   11     SUPPORT EQUIPMENT   12     EUT INTERFACE PORTS   12     EUT OPERATION   13     TEST SITE   14     GENERAL INFORMATION   14     CONDUCTED EMISSIONS CONSIDERATIONS   14     RADIATED EMISSIONS CONSIDERATIONS   14     RADIATED EMISSIONS CONSIDERATIONS   14     RESUREMENT INSTRUMENTATION   15     RECEIVER SYSTEM   15 |
| STATEMENT OF COMPLIANCE6DEVIATIONS FROM THE STANDARDS6TEST RESULTS SUMMARY7UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15                                                                                                                                                                                                                                       |
| <b>DEVIATIONS FROM THE STANDARDS</b> 6 <b>TEST RESULTS SUMMARY</b> 7UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10 <b>EQUIPMENT UNDER TEST (EUT) DETAILS</b> 11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13 <b>TEST SITE</b> 14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14 <b>MEASUREMENT INSTRUMENTATION</b> 15RECEIVER SYSTEM15RECEIVER SYSTEM15                                                                                                                                                                                                  |
| TEST RESULTS SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UNII / LELAN DEVICES7GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                               |
| GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS10MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14RADIATED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                     |
| MEASUREMENT UNCERTAINTIES10EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                                                                                                      |
| EQUIPMENT UNDER TEST (EUT) DETAILS11GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13TEST SITE14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14MEASUREMENT INSTRUMENTATION15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                                                                                             |
| GENERAL11ANTENNA SYSTEM11ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13 <b>TEST SITE</b> 14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14 <b>MEASUREMENT INSTRUMENTATION</b> 15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                                                                                                               |
| ANTENNA SYSTEM 11<br>ENCLOSURE 11<br>MODIFICATIONS 11<br>SUPPORT EQUIPMENT 12<br>EUT INTERFACE PORTS 12<br>EUT OPERATION 12<br>EUT OPERATION 13<br><b>TEST SITE 14</b><br>GENERAL INFORMATION 14<br>CONDUCTED EMISSIONS CONSIDERATIONS 14<br>RADIATED EMISSIONS CONSIDERATIONS 14<br><b>MEASUREMENT INSTRUMENTATION 15</b><br>RECEIVER SYSTEM 15                                                                                                                                                                                                                                                                                                                                |
| ENCLOSURE11MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13 <b>TEST SITE</b> 14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14 <b>MEASUREMENT INSTRUMENTATION</b> 15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MODIFICATIONS11SUPPORT EQUIPMENT12EUT INTERFACE PORTS12EUT OPERATION13 <b>TEST SITE</b> 14GENERAL INFORMATION14CONDUCTED EMISSIONS CONSIDERATIONS14RADIATED EMISSIONS CONSIDERATIONS14 <b>MEASUREMENT INSTRUMENTATION</b> 15RECEIVER SYSTEM15                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SOTTOKT EQUITIMENT   12     EUT INTERFACE PORTS   12     EUT OPERATION   13 <b>TEST SITE</b> 14     GENERAL INFORMATION   14     CONDUCTED EMISSIONS CONSIDERATIONS   14     RADIATED EMISSIONS CONSIDERATIONS   14 <b>MEASUREMENT INSTRUMENTATION</b> 15     RECEIVER SYSTEM   15                                                                                                                                                                                                                                                                                                                                                                                              |
| EUT INTERIACE FORTS   12     EUT OPERATION   13 <b>TEST SITE</b> 14     GENERAL INFORMATION   14     CONDUCTED EMISSIONS CONSIDERATIONS   14     RADIATED EMISSIONS CONSIDERATIONS   14 <b>MEASUREMENT INSTRUMENTATION</b> 15     RECEIVER SYSTEM   15                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TEST SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Itest stre   14     GENERAL INFORMATION   14     CONDUCTED EMISSIONS CONSIDERATIONS   14     RADIATED EMISSIONS CONSIDERATIONS   14     MEASUREMENT INSTRUMENTATION   15     RECEIVER SYSTEM   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONDUCTED EMISSIONS CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RADIATED EMISSIONS CONSIDERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MEASUREMENT INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RECEIVER SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| INSTRUMENT CONTROL COMPUTER 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FILTERS/ATTENUATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ANTENNA MAST AND EQUIPMENT TURNTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INSTRUMENT CALIBRATION16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TEST PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EUT AND CABLE PLACEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONDUCTED EMISSIONS17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RADIATED EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RADIATED EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONDUCTED EMISSIONS FROM ANTENNA PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BANDWIDTH MEASUREMENTS 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UENEKAL I KANSMI I IEK KADIA I ED EMISSIONS SPECIFICATION LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CUITOUT DOWED LIMITS LEI AN DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPURIOUS LIMITS -LELAN DEVICES 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## TABLE OF CONTENTS (Continued)

| APPENDIX A TEST EQUIPMENT CALIBRATION DATA        | 1   |
|---------------------------------------------------|-----|
| APPENDIX B TEST DATA                              | 2   |
| APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS     | 3   |
| APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION | 4   |
| APPENDIX E DETAILED PHOTOGRAPHS                   | 5   |
| APPENDIX F OPERATOR'S MANUAL                      | 6   |
| APPENDIX G BLOCK DIAGRAM                          | 7   |
| APPENDIX H SCHEMATIC DIAGRAMS                     | 8   |
| APPENDIX I THEORY OF OPERATION                    | 9   |
| APPENDIX J RF EXPOSURE INFORMATION                | .10 |
|                                                   |     |

#### SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation Intel $\mathbb{R}$ Centrino $\mathbb{R}$  Advanced-N + WiMAX 6250, model 622ANXHMW, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

#### **OBJECTIVE**

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

#### STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

#### DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

#### TEST RESULTS SUMMARY

#### UNII / LELAN DEVICES

#### **Operation in the 5.15 – 5.25 GHz Band**

| FCC Rule<br>Part          | RSS<br>Rule Part | Description                      | Measured Value /<br>Comments                                                  | Limit / Requirement               | Result                    |
|---------------------------|------------------|----------------------------------|-------------------------------------------------------------------------------|-----------------------------------|---------------------------|
| 15.407(e)                 |                  | Indoor operation only            | Refer to user's manual                                                        | N/A                               | Complies                  |
| 15.407(a)<br>(1)          |                  | 26dB Bandwidth                   | > 20 MHz                                                                      | Limits output power<br>if < 20MHz | N/A                       |
| 15.407 (a)<br>(1)         | A9.2(1)          | Output Power                     | 802.11a: 15.3 dBm<br>HT20: 15.1 dBm<br>(0.034W)<br>HT40: 15.0 dBm<br>(0.032W) | 17dBm                             | Complies                  |
| 15.407 (a)<br>(1)         | -                | Power Spectral                   | .11a: 2.7dBm/MHz<br>HT20: 2.4dBm/MHz                                          | 4 dBm/MHz                         | Complies                  |
| -                         | A9.5 (2)         | Delisity                         | HT40: -0.6dBm/MHz                                                             | 5 dBm/MHz                         | Complies                  |
| 15.407(b)<br>(5) / 15.209 | A9.3             | Spurious Emissions<br>below 1GHz | 38.6dBµV/m@<br>114.111MHz                                                     | Refer to standard                 | Complies<br>(-4.9 dB)     |
| 15.407(b)<br>(2)          | A9.3             | Spurious Emissions<br>above 1GHz | 52.3dBµV/m @<br>5149.5MHz                                                     | Refer to standard                 | Complies<br>(- 1.7<br>dB) |
| 15.407(a)(6)              | -                | Peak Excursion Ratio             | 11.6 dB                                                                       | < 13dB                            | Complies                  |

#### **Operation in the 5.25 – 5.35 GHz Band**

| FCC Rule<br>Part          | RSS<br>Rule Part      | Description                      | Measured Value /<br>Comments                                                | Limit / Requirement                     | Result<br>(margin)        |
|---------------------------|-----------------------|----------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|---------------------------|
| 15.407(a)<br>(2)          |                       | 26dB Bandwidth                   | > 20 MHz                                                                    | N/A – limits output<br>power if < 20MHz | N/A                       |
| 15.407(a)<br>(2)          | A9.2(2)               | Output Power                     | 802.11a: 15.2dBm<br>HT20: 14.9dBm<br>(0.033W)<br>HT40: 14.6dBm<br>(0.029 W) | 17dBm<br>(50mW)                         | Complies                  |
| 15.407(a)<br>(2))         | -                     | Power Spectral Density           | a: 2.6dBm/MHz                                                               | 11 dBm/MHz                              | Complies                  |
| -                         | A9.2(2) /<br>A9.5 (2) | Power Spectral Density           | HT20: 2.0dBh/MHZ<br>HT40: -1.0dBm/MHz                                       | 11 dBm / MHz                            | Complies                  |
| 15.407(b)<br>(5) / 15.209 | A9.3                  | Spurious Emissions<br>below 1GHz | 38.6dBµV/m @<br>114.111MHz                                                  | Refer to standard                       | Complies<br>(-4.9 dB)     |
| 15.407(b)<br>(2)          | A9.3                  | Spurious Emissions<br>above 1GHz | 52.4dBµV/m @<br>5350.0MHz                                                   | Refer to standard                       | Complies<br>(- 1.6<br>dB) |
| 15.407(a)(6)              | -                     | Peak Excursion Ratio             | 11.2 dB                                                                     | < 13dB                                  | Complies                  |

| FCC Rule<br>Part          | RSS<br>Rule Part      | Description                                     | Measured Value /<br>Comments                                                   | Limit / Requirement                     | Result<br>(margin)    |
|---------------------------|-----------------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------------|
| 15.407(a)<br>(2)          |                       | 26dB Bandwidth                                  | > 20 MHz                                                                       | N/A – limits output<br>power if < 20MHz | N/A                   |
| 15.407(a)<br>(2)          | A9.2(2)               | Output Power                                    | 802.11a: 15.4 dBm<br>HT20: 15.4 dBm<br>(0.035W)<br>HT40: 15.5 dBm<br>(0.035 W) | 24 dBm / 250mW<br>(eirp < 30dBm)        | Complies              |
| 15.407(a)<br>(2))         |                       | Power Spectral Density                          | a: 2.8dBm/MHz                                                                  | 11 dBm/MHz                              | Complies              |
|                           | A9.2(2) /<br>A9.5 (2) | Power Spectral Density                          | HT40: -0.3dBm/MHz                                                              | 11 dBm / MHz                            | Complies              |
| N/A                       | A9                    | Non-operation in<br>5600 – 5650 MHz<br>sub band | Only applicable to Canada, not evaluated.                                      |                                         | -                     |
| 15.407(b)<br>(5) / 15.209 | A9.3                  | Spurious Emissions<br>below 1GHz                | 38.6dBµV/m @<br>114.111MHz                                                     | Refer to standard                       | Complies<br>(-4.9 dB) |
| 15.407(b)<br>(2)          | A9.3                  | Spurious Emissions<br>above 1GHz                | 50.2dBµV/m @<br>5459.8MHz                                                      | Refer to standard                       | Complies<br>(-3.8 dB) |
| 15.407(a)(6)              | -                     | Peak Excursion Ratio                            | 11.9 dB                                                                        | < 13dB                                  | Complies              |

| FCC Rule<br>Part | RSS<br>Rule Part | Description                                                                                                                                                          | Measured Value /<br>Comments Limit / Requirement                                                                        |                                                                                                                      | Result   |
|------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| 15.407           | A9.5a            | Modulation                                                                                                                                                           | Digital Modulation is<br>used – DSS and<br>OFDM with BPSK,<br>OPSK OAM                                                  |                                                                                                                      | Complies |
| 15               | A9.5 (3)         | - Channel Selection                                                                                                                                                  | Spurious emissions<br>tested at outermost<br>channels in each band<br>Measurements on<br>three channels in each<br>band | Device was tested<br>on the top, bottom<br>and center channels<br>in each band                                       | N/A      |
| 15.407 (c)       | A9.5(4)          | Operation in the<br>absence of<br>information to<br>transmitOperation is<br>discontinued in the<br>absence of<br>information<br>(Operational<br>Description page 14) |                                                                                                                         | Device shall<br>automatically<br>discontinue<br>operation in the<br>absence of<br>information to<br>transmit         | Complies |
| 15.407 (g)       | A9.5 (5)         | Frequency Stability                                                                                                                                                  | Frequency stability is<br>better than 20ppm<br>(Operational<br>Description page 14)                                     | Signal shall remain<br>within the allocated<br>band                                                                  | Complies |
| 15.407 (h1)      | A9.4             | Transmit Power<br>Control                                                                                                                                            | TPC is not required<br>as the device operates<br>at below 250mW eirp                                                    | The U-NII device<br>shall have the<br>capability to operate<br>with a mean EIRP<br>value lower than<br>24dBm (250mW) | Complies |
| 15.407 (h2)      | A9.4             | Dynamic frequency<br>Selection (device<br>without radar<br>detection)                                                                                                | Move time: 0.53s<br>Closing time: 1.36ms<br>(Refer to test report,<br>R76635)                                           | Channel move time<br>< 10s<br>Channel closing<br>transmission time <<br>260ms                                        | Complies |
|                  | A9.9g            | User Manual information                                                                                                                                              | Only applicable to<br>Canada, not<br>evaluated.                                                                         |                                                                                                                      | Complies |

#### **Requirements for all U-NII/LELAN bands**

| FCC Rule<br>Part                | RSS<br>Rule part            | Description                 | Measured Value /<br>Comments                                                 | Limit / Requirement                                  | Result<br>(margin)     |
|---------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------|------------------------------------------------------|------------------------|
| 15.203                          | -                           | RF Connector                | UFL connector                                                                | Unique connector<br>required                         | Complies               |
| 15.109                          | RSS GEN<br>7.2.3<br>Table 1 | Receiver spurious emissions | 38.6dBµV/m @<br>114.111MHz                                                   | Refer to standard                                    | Complies<br>(- 4.9 dB) |
| 15.207                          | RSS GEN<br>Table 2          | AC Conducted<br>Emissions   | AC Conducted 43.3dBµV @<br>Emissions 1.906MHz                                |                                                      | Complies (-12.7dB)     |
| 15.247 (b)<br>(5)<br>15.407 (f) | RSS 102                     | RF Exposure<br>Requirements | Refer to MPE<br>calculations in<br>Exhibit 11 and User<br>Manual statements. | Refer to OET 65,<br>FCC Part 1 and RSS<br>102        | Complies               |
| -                               | RSP 100<br>RSS GEN<br>7.1.5 | User Manual                 | Only applicable to<br>Canada, not<br>evaluated.                              | Statement required<br>regarding non-<br>interference | -                      |
| -                               | RSP 100<br>RSS GEN<br>7.1.5 | User Manual                 | Only applicable to<br>Canada, not<br>evaluated.                              | Statement for<br>products with<br>detachable antenna | -                      |
| -                               | RSP 100<br>RSS GEN<br>4.4.1 | 99% Bandwidth               | 802.11a: 17.1 MHz<br>HT20: 18.3 MHz<br>HT40: 36.6 MHz                        | Information only                                     | N/A                    |

#### GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

#### MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

| Measurement Type    | Frequency Range<br>(MHz) | Calculated Uncertainty<br>(dB) |
|---------------------|--------------------------|--------------------------------|
| Conducted Emissions | 0.15 to 30               | ± 2.4                          |
| Radiated Emissions  | 0.015 to 30              | $\pm 3.0$                      |
| Radiated Emissions  | 30 to 1000               | $\pm 3.6$                      |
| Radiated Emissions  | 1000 to 40000            | $\pm 6.0$                      |

#### EQUIPMENT UNDER TEST (EUT) DETAILS

#### GENERAL

The Intel Corporation Intel<sup>®</sup> Centrino<sup>®</sup> Advanced-N + WiMAX 6250, model 622ANXHMW is a PCI express form factor (half-mini) card that is designed to provide a 2x2 802.11abgn and 1x2 802.16e interfaces for host systems such as laptop PCs. The electrical rating of the EUT is 3.3Vdc (via mini PCI bus).

For module-level tests of the transceiver the card was installed into a test fixture that was controlled from a laptop PC. The test fixture exposed the card outside of a host system to meet the modular test requirements of FCC and Industry Canada.

The AC conducted emissions tests were performed with the card installed into the mini-PCI bus of a laptop, as would be the case in normal use.

The samples were received on August 3, 2009 and tested on Aug 7, Aug 12-14, Aug 17, Aug 20-21, Aug 24-25, Aug 28, Sept 1, Sept 3 and Sept 9, 2009. The EUT consisted of the following component(s):

| Company     | Model     | Description           | MAC Address  | FCC ID      |
|-------------|-----------|-----------------------|--------------|-------------|
| Intol       |           | $2x^{2}$ 802 11 share | 001E6400E972 | PD9622ANXH  |
| Corporation | 622ANXHMW | PCIe card             | 00150059F1BC | PD9622ANXHU |
|             |           |                       | 00150059F23C | E2K625ANXH  |

MAC address 001E6400E972 used for AC conducted emissions testing. MAC address 00150059F1BC or 00150059F23C used for all transmitter and radiated spurious measurements. MAC address 00150059F23C used for all rf port measurements.

#### ANTENNA SYSTEM

The antenna system used with the Intel Corporation Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW was a PIFA antenna.

#### ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

#### **MODIFICATIONS**

No modifications were made to the EUT during the time the product was at Elliott.

#### SUPPORT EQUIPMENT

The following support equipment was used for spurious radiated emissions and all rf port measurements:

| Company | Model | Description       | Serial Number | FCC ID |
|---------|-------|-------------------|---------------|--------|
| Intel   | None  | PCIe test fixture |               | N/A    |
| Dell    | -     | Laptop PC         | Prototype     | None   |
| Topward | -     | DC Supply         |               | N/A    |

The following equipment was used when measuring the conducted emissions from the AC power port:

| Company                                                 | Model             | Description | Serial Number        | FCC ID |  |
|---------------------------------------------------------|-------------------|-------------|----------------------|--------|--|
| Hewlett Packard                                         | IP26000           | Printer     | QC2-6844-<br>DB02-01 | DoC    |  |
| Toshiba                                                 | PSAG8U-<br>04001W | Host Laptop | 49290792Q            | DoC    |  |
| Company                                                 | Model             | Description | Serial Number        | FCC ID |  |
| Netgear     FS108     Hub     F518H2BCB092<br>554     - |                   |             |                      |        |  |
| The ethernet hub was located outside the test chamber.  |                   |             |                      |        |  |

#### EUT INTERFACE PORTS

The I/O cabling configuration for spurious radiated emissions and all rf port measurements was:

| Dort                   | Connected To | Cable(s)     |                        |           |  |  |
|------------------------|--------------|--------------|------------------------|-----------|--|--|
| Polt                   |              | Description  | Shielded or Unshielded | Length(m) |  |  |
| Test fixture<br>PCI    | Laptop PCI   | Ribbon Cable | Unshielded             | 0.8       |  |  |
| Test fixture<br>3.3Vdc | Bench supply | 2-wire       | Unshielded             | 0.8       |  |  |

The I/O cabling configuration for AC power port conducted emissions measurements was:

| Dort               | Connected | Cable(s)    |                        |           |  |  |
|--------------------|-----------|-------------|------------------------|-----------|--|--|
| Folt               | То        | Description | Shielded or Unshielded | Length(m) |  |  |
| Laptop<br>Ethernet | Hub       | Cat-5       | Unshielded             | 10.0      |  |  |
| Laptop USB         | Printer   | USB         | Shielded               | 1.5       |  |  |
| Laptop AC<br>Power | AC Mains  | 3Wire       | Unshielded             | 1.0       |  |  |

#### EUT OPERATION

During AC conducted emissions testing the EUT was being controlled by the CRTU tool to operate in a continuous transmit mode on the center channel. In addition the laptop was displaying a scrolling 'H' pattern on the screen and had link enabled to both the ethernet and USB peripherals.

For measurements on the radiated spurious emissions generated by the receiver the EUT was being controlled by the Intel CRTU tool to operate in a continuous receive mode on the center channel.

During transmitter tests the EUT was being controlled by the Intel CRTU tool to operate in a continuous transmit mode on the top, bottom or center channel as required and in each of the different modulation modes. The data rates of 1Mb/s for 802.11b, 6Mb/s for 802.11g, 6.5Mb/s for HT20 and 13.0Mb/s for HT40 modes were selected based on preliminary testing that identified those data rates having the highest output power in each mode when the device is operated under EEPROM control, which reduces power as the data rate is increased to ensure signal integrity.

Spurious emissions at the band edges were made with the device operating on the top and bottom channels in each band for each operating mode (802.11a in the 5GHz bands, 802.11b and 802.11g in the 2.4GHz band and both HT20 and HT40 in all bands) for each operating chain (chain A and Chain B). Additionally measurements were made in HT20 and HT40 modes with both chains active simultaneously.

Spurious radiated emissions above 1GHz away from the band edges of the allocated bands were made in single chain mode for the legacy modes (both Chain A and Chain B separately) and with both chains active in HT20 and HT40 modes. In the MIMO modes the output power per chain was set to the highest single chain power setting to ensure both single- and dual-chain power levels were covered by the one set of measurements (the output power per chain is higher in single-chain mode to obtain the same total output power as MIMO mode).

Spurious emissions at the rf port were made in single chain mode (Chain A and Chain B separately) for the legacy and HT20 and HT40 modes. For HT20 and HT40 modes the limit of -27dBm eirp was adjusted to account for antenna gain and then by an extra -3dB to account for the fact that two chains may be active simultaneously.

Preliminary measurements for the spurious emissions below 1GHz indicated that emissions below 1GHz were independent of the operating frequency and operating mode (transmit versus receive), therefore the final measurements were made with the device in transmit mode, both chains A and B active and tuned to 2437 MHz in HT20 mode.

#### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken on Aug 7, Aug 12-14, Aug 17, Aug 20-21, Aug 24-25, Aug 28, Sept 1, Sept 3 and Sept 9, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

| Sito      | Registration Numbers |         | Location         |
|-----------|----------------------|---------|------------------|
| Site      | FCC                  | Canada  |                  |
| Chamber 3 | 769238               | 2845B-3 | 41039 Boyce Road |
| Chamber 4 | 211948               | 2845B-4 | Fremont,         |
| Chamber 5 | 211948               | 2845B-5 | CA 94538-2435    |

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

#### RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

#### MEASUREMENT INSTRUMENTATION

#### RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

#### INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

#### LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

#### ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

#### ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

#### TEST PROCEDURES

#### EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

#### CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



#### RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

#### CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.



#### Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

#### BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

#### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

#### GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands<sup>1</sup> (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m)              | Limit<br>(dBuV/m @ 3m)                               |
|-----------------------------|------------------------------|------------------------------------------------------|
| 0.009-0.490                 | 2400/F <sub>KHz</sub> @ 300m | 67.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 300m |
| 0.490-1.705                 | 24000/F <sub>KHz</sub> @ 30m | 87.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 30m  |
| 1.705 to 30                 | 30 @ 30m                     | 29.5 @ 30m                                           |
| 30 to 88                    | 100 @ 3m                     | 40 @ 3m                                              |
| 88 to 216                   | 150 @ 3m                     | 43.5 @ 3m                                            |
| 216 to 960                  | 200 @ 3m                     | 46.0 @ 3m                                            |
| Above 960                   | 500 @ 3m                     | 54.0 @ 3m                                            |

<sup>&</sup>lt;sup>1</sup> The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

#### FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency<br>(MHz) | Output Power     | Power Spectral<br>Density |
|------------------------------|------------------|---------------------------|
| 5150 - 5250                  | 50mW (17 dBm)    | 4 dBm/MHz                 |
| 5250 - 5350                  | 250 mW (24 dBm)  | 11 dBm/MHz                |
| 5725 - 5825                  | 1 Watts (30 dBm) | 17 dBm/MHz                |

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

#### **OUTPUT POWER LIMITS –LELAN DEVICES**

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency | Output Power                                           | Power Spectral  |
|---------------------|--------------------------------------------------------|-----------------|
| (MHz)               |                                                        | Density         |
| 5150 - 5250         | 200mW (23 dBm) eirp                                    | 10 dBm/MHz eirp |
| 5250 - 5350         | $250 \text{ mW} (24 \text{ dBm})^2$<br>1W (30dBm) eirp | 11 dBm/MHz      |
| 5470 - 5725         | $250 \text{ mW} (24 \text{ dBm})^3$<br>1W (30dBm) eirp | 11 dBm/MHz      |
| 5725 - 5825         | 1 Watts (30 dBm)<br>4W eirp                            | 17 dBm/MHz      |

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density ) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

 <sup>&</sup>lt;sup>2</sup> If EIRP exceeds 500mW the device must employ TPC
<sup>3</sup> If EIRP exceeds 500mW the device must employ TPC

#### SPURIOUS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

#### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$ 

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

#### SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $F_d$  = Distance Factor in dB

 $D_m$  = Measurement Distance in meters

 $D_S$  = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$ 

where:

- $R_r$  = Receiver Reading in dBuV/m  $F_d$  = Distance Factor in dB
- $R_c$  = Corrected Reading in dBuV/m
- $L_s$  = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

#### SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$  microvolts per meter

where P is the eirp (Watts)

## Appendix A Test Equipment Calibration Data

| <u>Manufacturer</u>    | Description                                    | Model #                      | <u>Asset</u><br># | <u>Cal Due</u> |
|------------------------|------------------------------------------------|------------------------------|-------------------|----------------|
| AC Conducted Emi       | ssions                                         |                              | —                 |                |
| EMCO                   | LISN, 10 kHz-100 MHz                           | 3825/2                       | 1293              | 18-Mar-10      |
| Rohde& Schwarz         | Pulse Limiter                                  | ESH3 Z2                      | 1593              | 09-Jun-10      |
| Rohde & Schwarz        | EMI Test Receiver, 20 Hz-7 GHz                 | ESIB7                        | 1630              | 26-Feb-10      |
| Fischer Custom<br>Comm | LISN, 25A, 150kHz to 30MHz, 25 Amp,            | FCC-LISN-50-<br>25-2-09      | 2001              | 15-Oct-09      |
| Transmitter/Receiv     | er Spurious Emissions 30 – 1000 MHz            |                              |                   |                |
| Sunol Sciences         | Biconilog, 30-3000 MHz                         | JB3                          | 1548              | 13-Jun-10      |
| Rohde & Schwarz        | EMI Test Receiver, 20 Hz-7 GHz                 | ESIB7                        | 1630              | 26-Feb-10      |
| Com-Power Corp.        | Preamplifier, 30-1000 MHz                      | PA-103                       | 1632              | 13-Apr-10      |
| Receiver Spurious      | Emissions 1,000 – 18,000 MHz                   |                              |                   |                |
| Hewlett Packard        | Microwave Preamplifier, 1-26.5GHz              | 8449B                        | 263               | 09-Oct-09      |
| EMCO                   | Antenna, Horn, 1-18 GHz (SA40-Blu)             | 3115                         | 1386              | 02-Sep-10      |
| Hewlett Packard        | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple        | 8564E<br>(84125C)            | 1771              | 20-Oct-09      |
| Transmitter Spurio     | us Emissions 1.000 – 40.000 MHz and r          | f Port measureme             | nts               |                |
| Hewlett Packard        | Microwave Preamplifier, 1-26.5GHz              | 8449B                        | 263               | 09-Oct-09      |
| EMCO                   | Antenna, Horn, 1-18 GHz                        | 3115                         | 786               | 06-Dec-09      |
| EMCO                   | Antenna, Horn, 1-18 GHz (SA40-Blu)             | 3115                         | 1386              | 02-Sep-10      |
| Hewlett Packard        | High Pass filter, 8.2 GHz (Blu System)         | P/N 84300-<br>80039 (84125C) | 1392              | 22-Jun-10      |
| Hewlett Packard        | SpectAn 9 kHz - 40 GHz, FT (SA40)<br>Blue      | 8564E<br>(84125C)            | 1393              | 10-Apr-10      |
| Rohde & Schwarz        | Power Meter, Single Channel                    | NRVS                         | 1422              | 06-Nov-09      |
| Rohde & Schwarz        | Power Sensor 100 uW - 10 Watts                 | NRV-Z53                      | 1555              | 28-Jan-10      |
| Rohde & Schwarz        | Attenuator, 20 dB , 50 ohm, 10W, DC-<br>18 GHz | 20dB, 10W,<br>Type N         | 1556              | 28-Jan-10      |
| Micro-Tronics          | Band Reject Filter, 5150-5350 MHz              | BRC50703-02                  | 1729              | 07-Oct-09      |
| Micro-Tronics          | Band Reject Filter, 5470-5725 MHz              | BRC50704-02                  | 1730              | 07-Oct-09      |
| Hewlett Packard        | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple        | 8564E<br>(84125C)            | 1771              | 20-Oct-09      |
| Hewlett Packard        | Microwave Preamplifier, 1-26.5GHz              | 8449B                        | 1780              | 05-Mar-10      |
| Hewlett Packard        | Head (Inc W1-W4, 1946, 1947) Purple            | 84125C                       | 1772              | 6-May-10       |
| A.H. Systems           | Purple System Horn, 18-40GHz                   | SAS-574, p/n:<br>2581        | 2160              | 17-Mar-10      |

## Appendix B Test Data

| T76369 (AC conducted emissions, transmitter spurious emissions 30 – 1000 MHz, receiver spurious emissions) | 19 Pages  |
|------------------------------------------------------------------------------------------------------------|-----------|
| T76443 (Transmitter rf port measurements, transmitter radiated emissions 1 – 40GHz)                        | 132 Pages |



# EMC Test Data

| An ZAZZED              | company                     |                  |        |
|------------------------|-----------------------------|------------------|--------|
| Client:                | Intel                       | Job Number:      | J75722 |
| Model:                 | 2x2 WiFi with WiMax MiniPCI | T-Log Number:    | T76369 |
|                        |                             | Account Manager: | -      |
| Contact:               | S. Hackett                  |                  | -      |
| Emissions Standard(s): | RSS 210 / FCC 15.247        | Class:           | DTS    |
| Immunity Standard(s):  | N/A                         | Environment:     | -      |

# **EMC** Test Data

For The

# Intel

Model

2x2 WiFi with WiMax MiniPCI

Date of Last Test: 8/25/2009

| <b>C</b> E | Elliott<br>An DZAS <sup>*</sup> company |   |
|------------|-----------------------------------------|---|
| Client:    | Intel                                   |   |
| Model:     | 2x2 WiFi with WiMax MiniPCI             | А |

EMC Test Data

| Client:                                                                  | Intel                                                                     |                                                                                                                                                                             |                                                                                                     |                                            | ine interest and                            | J/5/22                                      |                                 |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------|
| Model                                                                    | ΩvΩ \/iEi wit                                                             | h WiMay MiniDCI                                                                                                                                                             |                                                                                                     | T-L                                        | og Number:                                  | T76369                                      |                                 |
| WOUEI.                                                                   |                                                                           |                                                                                                                                                                             |                                                                                                     | Accou                                      | nt Manager:                                 | -                                           |                                 |
| Contact:                                                                 | S. Hackett                                                                |                                                                                                                                                                             |                                                                                                     |                                            |                                             |                                             |                                 |
| Standard:                                                                | RSS 210 / F                                                               | CC 15.247                                                                                                                                                                   |                                                                                                     |                                            | Class:                                      | DTS                                         |                                 |
|                                                                          | С                                                                         | onducted Emissions<br>(Elliott Laboratories Fremo                                                                                                                           | • - Module Ins<br>ont Facility, Semi-An                                                             | talled in<br>Dechoic Ch                    | n Lapto<br>namber)                          | р                                           |                                 |
| Test Spec                                                                | cific Detail                                                              | S                                                                                                                                                                           |                                                                                                     |                                            |                                             |                                             |                                 |
|                                                                          | Objective:                                                                | The objective of this test session is to specification listed above.                                                                                                        | perform final qualification                                                                         | n testing of th                            | e EUT with i                                | espect to the                               | ý                               |
| [                                                                        | Date of Test:                                                             | 8/7/2009                                                                                                                                                                    | Config. Used:                                                                                       | 1                                          |                                             |                                             |                                 |
| Те                                                                       | st Engineer:                                                              | Peter Sales                                                                                                                                                                 | Config Change:                                                                                      | None                                       |                                             |                                             |                                 |
| T€                                                                       | est Location:                                                             | Chamber #3                                                                                                                                                                  | Host Unit Voltage 230V/50Hz and 120V/Hz                                                             |                                            |                                             |                                             |                                 |
| General T<br>For tabletop<br>coupling pla<br>located outs<br>when possib | equipment,<br>equipment,<br>ne and 80cm<br>ide of the se<br>ole passed th | <b>Juration</b><br>he host system was located on a woo<br>from the LISN. A second LISN was<br>ni-anechoic chamber. Any cables rur<br>rough a ferrite clamp upon exiting the | oden table inside the semi<br>s used for all local support<br>nning to remote support e<br>chamber. | i-anechoic ch<br>equipment.<br>quipment wh | amber, 40 cl<br>Remote sup<br>ere routed th | m from a ver<br>oport equipm<br>rough metal | tical<br>ent was<br>conduit and |
| Ambient (                                                                | Condition                                                                 | S: Temperature:                                                                                                                                                             | 23 °C                                                                                               |                                            |                                             |                                             |                                 |
|                                                                          |                                                                           | Rel. Humidity:                                                                                                                                                              | 40 %                                                                                                |                                            |                                             |                                             |                                 |
| Summary                                                                  | of Result                                                                 | S                                                                                                                                                                           |                                                                                                     |                                            |                                             |                                             |                                 |
| Ru                                                                       | n #                                                                       | Test Performed                                                                                                                                                              | Limit                                                                                               | Result                                     | Ма                                          | rgin                                        |                                 |

| Run # | Test Performed          | Limit                     | Result | Margin                           |
|-------|-------------------------|---------------------------|--------|----------------------------------|
| 1     | CE, AC Power, 230V/50Hz | EN55022 Class B           | Pass   | 49.6dBµV @ 1.916MHz<br>(-6.4dB)  |
| 2     | CE, AC Power,120V/60Hz  | FCC 15.207<br>FCC Class B | Pass   | 43.3dBµV @ 1.906MHz<br>(-12.7dB) |

### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

| (CE       | Elliott<br>An AZAS' company | EM               | C Test Data |
|-----------|-----------------------------|------------------|-------------|
| Client:   | Intel                       | Job Number:      | J75722      |
| Model:    | 2v2 WiEi with WiMov MiniDCI | T-Log Number:    | T76369      |
|           |                             | Account Manager: | -           |
| Contact:  | S. Hackett                  |                  |             |
| Standard: | RSS 210 / FCC 15.247        | Class:           | DTS         |
|           |                             |                  |             |



| C E         |              | <b>Dt</b>        |              |              |            |                 | EM               | С Те   |
|-------------|--------------|------------------|--------------|--------------|------------|-----------------|------------------|--------|
| Client:     | Intel        |                  |              |              |            |                 | Job Number:      | J75722 |
| Madal       | 0.0.W/F      | 1. \A/!\A\A''    |              |              |            |                 | T-Log Number:    | T76369 |
| Wodel:      | 2X2 WIFI WI  | th wiiviax iviii | NPCI         |              |            |                 | Account Manager: | -      |
| Contact:    | S. Hackett   |                  |              |              |            |                 |                  |        |
| Standard:   | RSS 210 / F  | -CC 15.247       |              |              |            |                 | Class:           | DTS    |
| Preliminary | / peak readi | ngs capture      | d during pre | e-scan (peal | readings v | vs. average lii | mit)             |        |
| Frequency   | Level        | AC               | EN 5502      | 2 Class B    | Detector   | Comments        |                  |        |
| MHz         | dBµV         | Line             | Limit        | Margin       | QP/Ave     |                 |                  |        |
| 1.916       | 56.6         | Line             | 46.0         | 10.6         | Peak       |                 |                  |        |
| 1.584       | 52.0         | Line             | 46.0         | 6.0          | Peak       |                 |                  |        |
| 3.111       | 49.8         | Line             | 46.0         | 3.8          | Peak       |                 |                  |        |
| 1.186       | 48.4         | Line             | 46.0         | 2.4          | Peak       |                 |                  |        |
| 0.153       | 56.4         | Line             | 55.8         | 0.6          | Peak       |                 |                  |        |
| 0.296       | 50.5         | Neutral          | 50.4         | 0.1          | Peak       |                 |                  |        |
| 0.940       | 45.9         | Line             | 46.0         | -0.1         | Peak       |                 |                  |        |
| 0.284       | 50.4         | Neutral          | 50.7         | -0.3         | Peak       |                 |                  |        |
| 0.151       | 55.1         | Neutral          | 55.7         | -0.6         | Peak       |                 |                  |        |
| 0.423       | 46.6         | Neutral          | 47.4         | -0.8         | Peak       |                 |                  |        |
| 0.415       | 46.2         | Line             | 47.5         | -1.3         | Peak       |                 |                  |        |

50.1

50.0

50.0

-2.3

-3.0

-4.7

# EMC Test Data

| Final augoi  | nool and  | avorago | roadinga |  |
|--------------|-----------|---------|----------|--|
| Fillal guasi | ·peak anu | average | reauings |  |
|              |           |         |          |  |

Line

Line

Neutral

47.8

47.0

45.3

0.306

5.373

5.241

| i inai quusi | peak and a | veruge reuu | ings    |           | -        |             |
|--------------|------------|-------------|---------|-----------|----------|-------------|
| Frequency    | Level      | AC          | EN 5502 | 2 Class B | Detector | Comments    |
| MHz          | dBµV       | Line        | Limit   | Margin    | QP/Ave   |             |
| 1.916        | 49.6       | Line        | 56.0    | -6.4      | QP       | QP (1.00s)  |
| 1.916        | 35.8       | Line        | 46.0    | -10.2     | AVG      | AVG (0.10s) |
| 0.151        | 55.6       | Neutral     | 65.9    | -10.3     | QP       | QP (1.00s)  |
| 1.584        | 45.3       | Line        | 56.0    | -10.7     | QP       | QP (1.00s)  |
| 0.153        | 52.6       | Line        | 65.8    | -13.2     | QP       | QP (1.00s)  |
| 1.186        | 41.8       | Line        | 56.0    | -14.2     | QP       | QP (1.00s)  |
| 0.296        | 45.9       | Neutral     | 60.4    | -14.5     | QP       | QP (1.00s)  |
| 0.284        | 46.1       | Neutral     | 60.7    | -14.6     | QP       | QP (1.00s)  |
| 3.111        | 41.3       | Line        | 56.0    | -14.7     | QP       | QP (1.00s)  |
| 1.584        | 30.5       | Line        | 46.0    | -15.5     | AVG      | AVG (0.10s) |
| 0.940        | 40.5       | Line        | 56.0    | -15.5     | QP       | QP (1.00s)  |
| 3.111        | 30.1       | Line        | 46.0    | -15.9     | AVG      | AVG (0.10s) |
| 0.423        | 41.4       | Neutral     | 57.4    | -16.0     | QP       | QP (1.00s)  |
| 0.415        | 41.3       | Line        | 57.5    | -16.2     | QP       | QP (1.00s)  |
| 0.306        | 43.6       | Line        | 60.1    | -16.5     | QP       | QP (1.00s)  |
| 0.151        | 39.0       | Neutral     | 55.9    | -16.9     | AVG      | AVG (0.10s) |
| 0.153        | 36.2       | Line        | 55.8    | -19.6     | AVG      | AVG (0.10s) |
| 1.186        | 25.2       | Line        | 46.0    | -20.8     | AVG      | AVG (0.10s) |
| 0.940        | 24.3       | Line        | 46.0    | -21.7     | AVG      | AVG (0.10s) |
| 5.373        | 37.9       | Line        | 60.0    | -22.1     | QP       | QP (1.00s)  |
| 0.284        | 28.6       | Neutral     | 50.7    | -22.1     | AVG      | AVG (0.10s) |
| 0.296        | 28.2       | Neutral     | 50.4    | -22.2     | AVG      | AVG (0.10s) |
|              |            |             |         |           |          |             |

Peak

Peak

Peak

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz Continued next page...

| E | liott           |
|---|-----------------|
| ~ | An ATAS company |

# EMC Test Data

| Client:   | Intel                       | Job Number:      | J75722 |
|-----------|-----------------------------|------------------|--------|
| Model     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76369 |
| MOUEI.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | DTS    |
|           |                             |                  |        |

| Frequency | Level | AC      | EN 55022 | 2 Class B | Detector | Comments    |
|-----------|-------|---------|----------|-----------|----------|-------------|
| MHz       | dBµV  | Line    | Limit    | Margin    | QP/Ave   |             |
| 5.241     | 37.8  | Neutral | 60.0     | -22.2     | QP       | QP (1.00s)  |
| 0.415     | 24.4  | Line    | 47.5     | -23.1     | AVG      | AVG (0.10s) |
| 5.373     | 25.5  | Line    | 50.0     | -24.5     | AVG      | AVG (0.10s) |
| 5.241     | 25.5  | Neutral | 50.0     | -24.5     | AVG      | AVG (0.10s) |
| 0.423     | 22.8  | Neutral | 47.4     | -24.6     | AVG      | AVG (0.10s) |
| 0.306     | 24.2  | Line    | 50.1     | -25.9     | AVG      | AVG (0.10s) |



|--|

# EMC Test Data

| An <u>UVAS</u> company |               |              |              |                     |            |               |                  |        |
|------------------------|---------------|--------------|--------------|---------------------|------------|---------------|------------------|--------|
| Client:                | Intel         |              |              |                     |            |               | Job Number:      | J75722 |
|                        |               |              |              |                     |            |               | T-Log Number:    | T76369 |
| Model:                 | 2x2 WiFi wit  | h WiMax Mir  | ıiPCI        |                     |            | -             | Account Manager  | -      |
| Contact                | S. Hackott    |              |              |                     |            |               | necount manager. |        |
| Contact.               |               |              |              |                     |            |               | Olass            | DTC    |
| Standard:              | RSS 2107 F    | UU 15.247    |              |                     |            |               | Class:           | DIS    |
| Droliminary            | u noak roadii | nas canturo  | d during pro | scan (noak          | roadings v | s avorago lir | nit)             |        |
| Frequency              |               |              | EN 5502      | 2 Class R           | Detector   | Commonts      | ing              |        |
| MH <sub>7</sub>        |               | Lino         | Limit        | Z Class D<br>Margin |            | Comments      |                  |        |
| 1 006                  | ΔDμν<br>/0 0  | Line         | 46 0         | 2.0                 | Doak       |               |                  |        |
| 1,700                  | 47.7          | Noutral      | 40.0         | 1.8                 | Poak       |               |                  |        |
| 1.070                  | 47.0          | Neutral      | 40.0         | 0.9                 | Peak       |               |                  |        |
| 1.744                  | 40.7          | Line         | 46.0         | -15                 | Peak       |               |                  |        |
| 0.238                  | 48.1          | Neutral      | 52.2         | -4.1                | Peak       |               |                  |        |
| 0.250                  | 46.3          | Neutral      | 51.5         | -5.2                | Peak       |               |                  |        |
| 0.237                  | 40.0          | Line         | 53.1         | -7.7                | Peak       |               |                  |        |
| 5 852                  | 38.5          | Line         | 50.0         | -11 5               | Peak       |               |                  |        |
| 5.052                  | 50.5          | LINC         | 50.0         | 11.5                | 1 Cult     |               |                  |        |
| Final quasi            | -peak and a   | verage readi | ings         |                     |            |               |                  |        |
| Frequency              | Level         | AC           | EN 5502      | 2 Class B           | Detector   | Comments      |                  |        |
| MHz                    | dBµV          | Line         | Limit        | Margin              | QP/Ave     |               |                  |        |
| 1.906                  | 43.3          | Line         | 56.0         | -12.7               | QP         | QP (1.00s)    |                  |        |
| 1.898                  | 43.1          | Neutral      | 56.0         | -12.9               | QP         | QP (1.00s)    |                  |        |
| 1.906                  | 30.0          | Line         | 46.0         | -16.0               | AVG        | AVG (0.10s)   |                  |        |
| 1.744                  | 39.9          | Neutral      | 56.0         | -16.1               | QP         | QP (1.00s)    |                  |        |
| 1.898                  | 29.5          | Neutral      | 46.0         | -16.5               | AVG        | AVG (0.10s)   |                  |        |
| 1.744                  | 28.1          | Neutral      | 46.0         | -17.9               | AVG        | AVG (0.10s)   |                  |        |
| 1.465                  | 37.9          | Line         | 56.0         | -18.1               | QP         | QP (1.00s)    |                  |        |
| 0.238                  | 44.1          | Neutral      | 62.2         | -18.1               | QP         | QP (1.00s)    |                  |        |
| 0.259                  | 42.4          | Neutral      | 61.5         | -19.1               | QP         | QP (1.00s)    |                  |        |
| 1.465                  | 26.2          | Line         | 46.0         | -19.8               | AVG        | AVG (0.10s)   |                  |        |
| 0.212                  | 40.4          | Line         | 63.1         | -22.7               | QP         | QP (1.00s)    |                  |        |
| 0.259                  | 26.7          | Neutral      | 51.5         | -24.8               | AVG        | AVG (0.10s)   |                  |        |
| 0.238                  | 25.9          | Neutral      | 52.2         | -26.3               | AVG        | AVG (0.10s)   |                  |        |
| 5.852                  | 22.5          | Line         | 50.0         | -27.5               | AVG        | AVG (0.10s)   |                  |        |
| 0.212                  | 25.5          | Line         | 53.1         | -27.6               | AVG        | AVG (0.10s)   |                  |        |
| 5.852                  | 32.0          | Line         | 60.0         | -28.0               | QP         | QP (1.00s)    |                  |        |
|                        |               |              |              |                     |            | • • •         |                  |        |
|                        |               |              |              |                     |            |               |                  |        |

# Elliott

# EMC Test Data

|           | An (AZA) company            |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76369 |
| wouer.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

## **RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions**

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: See runs

Config. Used: Module - installed in fixture

#### General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

| Ambient Conditions: | Temperature:   | 22.4 °C |
|---------------------|----------------|---------|
|                     | Rel. Humidity: | 43 %    |

#### Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

| Run #                                                                                                                            | Mode                 | Channel  | Target<br>Power | Measured<br>Power | Test Performed                                           | Limit             | Result / Margin                     |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----------------|-------------------|----------------------------------------------------------|-------------------|-------------------------------------|
| 1                                                                                                                                | Tx and RX            | Note 1   | -               | -                 | Radiated Emissions<br>30 - 1000 MHz RSS 210 / FCC 15.209 |                   | 38.6dBµV/m @<br>114.111MHz (-4.9dB) |
| 2                                                                                                                                | Receive -            | #6       | _               | -                 |                                                          |                   | 47.7dBµV/m @                        |
|                                                                                                                                  | Chain A              | 2437 MHz |                 |                   | Radiated Emissions,<br>1 -7.5 GHz                        | RSS 210           | 3000.4MHz (-6.3dB)                  |
|                                                                                                                                  | Receive              | #6       |                 | -                 |                                                          |                   | 47.8dBµV/m @                        |
|                                                                                                                                  | Chain A+B            | 2437 MHz | -               |                   |                                                          |                   | 3000.4MHz (-6.2dB)                  |
| 3                                                                                                                                | Receive -            | #40      |                 | -                 |                                                          |                   | 45.9dBµV/m @                        |
|                                                                                                                                  | Chain A              | 5200MHz  | -               |                   |                                                          |                   | 6000.7MHz (-8.1dB)                  |
|                                                                                                                                  | Receive -            | #60      |                 | -                 |                                                          |                   | 47.2dBµV/m @                        |
|                                                                                                                                  | Chain A              | 5300 MHz | -               |                   | Radiated Emissions,                                      | ECC 15 200 / 15 E | 3000.4MHz (-6.8dB)                  |
|                                                                                                                                  | Receive -            | #120     | -               | -                 | 1 - 18 GHz                                               | 100 13.2077 13 L  | 47.1dBµV/m @                        |
|                                                                                                                                  | Chain A              | 5600MHz  |                 |                   |                                                          |                   | 3000.4MHz (-6.9dB)                  |
|                                                                                                                                  | Receive -            | #157     |                 |                   |                                                          |                   | 47.0dBµV/m @                        |
|                                                                                                                                  | Chain A              | 5785 MHz | -               | -                 |                                                          |                   | 3000.4MHz (-7.0dB)                  |
|                                                                                                                                  | Receive<br>Chain A+B | #40      |                 | -                 |                                                          |                   | 46.8dBµV/m @                        |
|                                                                                                                                  |                      | 5200MHz  | -               |                   | Radiated Emissions,                                      |                   | 3000.4MHz (-7.2dB)                  |
|                                                                                                                                  |                      | #60      |                 |                   |                                                          |                   | 45.4dBµV/m @                        |
|                                                                                                                                  |                      | 5300 MHz | -               | -                 |                                                          | ECC 15 200 / 15 E | 6000.8MHz (-8.6dB)                  |
|                                                                                                                                  |                      | #120     |                 |                   | 1 - 18 GHz                                               | 100 13.2077 13 L  | Not tostod, single chain            |
|                                                                                                                                  |                      | 5600MHz  | -               | -                 |                                                          |                   | was worst case for all              |
|                                                                                                                                  |                      | #157     |                 |                   |                                                          |                   | othor channols                      |
|                                                                                                                                  |                      | 5785 MHz | -               | -                 |                                                          |                   |                                     |
| 1: Scans indicated that emissions below 1Ghz were independent of operating channel and operating mode (transmit versus receive). |                      |          |                 |                   |                                                          |                   |                                     |



| E | liott           |
|---|-----------------|
| - | An ATAS company |

# EMC Test Data

|           | An Burbany                  |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model:    | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76369 |
|           |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### Preliminary peak readings captured during pre-scan

| i remining | y beak readings captured during pre source |     |       |         |           |         |        |          |
|------------|--------------------------------------------|-----|-------|---------|-----------|---------|--------|----------|
| Frequency  | Level                                      | Pol | FCC C | Class B | Detector  | Azimuth | Height | Comments |
| MHz        | dBµV/m                                     | v/h | Limit | Margin  | Pk/QP/Avg | degrees | meters |          |
| 117.044    | 46.1                                       | Н   | 43.5  | 2.6     | Peak      | 116     | 1.5    |          |
| 59.084     | 38.9                                       | V   | 40.0  | -1.1    | Peak      | 112     | 3.0    |          |
| 823.821    | 43.8                                       | V   | 46.0  | -2.2    | Peak      | 18      | 1.0    |          |
| 348.972    | 41.2                                       | Н   | 46.0  | -4.8    | Peak      | 139     | 1.0    |          |
| 185.004    | 37.7                                       | Н   | 43.5  | -5.8    | Peak      | 343     | 1.0    |          |
| 221.440    | 38.9                                       | Н   | 46.0  | -7.1    | Peak      | 232     | 2.0    |          |
| 699.113    | 38.9                                       | Н   | 46.0  | -7.1    | Peak      | 119     | 1.0    |          |
| 299.318    | 37.8                                       | Н   | 46.0  | -8.2    | Peak      | 89      | 1.0    |          |
| 250.778    | 37.4                                       | Н   | 46.0  | -8.6    | Peak      | 55      | 1.0    |          |
| 497.978    | 36.7                                       | V   | 46.0  | -9.3    | Peak      | 5       | 1.0    |          |
|            |                                            |     |       |         |           |         |        |          |


| <b>E</b> | liott            |
|----------|------------------|
|          | An /A7A5 company |

|                     | An ZAZ              | A) company   |              |               |             |            |        |              |        |
|---------------------|---------------------|--------------|--------------|---------------|-------------|------------|--------|--------------|--------|
| Client:             | Intel               |              |              |               |             |            |        | Job Number:  | J75722 |
|                     |                     |              |              |               |             |            | T-!    | Log Number:  | T76369 |
| Model:              | 2x2 WiFi wit        | h WiMax Mir  | iPCI         |               |             |            | Accou  | int Manager: | -      |
| Contact:            | S Hackett           |              |              |               |             |            |        |              |        |
| Standard            | DSS 210 / F         | CC 15 247    |              |               |             |            |        | Class        | Ν/Λ    |
| Statiuaru.          | R33 2 107 1         | 00 13.247    |              |               |             |            |        | 01035.       | IN/A   |
| P <u>reliminary</u> | p <u>eak readir</u> |              |              |               |             |            |        |              |        |
| Frequency           | Level               | Pol          | FCC C        | Class B       | Detector    | Azimuth    | Height | Comments     |        |
| MHz                 | dBµV/m              | v/h          | Limit        | Margin        | Pk/QP/Avg   | degrees    | meters |              |        |
| 114.111             | 45.9                | Н            | 43.5         | 2.4           | Peak        | 108        | 1.5    |              |        |
| 59.733              | 39.9                | V            | 40.0         | -0.1          | Peak        | 101        | 2.5    |              |        |
| 827.133             | 42.1                | V            | 46.0         | -3.9          | Peak        | 22         | 4.0    |              |        |
| 37.191              | 35.0                | V            | 40.0         | -5.0          | Peak        | 155        | 1.0    |              |        |
| 195.133             | 37.6                | Н            | 43.5         | -5.9          | Peak        | 10         | 1.5    |              |        |
| 299.102             | 38.0                | Н            | 46.0         | -8.0          | Peak        | 104        | 1.0    |              |        |
| 226.148             | 37.9                | Н            | 46.0         | -8.1          | Peak        | 235        | 1.5    |              |        |
| 349.533             | 37.8                | Н            | 46.0         | -8.2          | Peak        | 148        | 1.0    | 1            |        |
| 499.662             | 37.2                | V            | 46.0         | -8.8          | Peak        | 0          | 1.0    | 1            |        |
| 699.000             | 37.0                | Н            | 46.0         | -9.0          | Peak        | 121        | 1.0    | 1            |        |
| 249.555             | 36.4                | Н            | 46.0         | -9.6          | Peak        | 230        | 1.0    | 1            |        |
|                     |                     | . <u> </u>   | ·            |               | ·           | . <u> </u> | J      | J            |        |
|                     |                     |              |              |               |             |            |        |              |        |
| Run #1c: M          | aximized qu         | asi-peak rea | adings - wor | rst case fror | m 1a and 1b |            |        |              |        |
| Frequency           | Level               | Pol          | FCC C        | Class B       | Detector    | Azimuth    | Height | Comments     |        |
| MHz                 | dBµV/m              | v/h          | Limit        | Margin        | Pk/QP/Avg   | degrees    | meters |              |        |
| 114.111             | 38.6                | Н            | 43.5         | -4.9          | QP          | 126        | 1.5    | QP (1.00s)   |        |
| 59.733              | 30.0                | V            | 40.0         | -10.0         | QP          | 65         | 2.0    | QP (1.00s)   |        |
| 349.533             | 35.4                | Н            | 46.0         | -10.6         | QP          | 127        | 1.0    | QP (1.00s)   |        |
| 37.191              | 29.1                | V            | 40.0         | -10.9         | QP          | 113        | 1.0    | OP (1.00s)   |        |
| 299,102             | 35.0                | Н            | 46.0         | -11.0         | QP          | 83         | 1.0    | OP (1.00s)   |        |
| 499.662             | 34.6                | V            | 46.0         | -11.4         | QP          | 10         | 1.1    | OP (1.00s)   |        |
| 699.000             | 34.3                | Н            | 46.0         | -11.7         | QP          | 112        | 1.2    | OP (1.00s)   |        |
| 226.148             | 32.7                | H            | 46.0         | -13.3         | QP          | 233        | 1.4    | OP (1.00s)   |        |
| 195.133             | 29.9                | H            | 43.5         | -13.6         | OP          | 27         | 1.0    | OP (1.00s)   |        |
| 249,555             | 32.3                | H            | 46.0         | -13.7         | OP          | 219        | 1.0    | OP (1.00s)   |        |
| 827,133             | 16.5                | V            | 46.0         | -29.5         | OP          | 0          | 3.5    | OP (1.00s)   |        |
| 027.100             | 10.0                | `            | 10.0         | 27.0          |             | `          | 0.0    |              |        |
|                     |                     |              |              |               |             |            |        |              |        |

| C | EI | li | ot      | t     |
|---|----|----|---------|-------|
| ~ |    | An | ATAT CO | mpany |

|                                                 | An ZAZ                                                                                                                            | Company Company |               |           |                                        |               |                                        |              |           |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------|----------------------------------------|---------------|----------------------------------------|--------------|-----------|--|--|
| Client:                                         | Intel                                                                                                                             |                 |               |           |                                        |               |                                        | Job Number:  | J75722    |  |  |
| Maria I.                                        | 0.0.11/151                                                                                                                        |                 |               |           |                                        |               | T-l                                    | _og Number:  | T76369    |  |  |
| Model:                                          | 2x2 WiFi wit                                                                                                                      | h Wilviax Mir   | IIPCI         |           |                                        |               | Αссоι                                  | Int Manager: | -         |  |  |
| Contact:                                        | S. Hackett                                                                                                                        |                 |               |           |                                        |               |                                        |              |           |  |  |
| Standard:                                       | RSS 210 / F                                                                                                                       | CC 15.247       |               |           | Class:                                 | N/A           |                                        |              |           |  |  |
| Run #2, Red                                     | 2, Receiver Radiated Spurious Emissions, 1,000 - 7,500 MHz. Operation in the 2.4 GHz Band                                         |                 |               |           |                                        |               |                                        |              |           |  |  |
| . [                                             | Date of Test:                                                                                                                     | 8/25/2009       |               |           | Ťe                                     | est Location: | FT Chambe                              | r #4         |           |  |  |
| Те                                              | st Engineer:                                                                                                                      | Rafael Vare     | las           |           | Con                                    | fig Change:   | none                                   |              |           |  |  |
| Run #2a: C                                      | enter chann                                                                                                                       | el (2437MHz     | z, channel 6) | , Chain A |                                        | 0 0           |                                        |              |           |  |  |
| Frequency                                       | Level                                                                                                                             | Pol             | RSS           | 5 210     | Detector                               | Azimuth       | Height                                 | Comments     |           |  |  |
| MHz                                             | dBµV/m                                                                                                                            | v/h             | Limit         | Margin    | Pk/QP/Avg                              | degrees       | meters                                 |              |           |  |  |
| 3000.380                                        | 47.7                                                                                                                              | V               | 54.0          | -6.3      | AVG                                    | 267           | 1.0                                    | MHz; VB: 1   | 0 Hz      |  |  |
| 3000.300                                        | 51.2                                                                                                                              | V               | 74.0          | -22.8     | PK                                     | 267           | 1.0                                    | MHz; VB: 1   | MHz       |  |  |
| 6000.730                                        | 45.2                                                                                                                              | V               | 54.0          | -8.8      | AVG                                    | 147           | 1.0                                    | MHz; VB: 1   | 0 Hz      |  |  |
| 6000.560                                        | 49.6                                                                                                                              | V               | 74.0          | -24.4     | PK                                     | 147           | 1.0                                    | MHz; VB: 1   | MHz       |  |  |
| 1327.640                                        | 26.9                                                                                                                              | V               | 54.0          | -27.1     | AVG                                    | 141           | 1.0                                    | MHz; VB: 1   | 0 Hz      |  |  |
| 1327.240                                        | 48.9                                                                                                                              | V               | 74.0          | -25.1     | PK                                     | 141           | 1.0                                    | MHz; VB: 1   | MHz       |  |  |
| Cente<br>8<br>7<br>(W/\ngp) aprijidwy<br>3<br>2 | r channel (2<br>0.0 -<br>0.0 - | 437 MHz, Ch     | 1annel 6) Ch  | ain A     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              | 7000 7500 |  |  |
|                                                 |                                                                                                                                   |                 |               |           | Frequency                              | (MHz)         |                                        |              |           |  |  |
|                                                 |                                                                                                                                   |                 |               |           |                                        |               |                                        |              |           |  |  |
|                                                 |                                                                                                                                   |                 |               |           |                                        |               |                                        |              |           |  |  |

#### Run #2b: Center channel (2437MHz, channel 6), Chain A and B

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments       |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------|
| MHz       | dBµV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                |
| 3000.440  | 47.8   | V   | 54.0  | -6.2   | AVG       | 265     | 1.0    | MHz; VB: 10 Hz |
| 3000.400  | 50.8   | V   | 74.0  | -23.2  | PK        | 265     | 1.0    | MHz; VB: 1 MHz |
| 1329.540  | 32.1   | V   | 54.0  | -21.9  | AVG       | 110     | 1.0    | MHz; VB: 10 Hz |
| 1327.800  | 55.1   | V   | 74.0  | -18.9  | PK        | 110     | 1.0    | MHz; VB: 1 MHz |
| 6000.870  | 46.7   | V   | 54.0  | -7.3   | AVG       | 102     | 1.0    | MHz; VB: 10 Hz |
| 6000.770  | 50.3   | V   | 74.0  | -23.7  | PK        | 102     | 1.0    | MHz; VB: 1 MHz |
| 1         |        |     |       |        |           |         |        |                |





| Client:    | Intel       |                   |             |             |               |                      | Job Number: | J75722     |      |
|------------|-------------|-------------------|-------------|-------------|---------------|----------------------|-------------|------------|------|
| Madal      |             | h MiMov Mir       |             |             |               | T-Log Number: T76369 |             |            |      |
| would.     |             | II VVIIVIAX IVIII | IIPCI       |             | Αссоι         | unt Manager:         | -           |            |      |
| Contact:   | S. Hackett  |                   |             |             |               |                      |             |            |      |
| Standard:  | RSS 210 / F | CC 15.247         |             |             |               |                      |             | Class:     | N/A  |
| Run #3b: C | enter chanr | nel 5150 - 52     | 50 MHz (520 | )0MHz, char | nnel 40), Cha | in A and B           |             |            |      |
| Frequency  | Level       | Pol               | RSS         | 5 210       | Detector      | Azimuth              | Height      | Comments   |      |
| MHz        | dBµV/m      | v/h               | Limit       | Margin      | Pk/QP/Avg     | degrees              | meters      |            |      |
| 3000.360   | 46.8        | V                 | 54.0        | -7.2        | AVG           | 263                  | 1.0         | MHz; VB: 1 | 0 Hz |
| 3000.360   | 50.8        | V                 | 74.0        | -23.2       | PK            | 263                  | 1.0         | MHz; VB: 1 | MHz  |
| 6000.740   | 46.1        | V                 | 54.0        | -7.9        | AVG           | 98                   | 1.0         | MHz; VB: 1 | 0 Hz |
| 6000.580   | 49.4        | V                 | 74.0        | -24.6       | PK            | 98                   | 1.0         | MHz; VB: 1 | MHz  |
| 9001.030   | 42.1        | V                 | 54.0        | -11.9       | 135           | 1.0                  | MHz; VB: 1  | 0 Hz       |      |
| 9000.940   | 49.5        | V                 | 74.0        | -24.5       | 135           | 1.0                  | MHz; VB: 1  | MHz        |      |
| 1330.000   | 42.4        | V                 | 54.0        | -11.6       | Peak          | 97                   | 1.9         |            |      |





| Client:    | Intel       |              |             |            |                      |         | Job Number: | J75722     |      |
|------------|-------------|--------------|-------------|------------|----------------------|---------|-------------|------------|------|
| Madalı     |             | h MiMox Mir  |             |            | T-Log Number: T76369 |         |             |            |      |
| iviouei:   |             | II WIWAX WII | IIPCI       | Αссоι      | unt Manager:         | -       |             |            |      |
| Contact:   | S. Hackett  |              |             |            |                      |         |             |            |      |
| Standard:  | RSS 210 / F | CC 15.247    |             |            |                      |         |             | Class:     | N/A  |
| Run #3c: C | enter chann | el 5250 - 53 | 50 MHz (530 | 0MHz, chan | nel 60), Chai        | n A     |             |            |      |
| Frequency  | Level       | Pol          | RSS         | 5 210      | Detector             | Azimuth | Height      | Comments   |      |
| MHz        | dBµV/m      | v/h          | Limit       | Margin     | Pk/QP/Avg            | degrees | meters      |            |      |
| 3000.360   | 47.2        | V            | 54.0        | -6.8       | AVG                  | 261     | 1.0         | MHz; VB: 1 | 0 Hz |
| 3000.290   | 51.1        | V            | 74.0        | -22.9      | PK                   | 261     | 1.0         | MHz; VB: 1 | MHz  |
| 9001.080   | 43.8        | V            | 54.0        | -10.2      | AVG                  | 132     | 1.0         | MHz; VB: 1 | 0 Hz |
| 9001.050   | 51.0        | V            | 74.0        | -23.0      | PK                   | 132     | 1.0         | MHz; VB: 1 | MHz  |
| 6000.750   | 45.8        | V            | 54.0        | -8.2       | AVG                  | 270     | 1.7         | MHz; VB: 1 | 0 Hz |
| 6000.590   | 50.9        | V            | 74.0        | -23.1      | 270                  | 1.7     | MHz; VB: 1  | MHz        |      |
| 1320.830   | 41.8        | V            | 54.0        | -12.2      | Peak                 | 108     | 1.6         |            |      |





| Client:    | Intel        |                   |             |            |               |              |                      | Job Number: | J75722 |
|------------|--------------|-------------------|-------------|------------|---------------|--------------|----------------------|-------------|--------|
| Madal      |              | h MiMov Mir       |             |            |               |              | T-Log Number: T76369 |             | T76369 |
| would.     |              | II VVIIVIAX IVIII | IIPCI       |            | Αссоι         | unt Manager: | -                    |             |        |
| Contact:   | S. Hackett   |                   |             |            |               |              |                      |             |        |
| Standard:  | RSS 210 / F  | CC 15.247         |             |            |               |              |                      | Class:      | N/A    |
| Run #3d: C | Center chanr | nel 5250 - 53     | 50 MHz (530 | 0MHz, char | nnel 60), Cha | in A and B   |                      |             |        |
| Frequency  | Level        | Pol               | RSS         | 210        | Detector      | Azimuth      | Height               | Comments    |        |
| MHz        | dBµV/m       | v/h               | Limit       | Margin     | Pk/QP/Avg     | degrees      | meters               |             |        |
| 6000.750   | 45.4         | V                 | 54.0        | -8.6       | AVG           | 270          | 1.8                  | MHz; VB: 1  | 0 Hz   |
| 6000.850   | 49.6         | V                 | 74.0        | -24.4      | PK            | 270          | 1.8                  | MHz; VB: 1  | MHz    |
| 1328.170   | 32.1         | V                 | 54.0        | -21.9      | AVG           | 109          | 1.0                  | MHz; VB: 1  | 0 Hz   |
| 1328.510   | 57.3         | V                 | 74.0        | -16.7      | PK            | 109          | 1.0                  | MHz; VB: 1  | MHz    |
| 9001.080   | 43.2         | V                 | 54.0        | -10.8      | AVG           | 133          | 1.0                  | MHz; VB: 1  | 0 Hz   |
| 9001.030   | 50.6         | V                 | 74.0        | -23.4      | 133           | 1.0          | MHz; VB: 1           | MHz         |        |
| 3000.390   | 44.5         | Η                 | 54.0        | -9.5       | 215           | 1.3          | MHz; VB: 1           | 0 Hz        |        |
| 3000.230   | 49.0         | Н                 | 74.0        | -25.0      | PK            | 215          | 1.3                  | MHz; VB: 1  | MHz    |





| Client:     | Intel       |               |             |            |              |              | Job Number:          | J75722     |      |
|-------------|-------------|---------------|-------------|------------|--------------|--------------|----------------------|------------|------|
| Madalı      |             | h WiMax Mir   |             |            |              |              | T-Log Number: T76369 |            |      |
| woder:      |             | II WIWAX WII  | IIPCI       |            | Αссоι        | unt Manager: | -                    |            |      |
| Contact:    | S. Hackett  |               |             |            |              |              |                      |            |      |
| Standard:   | RSS 210 / F | CC 15.247     |             |            |              |              |                      | Class:     | N/A  |
| Run #3e: Co | enter chann | el 5470 - 572 | 25 MHz (560 | 0MHz, chan | nel 120), Ch | ain A        |                      |            |      |
| Frequency   | Level       | Pol           | RSS         | 210        | Detector     | Azimuth      | Height               | Comments   |      |
| MHz         | dBµV/m      | v/h           | Limit       | Margin     | Pk/QP/Avg    | degrees      | meters               |            |      |
| 3000.360    | 47.1        | V             | 54.0        | -6.9       | AVG          | 267          | 1.0                  | MHz; VB: 1 | 0 Hz |
| 6000.720    | 45.7        | V             | 54.0        | -8.3       | AVG          | 268          | 1.8                  | MHz; VB: 1 | 0 Hz |
| 9001.050    | 41.8        | V             | 54.0        | -12.2      | AVG          | 190          | 1.0                  | MHz; VB: 1 | 0 Hz |
| 1320.830    | 41.3        | V             | 54.0        | -12.7      | Peak         | 120          | 1.9                  |            |      |
| 3000.400    | 50.7        | V             | 74.0        | -23.3      | PK           | 267          | 1.0                  | MHz; VB: 1 | MHz  |
| 6000.690    | 50.8        | V             | 74.0        | -23.2      | PK           | 268          | 1.8                  | MHz; VB: 1 | MHz  |
| 9000.880    | 49.6        | V             | 74.0        | -24.4      | PK           | 190          | 1.0                  | MHz; VB: 1 | MHz  |



#### Run #3f: Center channel 5470 - 5725 MHz (5600MHz, channel 120), Chain A and B

Not performed - previous measurements in 5150 - 5350 MHz frequency range demonstrated that emissions with the single chain active were representative of the emissions with both chains active.



| Client:    | Intel       |              |             |            |               |              | Job Number: | J75722     |      |
|------------|-------------|--------------|-------------|------------|---------------|--------------|-------------|------------|------|
| Madalı     |             | h MiMox Mir  |             |            |               |              | T-          | T76369     |      |
| would.     |             | II WIWAX WII | IIPCI       |            | Αссοι         | unt Manager: | -           |            |      |
| Contact:   | S. Hackett  |              |             |            |               |              |             |            |      |
| Standard:  | RSS 210 / F | CC 15.247    |             |            |               |              |             | Class:     | N/A  |
| Run #3g: C | enter chann | el 5725 - 58 | 50 MHz (578 | 5MHz, chan | nel 157), Cha | ain A        |             |            |      |
| Frequency  | Level       | Pol          | RSS         | 5 210      | Detector      | Azimuth      | Height      | Comments   |      |
| MHz        | dBµV/m      | v/h          | Limit       | Margin     | Pk/QP/Avg     | degrees      | meters      |            |      |
| 3000.390   | 47.0        | V            | 54.0        | -7.0       | AVG           | 264          | 1.0         | MHz; VB: 1 | 0 Hz |
| 3000.370   | 50.7        | V            | 74.0        | -23.3      | PK            | 264          | 1.0         | MHz; VB: 1 | MHz  |
| 6000.740   | 45.8        | V            | 54.0        | -8.2       | AVG           | 269          | 1.8         | MHz; VB: 1 | 0 Hz |
| 6000.440   | 50.0        | V            | 74.0        | -24.0      | PK            | 269          | 1.8         | MHz; VB: 1 | MHz  |
| 9001.040   | 41.3        | V            | 54.0        | -12.7      | 176           | 1.1          | MHz; VB: 1  | 0 Hz       |      |
| 9001.110   | 49.3        | V            | 74.0        | -24.7      | 176           | 1.1          | MHz; VB: 1  | MHz        |      |
| 1330.000   | 42.1        | V            | 54.0        | -11.9      | Peak          | 98           | 1.0         |            |      |



#### Run #3h: Center channel 5725 - 5850 MHz (5785MHz, channel 157), Chain A and B

Not performed - previous measurements in 5150 - 5350 MHz frequency range demonstrated that emissions with the single chain active were representative of the emissions with both chains active.



| An ZAZZED              | company                     |                  |        |
|------------------------|-----------------------------|------------------|--------|
| Client:                | Intel                       | Job Number:      | J75722 |
| Model:                 | 2x2 WiFi with WiMax MiniPCI | T-Log Number:    | T76443 |
|                        |                             | Account Manager: | -      |
| Contact:               | S. Hackett                  |                  | -      |
| Emissions Standard(s): | RSS 210 / FCC 15.247        | Class:           | DTS    |
| Immunity Standard(s):  | N/A                         | Environment:     | -      |

### **EMC** Test Data

For The

### Intel

Model

2x2 WiFi with WiMax MiniPCI

Date of Last Test: 9/11/2009

| Ellic                                                                                                                      | Dtt<br>Zar company                                                                                                                                          |                                                                          |                               | EMC Test                                                     | Data              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------------|
| Client: Intel                                                                                                              |                                                                                                                                                             |                                                                          | ~                             | Job Number: J75722                                           |                   |
| Model: 2x2 WiFi wi                                                                                                         | th WiMax MiniPCI                                                                                                                                            |                                                                          | T-L                           | og Number: T76443                                            |                   |
|                                                                                                                            |                                                                                                                                                             | Accou                                                                    | nt Manager: -                 |                                                              |                   |
| Contact: S. Hackett                                                                                                        |                                                                                                                                                             |                                                                          |                               |                                                              |                   |
| Standard: RSS 210 / F                                                                                                      | ·CC 15.247                                                                                                                                                  |                                                                          |                               | Class: N/A                                                   |                   |
| Antenna F<br>Pow                                                                                                           | RSS-210 (LELAN<br>Port Measurements -<br>er, PSD, Peak Excursion,                                                                                           | I) and FCC 15<br>Single Chain I<br>, Bandwidth and                       | .407(UN<br>Modes,<br>Spuriou  | NII)<br>5150 - 5250 MI<br>us Emissions                       | Hz                |
| Dest Specific Detai<br>Objective:                                                                                          | IS<br>The objective of this test session is to<br>specification listed above.                                                                               | perform final qualification                                              | n testing of th               | e EUT with respect to the                                    |                   |
| Date of Test:<br>Test Engineer:<br>Test Location:                                                                          | 8/28/2009<br>Rafael Varelas<br>FT Chamber #4                                                                                                                | Config. Used:<br>Config Change:<br>Host Unit Voltage                     | 1<br>None<br>120V/60Hz        |                                                              |                   |
| General Test Confi<br>When measuring the con<br>analyzer or power meter<br>allow for the external att<br>Ambient Condition | guration<br>nducted emissions from the EUT's antervia a suitable attenuator to prevent ov<br>enuators and cables used.<br>S: Temperature:<br>Rel. Humidity: | enna port, the antenna po<br>rerloading the measureme<br>22.4 °C<br>43 % | ort of the EUT<br>ent system. | was connected to the spec<br>All measurements are corre      | ctrum<br>ected to |
| Sample #2 MAC Addres                                                                                                       | s: 00150059F23C: CRTU Tool Version                                                                                                                          | 15.199.36.999. Driver Ve                                                 | rsion 13.0.0.9                | 91                                                           |                   |
| Run #                                                                                                                      | Test Performed                                                                                                                                              | Limit                                                                    | Pass / Fail                   | Result / Margin                                              |                   |
| 1                                                                                                                          | Power, 5150 - 5250MHz                                                                                                                                       | 15.407(a) (1), (2)                                                       | Pass                          | 802.11a: 15.3 dBm<br>HT20: 15.1 dBm<br>HT40: 15.0 dBm        |                   |
| 1                                                                                                                          | PSD, 5150 - 5250MHz                                                                                                                                         | 15.407(a) (1), (2)                                                       | Pass                          | 802.11a: 2.7dBm/MHz<br>HT20: 2.4dBm/MHz<br>HT40: -0.6dBm/MHz |                   |
| 1                                                                                                                          | 26dB Bandwidth                                                                                                                                              | 15.407                                                                   | -                             | 802.11a: 30.8 MHz<br>HT20: 35.6 MHz<br>HT40: 64.3 MHz        |                   |
| 1                                                                                                                          | 99% Bandwidth                                                                                                                                               | RSS 210                                                                  | -                             | 802.11a: 17.0 MHz<br>HT20: 18.2 MHz<br>HT40: 36.3 MHz        |                   |
| 2                                                                                                                          | Peak Excursion Envelope                                                                                                                                     | 15.407(a) (6)                                                            | Pass                          | 802.11a: 10.4 dB<br>HT20: 10.6 dB<br>HT40: 11.6 dB           |                   |
| 3                                                                                                                          | Antenna Conducted - Out of Band<br>Spurious                                                                                                                 | 15.407(b)                                                                | Pass                          | All emissions below the -27dB/MHz limit                      |                   |

# Elliott

# EMC Test Data

|           | An Z(ZZZ) company           |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model: 2  | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
|           |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

#### Run #1: Bandwidth, Output Power and Power spectral Density

|             |              |                 |                          |                | Antenna              | a Gain (dBi):  | 3.6            |                         |                        |            |
|-------------|--------------|-----------------|--------------------------|----------------|----------------------|----------------|----------------|-------------------------|------------------------|------------|
| Frequency   | Average      | Band            | width                    | Output P       | ower <sup>1</sup> dB | Power          | F              | PSD <sup>2</sup> dB/MHz |                        |            |
| (MHz)       | Power        | 26dB            | <b>99</b> % <sup>4</sup> | Measured       | Limit                | (Watts)        | Measured       | FCC Limit               | RSS Limit <sup>3</sup> | Result     |
| Chain A, 80 | 2.11a Mode   |                 |                          |                |                      |                |                |                         |                        |            |
| 5180        | 16.6         | 28.3            | 17.0                     | 15.1           | 17.0                 | 0.033          | 2.4            | 4.0                     | 6.4                    | Pass       |
| 5200        | 16.7         | 28.0            | 16.9                     | 14.8           | 17.0                 | 0.030          | 2.3            | 4.0                     | 6.4                    | Pass       |
| 5240        | 16.8         | 30.8            | 16.9                     | 15.3           | 17.0                 | 0.034          | 2.7            | 4.0                     | 6.4                    | Pass       |
| Chain B, 80 | 2.11a Mode   |                 |                          |                |                      |                |                |                         |                        |            |
| 5180        | 16.7         | 29.3            | 16.9                     | 14.7           | 17.0                 | 0.030          | 2.1            | 4.0                     | 6.4                    | Pass       |
| 5200        | 16.6         | 30.4            | 16.9                     | 14.7           | 17.0                 | 0.030          | 2.0            | 4.0                     | 6.4                    | Pass       |
| 5240        | 16.6         | 28.3            | 16.9                     | 14.9           | 17.0                 | 0.031          | 2.3            | 4.0                     | 6.4                    | Pass       |
| Chain A, H  | C20 Mode     |                 |                          |                |                      |                |                |                         |                        |            |
| 5180        | 16.7         | 30.8            | 18.2                     | 15.0           | 17.0                 | 0.032          | 2.4            | 4.0                     | 6.4                    | Pass       |
| 5200        | 16.7         | 31.8            | 18.2                     | 14.8           | 17.0                 | 0.030          | 1.9            | 4.0                     | 6.4                    | Pass       |
| 5240        | 16.8         | 32.3            | 18.2                     | 15.1           | 17.0                 | 0.032          | 2.3            | 4.0                     | 6.4                    | Pass       |
| Chain B, H  | C20 Mode     |                 |                          |                |                      |                |                |                         |                        |            |
| 5180        | 16.6         | 32.3            | 18.2                     | 14.6           | 17.0                 | 0.029          | 1.7            | 4.0                     | 6.4                    | Pass       |
| 5200        | 16.6         | 31.2            | 18.2                     | 14.6           | 17.0                 | 0.029          | 1.7            | 4.0                     | 6.4                    | Pass       |
| 5240        | 16.6         | 35.6            | 18.2                     | 14.7           | 17.0                 | 0.030          | 2.0            | 4.0                     | 6.4                    | Pass       |
| Chain A, H  | T40 Mode     |                 |                          |                |                      |                |                |                         |                        |            |
| 5190        | 16.0         | 51.3            | 36.3                     | 14.3           | 17.0                 | 0.027          | -1.3           | 4.0                     | 6.4                    | Pass       |
| 5230        | 16.8         | 51.7            | 36.3                     | 15.0           | 17.0                 | 0.032          | -0.6           | 4.0                     | 6.4                    | Pass       |
| Chain B, H  | 40 Mode      |                 |                          |                |                      |                |                |                         |                        |            |
| 5190        | 16.0         | 54.3            | 36.3                     | 14.2           | 17.0                 | 0.026          | -1.6           | 4.0                     | 6.4                    | Pass       |
| 5230        | 16.8         | 64.3            | 36.3                     | 14.8           | 17.0                 | 0.030          | -1.0           | 4.0                     | 6.4                    | Pass       |
|             | -            |                 |                          |                |                      |                |                |                         |                        |            |
|             | Output powe  | er measured     | using a spec             | trum analyze   | er (see plots        | below):        |                |                         |                        |            |
| Note 1:     | RBW=1MHz     | , VB=3 MHz      | , sample dete            | ector, power   | averaging or         | n (transmitted | d signal was ( | continuous) a           | and power int          | egration   |
|             | over 50MHz   | for the 20M     | nz channel si            | pacing and 8   | <u>OMHz for the</u>  | 40MHz cha      | nnel Spacing   |                         |                        |            |
| Note 2:     | Measured us  | sing the sam    | e analyzer s             | ettings used f | for output po        | wer.           |                |                         |                        |            |
|             | For RSS-21   | 0 the limit for | the 5150 - 5             | 5250 MHz bai   | nd accounts          | for the anten  | ina gain as th | ne maximum              | eirp allowed           | is         |
| Note 3.     | 10dB/MHz.    | The limits are  | e also correc            | ted for instan | ces where th         | ie highest me  | easured valu   | e of the PSD            | exceeds the            | average    |
| NOLE J.     | PSD (calcula | ated from the   | e measured p             | ower divided   | l by the meas        | sured 99% b    | andwidth) by   | more than 3             | dB by the am           | nount that |
|             | the measure  | ed value exce   | eds the aver             | rage by more   | than 3dB.            |                |                |                         | -                      |            |
| Note 4:     | 99% Bandwi   | dth measure     | d in accorda             | nce with RSS   | S GEN - RB :         | > 1% of span   | and VB >=3     | xRB                     |                        |            |
| Note 5:     | Average Pol  | wer listed wa   | s measured               | with an avera  | age power m          | eter and is fo | or manufactu   | rer's referend          | ce only.               |            |





# CElliott

# EMC Test Data

|           | An DLEED Company            |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| woder:    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### Run #2: Peak Excursion Measurement

#### Device meets the requirement for the peak excursion 802.11a Chain A/B HT20 Cha HT20 Chain A/B

| 802        | .11a Chain         | A/B   | ' H                           | T20 Chain A | /B         | HT40 Chain A/B |            |       |  |
|------------|--------------------|-------|-------------------------------|-------------|------------|----------------|------------|-------|--|
| Freq/Chain | Peak Excursion(dB) |       | Freq/Chain Peak Excursion(dB) |             | Freq/Chain | Peak Exc       | ursion(dB) |       |  |
| (MHz)      | Value              | Limit | (MHz)                         | Value       | Limit      | (MHz)          | Value      | Limit |  |
| 5180/A     | 10.2               | 13.0  | 5180/A                        | 9.7         | 13.0       | 5190/A         | 11.3       | 13.0  |  |
| 5200/A     | 9.9                | 13.0  | 5200/A                        | 10.3        | 13.0       | 5230/A         | 11.2       | 13.0  |  |
| 5240/A     | 10.4               | 13.0  | 5240/A                        | 10.2        | 13.0       |                |            |       |  |
| 5180/B     | 9.5                | 13.0  | 5180/B                        | 10.2        | 13.0       | 5190/B         | 11.1       | 13.0  |  |
| 5200/B     | 9.7                | 13.0  | 5200/B                        | 10.5        | 13.0       | 5230/B         | 11.6       | 13.0  |  |
| 5240/B     | 9.8                | 13.0  | 5240/B                        | 10.6        | 13.0       |                |            |       |  |







| <b>CEI</b> | liott           |
|------------|-----------------|
| ч <u>с</u> | An ATAT company |

| Client:    | Intel                                                                             | Job Number:                | J75722                    |
|------------|-----------------------------------------------------------------------------------|----------------------------|---------------------------|
| Madal      |                                                                                   | T-Log Number:              | T76443                    |
| iviodel:   |                                                                                   | Account Manager:           | -                         |
| Contact:   | S. Hackett                                                                        |                            |                           |
| Standard:  | RSS 210 / FCC 15.247                                                              | Class:                     | N/A                       |
| Run #3: Oi | It Of Band Spurious Emissions - Antenna Conducted                                 |                            |                           |
|            |                                                                                   |                            |                           |
|            | The -27dB/MHz limit is an eirp limit. The limit for antenna port conducted m      | easurements is adjusted    | to take into              |
| Noto 1     | consideration the maximum antenna gain (limit = -27dB - antenna gain). Ra         | adiated field strength mea | surements for signals     |
| NOLE T.    | more than 50MHz from the bands and that are close to the limit are made to        | o determine compliance a   | s the antenna gain is not |
|            | known at these frequencies. Only average limit is used on the plots - solid i     | red line.                  |                           |
| Note 2:    | All spurious signals below 1GHz are measured during digital device radiated       | d emissions test.          |                           |
| Note 3:    | Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit       | of -17dB EIRP              |                           |
| Note 4:    | If the device is for outdoor use then the -27dB eirp limit also applies in the 5  | 150 - 5250 MHz band.       |                           |
| Note 5:    | Signals that fall in the restricted bands of 15.205 are subject to the limit of 1 | 5.209.                     |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |
|            |                                                                                   |                            |                           |







CElliott

# EMC Test Data

|           | An Burney                   |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model:    | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
|           |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |

#### HT20 and HT40 Modes

**MIMO Devices:** Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Although the operating power levels in this data sheet are for single chain operation the plots are considering operation on two chains simultaneously to cover both single chain and dual modes of operation. The actual dual chain operation is at a lower per-chain power level so these single chain plots at a higher output power level will represent a worst case.

Number of transmit chains:

| Maximum Antenna Gain:                 | 3.6 dBi         |                                  |
|---------------------------------------|-----------------|----------------------------------|
| Spurious Limit:                       | -27.0 dB/MHz ei | rp                               |
| Adjustment for 2 chains:              | -3.0 dB adjustr | nent for multiple chains.        |
| Limit Used On Plats <sup>Note 1</sup> | -33.6 dB/MHz    | Average Limit (RB=1MHz, VB=10Hz) |
| LIIIII USEU OIT FIUIS .               | -13.6 dB/MHz    | Peak Limit (RB=VB=1MHz)          |

2











| <b>Ellic</b>                                                                                                                                       | ott                                                                                                                                                                                       |                                                                         |                              | EMC Test Dat                                                    | а       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|---------|
| Client: Intel                                                                                                                                      |                                                                                                                                                                                           |                                                                         |                              | Job Number: J75722                                              |         |
| Model: 2x2 WiFi wit                                                                                                                                | h WiMax MiniPCI                                                                                                                                                                           | T-L                                                                     | Log Number: T76443           |                                                                 |         |
| Contact: S. Hackett                                                                                                                                |                                                                                                                                                                                           |                                                                         | ALLUL                        |                                                                 |         |
| Standard: RSS 210 / F                                                                                                                              | CC 15.247                                                                                                                                                                                 |                                                                         |                              | Class: N/A                                                      |         |
| Antenn<br>Powe                                                                                                                                     | RSS-210 (LELAN<br>a Port Measurement<br>r, PSD, Peak Excursion,                                                                                                                           | ) and FCC 15.4<br>s - Single Cha<br>Bandwidth and                       | 407(UN<br>in, 525<br>Spuriou | II)<br>0 - 5350 MHz<br>s Emissions                              |         |
| Test Specific Detail                                                                                                                               | ls                                                                                                                                                                                        |                                                                         |                              |                                                                 |         |
| Objective:                                                                                                                                         | The objective of this test session is to specification listed above.                                                                                                                      | perform final qualification                                             | n testing of th              | ne EUT with respect to the                                      |         |
| Date of Test:<br>Test Engineer:<br>Test Location:                                                                                                  | 9/1/2009<br>Suhaila Khushzad/R. Varelas<br>FT Lab#1                                                                                                                                       | Config. Used:<br>Config Change:<br>Host Unit Voltage                    | 1<br>None<br>120V/60Hz       |                                                                 |         |
| General Test Config<br>When measuring the cor<br>analyzer or power meter<br>allow for the external atte<br>Ambient Conditions<br>Summary of Result | guration   nducted emissions from the EUT's antervise   via a suitable attenuator to prevent over   enuators and cables used.   S: Temperature:   Rel. Humidity:   S   Control 100505220: | enna port, the antenna po<br>erloading the measureme<br>22.5 °C<br>44 % | rt of the EUT<br>ent system. | was connected to the spectrum<br>All measurements are corrected | ו<br>to |
| Run #                                                                                                                                              | Test Performed                                                                                                                                                                            | Limit                                                                   | Pass / Fail                  | Result / Margin                                                 |         |
| 1                                                                                                                                                  | Power, 5250 - 5350MHz                                                                                                                                                                     | 15.407(a) (1), (2)                                                      | Pass                         | 802.11a: 15.2dBm<br>HT20: 14.9dBm<br>HT40: 14.6dBm              |         |
| 1                                                                                                                                                  | PSD, 5250 - 5350MHz                                                                                                                                                                       | 15.407(a) (1), (2)                                                      | Pass                         | 802.11a: 2.6dBm/MHz<br>HT20: 2.0dBm/MHz<br>HT40: -1.0dBm/MHz    |         |
| 1                                                                                                                                                  | 26dB Bandwidth                                                                                                                                                                            | 15.407                                                                  | -                            | 802.11a: 34.9 MHz<br>HT20: 37.5 MHz<br>HT40: 65.1 MHz           |         |
| 1                                                                                                                                                  | 99% Bandwidth                                                                                                                                                                             | RSS 210                                                                 | -                            | 802.11a: 17.1 MHz<br>HT20: 18.2 MHz<br>HT40: 36.5 MHz           |         |
| 2                                                                                                                                                  | Peak Excursion Envelope                                                                                                                                                                   | 15.407(a) (6)                                                           | Pass                         | 802.11a: 10.2 dB<br>HT20: 11.0 dB<br>HT40: 11.2 dB              |         |
| 3                                                                                                                                                  | Antenna Conducted - Out of Band<br>Spurious                                                                                                                                               | 15.407(b)                                                               | Pass                         | All emissions below the -27dB/MHz limit                         |         |
| Modifications Made                                                                                                                                 | e Durina Testina                                                                                                                                                                          |                                                                         |                              |                                                                 |         |

No modifications were made to the EUT during testing

# Elliott

## EMC Test Data

| Client:   | Intel                       | Job Number:      | J75722 |
|-----------|-----------------------------|------------------|--------|
| Model:    | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| would.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

#### Run #1: Bandwidth, Output Power and Power spectral Density

Antenna Gain (dBi): 3.7

|             |              |                 |                         |                 | _                    |               |                |                        |                        |           |
|-------------|--------------|-----------------|-------------------------|-----------------|----------------------|---------------|----------------|------------------------|------------------------|-----------|
| Frequency   | Average      | Band            | width                   | Output Po       | ower <sup>1</sup> dB | Power         |                | PSD <sup>2</sup> dB/MH | Z                      | Result    |
| (MHz)       | Power        | 26dB            | <b>99%</b> <sup>4</sup> | Measured        | Limit                | (Watts)       | Measured       | FCC Limit              | RSS Limit <sup>3</sup> | rtooun    |
| Chain A, 80 | 2.11a Mode   |                 |                         |                 |                      |               |                |                        |                        |           |
| 5260        | 16.5         | 30.1            | 16.9                    | 14.7            | 24.0                 | 0.029         | 2.0            | 11.0                   | 11.0                   | Pass      |
| 5300        | 16.5         | 32.3            | 17.0                    | 14.6            | 24.0                 | 0.029         | 1.9            | 11.0                   | 11.0                   | Pass      |
| 5320        | 16.6         | 34.8            | 17.1                    | 15.2            | 24.0                 | 0.033         | 2.6            | 11.0                   | 11.0                   | Pass      |
| Chain B, 80 | 2.11a Mode   |                 |                         |                 |                      |               |                |                        |                        |           |
| 5260        | 16.6         | 32.0            | 16.9                    | 15.0            | 24.0                 | 0.032         | 2.3            | 11.0                   | 11.0                   | Pass      |
| 5300        | 16.6         | 34.9            | 17.0                    | 14.6            | 24.0                 | 0.029         | 2.1            | 11.0                   | 11.0                   | Pass      |
| 5320        | 16.6         | 34.8            | 17.1                    | 14.7            | 24.0                 | 0.030         | 2.3            | 11.0                   | 11.0                   | Pass      |
| Chain A, H  | T20 Mode     |                 |                         |                 |                      |               |                |                        |                        |           |
| 5260        | 16.7         | 35.8            | 18.2                    | 14.9            | 24.0                 | 0.031         | 2.0            | 11.0                   | 11.0                   | Pass      |
| 5300        | 16.5         | 36.0            | 18.2                    | 14.3            | 24.0                 | 0.027         | 1.6            | 11.0                   | 11.0                   | Pass      |
| 5320        | 15.6         | 36.8            | 18.2                    | 14.1            | 24.0                 | 0.026         | 1.2            | 11.0                   | 11.0                   | Pass      |
| Chain B, H  | T20 Mode     |                 |                         |                 |                      |               |                |                        |                        |           |
| 5260        | 16.7         | 33.7            | 18.2                    | 14.4            | 24.0                 | 0.028         | 1.4            | 11.0                   | 11.0                   | Pass      |
| 5300        | 16.6         | 37.5            | 18.2                    | 14.1            | 24.0                 | 0.026         | 1.2            | 11.0                   | 11.0                   | Pass      |
| 5320        | 15.2         | 37.1            | 18.2                    | 12.9            | 24.0                 | 0.019         | 0.0            | 11.0                   | 11.0                   | Pass      |
| Chain A, H  | T40 Mode     |                 |                         |                 |                      |               |                |                        |                        |           |
| 5270        | 16.5         | 55.2            | 36.4                    | 14.5            | 24.0                 | 0.028         | -1.3           | 11.0                   | 11.0                   | Pass      |
| 5310        | 16.3         | 48.2            | 36.4                    | 14.1            | 24.0                 | 0.026         | -1.7           | 11.0                   | 11.0                   | Pass      |
| Chain B, H  | T40 Mode     |                 |                         |                 |                      |               |                |                        |                        |           |
| 5270        | 16.8         | 65.1            | 36.3                    | 14.6            | 24.0                 | 0.029         | -1.0           | 11.0                   | 11.0                   | Pass      |
| 5310        | 15.6         | 51.6            | 36.5                    | 13.3            | 24.0                 | 0.021         | -2.5           | 11.0                   | 11.0                   | Pass      |
|             |              |                 |                         |                 |                      |               |                |                        |                        |           |
|             | Output powe  | er measured     | using a spe             | ctrum analyze   | r (see plots         | below):       |                |                        |                        |           |
| Note 1:     | RBW=1MHz     | , VB=3 MHz      | , sample det            | ector, power a  | averaging or         | (transmitte   | d signal was ( | continuous) a          | and power int          | egration  |
|             | over 50MHz   | for the 20M     | nz channel s            | pacing and 80   | OMHz for the         | 40Mhz cha     | nnel Spacing   |                        |                        | 0         |
| Note 2:     | Measured us  | sing the sam    | e analyzer s            | ettings used f  | or output po         | wer.          |                |                        |                        |           |
|             | For RSS-21   | 0 the limit for | the 5150 - !            | 5250 MHz bar    | nd accounts          | for the anter | nna gain as th | ne maximum             | eirp allowed           | is        |
| Noto 2      | 10dB/MHz.    | The limits are  | e also correc           | ted for instand | ces where th         | e highest m   | easured valu   | e of the PSD           | exceeds the            | average   |
| Note 3:     | PSD (calcula | ated from the   | e measured j            | power divided   | by the meas          | sured 99% b   | andwidth) by   | more than 3            | dB by the am           | ount that |
|             | the measure  | ed value exce   | eds the ave             | rage by more    | than 3dB.            |               | , ,            |                        | 5                      |           |
| Note 4:     | 99% Bandw    | idth measure    | ed in accorda           | ance with RSS   | GEN - RB             | > 1% of spar  | n and VB >=3   | xRB                    |                        |           |
| Note 5:     | Average Po   | wer listed wa   | s measured              | ' with an avera | age power m          | eter and is f | or manufactu   | rer's referend         | ce only.               |           |
|             |              |                 |                         |                 |                      |               |                |                        |                        |           |
|             |              |                 |                         |                 |                      |               |                |                        |                        |           |
|             |              |                 |                         |                 |                      |               |                |                        |                        |           |





#### Run #2: Peak Excursion Measurement

#### Device meets the requirement for the peak excursion

| 802        | .11a Chain          | A/B   | . H                            | F20 Chain A | /B                 | HT40 Chain A/B |             |       |  |
|------------|---------------------|-------|--------------------------------|-------------|--------------------|----------------|-------------|-------|--|
| Freq/Chain | Peak Excursion (dB) |       | Freq/Chain Peak Excursion (dB) |             | Freq/Chain Peak Ex |                | ursion (dB) |       |  |
| (MHz)      | Value               | Limit | (MHz)                          | Value       | Limit              | (MHz)          | Value       | Limit |  |
| 5260/A     | 10.1                | 13.0  | 5260/A                         | 9.8         | 13.0               | 5270/A         | 11.2        | 13.0  |  |
| 5300/A     | 9.8                 | 13.0  | 5300/A                         | 11.0        | 13.0               | 5310/A         | 11.1        | 13.0  |  |
| 5320/A     | 9.2                 | 13.0  | 5320/A                         | 10.0        | 13.0               |                |             |       |  |
| 5260/B     | 9.6                 | 13.0  | 5260/B                         | 10.6        | 13.0               | 5270/B         | 11.1        | 13.0  |  |
| 5300/B     | 10.2                | 13.0  | 5300/B                         | 9.8         | 13.0               | 5310/B         | 11.0        | 13.0  |  |
| 5320/B     | 10.1                | 13.0  | 5320/B                         | 9.9         | 13.0               |                |             |       |  |







| E | liott           |
|---|-----------------|
| C | An ATAS company |

| Client:                                                                                         | Intel                                                                                                                                                                                                                                                                                                                                    | Job Number:                           | J75722       |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--|
| Model: 2v2 WiEi with WiMay MiniDCI                                                              | T-Log Number:                                                                                                                                                                                                                                                                                                                            | T76443                                |              |  |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                          | Account Manager:                      | -            |  |
| Contact:                                                                                        | S. Hackett                                                                                                                                                                                                                                                                                                                               |                                       |              |  |
| Standard:                                                                                       | RSS 210 / FCC 15.247                                                                                                                                                                                                                                                                                                                     | Class:                                | N/A          |  |
| Run #3: Out Of Band Spurious Emissions - Antenna Conducted                                      |                                                                                                                                                                                                                                                                                                                                          |                                       |              |  |
|                                                                                                 | The 27dD/MUz limit is an airp limit. The limit for enterne port conducted m                                                                                                                                                                                                                                                              | ocuromonte le adjustad                | ta taka inta |  |
| Note 1:                                                                                         | consideration the maximum antenna gain (limit = -27dB - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies. Only average limit is used on the plots - solid red line. |                                       |              |  |
| Note 2:                                                                                         | All spurious signals below 1GHz are measured during digital device radiated emissions test.                                                                                                                                                                                                                                              |                                       |              |  |
| Note 3:                                                                                         | Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dB EIRP                                                                                                                                                                                                                                                |                                       |              |  |
| Note 4:                                                                                         | If the device is for outdoor use then the -27dB eirp limit also applies in the 5150 - 5250 MHz band.                                                                                                                                                                                                                                     |                                       |              |  |
| Note 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. |                                                                                                                                                                                                                                                                                                                                          |                                       |              |  |
| 1802. I 18 MO                                                                                   | Aaximum Antenna Gain: 3.7 dBi<br>Spurious Limit: -27.0 dB/MHz eirp<br>-30.7 dB/MHz Average Lim<br>Limit Used On Plots <sup>Note 1</sup> : -10.7 dB/MHz Peak Limit (                                                                                                                                                                      | iit (RB=1MHz, VB=10Hz)<br>RB=VB=1MHz) |              |  |






## EMC Test Data

|                    | Job Number:                             | J75722                                                                                      |
|--------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
| with WiMax MiniDCI | T-Log Number:                           | T76443                                                                                      |
|                    | Account Manager:                        | -                                                                                           |
| t                  |                                         |                                                                                             |
| / FCC 15.247       | Class:                                  | N/A                                                                                         |
|                    | with WiMax MiniPCI<br>t<br>/ FCC 15.247 | Job Number:    with WiMax MiniPCI    T-Log Number:    Account Manager:    t    / FCC 15.247 |

#### HT20 and HT40 Modes

MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Although the operating power levels in this data sheet are for single chain operation the plots are considering operation on two chains simultaneously to cover both single chain and dual modes of operation. The actual dual chain operation is at a lower per-chain power level so these single chain plots at a higher output power level will represent a worst case.

> Number of transmit chains: Maximum Antenna Gain: Limit Used On Plots Note 1:

2 3.7 dBi 

 Maximum Antenna Gain:
 3.7 dBi

 Spurious Limit:
 -27.0 dB/MHz eirp

 Adjustment for 2 chains:
 -3.0 dB adjustment for multiple chains.

Average Limit (RB=1MHz, VB=10Hz) -33.7 dB/MHz -13.7 dB/MHz

Peak Limit (RB=VB=1MHz)

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)











| Ellic                                                                                                                   |                                                                                                                                                                                                  |                                                                        | EMC Test Da                      |                                                                 |                    |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------|--------------------|--|
| Client: Intel                                                                                                           | Company                                                                                                                                                                                          |                                                                        |                                  | Job Number: J75722                                              |                    |  |
| Model: 2x2 WiFi wi                                                                                                      | th WiMax MiniPCI                                                                                                                                                                                 |                                                                        | T-L                              | og Number: T76443                                               |                    |  |
| Ourtest C Heekett                                                                                                       |                                                                                                                                                                                                  | Accou                                                                  | Int Manager: -                   |                                                                 |                    |  |
| Contact: S. Hackett                                                                                                     | CC 15 3/7                                                                                                                                                                                        |                                                                        |                                  |                                                                 |                    |  |
|                                                                                                                         | -00 15.247                                                                                                                                                                                       |                                                                        |                                  | Class. IN/A                                                     |                    |  |
| Anten<br>Pow                                                                                                            | RSS-210 (LELAN<br>na Port Measurement<br>er, PSD, Peak Excursion                                                                                                                                 | l) and FCC 15<br>ts - Single Ch<br>, Bandwidth and                     | .407(UN<br>ain, 547<br>d Spuriou | NII)<br>70 - 5725 MHz<br>us Emissions                           |                    |  |
| Test Specific Detai                                                                                                     | ls                                                                                                                                                                                               |                                                                        |                                  |                                                                 |                    |  |
| Objective                                                                                                               | The objective of this test session is to specification listed above.                                                                                                                             | perform final qualificatio                                             | n testing of th                  | ne EUT with respect to the                                      |                    |  |
| Date of Test:<br>Test Engineer:<br>Test Location:                                                                       | 9/1/2009<br>Rafael Varelas<br>FT Radio Lab                                                                                                                                                       | Config. Used<br>Config Change<br>Host Unit Voltage                     | : 1<br>: None<br>: 120V/60Hz     |                                                                 |                    |  |
| When measuring the co<br>analyzer or power meter<br>allow for the external att<br>Ambient Condition<br>Summary of Resul | nducted emissions from the EUT's anter<br>via a suitable attenuator to prevent ov<br>enuators and cables used.<br>IS: Temperature:<br>Rel. Humidity:<br>ts<br>s: 00150059E23C: CBTU Tool Version | enna port, the antenna po<br>erloading the measurem<br>22.1 °C<br>43 % | ort of the EUT<br>ent system.    | vas connected to the spe<br>All measurements are corro          | ectrum<br>ected to |  |
| Run #                                                                                                                   | Test Performed                                                                                                                                                                                   | Limit                                                                  | Pass / Fail                      | Result / Margin                                                 |                    |  |
| 1                                                                                                                       | Power, 5470 - 5725MHz                                                                                                                                                                            | 15.407(a) (1), (2)                                                     | Pass                             | 802.11a: 15.4 dB<br>HT20: 15.4 dB<br>HT40: 15.5 dB              |                    |  |
| 1                                                                                                                       | PSD, 5470 - 5725MHz                                                                                                                                                                              | 15.407(a) (1), (2)                                                     | Pass                             | 802.11a: 2.8 dBm/MHz<br>HT20: 2.6 dBm/MHz<br>HT40: -0.3 dBm/MHz |                    |  |
| 1                                                                                                                       | 26dB Bandwidth                                                                                                                                                                                   | 15.407                                                                 | -                                | 802.11a: 36.7 MHz<br>HT20: 38.7 MHz<br>HT40: 73.4 MHz           |                    |  |
| 1                                                                                                                       | 99% Bandwidth                                                                                                                                                                                    | RSS 210                                                                | -                                | 802.11a: 17.1 MHz<br>HT20: 18.3 MHz<br>HT40: 36.6 MHz           |                    |  |
| 2                                                                                                                       | Peak Excursion Envelope                                                                                                                                                                          | 15.407(a) (6)                                                          | Pass                             | 802.11a: 10.9 dB<br>HT20: 10.8 dB                               |                    |  |
|                                                                                                                         |                                                                                                                                                                                                  |                                                                        |                                  | H140: 11.9 dB                                                   |                    |  |

### Modifications Made During Testing

No modifications were made to the EUT during testing

## EMC Test Data

|           | An ZALED Company            |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Madal     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| wouer.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

### Deviations From The Standard

No deviations were made from the requirements of the standard.

### Run #1: Bandwidth, Output Power and Power spectral Density

|                     |              |                 |                              |                | Antenn               | a Gain (dBi):  | 4.8            |                        |                        |           |
|---------------------|--------------|-----------------|------------------------------|----------------|----------------------|----------------|----------------|------------------------|------------------------|-----------|
| Frequency           | Average      | Band            | lwidth                       | Output Po      | ower <sup>1</sup> dB | Power          | ŀ              | PSD <sup>2</sup> dB/MH | Z                      | Devel     |
| (MHz)               | Power        | 26dB            | <b>99</b> % <sup>4</sup>     | Measured       | Limit                | (Watts)        | Measured       | FCC Limit              | RSS Limit <sup>3</sup> | Result    |
| Chain A, 80         | 2.11a Mode   |                 |                              |                |                      |                |                |                        |                        |           |
| 5500                | 16.8         | 35.3            | 17.1                         | 15.4           | 24.0                 | 0.035          | 2.7            | 11.0                   | 11.0                   | Pass      |
| 5600                | 16.6         | 33.1            | 17.0                         | 14.7           | 24.0                 | 0.029          | 2.2            | 11.0                   | 11.0                   | Pass      |
| 5700                | 16.8         | 35.2            | 17.1                         | 15.0           | 24.0                 | 0.031          | 2.6            | 11.0                   | 11.0                   | Pass      |
| Chain B, 80         | 2.11a Mode   |                 |                              |                |                      |                |                |                        |                        |           |
| 5500                | 16.7         | 36.7            | 17.1                         | 15.0           | 24.0                 | 0.032          | 2.5            | 11.0                   | 11.0                   | Pass      |
| 5600                | 16.8         | 36.0            | 17.0                         | 15.1           | 24.0                 | 0.032          | 2.8            | 11.0                   | 11.0                   | Pass      |
| 5700                | 16.7         | 36.0            | 17.1                         | 15.3           | 24.0                 | 0.034          | 2.6            | 11.0                   | 11.0                   | Pass      |
| Chain A, H          | T20 Mode     |                 |                              |                |                      |                |                |                        |                        |           |
| 5500                | 16.7         | 34.3            | 18.2                         | 15.0           | 24.0                 | 0.032          | 2.1            | 11.0                   | 11.0                   | Pass      |
| 5600                | 16.6         | 34.8            | 18.2                         | 14.6           | 24.0                 | 0.029          | 1.8            | 11.0                   | 11.0                   | Pass      |
| 5700                | 16.7         | 38.2            | 18.3                         | 15.0           | 24.0                 | 0.031          | 2.0            | 11.0                   | 11.0                   | Pass      |
| Chain B, H          | T20 Mode     |                 |                              |                |                      |                |                |                        |                        |           |
| 5500                | 16.8         | 37.1            | 18.3                         | 15.0           | 24.0                 | 0.032          | 2.0            | 11.0                   | 11.0                   | Pass      |
| 5600                | 16.7         | 37.9            | 18.3                         | 15.0           | 24.0                 | 0.032          | 2.3            | 11.0                   | 11.0                   | Pass      |
| 5700                | 16.6         | 38.7            | 18.3                         | 15.4           | 24.0                 | 0.035          | 2.6            | 11.0                   | 11.0                   | Pass      |
| Chain A, H          | T40 Mode     |                 |                              |                |                      |                |                |                        |                        |           |
| 5510                | 16.6         | 64.8            | 36.3                         | 14.9           | 24.0                 | 0.031          | -0.6           | 11.0                   | 11.0                   | Pass      |
| 5590                | 16.6         | 62.3            | 36.3                         | 14.6           | 24.0                 | 0.029          | -1.1           | 11.0                   | 11.0                   | Pass      |
| 5670                | 16.7         | 65.2            | 36.5                         | 15.2           | 24.0                 | 0.033          | -0.6           | 11.0                   | 11.0                   | Pass      |
| Chain B, H          | T40 Mode     |                 |                              |                |                      |                |                |                        |                        |           |
| 5510                | 16.6         | 72.6            | 36.5                         | 15.0           | 24.0                 | 0.031          | -0.7           | 11.0                   | 11.0                   | Pass      |
| 5590                | 16.6         | 73.4            | 36.5                         | 15.5           | 24.0                 | 0.035          | -0.3           | 11.0                   | 11.0                   | Pass      |
| 5670                | 16.8         | 72.6            | 36.6                         | 15.4           | 24.0                 | 0.035          | -0.3           | 11.0                   | 11.0                   | Pass      |
|                     | Output nowe  | er measured     | using a snee                 | trum analyze   | r (see nlots         | helow).        |                |                        |                        |           |
| Note 1.             |              |                 | samnla dat                   | actor nowar:   | averaging of         | n (transmitto  | d signal was i | continuous) ;          | and nower int          | ogration  |
| NOIC 1.             |              | for the 20M     | , sample uei<br>hz channol s | nacing and 9   | MUz for the          |                | nnol Spacing   |                        | and power int          | egration  |
| Note 2 <sup>.</sup> | Measured u   | sing the sam    | e analyzer s                 | ettinas used f | for output po        | <u>wer</u>     | IIICI Spaciliy | •                      |                        |           |
| 11010 2.            | For RSS-21   | 0 the limit for | the 5150 - F                 | 5250 MHz har   | nd accounts          | for the anter  | nna gain as th | e maximum              | eirn allowed           | is        |
|                     | 10dR/MHz     | The limits are  |                              | ted for instan | ces where th         | ne highest m   | easured valu   | e of the PSD           | exceeds the            | average   |
| Note 3:             | PSD (calcula | ated from the   |                              | ower divided   | hv the mea           | sured 99% h    | andwidth) hv   | more than 3            | dR by the am           | ount that |
|                     | the measure  |                 | ade the ave                  | rano hy moro   | than 3dR             |                | anawiain) by   |                        | ab by the am           |           |
| Note 4.             | 99% Bandwi   | dth measure     | ed in accords                | ince with RSS  | GEN - RR             | > 1% of spar   | 1  and VB >= 3 | xRB                    |                        |           |
| Note 5              | Average Po   | wer listed wa   | s measured                   | with an avera  | ane nower m          | peter and is t | for manufactu  | rer's referen          | ce only                |           |
| 1010 0.             | nerayer 0    |                 |                              | with all avera |                      |                |                |                        | oc only.               |           |





## EMC Test Data

|                                    | An DLEED Company     |                  |        |
|------------------------------------|----------------------|------------------|--------|
| Client:                            | Intel                | Job Number:      | J75722 |
| Model: 2x2 WiFi with WiMax MiniPCI | T-Log Number:        | T76443           |        |
| would.                             |                      | Account Manager: | -      |
| Contact:                           | S. Hackett           |                  |        |
| Standard:                          | RSS 210 / FCC 15.247 | Class:           | N/A    |
|                                    |                      |                  |        |

### Run #2: Peak Excursion Measurement

### Device meets the requirement for the peak excursion

| 802        | 2.11a Chain        | A/B   | H          | T20 Chain A | /B         | HT40 Chain A/B |                               |       |  |
|------------|--------------------|-------|------------|-------------|------------|----------------|-------------------------------|-------|--|
| Freq/Chain | Peak Excursion(dB) |       | Freq/Chain | Peak Exc    | ursion(dB) | Freq/Chain     | Freq/Chain Peak Excursion(dB) |       |  |
| (MHz)      | Value              | Limit | (MHz)      | Value       | Limit      | (MHz)          | Value                         | Limit |  |
| 5500/A     | 9.5                | 13.0  | 5500/A     | 9.7         | 13.0       | 5510/A         | 11.7                          | 13.0  |  |
| 5600/A     | 9.3                | 13.0  | 5600/A     | 10.2        | 13.0       | 5590/A         | 11.7                          | 13.0  |  |
| 5700/A     | 10.9               | 13.0  | 5700/A     | 10.8        | 13.0       | 5670/A         | 11.9                          | 13.0  |  |
| 5500/B     | 10.0               | 13.0  | 5500/B     | 10.3        | 13.0       | 5510/B         | 11.4                          | 13.0  |  |
| 5600/B     | 9.5                | 13.0  | 5600/B     | 10.4        | 13.0       | 5590/B         | 10.8                          | 13.0  |  |
| 5700/B     | 9.4                | 13.0  | 5700/B     | 10.5        | 13.0       | 5670/B         | 11.5                          | 13.0  |  |







| (CE                                      | Elliott                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                   |                                                                                                                                      | EM                                                                                                                                                          | C Test Data                                                          |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Client:                                  | Intel                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                      | Job Number:                                                                                                                                                 | J75722                                                               |
|                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                   |                                                                                                                                      | T-Log Number:                                                                                                                                               | T76443                                                               |
| Model:                                   | 2x2 WiFi with WiMax MiniPCI                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                      | Account Manager:                                                                                                                                            | -                                                                    |
| Contact:                                 | S. Hackett                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                             |                                                                      |
| Standard:                                | RSS 210 / FCC 15.247                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                                                      | Class:                                                                                                                                                      | N/A                                                                  |
| Run #3: Ou                               | ut Of Band Spurious Emissions - An                                                                                                                                                                                                                                                           | tenna Conducted                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                             |                                                                      |
| Note 1:<br>Note 2:<br>Note 3:<br>Note 4: | The -27dB/MHz limit is an eirp limit. T<br>consideration the maximum antenna g<br>more than 50MHz from the bands and<br>known at these frequencies. Only ave<br>All spurious signals below 1GHz are n<br>Signals within 10MHz of the 5.725 or 9<br>If the device is for outdoor use then the | The limit for antenna po<br>gain (limit = -27dB - ant<br>I that are close to the lin<br>rage limit is used on the<br>neasured during digital<br>5.825 Band edge are so<br>e -27dB eiro limit also | rt conducted m<br>enna gain). Ra<br>nit are made to<br>e plots - solid r<br>device radiated<br>ubject to a limit<br>applies in the 5 | easurements is adjusted<br>adiated field strength mea<br>o determine compliance a<br>red line.<br>d emissions test.<br>of -17dB EIRP<br>150 - 5250 MHz hand | to take into<br>asurements for signals<br>as the antenna gain is not |
| Note 5:                                  | Signals that fall in the restricted bands                                                                                                                                                                                                                                                    | of 15 205 are subject                                                                                                                                                                             | to the limit of 1                                                                                                                    | 5 209                                                                                                                                                       |                                                                      |
| 802.11a Mo                               | de - Chains A and B<br>Maximum Antenna Gain:<br>Spurious Limit:<br>Limit Used On Plots <sup>Note 1</sup> :                                                                                                                                                                                   | 4.8 dBi<br>-27.0 dB/MHz ei<br>-31.8 dB/MHz<br>-11.8 dB/MHz                                                                                                                                        | rp<br>Average Lim<br>Peak Limit (I                                                                                                   | iit (RB=1MHz, VB=10Hz)<br>RB=VB=1MHz)                                                                                                                       |                                                                      |

## EMC Test Data

| Client:                                                                                                                | Intel                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Joh Number                                                                         | 175700           |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|
|                                                                                                                        |                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    | J7J7ZZ           |
| Model <sup>.</sup>                                                                                                     | 2x2 WiFi with                                                 | ı WiMax MiniPCI                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-Log Number:                                                                      | T76443           |
|                                                                                                                        |                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Account Manager                                                                    | -                |
| Contact:                                                                                                               | S. Hackett                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| andard:                                                                                                                | RSS 210 / F                                                   | CC 15.247                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Class                                                                              | N/A              |
| <i>i</i> channe                                                                                                        | el, 5470 - 572<br>with the limit                              | 25 MHz Band                                                                                                     | Ing Out-OI-Band Emissions (KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{w} = \mathbf{v} \mathbf{D} \mathbf{w} = \mathbf{W} \mathbf{n} \mathbf{z}$ | idiated limits ( |
| ricted ba                                                                                                              | nd below 546                                                  | 50 MHz are demonstrated                                                                                         | I through the radiated emissions t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ests.                                                                              |                  |
| ut Of Ba                                                                                                               | nd Spurious                                                   | Emissions, 5500 MHz, 80                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
|                                                                                                                        | 、                                                             |                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |                  |
| 10.0                                                                                                                   | )-                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| 0.0                                                                                                                    | )-                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| ⇒ -10.0                                                                                                                | )-                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| j<br>-20.0                                                                                                             | )                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| -<br>9 -30.0                                                                                                           | )-                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| 필<br>문 -40.0                                                                                                           | )-                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
| ₹<br>-50 0                                                                                                             | ) –                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |                  |
|                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    | 4.6              |
|                                                                                                                        |                                                               | in the second | والمحاجب والمحاجر ويرجر والمحالي والمحاط والمحاج والمحاف المحاف                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Constant Constant and                                                              |                  |
| -60.0                                                                                                                  | )                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carried Contraction and                                                            |                  |
| -60.0<br>-70.0                                                                                                         | )4<br>)                                                       |                                                                                                                 | 1000.0<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0                                                                                                         | )                                                             |                                                                                                                 | <b>ини и на полнови и на</b> полнови и на полнови и на<br>Полнови и на полнови | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0                                                                                                         | )                                                             | ، ۱۵۵.0<br>Emissions, 5500 MHz, 80                                                                              | <b>чн, чили на продок</b> и и лаконима<br>1000.0<br>Frequency (MHz)<br>02.11a, Chain B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0<br>                                                                                                     | )                                                             |                                                                                                                 | инфицици, на                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>0.0                                                                              | )                                                             |                                                                                                                 | <b>чң үчүчү чүчүчү чүчүчүчүчүчүчүчүчүчүчүчү</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0<br>                                                                                                     | )                                                             |                                                                                                                 | <b>чң үчүчү чүчү чүчү чүчү чүчүчүчү чүчүчүчү</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>-10.0                                                                            | ) =<br>30.0<br>Ind Spurious                                   |                                                                                                                 | <b>чң үчүчү чүчүчү чүчүчүчүчүчүчүчүчүчүчүчү</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000.0                                                                            | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>-10.0<br>(ᡨ) -20.0<br>-20.0                                                      | ) =<br>30.0<br>ind Spurious<br>) =<br>) =<br>) =              |                                                                                                                 | <b>чң чүчү чүчү чүчү чүчү чүчү чүчү чүчү ч</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>-10.0<br>(wg) -20.0<br>90-30.0                                                   | ) =<br>30.0<br>md Spurious<br>) =                             |                                                                                                                 | <b>чң үчүчү чүчүчү чүчүчүчүчүчүчүчүчүчүчүчү</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>-10.0<br>(\u00edge -20.0<br>-30.0<br>-30.0<br>-50.0                              | ) =<br>30.0<br>ind Spurious<br>) =<br>) =<br>) =<br>) =       |                                                                                                                 | ини, чили на                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | 40000.           |
| -60.0<br>-70.0<br>ut Of Ba<br>10.0<br>-10.0<br>(wgp) -20.0<br>-30.0<br>-30.0<br>-50.0<br>-60.0                         | ) =                                                           | Emissions, 5500 MHz, 80                                                                                         | чни, чили на                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | 40000.           |
| -60.0<br>-70.0<br>-70.0<br>ut of Ba<br>10.0<br>-10.0<br>()<br>-10.0<br>()<br>-20.0<br>-20.0<br>-30.0<br>-50.0<br>-50.0 | ) =<br>and Spurious<br>) =<br>) =<br>) =<br>) =<br>) =<br>) = | ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰                                                                           | чң ң ң ң ң ң ң ң ң ң ң ң ң ң ң ң ң ң ң                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | 40000.           |





## EMC Test Data

|           | An <u>B</u>                 |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Madal     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| wouer.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |

#### HT20 and HT40 Modes

**MIMO Devices:** Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Although the operating power levels in this data sheet are for single chain operation the plots are considering operation on two chains simultaneously to cover both single chain and dual modes of operation. The actual dual chain operation is at a lower per-chain power level so these single chain plots at a higher output power level will represent a worst case.

| Number of transmit chains:   | 2     |            |                                  |
|------------------------------|-------|------------|----------------------------------|
| Maximum Antenna Gain:        | 4.8   | dBi        |                                  |
| Spurious Limit:              | -27.0 | dB/MHz ei  | rp                               |
| Adjustment for 2 chains:     | -3.0  | dB adjustn | nent for multiple chains.        |
| Limit Llood On Plats Note 1. | -34.8 | dB/MHz     | Average Limit (RB=1MHz, VB=10Hz) |
|                              | -14.8 | dB/MHz     | Peak Limit (RB=VB=1MHz)          |

## EMC Test Data

| Client: Ir                                                                                                                         | ntel                                                  |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         | lol      | h Numher      | 175722       |          |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|-------------------------|----------|---------------|--------------|----------|
| 1                                                                                                                                  |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         | 501      |               | J1J1ZZ       |          |
| Model                                                                                                                              | 2 \\/iEi \\/it                                        | h WiMav Min                                | iPCI                                                                            |                                                                                                                                    |                                  |                                     |                         | T-Lo     | g Number:     | T76443       |          |
| would Z                                                                                                                            | .AZ VVIET VVIU                                        |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         | Account  | Manager:      | -            |          |
| Contact: S                                                                                                                         | S. Hackett                                            |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| andard: R                                                                                                                          | RSS 210 / F                                           | CC 15.247                                  |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          | Class:        | N/A          |          |
|                                                                                                                                    |                                                       | <u> </u>                                   | Plots Showin                                                                    | <u>g Out-Of</u>                                                                                                                    | -Band Em                         | issions (RE                         | 3W=VBW=                 | :1MHz)   |               |              |          |
| r channel,<br>apliance w<br>ricted band                                                                                            | , <b>5470 - 57</b> 2<br>vith the limit<br>d below 540 | 25 MHz Band<br>immediately<br>50 MHz are c | below the allo<br>lemonstrated t                                                | bcated ba                                                                                                                          | nd from 54<br>ne radiated        | 60-5470 MH<br>emissions             | Hz and con<br>tests.    | npliance | with the ra   | diated limit | s for th |
|                                                                                                                                    | ia oparioas                                           | LINISSIONS, S                              | 500 14112, 002                                                                  | 2.111120                                                                                                                           | ninz, criai                      |                                     |                         |          |               |              |          |
| 10.0-                                                                                                                              |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| 0.0-                                                                                                                               | -                                                     |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| -10.0-                                                                                                                             | -                                                     |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
|                                                                                                                                    | _                                                     |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| ະ<br>8-30.0-                                                                                                                       | _                                                     |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
|                                                                                                                                    |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| E -40.0-<br>E                                                                                                                      |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               | 1            |          |
| -50.0-                                                                                                                             |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     | p p                     |          | La substantia |              |          |
| -30.0                                                                                                                              |                                                       |                                            |                                                                                 |                                                                                                                                    |                                  |                                     |                         |          |               |              |          |
| -60.0-                                                                                                                             | ~~~                                                   | monanda                                    |                                                                                 | ويهاذ المعدول                                                                                                                      |                                  | hanne heretare                      | long the stand          | ~~~~~    |               |              |          |
| -60.0 -<br>-70.0 -<br>31                                                                                                           | <br>o.o ' '                                           |                                            |                                                                                 | <b>ر بید میر اور اور اور اور اور اور اور اور اور او</b>                                                                            | 1000.0                           | <u>и</u>                            | log <b>e's</b> , iteest | 1000     | 0.0           | 4000         | D.       |
| -60.0 -<br>-70.0 -<br>30                                                                                                           |                                                       |                                            | <b>من مربور من من مربور من من مربور من </b> | <b>بر میں بر میں پر می</b><br>2.11n 20l | 1000.0<br>requency               | (MHz)                               |                         | 1000     | 0.0           | 4000         | D.       |
| -60.0 -<br>-70.0 -<br>3(<br>                                                                                                       | o.o                                                   |                                            | 500 MHz, 802                                                                    | ,<br>F<br>2.11n 201                                                                                                                | 1000.0<br>requency<br>MHz, Chair | <u>(MHz)</u><br>) В                 |                         | 1000     | 0.0           | 4000         | 0.       |
| -60.0 -<br>-70.0 -<br>31<br>                                                                                                       | o.o                                                   |                                            | <b>من مربع من </b>                          | <b>مربعہ برانیم پر ان میں پر ان مربع ان مربع ان مربع ان مربع ا</b><br>F<br>2.11n 20l                                               | 1000.0<br>requency               | <u>и-ла-ыли-ла-</u><br>(MHz)<br>1 В | · · · ·                 | 1000     | 0.0           | 4000         | 0.       |
| -60.0 -<br>-70.0 -<br>3(<br>ut Of Ban<br>10.0 -<br>0.0 -                                                                           | <br>o.o ' ' '<br>ad Spurious                          |                                            | <b>برمیرید میلید اور اور اور اور اور اور اور اور اور اور</b>                    | 2.11n 20                                                                                                                           | 1000.0<br>requency               | итеринени<br>(MHz)<br>) В           | · · · ·                 | 1000     | 0.0           | 4000         | 0.       |
| -60.0 -<br>-70.0 -<br>30<br>ut Of Ban<br>10.0 -<br>0.0 -<br>2 -10.0 -                                                              | d Spurious                                            |                                            | 500 MHz, 802                                                                    | , , , ,<br>F<br>2.11n 201                                                                                                          | 1000.0<br>Frequency              | <u>и-та-ыли-та-</u><br>(MHz)<br>1 В | · · · ·                 | 1000     | 0.0           | 4000         | 0.       |
| -60.0<br>-70.0 -<br>30<br>                                                                                                         | d Spurious                                            |                                            | 500 MHz, 802                                                                    | 2.11n 20                                                                                                                           | 1000.0<br>requency               | и                                   | · · ·                   | 1000     | 0.0           | 4000         | ο.       |
| -60.0 -<br>-70.0 -<br>31<br>Jt Of Ban<br>10.0 -<br>0.0 -<br>-10.0 -<br>-<br>9 -20.0 -                                              | d Spurious                                            |                                            | 500 MHz, 802                                                                    | , , , ,<br>F<br>2.11n 201                                                                                                          | 1000.0<br>Frequency              | и                                   | · · ·                   | 1000     | 0.0           | 4000         | ο.       |
| -60.0 -<br>-70.0 -<br>30<br>-70.0 -<br>31<br>-10.0 -<br>0.0 -<br>-10.0 -<br>(Wag) -20.0 -<br>90-30.0 -                             | d Spurious                                            |                                            | 500 MHz, 802                                                                    | 2.11n 20                                                                                                                           | 1000.0<br>Frequency              | <u>(MHz)</u><br>) В                 | · · ·                   | 1000     | 0.0           | 4000         | ο.       |
| -60.0 -<br>-70.0 -<br>3(<br>                                                                                                       | d Spurious                                            |                                            | 500 MHz, 802                                                                    | 2.11n 20                                                                                                                           | 1000.0<br>requency<br>MHz, Chair | и<br>(MHz)<br>I В                   | · · ·                   | 1000     | 0.0           | 4000         | 0.       |
| -60.0 -<br>-70.0 -<br>30<br>-70.0 -<br>31<br>-10.0 -<br>0.0 -<br>-10.0 -<br>(wgp) -20.0 -<br>900-<br>-30.0 -<br>-50.0 -<br>-50.0 - |                                                       | Emissions, 5                               | 500 MHz, 802                                                                    | 2.11n 20                                                                                                                           | MHz, Chair                       | (MHz)<br>) В                        |                         | 1000     | 0.0           | 4000         | D.       |
| -60.0<br>-70.0-<br>30<br>ut Of Ban<br>10.0-<br>0.0-<br>(ugp) -20.0-<br>(ugp) -30.0-<br>-30.0-<br>-50.0-<br>-60.0-                  |                                                       |                                            |                                                                                 | 2.11n 20                                                                                                                           | MHz, Chair                       | и                                   |                         | 1000     | 0.0           | 4000         | 0.       |













## EMC Test Data

|             | An AZ                                                                                               | AS company      |                 |                               |                |                |                        |                |                      |            |
|-------------|-----------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------------------|----------------|----------------|------------------------|----------------|----------------------|------------|
| Client:     | Intel                                                                                               |                 |                 |                               |                |                |                        | Job Number:    | J75722               |            |
| Madal       | 0.0.14/151                                                                                          |                 | 1001            |                               |                |                | T-l                    | _og Number:    | T76443               |            |
| wodel:      | 2X2 WIFI WIL                                                                                        | n wiwax wir     | IIPCI           |                               |                |                | Αссоι                  | Int Manager:   | -                    |            |
| Contact:    | S. Hackett                                                                                          |                 |                 |                               |                |                |                        |                |                      |            |
| Standard:   | RSS 210 / F                                                                                         | CC 15.247       |                 |                               |                |                |                        | Class:         | N/A                  |            |
|             |                                                                                                     |                 |                 |                               |                |                |                        |                |                      |            |
|             | Output powe                                                                                         | er measured     | using a spec    | trum analyze                  | er (see plots  | below):        |                        |                |                      |            |
| Note 1:     | RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and pow |                 |                 |                               |                |                |                        | and power int  | egration             |            |
|             | over >40 MH                                                                                         | Iz for HT20 r   | node and > 8    | BOMHz for H                   | T40 mode.      | ,              | 5                      | ,              | I                    | 5          |
| Note 2:     | Measured us                                                                                         | sing the sam    | e analvzer se   | ettinas used f                | for output po  | wer.           |                        |                |                      |            |
|             | For RSS-210                                                                                         | 0 the limit for | the 5150 - 5    | 250 MHz bai                   | nd accounts    | for the anten  | ina gain as th         | ne maximum     | eirp allowed         | S          |
| Note 2.     | 10dBm/MHz                                                                                           | . The limits a  | re also corre   | ected for insta               | ances where    | the highest r  | measured va            | lue of the PS  | D exceeds th         | ne average |
| Note 3:     | PSD (calcula                                                                                        | ated from the   | measured p      | ower divided                  | I by the meas  | sured 99% ba   | andwidth) by           | more than 3    | dB by the am         | ount that  |
|             | the measure                                                                                         | ed value exce   | eds the aver    | rage by more                  | than 3dB.      |                |                        |                | 5                    |            |
| Note 4:     | 99% Bandwi                                                                                          | idth measure    | d in accorda    | nce with RSS                  | S GEN - RB :   | > 1% of span   | and VB >=3             | xRB            |                      |            |
|             | For MIMO sy                                                                                         | ystems the to   | otal output po  | ower and tota                 | I PSD are ca   | Iculated form  | n the sum of           | the powers o   | of the individu      | al chains  |
|             | (in linear teri                                                                                     | ms). The an     | tenna gain u    | sed to detern                 | nine the EIRI  | P and limits f | or PSD/Outp            | out power dep  | pends on the         | operating  |
| Note 5:     | mode of the                                                                                         | MIMO devic      | e. If the sign  | als on the no                 | on-coherent k  | petween the    | transmit chai          | ins then the   | gain used to         | determine  |
|             | the limits is t                                                                                     | he highest g    | ain of the ind  | lividual chain                | s and the Ell  | RP is the sun  | n of the prod          | ucts of gain a | and power on         | each       |
|             | chain. If the                                                                                       | signals are (   | coherent the    | n the effectiv                | e antenna ga   | ain is the sum | n (in linear te        | rms) of the g  | ains for each        | chain and  |
| Note 6:     | Ine EIRP IS I                                                                                       | ne product o    | of the effectiv | e dain and to<br>age nower se | otal power.    | for reference  | only                   |                |                      |            |
| Dun #1. Do  | adwidth Ou                                                                                          | tout Dowor      | and Dowor       | Spectral Der                  | city 5150      | 5250 MU7       |                        |                |                      |            |
| KUII#1. Dai | iuwiutii, Ou                                                                                        | ipui rowei      |                 | spectral Der                  | isity - 5150 - | 5250 MITZ      |                        |                |                      |            |
|             |                                                                                                     |                 | Chain 1         | Chain 2                       | Chain 3        | Coherent       | Effective <sup>5</sup> | ]              |                      |            |
|             | Antenna                                                                                             | a Gain (dBi):   | 3.6             | 3.6                           | -              | No             | 3.6                    |                |                      |            |
|             |                                                                                                     |                 |                 |                               |                |                |                        |                |                      |            |
| Frequency   | Software                                                                                            | 26dB BW         | Measured F      | Power <sup>1</sup> dBm        | Average        | То             | otal                   | Limit (dBm)    | Max Power            | Pass or    |
| (MHz)       | Setting                                                                                             | (MHz)           | Chain 1         | Chain 2                       | power          | mW             | dBm                    |                | (W)                  | Fail       |
| 5180        | 26.5/25.0                                                                                           | 21.8            | 11.5            | 11.2                          | 13.8/13.6      | 27.3           | 14.4                   | 17.0           |                      | PASS       |
| 5200        | 26.0/25.0                                                                                           | 21.9            | 11.3            | 11.3                          | 13.//13.6      | 27.0           | 14.3                   | 17.0           | 0.027                | PASS       |
| 5240        | 25.5/25.0                                                                                           | 21.9            | 11.5            | 11.2                          | 13.8/13.7      | 27.3           | 14.4                   | 17.0           |                      | PASS       |
| 5190        | 26.5/25.5                                                                                           | 40.4            | 11.0            | 11.4                          | 13.8/13.8      | 28.3           | 14.5                   | 17.0           | 0.028                | PASS       |
| 5230        | 25.5/25.0                                                                                           | 40. I           | 11.3            | .                             | 13.0/13.0      | 26.4           | 14.2                   | 17.0           |                      | PASS       |
| Frequency   | 00% <sup>4</sup>                                                                                    | Total           | D               | SD <sup>2</sup> dBm/ML        | 17             | Total          | PSD                    | Lir            | mit                  | Pass or    |
| (MHz)       | 8W/                                                                                                 | Power           | Chain 1         | Chain 2                       | Chain 3        | mW/MHz         | dBm/MHz                | FCC            | RSS 210 <sup>3</sup> | Fail       |
| 5180        | 18.2                                                                                                | 14.4            | -1.3            | -1.6                          |                | 1.4            | 1.6                    | 4.0            | 6.4                  | PASS       |
| 5200        | 18.2                                                                                                | 14.3            | -1.6            | -1.6                          |                | 1.4            | 1.4                    | 4.0            | 6.4                  | PASS       |
| 5240        | 18.2                                                                                                | 14.4            | -1.3            | -1.3                          |                | 1.5            | 1.7                    | 4.0            | 6.4                  | PASS       |
| 5190        | 36.3                                                                                                | 14.5            | -4.0            | -4.0                          |                | 0.8            | -1.0                   | 4.0            | 6.4                  | PASS       |
| 5230        | 36.3                                                                                                | 14.2            | -4.5            | -4.6                          |                | 0.7            | -1.5                   | 4.0            | 6.4                  | PASS       |
|             |                                                                                                     |                 |                 |                               |                |                |                        |                |                      |            |
|             |                                                                                                     |                 |                 |                               |                |                |                        |                |                      |            |
|             |                                                                                                     |                 |                 |                               |                |                |                        |                |                      |            |





| 6                                                                                                                                                                                                                                                                                                                               |                        | ott                                                                                                     |                                 |              |                |              |                        | EM            | C Test               | Da   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|--------------|----------------|--------------|------------------------|---------------|----------------------|------|
| Client                                                                                                                                                                                                                                                                                                                          | Intel                  | -                                                                                                       | Job Number:                     | J75722       |                |              |                        |               |                      |      |
| Madal                                                                                                                                                                                                                                                                                                                           |                        |                                                                                                         |                                 |              |                |              |                        | T-Log Number: |                      |      |
| woder                                                                                                                                                                                                                                                                                                                           |                        | IIPCI                                                                                                   | Account Manager:                |              | -              |              |                        |               |                      |      |
| Contact:                                                                                                                                                                                                                                                                                                                        | S. Hackett             |                                                                                                         |                                 |              |                |              |                        |               |                      |      |
| Standard:                                                                                                                                                                                                                                                                                                                       | : RSS 210 / F          |                                                                                                         |                                 | Class:       | N/A            |              |                        |               |                      |      |
| un #2: Ba                                                                                                                                                                                                                                                                                                                       | ndwidth, Ou            | Itput Power                                                                                             | and Power S                     | Spectral Der | nsity - 5250 · | 5350 MHz     |                        |               |                      |      |
|                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                         | Chain 1                         | Chain 2      | Chain 3        | Coherent     | Effective <sup>5</sup> | ]             |                      |      |
|                                                                                                                                                                                                                                                                                                                                 | Antenna                | a Gain (dBi):                                                                                           | 3.7                             | 3.7          | -              | No           | 3.7                    |               |                      |      |
| ote - targ                                                                                                                                                                                                                                                                                                                      | et power is 1          | 13.5dBm per                                                                                             | chain for a                     | modes.       |                |              |                        | 4             |                      |      |
| requency                                                                                                                                                                                                                                                                                                                        | Software 26dB BW       |                                                                                                         | Measured Power <sup>1</sup> dBm |              | Average        | Тс           | otal                   |               | Max Power            | Pass |
| (MHz)                                                                                                                                                                                                                                                                                                                           | Setting                | (MHz)                                                                                                   | Chain 1                         | Chain 2      | nower          | mW           | dBm                    | Limit (aBm)   | (W)                  | Fai  |
| 5260                                                                                                                                                                                                                                                                                                                            | 25.0/25.0              | 21.8                                                                                                    | 11.3                            | 11.1         | 13.7/13.8      | 26.4         | 14.2                   | 24.0          |                      | PAS  |
| 5300                                                                                                                                                                                                                                                                                                                            | 24.5/25.0              | 21.8                                                                                                    | 11.4                            | 11.4         | 13.7/13.7      | 27.6         | 14.4                   | 24.0          | 0.029                | PAS  |
| 5320                                                                                                                                                                                                                                                                                                                            | 24.5/25.0              | 21.8                                                                                                    | 11.8                            | 11.4         | 13.7/13.6      | 28.9         | 14.6                   | 24.0          |                      | PAS  |
| 5270                                                                                                                                                                                                                                                                                                                            | 25.0/25.0              | 40.4                                                                                                    | 11.3                            | 11.1         | 13.8/13.7      | 26.4         | 14.2                   | 24.0          | 0.000                | PAS  |
| 5310                                                                                                                                                                                                                                                                                                                            | 24.5/25.0              | 40.4                                                                                                    | 11.7                            | 11.3         | 13.8/13.7      | 28.3         | 14.5                   | 24.0          | 0.028                | PAS  |
|                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                         |                                 |              |                |              |                        |               | 1                    |      |
| Frequency                                                                                                                                                                                                                                                                                                                       | 99% <sup>4</sup> Total |                                                                                                         | DSD <sup>2</sup> dBm/MHz        |              |                | Total PSD    |                        | Limit         |                      | Pass |
| (MIL-)                                                                                                                                                                                                                                                                                                                          | BW                     | Power                                                                                                   | Choin 1                         |              | Choin 2        | m\//\/II.I-7 |                        | ГСС           | D00.010 <sup>3</sup> | Fa   |
| <u>(IVIHZ)</u><br>5260                                                                                                                                                                                                                                                                                                          | 10.2                   | 14.2                                                                                                    |                                 | <u>1 6</u>   | Chain 3        | 1 /          |                        | FUC<br>11.0   | RSS 210°             |      |
| 5200                                                                                                                                                                                                                                                                                                                            | 18.2                   | 14.2                                                                                                    | -1.0                            | -1.0         |                | 1.4          | 1.4                    | 11.0          | 11.0                 |      |
| 5320                                                                                                                                                                                                                                                                                                                            | 18.2                   | 14.4                                                                                                    | -0.7                            | -1.1         |                | 1.5          | 2.0                    | 11.0          | 11.0                 | PAS  |
| 5270                                                                                                                                                                                                                                                                                                                            | 36.3                   | 14.2                                                                                                    | -4.3                            | -4.5         |                | 0.7          | -1.4                   | 11.0          | 11.0                 | PΔS  |
| 5310                                                                                                                                                                                                                                                                                                                            | 36.3                   | 14.5                                                                                                    | -3.9                            | -4 3         |                | 0.8          | -11                    | 11.0          | 11.0                 | PAS  |
| CF: 5320.00 MHz<br>SPAN:50.00 MHz<br>SPAN:50.00 MHz<br>RB 1.000 MHz<br>VB 3.000 MHz<br>Detector Sample<br>Att 10<br>RL Offset 0.00<br>Sweep Time 50.0ms<br>Ref Lvl:0.00DBM<br>Pwr avg: 100 sweeps<br>Amp corr: 11.0dB<br>Bin size: 83 kHz<br>Highest PSD<br>-1.36 dBm/1.000 f<br>9996 Bandwidth<br>18.22 MHz<br>Power Over Span |                        | 0.0<br>ings -5.0<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-30.0<br>-35.0<br>-40.0<br>-45.0<br>-55.0<br>52 |                                 |              | 10.0           | 5320.0       | 5330.0                 | ) 53          | 40.0 5345.0          |      |
| 11.44 dBm                                                                                                                                                                                                                                                                                                                       |                        |                                                                                                         | Frequency (MHz)                 |              |                |              |                        |               |                      |      |
| 11.44                                                                                                                                                                                                                                                                                                                           |                        |                                                                                                         |                                 |              |                |              |                        |               |                      |      |



| Elliott                                                                  |                                     |               |             |                         |                     |                   |                         | EMC Test Data      |                      |         |  |  |
|--------------------------------------------------------------------------|-------------------------------------|---------------|-------------|-------------------------|---------------------|-------------------|-------------------------|--------------------|----------------------|---------|--|--|
| Client: Intel                                                            |                                     |               |             |                         |                     |                   | Job Number: J75722      |                    |                      |         |  |  |
|                                                                          |                                     |               |             |                         |                     |                   | T-Log Number: T76443    |                    |                      |         |  |  |
| Model: 2x2 WiFi with WiMax MiniPCI                                       |                                     |               |             |                         |                     |                   |                         | Account Manager: - |                      |         |  |  |
| Contact: S. Hackett                                                      |                                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |
| Standard: RSS 210 / FCC 15.247                                           |                                     |               |             |                         |                     |                   |                         | Class:             | N/A                  |         |  |  |
|                                                                          |                                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |
| Spectrum (                                                               | <b>LIQUE</b>                        | 0.0           |             |                         |                     |                   |                         |                    |                      |         |  |  |
| CE: 5310.                                                                | -5.0                                |               |             |                         | Carrow Martin South | many prover       | - and the second second |                    |                      |         |  |  |
| SPAN:80.                                                                 | SPAN:80.00 MHz                      |               | -           |                         |                     | -Y                |                         |                    |                      |         |  |  |
| VB 3.000 M                                                               | RB 1.000 MHz<br>VB 3.000 MHz        |               | _           | }                       |                     |                   |                         |                    |                      |         |  |  |
| Detector 9<br>Att 10                                                     | Detector Sample<br>Att 10           |               | _           |                         |                     |                   |                         |                    |                      |         |  |  |
| RL Offset I<br>Sweep Tir                                                 | RL Offset 0.00<br>Sweep Time 50 0ms |               |             | 1                       |                     |                   |                         |                    |                      |         |  |  |
| Ref LvI:0.0                                                              | Ref Lvl:0.00DBM                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |
| Amp corr                                                                 | : 11.0dB                            | 9 -30.0       | -           |                         |                     |                   |                         |                    |                      |         |  |  |
| Bin size: 1<br>Highest PS                                                | 33 kHz                              | -35.0         | -           | 01                      |                     |                   |                         | 1                  |                      |         |  |  |
| -4.26                                                                    | -4.26 dBm/1.000 MHz -40.0           |               | -           | would                   |                     |                   |                         | M                  |                      |         |  |  |
| 99% Bandy                                                                | 99% Bandwidth -45.0-                |               |             | AF                      |                     |                   |                         | Strath War         | What .               |         |  |  |
| 36,34                                                                    | 36.34 MHz -50.0-                    |               |             |                         |                     |                   |                         |                    | " Water de           |         |  |  |
| Power Ov                                                                 | er Span                             | -55.0         | _           |                         |                     |                   |                         |                    |                      |         |  |  |
| 13.528 mW 5270.0 5280.0 5290.0 5300.0 5310.0 5320.0 5330.0 5340.0 5350.0 |                                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |
| 11.31 dBm Frequency (MHz)                                                |                                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |
|                                                                          |                                     | 99% Ban       | dwidth Powe | er Over Spar            | n and PSD, 🔅        | 802.11n 40N       | 4Hz, Chain B            |                    |                      |         |  |  |
| Run #3: Ba                                                               | ndwidth, Ou                         | tput Power    | and Power S | Spectral Der            | nsity - 5470 -      | 5725 MHz          |                         |                    |                      |         |  |  |
|                                                                          |                                     |               | Chain 1     | Chain 2                 | Chain 3             | Coherent          | Effective <sup>5</sup>  |                    |                      |         |  |  |
|                                                                          | Antenna                             | a Gain (dBi): | 4.8         | 4.8                     | -                   | No                | 4.8                     |                    |                      |         |  |  |
| Note - targe                                                             | et power is 1                       | 3.5dBm per    | chain for a | modes.                  |                     |                   |                         | 1                  |                      |         |  |  |
| Frequency                                                                | Software                            | 26dB BW       | Measured I  | Power'dBm               | Average             | To                | otal                    | Limit (dBm)        | Max Power            | Pass or |  |  |
| (MHz)                                                                    |                                     | (IVIHZ)       | Chain 1     | Chain 2                 | power               | mW                | dBm                     | 24.0               | (VV)                 | Fall    |  |  |
| 5500<br>5600                                                             | 22.0/23.5<br>22.5/23.0              | 21.8<br>21.7  | 11.2        | 11.2                    | 13.6/13.6           | 20.4<br>25.8      | 14.Z<br>14.1            | 24.0<br>24.0       | 0.026                | PASS    |  |  |
| 5700                                                                     | 23.0/23.0                           | 21.9          | 11.3        | 11.0                    | 13.8/13.6           | 26.1              | 14.2                    | 24.0               | 0.020                | PASS    |  |  |
| 5510                                                                     | 22.0/23.5                           | 40.3          | 11.2        | 11.3                    | 13.6/13.7           | 26.7              | 14.3                    | 24.0               |                      | PASS    |  |  |
| 5590                                                                     | 22.5/23.0                           | 40.3          | 11.1        | 11.0                    | 13.7/13.6           | 25.5              | 14.1                    | 24.0               | 0.027                | PASS    |  |  |
| 5670                                                                     | 23.0/23.0                           | 40.5          | 11.6        | 10.9                    | 13.8/13.6           | 26.8              | 14.3                    | 24.0               |                      | PASS    |  |  |
| Frequency                                                                | <b>99</b> % <sup>4</sup>            | Total         | P           | PSD <sup>2</sup> dBm/MH |                     | Total             | PSD                     | Limit              |                      | Pass or |  |  |
| (MHz)                                                                    | BW                                  | Power         | Chain 1     | Chain 2                 | Chain 3             | mW/MHz            | dBm/MHz                 | FCC                | RSS 210 <sup>3</sup> | Fail    |  |  |
| 5500                                                                     | 18.1                                | 14.2          | -1.5        | -1.6                    |                     | 1.4               | 1.5                     | 11.0               | 11.0                 | PASS    |  |  |
| 5600                                                                     | 18.2                                | 14.1          | -1.8<br>1 F | -1.5                    |                     | 1.4<br>1 <i>1</i> | 1.4                     | 11.0               | 11.0                 | PASS    |  |  |
| 5510                                                                     | 36.3                                | 14.2          | -4.3        | -1.0                    |                     | 0.7               | -1 4                    | 11.0               | 11.0                 | PASS    |  |  |
| 5590                                                                     | 36.3                                | 14.1          | -4.5        | -4.6                    |                     | 0.7               | -1.5                    | 11.0               | 11.0                 | PASS    |  |  |
| 5670                                                                     | 36.5                                | 14.3          | -4.1        | -4.9                    |                     | 0.7               | -1.5                    | 11.0               | 11.0                 | PASS    |  |  |
|                                                                          |                                     |               |             |                         |                     |                   |                         |                    |                      |         |  |  |






|           | An <u>B</u>                 |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model:    | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
|           |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |

#### RSS 210, FCC 15.E (NII) Band Edge Field Strength (802.11n)

#### **Test Specific Details**

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

#### Summary of Results

Sample #1 MAC Address: 00150059F1BC (except where noted); CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

| Run #    | Mode                   | Channel              | Target<br>Power          | Measured<br>Power | Test Performed                      | Limit  | Result / Margin                     |
|----------|------------------------|----------------------|--------------------------|-------------------|-------------------------------------|--------|-------------------------------------|
| Run # 1a |                        | #38<br>5190MHz       | 15.5                     | 15.7              | Restricted Band Edge<br>at 5150 MHz | 15.209 | 50.4dBµV/m @<br>5148.7MHz (-3.6dB)  |
| Run # 1b |                        | #62<br>5310MHz       | 16.0                     | 15.5              | Restricted Band Edge<br>at 5350 MHz | 15.209 | 52.4dBµV/m @<br>5350.0MHz (-1.6dB)  |
| Run # 1c | 802.11n40<br>Chain A   | #102                 | 15.0                     | 16.0              | Restricted Band Edge<br>at 5460 MHz | 15.209 | 50.1dBµV/m @<br>5459.8MHz (-3.9dB)  |
| Run # 1d |                        | 5510MHz              | 15.0                     | 10.0              | Restricted Band Edge<br>at 5470 MHz | 15 E   | 54.3dBµV/m @<br>5469.5MHz (-14.0dB) |
| Run # 1e |                        | #134<br>5670MHz      | 16.5                     | 16.8              | Restricted Band Edge<br>at 5725 MHz | 15 E   | 49.9dBµV/m @<br>5725.0MHz (-18.4dB) |
| Run # 2a |                        | #38<br>5190MHz       | 15.5                     | 15.7              | Restricted Band Edge<br>at 5150 MHz | 15.209 | 52.3dBµV/m @<br>5149.5MHz (-1.7dB)  |
| Run # 2b |                        | #62<br>5310MHz       | 16.0                     | 15.2              | Restricted Band Edge<br>at 5350 MHz | 15.209 | 52.0dBµV/m @<br>5350.0MHz (-2.0dB)  |
| Run # 2c | 802.11n40<br>Chain B   | #102 15.0<br>5510MHz |                          | 15 7              | Restricted Band Edge<br>at 5460 MHz | 15.209 | 50.2dBµV/m @<br>5459.8MHz (-3.8dB)  |
| Run # 2d |                        |                      |                          | 15.7              | Restricted Band Edge<br>at 5470 MHz | 15 E   | 58.9dBµV/m @<br>5469.7MHz (-9.4dB)  |
| Run # 2e |                        | #134<br>5670MHz      | 16.5                     | 16.8              | Restricted Band Edge<br>at 5725 MHz | 15 E   | 46.4dBµV/m @<br>5732.8MHz (-21.9dB) |
| Run # 3a |                        | #38<br>5190MHz       | 16.5 (13.5<br>per chain) | A:13.7<br>B:13.8  | Restricted Band Edge<br>at 5150 MHz | 15.209 | 50.1dBµV/m @<br>5149.8MHz (-3.9dB)  |
| Run # 3b |                        | #62<br>5310MHz       | 16.5 (13.5<br>per chain) | A:13.6<br>B:13.6  | Restricted Band Edge<br>at 5350 MHz | 15.209 | 44.2dBµV/m @<br>5350.0MHz (-9.8dB)  |
| Run # 3c | 802.11n40<br>Chain A+B | #102                 | 16.5 (13.5               | A:13.8            | Restricted Band Edge<br>at 5460 MHz | 15.209 | 47.8dBµV/m @<br>5459.8MHz (-6.2dB)  |
| Run # 3d |                        | 5510MHz              | per chain)               | B:13.9            | Restricted Band Edge<br>at 5470 MHz | 15 E   | 50.0dBµV/m @<br>5467.3MHz (-18.3dB) |
| Run # 3e |                        | #134<br>5670MHz      | 16.5 (13.5<br>per chain) | A:13.7<br>B:13.9  | Restricted Band Edge<br>at 5725 MHz | 15 E   | 46.5dBµV/m @<br>5725.0MHz (-21.8dB) |

Summary for 802.11n 20MHz mode on next page .

| Ć         |                        |                          |                          |                            |                                     | EMO              | C Test Data                         |
|-----------|------------------------|--------------------------|--------------------------|----------------------------|-------------------------------------|------------------|-------------------------------------|
| Client:   | Intel                  |                          |                          |                            | Job Number:                         | J75722           |                                     |
| Model.    | 2x2 WiFi wit           | h WiMax Mir              | niPCI                    |                            | T-Log Number:                       | T76443           |                                     |
|           |                        |                          |                          |                            |                                     | Account Manager: | -                                   |
| Contact:  | S. Hackett             |                          |                          |                            |                                     | Class            | N1/A                                |
| Standard: | RSS 2107 F             | UU 15.247                |                          |                            |                                     | Class:           | IV/A                                |
| Run #     | Mode                   | Channel                  | Target<br>Power          | Measured<br>Power          | Test Performed                      | Limit            | Result / Margin                     |
| Run # 4a  |                        | #36<br>5180MHz           | 16.5 dBm                 | 16.7 dBm                   | Restricted Band Edge<br>at 5150 MHz | 15.209           | 46.7dBµV/m @<br>5150.0MHz (-7.3dB)  |
| Run # 4b  |                        | #64<br>5320MHz           | 16.5 dBm                 | 16.7 dBm                   | Restricted Band Edge<br>at 5350 MHz | 15.209           | 45.9dBµV/m @<br>5350.0MHz (-8.1dB)  |
| Run # 4c  | 802.11n20<br>Chain A   | #100<br>5500MHz 16.5 dBm |                          | 16.6 dBm                   | Restricted Band Edge<br>at 5460 MHz | 15.209           | 41.3dBµV/m @<br>5460.0MHz (-12.7dB) |
| Run # 4d  |                        |                          |                          | 10.0 0011                  | Restricted Band Edge<br>at 5470 MHz | 15 E             | 46.8dBµV/m @<br>5470.0MHz (-21.5dB) |
| Run # 4e  |                        | #140<br>5700MHz          | 16.5 dBm 16.8 dBm        |                            | Restricted Band Edge<br>at 5725 MHz | 15 E             | 50.6dBµV/m @<br>5725.0MHz (-17.7dB) |
| Run # 5a  |                        | #36<br>5180MHz           | 16.5 dBm                 | 16.7 dBm                   | Restricted Band Edge<br>at 5150 MHz | 15.209           | 50.9dBµV/m @<br>5148.4MHz (-3.1dB)  |
| Run # 5b  |                        | #64<br>5320MHz           | 16.5 dBm                 | 16.7 dBm                   | Restricted Band Edge<br>at 5350 MHz | 15.209           | 45.5dBµV/m @<br>5350.0MHz (-8.5dB)  |
| Run # 5c  | 802.11n20<br>Chain B   | #100                     | 16 5 dBm                 | 16.8 dBm                   | Restricted Band Edge<br>at 5460 MHz | 15.209           | 45.3dBµV/m @<br>5460.1MHz (-8.7dB)  |
| Run # 5d  |                        | 5500MHz                  | 10.5 0011                | 10.0 0011                  | Restricted Band Edge<br>at 5470 MHz | 15 E             | 50.3dBµV/m @<br>5469.9MHz (-18.0dB) |
| Run # 5e  |                        | #140<br>5700MHz          | 16.5 dBm                 | 16.6 dBm                   | Restricted Band Edge<br>at 5725 MHz | 15 E             | 51.1dBµV/m @<br>5725.0MHz (-17.2dB) |
| Run # 6a  |                        | #36<br>5180MHz           | 16.5 (13.5<br>per chain) | A: 13.6 dBm<br>B: 13.8 dBm | Restricted Band Edge<br>at 5150 MHz | 15.209           | 39.5dBµV/m @<br>5148.1MHz (-14.5dB) |
| Run # 6b  |                        | #64<br>5320MHz           | 16.5 (13.5<br>per chain) | A: 13.5 dBm<br>B: 13.8 dBm | Restricted Band Edge<br>at 5350 MHz | 15.209           | 35.1dBµV/m @<br>5350.0MHz (-18.9dB) |
| Run # 6c  | 802.11n20<br>Chain A+B | #100                     | 16.5 (13.5               | A: 13.7 dBm                | Restricted Band Edge<br>at 5460 MHz | 15.209           | 48.4dBµV/m @<br>5445.3MHz (-5.6dB)  |
| Run # 6d  |                        | 5500MHz                  | per chain)               | B: 13.6 dBm                | Restricted Band Edge<br>at 5470 MHz | 15 E             | 48.4dBµV/m @<br>5445.3MHz (-19.9dB) |
| Run # 6e  |                        | #140<br>5700MHz          | 16.5 (13.5<br>per chain) | A:13.9dBm<br>B:13.8dBm     | Restricted Band Edge<br>at 5725 MHz | 15 E             | 44.8dBµV/m @<br>5725.0MHz (-23.5dB) |

#### General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

| Rel. Humidity: | 15-65 %  |
|----------------|----------|
| Temperature:   | 15-25 °C |

#### Modifications Made During Testing

No modifications were made to the EUT during testing



| Client:   | Intel                       | Job Number:      | J75722 |
|-----------|-----------------------------|------------------|--------|
| Model:    | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
|           |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

#### Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. For MIMO operation the delta measurement is made in a radiated manner with the measurement antenna located approximately 50cm from the EUT's antennas. The fundamental field strength is always measured at a 3m test distance.

| C | EI | iott            |
|---|----|-----------------|
| ~ |    | An ATAT company |

| An ZCZAD company                                                                            |                                         |                |               |                  |              |           |                              |               |               |          |
|---------------------------------------------------------------------------------------------|-----------------------------------------|----------------|---------------|------------------|--------------|-----------|------------------------------|---------------|---------------|----------|
| Cilent: Inter Job Number: J/5/22                                                            |                                         |                |               |                  |              |           |                              |               |               |          |
| Model:                                                                                      | 2x2 WiFi wit                            | h WiMax Mir    |               | I-L              | og Number:   | 1/6443    |                              |               |               |          |
| Account Manager: -                                                                          |                                         |                |               |                  |              |           |                              |               |               |          |
| Contact:                                                                                    | Contact: S. Hackett                     |                |               |                  |              |           |                              |               |               |          |
| Stanuaru:                                                                                   | K35210/F                                | UC 10.247      | 000 11 - 40   | Chain A          |              |           |                              | CIASS:        | IN/A          |          |
| Kun # 1, Band Edge Fleid Strength - 802. I In40, Chain A                                    |                                         |                |               |                  |              |           |                              |               |               |          |
| Rull # Ta, EUT UIT CHAMMEI #38 5 1900/02 - 802. I M40, CHAM A - SAMPIE #2 MAC 00 150059F23C |                                         |                |               |                  |              |           |                              |               |               |          |
| Test Engineer: Dataol Varolas                                                               |                                         |                |               |                  |              |           |                              |               |               |          |
| Power Settings                                                                              |                                         |                |               |                  |              |           |                              |               |               |          |
|                                                                                             | Chain                                   | Target         | (dBm)         | Measure          | d (dBm)      | Software  | e Settina                    |               |               |          |
|                                                                                             | А                                       | 15             | 5.5           | 15               | .7           | 27        | '.0                          |               |               |          |
| Fundament                                                                                   | al Signal Fie                           | eld Strenath   | 1             |                  |              |           |                              | 1             |               |          |
| Frequency                                                                                   | Level                                   | Pol            | 15.209        | / 15.247         | Detector     | Azimuth   | Height                       | Comments      |               |          |
| MHz                                                                                         | dBµV/m                                  | v/h            | Limit         | Margin           | Pk/QP/Avg    | degrees   | meters                       |               |               |          |
| 5200.870                                                                                    | 89.6                                    | Н              | -             | -                | AVG          | 313       | 1.0                          | RB 1 MHz;     | VB: 10 Hz     |          |
| 5200.130                                                                                    | 97.9                                    | Н              | -             | -                | PK           | 313       | 1.0                          | RB 1 MHz;     | VB: 1 MHz     |          |
| 5200.730                                                                                    | 89.3                                    | V              | -             | -                | AVG          | 49        | 1.1                          | RB 1 MHz;     | VB: 10 Hz     |          |
| 5200.130                                                                                    | 97.5                                    | V              | -             | -                | PK           | 49        | 1.1                          | RB 1 MHz;     | VB: 1 MHz     |          |
| 5150 MHz B                                                                                  | Band Edge S                             | ignal Radia    | ted Field Sti | rength - Mark    | er Delta     |           | _                            |               |               |          |
| H V                                                                                         |                                         |                |               |                  |              |           |                              |               |               |          |
|                                                                                             | Fundamenta                              | al emission le | evel @ 3m in  | 1MHz RBW:        | 97.9         | 97.5      | Peak Meas                    | urement (RE   | B=VB=1MHz)    | )        |
|                                                                                             | Fundamenta                              | al emission le | evel @ 3m in  | 1MHz RBW:        | 89.6         | 89.3      | Average Me                   | easurement    | (RB=1MHz,     | VB=10Hz) |
| Delta Marker - 100kHz39.2dB<- this can only be used if band edge signal is                  |                                         |                |               |                  |              |           |                              |               |               |          |
|                                                                                             | Calcula                                 | ated Band-E    | dge Measure   | ement (Peak):    | 58.7         | dBuV/m    | highest with                 | nin 2MHz of   | band edge.    |          |
|                                                                                             | Calcu                                   | Iated Band-I   | Edge Measui   | rement (Avg):    | 50.4         | dBuV/m    | Margin                       | Level         | Limit         | Detector |
|                                                                                             |                                         | De             | elta Marker - | 1MHz/1MHz:       | 34.5         | dB        | -3.6                         | 50.4          | 54            | Avg      |
|                                                                                             |                                         | D              | elta Marker - | 1MHz/10Hz:       | 38.7         | dB        | -15.3                        | 58.7          | 74            | Pk       |
|                                                                                             | Calcula                                 | ated Band-E    | dge Measure   | ement (Peak):    | 63.4         | dBuV/m    | Using 100k                   | Hz delta valu | ue            |          |
|                                                                                             | Calcu                                   | Ilated Band-I  | Edge Measu    | rement (Avg):    | 50.9         | dBuV/m    | Using 100k                   | Hz delta vali | ue            |          |
| Fraguaga                                                                                    | Loval                                   | Dal            | ГСС           | 15 200           | Dataatar     | A incuith | Lloight                      | Commonto      |               |          |
| Frequency                                                                                   |                                         | P0I            | FUU           | 15.209<br>Morgin | Delector     | Azimum    | Height                       | Comments      |               |          |
|                                                                                             | αΒμν/m<br>50.4                          | V/11           | 54.0          | 1VIAIYIII<br>2.6 | PK/QP/AVy    | uegrees   | meters                       | Licina 100k   | Uz dolta valu | 10       |
| 5140.000                                                                                    | 00.4                                    | -              | 54.0          | -3.0             | Avy          |           |                              |               |               | IE       |
| 90.0-                                                                                       |                                         |                |               |                  |              | -         | Analyzer Se                  | ettings<br>11 |               |          |
| 80.0-                                                                                       |                                         |                |               |                  |              |           | CF: 5160.00                  | i0 MHz        |               |          |
|                                                                                             |                                         |                |               |                  |              |           | SPAN:100.00<br>RB 100 kHz    | 00 MHz        |               |          |
| 70.0-                                                                                       |                                         |                |               |                  |              |           | VB 100 kHz                   | _             |               |          |
| nde                                                                                         |                                         |                |               | Att 10           | 5            |           |                              |               |               |          |
| 붙 60.0-                                                                                     |                                         |                |               | . N              |              | ···· )    | RL Offset 0.<br>Support Time | 00<br>55.0mc  |               |          |
| ≪ 50.0-**                                                                                   |                                         |                | N             |                  |              |           | Ref Lvl:101.                 | 60DBUV        |               |          |
| 00.0                                                                                        |                                         |                |               |                  |              |           |                              |               |               |          |
| 40.0-                                                                                       |                                         | Mar Mar        |               |                  |              |           | Comments                     |               |               |          |
|                                                                                             | all |                |               |                  |              |           | BE @ 5150 N<br>5190 MHz      | 1Hz           |               |          |
| 30.0-                                                                                       |                                         | 130 5140       | 5150 5140     | 5170 519         | 0 5100 E     | 200 5210  | 802.11n 40N                  | /Hz           |               |          |
| 511                                                                                         | JI20 J                                  | 100 0140       | Frequency     | (MHz)            | -0 -0190 -0. |           |                              |               |               |          |
| Cursor 1                                                                                    | 5148,6665                               | 50.27          | -*- 6-        | Delta Fron       | 45,167       | 1         | •                            |               |               |          |
| Cursor 2                                                                                    | 5193.8335                               | 89.43          | - <u>*</u> 6- | Delta Amplitud   | de 39.17     | C.        | ЕШ                           | ott           |               |          |
|                                                                                             |                                         |                |               |                  |              |           |                              |               |               |          |

| Elliott | E | liott |
|---------|---|-------|
|---------|---|-------|

| Cliont                                                                                                | Client: Intel Intel Intel                                                |               |                      |                       |              |                 |                   |                           |               |          |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|----------------------|-----------------------|--------------|-----------------|-------------------|---------------------------|---------------|----------|
| Ciletit, inter     Job Number: J75722       T Log Number: T74442                                      |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
| Model: 2x2 WiFi with WiMax MiniPCI                                                                    |                                                                          |               |                      |                       |              |                 |                   |                           | 1/0443        |          |
| Contact                                                                                               | Contact: S. Hackett                                                      |               |                      |                       |              |                 |                   |                           |               |          |
| Standard: RSS 210 / FCC 15 247 Class: N/A                                                             |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
| $R_{\rm LID}$ # 1h Repeat EUT on Channel #62 5310MHz - 802 11n/0 Chain A - Sample #2 MAC 00150050E23C |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
|                                                                                                       | Date of Test <sup>1</sup> 0/0/2009<br>Date of Test <sup>1</sup> 0/0/2009 |               |                      |                       |              |                 |                   |                           |               |          |
| Test Engineer: Rafael Varelas Config Change: none                                                     |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
|                                                                                                       |                                                                          |               |                      | Power S               | ettinas      |                 | 110110            | 1                         |               |          |
|                                                                                                       | Chain                                                                    | Target        | (dBm)                | Measure               | d (dBm)      | Software        | e Setting         |                           |               |          |
|                                                                                                       | А                                                                        | 16            | o.0                  | 15                    | .5           | 24              | 1.0               | 1                         |               |          |
| Fundament                                                                                             | Fundamental Signal Field Strength                                        |               |                      |                       |              |                 |                   |                           |               |          |
| Frequency                                                                                             | Level                                                                    | Pol           | 15.209               | / 15.247              | Detector     | Azimuth         | Height            | Comments                  |               |          |
| MHz                                                                                                   | dBµV/m                                                                   | v/h           | Limit                | Margin                | Pk/QP/Avg    | degrees         | meters            |                           |               |          |
| 5320.670                                                                                              | 90.6                                                                     | Н             | -                    | -                     | AVG          | 259             | 1.4               | RB 1 MHz;                 | VB: 10 Hz     |          |
| 5320.270                                                                                              | 99.1                                                                     | H             | -                    | -                     | PK           | 259             | 1.4               | RB 1 MHz;                 | VB: 1 MHz     |          |
| 5298.870                                                                                              | 92.4                                                                     | V             | -                    | -                     | AVG          | 111             | 1.0               | RB 1 MHz;                 | VB: 10 Hz     |          |
| 5300.000                                                                                              | 100.1                                                                    | V             | -                    | -                     | PK           | 111             | 1.0               | RB 1 MHz;                 | VB: 1 MHz     |          |
| 5350 MHz B                                                                                            | <i>Band Edge S</i>                                                       | ignal Radia   | ted Field Str        | ength - Mark          | er Delta     |                 | 1                 |                           |               |          |
| H V                                                                                                   |                                                                          |               |                      |                       |              |                 |                   | . (5.                     |               |          |
| Fundamental emission level @ 3m in 1MHz RBW:                                                          |                                                                          |               |                      |                       |              | 100.1           | Peak Meas         | urement (RI               | 3=VB=1MHZ     |          |
| Fundamental emission level @ 3m in 1MHz RBW: 90.6 92.4 Average Measurement (RB=1MHz, VE               |                                                                          |               |                      |                       |              |                 |                   | VB=10HZ)                  |               |          |
| Delta Marker - 100kHz         37.8 dB         <- this can only be used if band edge signal is         |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
|                                                                                                       | Calcula                                                                  | ated Band-E   | age Measure          | ement (Peak):         | 62.3         | dBuV/m          | highest with      | nin 2MHz of               | band edge.    |          |
|                                                                                                       | Caici                                                                    | liated Band-L | <u>-dge Measur</u>   | rement (Avg):         | 54.6         | dBuV/m          | Margin            | Level                     | Limit         | Detector |
|                                                                                                       |                                                                          | De            | elta Marker -        | 1MHZ/1MHZ:            | 32.5         | dB<br>/B        | -1.6              | 52.4                      | 54            | Avg      |
|                                                                                                       | Coloul                                                                   | De Dand Fr    | <i>eita Marker -</i> | IMHZ/IUHZ:            | 40.0         | dB<br>dD::///ma | -]]./             | 62.3                      | /4            | PK       |
|                                                                                                       | Calcula                                                                  | Ileu Ballu-Eu | uge Measure          | comont (Ava):         | 67.0<br>E2.4 |                 | USING TOUK        | HZ delta valu             | ue            |          |
|                                                                                                       | Calcu                                                                    |               | _uye measu           | emeni (Avy).          | JZ.4         |                 |                   |                           | 5             |          |
| Frequency                                                                                             | Level                                                                    | Pol           | FCC                  | 15,209                | Detector     | Azimuth         | Height            | Comments                  |               |          |
| MHz                                                                                                   | dBuV/m                                                                   | v/h           | Limit                | Margin                | Pk/QP/Ava    | dearees         | meters            | 00111101110               |               |          |
| 5350.000                                                                                              | 52.4                                                                     | -             | 54.0                 | -1.6                  | Avg          | -               | -                 | Using 1MH                 | z delta value |          |
| 90.0                                                                                                  |                                                                          |               |                      |                       |              |                 | Analyze           | or Sottings               |               |          |
| 90.0-                                                                                                 | m                                                                        | ╶╗┍╼╼╼┿┑      |                      |                       |              |                 | HP8564            | E Settings                |               |          |
| 80.0-                                                                                                 | (                                                                        | ¥ :           |                      |                       |              |                 | CF: 534           | 10.000 MHz                |               |          |
| 75.0-                                                                                                 |                                                                          |               |                      |                       |              |                 | SPAN:1<br>RB 1.00 | .00.000 MHz .<br>10 MHz   |               |          |
| 70.0-                                                                                                 |                                                                          |               |                      |                       |              |                 | VB 10 F           | lz                        |               |          |
| 9<br>5<br>65 0 -                                                                                      |                                                                          | i-            |                      |                       |              |                 | Detecto           | or Sample                 |               |          |
| E 60.0-                                                                                               |                                                                          |               |                      |                       |              |                 |                   |                           |               |          |
| 55.0-                                                                                                 |                                                                          | i             | м                    |                       |              |                 | Sweep<br>Ref Lviz | Time 37.0s<br>:105.70DBUV | ,             |          |
| 50.0-                                                                                                 | 50.0-                                                                    |               |                      |                       |              |                 |                   |                           |               |          |
| 45.0-                                                                                                 | 45.0 - Comments                                                          |               |                      |                       |              |                 |                   |                           |               |          |
| 40.0-                                                                                                 |                                                                          |               |                      |                       | me -         |                 | BE @ 5            | 350 MHz                   |               |          |
| 35.0-                                                                                                 |                                                                          |               |                      |                       |              |                 | 5310 M            | Hz<br>n 40MHz             |               |          |
| 529                                                                                                   | 90 5300                                                                  | 5310 5320     | 5330 53<br>Frequenc  | 40 5350 5<br>;y (MHz) | 5360 5370    | 5380 53         | 90 Chain A        |                           |               |          |
| Cursor 1                                                                                              | 5320.6665                                                                | 88.03         | ÷-*-6-               | Delta F               | req. 29.33   |                 |                   | lia                       |               |          |
| Cursor 2                                                                                              | Cursor 2 5350.0000 48.03 🕂 🖈 🗟 🔹 Delta Amplitude 40.00 🥐 EIIIOU          |               |                      |                       |              |                 |                   |                           |               |          |

| <b>C</b> E                                                                   | <b>Elliott</b> EMC Test Data |                   |                             |                    |              |               |             |                |               |              |
|------------------------------------------------------------------------------|------------------------------|-------------------|-----------------------------|--------------------|--------------|---------------|-------------|----------------|---------------|--------------|
| Client:                                                                      | Intel                        |                   |                             |                    |              |               |             | Job Number:    | J75722        |              |
| Madalı                                                                       | 2v2 \//iEi wit               |                   |                             |                    |              |               | T-L         | og Number:     | T76443        |              |
| woder:                                                                       |                              | II WIWAX WII      | IIPCI                       |                    |              |               | Accou       | int Manager:   | -             |              |
| Contact:                                                                     | S. Hackett                   |                   |                             |                    |              |               |             |                |               |              |
| Standard:                                                                    | RSS 210 / F                  | CC 15.247         |                             |                    |              |               |             | Class:         | N/A           |              |
| Run # 1c, E                                                                  | UT on Chan                   | inel #102 55      | 10MHz - 802                 | .11n40, Chaii      | n A _        |               |             |                |               |              |
|                                                                              | Date of Test:                | 8/24/2009         |                             |                    |              | est Location: | FI Chamb    | er #4          |               |              |
| re                                                                           | st Engineer:                 | Rafael Vare       | as                          | Dowor S            | COL          | ing change:   | none        | 1              |               |              |
|                                                                              | Chain                        | Target            | (dBm)                       | Measure            | d (dRm)      | Softwar       | ≏ Settina   |                |               |              |
|                                                                              | Α                            | 16                | 0.5                         | 16                 | .0           | 23            | 3.0         | -              |               |              |
| Fundament                                                                    | al Signal Fi                 | eld Strenath      | 1                           |                    |              |               |             | 1              |               |              |
| Frequency                                                                    | Level                        | Pol               | 15.209                      | / 15.247           | Detector     | Azimuth       | Height      | Comments       |               |              |
| MHz                                                                          | dBµV/m                       | v/h               | Limit                       | Margin             | Pk/QP/Avg    | degrees       | meters      |                |               |              |
| 5498.870                                                                     | 93.8                         | H                 | -                           | -                  | AVG          | 263           | 1.4         | RB 1 MHz;      | VB: 10 Hz     |              |
| 5499.800                                                                     | 101.5                        | Н                 | -                           | -                  | PK           | 263           | 1.4         | RB 1 MHz;      | VB: 1 MHz     |              |
| 5498.870                                                                     | 89.3                         | V                 | -                           | -                  | AVG          | 147           | 1.0         | RB 1 MHz;      | VB: 10 Hz     |              |
| 5493.400                                                                     | 97.0<br>Destricted D         | V<br>Iand Edge Ci | -<br>Iamal Dadiat           | -<br>ad Field Ctra | PK<br>PK     | 14/           | 1.0         | RB T MHZ;      | VB: 1 MHZ     |              |
| 2400 IVITZ KESUICIEA BANA EAGE SIGNAI KAAIAIEA FIELA STRENGTN - MARKER DEITA |                              |                   |                             |                    |              |               |             |                |               |              |
|                                                                              | Fundament                    | al omission la    | aval @ ?m in                | 1MHz DBW/·         | 101 5        | 97 N          | Peak Meas   | surement (RF   | R=VR=1MHz     |              |
|                                                                              | Fundamenta                   | al emission le    | vel @ 3m in                 | 1MHz RBW           | 93.8         | 89.3          | Average M   | easurement     | (RR=1MHz)     | VB=10Hz)     |
|                                                                              | Tunuamenta                   | 43.2              | dB                          | <- this can        | only be used | if band edge  | e signal is |                |               |              |
|                                                                              | Calcul                       | ated Band-E       | dge Measure                 | ement (Peak):      | 58.3         | dBuV/m        | highest wit | hin 2MHz of    | band edge.    | o orginal lo |
|                                                                              | Calcu                        | ulated Band-I     | Edge Measu                  | rement (Avg):      | 50.6         | dBuV/m        | Margin      | Level          | Limit         | Detector     |
|                                                                              |                              | De                | elta Marker -               | 1MHz/1MHz:         | 40.3         | dB            | -3.9        | 50.1           | 54            | Avg          |
|                                                                              |                              | D                 | elta Marker -               | 1MHz/10Hz:         | 43.7         | dB            | -15.7       | 58.3           | 74            | Pk           |
|                                                                              | Calcul                       | ated Band-E       | dge Measure                 | ement (Peak):      | 61.2         | dBuV/m        | Using 100   | kHz delta valı | he            |              |
|                                                                              | Calcu                        | ulated Band-I     | Edge Measu                  | rement (Avg):      | 50.1         | dBuV/m        | Using 1MF   | Iz delta value | <u>)</u>      |              |
| Frequency                                                                    | Level                        | Pol               | FCC                         | 15.209             | Detector     | Azimuth       | Heiaht      | Comments       |               |              |
| MHz                                                                          | dBµV/m                       | v/h               | Limit                       | Margin             | Pk/QP/Avg    | degrees       | meters      |                |               |              |
| 5459.833                                                                     | 50.1                         | -                 | 54.0                        | -3.9               | Avg          | -             | -           | Using 1MH      | z delta value |              |
| 5470 MHz E                                                                   | Band Edge S                  | Signal Radia      | ted Field Sti               | rength - Mark      | er Delta     |               | 1           |                |               |              |
|                                                                              | Fundament                    |                   |                             |                    | H            | V             | DeckM       |                |               |              |
|                                                                              | Fundamenta                   | al emission le    | evel @ 3m in                | 1MHZ RBW:          | 101.5        | 97.0          | Peak Meas   | Surement (RE   | /DD 1MU-7     | VD 10U-)     |
|                                                                              | Fundamenta                   |                   | Dolta Mai                   | TIVIAL ROW:        | 93.8<br>20 F | 89.3<br>dD    | Average IV  |                | (RD= IIVIAZ,  | VD=IUHZ)     |
|                                                                              | <b>39</b> .0                 | dBuV/m            | <- IIIS Call<br>bigbost wit | bin 2MHz of        | hand oddo    | e signal is   |             |                |               |              |
|                                                                              | Calcu                        | Ilated Band-L     | rement (Ava).               | 54.3               | dBuV/m       | Margin        |             | Limit          | Detector      |              |
| Dolta Markor - 1MH7/1MH7                                                     |                              |                   |                             |                    |              | dB            | -14 0       | 54.3           | 68.3          |              |
|                                                                              |                              | 1MHz/10Hz:        | 38.7                        | dB                 | -26.3        | 62.0          | 88.3        | Pk             |               |              |
| Calculated Band-Edge Measurement (Peak):                                     |                              |                   |                             |                    | 66.8         | dBuV/m        | Usina 100k  | Hz delta val   | Je            |              |
|                                                                              | Calcu                        | ulated Band-I     | Edge Measu                  | rement (Avg):      | 55.1         | dBuV/m        | Using 100   | KHz delta vali | le            |              |
| Frequency                                                                    | Level                        | Pol               | FCC                         | C 15E              | Detector     | Azimuth       | Height      | Comments       |               |              |
| MHz                                                                          | dBµV/m                       | v/h               | Limit                       | Margin             | Pk/QP/Avg    | degrees       | meters      |                |               |              |
| 5469.500                                                                     | 54.3                         | -                 | 68.3                        | -14.0              | Avg          | -             | -           | Using 100k     | Hz delta valu | e            |
| Note - avera                                                                 | ge limit is eq               | uivalent to -2    | 27dBm eirp.                 |                    |              |               |             |                |               |              |



| Elliott EMC Test Data                                                   |                                                                 |                |                    |                        |               |            |                          |                             |               |                |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|--------------------|------------------------|---------------|------------|--------------------------|-----------------------------|---------------|----------------|
| Client:                                                                 | Client: Intel Job Number: J75722                                |                |                    |                        |               |            |                          |                             |               |                |
| Model                                                                   | 2v2 WiEi wit                                                    | h WiMax Mir    | IDCI               |                        | T-L           | og Number: | T76443                   |                             |               |                |
| wouer.                                                                  |                                                                 |                |                    |                        |               |            | Accou                    | nt Manager:                 | -             |                |
| Contact:                                                                | Contact: S. Hackett                                             |                |                    |                        |               |            |                          |                             |               |                |
| Stantuaru: KSS 2107FUU 15.247 Ulass: N/A Ulass: N/A                     |                                                                 |                |                    |                        |               |            |                          |                             |               |                |
| Run # 1d, E                                                             |                                                                 |                |                    |                        |               |            |                          |                             |               |                |
|                                                                         | Chain                                                           | Tarnet         | (dBm)              | Measure                | d (dRm)       | Softwar    | a Settina                |                             |               |                |
|                                                                         | А                                                               | 16             | .5                 | 16                     | .8            | 24         | 1.5                      | -                           |               |                |
| Fundament                                                               | Fundamental Signal Field Strength                               |                |                    |                        |               |            |                          |                             |               |                |
| Frequency                                                               | Level                                                           | Pol            | 15.209             | / 15.247               | Detector      | Azimuth    | Height                   | Comments                    |               |                |
| MHz                                                                     | dBµV/m                                                          | v/h            | Limit              | Margin                 | Pk/QP/Avg     | degrees    | meters                   |                             |               |                |
| 5680.930                                                                | 91.5                                                            | V              | -                  | -                      | AVG           | 88         | 1.0                      | RB 1 MHz;                   | VB: 10 Hz     |                |
| 5680.330                                                                | 100.0                                                           | V              | -                  | -                      | PK            | 88         | 1.0                      | RB 1 MHz;                   | VB: 1 MHz     |                |
| 5671.930                                                                | 93.4                                                            | H              | -                  | -                      | AVG           | 291        | 1.4                      | RB 1 MHz;                   | VB: 10 Hz     |                |
| 5668.000                                                                | 101.7                                                           | H              | -                  | -                      | PK            | 291        | 1.4                      | RB 1 MHz;                   | VB: 1 MHz     |                |
| 5725 MHz R                                                              | estricted Ba                                                    | and Edge Si    | gnal Radiat        | ed Field Strei         | ngth - Marke  | r Delta    | 1                        |                             |               |                |
|                                                                         | E                                                               |                |                    |                        | H<br>101 7    | V<br>100.0 | Dook Moos                | uramant (DC                 |               | <b>N</b>       |
|                                                                         | Fundamenta                                                      | al emission le |                    | 1MUz DDW               | 101.7         | 01 5       |                          | Measurement (RB=VB=1MHz)    |               |                |
| Fundamental emission level @ 3m in 1MHz RBW: 93.4 91.5 Average Measuren |                                                                 |                |                    |                        |               |            |                          |                             | (RD=11VINZ,   | $VD = IU\Pi Z$ |
|                                                                         | Calcul                                                          | ated Band-F    |                    | ment (Peak)            | 42.0<br>58.0  | dBuV/m     | <- IIIS Call             | hin 2MHz of                 | hand odgo     | e siynans      |
|                                                                         | Calcu                                                           | Ilated Band-I  | Ige Measure        | rement (Ava)           | 50.9          | dBuV/m     | Margin                   |                             | Limit         | Detector       |
|                                                                         | Calce                                                           |                | lta Marker -       | 1MHz/1MHz <sup>,</sup> | 30.0<br>/1 /1 | dB         | -18 /                    | /0 0                        | 68.3          | Δνα            |
|                                                                         |                                                                 | D              | elta Marker -      | 1MHz/10Hz <sup>,</sup> | 47.0          | dB         | -10.4                    | 58.9                        | 88.3          | Avy<br>Pk      |
|                                                                         | Calcul                                                          | ated Band-E    | dae Measure        | ement (Peak):          | 60.7          | dBuV/m     | Using 100k               | Hz delta vali               | 00.5<br>LIE   | I K            |
|                                                                         | Calcu                                                           | Ilated Band-I  | Edge Measu         | rement (Avg):          | 49.9          | dBuV/m     | Using 1MH                | z delta value               | )             |                |
| Frequency                                                               | Level                                                           | Pol            | FCC                | C 15E                  | Detector      | Azimuth    | Height                   | Comments                    |               |                |
| MHz                                                                     | dBµV/m                                                          | v/h            | Limit              | Margin                 | Pk/QP/Avg     | degrees    | meters                   |                             |               |                |
| 5725.000                                                                | 49.9                                                            | -              | 68.3               | -18.4                  | Avg           | -          | -                        | Using 1MH:                  | z delta value |                |
| Note - avera                                                            | ae limit is ea                                                  | uivalent to -2 | 7dBm eirp.         |                        |               |            |                          |                             |               |                |
| 85.0-5                                                                  | 5                                                               |                |                    |                        |               |            | - Analy                  | zor Sottina                 | c I           |                |
| 80.0-                                                                   |                                                                 | -              |                    |                        |               |            | HP85                     | 64F.EMI                     | 5             |                |
| 75.0-                                                                   |                                                                 | 1              |                    |                        |               |            | CF: 5                    | 701.000 MHz                 | 2             |                |
| 70.0-                                                                   |                                                                 |                |                    |                        |               |            | BB 1.                    | 1:100.000 MH<br>000 MHz     | iz            |                |
| 65.0-                                                                   |                                                                 |                |                    |                        |               |            | VB 10                    | Hz                          |               |                |
| -පී 60.0-                                                               |                                                                 |                |                    |                        |               |            | Deter<br>Att 0           | tor Sample                  |               |                |
| ·檀 55.0-                                                                |                                                                 |                | L.                 |                        |               |            | RLO                      | fset 0.00                   |               |                |
| -₹ 50.0-                                                                |                                                                 |                |                    |                        |               |            | Swee<br>Refi             | p Time 37.0s<br>vl:97.00DBH | v             |                |
| 45.0-                                                                   |                                                                 |                |                    |                        |               |            |                          |                             |               |                |
| 40.0-                                                                   | 40.0 - Comments                                                 |                |                    |                        |               |            |                          |                             |               |                |
| 30.0-                                                                   |                                                                 |                |                    |                        |               |            | BE @                     | 5725 MHz                    |               |                |
| 25.0 -<br>565                                                           | 51 5660 \$                                                      | 5670 5680      | 5690 57<br>Frequer | 00 5710<br>Cy (MHz)    | 5720 5730     | 5740 \$    | 5670<br>11 802.1<br>5751 | MHz<br>L1n 40MHz            |               |                |
| Cursor 1                                                                | 5679.3335                                                       | 81.33          | ₽ -* 6-            | Delta                  | Freq. 45.6    | 67 💋       | Ē                        | 11:0                        | <del></del>   |                |
| Cursor 2                                                                | Cursor 2 5725.0000 37.83 🗢 🐁 🗟 🔹 Delta Amplitude 43.50 🥻 LIIOUU |                |                    |                        |               |            |                          |                             |               |                |

| ~ _ | An AVTAR |
|-----|----------|

| Client:                        | Intel                        | 20 company                               |                             |                        |                            |               | J                      | ob Number:         | J75722        |               |
|--------------------------------|------------------------------|------------------------------------------|-----------------------------|------------------------|----------------------------|---------------|------------------------|--------------------|---------------|---------------|
| Model                          |                              | h MiMov Mir                              |                             |                        |                            |               | T-L                    | og Number:         | T76443        |               |
|                                | 2X2 WIFI WIL                 | n wiiviax iviir                          | IIPCI                       |                        |                            |               | Accou                  | nt Manager:        | -             |               |
| Contact:                       | 5. Hackell                   | CC 15 247                                |                             |                        |                            |               |                        | Class              | ΝΙ/Λ          |               |
| Dun #2 Ba                      | nd Edge Fig                  | Id Strongth                              | _ 802 11n/0                 | Chain B                |                            |               |                        | Class.             | N/A           |               |
| Run #2, Ba<br>Run #2a, El<br>[ | JT on Chanr<br>Date of Test: | nel #38 5190<br>8/24/2009<br>Bafaol Varo | - 802.111140<br>MHz - 802.1 | n40, Chain I           | B - Sample #<br>Te         | est Location: | 50059F23C<br>FT Chambe | er #4              |               |               |
| 10                             | St Engineer.                 |                                          | 10.5                        | Power S                | ettinas                    | ing change.   | TIONE                  | 1                  |               |               |
|                                | Chain                        | Target                                   | (dBm)                       | Measure                | d (dBm)                    | Software      | e Setting              |                    |               |               |
|                                | А                            | 15                                       | 5.5                         | 15                     | .7                         | 26            | b.0                    | 1                  |               |               |
| Fundament                      | al Signal Fie                | eld Strength                             |                             |                        |                            |               |                        | a                  |               |               |
| Frequency                      | Level                        | Pol                                      | 15.209                      | / 15.247               | Detector                   | Azimuth       | Height                 | Comments           |               |               |
| MHz                            | dBµV/m                       | v/h                                      | Limit                       | Margin                 | Pk/QP/Avg                  | degrees       | meters                 |                    |               |               |
| 5200.730                       | 92.5                         | H                                        | -                           | -                      | AVG                        | 108           | 1.0                    | RB 1 MHz;          | VB: 10 Hz     |               |
| 5200.400                       | 101.3                        | H                                        | -                           | -                      | PK                         | 108           | 1.0                    | RB 1 MHZ;          | VB: 1 MHz     |               |
| 5200.600                       | 90.8                         | V                                        | -                           | -                      | AVG                        | 140           | l./<br>17              | RB I MHZ;          |               |               |
| 5200.200                       | 90.7<br>Rand Edge S          | v<br>Sianal Padia                        | -<br>tod Fiold Sti          | -<br>conath - Mark     | or Dolta                   | 140           | 1.7                    | KD I WINZ,         | VD. I IVINZ   |               |
| 5150 WITZ D                    | anu Luye J                   | iyilal Kaula                             | ieu i ieiu Sii              | engin - mark           | H                          | V             | 1                      |                    |               |               |
|                                | Fundamenta                   | al emission le                           | evel @ 3m in                | 1MHz RBW:              | 101.3                      | 98.7          | Peak Meas              | urement (RE        | B=VB=1MHz     | )             |
|                                | Fundamenta                   | al emission le                           | evel @ 3m in                | 1MHz RBW:              | 92.5                       | 90.8          | Average M              | easurement         | (RB=1MHz,     | ,<br>VB=10Hz) |
|                                |                              |                                          | Delta Mai                   | ker - 100kHz           | 39.0                       | dB            | <- this can            | only be used       | l if band edg | e signal is   |
|                                | Calcula                      | ated Band-E                              | dge Measure                 | ement (Peak):          | 62.3                       | dBuV/m        | highest with           | hin 2MHz of        | band edge.    | 5             |
|                                | Calcu                        | Ilated Band-I                            | Edge Measu                  | rement (Avg):          | 53.5                       | dBuV/m        | Margin                 | Level              | Limit         | Detector      |
|                                |                              | De                                       | elta Marker -               | 1MHz/1MHz:             | 34.0                       | dB            | -1.7                   | 52.3               | 54            | Avg           |
|                                |                              | D                                        | elta Marker -               | 1MHz/10Hz:             | 40.2                       | dB            | -11.7                  | 62.3               | 74            | Pk            |
|                                | Calcula                      | ated Band-E                              | dge Measure                 | ement (Peak):          | 67.3                       | dBuV/m        | Using 100k             | Hz delta valu      | Je            |               |
|                                | Calcu                        | ilated Band-I                            | Edge Measu                  | rement (Avg):          | 52.3                       | dBuV/m        | Using 1MH              | z delta value      | <u>}</u>      |               |
| Frequency                      | Level                        | Pol                                      | FCC                         | 15.209                 | Detector                   | Azimuth       | Height                 | Comments           |               |               |
| MHz                            | dBµV/m                       | v/h                                      | Limit                       | Margin                 | Pk/QP/Avg                  | degrees       | meters                 |                    |               |               |
| 5149.500                       | 52.3                         | -                                        | 54.0                        | -1.7                   | Avg                        | -             | -                      | Using 1MHz         | z delta value |               |
| 90.0 <i>-</i> [                |                              |                                          |                             |                        |                            |               | Anal                   | yzer Setting       | <u>js</u>     |               |
| 85.0-                          |                              |                                          |                             | ſ                      |                            |               | T HP85                 | 564E,EMI           |               |               |
| 80.0-                          |                              |                                          | İ                           |                        |                            |               | SPAN                   | 1:100.000 MH       | z<br>Hz       |               |
| 75.0-                          |                              |                                          |                             |                        |                            |               | RB 1                   | .000 MHz           |               |               |
| -0.0<br>Ψ 65.0                 |                              |                                          |                             |                        |                            |               | Dete                   | ctor Sample        |               |               |
| ± 60.0−                        |                              |                                          |                             |                        |                            |               | Att 1                  | 0<br>ffeet 0.00    |               |               |
| 문 55.0 -                       |                              |                                          |                             |                        |                            |               | Swee                   | ep Time 37.0:      | s             |               |
| 50.0-                          |                              |                                          |                             | للمسمه                 |                            |               | Refl                   | vl:100.50DB        | UV            |               |
| 45.0-                          |                              |                                          |                             |                        | <b>+ + + + + + + + + +</b> | ******        |                        |                    |               |               |
| 40.0 -<br>35.0 -               |                              |                                          |                             |                        |                            |               | Com<br>BE @            | ) 5150 MHz         |               |               |
| 30.0-                          | 10 5120                      | 5130 514                                 | 0 5150 5<br>Frequei         | 5160 5170<br>hcy (MHz) | 5180 519                   | 0 5200        | 5190<br>802.<br>5210   | ) MHz<br>11n 40MHz |               |               |
| Cursor 1                       | 5149.5000                    | 46.17                                    | ⊕ - <u>*</u> 6-             | Delta                  | Freq. 29.5                 | 00 🥖          |                        | 11.                | 44            |               |
| Cursor 2                       | 5179.0000                    | 86.33                                    | \$- <u>*</u> 8-             | Delta Amp              | olitude 40.                | 17 7          | E                      | <b>JI1</b> C       | π             |               |

| Œ                |                           |                |                                     |                          |                    |               |               | EM                           | C Test          | ' Data        |
|------------------|---------------------------|----------------|-------------------------------------|--------------------------|--------------------|---------------|---------------|------------------------------|-----------------|---------------|
| Client:          | Intel                     |                |                                     |                          |                    |               | J             | ob Number:                   | J75722          |               |
| Model            | 2v2 WiFi wit              | h WiMay Mir    | hiD∩l                               |                          |                    |               | T-L           | og Number:                   | T76443          |               |
| would i          |                           |                |                                     |                          |                    |               | Accou         | nt Manager:                  | -               |               |
| Contact:         | S. Hackett                | 00 15 047      |                                     |                          |                    |               |               | Olaaa                        | N1/A            |               |
| Standard:        | RSS 210/F                 | UU 15.247      |                                     | 1n10 Chain               | D. Compled         |               | EQUEUEDOC     | Class:                       | IN/A            |               |
| RUN #20, EU<br>Г | )ate of Test <sup>,</sup> | 0/0/2000       | /IVIFIZ - 8UZ. I                    | mau, chain               | в - Sample #<br>Те | st Location   | FT Chamb      | ≏r #5                        |                 |               |
| Te               | st Engineer:              | Rafael Vare    | las                                 |                          | Cor                | fig Change:   | none          |                              |                 |               |
|                  | Chain                     |                |                                     | Power S                  | Settings           |               |               | ]                            |                 |               |
|                  | Chain                     | Target         | (dBm)                               | Measure                  | d (dBm)            | Softwar       | e Setting     |                              |                 |               |
|                  | A                         | 16             | o.0                                 | 15                       | .2                 | 25            | 5.0           | J                            |                 |               |
| Fundament        | al Signal Fie             | eld Strength   | 15 200                              | / 15 2/7                 | Dotoctor           | Azimuth       | Hoight        | Commonto                     |                 |               |
| MHz              | dBuV/m                    | 201<br>v/h     | I imit                              | Margin                   | Pk/OP/Ava          | degrees       | meters        | Comments                     |                 |               |
| 5320.800         | 92.8                      | V              | -                                   | -                        | AVG                | 129           | 1.6           | RB 1 MHz;                    | VB: 10 Hz       |               |
| 5320.330         | 100.3                     | V              | -                                   | -                        | PK                 | 129           | 1.6           | RB 1 MHz;                    | VB: 1 MHz       |               |
| 5299.070         | 92.1                      | Н              | -                                   | -                        | AVG                | 107           | 1.0           | RB 1 MHz;                    | VB: 10 Hz       |               |
| 5299.800         | 99.9                      | H              | -                                   | -                        | PK                 | 107           | 1.0           | RB 1 MHz;                    | VB: 1 MHz       |               |
| 5350 MHz E       | Sand Edge S               | ignal Radia    | ted Field Str                       | ength - Mark             | er Delta           | M             | 1             |                              |                 |               |
|                  | Fundaments                | al omission la | avol @ ?m in                        | 1MHz DBW/·               |                    | V<br>100 3    | Peak Meas     | urement (RI                  | R_\/R_1MH7      | )             |
|                  | Fundamenta                | al emission le | evel @ 3m in                        | 1MHz RBW:                | 92.1               | 92.8          | Average M     | easurement                   | (RB=1MHz.       | ,<br>VB=10Hz) |
|                  | - unuunion                |                | Delta Mar                           | ker - 100kHz             | 38.8               | dB            | <- this can   | only be used                 | d if band edg   | e signal is   |
|                  | Calcul                    | ated Band-E    | dge Measure                         | ement (Peak):            | 61.5               | dBuV/m        | highest with  | hin 2MHz of                  | band edge.      | 5             |
|                  | Calcu                     | Ilated Band-I  | Edge Measur                         | rement (Avg):            | 54.0               | dBuV/m        | Margin        | Level                        | Limit           | Detector      |
|                  |                           | De             | elta Marker -                       | 1MHz/1MHz:               | 33.8               | dB            | -2.0          | 52.0                         | 54              | Avg           |
|                  | Calaul                    | Donal D        | <i>elta Marker -</i><br>dae Meeeure | 1MHz/10Hz:               | 40.8               | dB            | -12.5         | 61.5                         | 74              | Pk            |
|                  |                           | Ilated Band-L  | uge Measure<br>Edge Measur          | rement (Ava):            | 66.5<br>52.0       | dBuV/m        | USING 100K    | HZ delta value               | ue              |               |
| -                |                           |                |                                     |                          | J2.0               |               |               |                              | 5               |               |
|                  | Level                     | P0I            | FCC<br>Limit                        | 15.209<br>Margin         | Detector           | Azimuth       | Height        | Comments                     |                 |               |
| 5350,000         | <u>υ</u> σμν/π<br>52.0    | -              | 54.0                                | -2 0                     | Ava                | uegrees<br>-  | -             | Using 1MH                    | z delta value   |               |
| 0000             | 02.0                      |                | 0110                                | 2.0                      | , ng               |               |               | naluzer Cei                  |                 |               |
| 90.0-            | ╼╼┿╍╍                     |                | •e=q                                |                          |                    |               | A             | inalyzer Sei<br>198564E EMI  | rungs<br>r      |               |
| 80.0-            | 1 1                       | 1              |                                     |                          |                    |               | c             | F: 5341.000                  | ) MHz           |               |
| 75.0-            |                           |                |                                     |                          |                    |               | S             | PAN:100.00<br>B 1.000 MH     | 10 MHz<br>7     |               |
| 70.0-            |                           |                |                                     |                          |                    |               | V V           | B 10 Hz                      |                 |               |
| - පු 65.0 -      |                           |                |                                     |                          |                    |               | С<br>Д        | etector Sam<br>tt 10         | ple             |               |
| / 특 60.0 -       | <b>I</b>                  |                |                                     |                          |                    |               | R             | L Offset 0.0                 | 0               |               |
| ₹ 55.0-          |                           |                |                                     |                          |                    |               |               | weep time a<br>tef Lvl:105.8 | B7.US<br>BODBUV |               |
| 50.0-<br>45.0-   |                           |                |                                     |                          |                    |               |               |                              |                 |               |
| 40.0-            |                           |                |                                     |                          |                    |               | C             | omments                      |                 |               |
| 35.0-            |                           |                |                                     |                          |                    |               | B             | E @ 5350 M                   | Hz              |               |
| 30.0-<br>52      | 91 5300                   | 5310 532       | 0 5330 5<br>Frequ                   | 5340 5350<br>Jency (MHz) | 5360 53            | ,<br>370 5380 | " 8<br>5391 C | :02.11n 40M<br>:hain B       | Hz              |               |
| Cursor 1         | 5299.000                  | 0 87.13        | ⊕ Շ-                                | Delta Ar                 | ta Freq. 5         | 0.83          | F             | Elli                         | ott             |               |
|                  |                           |                |                                     | - Dorta Al               | uburgene i ,       |               | - <b>-</b> -  |                              |                 |               |

| <b>E</b>                               |                                                      | btt             |               |               |                                       |                |                                   | EMO                        | C Test                     | <sup>b</sup> Data |
|----------------------------------------|------------------------------------------------------|-----------------|---------------|---------------|---------------------------------------|----------------|-----------------------------------|----------------------------|----------------------------|-------------------|
| Client:                                | Intel                                                |                 |               |               |                                       |                | J                                 | lob Number:                | J75722                     |                   |
| Model:                                 | 2x2 WiFi wit                                         | h WiMax Mir     | niPCI         |               |                                       |                | T-L<br>Accou                      | .og Number:<br>nt Manager: | T76443<br>-                |                   |
| Contact:                               | S. Hackett                                           |                 |               |               |                                       |                |                                   |                            |                            |                   |
| Standard:                              | RSS 210 / F                                          | CC 15.247       |               |               |                                       |                |                                   | Class:                     | N/A                        |                   |
| Run # 2c, E                            | UT on Chan                                           | nel #102 55     | 10MHz - 802   | .11n40, Chaii | n B                                   |                |                                   |                            |                            |                   |
| [                                      | Date of Test:                                        | 8/24/2009       |               |               | Te                                    | est Location:  | FT Chambe                         | er #4                      |                            |                   |
| Те                                     | st Engineer:                                         | Rafael Vare     | as            |               | Cor                                   | nfig Change:   | none                              | 1                          |                            |                   |
|                                        | Chain                                                | <b>T</b>        | (10)          | Power S       | Settings                              | <b>C</b> - (1) |                                   |                            |                            |                   |
|                                        |                                                      | l arget         | (dBm)         | Measure       | d (dBm)                               | Software       | e Setting                         | -                          |                            |                   |
| Fundament                              | B<br>In Linnal Fi                                    | old Strongth    | 0.0           | 15            | .1                                    | 25             | 0.0                               |                            |                            |                   |
| Fundament                              | ai Signai Fi                                         | ela Strength    | 15 200        | / 15 2/7      | Dotoctor                              | Azimuth        | Hoight                            | Commonts                   |                            |                   |
| MH <sub>7</sub>                        |                                                      | P0I<br>v/h      | I imit        | Margin        |                                       | degrees        | meters                            | Comments                   |                            |                   |
| 5520 270                               | <u>ubμviii</u><br>95.7                               | Н               | -             | -             | AVG                                   | 109            | 12                                | RB 1 MHz <sup>.</sup>      | VB <sup>.</sup> 10 Hz      |                   |
| 5520.330                               | 103.9                                                | Н               | -             | -             | PK                                    | 109            | 1.2                               | RB 1 MHz:                  | VB: 1 MHz                  |                   |
| 5520.400                               | 91.0                                                 | V               | -             | -             | AVG                                   | 239            | 1.0                               | RB 1 MHz;                  | VB: 10 Hz                  |                   |
| 5520.330                               | 99.8                                                 | V               | -             | -             | PK                                    | 239            | 1.0 RB 1 MHz; VB: 1 MHz           |                            |                            |                   |
| 5460 MHz R                             | 460 MHz Restricted Band Edge Signal Radiated Field S |                 |               |               |                                       | er Delta       | •                                 |                            |                            |                   |
|                                        |                                                      |                 |               |               | Н                                     | V              |                                   |                            |                            |                   |
|                                        | Fundamenta                                           | al emission le  | evel @ 3m in  | 1MHz RBW:     | 103.9                                 | 99.8           | Peak Meas                         | surement (RE               | B=VB=1MHz)                 | )                 |
|                                        | Fundamental emission level @ 3m in 1MHz RB           |                 |               |               |                                       | 91.0           | Average Measurement (RB=1MHz, VB= |                            |                            | VB=10Hz)          |
|                                        |                                                      |                 | Delta Mar     | rker - 100kHz | 45.5                                  | dB             | <- this can                       | only be used               | d if band edge             | e signal is       |
|                                        | Calcul                                               | ated Band-E     | dge Measure   | ement (Peak): | ): 58.4 dBuV/m highest within 2MHz of |                |                                   | band edge.                 |                            |                   |
|                                        | Calcı                                                | ulated Band-I   | Edge Measu    | rement (Avg): | 50.2 dBuV/m Margin Level              |                |                                   | Limit                      | Detector                   |                   |
|                                        |                                                      | De              | elta Marker - | 1MHz/1MHz:    | 41.0                                  | dB             | -3.8                              | 50.2                       | 54                         | Avg               |
|                                        | 0.1                                                  | D               | elta Marker - | 1MHz/10Hz:    | 44.7                                  | dB             | -15.6                             | 58.4                       | 74                         | Pk                |
|                                        | Calcul                                               | ated Band-E     | dge Measure   | ement (Peak): | 62.9                                  | dBuV/m         | Using 100k                        | Hz delta val               | ue                         |                   |
|                                        | Calci                                                | naleo Bauo-I    | Euge Measur   | rement (Avg): | 51.0                                  | aBuv/m         | Using TOOK                        | Hz delta val               | ue                         |                   |
| Frequency                              | Level                                                | Pol             | FCC           | 15.209        | Detector                              | Azimuth        | Height                            | Comments                   |                            |                   |
| MHz                                    | dBµV/m                                               | v/h             | Limit         | Margin        | Pk/QP/Avg                             | degrees        | meters                            |                            |                            |                   |
| 5459.833                               | 50.2                                                 | -               | 54.0          | -3.8          | Avg                                   | -              | -                                 | Using 100k                 | Hz delta valu              | le                |
| 5470 MHz E                             | Band Edge S                                          | Signal Radia    | ted Field Str | rength - Mark | er Delta                              | N              | 1                                 |                            |                            |                   |
|                                        | Fundament                                            | al omission l   | wol@2min      |               | H<br>102.2                            | V              | Dook Moor                         | uromont (DE                |                            |                   |
|                                        | Fundament                                            | al emission la  | vel @ 311 III |               | 05.7                                  | 99.0<br>01.0   |                                   | oasuromont                 | )= V D= ПVIПZ)<br>/DR_1MЦ7 | /<br>//R_10Hz)    |
|                                        | Fundamenta                                           |                 | Dolta Mai     | TIVINZ KOW.   | 90.7                                  | 91.0<br>dP     | Average IV                        |                            | (RD= IIVINZ,               | $VD = IU\Pi Z$    |
|                                        | Calcul                                               | ated Band-F     |               | ment (Peak)   | 65.5                                  | dBuV/m         | <- unis can<br>highest wit        | hin 2MHz of                | hand edge                  | e signai is       |
|                                        | Calcu                                                | Ilated Band-I   | -doe Measur   | rement (Ava)  | 58.9                                  | dBuV/m         | Margin                            |                            | Limit                      | Detector          |
|                                        |                                                      |                 |               |               | 30.7                                  | dB             | _9 <u>4</u>                       | 58.9                       | 68.3                       | Δνα               |
| Delta Marker - 1MHz/10H                |                                                      |                 |               |               | 36.8                                  | dB             | -22.8                             | 65.5                       | 88.3                       | Pk                |
| Calculated Band-Edge Measurement (Peak |                                                      |                 |               |               | 71.0                                  | dBuV/m         | Using 100k                        | Hz delta val               | ue                         |                   |
| Calculated Band-Edge Measurement (Avg  |                                                      |                 |               |               | 58.9                                  | dBuV/m         | Using 1MH                         | z delta value              | <u>)</u>                   |                   |
| Froquoney                              |                                                      | Dol             | FCC           | ` 15E         | Dotoctor                              | Azimuth        | Hoight                            | Commonts                   |                            |                   |
| ттециенсу<br>МН7                       |                                                      | г UI<br>v/h     | Limit         | Margin        |                                       | degrees        | meters                            | COMMENIS                   |                            |                   |
| 5469 666                               | 58 9                                                 | -               | 68.3          | -9 4          |                                       | -              | -                                 | Using 1MH                  | z delta value              |                   |
|                                        |                                                      | I               |               | 7.1           | y                                     |                |                                   |                            |                            |                   |
| Note - avera                           | ge limit is eq                                       | juivalent to -2 | 2/dBm eirp.   |               |                                       |                |                                   |                            |                            |                   |



| <b>E</b>           |                                                       | Dtt              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        | EM                                      | C Test        | <sup>-</sup> Data |
|--------------------|-------------------------------------------------------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|---------------|-------------------|
| Client:            | Intel                                                 |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        | lob Number:                             | J75722        |                   |
| Model              | 2x2 WiFi wit                                          | h WiMax Min      | iPCI               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | T-L                                                                    | og Number:                              | T76443        |                   |
| Wiodel.            |                                                       |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | Accou                                                                  | nt Manager:                             | -             |                   |
| Contact:           | S. Hackett                                            | 00 15 047        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        | 01                                      | N1/A          |                   |
| Standard:          | RSS 210/F                                             | UC 15.247        | 70141- 000         | 11-10 Chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - D              |                                          |                                                                        | Class:                                  | N/A           |                   |
| RUN # 20, E        | UT on Chan                                            | inei #134 56.    | /UIVIHZ - 802      | Dower S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n B<br>ottings   |                                          |                                                                        | 1                                       |               |                   |
|                    | Chain                                                 | Target           | (dBm)              | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d (dBm)          | Software                                 | e Settina                                                              |                                         |               |                   |
|                    | В                                                     | 16               | 0.5                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8               | 25                                       | 5.5                                                                    |                                         |               |                   |
| Fundament          | al Signal Fie                                         | eld Strength     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        | 1                                       |               |                   |
| Frequency          | Level                                                 | Pol              | 15.209             | / 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detector         | Azimuth                                  | Height                                                                 | Comments                                |               |                   |
| MHz                | dBµV/m                                                | v/h              | Limit              | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pk/QP/Avg        | degrees                                  | meters                                                                 |                                         |               |                   |
| 5672.330           | 91.1                                                  | V                | -                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVG              | 185                                      | 1.0                                                                    | RB 1 MHz;                               | VB: 10 Hz     |                   |
| 5680.270           | 99.7                                                  | V                | -                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PK               | 185                                      | 1.0                                                                    | RB 1 MHz;                               | VB: 1 MHz     |                   |
| 5667.600           | 94./                                                  | H                | -                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVG              | 112                                      | 1.0                                                                    | RB 1 MHZ;                               | VB: 10 Hz     |                   |
| 5008.000           | 103.1                                                 | H<br>and Edge Si | -<br>anal Dadiat   | -<br>ad Eiald Stray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PK<br>Path Marks | 2<br>nr Dolta                            | 1.0                                                                    | KR I MHZ;                               | VR: I MHZ     |                   |
| 3723 IVIAZ K       | esincieu Ba                                           | and Euge Si      | gilal Raulati      | ea Fiela Silei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | туп - магке<br>⊔ |                                          | 1                                                                      |                                         |               |                   |
|                    | Fundamenta                                            | al emission la   | Wel @ 2m in        | 1MH7 RRW/·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.1            | 99.7                                     | Peak Meas                                                              | surement (RF                            | S=VB=1MHz     |                   |
|                    | Fundamenta                                            | al emission le   | vel @ 3m in        | 1MHz RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94 7             | 91.1                                     | Peak Measurement (RB=VB=1MHz)<br>Average Measurement (RB=1MHz, VB=10Hz |                                         |               |                   |
| <u> </u>           | T unuumenta                                           |                  | Delta Mai          | rker - 100kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.3             | dB                                       | - this can only be used if band edge signal                            |                                         |               |                   |
|                    | Calcul                                                | ated Band-E      | dae Measure        | ement (Peak):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.8             | dBuV/m highest within 2MHz of band edge. |                                                                        |                                         |               |                   |
|                    | Calcu                                                 | ulated Band-E    | Edge Measu         | rement (Avg):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.4             | dBuV/m Margin Level Limit De             |                                                                        |                                         |               |                   |
|                    |                                                       | De               | elta Marker -      | 1MHz/1MHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.5             | <i>43.5 dB</i> -21.9 46.4 68.3           |                                                                        |                                         |               |                   |
|                    |                                                       | De               | elta Marker -      | 1MHz/10Hz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47.2             | dB                                       | -33.5                                                                  | 54.8                                    | 88.3          | Pk                |
|                    | Calcul                                                | ated Band-Eo     | dge Measure        | ement (Peak):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.6             | dBuV/m                                   | Using 100k                                                             | Hz delta valu                           | Je            |                   |
|                    | Calcu                                                 | ulated Band-I    | Edge Measu         | rement (Avg):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.5             | dBuV/m                                   | Using 100k                                                             | Hz delta valı                           | he            |                   |
| Frequency          | Level                                                 | Pol              | FCC                | C 15E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detector         | Azimuth                                  | Height                                                                 | Comments                                |               |                   |
| MHz                | dBµV/m                                                | v/h              | Limit              | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pk/QP/Avg        | degrees                                  | meters                                                                 |                                         |               |                   |
| 5/32.833           | 46.4                                                  | -                | 68.3               | -21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg              | -                                        | -                                                                      | Using 100k                              | Hz delta valu | е                 |
| Note - avera       | ige limit is eq                                       | uivalent to -2   | 27dBm eirp.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        |                                         |               |                   |
| 90.0- <sub>E</sub> |                                                       | i                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | Analyz                                                                 | er Settings                             |               |                   |
| 80.0-              | hund                                                  | - phalenel       | 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | <ul> <li>HP856</li> <li>CF: 57</li> <li>SPAN:</li> </ul>               | 4E,EMI<br>700.500 MHz<br>100.000 MHz    |               |                   |
| 70.0-              |                                                       |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | RB 10<br>VB 100                                                        | 0 kHz<br>1 kHz                          |               |                   |
| පු 60.0-           |                                                       |                  | Mine               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          | Detect<br>Att 0                                                        | tor POS                                 |               |                   |
| 별<br>문 50.0-       |                                                       |                  |                    | The state of the s |                  |                                          | RL Off<br>Sweep<br>Ref Lv                                              | set 0.00<br>Time 55.0ms<br>1:97.000811V | 5             |                   |
| 40.0-              |                                                       |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | me .             |                                          |                                                                        |                                         |               |                   |
| 30.0-              |                                                       |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | and the set                              | Comm<br>BE@!                                                           | ients<br>5725 MHz                       |               |                   |
| 20.0-<br>565       | 50 5660 !                                             | 5670 5680        | 5690 57<br>Frequen | 00 5710 !<br>cy (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5720 5730        | 5740 57                                  | 5670 f<br>802.1<br>750                                                 | MHz<br>1n 40MHz                         |               |                   |
| Cursor 1           | 5682.6665                                             | 85.00            | ÷ -*- 6-           | Delta F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Freq. 50.16      | 7 🕜                                      |                                                                        | 11:01                                   | F#            |                   |
| Cursor 2           | ursor 2 5732.8335 36.67 🕂 🖈 🗟 🗸 Delta Amplitude 48.33 |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |                                                                        |                                         |               |                   |

| 6                                                                                           |                | <b>D</b> tt    |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               | EMO             | C Test         | Data        |
|---------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|-----------------|----------------|-------------|
| Client:                                                                                     | Intel          |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | J                             | lob Number:     | J75722         |             |
| Model                                                                                       | 2x2 WiFi wit   | h WiMax Mir    | iPCI                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | T-L                           | og Number:      | T76443         |             |
|                                                                                             | <u> </u>       |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Accou                         | nt Manager:     | -              |             |
| Contact:                                                                                    | S. Hackett     | CC 1E 247      |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               | Class           |                |             |
| Statiuaru.<br>Dun # 2 Ba                                                                    | nd Edgo Eig    | UC 15.247      | 202 11n/0                   | Chain A B          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               | CIdSS.          | N/A            |             |
| Run # 3a, F                                                                                 | UT on Chan     | nel #38 519    | - 802.11140<br>)MHz - 802 1 | 1n40. Chain        | A+B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                               |                 |                |             |
| [<br>[                                                                                      | Date of Test:  | 8/12/2009      |                             |                    | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | est Location | : FT Chamb                    | er #4           |                |             |
| Те                                                                                          | st Engineer:   | Rafael Vare    | as                          |                    | Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nfig Change  | none                          | _               |                |             |
|                                                                                             | Chain          | - ·            |                             | Power S            | ettings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0          | 0.11                          |                 |                |             |
|                                                                                             |                | larget         | (dBm)                       | Measure            | d (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Softwar      | e Setting                     | -               |                |             |
| Eundamont                                                                                   | A+B            | 10.5 (13       | .5/13.5)                    | 13.77              | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.5         | 0/25.5                        |                 |                |             |
| Frequency                                                                                   | ai Siyiiai Fic | Pol            | 15 209                      | / 15 247           | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Azimuth      | Height                        | Comments        |                |             |
| MHz                                                                                         | dBuV/m         | v/h            | Limit                       | Margin             | Pk/QP/Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees      | meters                        | ooninients      |                |             |
| 5200.330                                                                                    | 91.0           | V              | -                           | -                  | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130          | 1.6                           | RB 1 MHz;       | VB: 10 Hz      |             |
| 5201.270                                                                                    | 101.3          | V              | -                           | -                  | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130          | 1.6                           | RB 1 MHz;       | VB: 1 MHz      |             |
| 5201.000                                                                                    | 91.1           | H              | -                           | -                  | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0          | RB 1 MHz;                     | VB: 10 Hz       |                |             |
| 5200.470                                                                                    | 100.8          | H              | -                           | 110                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB 1 MHz;    | VB: 1 MHz                     |                 |                |             |
| 5150 MHZ E                                                                                  | sana Eage S    | lignal Radia   | iea Fiela Str               | engin - Mark       | er Deita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V            | 7                             |                 |                |             |
|                                                                                             | Fundamenta     | al emission le | wel @ ?m in                 | 1MHz RBW·          | 100.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101 3        | Peak Meas                     | surement (RF    | R=VR=1MHz      |             |
|                                                                                             | Fundamenta     | al emission le | evel @ 3m in                | 1MHz RBW:          | 91.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.0         | Average M                     | easurement      | (RB=1MHz.)     | VB=10Hz)    |
|                                                                                             |                |                | Delta Mar                   | ker - 100kHz       | 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB           | <- this can                   | only be used    | l if band edge | e signal is |
|                                                                                             | Calcul         | ated Band-E    | dge Measure                 | ement (Peak):      | 60.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m       | highest wit                   | hin 2MHz of     | band edge.     | U           |
|                                                                                             | Calcu          | ulated Band-I  | Edge Measur                 | rement (Avg):      | 50.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m       | Margin                        | Level           | Limit          | Detector    |
|                                                                                             |                | De             | elta Marker -               | 1MHz/1MHz:         | 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB           | -3.9                          | 50.1            | 54             | Avg         |
|                                                                                             | 0.1.1          | D              | elta Marker -               | 1MHz/10Hz:         | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB           | -13.7                         | 60.3            | 74             | Pk          |
|                                                                                             | Calcul         | ated Band-E    | dge Measure                 | ement (Peak):      | 64.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m       | Using 100k                    | Hz delta valı   | Je             |             |
|                                                                                             | Calci          | lialeu Dailu-i | Luye measur                 | ennenii (Avy).     | 50.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | abuv/m       | Using TOOK                    | HZ della val    | le             |             |
| Frequency                                                                                   | Level          | Pol            | FCC                         | 15.209             | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Azimuth      | Height                        | Comments        |                |             |
| MHz                                                                                         | dBµV/m         | v/h            | Limit                       | Margin             | Pk/QP/Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees      | meters                        |                 |                |             |
| 5149.833                                                                                    | 50.1           | -              | 54.0                        | -3.9               | Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | -                             | Using 100k      | Hz delta valu  | е           |
| 70.0- <sub> -</sub>                                                                         |                |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Analyzer Se                   | ttings          |                |             |
| 60.0-                                                                                       |                |                |                             | الاليور            | سليمحم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al al        | HP8564E,EM                    | I<br>D MHz      |                |             |
| 00.0                                                                                        |                |                |                             |                    | a la construction de la construc |              | SPAN:100.00                   | 00 MHz          |                |             |
| 50.0-                                                                                       |                |                |                             |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | VB 100 kHz                    |                 |                |             |
| පු 40.0-                                                                                    |                |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Detector POS<br>Att 0         | 5               |                |             |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | RL Offset 0.0<br>Sweep Time 9 | 00<br>55.0ms    |                |             |
| Q 0010                                                                                      |                |                | . Jana and                  | ¥                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Ref Lvl:80.60                 | DBUV            |                |             |
| 20.0-                                                                                       | a handdal d    | while days     | Manual                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Commonte                      |                 |                |             |
| 10.0-                                                                                       | a ha tadh sahi | In L           |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | BE @ 5150 M                   | IHz             |                |             |
| 0.0                                                                                         |                |                |                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 5190 MHz<br>802, 115, 40M     | IH <sub>2</sub> |                |             |
| 511                                                                                         | 0 5120 5       | 130 5140       | 5150 5160<br>Frequency (    | 5170 5180<br>(MHz) | 5190 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 5210      | 0021111 100                   |                 |                |             |
| Cursor 1                                                                                    | 5149.8335      | 24.10 💠        | -*- 6-                      | Delta Freq         | 53.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | C11:                          | <u></u>         |                |             |
| Cursor 2                                                                                    | 5203.6665      | 65.10 💠        | -*- <b>&amp;</b> - D        | elta Amplitud      | e 41.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C.           | СШ                            | ou              |                |             |

| (CE                 |               | D <b>tt</b>    |                         |                        |             |              |                    | EMO           | C Test        | <sup>•</sup> Data |
|---------------------|---------------|----------------|-------------------------|------------------------|-------------|--------------|--------------------|---------------|---------------|-------------------|
| Client:             | Intel         |                |                         |                        |             |              | J                  | ob Number:    | J75722        |                   |
| Model               | 2v2 \MiFi wit | h WiMay Mir    | hiD∩I                   |                        |             |              | T-L                | og Number:    | T76443        |                   |
| WIOUCI.             |               |                |                         |                        |             |              | Accou              | nt Manager:   | -             |                   |
| Contact:            | S. Hackett    | 0045047        |                         |                        |             |              |                    | 0             |               |                   |
| Standard:           | RSS 210 / F   | CC 15.247      |                         |                        |             |              |                    | Class:        | N/A           |                   |
| Run # 3b, E         | UI on Chan    | nel #62 531    | 01VIHz - 802.1          | l'In40, Chain          | A+B         | st Location. | ET Chamb           | or 1          |               |                   |
| Te                  | st Engineer   | Iohn Caizzi    |                         |                        | Cor         | fig Change   |                    | 51 4          |               |                   |
| 10                  |               |                |                         | Power S                | Settings    | ing onlanger | none               | 1             |               |                   |
|                     | Chain         | Target         | (dBm)                   | Measure                | d (dBm)     | Software     | e Setting          |               |               |                   |
|                     | A+B           | 16.5 (13       | 3.5/13.5)               | 13.6/                  | 13.6        | 24.0         | / 25.0             |               |               |                   |
| Fundament           | al Signal Fie | eld Strength   |                         |                        | -           |              | -                  | -             |               |                   |
| Frequency           | Level         | Pol            | 15.209                  | / 15.247               | Detector    | Azimuth      | Height             | Comments      |               |                   |
| MHz                 | dBµV/m        | v/h            | Limit                   | Margin                 | Pk/QP/Avg   | degrees      | meters             |               |               |                   |
| 5320.600            | 89.0          | V              | 112.3                   | -23.3                  | AVG         | 173          | 1.59               |               |               |                   |
| 5315.500            | 99.1          | V              | 132.3                   | -33.2                  | PK          | 1/3          | 1.59               |               |               |                   |
| 5312.500            | 87.9<br>07.2  | H<br>H         | 112.3                   | -24.4                  | AVG         | 114          | 1.48               |               |               |                   |
| 5350 MHz F          | and Edge S    | ianal Radia    | ted Field Str           | enath - Mark           | er Delta    | 114          | 1.40               |               |               |                   |
| 5550 MITIZ D        | unu Luge o    | ignai Radia    |                         | cirgin mark            | H           | V            |                    |               |               |                   |
|                     | Fundamenta    | al emission le | evel @ 3m in            | 1MHz RBW:              | 97.2        | 99.1         | Peak Meas          | urement (RE   | B=VB=1MHz     |                   |
|                     | Fundamenta    | al emission le | evel @ 3m in            | 1MHz RBW:              | 87.9        | 89.0         | Average M          | easurement    | (RB=1MHz,     | VB=10Hz)          |
|                     |               |                | Delta Mar               | ker - 100kHz           | 40.7        | dB           | <- this can        | only be used  | d if band edg | e signal is       |
|                     | Calcula       | ated Band-E    | dge Measure             | ement (Peak):          | 58.4        | dBuV/m       | highest with       | nin 2MHz of   | band edge.    |                   |
|                     | Calcu         | Ilated Band-I  | Edge Measur             | rement (Avg):          | 48.3        | dBuV/m       | Margin             | Level         | Limit         | Detector          |
|                     |               | De             | elta Marker -           | 1MHz/1MHz:             | 40.2        | dB           | -9.8               | 44.2          | 54            | Avg               |
|                     |               | D              | elta Marker -           | 1MHz/10Hz:             | 44.8        | dB           | -15.6              | 58.4          | 74            | Pk                |
|                     | Calcula       | ated Band-E    | dge Measure             | ement (Peak):          | 58.9        | dBuV/m       | Using 100k         | Hz delta val  | ue            |                   |
|                     | Calcu         | liated Band-I  | Edge Measur             | ement (Avg):           | 44.2        | abuv/m       | USING TIVIH        | z deita value | Ş             |                   |
| Frequency           | Level         | Pol            | FCC                     | 15.209                 | Detector    | Azimuth      | Height             | Comments      |               |                   |
| MHz                 | dBµV/m        | v/h            | Limit                   | Margin                 | Pk/QP/Avg   | degrees      | meters             |               |               |                   |
| 5350.001            | 44.2          | V              | 54.0                    | -9.8                   | Avg         | 173          | 1.59               | Using 1MH     | z delta value |                   |
| 85.0-               |               |                |                         |                        |             |              | Analyzei           | r Settings    |               |                   |
| 80.0-               | <u> </u>      |                |                         |                        |             |              | HP8564E            | E,EMI         |               |                   |
| 75.0-               |               |                |                         |                        |             |              | SPAN:60            | 0.000 MHz     |               |                   |
| 70.0-               |               |                |                         |                        |             |              | RB 1.000           | ) MHz         |               |                   |
| ප <sup>65.0 -</sup> |               |                |                         |                        |             |              | Detector           | Sample        |               |                   |
| 월 60.0-<br>북        |               |                |                         |                        |             |              | Att 10<br>RL Offse | £ 0.00        |               |                   |
| 물 55.0 -            |               | 1              |                         |                        |             |              | Sweep T            | ime 23.0s     |               |                   |
| 45.0-               |               |                | M                       |                        |             |              | Rentvia            | 33.70DBUV     |               |                   |
| 40.0-               |               |                | ~~~                     |                        |             |              | Comme              | nts           |               |                   |
| 35.0-               |               |                |                         |                        |             |              | 20.1110            |               |               |                   |
| 30.0-               |               |                |                         |                        |             |              |                    |               |               |                   |
| 531                 | 10 5315 532   | 20 5325 53     | 30 5335 534<br>Frequenc | 40 5345 535<br>у (MHz) | 0 5355 536  | 0 5365 537   | 0                  |               |               |                   |
| Cursor 1            | 5312.4004     | 82.95 👯        | • - <u>*-</u> b-        | Delta Fr               | req. 37.600 | 9            | FI                 | lint          | t             |                   |
| Cursor 2            | 5350.0005     | 38.12          | + <u>-*-</u> 6-         | Delta Amplit           | tude 44.83  | U            | انا                | шОl           | .L            |                   |

| Œ                                                                               |                                       | Ditt<br>Areany |               |                                        |              |               |                     | EM                  | C Test         | <sup>•</sup> Data |  |
|---------------------------------------------------------------------------------|---------------------------------------|----------------|---------------|----------------------------------------|--------------|---------------|---------------------|---------------------|----------------|-------------------|--|
| Client:                                                                         | Intel                                 |                |               |                                        |              |               | J                   | ob Number:          | J75722         |                   |  |
| Model                                                                           |                                       | h WiMay Mir    |               |                                        |              |               | T-L                 | og Number:          | T76443         |                   |  |
| WOUEI.                                                                          |                                       |                | IFCI          |                                        |              |               | Accou               | nt Manager:         | -              |                   |  |
| Contact:                                                                        | S. Hackett                            |                |               |                                        |              |               |                     |                     |                |                   |  |
| Standard:                                                                       | RSS 210 / F                           | CC 15.247      |               |                                        |              |               |                     | Class:              | N/A            |                   |  |
| Run # 3c, E                                                                     | UT on Chan                            | nel #102 55    | 10MHz - 802   | .11n40, Chair                          | ו A+B        |               |                     |                     |                |                   |  |
| L                                                                               | Date of Test:                         | 8/13/2009      | L             |                                        |              | est Location: | FI Chambe           | er 4                |                |                   |  |
| re                                                                              | st Engineer:                          | Rafael Vare    | as            | Dowor S                                | 10J          | ilig Change:  | none                | 1                   |                |                   |  |
|                                                                                 | Chain                                 | Tarnet         | (dBm)         | Measure                                | d (dBm)      | Software      | - Settina           |                     |                |                   |  |
|                                                                                 | A+B                                   | 16.5 (13       | (0.5/13.5)    | 13.8/                                  | 13.9         | 22.5          | /24.0               |                     |                |                   |  |
| Fundament                                                                       | al Signal Fig                         | eld Strenath   |               | 10.07                                  | 10.7         | 22.0          | 2 1.0               | 1                   |                |                   |  |
| Frequency                                                                       | Level                                 | Pol            | 15.209        | / 15.247                               | Detector     | Azimuth       | Heiaht              | Comments            |                |                   |  |
| MHz                                                                             | dBµV/m                                | v/h            | Limit         | Margin                                 | Pk/QP/Avg    | degrees       | meters              |                     |                |                   |  |
| 5498.800                                                                        | 93.5                                  | Н              | -             | -                                      | AVG          | 107           | 1.1                 | RB 1 MHz;           | VB: 10 Hz      |                   |  |
| 5499.670                                                                        | 103.4                                 | Н              | -             | -                                      | PK           | 107           | 1.1                 | RB 1 MHz;           | VB: 1 MHz      |                   |  |
| 5493.600                                                                        | 91.6                                  | V              | -             | -                                      | AVG          | 215           | 1.0                 | RB 1 MHz;           | VB: 10 Hz      |                   |  |
| 5492.730                                                                        | 100.7                                 | V              | -             | -                                      | PK           | 215           | 1.0                 | RB 1 MHz; VB: 1 MHz |                |                   |  |
| 5460 MHz R                                                                      | Restricted Ba                         | and Edge Si    | gnal Radiate  | ed Field Strei                         | ngth - Marke | er Delta      |                     |                     |                |                   |  |
|                                                                                 |                                       |                |               |                                        | H            | V             |                     |                     |                |                   |  |
|                                                                                 | Fundamenta                            | al emission le | evel @ 3m in  | 1MHz RBW:                              | 103.4        | 100.7         | Peak Meas           |                     |                |                   |  |
|                                                                                 | Fundamenta                            | al emission le | evel @ 3m in  | IMHZ RBW:                              | 93.5         | 91.6          | Average M           | easurement          | (RB=1MHZ, 1    | VB=10HZ)          |  |
|                                                                                 | Coloui                                | atad Dand E    | Della Mai     | Ker - IUUKHZ                           | 45.0         | <i>dB</i>     | <- this can         | only be used        | i if band edge | e signal is       |  |
|                                                                                 | Calcul                                | aleu Banu-E    | uge Measure   | ement (Peak):                          | 58.4<br>40 F | dBuV/m        | Norgin              | IN ZIVINZ OF        | band edge.     | Dotoctor          |  |
|                                                                                 | Calci                                 |                | Luye Markar   | 1///////////////////////////////////// | 48.0         |               | iviargin<br>4 2     |                     | LIIIIIL<br>E 4 | Delector          |  |
|                                                                                 |                                       |                | olta Markor   | 1МЦ <sub>7</sub> /1∩Ц <sub>7</sub> ,   | 41.0         | dD            | -0.Z                | 47.0<br>50.4        |                | Avy<br>Dk         |  |
|                                                                                 | Calcul                                | ated Band-F    | dae Measure   | ment (Peak)                            | 40.7         | dBuV/m        | -10.0<br>Using 100k | Usv ella Vali       | 14<br>IP       | ΓN                |  |
|                                                                                 | Calcu                                 | ulated Band-I  | Edge Measur   | rement (Avg):                          | 47.8         | dBuV/m        | Using 1MH           | z delta value       | )<br>)         |                   |  |
| Frequency                                                                       | Level                                 | Pol            | FCC           | 15.209                                 | Detector     | Azimuth       | Height              | Comments            |                |                   |  |
| MHz                                                                             | dBµV/m                                | v/h            | Limit         | Margin                                 | Pk/QP/Avg    | degrees       | meters              |                     |                |                   |  |
| 5459.833                                                                        | 47.8                                  | -              | 54.0          | -6.2                                   | Avg          | -             | -                   | Using 1MH           | z delta value  |                   |  |
| 5470 MHz E                                                                      | Band Edge S                           | Signal Radia   | ted Field Str | rength - Mark                          | er Delta     |               | 1                   |                     |                |                   |  |
|                                                                                 |                                       |                |               |                                        | Н            | V             |                     |                     |                |                   |  |
|                                                                                 | Fundamenta                            | al emission le | evel @ 3m in  | 1MHz RBW:                              | 103.4        | 100.7         | Peak Meas           | urement (RE         | 3=VB=1MHz)     |                   |  |
|                                                                                 | Fundamenta                            | al emission le | evel @ 3m in  | 1MHz RBW:                              | 93.5         | 91.6          | Average M           | easurement          | (RB=1MHz, 1    | VB=10Hz)          |  |
|                                                                                 | Calaul                                | atad David E   | Delta Mai     | <i>Ker - TUUKHZ</i>                    | 38.3         | dB<br>dB      | <- this can         | only be used        | I if band edge | e signal is       |  |
|                                                                                 | Calcul                                | aled Band-E    | age Measure   | ement (Peak):                          | 65. I        | dBuV/m        | nignest with        | nin Zivihz of       | band edge.     | Datastas          |  |
|                                                                                 | Calculated Band-Edge Measurement (Avg |                |               |                                        |              | dBuv/m        | Iviargin            | Level               | LIMIL          | Delector          |  |
|                                                                                 | Delta Marker - 1MHZ/1MHZ              |                |               |                                        | 39.2         | aB            | -18.3               | 50.0                | 68.3           | AVg               |  |
|                                                                                 | Delta Marker - IMHZ/10HZ              |                |               |                                        | 43.5         | dBu\//m       | -24.1               | 04.Z                | 88.3           | PK                |  |
| Calculated Band-Edge Measurement (Peak<br>Calculated Band-Edge Measurement (Avg |                                       |                |               | rement (Avg):                          | 50.0         | dBuV/m        | Using 1MH           | z delta value       | ,<br>,         |                   |  |
| Frequency                                                                       | ency Level Pol FCC 15E                |                |               |                                        | Detector     | Azimuth       | Height              | Comments            |                |                   |  |
| MHz                                                                             | dBµV/m                                | v/h            | Limit         | Margin                                 | Pk/QP/Avg    | degrees       | meters              |                     |                |                   |  |
| 5467.330                                                                        | 50.0                                  | -              | 68.3          | -18.3                                  | Avg          | -             | -                   | Using 1MH           | z delta value  |                   |  |

Note - average limit is equivalent to -27dBm eirp.



| <b>E</b>                                                                                                                            |                        | Dtt<br>Ar company |                         |                                 |                          |                 |                                                                                                                                        | EM                                                                                                                                               | C Test        | ' Data        |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|-------------------------|---------------------------------|--------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| Client:                                                                                                                             | Intel                  |                   |                         |                                 |                          |                 | J                                                                                                                                      | lob Number:                                                                                                                                      | J75722        |               |
| Model                                                                                                                               | 2v2 \\/iEi wit         | h WiMax Min       | iDCI                    |                                 |                          |                 | T-L                                                                                                                                    | og Number:                                                                                                                                       | T76443        |               |
| wouer.                                                                                                                              |                        |                   |                         |                                 |                          |                 | Accou                                                                                                                                  | nt Manager:                                                                                                                                      | -             |               |
| Contact:                                                                                                                            | S. Hackett             | 00 15 0 17        |                         |                                 |                          |                 |                                                                                                                                        | 0                                                                                                                                                | N1/A          |               |
| Standard:                                                                                                                           | RSS 210/F              | CC 15.247         | 70141- 000              | 11-10 Chai                      | - A D                    |                 |                                                                                                                                        | Class:                                                                                                                                           | N/A           |               |
| RUN # 30, E                                                                                                                         | UT on Chan             | nei #134 56       | /UIVIHZ - 802           | Power S                         | N A+B                    |                 |                                                                                                                                        | 1                                                                                                                                                |               |               |
|                                                                                                                                     | Chain                  | Target            | (dBm)                   | Measure                         | d (dBm)                  | Software        | e Settina                                                                                                                              |                                                                                                                                                  |               |               |
|                                                                                                                                     | A+B                    | 16.5 (13          | 5.5/13.5)               | 13.7/                           | 13.9                     | 23.0            | /23.5                                                                                                                                  |                                                                                                                                                  |               |               |
| Fundamen                                                                                                                            | tal Signal Fie         | eld Strength      | •                       |                                 |                          |                 |                                                                                                                                        | 4                                                                                                                                                |               |               |
| Frequency                                                                                                                           | Level                  | Pol               | 15.209                  | / 15.247                        | Detector                 | Azimuth         | Height                                                                                                                                 | Comments                                                                                                                                         |               |               |
| MHz                                                                                                                                 | dBµV/m                 | v/h               | Limit                   | Margin                          | Pk/QP/Avg                | degrees         | meters                                                                                                                                 |                                                                                                                                                  |               |               |
| 5667.330                                                                                                                            | 89.6                   | V                 | -                       | -                               | AVG                      | 169             | 1.0                                                                                                                                    | RB 1 MHz;                                                                                                                                        | VB: 10 Hz     |               |
| 5667.330                                                                                                                            | 99.4                   | V                 | -                       | -                               | PK                       | 169             | 1.0                                                                                                                                    | RB 1 MHZ;                                                                                                                                        | VB: 1 MHz     |               |
| 56/2.4/0                                                                                                                            | 92.8                   | H                 | -                       | -                               | AVG                      | 108             | . <br>  1 1                                                                                                                            | KR I MIT-                                                                                                                                        |               |               |
| 5080.000                                                                                                                            | 102.0<br>Restricted Pr | ⊓<br>and Eda≏ Si  | -<br>anal Radiat        | -<br>ad Field Strat             | PN<br>nath - Marke       | 100<br>or Delta | 1.1                                                                                                                                    | rd i ivihz;                                                                                                                                      | vd. i ivihz   |               |
| 5725 IVII IZ T                                                                                                                      | τι στη τις τα Βα       | ina Luyt Si       | gilai Naulali           | ט ז ובוע סנו פו                 | H                        | V               | 1                                                                                                                                      |                                                                                                                                                  |               |               |
|                                                                                                                                     | Fundamenta             | al emission le    | evel @ 3m in            | 1MHz RBW:                       | 102.5                    | 99.4            | Peak Meas                                                                                                                              | surement (RE                                                                                                                                     | B=VB=1MHz     | )             |
|                                                                                                                                     | Fundamenta             | al emission le    | evel @ 3m in            | 1MHz RBW:                       | 92.8                     | 89.6            | Average M                                                                                                                              | easurement                                                                                                                                       | (RB=1MHz,     | ,<br>VB=10Hz) |
|                                                                                                                                     |                        |                   | Delta Mar               | ker - 100kHz                    | 43.0                     | dB              | <- this can                                                                                                                            | only be used                                                                                                                                     | l if band edg | e signal is   |
|                                                                                                                                     | Calcula                | ated Band-Ed      | dge Measure             | ement (Peak):                   | 59.5                     | dBuV/m          | highest wit                                                                                                                            | hin 2MHz of                                                                                                                                      | band edge.    | U             |
|                                                                                                                                     | Calcu                  | Ilated Band-E     | Edge Measui             | rement (Avg):                   | 49.8                     | dBuV/m          | Margin                                                                                                                                 | Level                                                                                                                                            | Limit         | Detector      |
|                                                                                                                                     |                        | De                | elta Marker -           | 1MHz/1MHz:                      | 43.5                     | dB              | -21.8                                                                                                                                  | 46.5                                                                                                                                             | 68.3          | Avg           |
|                                                                                                                                     |                        | De                | elta Marker -           | 1MHz/10Hz:                      | 46.3                     | dB              | -29.3                                                                                                                                  | 59.0                                                                                                                                             | 88.3          | Pk            |
|                                                                                                                                     | Calcula                | ated Band-Ed      | dge Measure             | ement (Peak):                   | 59.0                     | dBuV/m          | Using 1MH                                                                                                                              | lz delta value                                                                                                                                   | !             |               |
|                                                                                                                                     | Calcu                  | Ilated Band-I     | dge Measu               | rement (Avg):                   | 46.5                     | dBuV/m          | Using 1MH                                                                                                                              | lz delta value                                                                                                                                   | 2             |               |
| Frequency                                                                                                                           | Level                  | Pol               | FCC                     | C 15E                           | Detector                 | Azimuth         | Height                                                                                                                                 | Comments                                                                                                                                         |               |               |
| MHZ                                                                                                                                 | dBµV/m                 | v/h               | Limit                   | Margin                          | PK/QP/Avg                | degrees         | meters                                                                                                                                 | Lloing 1ML                                                                                                                                       |               |               |
| 5725.000                                                                                                                            | 40.5                   | -                 | 68.3                    | -21.8                           | Avg                      | -               | -                                                                                                                                      | Using TMH                                                                                                                                        | z deita value |               |
| Note - avera                                                                                                                        | age limit is eq        | uivalent to -2    | 27dBm eirp.             |                                 |                          |                 |                                                                                                                                        |                                                                                                                                                  |               |               |
| 65.0 -<br>60.0 -<br>55.0 -<br>50.0 -<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | 50 5658.6665           | 5670 5680         | 5690 57<br>Frequen<br>₽ | 700 5710<br>cy (MHz)<br>Delta 1 | 5720 5730<br>Freq. 66.33 | 5740 5          | Analy:<br>HP856<br>CF: 53<br>SPAN:<br>RB 1.(<br>VB 10<br>Detec<br>Att 0<br>RL Off<br>Sweep<br>Ref Ly<br>Comm<br>BE @<br>56701<br>802.1 | zer Settings<br>54E,EMI<br>700.000 MHz<br>100.000 MHz<br>tor Sample<br>fset 0.00<br>o Time 37.0s<br>d:80.70DBUV<br>hents<br>5725 MHz<br>1n 40MHz |               |               |

| _                     |                             |                |                      |                |              |               |                                             |                                  |               |                   |
|-----------------------|-----------------------------|----------------|----------------------|----------------|--------------|---------------|---------------------------------------------|----------------------------------|---------------|-------------------|
| <b>E</b>              |                             |                |                      |                |              |               |                                             | EM                               | C Test        | <sup>•</sup> Data |
| Client:               | Intel                       |                |                      |                |              |               | J                                           | ob Number:                       | J75722        |                   |
| Madal                 |                             |                | -:001                |                |              |               | T-L                                         | og Number:                       | T76443        |                   |
| Wouer.                | ZXZ VVIFI WIU               |                | IIPUI                |                |              |               | Accou                                       | nt Manager:                      | -             |                   |
| Contact:              | S. Hackett                  |                |                      |                |              |               |                                             |                                  |               |                   |
| Standard:             | RSS 210 / F                 | CC 15.247      |                      |                |              |               |                                             | Class:                           | N/A           |                   |
| Run #4, Bai           | nd Edge Fiel                | d Strength     | - 802.11n20,         | , Chain A      | -            |               |                                             |                                  |               |                   |
| Run #4a, El           | JI ON CNANN<br>Jata of Tast | 101 #30 5 180  | WHZ - 802.1          | inzu, Chain I  | A<br>Ta      | st Location.  | ET Chamb                                    | or 1                             |               |                   |
| Te                    | st Engineer                 | Rafael Vare    | las                  |                | Cor          | ifig Change:  |                                             | 51 4                             |               |                   |
| 10                    |                             |                |                      | Power S        | Settings     | ing onlango.  | none                                        | 1                                |               |                   |
|                       | Chain                       | Target         | (dBm)                | Measure        | d (dBm)      | Softwar       | e Setting                                   |                                  |               |                   |
|                       | А                           | 16             | 5.5                  | 16             | .7           | 28            | 3.5                                         |                                  |               |                   |
| Fundament             | al Signal Fie               | eld Strength   | 1                    |                |              |               |                                             | 3                                |               |                   |
| Frequency             | Level                       | Pol            | 15.209               | / 15.247       | Detector     | Azimuth       | Height                                      | Comments                         |               |                   |
| MHz                   | dBµV/m                      | v/h            | Limit                | Margin         | Pk/QP/Avg    | degrees       | meters                                      |                                  |               |                   |
| 5174.700              | 95.0                        | V              | <u>-</u>             | -              | AVG          | 149           | 1.7                                         | RB 1 MHz;                        | VB: 10 Hz     |                   |
| 51/5.030              | 102.8                       | V              | <u>-</u>             | -              | PK           | 149           | 1./                                         | RB 1 MHZ;                        | VB: 1 MHz     |                   |
| 5174.070              | 95.9<br>103.0               | н              |                      |                | AVG<br>DK    | 222           | 0.0                                         | RB 1 MHZ;                        |               |                   |
| 5150 MHz F            | Band Edge S                 | Signal Radia   | ted Field St         | renath - Mark  | er Delta     |               | 0.0                                         |                                  | VD. I IVII IZ |                   |
| 0100 11112 2          | and Luge o                  | ignal Radia    |                      | engur mark     | H            | V             | 1                                           |                                  |               |                   |
|                       | Fundamenta                  | al emission le | evel @ 3m in         | 1MHz RBW:      | 103.9        | 102.8         | Peak Meas                                   | urement (RE                      | 3=VB=1MHz)    | )                 |
|                       | Fundamenta                  | al emission le | evel @ 3m in         | 1MHz RBW:      | 95.9         | 95.0          | Average Measurement (RB=1MHz, VB=10H        |                                  |               | VB=10Hz)          |
|                       |                             |                | Delta Mai            | rker - 100kHz  | 49.2         | dB            | - this can only be used if band edge signal |                                  |               |                   |
|                       | Calcula                     | ated Band-E    | dge Measure          | ement (Peak):  | 54.7         | dBuV/m        | highest with                                | nin 2MHz of                      | band edge.    | 1                 |
|                       | Calcu                       | Ilated Band-F  | Edge Measur          | rement (Avg):  | 46.7         | dBuV/m        | Margin                                      | Level                            | Limit         | Detector          |
|                       |                             | <u></u>        | <u>elta Marker -</u> | 1MHZ/1MHZ:     | 41.3         | dB<br>/P      | -7.3                                        | 46.7                             | 54            | Avg               |
|                       | Calcul                      | atod Band E    | dao Moasure          | INHZ/IUHZ:     | 49.2         | <i>dBuV/m</i> | - 19.3                                      | 54.7<br>Uz dolta val             | /4            | PK                |
|                       | Calcul                      | ilated Band-   | Edge Measure         | rement (Ava)   | 02.0<br>46.7 | dBuV/m        | Using 100k                                  | riz ueita value<br>z delta value | ue            |                   |
|                       |                             |                |                      | ement (rug).   | 40.7         | abaviin       |                                             |                                  | ,             |                   |
| Frequency             | Level                       | Pol            | FCC                  | 15.209         | Detector     | Azimuth       | Height                                      | Comments                         |               |                   |
| MHz                   | dBµV/m                      | v/h            | Limit                | Margin         | Pk/QP/Avg    | degrees       | meters                                      |                                  |               |                   |
| 5150.000              | 46.7                        | -              | 54.0                 | -7.3           | Avg          | -             | -                                           | Using 1MH                        | z delta value |                   |
| 90.0- <sub>E</sub>    |                             |                |                      |                |              |               | Analyzer Se                                 | ettings                          |               |                   |
| 80.0-                 |                             |                |                      |                |              | <u> </u>      | HP8564E,EN                                  | 4I<br>DO MHz                     |               |                   |
| 70.0-                 |                             |                |                      |                |              |               | SPAN:80.00<br>RB 1.000 Mł                   | 0 MHz<br>Hz                      |               |                   |
| <del>ਸ</del> ੂ 60.0 - |                             |                |                      |                | 1            |               | Detector Sa<br>Att 0                        | mple                             |               |                   |
| ₩<br>₩<br>50.0-       |                             |                |                      |                |              |               | RL Offset 0.<br>Sweep Time<br>Ref Lvl:97.0  | .00<br>30.0s<br>)0DBUV           |               |                   |
| 40.0-                 | ••••                        |                |                      | <u> /</u>      |              |               | Comments                                    |                                  |               |                   |
| 30.0-                 |                             |                |                      |                |              |               | BE @ 5180 I                                 | MHz                              |               |                   |
| 20.0-<br>511          | 0 5120                      | 5130 5         | 5140 515(            | ) 5160         | 5170 518     | 30 5190       | 5180 MHz<br>802.11n 20f                     | MHz                              |               |                   |
| -                     |                             |                | U S-                 |                |              |               |                                             |                                  |               |                   |
| Cursor 1              | 5150.0000                   | 35.67 🖤        | -* 6-                | Delta Fred     | q. 35.067    | 6             | Elli                                        | off                              |               |                   |
| Cursor 2              | 3103,0009                   | 04.03          |                      | Jeita Amplitut | 18 19.17     | Sec.          |                                             |                                  |               |                   |

| <b>F</b>      | Illic                   | htt                      |                    |                      |              |              |               | FN/                         | C Tosi                 | + Nata         |
|---------------|-------------------------|--------------------------|--------------------|----------------------|--------------|--------------|---------------|-----------------------------|------------------------|----------------|
|               | An AZ                   | AT*company               |                    |                      |              |              |               |                             | 175722                 | Data           |
| Client:       | IIIIEI                  |                          |                    |                      |              |              | Т I           | og Number.                  | J75722                 |                |
| Model:        | 2x2 WiFi with           | n WiMax Mir              | ıiPCI              |                      |              |              | Accou         | int Manager:                | -                      |                |
| Contact:      | S. Hackett              |                          |                    |                      |              |              |               |                             |                        |                |
| Standard:     | RSS 210 / F             | CC 15.247                |                    |                      |              |              |               | Class:                      | N/A                    |                |
| Run #4b, El   | JT on Chann             | nel #64 5320             | MHz - 802.1        | 1n20, Chain          | A T          | at Lagation. |               |                             |                        |                |
| L             | st Engineer             | 8/13/2009<br>Rafaol Varo | 20                 |                      | Te<br>Cor    | st Location: | FI Chamb      | er #4                       |                        |                |
| 10            |                         |                          | 43                 | Power S              | Settings     | ing onunge.  | HUHE          | 1                           |                        |                |
|               | Chain                   | Target                   | (dBm)              | Measure              | d (dBm)      | Software     | e Setting     |                             |                        |                |
| [             | А                       | 16                       | o.5                | 16                   | .7           | 25           | 5.5           |                             |                        |                |
| Fundament     | al Signal Fie           | eld Strength             | 15 200             | 115 017              | Datastas     | A ! 1 le     | 11.2.14       | 0                           |                        |                |
|               | Level                   | P0I<br>v/b               | 15.209<br>Limit    | / 15.247<br>Margin   | Detector     | Azimuth      | Height        | Comments                    |                        |                |
| 5316.800      | и <u>ы</u> иулп<br>93.7 | V                        | LIIIII             | maryin               | AVG          | 206          | 1.0           | RB 1 MHz:                   | VB: 10 Hz              |                |
| 5317.100      | 102.0                   | V                        |                    |                      | PK           | 206          | 1.0           | RB 1 MHz;                   | VB: 10112<br>VB: 1 MHz |                |
| 5314.730      | 95.2                    | Н                        |                    |                      | AVG          | 299          | 1.0           | RB 1 MHz;                   | VB: 10 Hz              |                |
| 5315.200      | 103.3                   | Н                        |                    |                      | PK           | 299          | 1.0           | RB 1 MHz;                   | VB: 1 MHz              |                |
| 5350 MHz B    | Band Edge Si            | ignal Radia              | ted Field Str      | ength - Mark         | er Delta     |              | 1             |                             |                        |                |
|               | Fundamente              | lomiccion                | aval@2min          |                      | H<br>102.2   | V<br>102.0   | Dook Moor     | suramant (DI                |                        | N              |
|               | Fundamenta              | Il emission le           | evel @ 3m in       |                      | 95.2         | 02.0<br>03.7 |               | leasurement                 | D=VD=HVITZ             | /<br>\/R_10H7) |
|               | Tunuamenta              |                          | Delta Mar          | ker - 100kHz         | 47.5         | dB           | <- this can   | only be used                | d if band edg          | e signal is    |
|               | Calcula                 | ated Band-E              | dge Measure        | ment (Peak):         | 55.8         | dBuV/m       | highest wit   | hin 2MHz of                 | band edge.             | o orginal lo   |
|               | Calcu                   | lated Band-l             | Edge Measur        | ement (Avg):         | 47.7         | dBuV/m       | Margin        | Level                       | Limit                  | Detector       |
|               |                         | De                       | elta Marker -      | 1MHz/1MHz:           | 41.8         | dB           | -8.1          | 45.9                        | 54                     | Avg            |
|               |                         | D                        | elta Marker -      | 1MHz/10Hz:           | 49.3         | dB           | -18.2         | 55.8                        | 74                     | Pk             |
|               | Calcula                 | ated Band-E              | dge Measure        | ment (Peak):         | 61.5         | dBuV/m       | Using 100     | kHz delta val               | ue                     |                |
|               | Calcu                   | Ialeu Dallu-I            | zuge measur        | ement (Avy).         | 45.9         | abuv/m       | USING TIVIF   |                             | Ę                      |                |
| Frequency     | Level                   | Pol                      | FCC 2              | 15.209               | Detector     | Azimuth      | Height        | Comments                    |                        |                |
| MHz           | dBµV/m                  | v/h                      | Limit              | Margin               | Pk/QP/Avg    | degrees      | meters        |                             |                        |                |
| 5350.000      | 45.9                    | -                        | 54.0               | -8.1                 | Avg          | -            | -             | Using TMH                   | z delta value          |                |
| 90.0-         |                         |                          |                    |                      |              |              | Ana           | lyzer Setting               | gs                     |                |
| 80.0-         |                         |                          |                    |                      |              | ****         | - HP8<br>CF:  | 564E,EMI<br>5350.000 MH     | łz                     |                |
|               |                         |                          |                    |                      |              |              | SPA<br>DB 1   | N:80.000 MH                 | z                      |                |
| 70.0-         |                         |                          |                    |                      |              |              | VB 1          | 0 Hz                        |                        |                |
| පු 60.0-      |                         |                          |                    |                      |              |              | Dete<br>Att ( | ector Sample<br>D           |                        |                |
| 별<br>~ 50.0 - |                         | $  \setminus$            |                    |                      |              |              | RL C<br>Swe   | )ffset 0.00<br>ep Time 30.0 | s                      |                |
| 40.0-         |                         |                          | $\searrow$         |                      |              |              | Rer           | LAI: 37.00DBC               | JV                     |                |
| 30.0-         |                         |                          |                    |                      |              |              | Com           | ments                       |                        |                |
|               |                         |                          |                    |                      |              |              | BE (          | ບ່ວວວບ MHZ<br>D MHz         |                        |                |
| 20.0-¦<br>531 | 10 5320                 | 5330                     | 5340 53<br>Frequer | 350 5360<br>cy (MHz) | 5370         | 5380         | 5390 802.     | .11n 20MHz                  |                        |                |
| Cursor 1      | 5325.3335               | 84.17                    | \$-*- 6-           | Delta                | Freq. 24.6   | 67 💋         |               | ' <b>11:</b> ~              | ++                     |                |
| Cursor 2      | 5350.0000               | 34.83                    | ⇔ -≁ ն-            | Delta Amp            | olitude 49.3 | 33 🛛 🏹       |               | шс                          | π                      |                |

| (7 E        |                 | Dtt<br>As <sup>*</sup> company |                            |                         |                     |                    |                             | EM            | C Test         | ' Data         |
|-------------|-----------------|--------------------------------|----------------------------|-------------------------|---------------------|--------------------|-----------------------------|---------------|----------------|----------------|
| Client:     | Intel           |                                |                            |                         |                     |                    | J                           | lob Number:   | J75722         |                |
| Model       | יער WiFi wit    | h WiMax Min                    | iDCI                       |                         |                     |                    | T-L                         | og Number:    | T76443         |                |
| Wioden      | ZAZ VVII I VVII |                                |                            |                         |                     |                    | Accou                       | nt Manager:   | -              |                |
| Contact:    | S. Hackett      | 20 15 017                      |                            |                         |                     |                    |                             |               | - 1 / A        |                |
| Standard:   | RSS 2107F       | CC 15.247                      | 000                        | 11-00 Ohele             | •                   |                    |                             | Class:        | N/A            |                |
| Run #4C, EU | JI on Chanr     | 1el #100 550                   | 0MHz - 802.                | 11n20, Chain<br>Dowar S | A Cottings          |                    |                             | 1             |                |                |
|             | Chain           | Target                         | (dRm)                      | Measure                 | d (dRm)             | Software           | - Settina                   |               |                |                |
|             | Δ               | 16                             | .5                         | 16                      | .6                  | 23                 | 3.5                         | 1             |                |                |
| Fundament   | al Signal Fie   | eld Strength                   |                            |                         |                     |                    |                             | J             |                |                |
| Frequency   | Level           | Pol                            | 15.209                     | / 15.247                | Detector            | Azimuth            | Height                      | Comments      |                |                |
| MHz         | dBµV/m          | v/h                            | Limit                      | Margin                  | Pk/QP/Avg           | degrees            | meters                      |               |                |                |
| 5494.700    | 94.6            | V                              | -                          | -                       | AVG                 | 149                | 1.2                         | RB 1 MHz;     | VB: 10 Hz      |                |
| 5495.130    | 102.4           | V                              | -                          | -                       | PK                  | 149                | 1.2                         | RB 1 MHz;     | VB: 1 MHz      |                |
| 5494.500    | 95.5            | Н                              | -                          | -                       | AVG                 | 256                | 1.3                         | RB 1 MHz;     | VB: 10 Hz      |                |
| 5497.130    | 103.5           | H                              | -                          | -                       | PK                  | 256                | 1.3                         | RB 1 MHz;     | VB: 1 MHz      |                |
| 5460 MHz R  | estricted Ba    | and Edge Si                    | gnal Radiat                | ed Field Strei          | ngth - Marke        | r Delta            | 1                           |               |                |                |
|             | Fundament       |                                |                            |                         | H<br>102 F          | V<br>102.4         | Dook Moor                   | uromont (DE   |                |                |
|             | Fundamenta      | al emission le                 | evel @ 3m in               | 1MHZ RBW:               | 103.5<br>OF F       | 102.4              |                             | Surement (RE  | /DD 11/11-1    | )<br>\/D_10[1) |
|             | Fundamenta      |                                | Dolta Ma                   | TIVIAL ROW:             | 90.0<br><i>F2</i> 7 | 94.0               | Average ivi                 |               | (KD=IIVIHZ,    | v D= IUHZ)     |
|             | Calcul          | atod Dand Er                   | Della Maa                  | Mer - TUUKAZ            | <i>33.7</i>         | dBu\//m            | <- IIIS Call<br>bigbost wit | bin 2MUz of   | hand odgo      | e signal is    |
|             | Calcul          | ilated Band-F                  | Iye Measure<br>Idao Moasur | romont (Ava)            | 49.0<br>/1.0        | dBuV/m             | Margin                      |               | Limit          | Dotoctor       |
|             | Calce           |                                | lta Marker -               | 1MHz/1MHz <sup>,</sup>  | 41.0                | 46.3 dB -12.7 41.3 |                             |               | 5 <i>1</i>     | Δνα            |
|             |                 | Di                             | elta Marker -              | 1MHz/10Hz <sup>,</sup>  | 54 2                | dB                 | -12.7                       | 41.5          | 74             | Pk             |
|             | Calcula         | ated Band-Ed                   | dae Measure                | ement (Peak):           | 57.2                | dBuV/m             | Using 100k                  | Hz delta vali | Ie             | I K            |
|             | Calcu           | lated Band-I                   | Edge Measu                 | rement (Avg):           | 41.3                | dBuV/m             | Using 100                   | z delta value | 20             |                |
| Frequency   | امريم ا         | Pol                            | FCC                        | 15 209                  | Detector            | Azimuth            | Hoight                      | Commonts      |                |                |
| MHz         | dBuV/m          | v/h                            | Limit                      | Margin                  | Pk/OP/Ava           | dearees            | meters                      | Comments      |                |                |
| 5460.000    | 41.3            | -                              | 54.0                       | -12.7                   | Ava                 | -                  | -                           | Usina 1MH:    | z delta value  |                |
| 5470 MHz B  | and Edge S      | ignal Radia                    | ted Field Sti              | rength - Mark           | er Delta            | V                  | 1                           | I J           |                |                |
|             | Fundamenta      | al emission le                 | vel @ 3m in                | 1MHz RBW·               | 103 5               | 102.4              | Peak Meas                   | surement (RF  | R=VR=1MHz      |                |
|             | Fundamenta      | al emission le                 | evel @ 3m in               | 1MHz RBW:               | 95.5                | 94.6               | Average M                   | easurement    | (RB=1MHz.)     | ,<br>VB=10Hz)  |
|             | - unuumonte     |                                | Delta Mai                  | rker - 100kHz           | 48.2                | dB                 | <- this can                 | only be used  | l if band edge | e signal is    |
|             | Calcula         | ated Band-E                    | dae Measure                | ement (Peak):           | 55.3                | dBuV/m             | highest wit                 | hin 2MHz of   | band edge.     | o orginal lo   |
|             | Calcu           | lated Band-                    | Edge Measu                 | rement (Avg):           | 47.3                | dBuV/m             | Margin                      | Level         | Limit          | Detector       |
|             |                 | De                             | elta Marker -              | 1MHz/1MHz:              | 40.5                | dB                 | -21.5                       | 46.8          | 68.3           | Avg            |
|             |                 | De                             | elta Marker -              | 1MHz/10Hz:              | 48.7                | dB                 | -33.0                       | 55.3          | 88.3           | Pk             |
|             | Calcula         | ated Band-E                    | dge Measure                | ement (Peak):           | 63.0                | dBuV/m             | Using 100k                  | Hz delta valu | he             |                |
|             | Calcu           | ulated Band-E                  | Edge Measu                 | rement (Avg):           | 46.8                | dBuV/m             | Using 1MH                   | z delta value | ;              |                |
| Frequency   | Level           | Pol                            | FCC                        | C 15E                   | Detector            | Azimuth            | Heiaht                      | Comments      |                |                |
| MHz         | dBuV/m          | v/h                            | Limit                      | Margin                  | Pk/QP/Avg           | degrees            | meters                      |               |                |                |
| 5470.000    | 46.8            | -                              | 68.3                       | -21.5                   | Avg                 | -                  | -                           | Using 1MH     | z delta value  |                |
| Note avera  | ao limit is oa  | uivalont to 1                  | 7dBm oirn                  |                         |                     |                    |                             |               |                |                |
|             | ge innit is eq  |                                | . / dom eiip.              |                         |                     |                    |                             |               |                |                |



| <b>E</b>     | Ellic                                                | ott                |                     |                    |                 |          |                    | EM                     | C Test        | <sup>•</sup> Data |
|--------------|------------------------------------------------------|--------------------|---------------------|--------------------|-----------------|----------|--------------------|------------------------|---------------|-------------------|
| Client:      | Intel                                                | 2 company          |                     |                    |                 |          |                    | Job Number:            | J75722        |                   |
| Madalı       |                                                      | h WiMay Min        |                     |                    |                 |          | T-l                | _og Number:            | T76443        |                   |
| woder:       |                                                      |                    | IPCI                |                    |                 |          | Αссоι              | unt Manager:           | -             |                   |
| Contact:     | S. Hackett                                           |                    |                     |                    |                 |          |                    |                        |               |                   |
| Standard:    | RSS 210 / F                                          | CC 15.247          |                     | 44 00 01 1         |                 |          |                    | Class:                 | N/A           |                   |
| Run #40, E   | UT on Chan                                           | 1el #140 570       | <u> UMHZ - 802.</u> | Power S            | 1 A<br>Cottings |          |                    | ٦                      |               |                   |
|              | Chain                                                | Target             | (dBm)               | Measure            | d (dBm)         | Software | e Settina          |                        |               |                   |
|              | Α                                                    | 16                 | .5                  | 16                 | .8              | 24       | 4.5                | -                      |               |                   |
| Fundament    | tal Signal Fie                                       | eld Strength       |                     |                    |                 |          |                    |                        |               |                   |
| Frequency    | Level                                                | Pol                | 15.209              | / 15.247           | Detector        | Azimuth  | Height             | Comments               |               |                   |
| MHz          | dBµV/m                                               | v/h                | Limit               | Margin             | Pk/QP/Avg       | degrees  | meters             |                        |               |                   |
| 5694.600     | 93.8                                                 | V                  | -                   | -                  | AVG             | 155      | 2.0                | RB 1 MHz;              | VB: 10 Hz     |                   |
| 5697.000     | 101.6                                                | V                  | -                   | -                  | PK              | 155      | 2.0                | RB T MHZ;              |               |                   |
| 5695 200     | 94. I<br>102 1                                       | H<br>H             | -                   | -                  | AVG             | 320      | 1.0                | RB 1 MHZ;              |               |                   |
| 5725 MHz F   | Restricted Ba                                        | and Edge Si        | anal Radiat         | ed Field Strei     | nath - Marke    | r Delta  | 1.0                |                        | VD. TIVITIZ   |                   |
|              |                                                      | ina Lago en        | gilai riaalat       |                    | H               | V        | ]                  |                        |               |                   |
|              | Fundamenta                                           | al emission le     | evel @ 3m in        | 1MHz RBW:          |                 | 101.6    | Peak Meas          | surement (RE           | B=VB=1MHz     | )                 |
|              | Fundamenta                                           | al emission le     | evel @ 3m in        | 1MHz RBW:          |                 | 93.8     | Average N          | leasurement            | (RB=1MHz,     | VB=10Hz)          |
|              |                                                      |                    | Delta Mai           | rker - 100kHz      | 42.0            | dB       | <- this can        | only be used           | l if band edg | e signal is       |
|              | Calcul                                               | ated Band-Ec       | dge Measure         | ement (Peak):      | 59.6            | dBuV/m   | highest wit        | hin 2MHz of            | band edge.    |                   |
|              | Calcu                                                | Ilated Band-L      | dge Measu           | rement (Avg):      | 51.8            | dBuV/m   | Margin             | Level                  | Limit         | Detector          |
|              |                                                      | De                 | olta Marker -       | 1MHZ/1MHZ:         | 36.0            | dB       | -1/./              | 50.6                   | 68.3          | Avg               |
|              | Calcul                                               | De<br>ated Band-Fr | dae Measure         | ment (Peak)        | 43.Z            | dBu\//m  | -28.7<br>Using 100 | 59.0<br>kHz dolta vali | 88.3          | PK                |
|              | Calcu                                                | ilated Band-E      | Edge Measure        | rement (Ava):      | 50.6            | dBuV/m   | Using 1MF          | tz delta value         |               |                   |
|              |                                                      |                    | <u>J</u>            | J AN J             | 0010            |          |                    |                        |               |                   |
| Frequency    | Level                                                | Pol                | FCC                 | C 15E              | Detector        | Azimuth  | Height             | Comments               |               |                   |
| MHz          | dBµV/m                                               | v/h                | Limit               | Margin             | Pk/QP/Avg       | degrees  | meters             |                        |               |                   |
| 5725.000     | 50.6                                                 | -                  | 68.3                | -17.7              | Avg             | -        | -                  | Using 1MH              | z delta value |                   |
| Note - avera | ige limit is eq                                      | uivalent to -2     | 7dBm eirp.          |                    |                 |          |                    |                        |               |                   |
| 90.0-[       |                                                      |                    |                     |                    |                 |          | Analy              | zer Settings           |               |                   |
|              |                                                      | ab-avol -          |                     |                    |                 |          | . HP856            | 64E,EMI                |               |                   |
| 00.0-        |                                                      |                    |                     |                    |                 |          | SPAN:              | 80.000 MHz             |               |                   |
| 70.0-        |                                                      |                    |                     |                    |                 |          | RB 1.0             | 000 MHz<br>Hz          |               |                   |
| -8600-       |                                                      |                    |                     |                    |                 |          | Detec              | tor Sample             |               |                   |
| plitu        | 11                                                   |                    |                     |                    |                 |          | Att 0<br>RL Of     | fset 0.00              |               |                   |
| Ē 50.0−      |                                                      |                    |                     |                    |                 |          | Sweep              | p Time 30.0s           |               |                   |
| 40.0-        |                                                      |                    |                     |                    |                 |          | - Rei Li           | /1:97.000000           |               |                   |
|              |                                                      |                    |                     |                    |                 |          | Comn               | nents                  |               |                   |
| 30.0-        |                                                      |                    |                     |                    |                 |          | BE @               | 5725 MHz               |               |                   |
| 20.0-        |                                                      |                    |                     |                    |                 |          | 5700<br>1 802.1    | MHz<br>1n 20MHz        |               |                   |
| 56           | 85 5                                                 | 700 5710           | ) 5720<br>Ereques   | 5730 5<br>cv (MHz) | 5740 575        | ) 5      | 765                |                        |               |                   |
|              |                                                      |                    | riequen             |                    |                 |          |                    |                        |               |                   |
| Cursor 1     | 5694.7334                                            | 83.17              | ≠ <u>-*</u> b•      | Delta F            | Freq. 30.26     | 7 🏉      |                    | 11:01                  | F#            |                   |
| Cursor 2     | Cursor 2 5725.0000 40.00 🕁 🛧 🔤 Delta Amplitude 43.17 |                    |                     |                    |                 |          |                    | шО                     | ιι            |                   |

| E                                          | Ellic         | <b>)</b> tt       |                                     |                   |                |              |                             | EM             | C Test        | ' Data      |
|--------------------------------------------|---------------|-------------------|-------------------------------------|-------------------|----------------|--------------|-----------------------------|----------------|---------------|-------------|
| Client:                                    | Intel         | Company           |                                     |                   |                |              | J                           | ob Number:     | J75722        |             |
| NA                                         | 2.2.W/F       |                   |                                     |                   |                |              | T-L                         | og Number:     | T76443        |             |
| Model:                                     | 2x2 WiFi wit  | h WiMax Min       | IPCI                                |                   |                |              | Accou                       | nt Manager:    | -             |             |
| Contact:                                   | S. Hackett    | 00 15 247         |                                     |                   |                |              |                             | Class          | N1/A          |             |
| Standard:                                  | RSS 210 / F   | UC 15.247         | 000 11-00                           | Chain D           |                |              |                             | Class:         | N/A           |             |
| RUN # 5, Ba                                | ING EGGE FIE  | a Strength        | - 802.11N20                         | , Chain B         |                |              |                             |                |               |             |
| Kull # 5a, L                               | Date of Test  | 8/14/2009         |                                     |                   | Te             | est Location | · СН #4                     |                |               |             |
| Te                                         | st Engineer:  | John Caizzi       |                                     |                   | Cor            | fig Change   | none                        |                |               |             |
|                                            | Choin         |                   |                                     | Power S           | Settings       | 5 5          |                             |                |               |             |
|                                            | Chain         | Target            | (dBm)                               | Measure           | d (dBm)        | Softwar      | e Setting                   |                |               |             |
|                                            | В             | 16                | o.5                                 | 16                | .7             | 2            | 7.0                         |                |               |             |
| Fundament                                  | tal Signal Fi | eld Strength      | 1                                   |                   |                |              |                             | 1              |               |             |
| Frequency                                  | Level         | Pol               | 15.209                              | / 15.247          | Detector       | Azimuth      | Height                      | Comments       |               |             |
| MHz                                        | dBµV/m        | v/h               | Limit                               | Margin            | Pk/QP/Avg      | degrees      | meters                      |                |               |             |
| 5185.130                                   | 95.9<br>102.4 |                   | 105.3                               | -9.4              | AVG            | 112          | 1.72                        |                |               |             |
| 51/0.8/0                                   | 103.0         | H                 | 125.3                               | -21.7             |                | 112          | 1.72                        |                |               |             |
| 5181 530                                   | 90.4<br>103.6 | V                 | 105.5                               | -9.9              | PK             | 151          | 1.59                        |                |               |             |
| 5150 MHz F                                 | Band Edge S   | Signal Radia      | ted Field Str                       | renath - Mark     | er Delta       | 101          | 1.57                        |                |               |             |
|                                            | unu Lugo o    | <u>igna naula</u> |                                     | engui man         | Н              | V            |                             |                |               |             |
|                                            | Fundamenta    | al emission le    | evel @ 3m in                        | 1MHz RBW:         | 103.6          | 103.6        | Peak Meas                   | urement (RE    | B=VB=1MHz     | )           |
| Fundamental emission level @ 3m in 1MHz RB |               |                   |                                     |                   | 95.9           | 95.4         | Average M                   | easurement     | (RB=1MHz,     | VB=10Hz)    |
|                                            |               |                   | Delta Mar                           | rker - 100kHz     | 45.0           | dB           | <- this can                 | only be used   | d if band edg | e signal is |
|                                            | Calcul        | ated Band-E       | dge Measure                         | ement (Peak):     | 58.6           | dBuV/m       | highest with                | nin 2MHz of    | band edge.    | -           |
|                                            | Calcı         | ulated Band-F     | Edge Measur                         | rement (Avg):     | 50.9           | dBuV/m       | Margin                      | Level          | Limit         | Detector    |
|                                            |               | De                | elta Marker -                       | 1MHz/1MHz:        | 38.3           | dB           | -3.1                        | 50.9           | 54            | Avg         |
|                                            | Coloui        | Dend Dond E       | <i>elta Marker -</i><br>dae Megeure | 1MHZ/10HZ:        | 44./           | dB           | -15.4                       | 58.6           | /4            | Pk          |
|                                            | Calcu         | aleu Bariu-Eu     | uge Measure                         | romont (Ava):     | 65.3<br>E1 0   | dBuV/m       | Using 100k                  | HZ delta val   | ue            |             |
|                                            | Calci         |                   | Luye Measur                         | enieni (Avy).     | 51.Z           | ubuv/III     | USING TOOK                  | HZ UEILA VAI   | ue            |             |
| Frequency                                  | level         | Pol               | FCC                                 | 15,209            | Detector       | Azimuth      | Height                      | Comments       |               |             |
| MHz                                        | dBuV/m        | v/h               | Limit                               | Margin            | Pk/QP/Avg      | degrees      | meters                      | o on monto     |               |             |
| 5148.417                                   | 50.9          | Н                 | 54.0                                | -3.1              | Avg            | 112          | 1.72                        | Using 100k     | Hz delta valu | ie          |
| 90.0-                                      |               |                   |                                     |                   |                |              | Analyzer Se                 | ttings         |               |             |
| 85.0-                                      |               |                   |                                     |                   | الملحان والكري | LLL.         | HP8564E,EM                  | I              |               |             |
| 80.0-                                      |               |                   |                                     |                   |                | - Carlo      | CF: 5165.000<br>SPAN:50.000 | ) MHz<br>) MHz |               |             |
| 75.0-                                      |               |                   |                                     |                   |                |              | RB 100 kHz                  |                |               |             |
| <sub>ω</sub> 70.0-                         |               |                   |                                     |                   |                |              | Detector POS                | 5              |               |             |
| <u></u> 65.0 -                             | 9 65.0-       |                   |                                     |                   |                | <u> </u>     | Att 0<br>BL Offcot 11       | 00             |               |             |
| 븉 60.0-                                    | Ê 60.0-       |                   |                                     |                   |                |              | Sweep Time !                | 50.0ms         |               |             |
| 55.0-                                      |               |                   | www                                 |                   |                |              | Ref Lvl:108.0               | ODBUV          |               |             |
| 50.0-                                      |               |                   |                                     |                   |                |              | Comments                    |                |               |             |
| 40.0-                                      |               |                   |                                     |                   |                |              | 802.11n20 (                 | lhain B        |               |             |
| 35.0-                                      |               | •                 |                                     |                   |                |              | CH 36<br>16-7 dBm           |                |               |             |
| 514                                        | 0 5145 5      | 150 5155          | 5160 5165<br>Frequency              | 5170 517<br>(MHz) | 5 5180 51      | 85 5190      | 10.7 UDIII                  |                |               |             |
| Cursor 1                                   | 5148.4165     | 42.50 💠           | - <u>*</u> &•                       | Delta Frec        | 26.583         | 6            | F11;                        | ott            |               |             |
| Cursor 2                                   | 5175.0000     | 87.50 💠           | <u>-*-</u> @• c                     | elta Amplituc     | le 45.00       | C.           | لللائا                      | ou             |               |             |

| <b>E</b>                 | Ellic                     | <b>ott</b>        |                  |                         |                 |          |             | EMO                  | C Test         | <sup>•</sup> Data |
|--------------------------|---------------------------|-------------------|------------------|-------------------------|-----------------|----------|-------------|----------------------|----------------|-------------------|
| Client:                  | Intel                     | B company         |                  |                         |                 |          |             | Job Number:          | J75722         |                   |
| Model                    | 2x2 WiFi wit              | h WiMax Mir       | niPCI            |                         |                 |          | T-L         | og Number:           | T76443         |                   |
|                          | 2.12 111 1 11             |                   |                  |                         |                 |          | Accou       | int Manager:         | -              |                   |
| Contact:                 | S. Hackett                | 00 15 047         |                  |                         |                 |          |             | Class                |                |                   |
| Standard:                | KSS ZIU/F                 | UU 15.247         |                  |                         |                 |          |             | Class:               | N/A            |                   |
| KUII # 30, E             |                           | TIEI #04, 332     |                  | Power S                 | Settinas        |          |             | ٦                    |                |                   |
|                          | Chain                     | Target            | (dBm)            | Measure                 | d (dBm)         | Software | e Setting   | -                    |                |                   |
|                          | В                         | 16                | b.5              | 16                      | .7              | 27       | 7.0         |                      |                |                   |
| Fundament                | al Signal Fie             | eld Strength      |                  |                         |                 |          |             | -                    |                |                   |
| Frequency                | Level                     | Pol               | 15.209           | / 15.247                | Detector        | Azimuth  | Height      | Comments             |                |                   |
| MHz                      | dBµV/m                    | v/h               | Limit            | Margin                  | Pk/QP/Avg       | degrees  | meters      |                      |                |                   |
| 5325.270                 | 94.7                      | V                 | 112.3            | -17.6                   | AVG             | 129      | 1.54        |                      |                |                   |
| 5324.330                 | 102.3                     | V                 | 132.3            | -30.0                   | PK              | 129      | 1.54        |                      |                |                   |
| 5314.800                 | 95.7<br>102.4             | H                 | 112.3            | -16.6                   | AVG             | 118      | 1.65        |                      |                |                   |
| 5315.870                 | 103.4                     | H<br>Jianal Dadia | 132.3            | -28.9                   | PK<br>For Dolta | 811      | 1.65        |                      |                |                   |
| JJJU WITZ D              | anu Euge S                | iyilal kaula      | ieu rieiu Sii    | engin - mark            |                 | V        | 1           |                      |                |                   |
|                          | Fundamenta                | al emission le    | avel @ ?m in     | 1MHz RBW·               | 103.4           | 102.3    | Peak Meas   | surement (RF         | R=VR=1MHz      |                   |
|                          | Fundamenta                | al emission le    | vel @ 3m in      | 1MHz RBW                | 95.7            | 94 7     | Average M   | leasurement          | (RR=1MHz       | ,<br>VB=10Hz)     |
|                          | 1 unuumonte               |                   | Delta Mai        | rker - 100kHz           | 49.7            | dB       | <- this can | only be used         | l if band edg  | e signal is       |
|                          | Calcula                   | ated Band-E       | dae Measure      | ement (Peak):           | 53.7            | dBuV/m   | highest wit | hin 2MHz of          | band edge.     | o orginal lo      |
|                          | Calcu                     | Ilated Band-I     | Edge Measu       | rement (Avg):           | 46.0            | dBuV/m   | Margin      | Level                | Limit          | Detector          |
| Delta Marker - 1MHz/1MHz |                           |                   |                  |                         | 42.2            | dB       | -8.5        | 45.5                 | 54             | Avg               |
| Delta Marker - 1MHz/10Hz |                           |                   |                  | 1MHz/10Hz:              | 50.2            | dB       | -20.3       | 53.7                 | 74             | Pk                |
|                          | Calcula                   | ated Band-E       | dge Measure      | ement (Peak):           | 61.2            | dBuV/m   | Using 100k  | kHz delta vali       | Je             |                   |
|                          | Calcu                     | Ilated Band-I     | Edge Measu       | rement (Avg):           | 45.5            | dBuV/m   | Using 1MF   | Iz delta value       | <u>)</u>       |                   |
| Frequency                | Level                     | Pol               | FCC              | 15.209                  | Detector        | Azimuth  | Height      | Comments             |                |                   |
| MHz                      | dBµV/m                    | v/h               | Limit            | Margin                  | Pk/QP/Avg       | degrees  | meters      |                      |                |                   |
| 5350.000                 | 45.5                      | Η                 | 54.0             | -8.5                    | Avg             | 118      | 1.65        | Using 1MH            | z delta value  |                   |
| 00.0                     |                           |                   |                  |                         |                 |          |             | A poluzor            | Cottings       |                   |
| 90.0-                    |                           |                   |                  |                         |                 |          |             | Analyzer             | Settings       | _                 |
| 85.0-                    | $\int_{-\infty}^{\infty}$ |                   |                  |                         |                 |          |             | CF: 5335.            | EMI<br>000 MHz |                   |
| 75.0-                    |                           |                   | 1 1              |                         |                 |          |             | SPAN:50.             | 000 MHz        |                   |
| 70.0-                    | 1                         |                   | 1                |                         |                 |          |             | RB 1.000<br>VB 10 Hz | MHz            |                   |
| ୍କ 65.0-                 |                           |                   | 1                |                         |                 |          |             | Detector 9           | 5ample         |                   |
| 19 00.0<br>19 60.0-      |                           |                   |                  |                         |                 |          |             | Att 0                | 11.00          |                   |
| 2 55.0-                  |                           |                   |                  |                         |                 |          |             | Sweep Tin            | ne 19.0s       |                   |
| 50.0-                    |                           |                   |                  |                         |                 |          |             | Ref Lvl:10           | 8.00DBUV       |                   |
| 45.0-                    | •                         |                   | 1                |                         |                 |          |             |                      |                |                   |
| 40.0-                    | •                         |                   | 1                |                         |                 |          |             | Commen               | ts             |                   |
| 35.0-                    |                           |                   | 1                |                         |                 | ╞╪╪┿┽┽   |             | 802.11n2             | 0 Chain B      |                   |
| 30.0-                    |                           |                   |                  |                         |                 |          |             | CH64                 |                |                   |
| 53                       | 310 5315                  | 5320 53           | 325 5330<br>Fred | 5335 53<br>juency (MHz) | 40 5345         | 5350 53  | 55 5360     | ien dem              |                |                   |
| Cursor 1                 | 5325.250                  | 0 86.67           | + -* 6           | D                       | elta Freq.      | 24.750   | 6           |                      | • - 4          |                   |
| Cursor 2                 | 5350.000                  | 36.50             | ⊕ -*- 6          | Delta                   | Amplitude       | 50.17    | C           | ЕI                   | 10l            | τ                 |
| 1                        |                           |                   |                  |                         |                 |          |             |                      |                |                   |

| <b>Elliott</b> EMC Test Data                |                                 |                |               |                      |              |           |                                       |                          |               |                |
|---------------------------------------------|---------------------------------|----------------|---------------|----------------------|--------------|-----------|---------------------------------------|--------------------------|---------------|----------------|
| Client:                                     | Intel                           |                |               |                      |              |           | J                                     | ob Number:               | J75722        |                |
| Model                                       | 2v2 WiEi wit                    | h WiMax Mir    | idci          |                      |              |           | T-L                                   | og Number:               | T76443        |                |
| WOUCI.                                      |                                 |                |               |                      |              |           | Accou                                 | nt Manager:              | -             |                |
| Contact:                                    | S. Hackett                      |                |               |                      |              |           |                                       |                          |               |                |
| Standard:                                   | RSS 210 / F                     | CC 15.247      |               |                      |              |           |                                       | Class:                   | N/A           |                |
| Run # 5c, E                                 | UT on Chan                      | nel #100 550   | 00MHz - 802   | <u>.11n20, Chaii</u> | <u>n B</u>   |           |                                       | 1                        |               |                |
|                                             | Chain                           | Torgot         | (dDm)         | Power S              | ettings      | Coffwor   | Cotting                               | -                        |               |                |
|                                             | D                               | 14<br>14       | (UBIII)       | Ivieasule            |              | SUIWAR    |                                       | -                        |               |                |
| Eundamont                                   | D<br>al Sianal Ei               | old Stronath   | 0.0           | 10                   | .0           | 20        | 0.0                                   | J                        |               |                |
| Frequency                                   | <i>ai Siyiiai Fi</i> e<br>Level | Pol            | 15 209        | / 15 247             | Detector     | Azimuth   | Height                                | Comments                 |               |                |
| MHz                                         | dBuV/m                          | v/h            | l imit        | Margin               | Pk/OP/Ava    | dearees   | meters                                | Comments                 |               |                |
| 5505,200                                    | 97.5                            | H              | 112.3         | -14.8                | AVG          | 110       | 1.08                                  |                          |               |                |
| 5505.070                                    | 105.1                           | H              | 132.3         | -27.2                | PK           | 110       | 1.08                                  |                          |               |                |
| 5494.600                                    | 95.1                            | V              | 112.3         | -17.2                | AVG          | 185       | 1.24                                  |                          |               |                |
| 5495.270                                    | 103.0                           | V              | 132.3         | -29.3                | PK           | 185       | 1.24                                  |                          |               |                |
| 5460 MHz R                                  | Pestricted Ba                   | and Edge Si    | gnal Radiate  | ed Field Strei       | ngth - Marke | r Delta   |                                       | -                        |               |                |
|                                             |                                 |                |               |                      | Н            | V         |                                       |                          |               |                |
| Fundamental emission level @ 3m in 1MHz RBW |                                 |                |               |                      | 105.1        | 103.0     | Peak Meas                             | urement (RE              | B=VB=1MHz)    | )              |
| Fundamental emission level @ 3m in 1MHz RBW |                                 |                |               |                      | 97.5         | 95.1      | Average Measurement (RB=1MHz, VB=10Hz |                          |               | VB=10Hz)       |
|                                             |                                 |                | Delta Mar     | ker - 100kHz         | 51.0         | dB        | <- this can                           | only be used             | l if band edg | e signal is    |
|                                             | Calcul                          | ated Band-E    | dge Measure   | ement (Peak):        | 54.1         | dBuV/m    | highest with                          | nin 2MHz of              | band edge.    |                |
| Calculated Band-Edge Measurement (Avg)      |                                 |                |               |                      | 46.5         | dBuV/m    | Margin                                | Level                    | Limit         | Detector       |
| Delta Marker - 1MHz/1MHz:                   |                                 |                |               |                      | 44.5         | dB        | -8.7                                  | 45.3                     | 54            | Avg            |
|                                             | 0.1.1                           | D              | elta Marker - | <u>1MHz/10Hz:</u>    | 52.2         | dB        | -19.9                                 | 54.1                     | 74            | Pk             |
|                                             | Calcul                          | ated Band-E    | dge Measure   | ement (Peak):        | 60.6         | dBuV/m    | Using 100k                            | Hz delta vali            | ue            |                |
| <b>F</b>                                    | Calcu                           |                |               | 15 200               | 45.3         | dBuV/m    | USING TIVIH                           | z delta value            | 2             |                |
| Frequency                                   |                                 | P01            | FUU           | 15.209<br>Morgin     | Delector     | Azimuin   | Height                                | Comments                 |               |                |
| 1010Z                                       | <u>μομν/Π</u><br>15.3           | V/II<br>Н      | 54.0          | - <b>8</b> 7         | Ava          | 110       | 1 08                                  | l Isina 1MH <sup>.</sup> | aulev etlab z |                |
| 5470 MHz B                                  | Rand Edge S                     | ignal Radia    | ted Field Str | rength - Mark        | er Delta     | V         | 1.00                                  |                          |               |                |
|                                             | Fundament                       | al emission le | vel @ 3m in   | 1MHz RRW·            | 105.1        | 103.0     | Peak Meas                             | urement (RF              | 3=VB=1MH7     | )              |
|                                             | Fundamenta                      | al emission le | evel @ 3m in  | 1MHz RBW:            | 97.5         | 95.1      | Average M                             | easurement               | (RB=1MH7      | ,<br>VB=10Hz)  |
|                                             | - undumonit                     |                | Delta Mar     | rker - 100kHz        | 46.8         | dB        | <- this can                           | only be used             | t if band edg | e signal is    |
|                                             | Calcul                          | ated Band-E    | dge Measure   | ement (Peak):        | 58.3         | dBuV/m    | highest with                          | hin 2MHz of              | band edge.    | · g. · - · · · |
|                                             | Calcu                           | Iated Band-I   | Edge Measur   | rement (Avg):        | 50.7         | dBuV/m    | Margin                                | Level                    | Limit         | Detector       |
|                                             |                                 | De             | elta Marker - | 1MHz/1MHz:           |              | dB        | -18.0                                 | 50.3                     | 68.3          | Avg            |
|                                             |                                 | D              | elta Marker - | 1MHz/10Hz:           | 47.2         | dB        | -30.0                                 | 58.3                     | 88.3          | Pk             |
|                                             | Calcul                          | ated Band-E    | dge Measure   | ement (Peak):        | 105.1        | dBuV/m    | Using 100k                            | Hz delta valu            | ue            |                |
| Calculated Band-Edge Measurement (Avg)      |                                 |                |               | 50.3                 | dBuV/m       | Using 1MH | z delta value                         | )<br>)                   |               |                |
| Frequency                                   | Level                           | Pol            | FCC           | C 15E                | Detector     | Azimuth   | Height                                | Comments                 |               |                |
| MHz                                         | dBµV/m                          | v/h            | Limit         | Margin               | Pk/QP/Avg    | degrees   | meters                                |                          |               |                |
| 5469.867                                    | 50.3                            | H              | 68.3          | -18.0                | Avg          | 110       | 1.08                                  | Using 1MH                | z delta value |                |
| Note - avera                                | ae limit is ea                  | uivalent to -2 | 27dBm eirp    |                      |              |           |                                       |                          |               |                |
|                                             | <u> </u>                        |                |               |                      |              |           |                                       |                          |               |                |



| E                                                    |                                                      | <b>ott</b>     |                                              |                    |              |          |                      | EMO                                    | C Test                 | t Data      |  |
|------------------------------------------------------|------------------------------------------------------|----------------|----------------------------------------------|--------------------|--------------|----------|----------------------|----------------------------------------|------------------------|-------------|--|
| Client:                                              | Intel                                                | D company      |                                              |                    |              |          |                      | Job Number:                            | J75722                 |             |  |
| Model                                                | 2x2 WiFi wit                                         | h WiMax Min    | iPCI                                         |                    |              |          | T-L                  | og Number:                             | T76443                 |             |  |
|                                                      |                                                      |                |                                              |                    |              |          | Accou                | int Manager:                           | -                      |             |  |
| Contact:                                             | S. Hackett                                           | CC 15 247      |                                              |                    |              |          |                      | Class                                  | ΝΙ/Λ                   |             |  |
| Stanuaru.<br>Dun # 5d E                              | KSS 2107 F                                           | 00 10.247      | <u>)0M∐z 803</u>                             | 11n20 Chai         | n R          |          |                      | CIASS.                                 | N/A                    |             |  |
| Kull # 50, L                                         |                                                      | 1101 # 140 57  | JUIVII 12 - 002                              | Power S            | ettinas      |          |                      | 1                                      |                        |             |  |
|                                                      | Chain                                                | Target         | (dBm)                                        | Measure            | d (dBm)      | Software | e Setting            | -                                      |                        |             |  |
|                                                      | В                                                    | 16             | o.5                                          | 16                 | .6           | 25       | 5.0                  |                                        |                        |             |  |
| Fundament                                            | al Signal Fie                                        | eld Strength   |                                              |                    |              |          |                      |                                        |                        |             |  |
| Frequency                                            | Level                                                | Pol            | 15.209                                       | / 15.247           | Detector     | Azimuth  | Height               | Comments                               |                        |             |  |
| MHz                                                  | dBµV/m                                               | v/h            | Limit                                        | Margin             | Pk/QP/Avg    | degrees  | meters               |                                        | VD. 10 U-              |             |  |
| 5703.000                                             | 95.3<br>103 /                                        | V              | 112.3                                        | -17.0              | AVG          | 135      | 1.27                 | RB 1 MHZ;<br>RB 1 MHZ;                 | VB: 10 HZ              |             |  |
| 5694 670                                             | 94.5                                                 | H              | 112.3                                        | -17.8              | AVG          | 327      | 1.27                 | RB 1 MHz <sup>·</sup>                  | VB: 10 Hz              |             |  |
| 5702.670                                             | 102.7                                                | H              | 132.3                                        | -29.6              | PK           | 327      | 1.34                 | RB 1 MHz;                              | VB: 10112<br>VB: 1 MHz |             |  |
| 5725 MHz R                                           | Restricted Ba                                        | and Edge Si    | gnal Radiat                                  | ed Field Strei     | ngth - Marke | r Delta  |                      | · · · ·                                |                        |             |  |
|                                                      |                                                      |                |                                              |                    | Н            | V        |                      |                                        |                        |             |  |
|                                                      | Fundamenta                                           | al emission le | evel @ 3m in                                 | 1MHz RBW:          | 102.7        | 103.4    | Peak Meas            | surement (RE                           | B=VB=1MHz              | )           |  |
|                                                      | Fundamental emission level @ 3m in 1MHz RBW:94.595.3 |                |                                              |                    |              |          |                      | Average Measurement (RB=1MHz, VB=10Hz) |                        |             |  |
|                                                      | Delta Marker - 100kHz 43.5 dB                        |                |                                              |                    |              |          |                      | only be used                           | l if band edg          | e signal is |  |
| Calculated Band-Edge Measurement (Peak): 59.9 dBuV/m |                                                      |                |                                              |                    |              | dBuV/m   | Margin               |                                        | Dand edge.             | Dotoctor    |  |
|                                                      | Calculated Band-Edge Measurement (Avg):              |                |                                              |                    |              |          | 17 2                 | 51 1                                   | 68.3                   |             |  |
|                                                      |                                                      | DC             | elta Marker -                                | 1MHz/10Hz:         | 44.2         | dB       | -17.2                | 59.9                                   | 88.3                   | Pk          |  |
|                                                      | Calcul                                               | ated Band-Ed   | dge Measure                                  | ement (Peak):      | 68.6         | dBuV/m   | Using 100k           | Hz delta val                           | ue                     | - TK        |  |
|                                                      | Calcu                                                | lated Band-E   | Edge Measu                                   | rement (Avg):      | 51.1         | dBuV/m   | Using 1MH            | Iz delta value                         | ;                      |             |  |
|                                                      |                                                      |                |                                              |                    |              |          | -                    | 1                                      |                        |             |  |
| Frequency                                            | Level                                                | Pol            | FCC                                          | C 15E              | Detector     | Azimuth  | Height               | Comments                               |                        |             |  |
| MHZ                                                  | dBµV/m                                               | v/h            | Limit                                        | Margin             | Pk/QP/Avg    | degrees  | meters               | Licing 1ML                             | z dalta valua          |             |  |
| 5725.017                                             | 51.1                                                 | V              | 08.3                                         | -17.Z              | Avg          | 135      | 1.27                 | USING TIMH.                            | z della value          |             |  |
| Note - avera                                         | ge limit is eq                                       | uivalent to -2 | 27dBm eirp.                                  |                    |              |          |                      |                                        |                        |             |  |
| 90.0-                                                |                                                      |                |                                              |                    |              |          | Analyzer             | Settings                               |                        |             |  |
| 85.0-                                                | portion                                              |                |                                              |                    |              |          | HP8564E              | ,EMI                                   |                        |             |  |
| 80.0-                                                |                                                      |                |                                              |                    |              |          | CF: 5720<br>SPAN:70  | .000 MHz<br>.000 MHz                   |                        |             |  |
| 75.0-                                                |                                                      |                |                                              |                    |              |          | RB 1.000             | MHz                                    |                        |             |  |
| 70.0-                                                |                                                      |                |                                              |                    |              |          | VB 10 Hz<br>Detector | Sample                                 |                        |             |  |
|                                                      |                                                      |                |                                              |                    |              |          | Att 0                | Dampie                                 |                        |             |  |
| / <sup>4</sup> / 60.0-                               |                                                      |                |                                              |                    |              |          | RL Offset            | t 11.00                                |                        |             |  |
| ₹ 55.0-<br>50.0-                                     |                                                      |                |                                              |                    |              |          | Ref Lvl:1            | me 26.05<br>08.00DBUV                  |                        |             |  |
| 50.0-                                                |                                                      |                |                                              |                    |              |          |                      |                                        |                        |             |  |
| 40.0-                                                |                                                      |                |                                              |                    |              |          | Commer               | nts                                    |                        |             |  |
| 35.0-                                                |                                                      |                |                                              |                    |              |          | 802.11n2             | 20 Chain B                             |                        |             |  |
| 30.0-                                                |                                                      | + + + + + + +  | <u>+</u> + + + + + + + + + + + + + + + + + + |                    |              | ┿┿┿┿     | CH 140               |                                        |                        |             |  |
| 568                                                  | 5 5690                                               | 5700 5         | 710 572<br>Frequenci                         | 20 5730<br>v (MHz) | 5740         | 5750 575 | 2 10.0 GBM           |                                        |                        |             |  |
| Circa 1                                              | F(04 (00)                                            |                |                                              |                    |              |          |                      |                                        |                        |             |  |
| Cursor 1                                             | 5694.6831                                            | 65.50 T        | <u>~</u> _%_&_                               | Delta Arrista      | eq. 30.333   | 9        | ΗI                   | liot                                   | F                      |             |  |
| Cursor 2                                             | 5725.0100                                            | 41.33          |                                              | Deita Ampliti      | uue   17.17  | S.       |                      |                                        | -                      |             |  |

| Œ                         |                           | D <b>tt</b>                 |                            |                            |                                              |                  |                           | EMO                   | C Test                 | ' Data   |
|---------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------------------------|------------------|---------------------------|-----------------------|------------------------|----------|
| Client:                   | Intel                     |                             |                            |                            |                                              |                  | J                         | ob Number:            | J75722                 |          |
| Model                     | 2x2 ₩iFi wit              | h WiMax Min                 | iPCI                       |                            |                                              |                  | T-L                       | og Number:            | T76443                 |          |
| MOUCI.                    |                           |                             |                            |                            |                                              |                  | Accou                     | nt Manager:           | -                      |          |
| Contact:                  | S. Hackett                | 00 15 047                   |                            |                            |                                              |                  |                           | 01                    | N1/A                   |          |
| Standard:                 | RSS 2107F                 | UC 15.247                   | 000 11-00                  | Chain A D                  |                                              |                  |                           | Class:                | N/A                    |          |
| RUN # 6, Ba<br>Run # 6a F | na Eage Fie<br>UT on Chan | 10 Strength<br>nol #36 518( | - 802.11N20<br>MHz - 802 1 | , Chain A+B<br>11n20 Chain | ۸⊥R                                          |                  |                           |                       |                        |          |
|                           | Date of Test:             | 8/17/2009                   | JIVIT IZ - 002.            |                            | Τe                                           | est Location:    | FT Chamb                  | er #3                 |                        |          |
| Те                        | st Engineer:              | Rafael Varel                | as                         |                            | Cor                                          | fig Change:      | none                      |                       |                        |          |
|                           | Chain                     |                             |                            | Power S                    | Settings                                     |                  |                           |                       |                        |          |
|                           | Chain                     | Target                      | (dBm)                      | Measure                    | d (dBm)                                      | Softwar          | e Setting                 |                       |                        |          |
|                           | A+B                       | 16                          | o.5                        | 13.6/                      | 13.8                                         | 26.5             | /25.5                     | J                     |                        |          |
| Fundament                 | al Signal Fie             | eld Strength                | 15 200                     | 115 017                    | Datastas                                     | A _!             | 11.2.1.1                  | 0                     |                        |          |
|                           |                           | P0I                         | 15.209<br>Limit            | / 15.247<br>Margin         | Delector                                     | Azimuln          | Height                    | Comments              |                        |          |
| IVINZ<br>5178 570         | 08μν/m<br>94.0            | V/II<br>H                   |                            | iviaryin<br>-              | AVG                                          | 103              | 1 1                       | RB 1 MHz <sup>.</sup> | VR· 10 Hz              |          |
| 5183 500                  | 104.0                     | H                           | -                          | -                          | PK                                           | 103              | 1.1                       | RB 1 MHz <sup>.</sup> | VB: 10112<br>VB: 1 MHz |          |
| 5181.500                  | 94.8                      | V                           | -                          | -                          | AVG                                          | 151              | 1.5                       | RB 1 MHz;             | VB: 10 Hz              |          |
| 5185.200                  | 104.6                     | V                           | -                          | -                          | PK                                           | 151              | 1.5                       | RB 1 MHz;             | VB: 1 MHz              |          |
|                           |                           |                             |                            |                            |                                              |                  |                           |                       |                        |          |
| 5150 MHz B                | Band Edge S               | ignal Radia                 | ted Field Sti              | rength - Mark              | er Delta                                     |                  | -                         |                       |                        |          |
|                           |                           |                             |                            |                            | H                                            | V                | l                         | . (5.5                |                        |          |
|                           | Fundamenta                | I emission le               | evel @ 3m in               | 1MHz RBW:                  | 104.0                                        | 104.6            | Peak Meas                 | surement (RE          | 3=VB=1MHz)             |          |
|                           | Fundamenta                | II emission ie              | evel @ 3m in               | IMHZ RBW:                  | 94.0                                         | 94.8             | Average M                 |                       | (RB=TMHZ,              | VB=IUHZ) |
|                           | Calcul                    | atod Rand Fr                | Della Mai                  | Ment (Doak)                | 49.3 dBuV/m bighest within 2MHz of band edge |                  |                           |                       | e signal is            |          |
|                           | Calcul                    | lated Band-I                | -dae Measure               | rement (Ava).              | 49.3<br>20 5                                 | dBuV/m           | Margin                    |                       | Limit                  | Detector |
|                           | Galee                     | De                          | ta Marker -                | 1MHz/1MHz <sup>,</sup>     | 51.3                                         | dB               | -14 5                     | 39.5                  | 54                     | Ava      |
|                           |                           | De                          | elta Marker -              | 1MHz/10Hz:                 | 53.0                                         | dB               | -24.7                     | 49.3                  | 74                     | Pk       |
|                           | Calcula                   | ated Band-Ed                | dge Measure                | ement (Peak):              | 53.3                                         | dBuV/m           | Using 100k                | Hz delta valu         | ue                     |          |
|                           | Calcu                     | lated Band-I                | Edge Measu                 | rement (Avg):              | 41.8                                         | dBuV/m           | Using 100k                | Hz delta valu         | ue                     |          |
| _                         |                           | <u> </u>                    | 500                        | 45.000                     |                                              |                  | <b>I</b>                  |                       |                        |          |
| Frequency                 | Level                     | Pol                         | FCC                        | 15.209<br>Marain           | Detector                                     | Azimuth          | Height                    | Comments              |                        |          |
| WHZ<br>51/18 078          | 0ΒμV/M<br>30 5            | V/N<br>H                    | 54.0                       | 14 5                       | PK/QP/AVg                                    | degrees          | 1 72                      | Llsing 100k           | Hz dolta valu          |          |
| 5140.070                  | 57.5                      | 11                          | 54.0                       | -14.5                      | Avy                                          | 112              | 1.72                      | USING TOOK            |                        |          |
| 80.0-                     |                           |                             |                            |                            |                                              | HP8564           | er Settings<br>IF EMI     | -                     |                        |          |
| 70.0-                     |                           |                             |                            |                            | Mannam                                       | CF: 51           | 50.000 MHz                |                       |                        |          |
| 60.0-                     |                           |                             |                            |                            |                                              | RB 100           | kHz<br>tare               |                       |                        |          |
| ₽ 50 0 -                  |                           |                             |                            |                            |                                              | Detect           | кнz<br>or POS             |                       |                        |          |
| plitue                    |                           |                             |                            |                            |                                              | Att 0<br>RL Offs | et 0.00                   |                       |                        |          |
|                           |                           |                             |                            | ala                        |                                              | Sweep<br>Ref Lvl | Time 50.0ms<br>:85.40DBUV |                       |                        |          |

Cursor 1 5148.0781

Cursor 2 5183.9102

30.0

20.0-

10.0-|| 5109

5120

5130

22.23

77.57

5140

՝⊕ -չ- ն-

+ + 6-

5150

Frequency (MHz)

5160

5170

Delta Freq. 35.832

Delta Amplitude 55.33

5180

Comments

5191

BE @ 5150 MHz 5180 MHz 802.11n 20MHz

lliott

| <b>CE</b>                                                      |                | Dtt<br>Ar company |                    |                          |                     |              |                            | EMO                        | C Test                 | ' Data   |
|----------------------------------------------------------------|----------------|-------------------|--------------------|--------------------------|---------------------|--------------|----------------------------|----------------------------|------------------------|----------|
| Client:                                                        | Intel          |                   |                    |                          |                     |              | J                          | ob Number:                 | J75722                 |          |
| Madal                                                          | ΩvΩ \\/i⊑i wit | h \/i\/av \/ir    |                    |                          |                     |              | T-L                        | og Number:                 | T76443                 |          |
| wouer.                                                         |                | II VVIIVIAX IVIII | IIPCI              |                          |                     |              | Accou                      | nt Manager:                | -                      |          |
| Contact:                                                       | S. Hackett     | 00.45.047         |                    |                          |                     |              |                            |                            |                        |          |
| Standard:                                                      | RSS 210/F      | CC 15.247         | 000 A              | 11.00 01                 | A D                 |              |                            | Class:                     | N/A                    |          |
| RUN # 6D, E                                                    | UI ON Chan     | nel #64 532       | Jivihz - 802.      | i inzu, Chain            | A+B                 | st Location. | ET Chamb                   | or #2                      |                        |          |
| Te                                                             | st Engineer:   | Rafael Varel      | as                 |                          | Cor                 | fig Change:  | none                       | 51 #3                      |                        |          |
|                                                                | Chain          |                   |                    | Power S                  | ettings             |              | nono                       | ]                          |                        |          |
|                                                                | Chain          | Target            | (dBm)              | Measure                  | d (dBm)             | Software     | e Setting                  |                            |                        |          |
|                                                                | A+B            | 16                | o.5                | 13.6/                    | 13.8                | 24.5         | /25.5                      |                            |                        |          |
| Fundament                                                      | al Signal Fie  | eld Strength      | 15.000             |                          | _                   |              |                            | -                          |                        |          |
| Frequency                                                      | Level          | Pol               | 15.209             | / 15.24/                 | Detector            | Azimuth      | Height                     | Comments                   |                        |          |
| WIHZ                                                           | 01.2           | V/N               | Limit              | Margin                   | PK/QP/AVg           | degrees      | meters                     |                            | \/D₁ 10 ∐ <del>7</del> |          |
| 5324.030                                                       | 91.2<br>101 /  | H                 | -                  | -                        | AVG<br>PK           | 222          | 1.0                        |                            | VD. 10 HZ              |          |
| 5315 470                                                       | 91.6           | V                 | -                  | -                        | AVG                 | 177          | 1.0                        | RB 1 MHz <sup>.</sup>      | VB: 10 Hz              |          |
| 5314.570                                                       | 102.1          | V                 | -                  | -                        | PK                  | 177          | 1.2                        | RB 1 MHz;                  | VB: 1 MHz              |          |
| 5350 MHz E                                                     | Band Edge S    | ignal Radia       | ted Field Sti      | rength - Mark            | er Delta            |              |                            | · · · ·                    |                        |          |
|                                                                |                |                   |                    |                          | Н                   | V            | ]                          |                            |                        |          |
|                                                                | Fundamenta     | al emission le    | evel @ 3m in       | 1MHz RBW:                | 101.4               | 102.1        | Peak Meas                  | urement (RE                | 3=VB=1MHz              | )        |
| Fundamental emission level @ 3m in 1MHz RBW                    |                |                   |                    |                          | 91.2                | 91.6         | Average M                  | easurement                 | (RB=1MHz,              | VB=10Hz) |
| Delta Marker - 100kHz 56.5 dB <- this can only be used if band |                |                   |                    |                          |                     |              | d if band edg              | e signal is                |                        |          |
| Calculated Band-Edge Measurement (Peak)                        |                |                   |                    |                          | 45.6                | dBuV/m       | highest with               | nin 2MHz of                | band edge.             |          |
|                                                                | Calcu          | liated Band-I     | Lage Measur        | rement (Avg):            | 35.1                | dBuV/m       | Margin                     | Level                      | Limit                  | Detector |
|                                                                |                |                   | elta Markar        | 1MHZ/1MHZ;<br>1MHz/10Hz; | 50.2                | aB<br>dD     | -18.9                      | 35.1<br>45.4               | 54                     | AVg      |
|                                                                | Calcula        | ated Band-Fi      | dae Measure        | ment (Peak)              | <i>32.0</i><br>51.0 | dBuV/m       | -20.4<br>Using 100k        | 40.0<br>Hz delta vali      | 14                     | ΡK       |
|                                                                | Calcu          | lated Band-I      | Edge Measur        | rement (Ava):            | 38.8                | dBuV/m       | Using 100k                 | Hz delta val               | ue                     |          |
| Froquency                                                      |                | Dol               | J ECC              | 15 200                   | Dotoctor            | Azimuth      | Hoight                     | Commonte                   |                        |          |
| MH <sub>7</sub>                                                | dBu\//m        | P01<br>v/h        | FCC<br>Limit       | 10.209<br>Margin         |                     | dearees      | meters                     | Comments                   |                        |          |
| 5350.000                                                       | 35.1           | -                 | 54.0               | -18.9                    | Ava                 | -            | -                          | Usina 100k                 | Hz delta valu          | le       |
| 80.0-1                                                         |                |                   |                    |                          |                     |              | - Analy                    | zor Sottina                | e                      | -        |
| 00.0-                                                          | . Jahre        |                   |                    | •                        |                     |              | HP85                       | zer setting<br>64E,EMI     | 5                      |          |
| 70.0-                                                          |                |                   |                    |                          |                     |              | CF: 5<br>SPAN              | 350.000 MHz<br>:82.373 MHz | 2                      |          |
| 60.0-                                                          |                |                   |                    |                          |                     |              | RB 10                      | 10 kHz                     |                        |          |
| 9                                                              | 11             |                   |                    |                          |                     |              | VB 10<br>Detec             | u kHz<br>tor POS           |                        |          |
| - <u>19</u> 50.0 -                                             | /              |                   |                    |                          |                     |              | Att 0                      | fset 0.00                  |                        |          |
| ₽ 40.0                                                         |                |                   |                    |                          |                     |              | Swee                       | p Time 50.0m               | ns                     |          |
| 30.0-                                                          |                | -                 | May 1              |                          |                     |              | Reit                       | VI:05.40DDOV               | v                      |          |
| 20.0-                                                          |                |                   |                    |                          |                     |              | Comn                       | nents                      |                        |          |
| 20.0-                                                          |                |                   |                    |                          | ntel the book       | howw         | BE @                       | 5350 MHz                   |                        |          |
| 10.0-<br>53                                                    | 09 5320        | 5330              | 5340 5             | 350 5360                 | 5370                | 5380 5       | - 5320<br>11 802.1<br>3391 | MHZ<br>1n 20MHz            |                        |          |
|                                                                |                | 70.07             | hequer<br>La La La | су (нн2)<br>Байа         |                     |              |                            | 4-4 4                      |                        |          |
| Cursor 1                                                       | 5314.9917      | 21.57             | ₽ <u>~</u> & &     | Delta Amp                | litude 56.5         | io 💋         | <b>F</b> Ε                 | llio                       | tt                     |          |
| -                                                              |                |                   |                    |                          |                     |              |                            |                            |                        |          |

|                                                                             |                                             | **                    |               |               |           |            |                                        |              | CTaat          | Data        |
|-----------------------------------------------------------------------------|---------------------------------------------|-----------------------|---------------|---------------|-----------|------------|----------------------------------------|--------------|----------------|-------------|
|                                                                             | An [22]                                     | <b>ノしし</b>            |               |               |           |            |                                        | EIVIO        | s Tesi         | Dala        |
| Client:                                                                     | Intel                                       |                       |               |               |           |            | J                                      | lob Number:  | J75722         |             |
| Model:                                                                      | 2x2 WiFi wit                                | h WiMax Mir           | niPCI         |               |           |            | T-L                                    | .og Number:  | T76443         |             |
| Contact:                                                                    | S. Hackett                                  |                       |               |               |           |            | ALLUU                                  | ni manayer.  | -              |             |
| Standard:                                                                   | RSS 210 / F                                 | CC 15.247             |               |               |           |            |                                        | Class:       | N/A            |             |
| Run # 6c, E                                                                 | UT on Chan                                  | nel #100 550          | 00MHz - 802   | .11n20, Chaii | n A+B     |            |                                        | •            |                |             |
|                                                                             | Chain                                       | Tanad                 | (dDm)         | Power S       | Settings  | Cathuran   | . C                                    |              |                |             |
|                                                                             | Λ. D                                        | Target                | (abin)        | ivieasure     |           | 5011Ware   |                                        | -            |                |             |
| Fundament                                                                   | A+D<br>al Signal Fig                        | eld Strenath          | 0.0           | 22.0,         | 24.0      | 13.7,      | 13.0                                   | ]            |                |             |
| Frequency                                                                   | l evel                                      | Pol                   | 15.209        | / 15.247      | Detector  | Azimuth    | Height                                 | Comments     |                |             |
| MHz                                                                         | dBuV/m                                      | v/h                   | Limit         | Margin        | Pk/OP/Ava | dearees    | meters                                 | oonintento   |                |             |
| 5505.500                                                                    | 95.4                                        | H                     | 54.0          | 41.4          | AVG       | 106        | 1.0                                    | RB 1 MHz;    | VB: 10 Hz      |             |
| 5495.070                                                                    | 105.6                                       | Н                     | 74.0          | 31.6          | PK        | 106        | 1.0                                    | RB 1 MHz;    | VB: 1 MHz      |             |
| 5505.330                                                                    | 93.3                                        | V                     | 54.0          | 39.3          | AVG       | 222        | 1.0                                    | RB 1 MHz;    | VB: 10 Hz      |             |
| 5505.230                                                                    | 103.3                                       | V                     | 74.0          | 29.3          | PK        | 222        | 1.0                                    | RB 1 MHz;    | VB: 1 MHz      |             |
| 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta |                                             |                       |               |               |           |            |                                        |              |                |             |
|                                                                             |                                             |                       |               |               | Н         | V          |                                        |              |                |             |
|                                                                             | Fundamental emission level @ 3m in 1MHz RBW |                       |               |               |           | 103.3      | Peak Meas                              | surement (RE | B=VB=1MHz)     |             |
| Fundamental emission level @ 3m in 1MHz RBW                                 |                                             |                       |               |               | 95.4      | 93.3       | Average Measurement (RB=1MHz, VB=10Hz) |              |                | VB=10Hz)    |
|                                                                             |                                             |                       | Delta Mar     | rker - 100kHz | 47.0      | dB         | <- this can                            | only be used | d if band edge | e signal is |
|                                                                             | Calcul                                      | ated Band-E           | dge Measure   | ement (Peak): | 58.6      | dBuV/m     | highest with                           | hin 2MHz of  | band edge.     |             |
| Calculated Band-Edge Measurement (Avg)                                      |                                             |                       |               |               | 48.4      | dBuV/m     | Margin                                 | Level        | Limit          | Detector    |
| Delta Marker - 1MHz/1MHz.                                                   |                                             |                       |               |               | 44.0      | dB         | -5.6                                   | 48.4         | 54             | Avg         |
|                                                                             | Calaul                                      | Di<br>Den al Den al D | elta Marker - | 1MHZ/10HZ:    | 45.3      | dB         | -15.4                                  | 58.6         | /4             | Pk          |
|                                                                             | Calcul                                      | ated Band-E           | dge Measure   | ement (Peak): | 61.6      | dBuV/m     | Using 100k                             | Hz delta val | ue             |             |
|                                                                             | Calci                                       | lialeu Baliu-i        | zuge measu    | iemeni (Avg): | 50.1      | abuv/m     | USING TUUK                             | HZ della val | ue             |             |
| Frequency                                                                   | Level                                       | Pol                   | FCC           | 15.209        | Detector  | Azimuth    | Height                                 | Comments     |                |             |
| MHz                                                                         | dBµV/m                                      | v/h                   | Limit         | Margin        | Pk/QP/Avg | degrees    | meters                                 |              |                |             |
| 5445.283                                                                    | 48.4                                        | Н                     | 54.0          | -5.6          | Avg       | 106        | 1.0                                    | Using 100k   | Hz delta valu  | е           |
| 5470 MHz B                                                                  | and Edge S                                  | ignal Radia           | ted Field Str | rength - Mark | er Delta  |            |                                        |              |                |             |
|                                                                             |                                             | 0                     |               |               | Н         | V          | ]                                      |              |                |             |
|                                                                             | Fundamenta                                  | al emission le        | evel @ 3m in  | 1MHz RBW:     | 105.6     | 103.3      | Peak Meas                              | surement (RE | B=VB=1MHz)     |             |
|                                                                             | Fundamenta                                  | al emission le        | evel @ 3m in  | 1MHz RBW:     | 95.4      | 93.3       | Average M                              | easurement   | (RB=1MHz,      | VB=10Hz)    |
|                                                                             |                                             |                       | Delta Mar     | rker - 100kHz | 47.0      | dB         | <- this can                            | only be used | d if band edge | e signal is |
|                                                                             | Calcul                                      | ated Band-E           | dge Measure   | ement (Peak): | 58.6      | dBuV/m     | highest with                           | hin 2MHz of  | band edge.     |             |
|                                                                             | Calcu                                       | Iated Band-I          | Edge Measu    | rement (Avg): | 48.4      | dBuV/m     | Margin                                 | Level        | Limit          | Detector    |
|                                                                             |                                             | De                    | elta Marker - | 1MHz/1MHz:    | 43.3      | dB         | -19.9                                  | 48.4         | 68.3           | Avg         |
|                                                                             |                                             | D                     | elta Marker - | 1MHz/10Hz:    | 45.0      | dB         | -29.7                                  | 58.6         | 88.3           | Pk          |
| Calculated Band-Edge Measurement (Peak)                                     |                                             |                       | ement (Peak): | 62.3          | dBuV/m    | Using 100k | Hz delta val                           | ue           |                |             |
|                                                                             |                                             |                       |               | rement (Avg): | 50.4      | dBuV/m     | Using 100k                             | Hz delta val | ue             |             |
| Frequency                                                                   | Level                                       | Pol                   | FCC           | C 15E         | Detector  | Azimuth    | Height                                 | Comments     |                |             |
| MHz                                                                         | dBµV/m                                      | v/h                   | Limit         | Margin        | Pk/QP/Avg | degrees    | meters                                 |              |                |             |
| 5445.283                                                                    | 48.4                                        | -                     | 68.3          | -19.9         | Avg       | -          | -                                      | Using 100k   | Hz delta valu  | е           |
| Note - avera                                                                | ge limit is ea                              | uivalent to -2        | 27dBm eirp.   |               |           |            |                                        |              |                |             |
|                                                                             |                                             |                       | · • • • • •   |               |           |            |                                        |              |                |             |
|                                                                             |                                             |                       |               |               |           |            |                                        |              |                |             |



| <b>E</b>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>D</b><br>Ter company |                            |                                    |              |               |                                | EMO                   | C Test                 | <sup>•</sup> Data |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|------------------------------------|--------------|---------------|--------------------------------|-----------------------|------------------------|-------------------|
| Client:              | Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                            |                                    |              |               |                                | Job Number:           | J75722                 |                   |
| Model:               | 2x2 WiFi wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | th WiMax Mir            | niPCI                      |                                    |              |               | T-I                            | Log Number:           | T76443                 |                   |
| Operate at           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              |               | Αссоι                          | unt Manager:          |                        |                   |
| Contact:             | S. Hackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -00 15 247              |                            |                                    |              |               |                                | Class                 | ΝΙ/Λ                   |                   |
| Dun # 6d E           | $\frac{1}{1} = \frac{1}{2} = \frac{1}$ | UC 10.247               | 00MU7 - 802                | 11n20 Chai                         | η Λι D       |               |                                | Ulass.                | N/A                    |                   |
| Kull # 00, E         | Date of Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8/17/2009               |                            | .111120, 011an                     | Te           | est Locatio   | n: FT Chamb                    | ∿≏r #3                |                        |                   |
| Те                   | st Engineer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rafael Varel            | as                         |                                    | Cor          | ifig Chang    | e: none                        |                       |                        |                   |
|                      | Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                            | Power S                            | settings     |               |                                | 7                     |                        |                   |
|                      | Cridin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Target                  | (dBm)                      | Measure                            | d (dBm)      | Softwa        | are Setting                    |                       |                        |                   |
|                      | A+B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                      | .5                         | 13.9/                              | 13.8         | 24            | .0/24.0                        |                       |                        |                   |
| Fundament            | al Signal Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eld Strength            | 15 200                     | 15 217                             | Detector     | A -inotk      | Llaight                        | Lo arremonto          |                        |                   |
| Frequency<br>MH7     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 201<br>V/b              | 10.207                     | / 15.247<br>Margin                 |              | AZIMUM        | Heighi<br>motors               | Comments              |                        |                   |
| 5696 730             | 08μν/m<br>94.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V/II<br>H               |                            | -                                  | AVG          | 105           | 10                             | RR 1 MH7 <sup>.</sup> | VR· 10 Hz              |                   |
| 5706.270             | 104.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H H                     | -                          | <b>!</b>                           | PK           | 105           | 1.0                            | RB 1 MHz;             | VB: 10112<br>VB: 1 MHz |                   |
| 5695.130             | 93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                       | -                          | -                                  | AVG          | 153           | 1.2                            | RB 1 MHz;             | VB: 10 Hz              |                   |
| 5697.130             | 102.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                       | -                          | -                                  | РК           | 153           | 1.2                            | RB 1 MHz;             | VB: 1 MHz              |                   |
| 5725 MHz F           | Restricted B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and Edge Si             | gnal Radiat                | ed Field Strei                     | ngth - Marke | r Delta       |                                | -                     |                        |                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    | H            | V             |                                |                       |                        |                   |
|                      | Fundament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al emission le          | vel @ 3m in                | 1MHz RBW:                          | 104.4        | <b></b>       | Peak Mea                       | surement (RE          | 3=VB=1MHz)             |                   |
|                      | Fundament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al emission le          | evel @ 3m in               | 1MHz RBW:                          | 94.8         |               | Average N                      | leasurement           | (RB=1MHz, )            | VB=10Hz)          |
|                      | Coloui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lited Dand E            | Delta Mar                  | Ker - TUUKHZ                       | 50.0         | <u>dB</u>     | <- this can                    | only be used          | l if band edge         | e signal is       |
|                      | Calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ated Band L             | Jge Measure                | ment (Peak):                       | 54.4         |               | highest wi                     | thin 2IVIHZ OI        | band edge.             | Detector          |
|                      | Udiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 10ye Markor                |                                    | 44.0         |               | 1Viaryin                       |                       |                        |                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | alta Marker -              | 11/11/12/11/11/12.<br>11/14/10/17· | 44.7<br>18 5 | UD<br>AR      | -23.0                          | 44.0<br>54.4          | 00.3<br>QQ 3           | Avy<br>Dk         |
|                      | Calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lated Band-Er           | dae Measure                | ement (Peak):                      | 59.7         | dRuV/m        | Using 100                      | kHz delta vali        | 00.5<br>IIA            | ΙN                |
|                      | Calci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ulated Band-I           | Edge Measu                 | rement (Avg):                      | 46.3         | dBuV/m        | Using 100                      | kHz delta val         | ue                     |                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              |               |                                |                       |                        |                   |
| Frequency            | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pol                     | FCC                        | C 15E                              | Detector     | Azimuth       | n Height                       | Comments              |                        |                   |
| MHz                  | dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v/h                     | Limit                      | Margin                             | Pk/QP/Avg    | degrees       | meters                         |                       |                        |                   |
| 5725.000             | 44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                       | 68.3                       | -23.5                              | Avg          |               | -                              | Using 100k            | Hz delta valu          | ie                |
| Note - avera         | ige limit is ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | juivalent to -2         | 27dBm eirp.                |                                    |              |               |                                |                       |                        |                   |
| 80.0-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              | — Anak        | vzer Settinas                  |                       |                        |                   |
| -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                       | ┉┉┉                        |                                    |              | - HP85        | 64E,EMI                        |                       |                        |                   |
| 70.0-                | should be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ally                    |                            |                                    |              | CF: 5<br>SPAN | 3725.000 MHz<br>1:70.000 MHz   |                       |                        |                   |
| 60.0-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              | RB 10         | 00 kHz<br>10 kHz               |                       |                        |                   |
| 윤 50.0-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              | Deter         | ctor POS                       |                       |                        |                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            | RLO                                | ffset 0.00   |               |                                |                       |                        |                   |
| -₹ <sup>40.0</sup> - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              | Swee<br>Ref L | p Time 50.0ms<br>.vl:79.20DBUV |                       |                        |                   |
| 30.0-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                       | ML.                        |                                    |              |               |                                |                       |                        |                   |
| 20.0-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | - Martin                   | An and the same                    | maile miles  | 🗕 Comr        | THENTS                         | _                     |                        |                   |
| 10.0-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                            |                                    |              | 5700          | MHz                            |                       |                        |                   |
| 5690                 | ) 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5710 s                  | 5720 573<br>Frequency (MH; | ;0 5740<br>z)                      | 5750 5       | ;760          | l 1n 20MHz                     |                       |                        |                   |
| Cursor 1             | 5707.6167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.20 🕂 🛧               | - ô-                       | Delta Freq. 17                     | 7.383 🧷      |               | 11: 4                          |                       |                        |                   |
| Cursor 2             | 5725.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.20 💠 🔸               | br Delta                   | a Amplitude 5                      | 0.00 7       | $\mathbf{E}$  | ШОЦ                            | .L                    |                        |                   |

# Elliott

## EMC Test Data

|           | An ZAZZEO company           |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model.    | 2v2 WiEi with WiMax MiniDCI | T-Log Number:    | T76443 |
| MOUCI.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |

#### RSS 210, FCC 15.E (NII) Band Edge Field Strength (802.11a)

#### Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

#### Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

| Run #    | Mode                    | Channel                    | Target<br>Power | Measured<br>Power | Test Performed                      | Limit  | Result / Margin                     |
|----------|-------------------------|----------------------------|-----------------|-------------------|-------------------------------------|--------|-------------------------------------|
| Run # 1a |                         | #36<br>5180MHz             | 16.5 dBm        | 16.5 dBm          | Restricted Band Edge<br>at 5150 MHz | 15.209 | 41.7dBµV/m @<br>5150.0MHz (-12.3dB) |
| Run # 1b |                         | #64<br>5320MHz             | 16.5 dBm        | 16.7 dBm          | Restricted Band Edge<br>at 5350 MHz | 15.209 | 43.8dBµV/m @<br>5350.1MHz (-10.2dB) |
| Run # 1c | 802.11a<br>Chain A      | #100                       | 16 5 dBm        | 16.8 dBm          | Restricted Band Edge<br>at 5460 MHz | 15.209 | 41.2dBµV/m @<br>5459.9MHz (-12.8dB) |
| Run # 1d |                         | 5500MHz                    | 10.5 0011       | 10.0 0011         | Restricted Band Edge<br>at 5470 MHz | 15 E   | 46.9dBµV/m @<br>5470.0MHz (-21.4dB) |
| Run # 1e |                         | #140<br>5700MHz 16.5 dBm 1 |                 | 16.7 dBm          | Restricted Band Edge<br>at 5725 MHz | 15 E   | 49.3dBµV/m @<br>5725.1MHz (-19.0dB) |
| Run # 2a |                         | #36<br>5180MHz             | 16.5 dBm        | 16.7 dBm          | Restricted Band Edge<br>at 5150 MHz | 15.209 | 45.7dBµV/m @<br>5150.0MHz (-8.3dB)  |
| Run # 2b |                         | #64<br>5320MHz             | 16.5 dBm        | 16.8 dBm          | Restricted Band Edge<br>at 5350 MHz | 15.209 | 46.5dBµV/m @<br>5350.1MHz (-7.5dB)  |
| Run # 2c | 802.11a<br>Chain B #100 |                            | 16 5 dBm        | 16.6 dBm          | Restricted Band Edge<br>at 5460 MHz | 15.209 | 42.0dBµV/m @<br>5460.1MHz (-12.0dB) |
| Run # 2d | 5500MHz                 |                            | 10.5 0011       |                   | Restricted Band Edge<br>at 5470 MHz | 15 E   | 47.0dBµV/m @<br>5470.0MHz (-21.3dB) |
| Run # 2e |                         | #140<br>5700MHz 16.5 dBm   |                 | 16.8 dBm          | Restricted Band Edge<br>at 5725 MHz | 15 E   | 51.1dBµV/m @<br>5725.1MHz (-17.2dB) |

#### General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT. **Ambient Conditions:** 

| Rel. Humidity: | 15-65 %  |
|----------------|----------|
| Temperature:   | 15-25 °C |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

# Elliott

## EMC Test Data

|           | An Direction Company        |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model.    | 2v2 WiEi with WiMay MiniPCI | T-Log Number:    | T76443 |
| MOUCI.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |

#### Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz, VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. For MIMO operation the delta measurement is made in a radiated manner with the measurement antenna located approximately 50cm from the EUT's antennas. The fundamental field strength is always measured at a 3m test distance.

#### Run #1, Band Edge Field Strength - 802.11a, Chain A Run #1a, EUT on Channel #36 5180MHz - 802.11a, Chain A

| [  | Date of Test: | 8/25/2009        | Te             | Test Location: Chamber # 4 |  |  |  |  |  |
|----|---------------|------------------|----------------|----------------------------|--|--|--|--|--|
| Те | st Engineer:  | Suhaila Khushzad | Cor            | Config Change: none        |  |  |  |  |  |
|    | Chain         | Power Settings   |                |                            |  |  |  |  |  |
|    |               | Target (dBm)     | Measured (dBm) | Software Setting           |  |  |  |  |  |
|    | А             | 16.5             | 16.5           | 27.5                       |  |  |  |  |  |
|    |               |                  |                |                            |  |  |  |  |  |

#### Fundamental Signal Field Strength

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments                |
|-----------|--------|-----|--------|----------|-----------|---------|--------|-------------------------|
| MHz       | dBµV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                         |
| 5174.870  | 93.9   | Н   | -      | -        | AVG       | 30      | 1.0    | RB 1 MHz; VB: 10 Hz     |
| 5175.530  | 101.3  | Н   | -      | -        | PK        | 30      | 1.0    | RB 1 MHz; VB: 1 MHz     |
| 5178.800  | 93.6   | Н   | -      | -        | PK        | 30      | 1.0    | RB 100 kHz; VB: 100 kHz |
| 5178.870  | 94.2   | V   | -      | -        | AVG       | 134     | 1.2    | RB 1 MHz; VB: 10 Hz     |
| 5176.070  | 102.0  | V   | -      | -        | PK        | 134     | 1.2    | RB 1 MHz; VB: 1 MHz     |
| 5182.800  | 92.9   | V   | -      | -        | PK        | 134     | 1.2    | RB 100 kHz; VB: 100 kHz |

#### 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta

|                                          |                                                                                      |              |                          |              | Н         | V                                    |                                        |                        |                             |          |
|------------------------------------------|--------------------------------------------------------------------------------------|--------------|--------------------------|--------------|-----------|--------------------------------------|----------------------------------------|------------------------|-----------------------------|----------|
| ŀ                                        | undamental emission level @ 3m in 1MHz RBW: 101.3 102.0 Peak Measurement (RB=VB=1MHz |              |                          |              |           |                                      | =VB=1MHz)                              |                        |                             |          |
| -                                        | Fundamental                                                                          | emission lev | vel @ 3m in <sup>.</sup> | 1MHz RBW:    | 93.9      | 94.2                                 | Average Measurement (RB=1MHz, VB=10Hz) |                        |                             |          |
|                                          |                                                                                      |              | Delta Mark               | er - 100kHz  | 50.3      | 50.3 dB <- this can only be us       |                                        |                        | used if band edge signal is |          |
|                                          | Calcula                                                                              | ted Band-Ed  | ge Measurer              | nent (Peak): | 51.7      | dBuV/m                               | m highest within 2MHz of band edge.    |                        |                             |          |
| Calculated Band-Edge Measurement (Avg):  |                                                                                      |              |                          |              | 43.9      | dBuV/m                               | Margin                                 | Level                  | Limit                       | Detector |
| Delta Marker - 1MHz/1MHz:                |                                                                                      |              |                          |              | 43.8      | dB                                   | -12.3                                  | 41.7                   | 54                          | Avg      |
| Delta Marker - 1MHz/10Hz:                |                                                                                      |              |                          |              | 52.5      | dB                                   | -22.3                                  | 51.7                   | 74                          | Pk       |
| Calculated Band-Edge Measurement (Peak): |                                                                                      |              |                          |              | 58.2      | 58.2 dBuV/m Using 100kHz delta value |                                        |                        |                             |          |
| Calculated Band-Edge Measurement (Avg):  |                                                                                      |              |                          |              | 41.7      | dBuV/m                               | Using 1MHz delta value                 |                        |                             |          |
|                                          |                                                                                      |              |                          |              |           |                                      |                                        |                        |                             |          |
| Frequency                                | Level                                                                                | Pol          | FCC 2                    | 15.209       | Detector  | Azimuth                              | Height                                 | Comments               |                             |          |
| MHz                                      | dBµV/m                                                                               | v/h          | Limit                    | Margin       | Pk/QP/Avg | degrees                              | meters                                 |                        |                             |          |
| 5150.030                                 | 41.7                                                                                 | -            | 54.0                     | -12.3        | Avg       | -                                    | -                                      | Using 1MHz delta value |                             |          |
|                                          |                                                                                      |              |                          |              |           |                                      |                                        |                        |                             |          |


|               |               | 12 at                                     |                |              |                      |               |              |                      |              |           |
|---------------|---------------|-------------------------------------------|----------------|--------------|----------------------|---------------|--------------|----------------------|--------------|-----------|
| 6t            |               | <b>)</b><br><i>C</i> <sup>*</sup> company |                |              |                      |               |              | EM                   | C Test       | ' Data    |
| Client:       | Intel         |                                           |                |              |                      |               |              | Job Number:          | J75722       |           |
| Madalı        |               | h \A/iN lov A/ir                          |                |              |                      |               | T-           | Log Number:          | T76443       |           |
| Nouei.        |               |                                           |                |              |                      |               | Αссοι        | un <u>t Manager:</u> |              |           |
| Contact:      | S. Hackett    |                                           |                |              |                      |               |              |                      |              |           |
| Standard:     | RSS 210 / F   | CC 15.247                                 |                |              |                      |               |              | Class:               | N/A          |           |
| Run #1b, El   | JT on Chanr   | nel #64 5320                              | )MHz - 802.1   | 1a, Chain A  | _                    |               |              |                      |              |           |
| L             | )ate of Test: | 8/25/2009                                 |                |              | l€<br>Oor            | est Location: | Chamber #    | 4                    |              |           |
| le            | st Engineer:  | Suhaila Khu                               | shzad          | Dowor        | LUI<br>Cottings      | ifig Change:  | none         | ٦                    |              |           |
|               | Chain         | Target                                    | (dRm)          | Measure      | Settings<br>ad (dRm) | Softwar       | o Sottina    |                      |              |           |
|               | А             | 16                                        | 15             | 16           | 67                   | 25            | 5 ()         | -                    |              |           |
|               |               |                                           |                |              | 5.7                  |               | 5.0          | 1                    |              |           |
| Fundament     | al Signal Fie | eld Strength                              | 1              |              |                      |               |              |                      |              |           |
| Frequency     | Level         | Pol                                       | 15.209         | / 15.247     | Detector             | Azimuth       | Height       | Comments             |              |           |
| MHz           | dBµV/m        | v/h                                       | Limit          | Margin       | Pk/QP/Avg            | degrees       | meters       |                      |              |           |
| 5318.870      | 95.3          | V                                         |                | -            | AVG                  | 147           | 1.2          | RB 1 MHz; V          | VB: 10 Hz    |           |
| 5316.130      | 103.1         | V                                         | -              | -            | PK                   | 147           | 1.2          | RB 1 MHz;            | VB: 1 MHz    |           |
| 5315.070      | 96.8          | V                                         | -              | -            | PK                   | 147           | 1.2          | RB 100 kHz           | ; VB: 100 kH | Z         |
| 5321.270      | 94.7          | H                                         | -              | -            | AVG                  | 221           | 1.0          | RB 1 MHz;            | VB: 10 Hz    |           |
| 5319.270      | 102.8         | H                                         | -              | -            | PK                   | 221           | 1.0          | RB 1 MHZ;            | VB: 1 MHz    | _         |
| 5316.400      | 93.3          | H                                         | -              | -            | РК                   | 221           | 1.0          | RR 100 kHz           | ; VB: 100 kh | Z         |
| 5250 MH7 B    | and Edge S    | Signal Padia                              | tod Eigld St   | ronath _ Mar | war Dalta            |               |              |                      |              |           |
| 5550 WII 12 L | anu Luye S    | iyilal Kaula                              | ieu i ieiu Sii | engin - man  | H                    | V             | 1            |                      |              |           |
|               | Fundamental   | emission lev                              | vel @ 3m in '  | 1MHz RBW·    | 102.8                | 103.1         | Peak Meas    | urement (RB:         | =VB=1MHz)    |           |
|               | Fundamental   | emission lev                              | vel @ 3m in '  | 1MHz RBW     | 94 7                 | 95.3          | Average Me   | easurement (         | RB=1MHz V    | B=10Hz)   |
|               | unuumontai    |                                           | Delta Mark     | er - 100kHz  | 48.7                 | dB            | <- this can  | only be used         | if band edge | signal is |
|               | Calcula       | ted Band-Ed                               | ge Measurer    | nent (Peak): | 54.4                 | dBuV/m        | highest with | nin 2MHz of b        | and edge.    | orginario |
|               | Calcul        | ated Band-E                               | dge Measure    | ement (Avg): | 46.6                 | dBuV/m        | Margin       | Level                | Limit        | Detector  |
|               |               | Del                                       | ta Marker - 1  | MHz/1MHz:    | 42.8                 | dB            | -10.2        | 43.8                 | 54           | Ava       |
|               |               | De                                        | lta Marker -   | 1MHz/10Hz:   | 51.5                 | dB            | -19.6        | 54.4                 | 74           | Pk        |
|               | Calculat      | ted Band-Ed                               | ge Measurer    | nent (Peak): | 60.3                 | dBuV/m        | Using 100k   | Hz delta valu        | e            |           |
|               | Calcul        | ated Band-E                               | dge Measure    | ement (Avg): | 43.8                 | dBuV/m        | Using 1MH    | z delta value        |              |           |
|               |               |                                           |                |              |                      |               |              | -                    |              |           |
| Frequency     | Level         | Pol                                       | FCC 1          | 15.209       | Detector             | Azimuth       | Height       | Comments             |              |           |
| MHz           | dBµV/m        | v/h                                       | Limit          | Margin       | Pk/QP/Avg            | degrees       | meters       |                      |              |           |
| 5350.075      | 43.8          | -                                         | 54.0           | -10.2        | Avg                  | -             | -            | Using 1MHz           | delta value  |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |
|               |               |                                           |                |              |                      |               |              |                      |              |           |



|                 | -11.                     |                |               |               |                   |              |               |                             |               |                   |
|-----------------|--------------------------|----------------|---------------|---------------|-------------------|--------------|---------------|-----------------------------|---------------|-------------------|
| 6               |                          |                |               |               |                   |              |               | EMO                         | C Test        | <sup>•</sup> Data |
| Client:         | Intel                    |                |               |               |                   |              |               | Job Number:                 | J75722        |                   |
| Model           | 2x2 WiFi wit             | h WiMax Mir    | hiPCI         |               |                   |              | T-            | Log Number:                 | T76443        |                   |
| Widden.         |                          |                |               |               |                   |              | Αссоι         | unt Manager:                | -             |                   |
| Contact:        | S. Hackett               | 00 15 047      |               |               |                   |              |               | 01                          | N1/A          |                   |
| Standard:       | RSS 2107 F               | CC 15.247      |               | 44 01 1       | •                 |              |               | Class:                      | N/A           |                   |
| Run #1C, El     | JI on Chan               | nel #100 550   | 00MHz - 802.  | TTa, Chain I  | A<br>Sottings     |              |               | 7                           |               |                   |
|                 | Chain                    | Tarnet         | (dBm)         | Measure       | əd (dBm)          | Softwar      | e Settina     |                             |               |                   |
|                 | Δ                        | 16             | 5.5           | 11            | 5.8               | 2            | 3.5           | -                           |               |                   |
| Fundament       | al Signal Fi             | eld Strenath   | 1             |               | 5.0               |              | 0.0           | 1                           |               |                   |
| Frequency       | Level                    | Pol            | 15.209        | / 15.247      | Detector          | Azimuth      | Height        | Comments                    |               |                   |
| MHz             | dBµV/m                   | v/h            | Limit         | Margin        | Pk/QP/Avg         | degrees      | meters        |                             |               |                   |
| 5498.870        | 97.2                     | Н              | -             | -             | AVG               | 226          | 1.0           | RB 1 MHz; V                 | VB: 10 Hz     |                   |
| 5496.200        | 105.0                    | Н              | -             | -             | PK                | 226          | 1.0           | RB 1 MHz; V                 | VB: 1 MHz     |                   |
| 5493.270        | 94.1                     | Н              | -             | -             | PK                | 226          | 1.0           | RB 100 kHz                  | ; VB: 100 kH  | Z                 |
| 5495.070        | 96.4                     | V              | -             | -             | AVG               | 214          | 1.0           | RB 1 MHz; \                 | VB: 10 Hz     |                   |
| 5495.670        | 104.4                    | V              | -             | -             | PK                | 214          | 1.0           | RB 1 MHz; V                 | VB: 1 MHz     |                   |
| 5497.600        | 96.4                     | V              | -             | -             | PK                | 214          | 1.0           | RB 100 KHZ                  | ; VB: 100 KH  | Z                 |
| 5160 MUz D      | Destricted P             | and Edga Si    | ianal Dadiat  | ad Field Str  | onath Mark        | or Dolta     |               |                             |               |                   |
| 3400 MITZ K     | esincleu D               | anu Euge Si    | yilal Kaulal  | eu rieiu Sii  | глуш - тлагк<br>Н |              | 1             |                             |               |                   |
|                 | Fundamenta               | emission lev   | vel @ 3m in 1 | 1MHz RBW·     | 105.0             | 104 4        | Peak Meas     | urement (RB=                | =VB=1MHz)     |                   |
|                 | Fundamenta               | l emission lev | vel @ 3m in 1 | 1MHz RBW:     | 97.2              | 96.4         | Average Me    | easurement (I               | RB=1MHz. V    | B=10Hz)           |
|                 |                          |                | Delta Mark    | ker - 100kHz  | 55.8              | dB           | <- this can o | only be used                | if band edge  | signal is         |
|                 | Calcula                  | ted Band-Ed    | ge Measurer   | ment (Peak):  | 49.2              | dBuV/m       | highest with  | nin 2MHz of b               | and edge.     | 5                 |
|                 | Calcu                    | ated Band-E    | dge Measure   | ement (Avg):  | 41.4              | dBuV/m       | Margin        | Level                       | Limit         | Detector          |
|                 |                          | Del            | ta Marker - 1 | MHz/1MHz:     | 50.8              | dB           | -12.8         | 41.2                        | 54            | Avg               |
|                 |                          | De             | lta Marker -  | 1MHz/10Hz:    | 56.0              | dB           | -24.8         | 49.2                        | 74            | Pk                |
|                 | Calcula                  | ited Band-Ed   | ge Measurer   | ment (Peak):  | 54.2              | dBuV/m       | Using 100k    | Hz delta valu               | е             |                   |
|                 | Calcul                   | ated Band-E    | dge Measure   | ement (Avg):  | 41.2              | dBuV/m       | Using 1MH     | z delta value               |               |                   |
| Fraguanay       | Loval                    | Dol            | ECC /         | 15 200        | Dotostor          | Azimuth      | Hoight        | Commonto                    |               |                   |
| MH <sub>7</sub> |                          | P0I<br>v/b     | Limit         | Margin        |                   | dogroos      | metors        | Comments                    |               |                   |
| 5459 890        | <u>u</u> σμν/iii<br>41.2 | v/11           | 54.0          | -12.8         | Ava               | ucyiecs<br>- | -             | l Isina 1MHz                | r delta value |                   |
| 3437.070        | 71.2                     |                | 54.0          | 12.0          | nvg               |              |               | USING NULL                  |               |                   |
| 5470 MHz E      | Band Edge S              | Signal Radia   | ted Field Sti | rength - Mar  | ker Delta         |              |               |                             |               |                   |
|                 | <u> </u>                 | 5              |               | 5             | Н                 | V            | ]             |                             |               |                   |
| l               | Fundamenta               | l emission lev | vel @ 3m in 1 | 1MHz RBW:     | 105.0             | 104.4        | Peak Meas     | urement (RB=                | =VB=1MHz)     |                   |
| l               | Fundamenta               | l emission lev | vel @ 3m in ' | 1MHz RBW:     | 97.2              | 96.4         | Average Me    | easurement (l               | RB=1MHz, V    | B=10Hz)           |
|                 |                          |                | Delta Mark    | ker - 100kHz  |                   | dB           | <- this can o | only be used                | if band edge  | signal is         |
|                 | Calcula                  | ited Band-Ed   | ge Measurer   | ment (Peak):  | 105.0             | dBuV/m       | highest with  | n <mark>in 2MHz of b</mark> | and edge.     | -                 |
|                 | Calcu                    | ated Band-E    | dge Measure   | ement (Avg):  | 97.2              | dBuV/m       | Margin        | Level                       | Limit         | Detector          |
|                 |                          | Del            | ta Marker - 1 | MHz/1MHz:     | 42.2              | dB           | -21.4         | 46.9                        | 68.3          | Avg               |
|                 | <u> </u>                 | De             | Ita Marker -  | 1MHz/10Hz:    | 50.3              | dB           | -25.5         | 62.8                        | 88.3          | Pk                |
|                 | Calcula                  | ited Band-Ed   | ge Measurer   | ment (Peak):  | 62.8              | dBuV/m       | Using 1MH     | z delta value               |               |                   |
|                 | Calcul                   | alea Band-F    | uge Measure   | ernent (Avg): | 46.9              | dBnA/w       | Using 1MH     | z deita value               |               |                   |
| Frequency       |                          | Dol            | ECC           | ` 15F         | Detector          | Azimuth      | Hoight        | Commonts                    |               |                   |
| мн <sub>7</sub> |                          | г0і<br>v/h     | Limit         | Margin        |                   | degrees      | meters        | COMMENIS                    |               |                   |
| 5470.000        | /6 0                     | V/11           | 68.3          | -21 /         | Δνα               | - ucyrees    | -             | l Isina 1MHz                | aulev etlab   |                   |





| Client:                      | Intel                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                |                                                                                                                                                    | Job Number:                                                                                                                                         | J75722                                                                             |                                                |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|
| Model:                       | 2x2 WiFi wit                                                                                                         | h WiMax Mir                                                                                                                                                     | niPCI                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                | T-                                                                                                                                                 | Log Number:                                                                                                                                         | T76443                                                                             |                                                |
| Contact                      | S. Hackott                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                | Acco                                                                                                                                               | unt Manager:                                                                                                                                        | -                                                                                  |                                                |
| Standard                     | S. Hackell<br>RSS 210 / F                                                                                            | CC 15 247                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                |                                                                                                                                                    | Class <sup>.</sup>                                                                                                                                  | N/A                                                                                |                                                |
| Run #1d. F                   | UT on Chan                                                                                                           | nel #140 570                                                                                                                                                    | 0MHz - 802                                                                                                                                                                                                                                                               | 11a. Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                          |                                                                                                                                |                                                                                                                                                    | 010001                                                                                                                                              |                                                                                    |                                                |
|                              | Choin                                                                                                                |                                                                                                                                                                 | 0001                                                                                                                                                                                                                                                                     | Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Settings                                                                                                                   |                                                                                                                                |                                                                                                                                                    |                                                                                                                                                     |                                                                                    |                                                |
|                              | Chain                                                                                                                | Target                                                                                                                                                          | (dBm)                                                                                                                                                                                                                                                                    | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed (dBm)                                                                                                                   | Softwar                                                                                                                        | e Setting                                                                                                                                          |                                                                                                                                                     |                                                                                    |                                                |
|                              | А                                                                                                                    | 16                                                                                                                                                              | b.5                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.7                                                                                                                        | 2                                                                                                                              | 4.0                                                                                                                                                |                                                                                                                                                     |                                                                                    |                                                |
| -                            |                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                |                                                                                                                                                    |                                                                                                                                                     |                                                                                    |                                                |
|                              | ai Signai Fie                                                                                                        | Pol                                                                                                                                                             | 15 200                                                                                                                                                                                                                                                                   | / 15 2/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dotoctor                                                                                                                   | Azimuth                                                                                                                        | Hoight                                                                                                                                             | Commonts                                                                                                                                            |                                                                                    |                                                |
| MHz                          | dBuV/m                                                                                                               | v/h                                                                                                                                                             | l imit                                                                                                                                                                                                                                                                   | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | dearees                                                                                                                        | meters                                                                                                                                             | Comments                                                                                                                                            |                                                                                    |                                                |
| 5705 130                     | 93.3                                                                                                                 | V                                                                                                                                                               | -                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                        | 144                                                                                                                            | 14                                                                                                                                                 | RB 1 MHz <sup>.</sup>                                                                                                                               | /B <sup>.</sup> 10 Hz                                                              |                                                |
| 5702.330                     | 100.8                                                                                                                | V                                                                                                                                                               | _                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PK                                                                                                                         | 144                                                                                                                            | 1.4                                                                                                                                                | RB 1 MHz:                                                                                                                                           | VB: 10112                                                                          |                                                |
| 5702.070                     | 91.9                                                                                                                 | V                                                                                                                                                               | -                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PK                                                                                                                         | 144                                                                                                                            | 1.4                                                                                                                                                | RB 100 kHz                                                                                                                                          | : VB: 100 kH                                                                       | z                                              |
| 5701.270                     | 95.0                                                                                                                 | H                                                                                                                                                               | -                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                        | 233                                                                                                                            | 1.0                                                                                                                                                | RB 1 MHz:                                                                                                                                           | VB: 10 Hz                                                                          |                                                |
| 5701.730                     | 102.7                                                                                                                | Н                                                                                                                                                               | -                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PK                                                                                                                         | 233                                                                                                                            | 1.0                                                                                                                                                | RB 1 MHz; V                                                                                                                                         | VB: 1 MHz                                                                          |                                                |
| 5704.330                     | 96.3                                                                                                                 | Н                                                                                                                                                               | -                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PK                                                                                                                         | 233                                                                                                                            | 1.0                                                                                                                                                | RB 100 kHz                                                                                                                                          | · VB· 100 kH                                                                       | 7                                              |
| 725 MHz I                    | Restricted R                                                                                                         | and Edae Si                                                                                                                                                     | anal Radiat                                                                                                                                                                                                                                                              | ed Field Stra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | enath - Mark                                                                                                               | er Delta                                                                                                                       | <b>_</b>                                                                                                                                           |                                                                                                                                                     | , <b>V</b> D. 100 Ki                                                               |                                                |
| 725 MHz H                    | Restricted Ba                                                                                                        | and Edge Si                                                                                                                                                     | ignal Radiat                                                                                                                                                                                                                                                             | ed Field Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e <b>ngth - Mark</b><br>H<br>102.7                                                                                         | <i>er Delta</i><br>V<br>100.8                                                                                                  | Peak Meas                                                                                                                                          | urement (RB:                                                                                                                                        | =VB=1MHz)                                                                          | -                                              |
| 725 MHz F                    | Restricted Ba<br>Fundamental<br>Fundamental                                                                          | emission lev<br>emission lev                                                                                                                                    | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in                                                                                                                                                                                                                               | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e <b>ngth - Mark</b><br>H<br>102.7<br>95.0                                                                                 | <i>er Delta</i><br>V<br>100.8<br>93.3                                                                                          | Peak Meas<br>Average M                                                                                                                             | urement (RB                                                                                                                                         | =VB=1MHz)<br>RB=1MHz, V                                                            | /B=10Hz)                                       |
| 725 MHz F                    | Restricted Ba<br>Fundamental<br>Fundamental                                                                          | emission lev<br>emission lev                                                                                                                                    | ignal Radiati<br>vel @ 3m in `<br>vel @ 3m in<br>Delta Mark                                                                                                                                                                                                              | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>Ker - 100kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ength - Mark<br>H<br>102.7<br>95.0<br>42.0                                                                                 | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i>                                                                             | Peak Meas<br>Average M                                                                                                                             | urement (RB=<br>easurement (<br>only be used                                                                                                        | =VB=1MHz)<br>RB=1MHz, V<br>if band edge                                            | /B=10Hz)                                       |
| 725 MHz H                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula                                                               | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed                                                                                                      | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer                                                                                                                                                                                                  | ed Field Stra<br>1MHz RBW:<br>1MHz RBW:<br>Ker - 100kHz<br>ment (Peak):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ength - Mark<br>H<br>102.7<br>95.0<br><i>42.0</i><br>60.7                                                                  | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m                                                                   | Peak Meas<br>Average M<br><- this can<br>highest with                                                                                              | urement (RB=<br>easurement (I<br>only be used<br>hin 2MHz of b                                                                                      | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.                               | /B=10Hz)<br>signal is                          |
| 725 MHz I                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula                                                    | emission lev<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E                                                                                      | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer                                                                                                                                                                                  | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>(er - 100kHz<br>ment (Peak):<br>ement (Avg):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0                                                                 | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br>dBuV/m                                                         | Peak Meas<br>Average M<br><- this can<br>highest with<br>Margin                                                                                    | urement (RB=<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level                                                                             | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit                      | /B=10Hz)<br>signal is<br>Detecto               |
| 725 MHz F                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcul                                                     | emission lev<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del                                                                               | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measure<br>ta Marker - 1                                                                                                                                                                  | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>MHz RBW:<br>MHz RBW:<br>MHz RBW:<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100k | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7                                                         | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br>dBuV/m<br><i>dB</i>                                            | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0                                                                          | urement (RB=<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level<br>49.3                                                                     | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3              | /B=10Hz)<br>signal is<br>Detecto<br>Avg        |
| 725 MHz I                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcul                                                     | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>De                                                                          | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -                                                                                                                                                 | ed Field Stra<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>(en - 100kHz<br>ment (Peak):<br>ement (Avg):<br>1MHz/10Hz:<br>1MHz/10Hz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br><b>45.7</b>                                          | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br>dBuV/m<br><i>dB</i><br><i>dB</i>                               | Peak Meas<br>Average M<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6                                                                  | urement (RB=<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level<br>49.3<br>60.7                                                             | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3      | /B=10Hz)<br>signal is<br>Detector<br>Avg<br>Pk |
| 725 MHz F                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula                                         | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>De<br>ted Band-Ed                                                           | ignal Radiati<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -<br>ge Measurer                                                                                                                                 | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>1MHz (Peak):<br>2005<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>1006<br>100                                                                                                                                                                                                       | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br><b>45.7</b><br>65.0                                  | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br>dBuV/m<br><i>dB</i><br><i>dB</i><br>dBuV/m                     | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k                                                   | urement (RB-<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value                                           | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detector<br>Avg<br>Pk |
| 725 MHz I                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula                                         | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>Del<br>ted Band-Ed<br>ated Band-Ed                                          | ignal Radiat<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -<br>ge Measurer<br>dge Measurer                                                                                                                  | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>(ement (Peak):<br>1MHz/10Hz:<br>1MHz/10Hz:<br>1MHz/10Hz:<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                                                                                                                                                                                                            | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br><b>45.7</b><br>65.0<br>49.3                          | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br>dBuV/m<br><i>dB</i><br>dBuV/m<br>dBuV/m                        | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k<br>Using 1MH                                      | urement (RB=<br>easurement (i<br>only be used<br>hin 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value<br>z delta value                          | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detecto<br>Avg<br>Pk  |
| Frequency                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula                                         | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>ted Band-Ed<br>ated Band-Ed                                                 | ignal Radiati<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>lta Marker -<br>ge Measurer<br>dge Measurer<br>dge Measurer                                                                                                 | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>1MHz (Peak):<br>1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br>45.7<br>65.0<br>49.3                                 | <i>er Delta</i><br>V<br>100.8<br>93.3<br><i>dB</i><br>dBuV/m<br><i>dB</i><br><i>dB</i><br>dBuV/m<br>dBuV/m<br>dBuV/m<br>dBuV/m | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k<br>Using 1MH                                      | urement (RB-<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value<br>Z delta value                          | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detector<br>Avg<br>Pk |
| Frequency                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula<br>Calcula<br>Calcula<br>dBuV/m         | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>Del<br>ted Band-Ed<br>ated Band-Ed<br>ated Band-E                           | ignal Radiati<br>vel @ 3m in<br><u>vel @ 3m in</u><br><u>Delta Mark</u><br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -<br>ge Measurer<br>dge Measurer<br>dge Measurer                                                                                   | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>1MHz (Peak):<br>1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br>45.7<br>65.0<br>49.3<br>Detector<br>Pk/OP/Ava        | er Delta<br>V<br>100.8<br>93.3<br>dB<br>dBuV/m<br>dBuV/m<br>dB<br>dBuV/m<br>dBuV/m<br>dBuV/m<br>dBuV/m                         | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k<br>Using 1MH<br>Height<br>meters                  | urement (RB<br>easurement (<br>only be used<br>in 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value<br>comments                                  | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detecto<br>Avg<br>Pk  |
| 725 MHz F                    | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula<br>Calcula<br>Calcula<br>dBµV/m<br>49.3 | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-E<br>Del<br>De<br>ted Band-Ed<br>ated Band-Ed<br>ated Band-Ed<br>or Vh                  | ignal Radiati<br>vel @ 3m in<br><u>vel @ 3m in</u><br><u>Delta Mark</u><br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -<br>ge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer                   | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>100kHz<br>ment (Peak):<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kHz<br>100kH                                                                                                                                                                                                                                                                                                                                                                            | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br>45.7<br>65.0<br>49.3<br>Detector<br>Pk/QP/Avg<br>Avg | er Delta<br>V<br>100.8<br>93.3<br>dB<br>dBuV/m<br>dBuV/m<br>dBuV/m<br>dBuV/m<br>dBuV/m<br>Azimuth<br>degrees                   | Peak Meas<br>Average Mo<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k<br>Using 1MH<br>Height<br>meters                  | urement (RB<br>easurement (I<br>only be used<br>hin 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value<br>Comments<br>Using 1MHz                  | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detecto<br>Avg<br>Pk  |
| Frequency<br>MHz<br>5725.090 | Restricted Ba<br>Fundamental<br>Fundamental<br>Calcula<br>Calcula<br>Calcula<br>Calcula<br>dBµV/m<br>49.3            | and Edge Si<br>emission lev<br>emission lev<br>ted Band-Ed<br>ated Band-Ed<br>Del<br>Del<br>ted Band-Ed<br>ated Band-Ed<br>ated Band-Ed<br>ated Band-Ed<br>ov/h | ignal Radiati<br>vel @ 3m in<br>vel @ 3m in<br>Delta Mark<br>ge Measurer<br>dge Measurer<br>ta Marker - 1<br>Ita Marker -<br>ge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer<br>dge Measurer | ed Field Stre<br>1MHz RBW:<br>1MHz RBW:<br>1MHz RBW:<br>1MHz (Peak):<br>1MHz/10Hz:<br>1MHz/10Hz:<br>1MHz/10Hz:<br>1MHz/10Hz:<br>15E<br>Margin<br>-19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ength - Mark<br>H<br>102.7<br>95.0<br>42.0<br>60.7<br>53.0<br>37.7<br>45.7<br>65.0<br>49.3<br>Detector<br>Pk/QP/Avg<br>Avg | er Delta<br>V<br>100.8<br>93.3<br>dB<br>dBuV/m<br>dBuV/m<br>dB<br>dBuV/m<br>dBuV/m<br>dBuV/m<br>Azimuth<br>degrees<br>-        | Peak Meas<br>Average Month<br><- this can<br>highest with<br>Margin<br>-19.0<br>-27.6<br>Using 100k<br>Using 100k<br>Using 1MH<br>Height<br>meters | urement (RB-<br>easurement (I<br>only be used<br>in 2MHz of b<br>Level<br>49.3<br>60.7<br>Hz delta value<br>Z delta value<br>Comments<br>Using 1MHz | =VB=1MHz)<br>RB=1MHz, V<br>if band edge<br>and edge.<br>Limit<br>68.3<br>88.3<br>e | /B=10Hz)<br>signal is<br>Detector<br>Avg<br>Pk |



|             | Illic         | \tt                      |                |                |                   |               |               |                | C Tost                 | Data                 |
|-------------|---------------|--------------------------|----------------|----------------|-------------------|---------------|---------------|----------------|------------------------|----------------------|
| 4           | An CAS        | <b>ノしし</b>               |                |                |                   |               | 1             |                | <i>」</i> / ピンパ         | <i>υα</i> ι <i>α</i> |
| Client:     | Intel         |                          |                |                |                   |               |               | Job Number:    | J75722                 |                      |
| Model:      | 2x2 WiFi wit  | h WiMax Mir              | niPCI          |                |                   |               | T-I           | _og Number:    | T76443                 |                      |
|             |               |                          |                |                |                   |               | Αссоι         | int Manager:   | -                      |                      |
| Contact:    | S. Hackett    |                          |                |                |                   |               |               | 21             |                        |                      |
| Standard:   | RSS 210 / F   | CC 15.24/                |                | · · -          |                   |               |               | Class:         | N/A                    |                      |
| Run # 2, Ba | nd Edge Fie   | Id Strength              | - 802.11a, C   | hain B         |                   |               |               |                |                        |                      |
| Run # 2a, E | UT on Unan    | nel #36 5 180            | )MHz - 802. i  | 1a, Chain B    | <b>}</b><br>Τ(    | set Location: | Obembor #     |                |                        |                      |
| L<br>To     | dle ULLESI.   | 8/25/2009<br>Subaila Khu | abzad          |                | Cor               | St LUCation.  |               | 4              |                        |                      |
|             | St Engineer.  | Sulialia Niiu            | Shzau          | Power          | spittings         | illy change.  | none          | 1              |                        |                      |
|             | Chain         | Target                   | (dBm)          | Measure        | ≏d (dRm)          | Softwar       | e Setting     |                |                        |                      |
|             | В             | 16                       | 1.5            | 16             | 54 (abiii)<br>5.7 | 2             | 7.0           |                |                        |                      |
| ļ           |               | -                        |                |                |                   |               |               | 1              |                        |                      |
| Fundament   | al Signal Fie | eld Strength             | 1              |                |                   |               |               |                |                        |                      |
| Frequency   | Level         | Pol                      | 15.209         | / 15.247       | Detector          | Azimuth       | Height        | Comments       |                        |                      |
| MHz         | dBµV/m        | v/h                      | Limit          | Margin         | Pk/QP/Avg         | degrees       | meters        |                |                        |                      |
| 5175.000    | 95.2          | V                        | -              | -              | AVG               | 136           | 1.9           | RB 1 MHz; V    | /B: 10 Hz              |                      |
| 5176.070    | 103.2         | V                        | -              | -              | PK                | 136           | 1.9           | RB 1 MHz; \    | /B: 1 MHz              |                      |
| 5174.400    | 93.5          | V                        | -              | -              | PK                | 136           | 1.9           | RB 100 kHz     | ; VB: 100 kH           | Z                    |
| 5175.070    | 95.7          | H                        | -              | -              | AVG               | 101           | 1.2           | RB 1 MHz; \    | /B: 10 Hz              |                      |
| 5176.070    | 103.6         | H                        | -              | -              | PK                | 101           | 1.2           | RB 1 MHz; V    | /B: 1 MHz              |                      |
| 5185.070    | 95.8          | Н                        | -              | -              | РК                | 101           | 1.2           | RB 100 kHz     | ; VB: 100 kH           | Ζ                    |
|             | Dend Edma (   | Name / Dadia             | t al Flold Ch  | and Mar        | - Dalla           |               |               |                |                        |                      |
| 5130 WITZ E | ianu Euge S   | lýliai Kaula             | lea Fiela Su   | engtri - iviar | Ker Dena          | V             | 1             |                |                        |                      |
|             | Fundamental   | amission lev             | uol @ ?m in '  | 1MH7 RRW·      | 103.6             | v<br>103.2    | Deak Measi    | Iromont (RB:   | -\/R_1MH7)             |                      |
|             | Fundamental   | I Amission ley           | /ei @ 3m in '  | IMH7 RBW       | 95.7              | 95.2          |               | asurement (    | -vo-nmi∠,<br>?R=1MH7 V | R=10H7)              |
|             | unuumontai    | GHIIJJIOT IS             | Delta Mark     | °er - 100kHz   | 49.5              | dR            | <- this can ( | only be used   | if band edge           | signal is            |
|             | Calcula       | ted Band-Ed              | ne Measurer    | nent (Peak):   | 54.1              | dBuV/m        | highest with  | in 2MHz of b   | and edge.              | Signario             |
|             | Calcul        | ated Band-E              | dge Measure    | ement (Avg):   | 46.2              | dBuV/m        | Margin        | Level          | Limit                  | Detector             |
|             |               | Del                      | ta Marker - 1  | MHz/1MHz:      | 42.2              | dB            | -8.3          | 45.7           | 54                     | Avg                  |
|             |               | De                       | Ita Marker - 1 | 1MHz/10Hz:     | 50.0              | dB            | -19.9         | 54.1           | 74                     | Pk                   |
|             | Calcula       | ted Band-Ed              | ge Measurer    | nent (Peak):   | 61.4              | dBuV/m        | Using 100kl   | Iz delta value | e                      |                      |
|             | Calcul        | ated Band-E              | dge Measure    | ement (Avg):   | 45.7              | dBuV/m        | Using 1MHz    | z delta value  |                        |                      |
|             |               |                          |                |                |                   |               | -             |                |                        |                      |
| Frequency   | Level         | Pol                      | FCC 1          | 5.209          | Detector          | Azimuth       | Height        | Comments       |                        |                      |
| MHz         | dBµV/m        | v/h                      | Limit          | Margin         | Pk/QP/Avg         | degrees       | meters        |                | -                      | -                    |
| 5150.030    | 45.7          | -                        | 54.0           | -8.3           | Avg               | -             | -             | Using 1MHz     | delta value            |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |
|             |               |                          |                |                |                   |               |               |                |                        |                      |



| 6               |                    | Dtt<br>A <sup>*</sup> company |               |                    |           |                     |               | EM            | C Test       | <sup>•</sup> Data |
|-----------------|--------------------|-------------------------------|---------------|--------------------|-----------|---------------------|---------------|---------------|--------------|-------------------|
| Client:         | Intel              |                               |               |                    |           |                     |               | Job Number:   | J75722       |                   |
| Madal           | 2.2 \\/!E!!+       |                               |               |                    |           |                     | T-            | Log Number:   | T76443       |                   |
| wodel:          | 2X2 WIFI WI        | n wiiviax iviir               | IIPCI         |                    |           |                     | Accou         | unt Manager:  | -            |                   |
| Contact:        | S. Hackett         |                               |               |                    |           |                     |               |               |              |                   |
| Standard:       | RSS 210 / F        | CC 15.247                     |               |                    |           |                     |               | Class:        | N/A          |                   |
| Run # 2b, E     | UT on Chan         | nel #64 532                   | 0MHz - 802.   | 11a, Chain E       | 3         |                     |               |               |              |                   |
| [               | Date of Test:      | 8/25/2009                     |               |                    | Te        | est Location:       | Chamber #     | 4             |              |                   |
| Те              | st Engineer:       | Suhaila Khu                   | shzad         |                    | Cor       | nfig Change:        | none          | 1             |              |                   |
|                 | Chain              | <b>T</b>                      |               | Power              | Settings  | <b>C</b> . <b>R</b> | C             |               |              |                   |
|                 | D                  | l arget                       | (arm)         | Measure            | ea (abm)  | Softwar             | e Setting     |               |              |                   |
|                 | В                  | 10                            | 0.0           | 10                 | 0.8       | 2                   | 0.0           |               |              |                   |
| Fundament       | al Signal Fi       | old Stronath                  | ,             |                    |           |                     |               |               |              |                   |
| Frequency       | l evel             | Pol                           | 15,209        | / 15.247           | Detector  | Azimuth             | Height        | Comments      |              |                   |
| MHz             | dBuV/m             | v/h                           | Limit         | Margin             | Pk/OP/Ava | degrees             | meters        | oominonto     |              |                   |
| 5314.870        | 97.0               | Н                             | -             | -                  | AVG       | 107                 | 1.0           | RB 1 MHz; V   | /B: 10 Hz    |                   |
| 5315.670        | 104.7              | Н                             | -             | -                  | PK        | 107                 | 1.0           | RB 1 MHz; V   | /B: 1 MHz    |                   |
| 5318.870        | 96.5               | Н                             | -             | -                  | PK        | 107                 | 1.0           | RB 100 kHz    | ; VB: 100 kH | Z                 |
| 5314.930        | 94.2               | V                             | -             | -                  | AVG       | 135                 | 1.1           | RB 1 MHz; V   | /B: 10 Hz    |                   |
| 5313.800        | 102.1              | V                             | -             | -                  | PK        | 135                 | 1.1           | RB 1 MHz; V   | /B: 1 MHz    |                   |
| 5319.470        | 92.8               | V                             | -             | -                  | PK        | 135                 | 1.1           | RB 100 kHz    | ; VB: 100 kH | Z                 |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
| 5350 MHz E      | <i>Band Edge S</i> | Signal Radia                  | ted Field St  | rength - Mar       | ker Delta | -                   | -             |               |              |                   |
|                 |                    |                               |               |                    | Н         | V                   |               |               |              |                   |
|                 | undamental         | emission lev                  | vel @ 3m in   | 1MHz RBW:          | 104.7     | 102.1               | Peak Meas     | urement (RB   | =VB=1MHz)    | >                 |
|                 | undamental         | emission lev                  | vel @ 3m in   | 1MHz RBW:          | 97.0      | 94.2                | Average Me    | easurement (  | RB=1MHz, V   | B=10Hz)           |
|                 |                    |                               | Delta Mark    | <u>er - 100kHz</u> | 49.2      | dB                  | <- this can o | only be used  | if band edge | signal is         |
|                 | Calcula            | ted Band-Ed                   | ge Measurer   | ment (Peak):       | 55.5      | dBuV/m              | highest with  | in 2MHz of b  | and edge.    |                   |
|                 | Calcul             | ated Band-E                   | dge Measure   | ement (Avg):       | 47.8      | dBuV/m              | Margin        | Level         | Limit        | Detector          |
|                 |                    | Del                           | ta Marker - 1 | MHz/1MHz:          | 44.3      | dB                  | -7.5          | 46.5          | 54           | Avg               |
|                 |                    | De                            | Ita Marker -  | <u>1MHz/10Hz:</u>  | 50.5      | dB                  | -18.5         | 55.5          | 74           | Pk                |
|                 | Calcula            | ted Band-Ed                   | ge Measurei   | ment (Peak):       | 60.4      | dBuV/m              | Using 100k    | Hz delta valu | <del>5</del> |                   |
|                 | Calcul             | ated Band-E                   | dge Measure   | ement (Avg):       | 46.5      | dBuV/m              | Using TMH2    | z delta value |              |                   |
| Froguopov       | Loval              | Dol                           | FCC           | 15 200             | Dotoctor  | Azimuth             | Hoight        | Commonte      |              |                   |
| MH <sub>7</sub> |                    | P0I<br>v/b                    | Limit         | Margin             |           | dogroos             | metors        | Comments      |              |                   |
| 5350.075        | μομν/Π<br>46.5     | V/II                          | 54 O          | -7.5               | Δνα       | uegiees             | -             | l Isina 1MHz  | delta value  |                   |
| 3330.073        | 10.0               | _                             | 54.0          | -1.5               | Avy       |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |
|                 |                    |                               |               |                    |           |                     |               |               |              |                   |



| <b>C</b> E  | Ellic         | ott               |                               |                              |                      |          |                     | EM                              | C Test                      | ' Data    |
|-------------|---------------|-------------------|-------------------------------|------------------------------|----------------------|----------|---------------------|---------------------------------|-----------------------------|-----------|
| Client:     | Intel         | Company           |                               |                              |                      |          |                     | Job Number:                     | J75722                      |           |
| Madalı      |               |                   |                               |                              |                      |          | T-                  | Log Number:                     | T76443                      |           |
| iviodei:    | ZXZ WIFI WI   | n wiwax wir       | IIPCI                         |                              |                      |          | Accou               | unt Manager:                    | -                           |           |
| Contact:    | S. Hackett    |                   |                               |                              |                      |          |                     |                                 |                             |           |
| Standard:   | RSS 210 / F   | CC 15.247         |                               |                              | _                    |          |                     | Class:                          | N/A                         |           |
| Run # 2c, E | UT on Chan    | nel #100 55       | 00MHz - 802                   | .11a, Chain                  | B                    |          |                     | 1                               |                             |           |
|             | Chain         | Tarnet            | (dBm)                         | Measure                      | ⊃ettinys<br>≏d (dRm) | Softwar  | e Settina           |                                 |                             |           |
|             | В             | 16                | 0.5                           | 10                           | 5.6                  | 2        | 5.5                 |                                 |                             |           |
| Fundament   | tal Signal Fi | eld Strength      | 1                             |                              |                      |          |                     | 1                               |                             |           |
| Frequency   | Level         | Pol               | 15.209                        | / 15.247                     | Detector             | Azimuth  | Height              | Comments                        |                             |           |
| MHz         | dBµV/m        | v/h               | Limit                         | Margin                       | Pk/QP/Avg            | degrees  | meters              |                                 |                             |           |
| 5498.800    | 93.4          | V                 | -                             | -                            | AVG                  | 152      | 1.0                 | RB 1 MHz;                       | /B: 10 Hz                   |           |
| 5496.130    | 101.2         | V                 | -                             | -                            | PK                   | 152      | 1.0                 | RB 1 MHz; \                     | VB: 1 MHz                   |           |
| 5493.870    | 91.1          | V                 | -                             | -                            | PK                   | 152      | 1.0                 | RB 100 kHz                      | ; VB: 100 kH                | Z         |
| 5495.000    | 98.3<br>104 1 | H                 | -                             | -                            | AVG                  | 108      |                     | RB I MHZ;                       | /B: 10 HZ                   |           |
| 5/08 030    | 07 0          | П                 | -                             | -                            | PK<br>DK             | 100      | 1.1                 |                                 | VD. 1 IVINZ<br>• VR• 100 kH | 7         |
| 3490.930    | 77.0          | 11                |                               | -                            | I K                  | 100      | 1.1                 |                                 | , VD. 100 KH                | L         |
| 5460 MHz F  | Restricted B  | and Edae Si       | anal Radiat                   | ed Field Stro                | enath - Mark         | er Delta |                     |                                 |                             |           |
|             |               | j                 | 9                             |                              | H                    | V        | ]                   |                                 |                             |           |
|             | Fundamenta    | emission lev      | vel @ 3m in 1                 | 1MHz RBW:                    | 106.1                | 101.2    | Peak Meas           | urement (RB=                    | =VB=1MHz)                   |           |
|             | Fundamenta    | emission lev      | vel @ 3m in 1                 | 1MHz RBW:                    | 98.3                 | 93.4     | Average Me          | easurement (                    | RB=1MHz, V                  | B=10Hz)   |
|             |               |                   | Delta Mark                    | er - 100kHz                  | 56.3                 | dB       | <- this can         | only be used                    | if band edge                | signal is |
|             | Calcula       | ted Band-Ed       | ge Measurer                   | nent (Peak):                 | 49.8                 | dBuV/m   | highest with        | n <mark>in 2MHz of b</mark>     | and edge.                   |           |
|             | Calcul        | ated Band-E       | dge Measure                   | ement (Avg):                 | 42.0                 | dBuV/m   | Margin              | Level                           | Limit                       | Detector  |
|             |               | Del               | ta Marker - 1                 | MHz/1MHz:                    | 50.0                 | dB       | -12.0               | 42.0                            | 54                          | Avg       |
|             |               | De                | Ita Marker -                  | <u>1MHz/10Hz:</u>            | 56.3                 | dB       | -24.2               | 49.8                            | 74                          | Pk        |
|             | Calcula       | ted Band-Ed       | ge Measurer                   | nent (Peak):                 | 56.1                 | dBuV/m   | Using 100k          | Hz delta valu                   | <del>5</del>                |           |
|             | Calcul        | aled Band-E       | dge measure                   | ement (Avg):                 | 42.0                 | dBuV/m   | Using TMH           | z delta value                   |                             |           |
| Frequency   | Level         | Pol               | FCC                           | 15 209                       | Detector             | Azimuth  | Height              | Comments                        |                             |           |
| MHz         | dBuV/m        | v/h               | l imit                        | Margin                       | Pk/OP/Avg            | degrees  | meters              | Comments                        |                             |           |
| 5460.066    | 42.0          | -                 | 54.0                          | -12.0                        | Avg                  | -        | -                   | Using 1MHz                      | delta value                 |           |
|             |               |                   |                               |                              |                      |          |                     |                                 |                             |           |
| 5470 MHz E  | Band Edge S   | Signal Radia      | ted Field Sti                 | rength - Mar                 | ker Delta            |          | _                   |                                 |                             |           |
|             |               |                   |                               |                              | Н                    | V        |                     |                                 |                             |           |
|             | Fundamenta    | emission lev      | /el @ 3m in '                 | 1MHz RBW:                    | 106.1                | 101.2    | Peak Meas           | urement (RB                     | =VB=1MHz)                   |           |
|             | Fundamenta    | emission lev      | /el @ 3m in 1                 | 1MHz RBW:                    | 98.3                 | 93.4     | Average Me          | easurement (                    | RB=1MHz, V                  | B=10Hz)   |
|             |               |                   | Delta Mark                    | <u>er - 100kHz</u>           | 49.8                 | dB       | <- this can         | only be used                    | if band edge                | signal is |
|             | Calcula       | ted Band-Ed       | ge Measurer                   | nent (Peak):                 | 56.3                 | dBuV/m   | highest with        | in 2MHz of b                    | and edge.                   | Datadaa   |
|             | Calcul        | ated Band-E       | dge Measure                   | ement (Avg):                 | 48.5                 | dBuV/m   | Margin              | Level                           | Limit                       | Detector  |
|             |               | Del               | id WidlKel - 1<br>Ita Markar  | IVIПZ/ IIVIНZ:<br>1МЦ→/1∩Ц→. | 44.3<br>E1.0         | dD<br>dD | -21.3               | 47.U                            | 00.J                        | AVG       |
|             | Calcula       | De<br>ted Rand_Ed | na iviai Kel -<br>ne Measurer | nent (Peak).                 | <b>51.3</b><br>61.0  | dBuV/m   | -32.U<br>Usina 1004 | L 30.3<br>Ulev etlab zH         | 00.J                        | ΡK        |
|             | Calcul        | ated Band-F       | dae Measure                   | ement (Ava).                 | <u>17</u> 0          | dBuV/m   | Using 100k          | riz ucita valu<br>z delta value |                             |           |
|             | 241041        | Little Balla E    |                               |                              | 0.1F                 | 324 1111 |                     |                                 |                             |           |
| Frequency   | Level         | Pol               | FCC                           | : 15E                        | Detector             | Azimuth  | Height              | Comments                        |                             |           |
| MHz         | dBµV/m        | v/h               | Limit                         | Margin                       | Pk/QP/Avg            | degrees  | meters              |                                 |                             |           |
| 5470.033    | 47.0          | -                 | 68.3                          | -21.3                        | Avg                  | -        | -                   | Using 1MHz                      | delta value                 |           |

Note - average limit is equivalent to -27dBm eirp.



| Client:     | Intel         | company            |                      |                 |                  |              |              | Job Number:     | J75722       |           |
|-------------|---------------|--------------------|----------------------|-----------------|------------------|--------------|--------------|-----------------|--------------|-----------|
| Madalı      | 2.2 \\/:E::+  |                    |                      |                 |                  |              | T-           | Log Number:     | T76443       |           |
| Model:      | 2X2 WIFI WIT  | n wiiviax iviir    | IIPCI                |                 |                  |              | Acco         | unt Manager:    | -            |           |
| Contact:    | S. Hackett    |                    |                      |                 |                  |              |              |                 |              |           |
| Standard:   | RSS 210 / F   | CC 15.247          |                      |                 |                  |              |              | Class:          | N/A          |           |
| Run # 2d, E | UT on Chan    | nel #140 57        | 00MHz - 802          | .11a, Chain     | B                |              |              | -               |              |           |
|             | Chain         | Torgot             | (dDm)                | Power           | Settings         | Coffus       | o Cotting    |                 |              |           |
|             | D             | 14<br>14           |                      | Ivieasure<br>14 | ea (abin)<br>5 8 | Soliwar      | e Setting    | -               |              |           |
|             | Б             | П                  | ).)                  | 10              | 5.0              | Z            | 5.0          |                 |              |           |
| Fundament   | al Sianal Fie | eld Strenath       | ,                    |                 |                  |              |              |                 |              |           |
| Frequency   | Level         | Pol                | 15.209               | / 15.247        | Detector         | Azimuth      | Height       | Comments        |              |           |
| MHz         | dBµV/m        | v/h                | Limit                | Margin          | Pk/QP/Avg        | degrees      | meters       |                 |              |           |
| 5698.800    | 99.2          | Н                  | -                    | -               | AVG              | 104          | 1.6          | RB 1 MHz; V     | VB: 10 Hz    |           |
| 5696.330    | 107.3         | Н                  | -                    | -               | PK               | 104          | 1.6          | RB 1 MHz; V     | VB: 1 MHz    |           |
| 5697.600    | 99.9          | Н                  | -                    | -               | PK               | 104          | 1.6          | RB 100 kHz      | ; VB: 100 kH | Z         |
| 5705.200    | 93.5          | V                  | -                    | -               | AVG              | 258          | 1.0          | RB 1 MHz; V     | VB: 10 Hz    |           |
| 5704.400    | 101.0         | V                  | -                    | -               | PK               | 258          | 1.0          | RB 1 MHz; V     | VB: 1 MHz    |           |
| 5702.670    | 94.3          | V                  | -                    | -               | PK               | 258          | 1.0          | RB 100 kHz      | ; VB: 100 kH | Z         |
| 5725 MHz F  | Restricted Ba | and Edge Si        | ignal Radiate        | ed Field Stre   | ength - Mark     | er Delta     | 7            |                 |              |           |
|             |               |                    |                      |                 | H                | V            |              | . (55           |              |           |
|             | -undamental   | emission lev       | vel @ 3m in 1        | IMHZ RBW:       | 107.3            | 101.0        | Peak Meas    | urement (RB     | =VB=1MHZ)    |           |
|             | -undamental   | emission lev       | <u>vel @ 3m in '</u> | IMHZ RBW:       | 99.3             | 93.5         | Average M    | easurement (    | RB=1MHZ, V   | B=10HZ)   |
|             | Ostasta       |                    | Deita Mark           | er - TUUKHZ     | 47.3             | dB<br>ID V// | <- this can  | only be used    | if band edge | signal is |
|             | Calcula       | ied Band-Ed        | ge Measurer          | nent (Peak):    | 60.0             | dBuV/m       | highest with | nin 21VIHz of b | and edge.    | Dubul     |
|             | Calcula       | aled Band-E        | age measure          | ement (Avg):    | 52.0             | dBuV/m       | Margin       | Level           | Limit        | Detector  |
|             |               | Del                | ta Marker - T        | MHZ/IMHZ:       | 40.8             | dB           | -17.2        | 51.1            | 68.3         | Avg       |
|             | Calaulai      | De<br>Led David Ed | Ita Marker - 1       | IMHZ/IUHZ:      | 48.2             | <u>dB</u>    | -28.3        | 60.0            | 88.3         | PK        |
|             | Calcula       | ea Bana-Ea         | ge Measurer          | nent (Peak):    | 66.5             | dBuV/m       | Using 100k   | Hz delta valu   | e            |           |
|             | Calcul        | aleu Danu-E        | uye weasure          | emeni (Avy).    | 31.1             |              |              | z ueila value   |              |           |
| Frequency   | Level         | Pol                | FCC                  | 15E             | Detector         | Azimuth      | Heiaht       | Comments        |              |           |
| MHz         | dBuV/m        | v/h                | Limit                | Margin          | Pk/QP/Avg        | degrees      | meters       |                 |              |           |
| 5725.090    | 51.1          | -                  | 68.3                 | -17.2           | Avg              | -            | -            | Using 1MHz      | delta value  |           |
|             |               |                    |                      | -               |                  |              | -            | . 2             |              |           |
|             | ao limitio or | ulualant ta (      | 1/dDm oirr           |                 |                  |              |              |                 |              |           |



# Elliott

# EMC Test Data

|           | An ZAZAS company            |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| would.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

### **RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions**

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

#### Summary of Results

Sample #2 MAC Address: 00150059F23C; CRTU Tool Version 5.199.36.999, Driver Version 13.0.0.91

| Run #      | Mode      | Channel  | Target<br>Power | Measured<br>Power | Test Performed      | Limit             | Result / Margin      |
|------------|-----------|----------|-----------------|-------------------|---------------------|-------------------|----------------------|
|            | 802.11n20 | #60      | 16.5dBm         | A: 16.6 dBm       |                     |                   | 48.4dBµV/m @         |
|            | A+B       | 5300 MHz | per chain       | B: 16.7 dBm       |                     |                   | 2998.3MHz (-19.9dB)  |
| 1          | 802.11a   | #60      | 16 5 dBm        | 16.8 dBm          |                     |                   | 48.1dBµV/m @         |
| (Determine | Chain A   | 5300 MHz | 10.0 0011       | 10.0 0.511        | Radiated Emissions, | FCC 15 209 / 15 F | 2998.3MHz (-20.2dB)  |
| worst case | 802.11a   | #60      | 16.5 dBm        | 16.6 dBm          | 1 - 40 GHz          | 100 10.2077 10 E  | 32.8dBµV/m @         |
| mode)      | Chain B   | 5300 MHz | 10.0 4211       |                   |                     |                   | 1048.5MHz (-21.2dB)  |
|            | 802.11n40 | #62      | 16.5dBm         | A: 16.7 dBm       |                     |                   | 47.8dBµV/m@          |
|            | A+B       | 5310 MHz | per chain       | B: 16.8 dBm       |                     |                   | 5995.8MHz (-20.5dB)  |
|            |           | #36      | 16.5dBm         | A: 16.7 dBm       | Radiated Emissions, | FCC 15.209 / 15 F | 48.7dBµV/m @         |
|            |           | 5180 MHz | per chain       | B: 16.8 dBm       | 1 - 40 GHz          | 1001012077102     | 2998.3MHz (-19.6dB)  |
|            |           | #44      | 16.5dBm         | A: 16.8 dBm       | Radiated Emissions, | FCC 15.209 / 15 F | 47.1dBµV/m @         |
|            | 802.11n20 | 5220 MHz | per chain       | B: 16.7 dBm       | 1 - 40 GHz          | 10010.20771012    | 2998.3MHz (-21.2dB)  |
| 2          | A+B       | #48      | 16.5dBm         | A: 16.9 dBm       | Radiated Emissions, | FCC 15 209 / 15 F | 55.1dBµV/m @         |
| -          |           | 5240MHz  | per chain       | B: 16.7 dBm       | 1 - 40 GHz          | 10010.20771012    | 1329.4MHz (-18.9dB)  |
|            |           | #52      | 16.5dBm         | A: 16.7 dBm       | Radiated Emissions, | FCC 15 209 / 15 F | 47.3dBµV/m @         |
|            |           | 5260 MHz | per chain       | B: 16.6 dBm       | 1 - 40 GHz          | 1001012077102     | 5995.8MHz (-21.0dB)  |
|            |           | #64      | 16.5dBm         | A: 16.7 dBm       | Radiated Emissions, | FCC 15 209 / 15 F | 48.8dBµV/m @         |
|            |           | 5320MHz  | per chain       | B: 16.6 dBm       | 1 - 40 GHz          | 10010.20771012    | 3000.3MHz (-19.5dB)  |
|            | 802.11n20 | #120     | 16.5dBm         | A: 16.8 dBm       |                     |                   | 42.1dBµV/m @         |
|            | A+B       | 5600 MHz | per chain       | B: 16.8 dBm       |                     |                   | 11200.6MHz (-11.9dB) |
| 3          | 802.11a   | #120     | 16 5 dBm        | 16 7 dBm          |                     |                   | 42.8dBµV/m @         |
| (Determine | Chain A   | 5600 MHz | 10.0 0011       |                   | Radiated Emissions, | FCC 15 209 / 15 F | 9001.2MHz (-11.2dB)  |
| worst case | 802.11a   | #120     | 16 5 dBm        | 16.6 dBm          | 1 - 40 GHz          | 10010.207710E     | 36.6dBµV/m @         |
| mode)      | Chain B   | 5600 MHz | 10.0 0011       | 10.0 0011         |                     |                   | 11200.1MHz (-17.4dB) |
|            | 802.11n40 | #118     | 16.5dBm         | A: 16.6 dBm       |                     |                   | 38.4dBµV/m @         |
|            | A+B       | 5590 MHz | per chain       | B: 16.7 dBm       |                     |                   | 11180.2MHz (-15.6dB) |
|            | 802.11n20 | #100     | 16.5dBm         | A: 16.6 dBm       | Radiated Emissions, | FCC 15 209 / 15 F | 39.0dBµV/m @         |
| 4          | A+B or    | 5500 MHz | per chain       | B: 16.7 dBm       | 1 - 40 GHz          | 100 10.2077 10 L  | 10999.6MHz (-15.0dB) |
| 7          | 802.11a A | #140     | 16.5dBm         | A: 16.8 dBm       | Radiated Emissions, | FCC 15 209 / 15 F | 37.5dBµV/m @         |
|            | or B      | 5700 MHz | per chain       | B: 16.9 dBm       | 1 - 40 GHz          | 1 00 10.2077 10 L | 11399.6MHz (-16.5dB) |
|            |           |          |                 |                   |                     |                   |                      |

# **Elliott**

# EMC Test Data

|           | An Durb company             |                  |        |
|-----------|-----------------------------|------------------|--------|
| Client:   | Intel                       | Job Number:      | J75722 |
| Model     | 2v2 WiEi with WiMay MiniDCI | T-Log Number:    | T76443 |
| Mouel.    |                             | Account Manager: | -      |
| Contact:  | S. Hackett                  |                  |        |
| Standard: | RSS 210 / FCC 15.247        | Class:           | N/A    |
|           |                             |                  |        |

#### General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

#### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

| Ambient Conditions: | Temperature:   | 23 °C |
|---------------------|----------------|-------|
|                     | Rel. Humidity: | 46 %  |

Elliott EMC Test Data Client: Intel Job Number: J75722 T-Log Number: T76443 Model: 2x2 WiFi with WiMax MiniPCI Account Manager: Contact: S. Hackett Standard: RSS 210 / FCC 15.247 Class: N/A Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz and 5250 - 5350 MHz Bands Date of Test: 8/20/2009 Test Location: Chamber #5 Test Engineer: Suhaila Khushzad Config Change: none Preliminary tests on center channel in the 5250 - 5350 MHz band to determine the worst case mode. This channel was selected because the second harmonic falls in a restricted band. Run #1a: 802.11n 20MHz mode, channel 60 (5300 MHz), Chains A and B active at 16.5dBm each chain 802.11n 20MHz, Channel 60 (5300 MHz), Chain A & B 100.0 90.0 80.0 Amplitude (dBuV/m) 70.0 60.0 50.0 40.0 30.0 20.0-<sup>1</sup> 1000 10000 18000 Frequency (MHz) Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2998.330 48.4 V -19.9 266 68.3 Peak 1.3 1328.490 74.0 54.1 V -19.9 ΡK 1.0 MHz; VB: 1 MHz 111 1329.210 34.0 V 54.0 -20.0 AVG 111 1.0 MHz; VB: 10 Hz V 5995.830 46.8 68.3 -21.5 Peak 103 1.0 33.3 -20.7 10599.530 Н 54.0 AVG 241 MHz; VB: 10 Hz 1.1 10600.000 46.8 Н 74.0 -27.2 ΡK 241 1.1 MHz; VB: 1 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -Note 1: 27dBm/MHz (~68dBuV/m)





| <b>C</b>                                                                                    |                                                                                                                      | <b>Stt</b>                                                         |                                                                                         |                                                                                            |                                                                        |                                                                   |                                                                                   | EMO                                                                               | C Tes                             |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|
| Client                                                                                      | Intel                                                                                                                | 2 company                                                          |                                                                                         | <u></u> _                                                                                  |                                                                        |                                                                   |                                                                                   | Job Number:                                                                       | J75722                            |
| Model                                                                                       | 2x2 WiFi wit                                                                                                         | h WiMax Mir                                                        | hi₽∩I                                                                                   |                                                                                            |                                                                        |                                                                   | T-I                                                                               | Log Number:                                                                       | T76443                            |
| model.                                                                                      |                                                                                                                      |                                                                    |                                                                                         |                                                                                            |                                                                        |                                                                   | Αссоι                                                                             | unt Manager:                                                                      | -                                 |
| Contact:                                                                                    | S. Hackett                                                                                                           | 00.45.047                                                          |                                                                                         |                                                                                            |                                                                        |                                                                   |                                                                                   |                                                                                   |                                   |
| tandard:                                                                                    | RSS 210 / F                                                                                                          | CC 15.247                                                          | (0 /5040 M                                                                              |                                                                                            | A                                                                      |                                                                   |                                                                                   | Class:                                                                            | N/A                               |
| 1#10:8                                                                                      | 02. I IN 40 MB                                                                                                       | HZ, Channei                                                        | 62 (53 IU MI                                                                            | iz), Chains .                                                                              | A and B at 10                                                          | 5.50Bm eacl                                                       | n chain                                                                           |                                                                                   |                                   |
| 802.11r                                                                                     | 40MHz, Cha                                                                                                           | annel 62 (53                                                       | 10 MHz), Ch                                                                             | ain A & B                                                                                  |                                                                        |                                                                   |                                                                                   |                                                                                   |                                   |
| 10(                                                                                         | 1.0                                                                                                                  |                                                                    |                                                                                         |                                                                                            |                                                                        |                                                                   |                                                                                   |                                                                                   |                                   |
| 100                                                                                         |                                                                                                                      |                                                                    |                                                                                         |                                                                                            |                                                                        |                                                                   |                                                                                   |                                                                                   |                                   |
| 90                                                                                          |                                                                                                                      | n i M                                                              |                                                                                         |                                                                                            |                                                                        |                                                                   | 100                                                                               | m n                                                                               |                                   |
| Ę                                                                                           |                                                                                                                      | L.L                                                                | u                                                                                       |                                                                                            | L                                                                      |                                                                   | UUI                                                                               | I                                                                                 | 1 U U                             |
| -70<br>99                                                                                   | 0.0-                                                                                                                 | 11 I C                                                             |                                                                                         |                                                                                            |                                                                        |                                                                   | וחחר                                                                              | n n                                                                               |                                   |
| <u>و</u> 60                                                                                 | ).0-                                                                                                                 | Ĭ                                                                  | Ш                                                                                       | ĩ 📙 🛙                                                                                      |                                                                        |                                                                   |                                                                                   |                                                                                   |                                   |
| /<br>문 50                                                                                   | ).0-                                                                                                                 |                                                                    |                                                                                         | •                                                                                          |                                                                        | •                                                                 |                                                                                   |                                                                                   |                                   |
| र्वे 4(                                                                                     | ).0-18 h                                                                                                             | d.)                                                                |                                                                                         |                                                                                            | مر بين المارين الم                                                     | . had a second                                                    | $\sim$                                                                            | Mulan.                                                                            | $\sim$                            |
| 30                                                                                          | 0.0- <sup>V</sup> VWWV                                                                                               | ALMANN AND A                                                       | www.l.Jumpy                                                                             | 1/2010-000                                                                                 |                                                                        |                                                                   |                                                                                   |                                                                                   | •                                 |
| 20                                                                                          | ).0-                                                                                                                 |                                                                    |                                                                                         |                                                                                            |                                                                        | ļ I ļ                                                             |                                                                                   |                                                                                   | 1                                 |
| <u> </u>                                                                                    |                                                                                                                      |                                                                    |                                                                                         |                                                                                            |                                                                        |                                                                   | 1                                                                                 | 0000                                                                              | 190                               |
| 2,                                                                                          | 1000                                                                                                                 |                                                                    |                                                                                         |                                                                                            |                                                                        |                                                                   | 1                                                                                 |                                                                                   | 100                               |
| 20                                                                                          | 1000                                                                                                                 |                                                                    |                                                                                         | F                                                                                          | Frequency (M                                                           | IHz)                                                              |                                                                                   |                                                                                   | 100                               |
|                                                                                             | 1000                                                                                                                 |                                                                    |                                                                                         | F                                                                                          | Frequency (M                                                           | IHz)                                                              |                                                                                   |                                                                                   | 100                               |
| urious R                                                                                    | 1000<br>Radiated Emi                                                                                                 | <i>ssions:</i><br>Pol                                              | 15.20                                                                                   | F<br>9 / 15E                                                                               | Frequency (M                                                           | IHz)<br>Azimuth                                                   | Height                                                                            | Comments                                                                          | 100                               |
| rious R<br>quency<br>MHz                                                                    | 1000<br>Radiated Emi<br>Level<br>dBµV/m                                                                              | issions:<br>Pol<br>v/h                                             | 15.20 <sup>.</sup><br>Limit                                                             | F<br>9 / 15E<br>Margin                                                                     | Frequency (M<br>Detector<br>Pk/QP/Avg                                  | IHz)<br>Azimuth<br>degrees                                        | Height<br>meters                                                                  | Comments                                                                          | 100                               |
| <i>irious k</i><br>quency<br>MHz<br>95.830                                                  | 1000<br>Radiated Emi<br>Level<br>dBµV/m<br>47.8                                                                      | Ssions:<br>Pol<br>V/h<br>V                                         | 15.20<br>Limit<br>68.3                                                                  | F<br>9 / 15E<br>Margin<br>-20.5                                                            | Detector<br>Pk/QP/Avg<br>Peak                                          | IHz)<br>Azimuth<br>degrees<br>104                                 | Height<br>meters<br>1.0                                                           | Comments                                                                          | 100                               |
| Urious F<br>Equency<br>MHz<br>95.830<br>98.330                                              | 1000<br>2adiated Emi<br>Level<br>dBμV/m<br>47.8<br>46.6<br>21.9                                                      | ssions:<br>Pol<br>V/h<br>V<br>V                                    | 15.20<br>Limit<br>68.3<br>68.3                                                          | 7 / 15E<br>Margin<br>-20.5<br>-21.7                                                        | Detector<br>Pk/QP/Avg<br>Peak<br>Peak                                  | Azimuth<br>degrees<br>104<br>254                                  | Height<br>meters<br>1.0<br>1.0                                                    | Comments                                                                          | 0.112                             |
| rious I<br>quency<br>VHz<br>95.830<br>98.330<br>48.730<br>49.340                            | 1000<br>2adiated Emi<br>Level<br>dBμV/m<br>47.8<br>46.6<br>31.8<br>46.2                                              | Fesions:<br>Pol<br>V/h<br>V<br>V<br>H<br>H                         | 15.20 <sup>0</sup><br>Limit<br>68.3<br>68.3<br>54.0<br>74.0                             | F<br>A / 15E<br>Margin<br>-20.5<br>-21.7<br>-22.2<br>-27.8                                 | Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>AVG<br>PK                     | Azimuth<br>degrees<br>104<br>254<br>68<br>68                      | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                               | Comments<br>MHz; VB: 1<br>MHz: VB: 1                                              | 0 Hz<br>MHz                       |
| rious F<br>quency<br>MHz<br>25.830<br>48.730<br>48.730<br>19.340<br>19.890                  | 1000<br><b>Padiated Emi</b><br>Level<br>dBμV/m<br>47.8<br>46.6<br>31.8<br>46.2<br>29.6                               | ssions:<br>Pol<br>v/h<br>V<br>V<br>V<br>H<br>H<br>H<br>V           | 15.20 <sup>°</sup><br>Limit<br>68.3<br>68.3<br>54.0<br>74.0<br>54.0                     | F<br>Margin<br>-20.5<br>-21.7<br>-22.2<br>-27.8<br>-24.4                                   | Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>AVG<br>PK<br>AVG              | Azimuth<br>degrees<br>104<br>254<br>68<br>68<br>301               | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                        | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1                                | 0 Hz<br>MHz<br>0 Hz               |
| <i>ious I</i><br>uency<br>Hz<br>5.830<br>9.330<br>8.730<br>9.340<br>9.890<br>0.090          | 1000<br>2adiated Emi<br>Level<br>dBµV/m<br>47.8<br>46.6<br>31.8<br>46.2<br>29.6<br>42.4                              | Ssions:<br>Pol<br>V/h<br>V<br>V<br>H<br>H<br>H<br>V<br>V<br>V      | 15.20 <sup>0</sup><br>Limit<br>68.3<br>68.3<br>54.0<br>74.0<br>54.0<br>74.0<br>74.0     | F<br>Margin<br>-20.5<br>-21.7<br>-22.2<br>-27.8<br>-24.4<br>-31.6                          | Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>AVG<br>PK<br>AVG<br>PK        | Azimuth<br>degrees<br>104<br>254<br>68<br>68<br>301<br>301        | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                 | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1                  | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>MHz |
| rious F<br>Juency<br>1Hz<br>5.830<br>8.330<br>8.330<br>8.330<br>9.340<br>19.890<br>20.090   | 1000<br>Padiated Emi<br>Level<br>dBμV/m<br>47.8<br>46.6<br>31.8<br>46.2<br>29.6<br>42.4                              | ssions:<br>Pol<br>V/h<br>V<br>V<br>H<br>H<br>V<br>V<br>V<br>V      | 15.20<br>Limit<br>68.3<br>68.3<br>54.0<br>74.0<br>54.0<br>74.0                          | P / 15E<br>Margin<br>-20.5<br>-21.7<br>-22.2<br>-27.8<br>-24.4<br>-31.6                    | Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>AVG<br>PK<br>AVG<br>PK<br>AVG | Azimuth<br>degrees<br>104<br>254<br>68<br>68<br>301<br>301        | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                 | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1                  | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>MHz |
| <i>ious F</i><br>uency<br>1Hz<br>5.830<br>8.330<br>8.330<br>9.340<br>19.890<br>20.090<br>1: | 1000<br>2adiated Emi<br>Level<br>dBµV/m<br>47.8<br>46.6<br>31.8<br>46.2<br>29.6<br>42.4<br>For emission<br>27dPm/MHz | Ssions:<br>Pol<br>V/h<br>V<br>V<br>H<br>H<br>V<br>V<br>V<br>v<br>v | 15.20<br>Limit<br>68.3<br>68.3<br>54.0<br>74.0<br>54.0<br>74.0<br>74.0<br>ed bands, the | P / 15E<br>Margin<br>-20.5<br>-21.7<br>-22.2<br>-27.8<br>-24.4<br>-31.6<br>e limit of 15.2 | Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>AVG<br>PK<br>AVG<br>PK        | Azimuth<br>degrees<br>104<br>254<br>68<br>68<br>301<br>301<br>301 | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>er emissions | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>, the average | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>MHz |



| 6                                                          | Ellic                                  | ott                                    |                      |                 |               |               |             | EMO                  | C Test Data          |
|------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------|-----------------|---------------|---------------|-------------|----------------------|----------------------|
| Client:                                                    | An A                                   | Company                                |                      |                 |               |               |             | Job Number:          | J75722               |
|                                                            |                                        |                                        |                      |                 |               |               | T-          | Log Number:          | T76443               |
| Model:                                                     | 2x2 WiFi wit                           | h WiMax Mir                            | niPCI                |                 |               | -             | Accou       | unt Manager:         | -                    |
| Contact:                                                   | S. Hackett                             |                                        |                      |                 |               |               |             | 5                    |                      |
| Standard:                                                  | RSS 210 / F                            | CC 15.247                              |                      |                 |               |               |             | Class:               | N/A                  |
| Run #2b: 8                                                 | 02.11n 20MF                            | lz mode, ch                            | annel 44 (52         | 20 MHz), CI     | hains A and E | 3 active at 1 | 6.5dBm ea   | ch chain             | L                    |
| 802.11n<br>10<br>9<br>( <u></u> )<br>8<br>( <u></u> )<br>7 | n 20MHz, Ch<br>0.0 -<br>0.0 -<br>0.0 - | annel 44 (52                           | 220 MHz), Cl         | nain A & B      |               |               |             |                      |                      |
| Amplitude (dB                                              | 0.0-<br>0.0-<br>0.0-<br>0.0-<br>0.0-   | w.w.l.h                                | hunnum               | where           |               | <br>4  \      | ~~~         |                      | ~~~                  |
| 2                                                          | 0.0-<br>1000                           |                                        |                      |                 |               | ļI.           |             | 10000                | 18000                |
|                                                            |                                        |                                        |                      |                 | Frequency (M  | 1Hz)          |             |                      |                      |
| Sourious R                                                 | Padiated Fm                            | issions <sup>.</sup>                   |                      |                 |               |               |             |                      |                      |
| Frequency                                                  | Level                                  | Pol                                    | 15.20                | 9/15E           | Detector      | Azimuth       | Height      | Comments             |                      |
| MHz                                                        | dBµV/m                                 | v/h                                    | Limit                | Margin          | Pk/QP/Avg     | degrees       | meters      |                      |                      |
| 2998.330                                                   | 47.1                                   | V                                      | 68.3                 | -21.2           | Peak          | 180           | 1.0         |                      |                      |
| 1600.100                                                   | 31.3                                   | V                                      | 54.0                 | -22.7           | AVG           | 78            | 1.3         | MHz; VB: 1           | 0 Hz                 |
| 1596.630                                                   | 49.1                                   | V                                      | 74.0                 | -24.9           | PK            | 78            | 1.3         | MHz; VB: 1           | MHz                  |
| 5995.830                                                   | 47.0                                   | V                                      | 68.3                 | -21.3           | Peak          | 106           | 1.0         |                      |                      |
| 10426.670                                                  | 42.4                                   | V                                      | 68.3                 | -25.9           | Peak          | 224           | 1.3         |                      |                      |
| Note 1:                                                    | For emission<br>27dBm/MHz              | ns in restricte<br><u>z (~68dBuV/r</u> | ed bands, the<br>n). | e limit of 15.2 | 209 was used. | For all othe  | r emissions | , the <b>average</b> | e limit was set to - |

| 6          | Ellic                     | ott                                     |                      |                 |               |               |              | EM                   | C Test Data          |
|------------|---------------------------|-----------------------------------------|----------------------|-----------------|---------------|---------------|--------------|----------------------|----------------------|
| Client:    | Intel                     | Company                                 |                      |                 |               |               |              | Job Number:          | J75722               |
| Madal      | 22 \ <b>\</b> /!E:!       | h )//////////////////////////////////// |                      |                 |               |               | T-           | Log Number:          | T76443               |
| woder:     | 2X2 WIFI WI               | n wiiviax iviir                         | IIPCI                |                 |               |               | Acco         | unt Manager:         | -                    |
| Contact:   | S. Hackett                |                                         |                      |                 |               |               |              |                      |                      |
| Standard:  | RSS 210 / F               | CC 15.247                               |                      |                 |               |               |              | Class:               | N/A                  |
| Run #2c: 8 | 02.11n 20MF               | Iz mode, ch                             | annel 48 (52         | 40 MHz), Cł     | nains A and E | 3 active at 1 | 6.5dBm ead   | ch chain             |                      |
| 802.11     | n 20MHz, Ch               | annel 48 (52                            | 240 MHz), Cł         | nain A & B      |               |               |              |                      |                      |
| 10         | 0.0                       |                                         |                      |                 |               |               |              |                      |                      |
| 10         | 0.0-                      |                                         |                      |                 |               |               |              |                      |                      |
| 9          | 0.0-                      | 010                                     |                      |                 | m (1          |               | n n n        | nn r                 |                      |
| (m) 8      | 0.0-                      |                                         | . U                  |                 |               |               | UUI          | U L                  |                      |
| ngp 7      | 0.0-                      |                                         |                      |                 |               |               |              |                      |                      |
| l epn      | 0.0-                      |                                         | L L L                | ΪШſ             |               |               |              |                      |                      |
| blit.      | 0.0-                      | •                                       |                      | •               |               | •             |              |                      |                      |
| 4          | 0.0-                      | Mr. tu                                  | 1 <b>.</b> .         |                 |               | a man         | $\sim$       | ~l.~~                |                      |
| 3          | 0.0-44000                 | ላግ የሲሊሲለበባ                              | Muhalan              | wike water and  |               |               |              |                      |                      |
| 2          | 0.0-                      |                                         |                      |                 |               | ļ I .         |              |                      | 1                    |
|            | 1000                      |                                         |                      |                 | Frequency (M  | 4Hz)          |              | 10000                | 18000                |
|            |                           |                                         |                      |                 | rioquoney (r  |               |              |                      |                      |
| Sourious R | Padiated Fm               | issions <sup>.</sup>                    |                      |                 |               |               |              |                      |                      |
| Frequency  | Level                     | Pol                                     | 15.20                | 9/15E           | Detector      | Azimuth       | Height       | Comments             |                      |
| MHz        | dBµV/m                    | v/h                                     | Limit                | Margin          | Pk/QP/Avg     | degrees       | meters       |                      |                      |
| 1329.440   | 55.1<br>49.6              | V                                       | /4.0                 | -18.9           | PK            | 113<br>250    | 1.0          | MHz; VB: 1           | MHz                  |
| 1329.760   | 33.8                      | V                                       | 54.0                 | -19.7           | AVG           | 113           | 1.0          | MHz: VB: 1           | 0 Hz                 |
| 5995.830   | 47.1                      | V                                       | 68.3                 | -21.2           | Peak          | 100           | 1.0          | ,                    | -                    |
| 10480.000  | 41.8                      | Н                                       | 68.3                 | -26.5           | Peak          | 159           | 1.3          |                      |                      |
| Note 1:    | For emission<br>27dBm/MHz | ns in restricte<br><u>z (~68dBuV/r</u>  | ed bands, the<br>n). | e limit of 15.2 | 209 was used. | For all othe  | er emissions | , the <b>average</b> | e limit was set to - |

| -C -                                                                                          | Ellic                                                                                       | ott                                                                  |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             | EM                                     | C Test Dat                          |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------|
| Client:                                                                                       | Intel                                                                                       | company کے                                                           |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             | Job Number:                            | J75722                              |
| Maslal                                                                                        | 0.0.W/F                                                                                     |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | T-                                                          | Log Number:                            | T76443                              |
| Model:                                                                                        | 2x2 WIFI WIT                                                                                | h wimax Min                                                          | NPCI                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | Acco                                                        | unt Manager:                           | -                                   |
| Contact:                                                                                      | S. Hackett                                                                                  |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| Standard:                                                                                     | RSS 210 / F                                                                                 | CC 15.247                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             | Class:                                 | N/A                                 |
| ın #2d: 80                                                                                    | )2.11n 20MH                                                                                 | lz mode, cha                                                         | annel 52 (52                                                          | 260 MHz), C                                                            | hains A and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 active at 1                                                          | 6.5dBm ea                                                   | ch chain                               |                                     |
| 802.11r                                                                                       | n 20MHz. Ch                                                                                 | annel 52 (52                                                         | 260 MHz). C                                                           | hain A & B                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| 10                                                                                            | ·                                                                                           |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| 100                                                                                           | 0.0-                                                                                        |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| 90                                                                                            | 0.0-                                                                                        | n i n                                                                |                                                                       | m                                                                      | m n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                     | n n n                                                       | 16 N - 6                               | TTTTT 1                             |
| E 80                                                                                          | 0.0-                                                                                        |                                                                      | L.                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | UU                                                          |                                        |                                     |
|                                                                                               | 0.0-                                                                                        |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| <u>କୁ</u> ଶ                                                                                   | 0.0-                                                                                        | 11 h AI                                                              |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
| 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1               | 0.0-                                                                                        |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                      |                                                             |                                        |                                     |
| 4í 4í                                                                                         | 0.0- <mark>12. 1</mark>                                                                     | 1.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                       |                                                                       | . I                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | هرايها ار                                                              | ~~                                                          | *** <b> </b>                           | m.1                                 |
| 31                                                                                            | 0.0- 44/14/                                                                                 |                                                                      | MARKAN                                                                | Whentyman                                                              | hind a state of the sector of |                                                                        |                                                             |                                        | ~                                   |
| 21                                                                                            | n.n-                                                                                        |                                                                      |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                             |                                        |                                     |
|                                                                                               | 1000                                                                                        |                                                                      |                                                                       | '                                                                      | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |                                                             | 10000                                  | 18000                               |
|                                                                                               |                                                                                             |                                                                      |                                                                       |                                                                        | Frequency (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MHz)                                                                   |                                                             |                                        |                                     |
|                                                                                               | adiated Emi                                                                                 | ssions:                                                              | 15.00                                                                 |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A 1 11                                                                 |                                                             |                                        |                                     |
| urious R                                                                                      | 1                                                                                           | <b>N</b> - <b>N</b>                                                  | 1570                                                                  | 9/15                                                                   | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NZIMIIIN                                                               | LIQUART                                                     |                                        |                                     |
| equency<br>MHz                                                                                | Level                                                                                       | Pol<br>v/h                                                           | L imit                                                                | Margin                                                                 | Pk/OP/Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dearees                                                                | meters                                                      | Comments                               |                                     |
| equency<br>MHz<br>995.830                                                                     | Level<br>dBµV/m<br>47.3                                                                     | Pol<br>v/h<br>V                                                      | Limit 68.3                                                            | Margin<br>-21.0                                                        | Pk/QP/Avg<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | degrees<br>100                                                         | meters<br>1.0                                               | Comments                               |                                     |
| equency<br>MHz<br><i>995.830</i><br>048.520                                                   | Level<br>dBµV/m<br>47.3<br>32.5                                                             | Pol<br>v/h<br>V<br>H                                                 | Limit<br>68.3<br>54.0                                                 | Margin<br>-21.0<br>-21.5                                               | Pk/QP/Avg<br>Peak<br>AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees<br>100<br>180                                                  | meters<br>1.0<br>1.0                                        | MHz; VB: 1                             | 0 Hz                                |
| equency<br>MHz<br>995.830<br>048.520<br>998.330                                               | Level<br>dBµV/m<br>47.3<br>32.5<br>46.4                                                     | Pol<br>v/h<br>V<br>H<br>V                                            | Limit<br>68.3<br>54.0<br>68.3                                         | Margin<br>-21.0<br>-21.5<br>-21.9                                      | Pk/QP/Avg<br>Peak<br>AVG<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees<br>100<br>180<br>262                                           | meters   1.0   1.0   1.3                                    | MHz; VB: 1                             | 0 Hz                                |
| urious R<br>equency<br>MHz<br>995.830<br>048.520<br>998.330<br>0506.670                       | Level<br>dBµV/m<br>47.3<br>32.5<br>46.4<br>46.2                                             | Pol<br>v/h<br>V<br>H<br>V<br>H                                       | Limit<br>68.3<br>54.0<br>68.3<br>68.3                                 | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1                             | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Azimuti   degrees   100   180   262   250                              | meters   1.0   1.0   1.3   1.0                              | MHz; VB: 1                             | 0 Hz                                |
| urious R<br>equency<br>MHz<br>295.830<br>298.330<br>506.670<br>249.650                        | Level<br>dBµV/m<br>47.3<br>32.5<br>46.4<br>46.2<br>48.6                                     | Pol<br>v/h<br>V<br>H<br>V<br>H<br>H                                  | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0                         | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4                    | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Azimum   degrees   100   180   262   250   180                         | Height   meters   1.0   1.0   1.3   1.0   1.0               | MHz; VB: 1                             | 0 Hz<br>MHz                         |
| urious R<br>equency<br>MHz<br>295.830<br>048.520<br>298.330<br>506.670<br>049.650             | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emission              | Pol<br>v/h<br>V<br>H<br>V<br>H<br>H<br>s in restricte                | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the        | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK<br>209 was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Azimuti   degrees   100   180   262   250   180                        | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1 | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>295.830<br>048.520<br>298.330<br>506.670<br>049.650<br>e 1:                 | Level<br>dBµV/m<br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz        | Pol<br>v/h<br>V<br>H<br>V<br>H<br>H<br>s in restricte<br>(~68dBuV/n  | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the        | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Azimuti   degrees   100   180   262   250   180   For all other        | Height   meters   1.0   1.0   1.3   1.0   1.0   r emissions | MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1 | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>295.830<br>048.520<br>098.330<br>506.670<br>049.650<br>e 1:                 | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK<br>209 was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Azimuti   degrees   100   180   262   250   180   For all other        | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.3   1.0      | MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1 | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>295.830<br>48.520<br>298.330<br>506.670<br>149.650<br>e 1:                  | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>v/h<br>V<br>H<br>V<br>H<br>H<br>s in restricte<br>(~68dBuV/n  | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK<br>209 was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Azimuti   degrees   100   180   262   250   180                        | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1 | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>95.830<br>48.520<br>98.330<br>506.670<br>49.650<br>e 1:                     | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimuti   degrees   100   180   262   250   180   For all other        | r emissions                                                 | MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1 | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>295.830<br>148.520<br>198.330<br>506.670<br>149.650<br>e 1:                 | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emission<br>27dBm/MHz | Pol<br>v/h<br>V<br>H<br>H<br>H<br>ns in restricte<br>(~68dBuV/n      | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the        | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimuti   degrees   100   180   262   250   180                        | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| urious R<br>equency<br>MHz<br>295.830<br>048.520<br>098.330<br>506.670<br>049.650<br>de 1:    | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4                    | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimuti   degrees   100   180   262   250   180   For all other        | r emissions                                                 | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| urious R<br>equency<br>MHz<br>295.830<br>048.520<br>298.330<br>506.670<br>049.650<br>te 1:    | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emission<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4                    | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimum<br>degrees<br>100<br>180<br>262<br>250<br>180<br>For all othe   | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>995.830<br>048.520<br>998.330<br>0506.670<br>049.650<br>te 1:               | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emission<br>27dBm/MHz | Pol<br>v/h<br>V<br>H<br>H<br>H<br>ns in restricte<br>(~68dBuV/n      | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimum<br>degrees<br>100<br>180<br>262<br>250<br>180<br>For all othe   | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| burious R<br>requency<br>MHz<br>995.830<br>048.520<br>998.330<br>0506.670<br>049.650<br>te 1: | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the        | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4                    | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimum<br>degrees<br>100<br>180<br>262<br>250<br>180<br>For all othe   | meters   1.0   1.0   1.3   1.0   1.0   r emissions          | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>995.830<br>048.520<br>998.330<br>506.670<br>049.650<br>te 1:                | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emission<br>27dBm/MHz | Pol<br>v/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the        | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4<br>e limit of 15.2 | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azimum<br>degrees<br>100<br>180<br>262<br>250<br>180<br>For all othe   | meters   1.0   1.0   1.3   1.0   1.3   1.0   1.0            | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |
| equency<br>MHz<br>995.830<br>048.520<br>998.330<br>506.670<br>049.650<br>te 1:                | Level<br><u>dBµV/m</u><br>47.3<br>32.5<br>46.4<br>46.2<br>48.6<br>For emissior<br>27dBm/MHz | Pol<br>V/h<br>V<br>H<br>V<br>H<br>H<br>ns in restricte<br>(~68dBuV/n | Limit<br>68.3<br>54.0<br>68.3<br>68.3<br>74.0<br>ed bands, the<br>n). | Margin<br>-21.0<br>-21.5<br>-21.9<br>-22.1<br>-25.4                    | Pk/QP/Avg<br>Peak<br>AVG<br>Peak<br>Peak<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Azintati<br>degrees<br>100<br>180<br>262<br>250<br>180<br>For all othe | remissions                                                  | MHz; VB: 1                             | 0 Hz<br>MHz<br>e limit was set to - |





| Client:                                                                                                                          | Intel                                                                                                                                                        |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        | Job Number:                                                                                                   | J75722                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Model                                                                                                                            | ΩvΩ \/iEi wit                                                                                                                                                | h \N/iMax Mir                                                                                       |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            | T-                                                                                                     | Log Number:                                                                                                   | T76443                                                                       |
| MOUCI.                                                                                                                           |                                                                                                                                                              |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            | Accou                                                                                                  | unt Manager:                                                                                                  | -                                                                            |
| Contact:                                                                                                                         | S. Hackett                                                                                                                                                   |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
| Standard:                                                                                                                        | RSS 210 / F                                                                                                                                                  | CC 15.247                                                                                           |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        | Class:                                                                                                        | N/A                                                                          |
| 2 <b>un #3b: 8</b><br> <br>Te                                                                                                    | <b>02.11a, Chan</b><br>Date of Test:<br>est Engineer:                                                                                                        | nel 120 (560<br>8/25/2009<br>Suhaila Khu                                                            | <b>)0 MHz)</b> , Ch<br>shzad                                                                                   | ain A at 16.                                                                                                 | 5 <b>dBm</b><br>Te<br>Con                                                                              | st Location:<br>fig Change:                                                                | Chamber #4<br>none                                                                                     | 4                                                                                                             |                                                                              |
|                                                                                                                                  | Chain                                                                                                                                                        |                                                                                                     |                                                                                                                | Power                                                                                                        | Settings                                                                                               |                                                                                            |                                                                                                        | ]                                                                                                             |                                                                              |
|                                                                                                                                  | Chain                                                                                                                                                        | Target                                                                                              | (dBm)                                                                                                          | Measur                                                                                                       | ed (dBm)                                                                                               | Software                                                                                   | e Setting                                                                                              | -                                                                                                             |                                                                              |
|                                                                                                                                  | А                                                                                                                                                            | 16                                                                                                  | o.5                                                                                                            | 1                                                                                                            | 6.6                                                                                                    | 24                                                                                         | .0                                                                                                     | J                                                                                                             |                                                                              |
| 802.                                                                                                                             | 11a, Channe                                                                                                                                                  | l 120 (5600                                                                                         | MHz), Chain                                                                                                    | ) A                                                                                                          |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
|                                                                                                                                  | 100.0-                                                                                                                                                       |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        | 181                                                                                        |                                                                                                        |                                                                                                               |                                                                              |
|                                                                                                                                  | 90.0-                                                                                                                                                        |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
| _                                                                                                                                | 80.0-                                                                                                                                                        |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
| (m)                                                                                                                              |                                                                                                                                                              |                                                                                                     | ,10 E                                                                                                          | E.U.                                                                                                         | H                                                                                                      |                                                                                            |                                                                                                        | W L                                                                                                           | 383636                                                                       |
| - ABC                                                                                                                            | 70.0-                                                                                                                                                        | ΠΙ                                                                                                  |                                                                                                                |                                                                                                              |                                                                                                        | ╷╷╢└─                                                                                      |                                                                                                        |                                                                                                               |                                                                              |
| ) e                                                                                                                              | 60.0-                                                                                                                                                        |                                                                                                     | fí i                                                                                                           |                                                                                                              |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
| plitu                                                                                                                            | 50.0-                                                                                                                                                        |                                                                                                     |                                                                                                                |                                                                                                              |                                                                                                        | <b>—</b> .                                                                                 |                                                                                                        |                                                                                                               |                                                                              |
| A A                                                                                                                              | 40.0-1                                                                                                                                                       |                                                                                                     |                                                                                                                | I                                                                                                            |                                                                                                        |                                                                                            | يعجب الحميلتين                                                                                         | ∽                                                                                                             | and a N                                                                      |
|                                                                                                                                  |                                                                                                                                                              | ለዓረብ ነብ                                                                                             | Mahar 1 and                                                                                                    | adulation the                                                                                                | يحديدها يتجسطون فالهيد الراجه                                                                          |                                                                                            | ~                                                                                                      | a sala                                                                                                        |                                                                              |
|                                                                                                                                  |                                                                                                                                                              | ግ የግለዚህ                                                                                             | In the second with the                                                                                         | Million and Acc                                                                                              |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
|                                                                                                                                  | 30.0-11                                                                                                                                                      | ·γ.γ.γ.                                                                                             | la tû a waxwên Wi                                                                                              | Million and Area                                                                                             |                                                                                                        |                                                                                            |                                                                                                        |                                                                                                               |                                                                              |
|                                                                                                                                  | 20.0-                                                                                                                                                        | יייע ייגאאָאיי                                                                                      | la (fra weewier Afri                                                                                           | 1<br>Minutedae                                                                                               |                                                                                                        |                                                                                            |                                                                                                        | 10000                                                                                                         | 18000                                                                        |
|                                                                                                                                  | 20.0-<br>1000                                                                                                                                                | <u>יין און אין אייי</u>                                                                             | i<br>le lû a weewîên An                                                                                        | n<br>Mir nur auf an                                                                                          | ,<br>Frequency                                                                                         | , (MHz)                                                                                    |                                                                                                        | 10000                                                                                                         | 18000                                                                        |
| Durious F                                                                                                                        | 20.0 - ,<br>20.0 - ,<br>1000                                                                                                                                 | ssions:                                                                                             | 1-16                                                                                                           | 1<br>M1 add day                                                                                              | Frequency                                                                                              | (MHz)                                                                                      |                                                                                                        | 10000                                                                                                         | 18000                                                                        |
| purious R                                                                                                                        | 20.0 - 1<br>20.0 - 1<br>1000<br>Padiated Emi                                                                                                                 | ssions:<br>Pol                                                                                      | 15.20                                                                                                          | 2 / 15E                                                                                                      | Frequency                                                                                              | (MHz)                                                                                      |                                                                                                        | 10000<br>Comments                                                                                             | 18000                                                                        |
| purious R<br>requency<br>MHz                                                                                                     | 20.0 - ,<br>1000<br>2adiated Emi<br>Level<br>dBµV/m                                                                                                          | ssions:<br>Pol<br>V/h                                                                               | 15.200<br>Limit                                                                                                | 9 / 15E<br>Margin                                                                                            | Frequency<br>Detector<br>Pk/QP/Avg                                                                     | Azimuth<br>degrees                                                                         | Height<br>meters                                                                                       | 10000<br>Comments                                                                                             | 18000                                                                        |
| purious R<br>requency<br>MHz<br>2001.210                                                                                         | 20.0 - ,<br>1000<br>2adiated Emi<br>Level<br>dBµV/m<br>42.8                                                                                                  | ssions:<br>Pol<br>Vh<br>V                                                                           | 15.20<br>Limit<br>54.0                                                                                         | 9 / 15E<br>Margin<br>-11.2                                                                                   | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG                                                              | Azimuth<br>degrees<br>134                                                                  | Height<br>meters<br>1.0                                                                                | Comments<br>MHz; VB: 1                                                                                        | 18000<br>0 Hz                                                                |
| Durious R<br>requency<br>MHz<br>2001.210<br>2001.270                                                                             | 20.0 - 1<br>20.0 - 1<br>1000<br>2adiated Emi<br>Level<br>dBµV/m<br>42.8<br>49.1                                                                              | ssions:<br>Pol<br>Vh<br>V                                                                           | 15.200<br>Limit<br>54.0<br>74.0                                                                                | 9 / 15E<br>Margin<br>-11.2<br>-24.9                                                                          | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK                                                        | Azimuth<br>degrees<br>134<br>134                                                           | Height<br>meters<br>1.0<br>1.0                                                                         | Comments<br>MHz; VB: 1<br>MHz; VB: 1                                                                          | 18000<br>0 Hz<br>MHz                                                         |
| purious R<br>requency<br>MHz<br>2001.210<br>2001.270<br>1200.220                                                                 | 20.0 - 1<br>20.0 - 1<br>1000<br>2adiated Emi<br>Level<br>dBµV/m<br>42.8<br>49.1<br>41.5                                                                      | ssions:<br>Pol<br>V/h<br>V<br>V<br>V                                                                | 15.200<br>Limit<br>54.0<br>74.0<br>54.0                                                                        | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5                                                                 | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG                                                 | Azimuth<br>degrees<br>134<br>134<br>209                                                    | Height<br>meters<br>1.0<br>1.0<br>1.0                                                                  | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1                                                            | 18000<br>0 Hz<br>MHz<br>0 Hz                                                 |
| purious R<br>requency<br>MHz<br>2001.210<br>2001.270<br>1200.220<br>1200.820                                                     | 20.0 -<br>20.0 -<br>1000<br>2adiated Emin<br>Level<br>dBμV/m<br>42.8<br>49.1<br>41.5<br>52.9<br>27.1                                                         | ssions:<br>Pol<br>V/h<br>V<br>V<br>V<br>V<br>V                                                      | 15.20<br>Limit<br>54.0<br>74.0<br>54.0<br>74.0                                                                 | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5<br>-21.1<br>-24.0                                               | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG<br>PK                                           | Azimuth<br>degrees<br>134<br>134<br>209<br>209                                             | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                                    | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1                                | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>WHz<br>WHz                                     |
| purious R<br>requency<br>MHz<br>2001.210<br>2001.270<br>1200.220<br>1200.820<br>1331.850<br>1329 920                             | 20.0 - 1<br>20.0 - 1<br>1000<br>2adiated Emin<br>Level<br>dBµV/m<br>42.8<br>49.1<br>41.5<br>52.9<br>27.1<br>47.1                                             | ssions:<br>Pol<br>V/h<br>V<br>V<br>V<br>V<br>V<br>V                                                 | 15.200<br>Limit<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0                                | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5<br>-21.1<br>-26.9<br>-26.9                                      | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK                              | Azimuth<br>degrees<br>134<br>134<br>209<br>209<br>287<br>287                               | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                               | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>RB 1 MHz; V                 | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>WHz<br>VB: 10 Hz<br>VB: 1 MHz                  |
| Epurious R   Trequency   MHz   9001.210   9001.270   1200.220   1200.820   1331.850   1329.920   3000.010                        | 20.0 - 1<br>20.0 - 1<br>1000<br>2adiated Emi<br>Level<br>dBµV/m<br>42.8<br>49.1<br>41.5<br>52.9<br>27.1<br>47.1<br>47.1                                      | ssions:<br>Pol<br>V/h<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>H                                  | 15.200<br>Limit<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>68.3                        | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5<br>-21.1<br>-26.9<br>-26.9<br>-21.2                             | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK<br>PK<br>Peak   | Azimuth<br>degrees<br>134<br>134<br>209<br>209<br>287<br>287<br>287<br>175                 | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.3                 | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>RB 1 MHz; V<br>RB 1 MHz; V                | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>VB: 10 Hz<br>VB: 1 MHz                         |
| Durious R<br>requency<br>MHz<br>2001.210<br>2001.270<br>1200.220<br>1200.820<br>1331.850<br>1329.920<br>3000.010<br>5000.860     | 20.0 -<br>20.0 -<br>1000<br>2adiated Emin<br>Level<br>dBμV/m<br>42.8<br>49.1<br>41.5<br>52.9<br>27.1<br>47.1<br>47.1<br>47.3                                 | ssions:<br>Pol<br>V/h<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V              | 15.200<br>Limit<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>68.3<br>68.3                                | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5<br>-21.1<br>-26.9<br>-26.9<br>-21.2<br>-21.0                    | Frequency<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK<br>Peak<br>Peak | Azimuth<br>degrees<br>134<br>134<br>209<br>209<br>209<br>287<br>287<br>175<br>102          | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.3<br>1.0                 | Loooo<br>Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>RB 1 MHz; V<br>RB 1 MHz; V       | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>VB: 10 Hz<br>VB: 1 MHz                         |
| purious R<br>requency<br>MHz<br>2001.210<br>2001.270<br>1200.220<br>1200.820<br>1331.850<br>1329.920<br>3000.010<br>5000.860<br> | 20.0 - 1<br>20.0 - 1<br>1000<br>2adiated Emi<br>Level<br>dBµV/m<br>42.8<br>49.1<br>41.5<br>52.9<br>27.1<br>47.1<br>47.1<br>47.3<br>For emissior<br>27dBm/MHz | ssions:<br>Pol<br>V/h<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>N<br>S in restricted<br>(~68dBuV/n | 15.200<br>Limit<br>54.0<br>74.0<br>54.0<br>74.0<br>54.0<br>74.0<br>68.3<br>68.3<br>68.3<br>0 bands, the<br>1). | 9 / 15E<br>Margin<br>-11.2<br>-24.9<br>-12.5<br>-21.1<br>-26.9<br>-26.9<br>-21.2<br>-21.0<br>2 limit of 15.2 | Frequencs<br>Detector<br>Pk/QP/Avg<br>AVG<br>PK<br>AVG<br>PK<br>AVG<br>PK<br>Peak<br>Peak<br>Peak      | Azimuth<br>degrees<br>134<br>134<br>209<br>209<br>287<br>287<br>175<br>102<br>For all othe | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.3<br>1.0<br>1.3<br>1.0<br>er emissions | Comments<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>MHz; VB: 1<br>RB 1 MHz; V<br>RB 1 MHz; V<br>RB 1 MHz; V | 0 Hz<br>MHz<br>0 Hz<br>MHz<br>VB: 10 Hz<br>VB: 1 MHz<br>e limit was set to - |



| Client:                                          | An /4'/                    |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ЕМС                        | C Test      |
|--------------------------------------------------|----------------------------|--------------|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|
| Marial                                           | Intel                      | Company      |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job Number:                | J75722      |
| IVIODEL.                                         | 2x2 WiFi wit               | h WiMax Mir  | niP∩I                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Log Number:                | T76443      |
| mouch.                                           |                            |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Accou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | unt Manager:               | -           |
| Contact:                                         | S. Hackett                 |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| Standard:                                        | RSS 210 / F                | CC 15.247    | 110 /5500 1          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Class:                     | N/A         |
| n #30: 80                                        | )2. I IN 40 MI             | Hz, channei  | 118 (5590 N          | iHz), Chains            | S A and B at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.50Bm ead       | ch chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |             |
| 802.11r                                          | n 40MHz, Ch                | annel 120 (5 | 590 MHz), (          | Chain A & B             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| 100                                              | 0.0                        |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
|                                                  |                            |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| 90                                               | 5.0-                       | <u>n i n</u> |                      |                         | m (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m n                        |             |
| <del>ا (</del> ا                                 |                            |              | u                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | UUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |             |
| 15 70<br>199                                     | 0.0-                       |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| <u> </u>                                         | 0.0-                       |              |                      | ΪЦΙ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |             |
| j #j 50                                          | 0.0-                       |              |                      | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                          |             |
| ि <sup>द</sup> 40                                | 0.0- <mark>1.1 e. e</mark> | R It         |                      |                         | LAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | مسلم البس         | and the second s | M. Low                     | and a star  |
| 30                                               | 0.0-1970-                  | W MLANNA     | marting              | WILLIAM                 | and the second s |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | *           |
| 20                                               | 0.0-                       |              |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , L L             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
|                                                  | 1000                       |              |                      |                         | Eroquencu (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4U-)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000                      | 1800        |
|                                                  |                            |              |                      |                         | Frequency (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·ii-12)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| urious R                                         | adiated Emi                | issions      |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |             |
| requency                                         | Level                      | Pol          | 15.20                | 9/15E                   | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Azimuth           | Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments                   |             |
| MHz                                              | dBµV/m                     | v/h          | Limit                | Margin                  | Pk/QP/Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | degrees           | meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |             |
| 1180.200                                         | 38.4                       | V            | 54.0                 | -15.6                   | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 208               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz; VB: 10                | ) Hz        |
| 1100 240                                         | 54.8                       | V            | 74.0                 | -19.2                   | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 208               | 1.Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INHZ: VB: II               |             |
| 1180.340<br>332.440                              | 31.6                       | V            | 54.0                 | -774                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz· VB· 10                | ) Hz        |
| 1180.340<br>332.440<br>331.620                   | 31.6<br>52.2               | V<br>V       | 54.0<br>74.0         | -22.4<br>-21.8          | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113<br>113        | 1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MHz; VB: 10<br>MHz; VB: 11 | ) Hz<br>MHz |
| 1180.340<br>332.440<br>331.620<br><i>998.330</i> | 31.6<br>52.2<br>47.1       | V<br>V<br>V  | 54.0<br>74.0<br>68.3 | -22.4<br>-21.8<br>-21.2 | PK<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113<br>113<br>261 | 1.0<br>1.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHz; VB: 10<br>MHz; VB: 11 | ) Hz<br>MHz |





## Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit

## Appendix D Proposed FCC ID Label & Label Location

Uploaded as a separate exhibit

## Appendix E Detailed Photographs

Uploaded as a separate exhibit
## Appendix F Operator's Manual

## Appendix G Block Diagram

## Appendix H Schematic Diagrams

# Appendix I Theory of Operation

## Appendix J RF Exposure Information