

EMC Test Report

FCC Part 27 (Class II Permissive Change)

Model: Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW

FCC ID: PD9622ANXH

APPLICANT: Intel Corporation

2111 NE 25th Avenue Hillsboro, OR 97124

TEST SITE(S): Elliott Laboratories

684 West Maude Ave. Sunnvale, CA. 94085

REPORT DATE: June 28, 2010

FINAL TEST DATES: June 21, 2010

AUTHORIZED SIGNATORY:

Mark Briggs V Staff Engineer Elliott Laboratories

ACCREDITED

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R79754 Page 1 of 13

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	June 28, 2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
STATEMENT OF COMPLIANCE	4
DEVIATIONS FROM THE STANDARDS	4
TEST RESULTS SUMMARY	5
FCC PART 27 (2496 – 2690 MHZ MOBILE DIGITAL STATIONS)	5
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	8
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWERBANDWIDTH MEASUREMENTS	9
CONDUCTED SPURIOUS EMISSIONS	9
TRANSMITTER MASK MEASUREMENTS	
RADIATED EMISSIONS MEASUREMENTS	10
INSTRUMENTATION	
FILTERS/ATTENUATORSANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	12
SAMPLE CALCULATIONS -RADIATED POWER	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	2

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW, pursuant to the following rules:

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 27

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R79754 Page 3 of 13

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW complied with the requirements of FCC Part 27.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R79754 Page 4 of 13

TEST RESULTS SUMMARY

FCC Part 27 (2496 – 2690 MHz Mobile Digital Stations)

FCC	Description	Measured	Limit	Result (margin)			
Transmitter Modul	ation, output power and or						
§2.1033 (c) (5) §27.5 (i) (2)	Frequency range(s)	Frequency range(s) Not evaluated - The values reported for the original certification remain unchanged by the proposed change.					
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$27.50	RF power output at the antenna terminals	10MHz Channel: 0.229W 5MHz Channel: 0.269W	2 Watts 33 dBm	Pass (8.7dB)			
\$2.1022 (a) (4)	Emission types	BPSK, QPSK, 8PSK, 16QAM, 64QAM (OFDM)	-	-			
\$2.1033 (c) (4) \$2.1047 \$27.53(m)(4) (6)	Emission mask Note 1	< 5.5MHz from channel edge: -14.3dBm ≥ 5.5MHz from channel edge:	-13dBm	Pass (1.3dB)			
\$2.1049 \$27.53	99% Bandwidth Occupied Bandwidth	-26.2 dBm 10MHz Channel: 9.2 MHz 5 MHz Channel: 4.6 MHz	-25dBm -	-			
Transmitter spurio		5MHz from the band edge)					
§2.1051 §2.1053	At the antenna terminals	< -40 dBm	-25 dBm	Pass (>15dB)			
§2.1057 §27.53(m)(4) (6)	Field strength	-35.3dBm @ 7775.6MHz	-25 dBm erp	Pass (10.3dB)			
Other details							
§2.1055 §27.54	Frequency stability						
§2.1093	RF Exposure						
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages / currents for normal operation.	Not evaluated - The values reported for the original certification remain unchanged by the proposed change.					
-	- Antenna Gain Note 1 – The measurement at the channel edge is made in a reference bandwidth of at least 1% the emission						

Note 1- The measurement at the channel edge is made in a reference bandwidth of at least 1% the emission bandwidth is used. For measurements more than 1MHz from the edge of the channel the measurement bandwidth is 1MHz. The adjacent channel power feature of the spectrum analyzer is used to integrate the power over the required measurement bandwidth(s). Results reported are worst case for both 5MHz and 10MHz bandwidths at 64 QAM.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB

File: R79754 Page 5 of 13

Test Report Report Date: June 28, 2010

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Advanced-N + WiMAX 6250, model 622ANXHMW is a PCI express form factor (half-mini) card that is designed to provide a 2x2 802.11abgn and 1x2 802.16e interfaces for host systems such as laptop PCs. The electrical rating of the EUT is 3.3Vdc (via mini PCI bus).

The sample was received on June 21, 2010 and tested on June 21, 2010. The EUT consisted of the following component(s):

Company	Model	Description	MAC Address	FCC ID
Intel	622ANXHMW	2x2 802.11abgn	0023150CD28C	PD9622ANXH
Corporation	022/11/2111/1	PCIe card	0023130CD20C	1 D) 022/11 (/11)

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

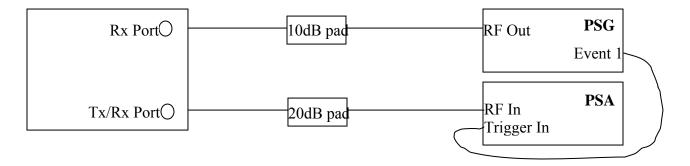
No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following support equipment was used for spurious radiated emissions and all rf port measurements:

Company	Model	Description	Serial Number	FCC ID
Intel	MC/MMC Adapter PCB00153	Test fixture	AOI151034	N/A
Dell	-	Laptop PC	Prototype	None
Topward	-	DC Supply		N/A

File: R79754 Page 6 of 13


EUT INTERFACE PORTS

The I/O cabling configuration for spurious radiated emissions and all rf port measurements was:

Dont	Connected To	Cable(s)			
Port	Connected 10	Description	Shielded or Unshielded	Length(m)	
Test fixture USB	Laptop USB	USB Cable	Shielded	8.0	
Test fixture 3.3Vdc	Bench supply	2-wire	Unshielded	0.4	

EUT OPERATION

During transmitter tests the EUT was being controlled by the Intel VATU tool and an external signal generator (PSG shown below) to operate in a transmit mode on the top, bottom or center channel as required. The signal generator was programmed to transmit a test vector pattern that was sent to the second receive port on the EUT. This test vector triggered a response from the EUT, at a data rate and modulation determined by the specific test vector (for these tests all EUT transmissions used 64 QAM modulation). The signal generator also provided a gate signal for the spectrum analyzer (PSA below) via the event output. This gating signal was used to ensure that the spectrum analyzer would sweep only when the EUT was transmitting. Nominal channel bandwidths of 5MHz and 10MHz were evaluated.

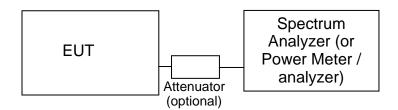
Radiated measurements were made with the transmit port of the EUT terminated into 50-ohms. Gating was not used for the radiated and conducted spurious measurements, rather the spectrum analyzer was set for a peak detector and used in a maximum hold mode to ensure all emissions were captured.

File: R79754 Page 7 of 13

TEST SITE

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 684 West Maude Ave, Sunnyvale, CA 94085-3518. Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registration Numbers		Logation	
Site	FCC	Canada	Location	
			684 West Maude Ave,	
SVOATS #2	90593	IC 2845A-2	Sunnyvale	
			CA 94085-3518	

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to

File: R79754 Page 8 of 13

Test Report Report Date: June 28, 2010

RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power was measured using the channel power feature of the spectrum analyzer and an rms detector. Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the un-modulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

File: R79754 Page 9 of 13

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

File: R79754 Page 10 of 13

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements. Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

File: R79754 Page 11 of 13

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R79754 Page 12 of 13

SAMPLE CALCULATIONS - RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S-(E_S-E_{EUT)}}$$

$$P_S = G + P_{in}$$

where:

and

P_S = effective isotropic radiated power of the substitution antenna (dBm)

Pin = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

File: R79754 Page 13 of 13

Appendix A Test Equipment Calibration Data

Radio Antenna Port (F	Radio Antenna Port (Power and Spurious Emissions), 21-Jun-10					
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due		
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non- Program	8563E	284	1/29/2011		
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011		
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	9/8/2011		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	8/19/2010		
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	5/17/2011		
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010		
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1595	7/23/2010		
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	5/4/2012		
Hewlett Packard	Head (Inc W1-W4, 1946, 1947) Purple	84125C	1772	5/6/2011		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	9/17/2010		
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011		
Agilent	PSG Vector Signal Generator (250kHz - 20GHz)	E8267C	1877	3/24/2011		
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	1/6/2011		

File: R79754 Appendix Page 1 of 2

Appendix B Test Data

T79723 18 Pages

File: R79754 Appendix Page 2 of 2

Ellio	tt Ecompany	El	MC Test Data
Client:	Intel Corporation	Job Number:	J79662
Model:	622ANXHMW	T-Log Number:	T79723
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC Part 15	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Model

622ANXHMW

Date of Last Test: 6/22/2010

T79723 Cover Page 1 of 18

	Elliott An WAS company		o Test Data
Client:	Intel Corporation	Job Number:	J79662
Model	622ANXHMW	T-Log Number:	T79723
iviouei.	022ΑΙΝΛΠΙΝΙΝ	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15	Class:	N/A

FCC Part 27

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Summary of Results

Sample #1: WFM: 0023150CD28C; VATU Tool Version 5.0.0.1

Run #	Bandwidth	Modulation	Test Performed	Limit	Pass / Fail	Result / Margin
1	5MHz	64QAM	Output Power	2W eirp for mobile	Pass	24.3 dBm
1	10MHz	64QAM	Output Power	2W for user stations	Pass	23.6 dBm
				2.525MHz from Fc= -13.0dBm		-21.0 dBm
1	5MHz	64QAM	Spectral Mask	4.0MHz from Fc= -13.0dBm	Pass	-14.3 dBm
				8.5MHz from Fc= -25.0dBm		-31.7 dBm
				5.05MHz from Fc= -13.0dBm		-23.0 dBm
1	10MHz	64QAM	Spectral Mask	6.5MHz from Fc= -13.0dBm	Pass	-18.2 dBm
				11.0MHz from Fc= -25.0dBm		-26.2 dBm
2	5MHz	64QAM	Spurious Emissions	-25.0dBm	Pass	All > 20dB below the
2	10MHz	64QAM	(Conducted)	-23.0dbiii	Pass	limit
2	5MHz	64QAM	99% Occupied	N/A	-	4.69 MHz
2	10MHz	64QAM	Bandwidth	IV/A	-	9.29 MHz
5	5MHz	64QAM	Spurious emissions	-25.0dBm	Pass	-35.3dBm @
5	10MHz	64QAM	(radiated)	-25.0dBm	1 455	7775.6MHz (-10.3dB)

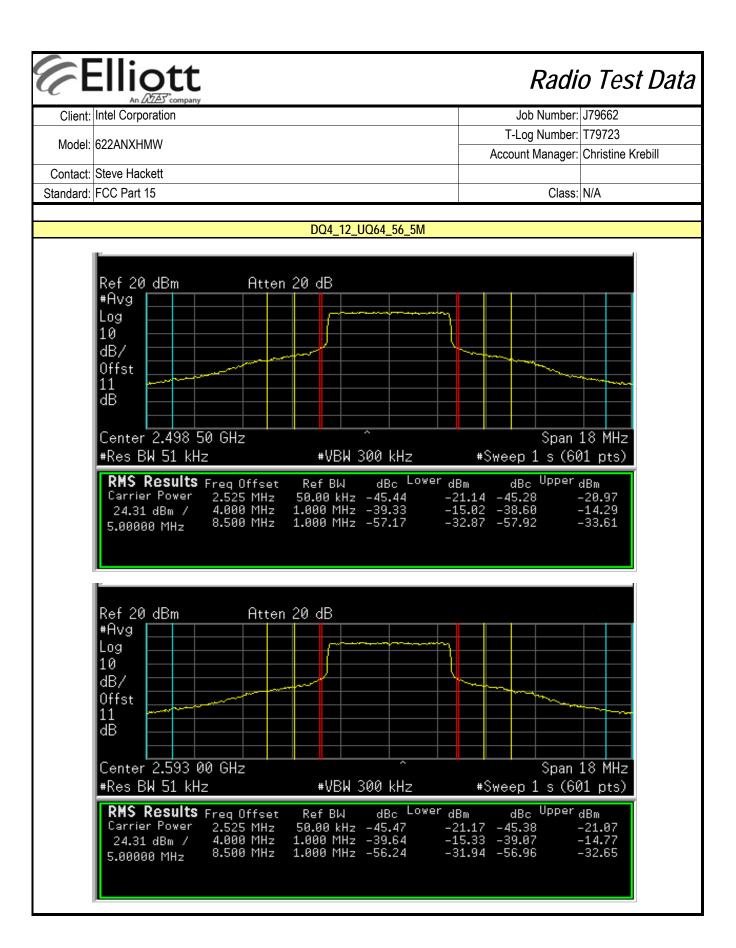
General Test Configuration

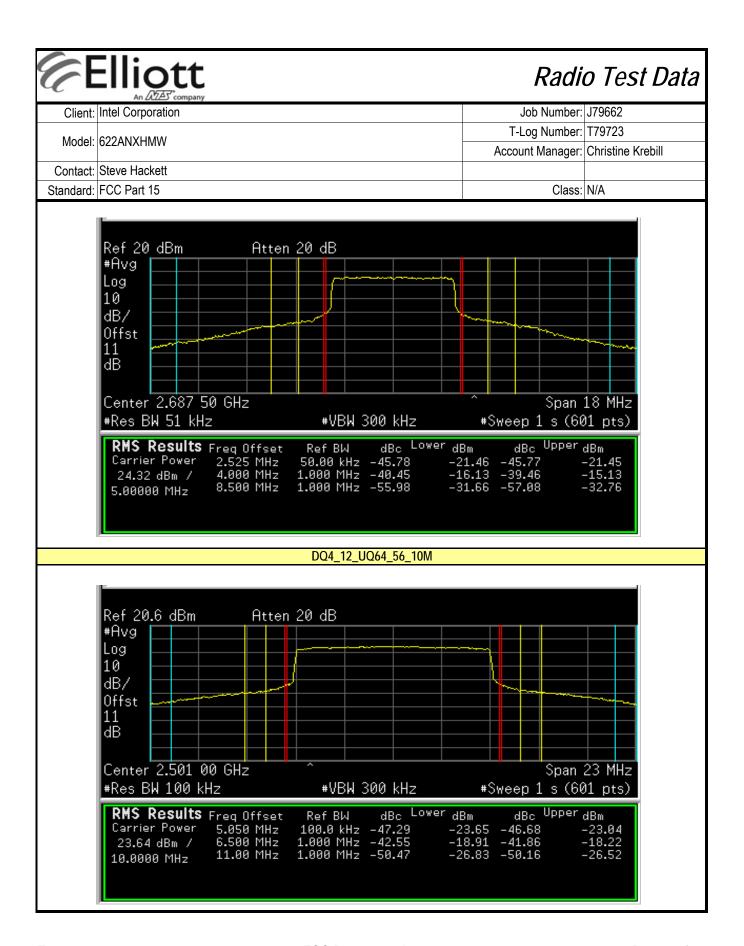
With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was placed inside an environmental chamber.

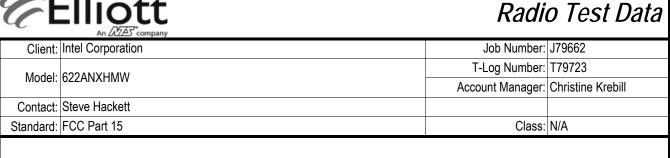
Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

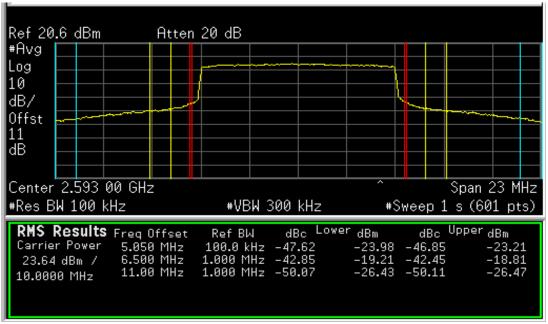
Ambient Conditions: Temperature: 19 °C

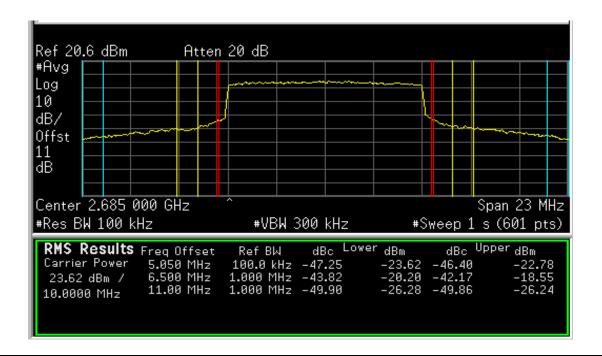
Rel. Humidity: 38 %


Modifications Made During Testing


No modifications were made to the EUT during testing

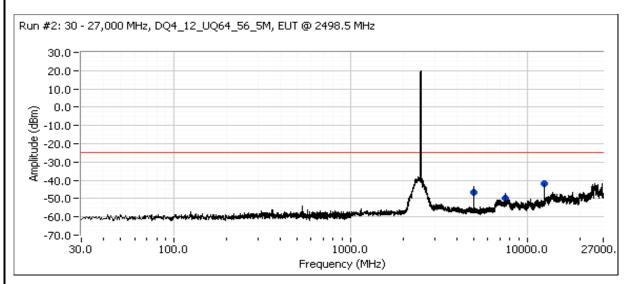

Deviations From The Standard

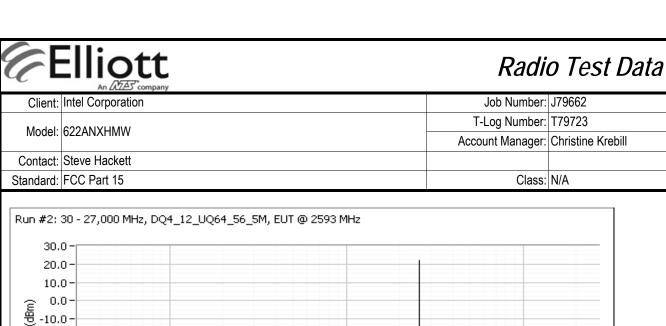

No deviations were made from the requirements of the standard.

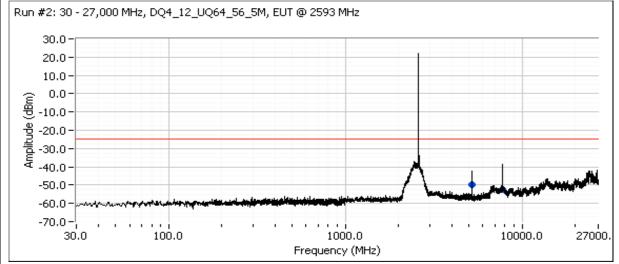

	Elliott						Radi	o Test	Data
Client:	Intel Corporation					,	Job Number:	J79662	
						T-l	Log Number:	T79723	
Model:	622ANXHMW					Accou	unt Manager:	Christine Kr	ebill
Contact:	Steve Hackett								
Standard:	FCC Part 15						Class:	N/A	
Run #1: 0	utput Power and Mask								
Date:	6/21/2010	Engineer:	David W. Ba	are	Location:	Environ #1			
	Cable Loss: 1.0 dB			Attenuator:			Total Loss:	11.0 dB	
	Cable ID(s): EL	435	Att	enuator IDs:	18	47			
Signal band	<i>dwidth:</i> 5	MHz	Original po	wer = 24.3 c	IBm				
ATT			t Power			plitude and	limit at each	step) dBm	
Setting ²	Frequency (MHz)	·		Ref BW	= 50 kHz `	• *	= 1 MHz		= 1 MHz
	, , ,	(dBm) ¹	mW	2.525MH	z from Fc	4MHz	from Fc	8.5MHz	from Fc
PSG Wavef	form file: DQ4_12_UQ64								
20.75	2498.5	24.31	269.8	-21.0	-13.0	-14.3	-13.0	-32.9	-25.0
19.75	2593.0	24.31	269.8	-21.1	-13.0	-14.8	-13.0	-31.9	-25.0
17.50	2687.5	24.32	270.4	-21.5	-13.0	-15.1	-13.0	-31.7	-25.0
Signal ban		MHz	Original po					• • • • • • • • • • • • • • • • • • • •	
ATT			t Power			nolitude and	limit at each	sten) dBm	
Setting ²	Frequency (MHz)	Catpa		Ref RW :	= 100 kHz	• *	= 1 MHz	. ' /	= 1 MHz
Setting	i requericy (ivii iz)	(ID.) 1	mW		z from Fc		from Fc		from Fc
DCC W	iama fila DO4 10 HO74	(dBm) ¹	IIIVV	3.03WH I	Z IIOIII FC	0.51011 12	. IIOIII FC	I HVII IZ	IIOIII FC
	orm file: DQ4_12_UQ64	1	004.0	00.0	40.0	10.0	40.0	00.5	05.0
21.25	2501.0	23.64	231.2	-23.0	-13.0	-18.2	-13.0	-26.5	-25.0
20.00	2593.0	23.64	231.2	-23.2	-13.0	-18.8	-13.0	-26.4	-25.0
18.00	2685.0	23.60	229.1	-23.6	-13.0	-18.6	-13.0	-26.2	-25.0
Note 1:	Output power measured least 3xRB (for 5Mhz chadetector and power aver ensure it only swept when period where the EUT is	annels RB=5 aging are er in the EUT w not transmit	11kHz, VB = 3 abled to mea as transmittir ting at full pov	300kHz and factorial sure the avering to ensure wer.	or 10MHz cherage power of the measure	annels RB= over 100 swe ment and ma	100kHz, VB= eeps. The ar ask measure	300kHz). A s alyzer was g	ample ated to
Note 2:	Power setting - the softw								
Note 3:	Mask measurements are + 5.5 MHz). The analyze from the transition point power across the referer	r is configure and integrate	ed to make the the the	e measurem cross the ref	ents at a free ference band	quency offse dwidth arou	t by 1/2 of the	e reference b	andwidth
Note 4:	The limit is taken from Fithan 43 + 10 log (P) dB a bandwidth required is 1M measurement bandwidth resolution bandwidth pro 1 percent of emission ba	CC Part 27.5 at the channe MHz, except shall be at I vided the me	53 (I)(4) for meel edge and 5 for the 1 MHz east one perceasured powers	obile digital s 5 + 10 log (F bands imme cent of the e	stations. The P) dB at 5.5 Mediately outsi mission band	attenuation IHz from the de and adjac width. The r	factor shall be channel edgoent to the freezent to the freezent also	ges. The mea equency bloc allows for a	k where the narrower
Note 5:	See second plot for each			t fails the ma	sk requireme	ent at target	power.		
			, , ,		,	<u>J</u> - 1			

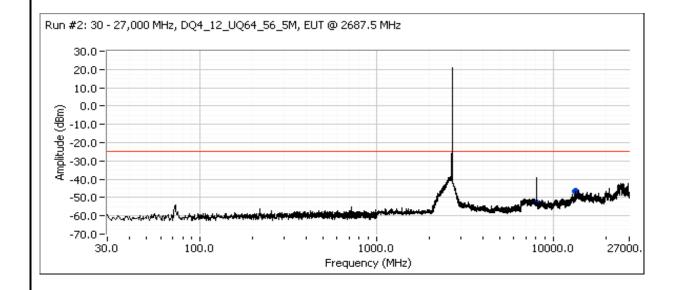
Radio Test Data

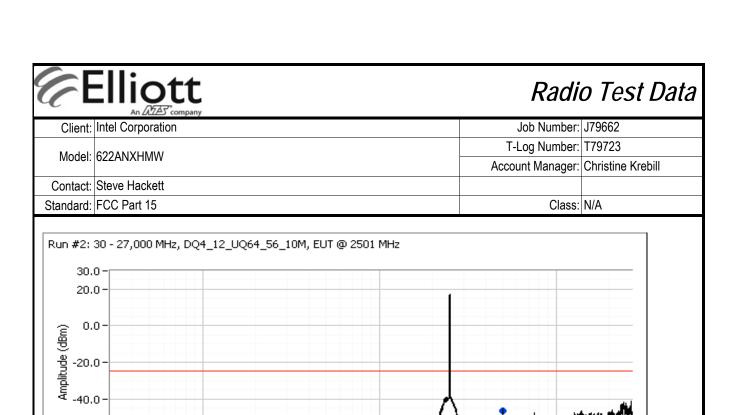
Client	Intel Corporation	Job Number:	170662
Cilent.	inter Corporation	JOD Nullibel.	37 9002
Modal:	622ANXHMW	T-Log Number:	T79723
wodei.	OZZAIVAI IIVIVV	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15	Class:	N/A

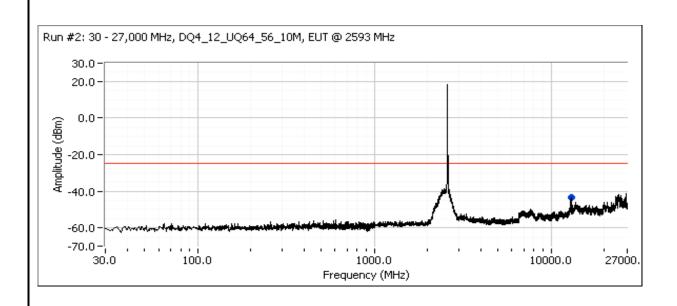

Run #2: Out of Band Spurious Emissions, Conducted


Date of Test: 6/21/2010
Test Engineer: David W. Bare
Test Location: Environ #1


Mode/Waveform	Frequency (MHz)	Limit	Result
DQ4_12_UQ64_56_10M	2501.0	-25 dBm	Pass
DQ4_12_UQ64_56_10M	2593.0	-25 dBm	Pass
DQ4_12_UQ64_56_10M	2685.0	-25 dBm	Pass
DQ4_12_UQ64_56_5M	2498.5	-25 dBm	Pass
DQ4_12_UQ64_56_5M	2593.0	-25 dBm	Pass
DQ4_12_UQ64_56_5M	2687.5	-25 dBm	Pass


The limit is taken from FCC Part 27.53 (I)(4) -55 + 10 log (P)


Measurements are made with RB=VB=1MHz, peak detector and max hold. Signals above the limit using these settings are remeasured with RB=VB=1MHz, sample detector and rms averaging enabled, analyzer gated to only sweep when the device is transmitting. The EUT was set to the power level determined in Run #1 for each mode and frequency.

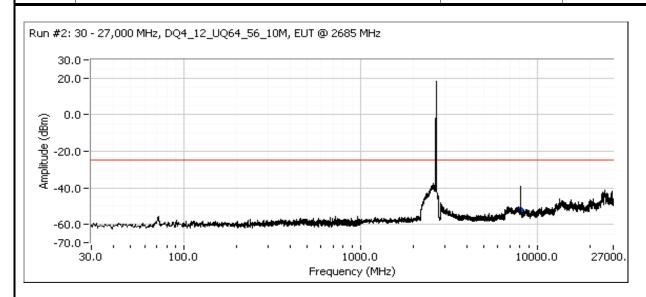


1000.0

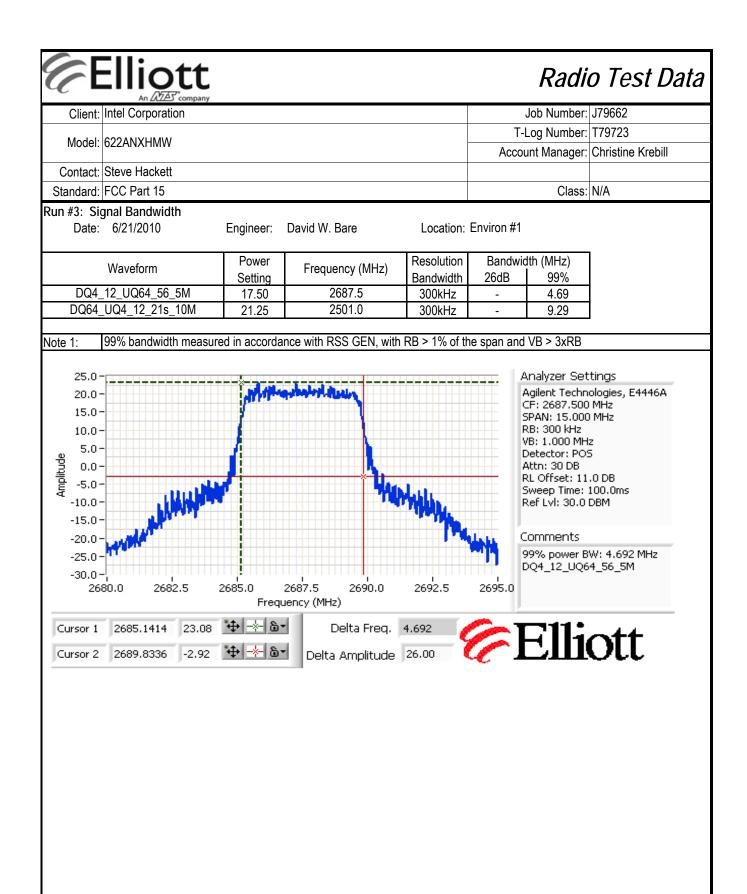
Frequency (MHz)

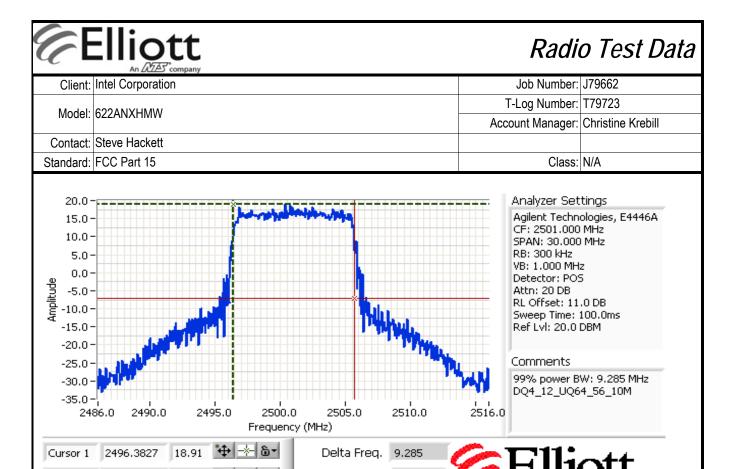
10000.0

27000.


-70.0 -¦

100.0


Radio Test Data


	An DOZZ company		
Client:	Intel Corporation	Job Number:	J79662
Model	622ANXHMW	T-Log Number:	T79723
Model.	02ZAIVANIVIVV	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15	Class:	N/A

Peak readings

Frequency	Level		Par	t 27	Detector	Comments
MHz	$dB\mu V$	Port	Limit	Margin	QP/Ave	
8063.060	-52.9	RF Port	-25.0	-27.9	Peak	DQ4_12_UQ64_56_5M, EUT @ 2687.5 MHz
13439.690	-46.6	RF Port	-25.0	-21.6	Peak	DQ4_12_UQ64_56_5M, EUT @ 2687.5 MHz
5185.970	-51.0	RF Port	-25.0	-26.0	Peak	DQ4_12_UQ64_56_5M, EUT @ 2593 MHz
7778.600	-51.9	RF Port	-25.0	-26.9	Peak	DQ4_12_UQ64_56_5M, EUT @ 2593 MHz
4996.600	-46.7	RF Port	-25.0	-21.7	Peak	DQ4_12_UQ64_56_5M, EUT @ 2498.5 MHz
7496.030	-49.8	RF Port	-25.0	-24.8	Peak	DQ4_12_UQ64_56_5M, EUT @ 2498.5 MHz
12490.060	-41.6	RF Port	-25.0	-16.6	Peak	DQ4_12_UQ64_56_5M, EUT @ 2498.5 MHz
4998.480	-46.6	RF Port	-25.0	-21.6	Peak	DQ4_12_UQ64_56_10M, EUT @ 2501 MHz
12964.790	-43.3	RF Port	-25.0	-18.3	Peak	DQ4_12_UQ64_56_10M, EUT @ 2593 MHz
8056.030	-52.7	RF Port	-25.0	-27.7	Peak	DQ4_12_UQ64_56_10M, EUT @ 2685 MHz

Delta Amplitude 26.00

Run #4: Out of Band Spurious Emissions, Radiated

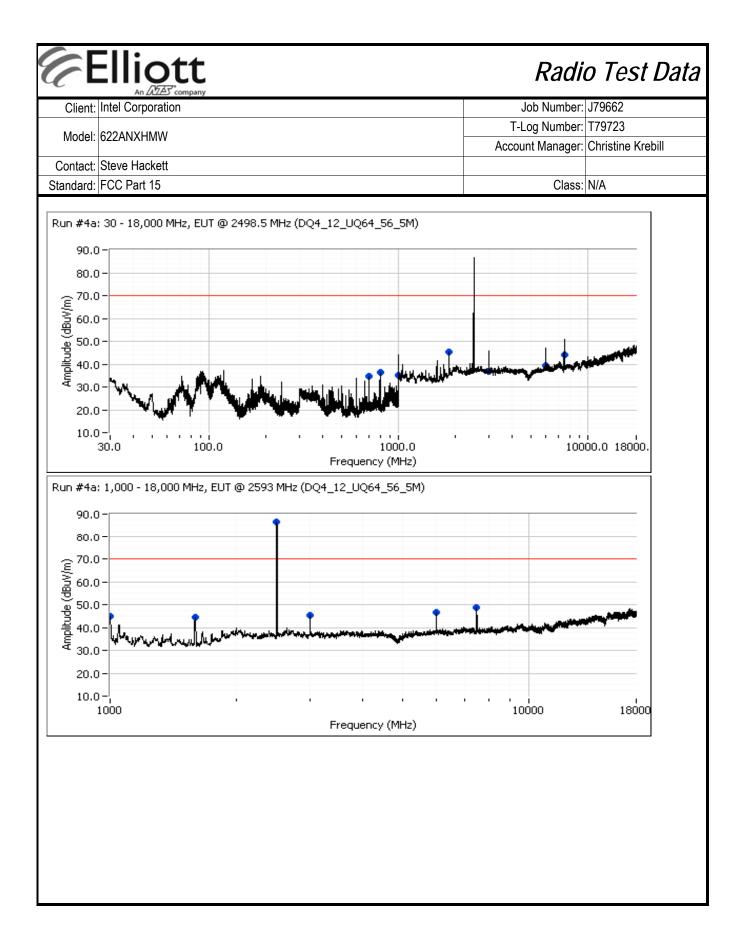
2505.6672

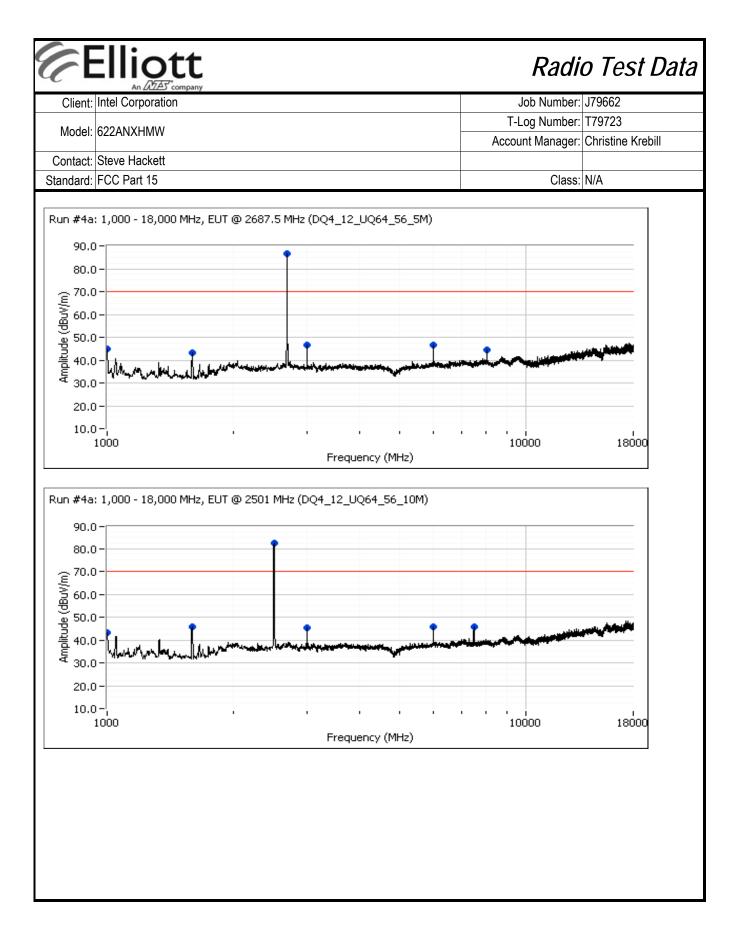
Cursor 2

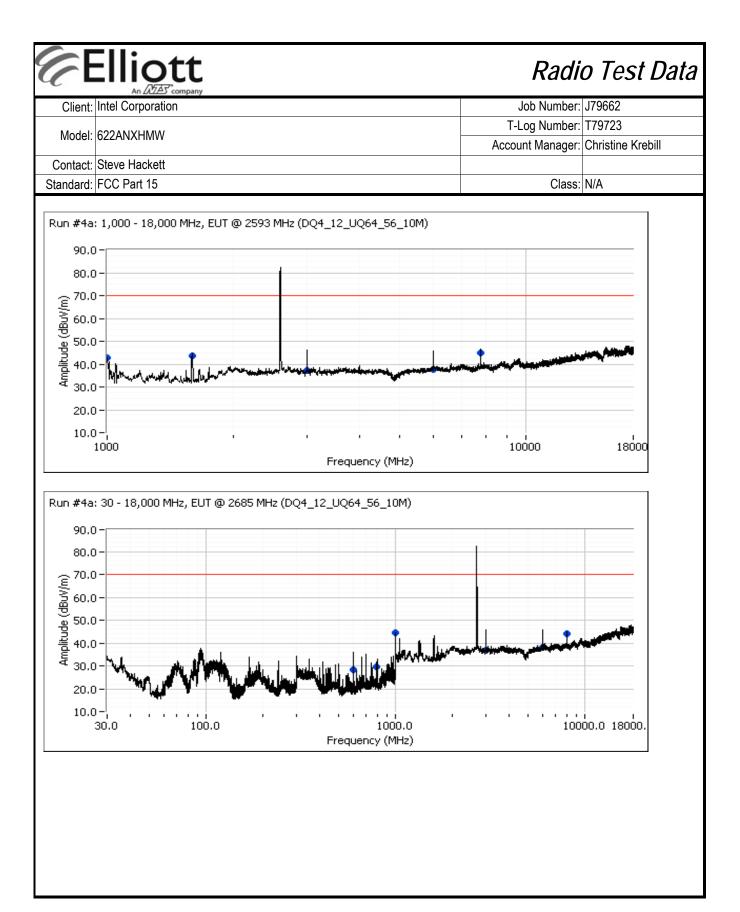
The limit is taken from FCC Part 27.53 (I)(4) -55 + 10 log (P)

-7.09

Conducted limit (dBm): -25

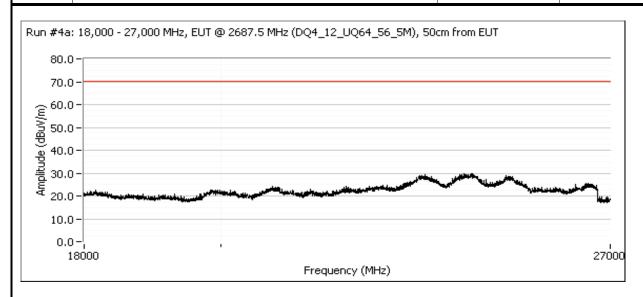

Approximate field strength limit @ 3m: 70.2


Run #4a - Preliminary measurements - chamber scans


Date: 6/21/2010 Engineer: David W. Bare Location: Chamber #2

Frequency	Level	Pol	FCC F	Part 27	Detector	Azimuth	Height	Comments	Channel
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7779.060	48.7	V	70.2	-21.5	Peak	150	1.7	DQ4_12_UQ64_56_5M	2593
3000.070	46.8	V	70.2	-23.4	Peak	96	1.7	DQ4_12_UQ64_56_5M	2687.5
6000.070	46.5	V	70.2	-23.7	Peak	113	1.7	DQ4_12_UQ64_56_5M	2687.5
6000.010	46.4	V	70.2	-23.8	Peak	109	1.7	DQ4_12_UQ64_56_5M	2593
6000.070	45.7	V	70.2	-24.5	Peak	119	1.7	DQ4_12_UQ64_56_10M	2501
7503.070	45.7	V	70.2	-24.5	Peak	168	1.7	DQ4_12_UQ64_56_10M	2501
1598.290	45.6	V	70.2	-24.6	Peak	203	1.7	DQ4_12_UQ64_56_10M	2501
3000.070	45.5	V	70.2	-24.7	Peak	89	1.7	DQ4_12_UQ64_56_5M	2593
3000.070	45.5	V	70.2	-24.7	Peak	93	1.7	DQ4_12_UQ64_56_10M	2501

Client:	Intel Corpora	Company tion						Job Number: J79662	
Model	622ANXHMV	M					Ţ-	-Log Number: T79723	
wodei.	OZZANAI IIVIV	V					Acco	ount Manager: Christine Kre	bill
Contact:	Steve Hacket	tt							
Standard:	FCC Part 15							Class: N/A	
Dun #4a D	Preliminary m	oacuromon	te chamba	or coanc coa	\t'				
Kuii #4a - P	Tellillillal y III	easuremen			п				
Frequency	Level	Pol		Part 27	Detector	Azimuth	Height	Comments	Channel
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1850.080	45.3	V	70.2	-24.9	Peak	175	1.7	DQ4_12_UQ64_56_5M	2498.5
1000.000	45.1	V	70.2	-25.1	Peak	145	1.7	DQ4_12_UQ64_56_5M	2687.5
1000.050	45.0	Н	70.2	-25.2	Peak	165	1.7	DQ4_12_UQ64_56_5M	2593
1000.000	44.9	Н	70.2	-25.3	Peak	151	1.7	DQ4_12_UQ64_56_5M	2498.5
7779.060	44.9	V	70.2	-25.3	Peak	151	1.7	DQ4_12_UQ64_56_10M	2593
8062.500	44.5	H	70.2	-25.7	Peak	359	1.7	DQ4_12_UQ64_56_5M	2687.5
1000.000	44.5	Н	70.2	-25.7	Peak	152	1.7	DQ4_12_UQ64_56_10M	2685
1598.290	44.4	٧	70.2	-25.8	Peak	112	1.7	DQ4_12_UQ64_56_5M	2593
8055.050	44.2	V	70.2	-26.0	Peak	48	1.7	DQ4_12_UQ64_56_10M	2685
7495.550	44.0	V .	70.2	-26.2	Peak	151	1.7	DQ4_12_UQ64_56_5M	2498.5
1598.290	43.6	V	70.2	-26.6	Peak	206	1.7	DQ4_12_UQ64_56_10M	2593
1000.000	43.4	Н	70.2	-26.8	Peak	139	1.7	DQ4_12_UQ64_56_10M	2501
1598.200	43.2	V	70.2	-27.0	Peak	67	1.7	DQ4_12_UQ64_56_5M	2687.5
1000.000	42.7	V	70.2 70.2	-27.5	Peak	120	1.7	DQ4_12_UQ64_56_10M	2593
6000.610 6000.660	39.2 38.2	V	70.2	-31.0 -32.0	Peak	354 277	1.7 1.7	DQ4_12_UQ64_56_5M DQ4_12_UQ64_56_10M	2498.5 2685
6000.010	37.6	H	70.2	-32.0 -32.6	Peak				2593
3000.010	37.0	V	70.2	-32.0	Peak Peak	9 235	1.7 1.7	DQ4_12_UQ64_56_10M DQ4_12_UQ64_56_10M	2593
3000.050	37.1	H	70.2	-33.2	Peak	65	1.7	DQ4_12_UQ64_56_5M	2498.5
3000.350	37.0	V	70.2	-33.2	Peak	344	1.7	DQ4_12_UQ64_56_10M	2685
797.916	36.5	H	70.2	-33.7	Peak	91	1.7	DQ4_12_0Q64_56_10M	2498.5
699.539	34.5	V	70.2	-35.7	Peak	179	1.7	DQ4_12_UQ64_56_5M	2496.5
798.099	29.7	H	70.2	-40.5	Peak	82	1.7	DQ4_12_UQ64_56_10M	2685
699.700	28.1	H	70.2	-40.5 -42.1	Peak	141	1.7	DQ4_12_UQ64_56_10M	2685
077.700	20.1	11	10.2	-42.1	reak	141	1.7	DQ4_12_0Q04_30_10W	2005
	The field stre	ngth limit in	the tables al	bove was ca	culated from	the erp/eirp I	imit detailed	d in the standard using the	free space
lote 1:	propagation 6	equation: E=	=√(30PG)/d.	This limit is	conservative -	it does not o	consider the	e presence of the ground pla	ane and,
iole 1.	for erp limits,	the dipole of	jain (2.2dBi)	has not bee	n included. T	he erp or eir	o for all sigr	nals with less than 20dB of	margin
	relative to this	s field streng	gth limit is de	etermined us	ing substitutio	n measurem	ents.		
lote 2:	Measuremen	ts are made	with the ant	tenna port te	rminated.				
lote 3:	Based on the	preliminary	measureme	ents, the emi	ssions below	1 GHz are ve	ery low and	unrelated to the transmit from	equency
iole J.								stricted to 1-18 GHz.	
	Based on the	near field s	can from 18	-27 GHz, the	emissions at	oove 18 GHz	are so low	that even at 50cm from the	EUT
lote 4:	nothing was	detected ab	ove the noise	e floor of the	test equipme	nt, therefore	scans of th	e additional channels in each	ch
l.			essary for th						



Radio Test Data

	An Dizzo Company		
Client:	Intel Corporation	Job Number:	J79662
Model	622ANXHMW	T-Log Number:	T79723
Model.	02ΖΑΙΝΛΠΙΝΙΝ	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15	Class:	N/A

Run #4b: - OATS EUT Field Strength Measurements and Substitution Measurements

Date: 6/21/2010 Engineer: Rafael Varelas Location: SV OATS #2

EUT Field Strength

Frequency	Level	Pol	FCC F	Part 27	Detector	Azimuth	Height	Comments	Channel
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7775.580	64.3	V	70.2	-5.9	PK	152	1.4	DQ4_12_UQ64_56_5M	2593
1596.320	55.5	V	70.2	-14.7	PK	219	1.0	DQ4_12_UQ64_56_10M	2501
3000.150	52.7	V	70.2	-17.5	PK	113	1.0	DQ4_12_UQ64_56_10M	2501
3000.120	52.5	V	70.2	-17.7	PK	116	1.0	DQ4_12_UQ64_56_5M	2687.5
3000.450	51.8	V	70.2	-18.4	PK	113	1.1	DQ4_12_UQ64_56_5M	2593
6000.710	51.4	V	70.2	-18.8	PK	127	1.0	DQ4_12_UQ64_56_10M	2501
6000.730	51.3	V	70.2	-18.9	PK	130	1.0	DQ4_12_UQ64_56_5M	2593
6000.530	50.5	V	70.2	-19.7	PK	130	1.0	DQ4_12_UQ64_56_5M	2687.5
7506.270	48.5	V	70.2	-21.7	PK	211	1.0	DQ4_12_UQ64_56_10M	2501

The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin relative to this field strength limit is determined using substitution measurements.

Note 2: Measurements are made with the antenna port terminated.

Client:	Intel Corpora	ation						Job Number:	J79662	
	000 4 5 12/1 15 41						T-l	_og Number:	T79723	
Model:	622ANXHM	VV					Accou	ınt Manager:	Christine Kre	ebill
Contact:	Steve Hacke	ett								
Standard:	FCC Part 15)						Class:	N/A	
ertical requency	Substitu	ution measur	ements	Site	EU	Γ measureme	ents	eirp Limit	erp Limit	Margir
/ertical	Cubatit	itian magazin	amanta	0:4-		F magazirami	anta	-i 1 ii4		Manada
	Pin ¹	Gain ²	FS^3	Factor ⁴	FS ⁵	eirp (dBm)	erp (dBm)	dBm	dBm	dB
MHz					_	,	,			
MHz 7775.580		12.0	95.9	97.4	64.3	-33.1	-35.3		-25.0	-10.3
	-13.5		95.9 92.0	97.4 97.1	64.3 55.5		-35.3 -43.8		-25.0 -25.0	-10.3 -18.8
7775.580	-13.5 -11.0	12.0				-41.6				
7775.580 1596.320	-13.5 -11.0 -11.6	12.0 5.9	92.0	97.1	55.5	-41.6	-43.8		-25.0	-18.8
7775.580 1596.320 3000.150 6000.710	-13.5 -11.0 -11.6 -12.9	12.0 5.9 6.3 9.9	92.0 92.4 93.7	97.1 97.7 96.7	55.5 52.7 51.4	-41.6 -45.0	-43.8 -47.2		-25.0 -25.0	-18.8 -22.2
7775.580 1596.320 3000.150 6000.710	-13.5 -11.0 -11.6 -12.9	12.0 5.9 6.3 9.9	92.0 92.4 93.7 Bm) to the su	97.1 97.7 96.7 ubstitution an	55.5 52.7 51.4	-41.6 -45.0	-43.8 -47.2		-25.0 -25.0	-18.8 -22.2
7775.580 1596.320 3000.150 6000.710 lote 1: lote 2:	-13.5 -11.0 -11.6 -12.9 Pin is the inp	12.0 5.9 6.3 9.9 out power (dB) gain (dBi) for	92.0 92.4 93.7 3m) to the suthe substitut	97.1 97.7 96.7 ubstitution anion antenna.	55.5 52.7 51.4 tenna	-41.6 -45.0 -45.3	-43.8 -47.2		-25.0 -25.0	-18.8 -22.2
7775.580 1596.320 3000.150	-13.5 -11.0 -11.6 -12.9 Pin is the inp Gain is the gFS is the fiel	12.0 5.9 6.3 9.9 out power (dB) gain (dBi) for d strength (d	92.0 92.4 93.7 Bm) to the su the substitut (BuV/m) mea	97.1 97.7 96.7 ubstitution an	55.5 52.7 51.4 tenna	-41.6 -45.0 -45.3	-43.8 -47.2 -47.5	dRm	-25.0 -25.0	-18.8 -22.2