

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel[®] Centrino[®] Advanced-N 6230 (model 62230HMW)

IC CERTIFICATION #:	1000M-62230ANH and 1000M-62230ANHU
FCC ID:	PD962230ANH and PD962230ANHU
APPLICANT:	Intel Corporation 100 Center Point Circle Suite 200 Columbia, SC 29210

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-7

REPORT DATE: October 11, 2010

FINAL TEST DATES: September 20, 21, 28, and 30, 2010

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-11-2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHZ, LESS THAN 75 CHANNELS)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
ADDITIONAL MEASUREMENTS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	13
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	15
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – FHSS SYSTEMS	20
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	20
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	3

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FHSS test procedure DA 00-0705A1, March 2000

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) complied with the requirements of the following regulations: Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, less than 75 c	hannels)
--	----------

FCC	RSS		Measured Value /	I / D	D 1/
Rule Part	Rule Part	Description	Comments	Limit / Requirement	Result
15.247	RSS 210	20dB Bandwidth	1358 kHz	Channel spacing >	Complies
(a) (1)	A8.1 (1)	Channel Separation	1000 kHz	2/3rds 20dB BW	complies
15.247	RSS 210	Number of Channels	Min: 20	15 or more	Complies
(a) (1) (ii)	A8.1 (4)		Max: 79		compiles
15.247	RSS 210	Channel Dwell Time	< 0.4 second within a	< 0.4 second within a	
(a) (1) (ii)	A8.1 (4)	(average time of	period of 0.4 x	period of 0.4 x	Complies
(u) (1) (1)	110.1 (1)	occupancy)	number of channels	number of channels	
			The system uses the		
15.247	RSS 210		Bluetooth algorithm	All channels shall,	
(a)(1)	A8.1 (1)	Channel Utilization	and, therefore, meets	on average, be used	Complies
(u) (1)	110.1 (1)		all requirements for	equally	
			channel utilization.		
15.247 (b)	RSS 210		Basic rate: 0.004W	0.105.111	
(3)	A8.4 (2)	Output Power	EDR: 0.003W	0.125 Watts	Complies
(-)		<u> </u>	$EIRP = 0.009 W^{Note 1}$		
15.247(c)	RSS 210	Spurious Emissions –	All spurious	< -20dBc	Complies
	<u>A8.5</u>	30MHz – 25GHz	emissions < -20dBc		r
15.247(c) /	RSS 210	Radiated Spurious	51.3dBµV/m @	15.207 in restricted	Complies
15.209	A8.5	Emissions	2483.5MHz	bands, all others	(-2.7dB)
	Table 2, 3	30MHz – 25GHz		< -20dBc	(=:/ ==)
15.247	RSS 210	Receiver bandwidth	Refer to operational	Shall match the	Complies
(a) (1)	A8.1(2)		description, page 34	channel bandwidth	compiles
Note 1: EIRP	calculated using	g antenna gain of 3.2dBi.			

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique	Integral or unique connector required	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	41.2dBµV/m @ 662.52MHz	Refer to page 19	Complies (-4.8dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	40.6dBµV @ 14.758MHz	Refer to page 18	Complies (-9.4dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Not applicable – the output power is below the 60/f threshold.		
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to pages 11 and 12 of the user's manual	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	Basic Rate: 957 kHz EDR: 1231 kHz	Information only	N/A

ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

	DTS (Wi-Fi in 2.4GHz and 5.7GHz bands) and Bluetooth						
FCC Rule RSS Description Measured Value / Comments Limit / Requirement Result (margin)							
15.2109	RSS 210	Spurious emissions	49.3dBµV/m @ 2320.0MHz	15.209 in restricted bands, all others < -20dBc	Complies (-4.7dB)		

	LELAN/NII (Wi-Fi in 5150-5350/5470-5725MHz bands) and Bluetooth						
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)		
15.2109	RSS 210	Spurious emissions	45.1dBµV/m @ 11199.8MHz	15.209 in restricted bands, all others < -20dBc	Complies (-8.9dB)		
	Signal was actually second harmonic of 802.11 signal and not an inter-modulation product, but this was the highest level signal observed with both Bluetooth and Wi-Fi transmitters operational simultaneously.						

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) is a PCIe half mini card form factor Bluetooth/IEEE 802.11a/b/g/n wireless network adapter. The card supports MIMO (2x2) for 802.11n modes and MISO (1x2) for 802.11a/b/g modes. Bluetooth only operation mode is a 1x1. When Bluetooth is operational then 802.11b/g/n modes operate as SISO (1x1). 802.11a/n modes still operate as MIMO (2x2) with Bluetooth operational.

The card is sold under two different FCC/IC ID numbers (see table below). The ID's ending in "U" are intended to allow user install conditions and host systems must be provided with a BIOS locking feature that prevents installation of unauthorized devices.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 13, 2010 and tested on September 20, 21, 28, and 30, 2010. The EUT consisted of the following component(s):

Manufacturer	Model	Description	MAC Address	FCC ID and Canada UPN
	62230ANHMW	PCIe Half Mini Card form factor Bluetooth / IEEE	00150079AD10	PD962230ANH PD962230ANHU 1000M-62230ANH
Intel Corporation	62230ANHU	802.11a/b/g/n wireless network adapter	00130079AD10	1000M-62230ANHU

ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel Corporation	-	Test Fixture	D9164573K0B0	N/A
DELL	Latitude D520	Laptop PC	HM9383J	N/A
Agilent	E3610A	DC Supply	MY4001740	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)			
Fort	То	Description	Shielded or Unshielded	Length(m)	
Laptop USB	Fixture USB	USB cable	Shielded		
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded		
DC Power	Fixture DC power	2-wire	unshielded		

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11a, 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used when evaluating the WiFi transmitter were the lowest data rates for each $802.11 \mod -1 Mb/s$ for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements – refer to test data for actual measurements).

The field strength at the band edges was evaluated for each mode and on each chain individually on the lowest and highest channels at the rated power for the channel under test. Where the power at the edge channels was lower than the power at the center channels additional measurements were made at the adjacent channels. MIMO and SISO modes were fully evaluated.

Spurious emissions measurements at frequencies away from the band edges were made at the highest power rating for the band in each mode. For 802.11n modes both chains were active (MIMO mode) but with each chain at the highest power rating per chain (MIMO power setting) to cover both modes of operation at the same time.

Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s.

Receiver spurious emissions in 802.11 modes were evaluated in single chain and multichain modes. Bluetooth receiver spurious were evaluated for single chain only as MISO is not supported for Bluetooth.

The PC was using the Intel test utility DRTU Version 1.2.12-0197 and the device driver was version 14.0.0.39.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
5100	FCC	Canada	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 7	A2LA accreditation	2845B-7	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

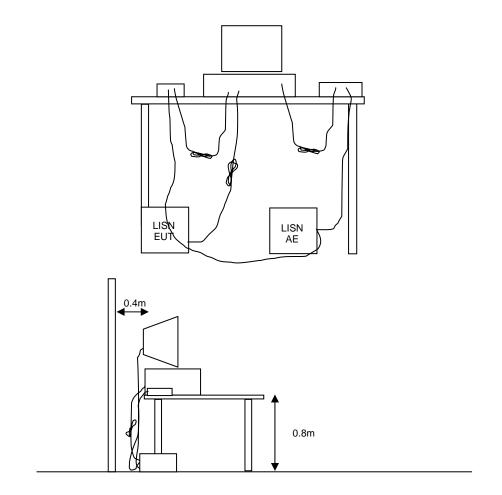
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

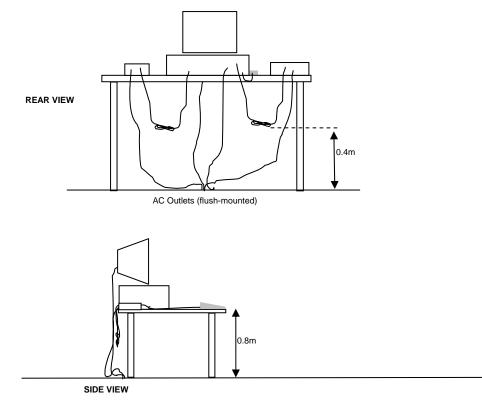

TEST PROCEDURES

EUT AND CABLE PLACEMENT

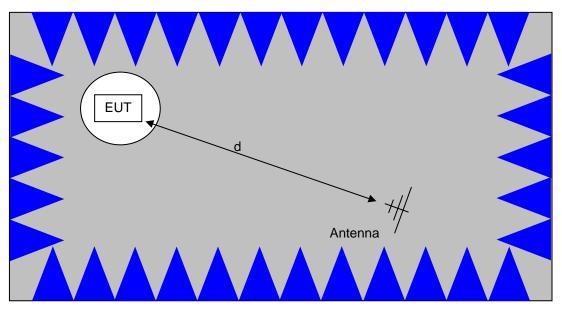
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

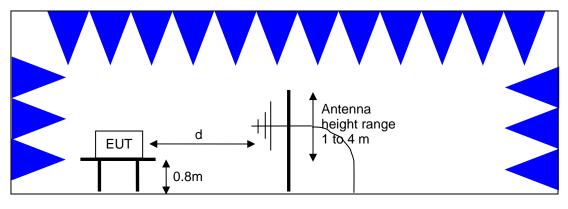

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 - 928	≥ 50	1 Watt (30 dBm)
902 - 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥ 75	1 Watt (30 dBm)
2400 - 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

DTS Spurs, 20-Sep-10			_	
<u>Manufacturer</u>	Description	<u>Model</u>	<u>Asset #</u>	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011
	26.5GHz			
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	1683	8/10/2011
	MHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
	Purple	. ,		
Radiated Emissions,	1000 - 26,500 MHz, 20-Sep-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011
	26.5GHz	01108	010	0/20/2011
Rohde & Schwarz	Power Sensor 100 uW - 10	NRV-Z53	1555	2/5/2011
	Watts	1111 200	1000	2/0/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm,	20dB, 10W, Type N	1556	2/5/2011
Runde & Schwarz	10W, DC-18 GHz		1550	2/3/2011
Miero Tropico		BRM50702-02	4000	0/40/0044
Micro-Tronics	Band Reject Filter, 2400-2500	BRI000702-02	1683	8/10/2011
Lloudett Deekend		05C4E (04405C)	4774	0/00/0044
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
		044050	4770	E 10/0044
Hewlett Packard	Head (Inc W1-W4, 1946, 1947)	84125C	1772	5/6/2011
	Purple			
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1787	12/4/2010
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/18/2011
	1000 - 40,000 MHz, 21-Sep-10		_	
<u>Manufacturer</u>	Description	Model	<u>Asset #</u>	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011
	26.5GHz			
Micro-Tronics	Band Reject Filter, 5725-5875	BRC50705-02	1728	2/1/2011
	MHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
	Purple			
Hewlett Packard	Head (Inc W1-W4, 1946, 1947)	84125C	1772	5/6/2011
	Purple	0200		0,0,2011
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/18/2011
		e, te er 1, p/11 2001	2100	0/10/2011
Conducted Emission	s - AC Power Ports, 28-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	2/3/2011
Solar Electronics	LISN	8028-50-TS-24-BNC	904	3/2/2011
FMCO		support	4000	0/40/0044
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz	8593EM	1319	10/19/2010
	- 22 GHz	F000 00	100-	4444 100 40
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	11/11/2010

Appendix A Test Equipment Calibration Data

Radiated Emissions,	30 - 1,000 MHz, 28-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	10/19/2010
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	11/11/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2234	5/19/2011
Radio Antenna Port (I	Power and Spurious Emissions), 2	28-Sep-10		
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	9/13/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
RE, Wi-Fi & BT Simul	aneous Tx, 30-Sep-10			
<u>Manufacturer</u>	Description	Model	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011

Appendix B Test Data

T80540 AC Conducted Emissions Radiated Spurious Emissions Antenna Port Measurements	30 Pages
T80540	
Radiated Spurious Emissions – simultaneous transmissions from Bluetooth and Wi-Fi transceivers	30 Pages

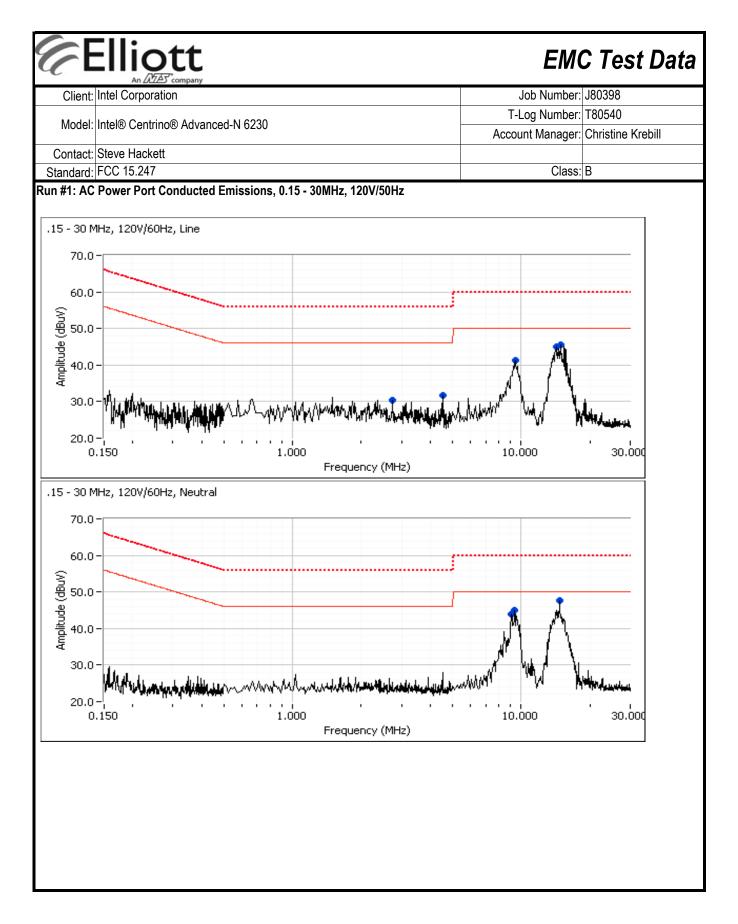
©Elliott

EMC Test Data

An LALIP	Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Intel Corporation

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

		2 company				C Test Data
Client:	Intel Corpora	tion		Job Number:		
Model: Intel® Centrino® Advanced-N 6230					Log Number:	T80540 Christine Krebill
Contact: Steve Hackett					unt manager.	
Standard: FCC 15.247					Class:	В
		Condu (Elliott Laboratories Frem	icted Emissions ont Facility, Semi-Anecl	noic Chamb	er)	
Test Spec	-	S The objective of this test session is to specification listed above.	perform final qualification	n testing of t	he EUT with r	espect to the
Te	Date of Test: 9 st Engineer: 1		Config. Used: Config Change: Host Unit Voltage	None		
General T	•					
The test fixtune the LISN.	ure was locate	ed on a wooden table inside the sem N was used for all local support equi Temperature:	oment. 21.9 °C	n from a ver	tical coupling	plane and 80cm from
The test fixtu he LISN. Ambient (Summary MAC Addre	ure was locate A second LISI Conditions of Results ss: 00150079	ed on a wooden table inside the sem N was used for all local support equin Temperature: Rel. Humidity NAD1A DRTU Tool Version 1.2.12	oment. 21.9 °C 42 % 0197 Driver version 14.			plane and 80cm from
The test fixtu he LISN. Ambient (Summary <u>MAC Addre</u> Ru	ure was locate A second LISI Conditions	ed on a wooden table inside the sem N was used for all local support equi Temperature: Rel. Humidity	oment. 21.9 °C 42 %		Margin	plane and 80cm from

E	liott
C C	~ (VTAT*

EMC Test Data

		JLL A [*] company					EIVIS	Jest Data
Client:	Intel Corpor						Job Number:	J80398
					T-Log Number:	T80540		
Model:	Intel® Centr	ino® Advanc	ed-N 6230		Account Manager:			
Contact:	Steve Hacke	ett						
Standard:	FCC 15.247	,					Class:	В
	y peak readii	<u> </u>				s. average limit)		
Frequency	Level	AC	Cla	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
2.739	30.4	Line 1	46.0	-15.6	Peak			
4.528	31.8	Line 1	46.0	-14.2	Peak			
9.571	41.2	Line 1	50.0	-8.8	Peak			
14.272	44.9	Line 1	50.0	-5.1	Peak			
14.925	45.4	Line 1	50.0	-4.6	Peak			
9.073	44.0	Neutral	50.0	-6.0	Peak			
9.336	44.9	Neutral	50.0	-5.1	Peak			
14.758	47.7	Neutral	50.0	-2.3	Peak			
		verage readi						
Frequency		AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	N/O (0.400.)		
14.758	40.6	Neutral	50.0	-9.4	AVG	AVG (0.100s)		
14.272	40.1	Line 1	50.0	-9.9	AVG	AVG (0.100s)		
14.925	35.7	Line 1	50.0	-14.3	AVG	AVG (0.100s)		
14.272	44.8	Line 1	60.0	-15.2	QP	QP (1.000s)		
9.336	34.6	Neutral	50.0	-15.4	AVG	AVG (0.100s)		
14.758	44.6	Neutral	60.0	-15.4	QP	QP (1.000s)		
9.073	32.7	Neutral	50.0	-17.3	AVG	AVG (0.100s)		
9.571	32.6	Line 1	50.0	-17.4	AVG	AVG (0.100s)		
14.925	42.4	Line 1	60.0	-17.6	QP	QP (1.000s)		
9.073	39.9	Neutral	60.0	-20.1	QP	QP (1.000s)		
9.336	39.7	Neutral	60.0	-20.3	QP	QP (1.000s)		
9.571	37.9	Line 1	60.0	-22.1	QP	QP (1.000s)		

EMC Test Data

-	An Deed Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
MOUEI.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/28/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #7 Config. Used: Modular Test Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21.9 °C
Rel. Humidity:	42 %

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	41.2dBµV/m @ 662.52MHz (-4.8dB)

Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

		A r company							
Client:	Intel Corpora	ation						Job Number:	J80398
							T-	Log Number:	T80540
Model:	Intel® Centr	ino® Adva	nced-N 6230				Acco	unt Manager:	Christine Krebill
Contact:	Steve Hacke	ett					U U		
	FCC 15.247						Class:	В	
			nissions, 30 Bm on each		ngs 23.5) on	channel 6, I	Bluetooth 7	′dBm, 1Mb/s	(settings 8.0)
	Fre	quency Ra	ange	Test D	istance	Limit D	istance	Extrapolat	ion Factor
) - 1000 M			3	3	}	0	.0
)) abr						• 1			
(m//nge) 30.0 20.0 10.0 3	0.0	W^	~~~~ 	100.0 FI	white	Hz)	ww.		iooo.c
20.0 · 10.0 · 3	0.0	hogs captu		F	WY Hy H	Hz)	WWWW		
20.0 · 10.0 · 3	0.0	ngs captu Pol	red during p	F		Hz)	Height	Comments	
20.0 10.0 3 reliminary requency MHz	ο.ο peak readir Level dBμV/m	Pol v/h	red during p FCC 15.209 Limit	Fi re-scan 9 / RSS 210 Margin	nequency (M Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
20.0 10.0 3 reliminary requency MHz 39.869	peak readir Level dBµV/m 33.0	Pol v/h V	red during p FCC 15.209 Limit 40.0	Fi re-scan 9 / RSS 210 Margin -7.0	Detector Pk/QP/Avg Peak	Azimuth degrees 185	meters 2.5	Comments	
20.0 10.0 3 reliminary Frequency MHz 39.869 55.317	0.0 peak readir Level dBμV/m 33.0 30.8	Pol v/h V V	red during p FCC 15.209 Limit 40.0 40.0	Final Procession Final	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 185 333	meters 2.5 1.0		
20.0 10.0 3 reliminary Frequency MHz 39.869 55.317 70.276	0.0 peak readir Level dBμV/m 33.0 30.8 33.6	Pol v/h V V V	red during p FCC 15.209 Limit 40.0 40.0 40.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 185 333 40	meters 2.5 1.0 1.0		
20.0 10.0 3 reliminary requency MHz 39.869 55.317 70.276 166.249	peak readir Level dBμV/m 33.0 30.8 33.6 31.8	Pol v/h V V V V	red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202	meters 2.5 1.0 1.0 1.0	Comments	
20.0 - 10.0 - 3 2 2 2 3 2 3 2 3 2 3 2 3 2 5 3 2 3 2 5 3 2 5 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1	Pol v/h V V V V H	red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154	meters 2.5 1.0 1.0 1.0 1.0 1.5		
20.0 10.0 3 reliminary requency MHz 39.869 55.317 70.276 166.249 250.000 299.217	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3	Pol V/h V V V V H H	red during p FCC 15.200 Limit 40.0 40.0 40.0 43.5 46.0 46.0	Fi re-scan 0 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
20.0 - 10.0 - 3 2 2 2 3 2 3 2 3 2 3 2 3 2 5 3 2 3 2 5 3 2 5 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1	Pol v/h V V V V H	red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154	meters 2.5 1.0 1.0 1.0 1.0 1.5		
20.0 - 10.0 - 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5	Pol v/h V V V H H H V	red during p FCC 15.209 Limit 40.0 40.0 40.0 40.0 40.0 40.0 46.0 46.0	Final Provide America Provide	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.0		
20.0 - 10.0 - 3 reliminary requency MHz 39.869 55.317 70.276 166.249 250.000 299.217 332.857 662.560 laximized	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak	Pol v/h V V V H H H V readings (red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 nipulation c	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables)	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
20.0 - 10.0 - 3 2 2 2 3 3 3 2 3 3 2 3 3 2 5 3 3 2 5 5 3 1 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 1 7 7 7 2 7 6 2 4 9 2 5 3 1 7 7 3 2 8 5 7 3 3 2 8 5 7 3 3 2 8 5 7 3 3 2 8 5 7 3 3 2 8 5 7 3 2 8 5 7 6 2 4 9 2 5 3 2 8 5 7 6 2 4 9 2 5 5 3 1 7 6 6 2 4 9 2 5 5 3 1 7 6 2 4 9 2 5 7 6 6 2 4 9 2 5 7 6 6 2 4 9 2 5 7 6 6 2 4 9 2 5 7 6 6 2 4 9 2 1 7 6 2 5 6 0 6 2 4 9 2 1 7 6 2 5 6 0 6 2 4 9 2 1 7 6 2 5 6 0 1 6 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak Level	Pol V/h V V V H H H V readings (red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 46.0 5CC 15.209	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation c 9 / RSS 210	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height	Comments	
20.0 - 10.0 - 3 2 2 2 3 3 3 2 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 2 5 3 3 3 3 2 5 3 3 3 3 2 5 3 3 3 3 3 2 5 3 3 3 3 3 3 3 3 3 3 3 3 3	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak Level dBμV/m	Pol v/h V V V H H H V readings (Pol v/h	red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 6 includes ma FCC 15.209 Limit	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation c 9 / RSS 210 Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth degrees	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters	Comments	1000.0
20.0 - 10.0 - 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak Level dBμV/m 41.2	Pol v/h V V V H H H V readings (Pol v/h V	red during p FCC 15.20 Limit 40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 FCC 15.20 Limit 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation c 9 / RSS 210 Margin -4.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth degrees 44	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters 1.0	Comments QP (1.000s)	1000.0
20.0 10.0 3 reliminary requency MHz 39.869 55.317 70.276 166.249 250.000 299.217 332.857 662.560 miximized requency MHz 662.515 332.857	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak dBμV/m 41.2 36.9	Pol v/h V V V H H H V readings (Pol v/h V H	red during p FCC 15.209 Limit 40.0 40.0 40.0 40.0 40.0 46.0 46.0 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation c 9 / RSS 210 Margin -4.8 -9.1	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth degrees 44 116	meters 2.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments QP (1.000s) QP (1.000s)	
20.0 - 10.0 - 3 reliminary requency MHz 39.869 55.317 70.276 166.249 250.000 299.217 332.857 662.560 laximized requency MHz 662.515 332.857 39.869	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak dBμV/m 41.2 36.9 29.7	Pol v/h V V V H H H V readings (Pol v/h V	red during p FCC 15.209 Limit 40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 5FCC 15.209 Limit 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation of 9 / RSS 210 Margin -4.8 -9.1 -10.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth degrees 44	meters 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5	Comments QP (1.000s) QP (1.000s) QP (1.000s)	
20.0 10.0 3 reliminary requency MHz 39.869 55.317 70.276 166.249 250.000 299.217 332.857 662.560 miximized requency MHz 662.515 332.857	peak readir Level dBμV/m 33.0 30.8 33.6 31.8 33.1 36.3 41.7 40.5 quasi-peak dBμV/m 41.2 36.9	Pol v/h V V V H H V readings (Pol v/h V H V V V V	red during p FCC 15.209 Limit 40.0 40.0 40.0 40.0 40.0 46.0 46.0 46.0	Fi re-scan 9 / RSS 210 Margin -7.0 -9.2 -6.4 -11.7 -12.9 -9.7 -4.3 -5.5 mipulation c 9 / RSS 210 Margin -4.8 -9.1	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 185 333 40 202 154 172 116 44 ace cables) Azimuth degrees 44 116 185	meters 2.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments QP (1.000s) QP (1.000s)	

EMC Test Data

Client	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
MODEI		Account Manager:	Christine Krebill
Contact	Steve Hackett		
Standard	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions Bluetooth - Transmitter and Receiver Mode

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Record results for target power and also for the passing power if it fails at target.

For Bluetooth: Tx is chain B, Rx is chain B

Elliott

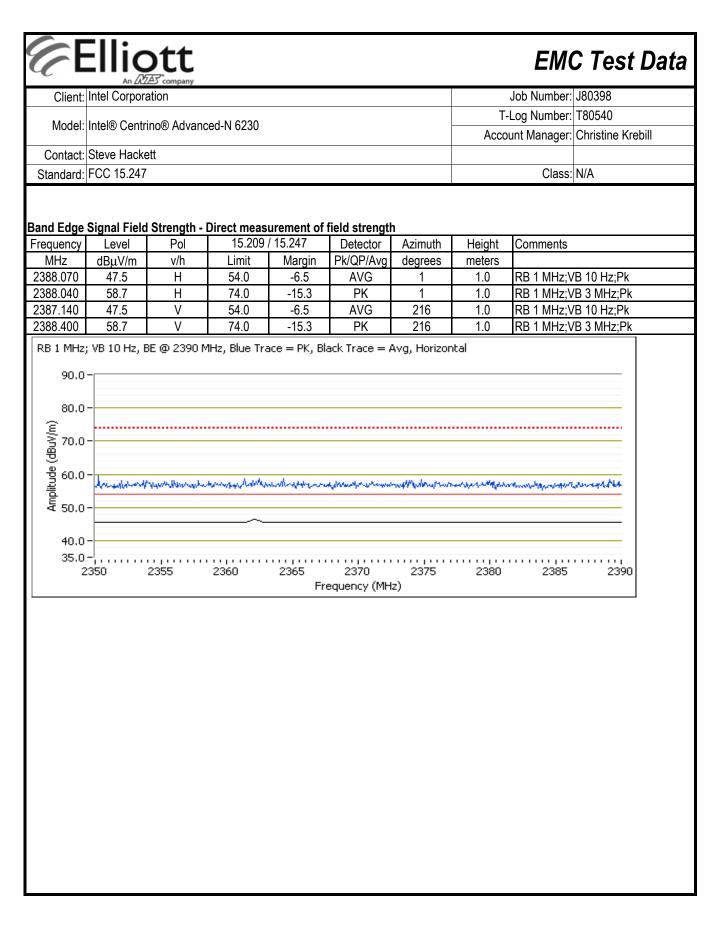
Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

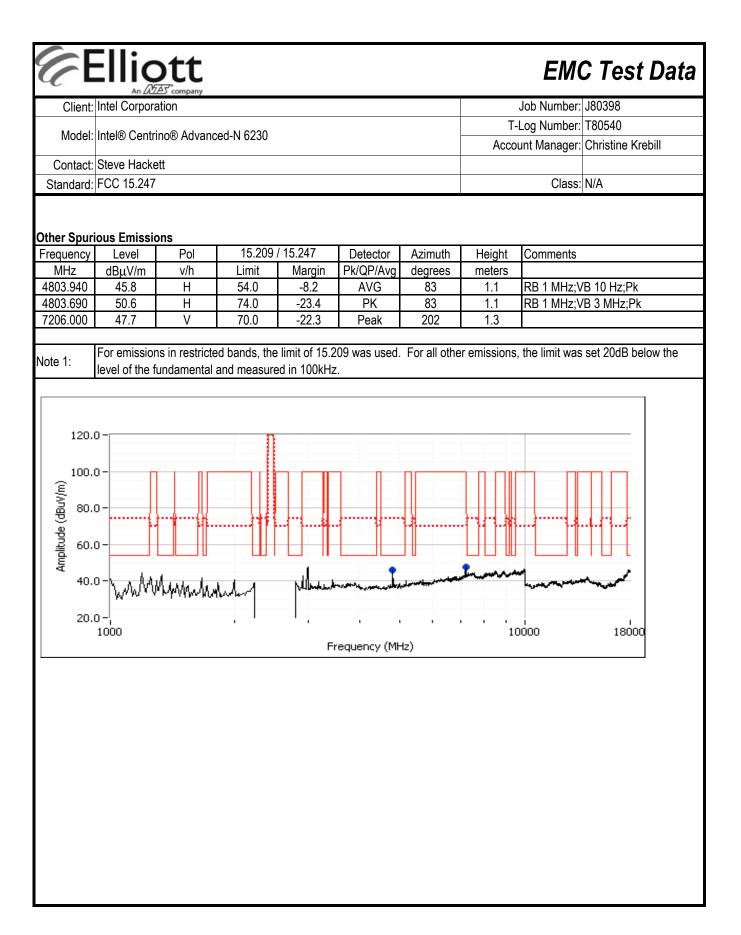
A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

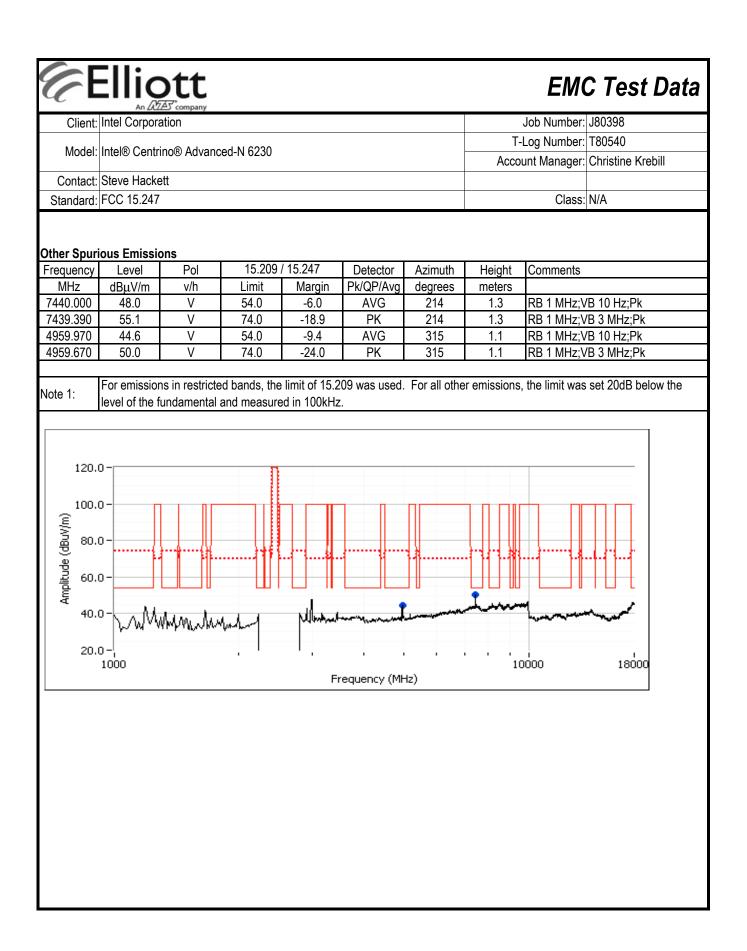
The maximum dwell time in a 100m period is 4 x 3.125ms = 12.5ms.

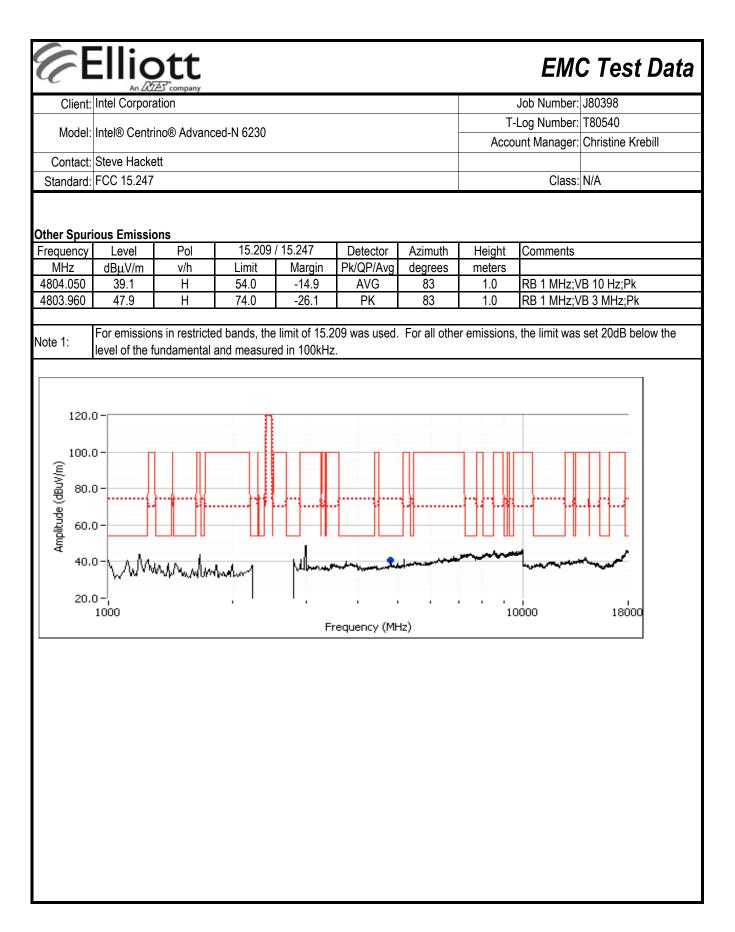

The average correction factor is, therefore, 20log(12.5/100) =-18dB

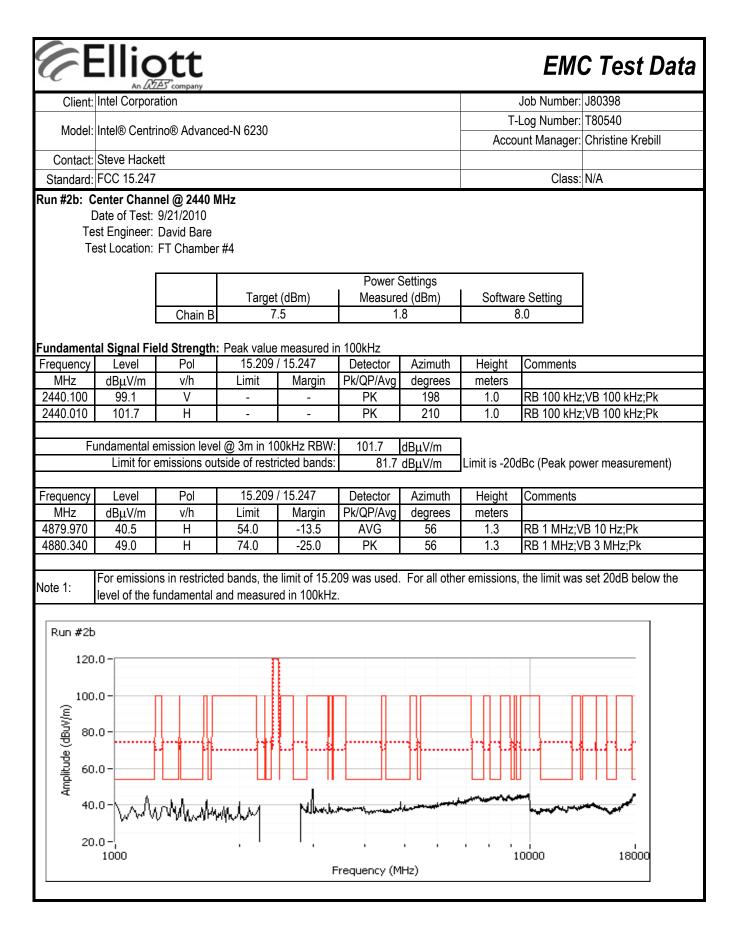

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.

Use the gain control option for setting output power

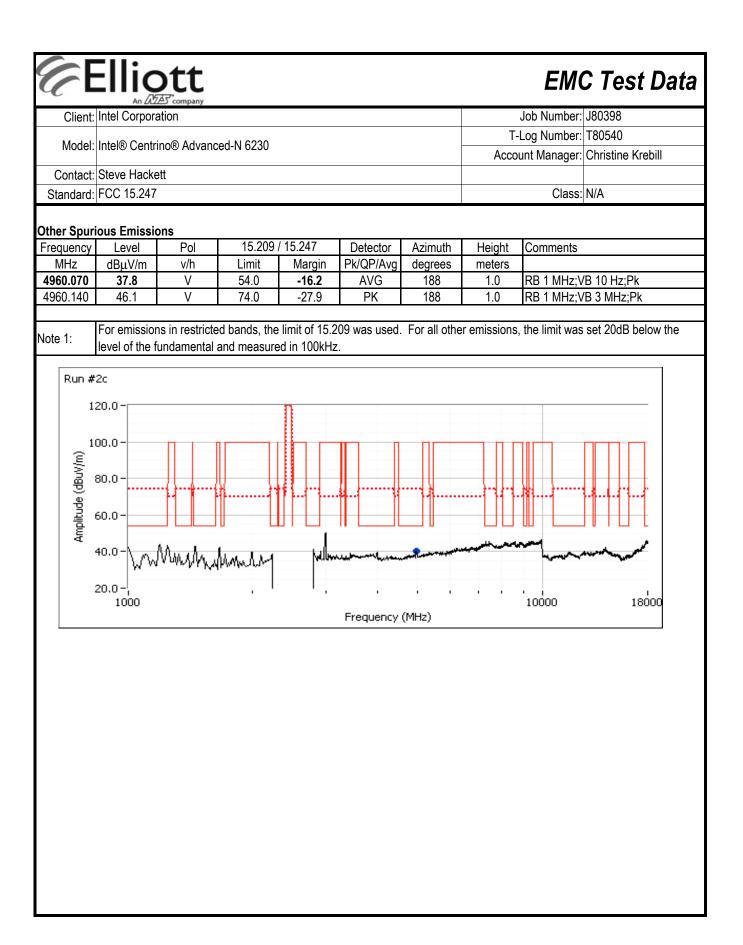
		J				
Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
				Restricted Band Edge	FCC Part 15.209 /	47.5dBµV/m @
	2402	7 EdDm	1 EdDm	(2390 MHz)	15.247(c)	2388.1MHz (-6.5dB)
	Z40Z	7.50DIII	4.30DIII	Radiated Emissions,	FCC Part 15.209 /	45.8dBµV/m @
Bluetooth				1 - 26 GHz	15.247(c)	4803.9MHz (-8.2dB)
	2440	7 5dPm	5 8dPm	Radiated Emissions,		48.2dBµV/m @
	2440		5.00DIII	1 - 26 GHz	15.247(c)	7319.9MHz (-5.8dB)
(1110/5)				Restricted Band Edge		49.2dBµV/m @
	2/180	7.5dBm	5 5dBm	(2483.5 MHz)		2483.5MHz (-4.8dB)
	2400		J.Jubiii	Radiated Emissions,	FCC Part 15.209 /	48.0dBµV/m @
				1 - 26 GHz	15.247(c)	7440.0MHz (-6.0dB)
			n -0.8dBm	Restricted Band Edge	FCC Part 15.209 /	47.5dBµV/m @
	2/02	7 5dBm		(2390 MHz)	15.247(c)	2388.0MHz (-6.5dB)
	2402	7.Jubiii		Radiated Emissions,	FCC Part 15.209 /	39.1dBµV/m @
Bluetooth				1 - 26 GHz	15.247(c)	4804.1MHz (-14.9dB)
	2440	7 5dDm	1.8dPm	Radiated Emissions,	FCC Part 15.209 /	40.5dBµV/m @
	2440	7.50DIII	1.00DIII	1 - 26 GHz	15.247(c)	4880.0MHz (-13.5dB)
				Restricted Band Edge	FCC Part 15.209 /	51.3dBµV/m @
	2/180	7 5dBm	1 3dBm	(2483.5 MHz)	15.247(c)	2483.5MHz (-2.7dB)
	2400	7.50011	1.50DIT	Radiated Emissions,	FCC Part 15.209 /	37.8dBµV/m @
				1 - 26 GHz	15.247(c)	4960.1MHz (-16.2dB)
Bluetooth	2440			Radiated Emissions,	RSS 210	35.7dBµV/m @
Receive	2440	-	-	1 - 7.5 GHz	100210	2987.9MHz (-18.3dB)
	Bluetooth basic rate (1Mb/s) Bluetooth EDR (3 Mb/s) Bluetooth	Bluetooth basic rate (1Mb/s) 2440 2440 2480 2480 2402 Bluetooth EDR (3 Mb/s) 2480 2440 2440 2440	Nidde Channel Power Power Power 2402 7.5dBm Bluetooth 2440 7.5dBm (1Mb/s) 2480 7.5dBm Bluetooth 2480 7.5dBm Bluetooth 2402 7.5dBm Bluetooth 2402 7.5dBm Bluetooth 2440 7.5dBm Bluetooth 2440 7.5dBm Bluetooth 2440 7.5dBm	Mode Channel Power Power Power Power Power Bluetooth 2402 7.5dBm 4.5dBm Bluetooth 2440 7.5dBm 5.8dBm 2480 7.5dBm 5.5dBm Bluetooth 2480 7.5dBm 5.5dBm Bluetooth 2402 7.5dBm -0.8dBm Bluetooth 2440 7.5dBm 1.8dBm Bluetooth 2480 7.5dBm 1.3dBm Bluetooth 2440 - -	ModeChannelPowerPowerPowerPowerTest PenormedPowerPowerPowerPowerRestricted Band Edge (2390 MHz)Bluetooth basic rate (1Mb/s)24407.5dBm4.5dBmRestricted Emissions, 1 - 26 GHz24407.5dBm5.8dBmRestricted Band Edge (2483.5 MHz)24807.5dBm5.5dBmRestricted Band Edge (2483.5 MHz)24807.5dBm5.5dBmRestricted Band Edge (2483.5 MHz)Bluetooth EDR (3 Mb/s)24027.5dBm-0.8dBmRestricted Band Edge (2390 MHz)Bluetooth EDR (3 Mb/s)24407.5dBm1.8dBmRestricted Band Edge (2390 MHz)Bluetooth EDR (3 Mb/s)24407.5dBm1.8dBmRestricted Band Edge (2483.5 MHz)Bluetooth EDR (3 Mb/s)24407.5dBm1.8dBmRestricted Band Edge (2483.5 MHz)Bluetooth EDR (3 Mb/s)24407.5dBm1.3dBmRestricted Band Edge (2483.5 MHz)Bluetooth24407.5dBm1.3dBm1.26 GHzBluetooth24407.5dBm1.3dBmRestricted Band Edge (2483.5 MHz)Bluetooth24407.5dBm1.3dBm1.26 GHz	Mode Channel Power Power Power Test Performed Limit Bluetooth 2402 7.5dBm 4.5dBm Restricted Band Edge FCC Part 15.209 / 1.26 GHz 5.247(c) Bluetooth 2440 7.5dBm 5.8dBm Radiated Emissions, 1.26 GHz FCC Part 15.209 / 1.26 GHz 15.247(c) (1Mb/s) 2480 7.5dBm 5.8dBm Radiated Emissions, 1.26 GHz FCC Part 15.209 / 1.26 GHz 15.247(c) 2480 7.5dBm 5.8dBm Restricted Band Edge FCC Part 15.209 / 1.26 GHz 15.247(c) Bluetooth 2480 7.5dBm 5.5dBm Restricted Band Edge FCC Part 15.209 / 1.26 GHz 15.247(c) Bluetooth 2402 7.5dBm -0.8dBm -0.8dBm 1.26 GHz 15.247(c) Radiated Emissions, (3 Mb/s) 7.5dBm 1.8dBm Restricted Band Edge FCC Part 15.209 / 1.26 GHz 15.247(c) Bluetooth 2440 7.5dBm 1.8dBm Radiated Emissions, 1.26 GHz FCC Part 15.209 / 15.247(c) Bluetooth 2440 7.5dBm 1.8dBm

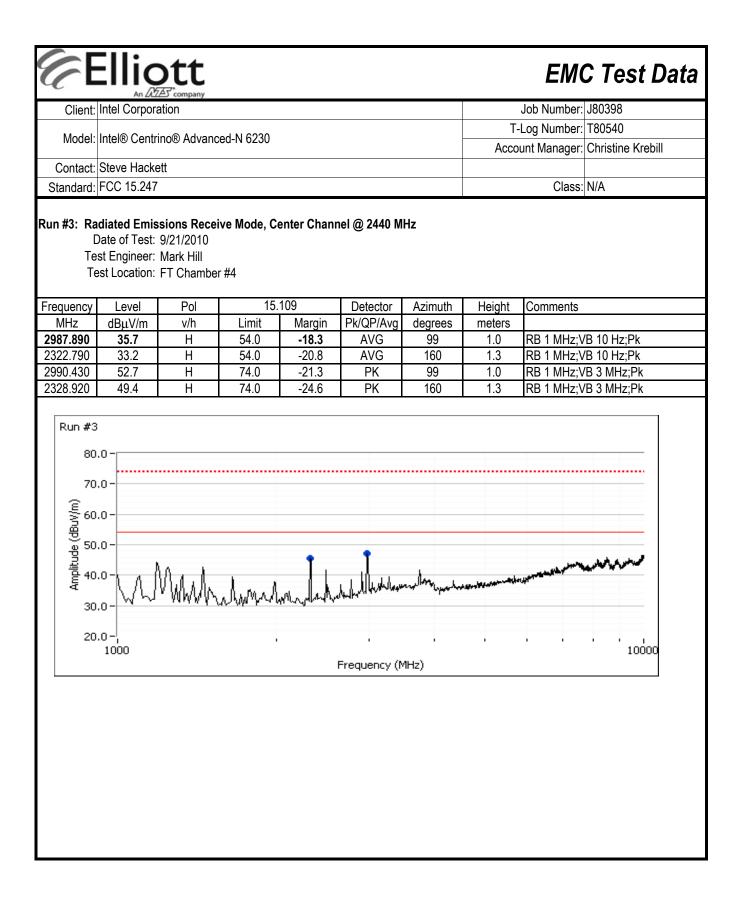

Œ	illic	ott						EM	C Test Data
	An 22 ntel Corpora	Company						Job Number:	J80398
Madalul	ntol® Contr	no® Advana	ad N 6020				T-I	Log Number:	T80540
		no® Advanc	ed-IN 6230				Αссοι	unt Manager:	Christine Krebill
	Steve Hacke	ett							
Standard: F	CC 15.247							Class:	N/A
Fest Spec	fic Detail Objective:				o perform fina	qualificatior	n testing of th	ne EUT with r	espect to the
	all local su	port equipm			turntable for r located 3 me			ns testing.	
Ambient C	ondition	8:							
-			emperature:	21.4					
		Re	el. Humidity:	39	%				
lo deviations Run #1: Rac Di Di Tes Tes	s were made liated Spur ate of Test: t Engineer: st Location:		quirements o ons, 1000-20 as ∵#7		rd. Operating Mo	de: Basic d	ata rate (1M	b/s)	
		0			Power S	Settings			
		0	Target	()	Measure			e Setting	
		Chain B	7	.5	4	5	8	.0	
undamenta	l Signal Fie	d Strength:	Peak value	measured in	n 100kHz				
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2401.990 2402.010	101.7 105.0	V H	-	-	PK PK	39 237	1.0 1.0		;VB 100 kHz;Pk ;VB 100 kHz;Pk
-102.010	100.0	11	-			201	1.0		, VU IVO NI IZ,I N
Fur		mission leve				dBµV/m]		
	Limit for e	emissions ou	tside of restr	icted bands:	85	dBµV/m	Limit is -20d	IBc (Peak po	wer measurement)




	Job Number:	,		Client: Intel Corporation									
T80540	_og Number:	T-l					<u></u>						
Christine Krebill	-			Model: Intel® Centrino® Advanced-N 6230									
	0			Contact: Steve Hackett									
N/A	Class:							FCC 15.247					
						/Hz	nel @ 2440 M	enter Chanr					
			ettings	Power S									
	e Setting	Software	d (dBm)	Measure		Target							
	.0	8	8	5.	5	7.	Chain B	[
	0	l la la la la	A _:					al Signal Fie					
	Comments	Height meters	Azimuth degrees	Detector Pk/QP/Avg	Margin	15.209 / Limit	Pol v/h	Level dBµV/m	Frequency MHz				
VB 100 kHz;Pk	RB 100 kHz [.]	1.3	216	PK	-	- -	V	а <u>ы</u> иу/ш 101.4	2440.000				
VB 100 kHz;Pk		1.0	232	PK	-	-	Ĥ	104.9	2440.070				
•	<u> </u>		I	L				I					
			dBµV/m					undamental e	Fi				
ver measurement)	IBc (Peak pov	Limit is -20d	dBµV/m	84.9	cted bands:	tside of restri	emissions ou	Limit for e					
	Commercia	Uniobł		Detector	15 017	15 000	Del I		Fragueses				
	Comments	Height	Azimuth	Detector Pk/QP/Avg		15.209 /	Pol v/h	Level	Frequency MHz				
R 10 Hz·Pk	RB 1 MHz;V	meters 1.2	degrees 188	AVG	Margin -5.8	Limit 54.0	V	dBµV/m 48.2	7319.910				
	RB 1 MHz;V	1.2	188	PK	-18.5	74.0	V	55.5	7320.430				
	RB 1 MHz;V	1.0	184	AVG	-8.0	54.0	V	46.0	4880.000				
	RB 1 MHz;V	1.0	184	PK	-22.8	74.0	V	51.2	4879.630				
set 20dB below the	the limit was	r emissions,	For all other						Note 1:				
					a in Tuukhz	and measure	undamental a	level of the f					
						n		0	120.0				
									100.0				
									l mil				
									<u>न</u> 80.0				
				ļļ	II	14		D-	1.3				
							· · · · ·		l o) de (c				
		/	 } 						0) aplitude (0.1				
		17171.M.					····	0-	Amp				
					Nile and	who]	nyrthylfr	0-	0) 100 100 100 100 100 100 100 100 100 1				
					Nileaner Mileaner	why	nyrtu ylaw	0- 	-				

(je b	Illic	ott						EM	C Test Data		
Client:	An 22 Intel Corpora	るで company ation					Job Number: J80398				
							T-Log Number: T80540				
Model:	Intel® Centr	ino® Advanc	ed-N 6230			Acco	unt Manager:	Christine Krebill			
Contact:	Steve Hackett										
Standard:	ndard: FCC 15.247 Class: N/A										
Run #1c: Hi	gh Channel	@ 2480 MH;	Z								
	-				Power S	-]		
			Target		Measure	(/		e Setting			
	_	Chain B	7	.5	5.	5	ξ	3.0	J		
Fundament	al Signal Fie	d Strength:	Peak value	measured in	100kHz						
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2480.170	98.6	V	-		PK	66	1.0		z;VB 100 kHz;Pk		
2480.000	102.8	Н	-	-	PK	218	1.0	RB 100 kHz	z;VB 100 kHz;Pk		
							1				
Fu		mission leve				dBµV/m			()		
	Limit for e	emissions ou	tside of restr	icted bands:	82.8	dBµV/m	Limit is -200	звс (Реак ро	ower measurement)		
Rand Edge	Signal Field	Strength - [)irect meas	urement of t	field strength	,					
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	o o nini o nico			
2483.500	49.2	Н	54.0	-4.8	AVG	81	1.1	RB 1 MHz;\	/B 10 Hz;Pk		
2483.540	59.9	Н	74.0	-14.1	PK	81	1.1		/B 3 MHz;Pk		
2483.520	48.7	V	54.0	-5.3	AVG	217	1.2	RB 1 MHz;\	/B 10 Hz;Pk		
2483.660	60.3	V	74.0	-13.7	PK	217	1.2	RB 1 MHz;\	/B 3 MHz;Pk		
RB 1 MH2; 90.0 80.0 (J) 70.0 90,0 (J) 70.0 90,0 90,0 100 40.0					Black Trace =			day aq aq aq aq aq aq aq			
35.0 24	_ 83.5	2486.0	2488.0	2490.0	2492.0 equency (MH	2494.0	2496.0		2500.0		




-		Company							
Client:	Intel Corpora	ation				Job Number:			
Madal	Intol® Contr	ino® Advanc	od-NI 6220					Log Number:	
					Acco	unt Manager:	Christine Krebill		
Contact: Steve Hackett									
Standard:	FCC 15.247							Class:	N/A
C Te Te	Date of Test: st Engineer: est Location:		as • #7	6000 MHz. C	Operating Mo	·	∕lb/s)		
					Power S	•			
			Target	<u>, ,</u>	Measure	· /		e Setting	ļ
		Chain B	7.	.5	-0	.8	8	3.0	J
undomort	ol Gianal Fi	d Strangth		monored	a 100k⊔−				
Frequency	Level	eld Strength: Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	5011110110	
2402.090	97.9	V	-	-	PK	201	1.0	RB 100 kHz	;;VB 100 kHz;Pk
2402.180		-				211			
		H emission leve				dBµV/m	1.0 Limit is -200		;VB 100 kHz;Pk
Fu Band Edge	indamental e Limit for e Signal Field	emission leve emissions ou I Strength - I	tside of restri Direct meas	icted bands: urement of	100.9 80.9 field strengtl	dBμV/m dBμV/m h	Limit is -20o	lBc (Peak po	;VB 100 kHz;Pk wer measurement)
Fu Band Edge Frequency	indamental e Limit for e Signal Field Level	emission leve emissions ou I Strength - I Pol	tside of restri Direct measo 15.209	urement of 15.247	100.9 80.9 field strengtl Detector	dBμV/m dBμV/m h Azimuth	Limit is -200 Height		· · · ·
Fu Band Edge Frequency MHz	indamental e Limit for α Signal Field Level dBμV/m	emission leve emissions ou I Strength - I Pol v/h	tside of restri Direct meas 15.209 / Limit	urement of 15.247 Margin	100.9 80.9 field strengtl Detector Pk/QP/Avg	dBµV/m dBµV/m h Azimuth degrees	Limit is -200 Height meters	IBc (Peak po	wer measurement)
Fu Band Edge Frequency MHz 2388.040	indamental e Limit for e Signal Field Level	emission leve emissions ou I Strength - I Pol	tside of restri Direct measo 15.209	urement of 15.247	100.9 80.9 field strengtl Detector	dBμV/m dBμV/m h Azimuth	Limit is -200 Height	IBc (Peak po Comments RB 1 MHz;V	wer measurement) /B 10 Hz;Pk
Fu Band Edge Frequency MHz	indamental e Limit for e Signal Field Level dBμV/m 47.5	emission leve emissions ou I Strength - I Pol v/h H	tside of restri Direct mease 15.209 Limit 54.0	urement of 15.247 Margin -6.5	100.9 80.9 field strengtl Detector Pk/QP/Avg AVG	dBµV/m dBµV/m h Azimuth degrees 212	Limit is -200 Height meters 1.0	IBc (Peak po Comments RB 1 MHz;V	wer measurement) /B 10 Hz;Pk /B 3 MHz;Pk
Fu Band Edge Frequency MHz 2388.040 2387.170 2387.690	indamental e Limit for e Signal Field Level dBμV/m 47.5 59.0	emission leve emissions ou I Strength - I Pol v/h H H H	tside of restri Direct mease 15.209 / Limit 54.0 74.0	teted bands: urement of 15.247 Margin -6.5 -15.0	100.9 80.9 field strengtl Detector Pk/QP/Avg AVG PK	dBµV/m dBµV/m h Azimuth degrees 212 212	Limit is -200 Height meters 1.0 1.0	Bc (Peak po Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	wer measurement) /B 10 Hz;Pk /B 3 MHz;Pk
Fu Band Edge Frequency MHz 2388.040 2387.170 2387.690 2389.560 RB 1 MHz; 90.0 80.0 (U) ABP 90.0 80.0 (U) ABP 90.0 80.0 40.0	Indamental e Limit for o Signal Field Level dBµV/m 47.5 59.0 47.5 59.0 47.5 59.0 47.5 59.0	emission leve emissions ou I Strength - I Pol V/h H H V V V 3E @ 2390 M	tside of restri	cted bands: urement of (15.247 Margin -6.5 -15.0 -6.5 -7.5 -	100.9 80.9 field strengtl Detector Pk/QP/Avg AVG PK AVG	dBµV/m dBµV/m h Azimuth degrees 212 212 202 202 202	Limit is -200 Height meters 1.0 1.0 1.0 1.0 1.0	IBc (Peak po Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	wer measurement) /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk

	Job Number:						ation		Client:	
T80540	og Number:	T-l	Intel® Centrino® Advanced-N 6230						Madal	
Christine Krebill	int Manager:	Αςςοι				eu-in 0230	no® Auvanc		woder.	
				Steve Hackett						
N/A	Class:							FCC 15.247	Standard:	
I			ottingo	Dowor 0		Z	@ 2480 MH	igh Channel	un #2c: H	
	e Setting	Softwar	-	Power S Measure	(dBm)	Target				
	.0		()	1.		7.	Chain B			
I		-	-		-		ondin D	I		
				100kHz				al Signal Fie	undament	
	Comments	Height	Azimuth	Detector		15.209 /	Pol	Level	Frequency	
;VB 100 kHz;Pk	DD 100 LU -	meters	degrees 195	Pk/QP/Avg PK	Margin	Limit	v/h V	dBµV/m 98.1	MHz 2480.140	
;VB 100 kHz;Pk ;VB 100 kHz;Pk		1.0 1.0	207	PK PK		-	V H	98.1	2480.140	
		1.0	201	ΤΛ	_	_	11	102.1	2475.070	
			dBµV/m	102.1	0kHz RBW:	l @ 3m in 10	mission leve	undamental e	Fi	
wer measurement)	Bc (Peak pov	Limit is -20d	dBµV/m	82.1	cted bands:	tside of restri	emissions ou	Limit for e		
	0	11-1-1-1-1		ield strength						
	Comments	Height meters	Azimuth degrees	Detector Pk/QP/Avg	Margin	15.209 / Limit	Pol v/h	Level dBµV/m	Frequency MHz	
							V/11	υσμν/π		
'B 10 Hz:Pk	RB 1 MHz:V		-					51.2	2483.500	
	RB 1 MHz;V RB 1 MHz;V	1.0 1.0	208 208	AVG PK	-2.8 -11.8	54.0 74.0	H	51.2 62.2	2483.500 2483.640	
'B 3 MHz;Pk		1.0	208	AVG	-2.8	54.0	Н		2483.640	
/B 3 MHz;Pk /B 10 Hz;Pk	RB 1 MHz;V	1.0 1.0	208 208	AVG PK	-2.8 -11.8	54.0 74.0	H H	62.2	2483.640 2483.500	
/B 3 MHz;Pk /B 10 Hz;Pk	RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	1.0 1.0 1.0 nge, Vertical	208 205 205 205 ace = Avera	AVG PK AVG	-2.8 -11.8 -2.7 -13.4 e trace = pe	54.0 74.0 54.0 74.0	H H V V	62.2 51.3 60.6	2483.640 2483.500 2483.770 2483.770 RB 1 f 8 7 (ш/\ngp) apniliduut 4 3	

EMC Test Data

	An DALLES company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/28/2010 19:11 Test Engineer: Rafael Varelas Test Location: Fremont Chamber #7 Config. Used: 1 Config Change: none EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

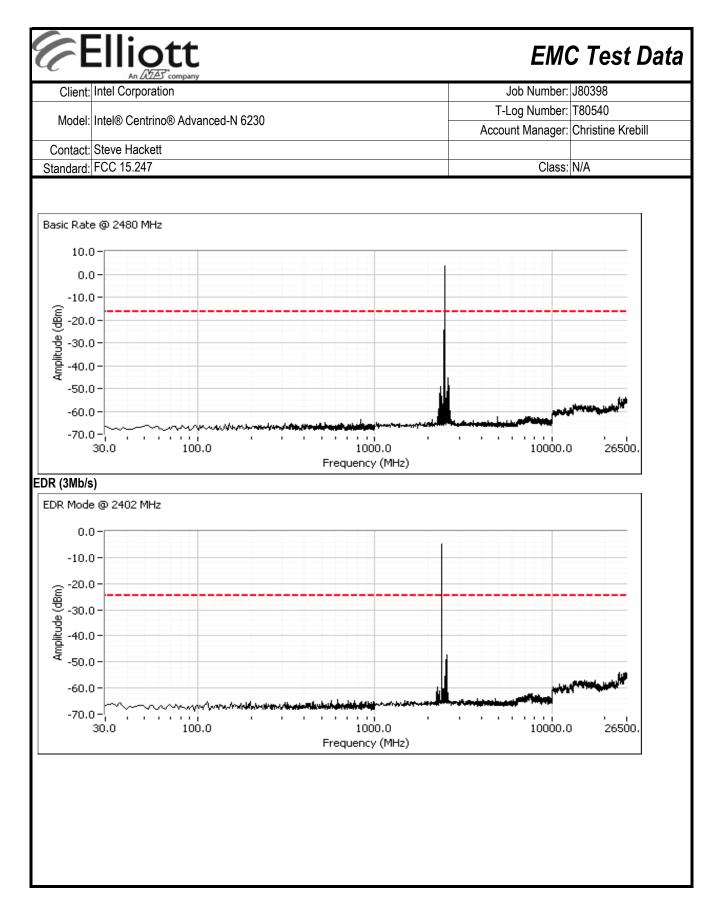
Ambient Conditions:

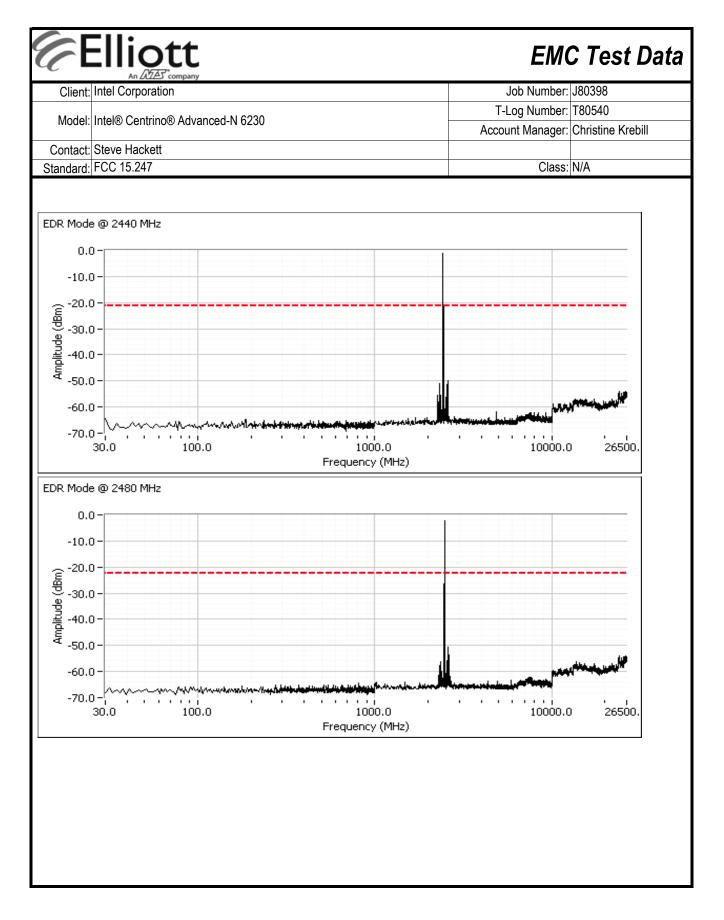
Temperature:	21.9 °C
Rel. Humidity:	42 %

Summary of Results

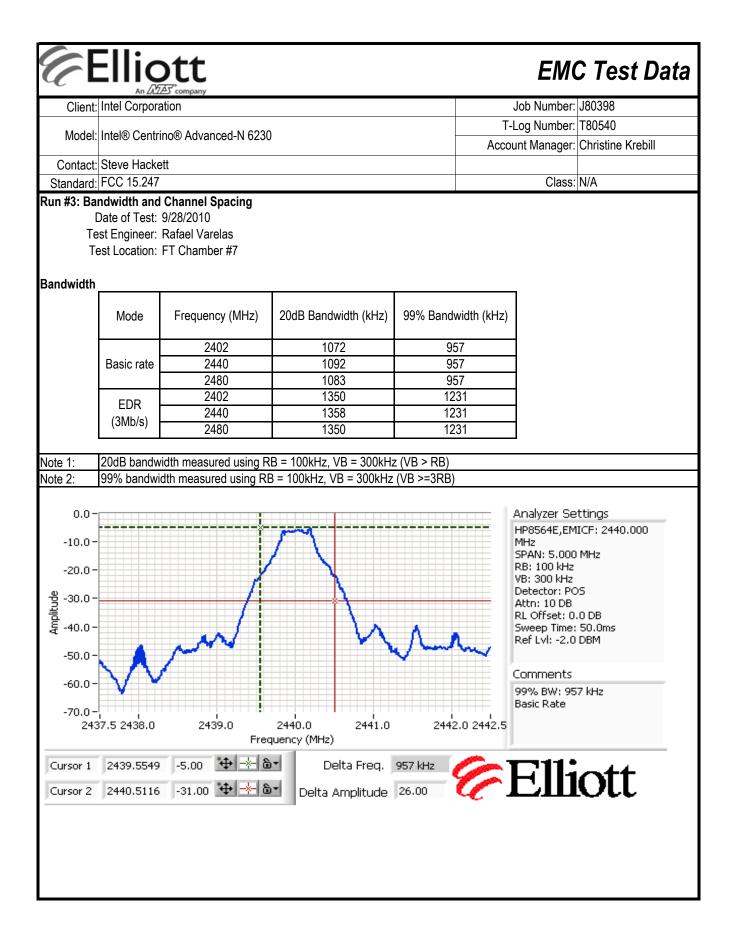
MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

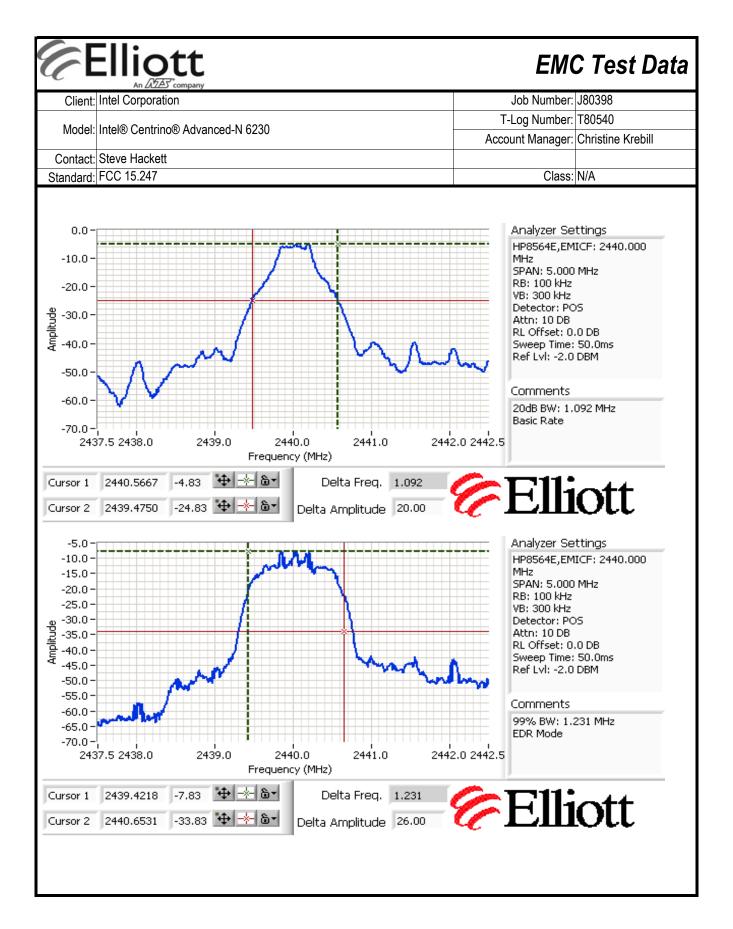
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Spurious Emissions	FCC Part 15.247(b)	Pass	All emissions below -20dBc
2	Output Power	15.247(b)	Pass	Basic Rate: 6.5 dBm (0.004 W)
2	Output Fower	15.247(0)	F855	EDR: 4.6 dBm (0.003 W)
3	20dB Bandwidth	15.247(a)	Pass	Basic Rate: 1.092 MHz
J		andwidth 15.247(a)		EDR: 1.358 MHz
З	99% bandwidth	15.947(a)	Pass	Basic Rate: 957 kHz
J	35% bandwidth	6 bandwidth 15.247(a) P		EDR: 1.231 MHz
3	Channel Occupancy	15.247(a)	Pass	Complies with Bluetooth protocol
3	Number of Channels	15.247(a)	Pass	20 - 79 channels

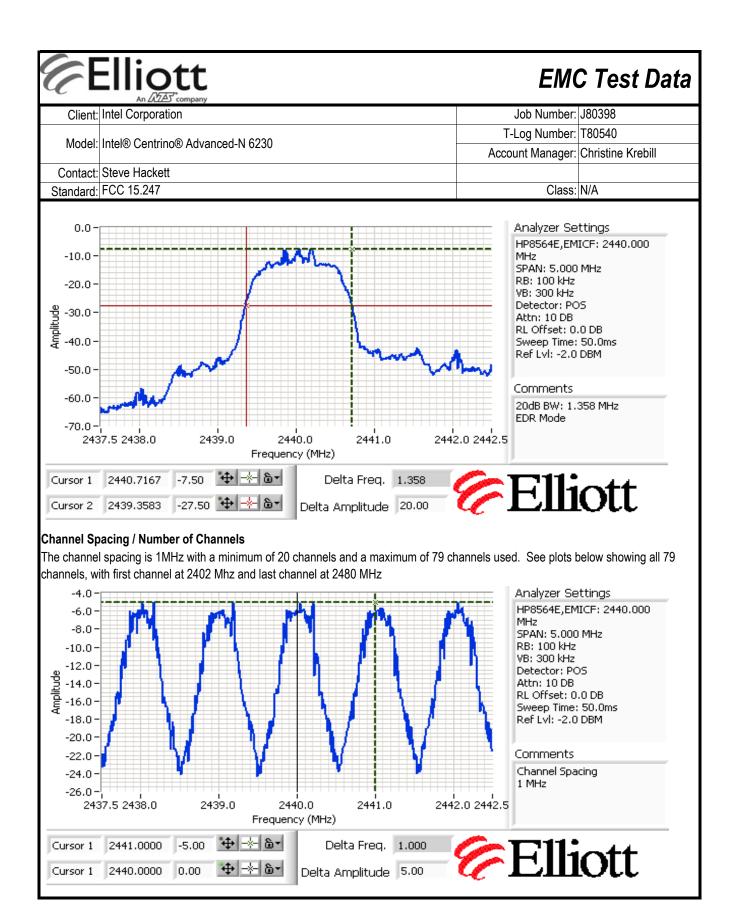

Modifications Made During Testing:

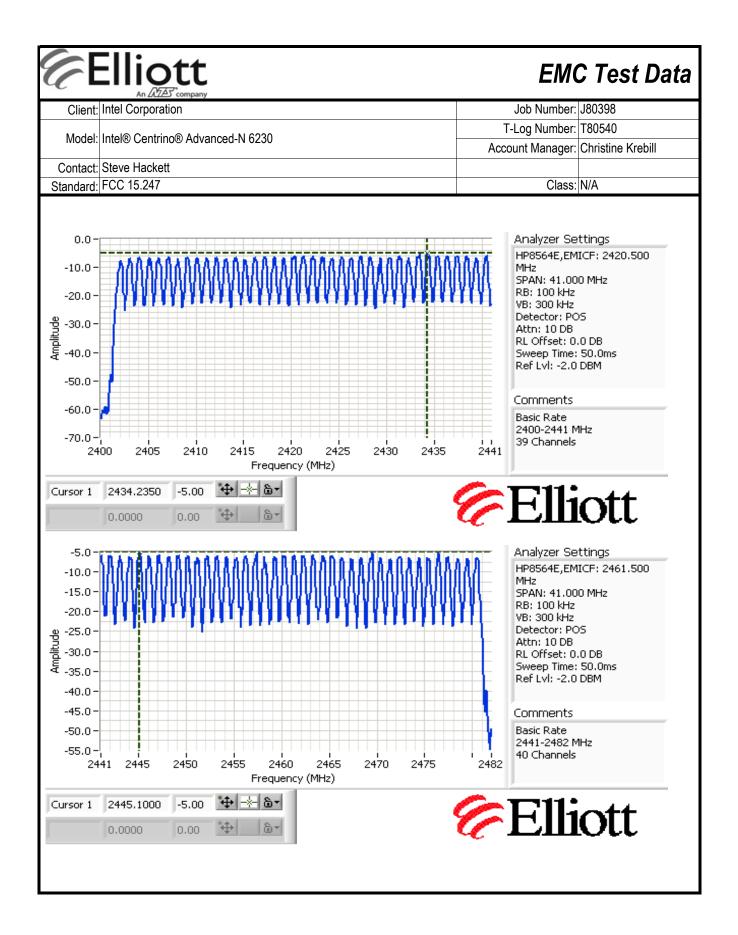

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.


Elliott **EMC** Test Data Client: Intel Corporation Job Number: J80398 T80540 T-Log Number: Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1: Antenna Conducted Spurious Emissions, 30 - 26,500 MHz. Date of Test: 9/28/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #7 Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level. Basic rate (1Mb/s) Basic Rate @ 2402 MHz 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 -70.0-1000.0 30.0 100.0 10000.0 26500. Frequency (MHz) Basic Rate @ 2440 MHz 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 -70.0i i i 30.0 100.0 1000.0 10000.0 26500. Frequency (MHz)



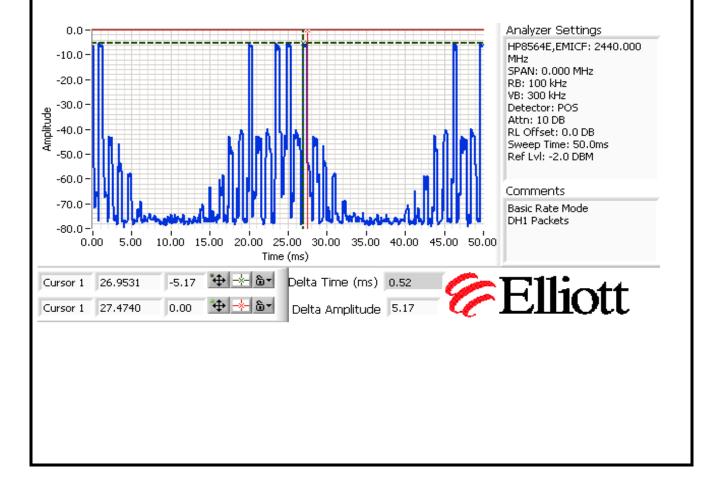


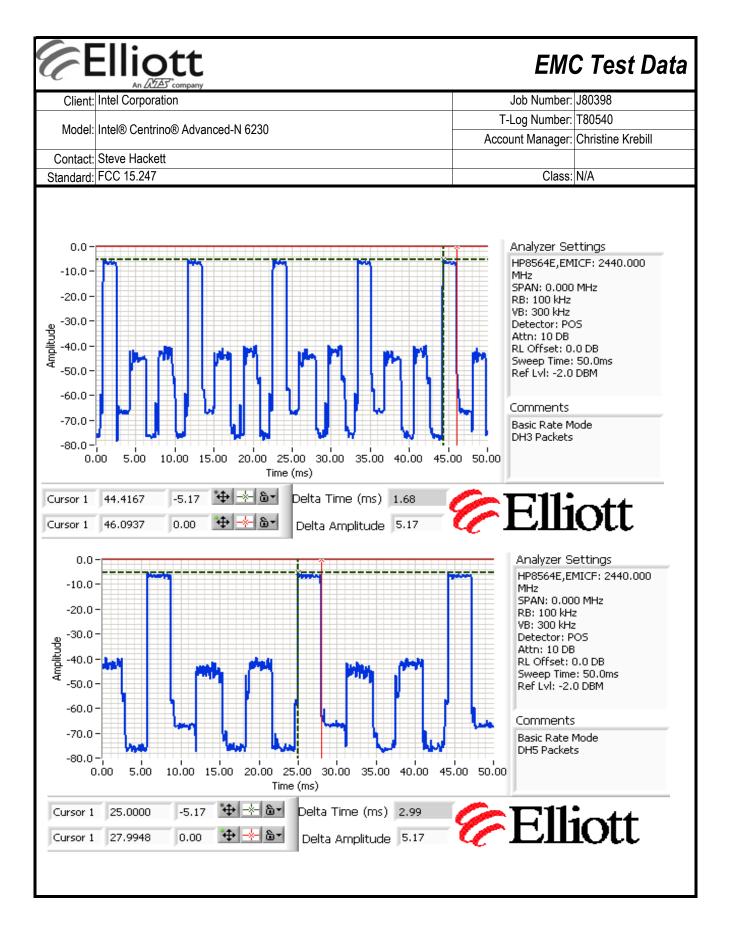
Client	: Intel Corpora	tion				J	ob Number:	J80398	
							og Number:	T80540	
Model	: Intel® Centrir	no® Advanced-N 6230					nt Manager:		Krebill
Contact	: Steve Hacket	tt					0		
	: FCC 15.247						Class:	N/A	
1 #2: O	utput Power								
	Date of Test: 9								
	est Engineer: I								
		T Chamber #7	0400 0400 5			- the 75 - h			
•	icy hopping sys	stems operating in the	2400-2483.5	MHz band	employing les	is than 75 cha	annels or ov	erlapping r	nopping
nneis: U	. 125 Watts.								
N	Maximum ante	nna gain: 3.2	dBi						
		0.2							
	Mode	Frequency (MHz)	Setting	Pavg	Output Po	wer (dBm)	Output P	ower (W)	EIRP (
		2402	8	4.6	5.			280953	0.00685
	Basic rate	2440	8	5.8	6.			125884	0.00442
							0.004/		
		2480	8	5.6	6.			125884	
	EDR	2402	8	-0.2	2.	.2	0.0016	651962	0.0016
	EDR (3Mb/s)	2402 2440	8 8	-0.2 1.9	2. 4.	.2 .6	0.0016 0.0028	651962 870781	0.00442
		2402	8	-0.2	2.	.2 .6	0.0016 0.0028	651962	0.0016
	(3Mb/s)	2402 2440 2480	8 8 8	-0.2 1.9 1.2	2. 4. 4.	2 6 .1	0.0016 0.0028 0.0025	651962 370781 570396	0.0016 0.00287 0.00257
e 1:	(3Mb/s)	2402 2440 2480 r is measured as a pea	8 8 8 k power usin	-0.2 1.9 1.2 g either a pe	2. 4. 4. eak power me	2 .6 .1 eter or with a	0.0016 0.0028 0.0025	651962 370781 570396	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200	2402 2440 2480 r is measured as a pea dB bandwidth. The act	8 8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0028 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
e 1: e 2:	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.0028 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.0028 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257
	(3Mb/s) Output power and RB > 200 Setting is the	2402 2440 2480 r is measured as a pea dB bandwidth. The act test utility software se	8 8 k power usin tual method u	-0.2 1.9 1.2 g either a pe ised was a p d for referen	2. 4. 4. eak power me beak power me	2 .6 .1 eter or with a leter.	0.0016 0.0026 0.0025 spectrum an	651962 370781 570396 aalyzer and	0.0016 0.00287 0.00257

EMC Test Data

	An 225 company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
wouer.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #4: Channel Occupancy and Number of Channels


Elliott


Requirement: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)

The device complies with the Bluetooth protocol and employs a minimum of 20of the available 79 hopping channels when employing adaptove frequency hopping and all 79 channels when not. Channels are selected in a speudo random manner to ensure, on average, all channels are used equally.

The hopping rate is 1600 hops per second although any ne channel may be used for a single hop slot, 3 hop slots or 5 hop slots. The dwell time per channel is, therefore either 0.625ms (single slot), 1.875ms (three slot) or 3.125ms (five slot). The average time of occupancy will not exceed 0.4s in any time interval of 0.4s multiplied by the number of channels being used.

©Elliott

EMC Test Data

An LALIP	Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

EMC Test Data

	The company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
wouer.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bgn and Bluetooth - Transmitter Mode

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

Elliott

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For conducted emissions testing the measurement antenna port.

Summary of Results

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band, both chains used in 5GHz bands.

MAC Address: 00150079AD1A	DRTU Tool Version	1.2.12-0197 New tool from 9/14	Driver version 14.0.0.39

WAC Addre	55.0015007	JADIA DK			0197 New 1001 110111 9/14	Dilver version 14.0.0.3	J
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
1	BT 1Mb/s 802.11b	2402MHz 2412MHz	7dBm 16.5dBm	4.4 16.5		FCC 15.247	48.0dBµV/m @ 4824.0MHz (-6.0dB)
2	BT 1Mb/s 802.11b	2480MHz 2462MHz	7dBm 16.5dBm	5.3 16.6	Radiated Emissions	FCC 15.247	48.4dBµV/m @ 2360.0MHz (-5.6dB)
3	BT 1Mb/s 802.11g	2402MHz 2412MHz	7dBm 16.5dBm	4.4 16.3	1- 10 GHz	FCC 15.247	46.0dBµV/m @ 2281.9MHz (-8.0dB)
4	BT 1Mb/s 802.11g	2480MHz 2462MHz	7dBm 16.5dBm	5.3 16.9		FCC 15.247	46.6dBµV/m @ 2360.0MHz (-7.4dB)
WiFi mode f	or the followi	ng runs base	ed on worst c	ase mode fro	om runs 1 through 4		
5	BT 1Mb/s 802.11b	2402MHz 2437MHz	7dBm 16.5dBm	4.3 16.6	Radiated Emissions	FCC 15.247	46.8dBµV/m @ 2282.0MHz (-7.2dB)
6	BT 1Mb/s 802.11b	2440MHz 2412MHz	7dBm 16.5dBm	5.4 16.5	1- 10 GHz	FCC 15.247	49.3dBµV/m @ 2320.0MHz (-4.7dB)
7	BT 1Mb/s 802.11b	2440MHz 2462MHz	7dBm 16.5dBm	5.4 16.6	Radiated Emissions	FCC 15.247	47.8dBµV/m @ 2320.0MHz (-6.2dB)
8	BT 1Mb/s 802.11b	2480MHz 2437MHz	7dBm 16.5dBm	5.1 16.6	1- 10 GHz	FCC 15.247	48.9dBµV/m @ 2360.0MHz (-5.1dB)
WiFi mode a	and channel a	and Bluetoot	n channel ba	sed on the w	orst case mode from runs	1 through 8	
9	BT 3Mb/s 802.11b	2440 MHz 2412 MHz	7dBm 16.5dBm	1.4 16.5	Radiated Emissions 1- 10 GHz	FCC 15.247	46.4dBµV/m @ 2383.9MHz (-7.6dB)
	-	-	-	-			

		EMC Test Data			
Client:	Intel Corporation	Job Number:	J80398		
Madal	Model: Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540		
woder.		Account Manager:	Christine Krebill		
Contact:	Steve Hackett				
Standard:	FCC 15.247	Class:	N/A		

WiFi mode - 802.11n 20MHz with both chains active at 16.5dBm per chain, center channel in each 5GHz band. Bluetooth on center channel, 1Mb/s mode

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
10	BT 1Mb/s 802.11n20	2440MHz 5200MHz	7dBm 16.5/16.5	5.4 16.6/16.7		FCC 15.247	41.9dBµV/m @ 2280.0MHz (-12.1dB)
11	BT 1Mb/s 802.11n20	2440MHz 5300MHz	7dBm 16.5/16.5	5.4 16.7/16.5	Radiated Emissions	FCC 15.247	37.2dBµV/m @ 10600.0MHz (-16.8dB)
12	BT 1Mb/s 802.11n20	2440MHz 5600MHz	7dBm 16.5/16.5	5.4 16.5/16.5	1- 15 GHz	FCC 15.247	45.1dBµV/m @ 11199.8MHz (-8.9dB)
13	BT 1Mb/s 802.11n20	2440MHz 5785MHz	7dBm 16.5/16.5	5.4 16.5/16.7		FCC 15.247	44.7dBµV/m @ 11570.7MHz (-9.3dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

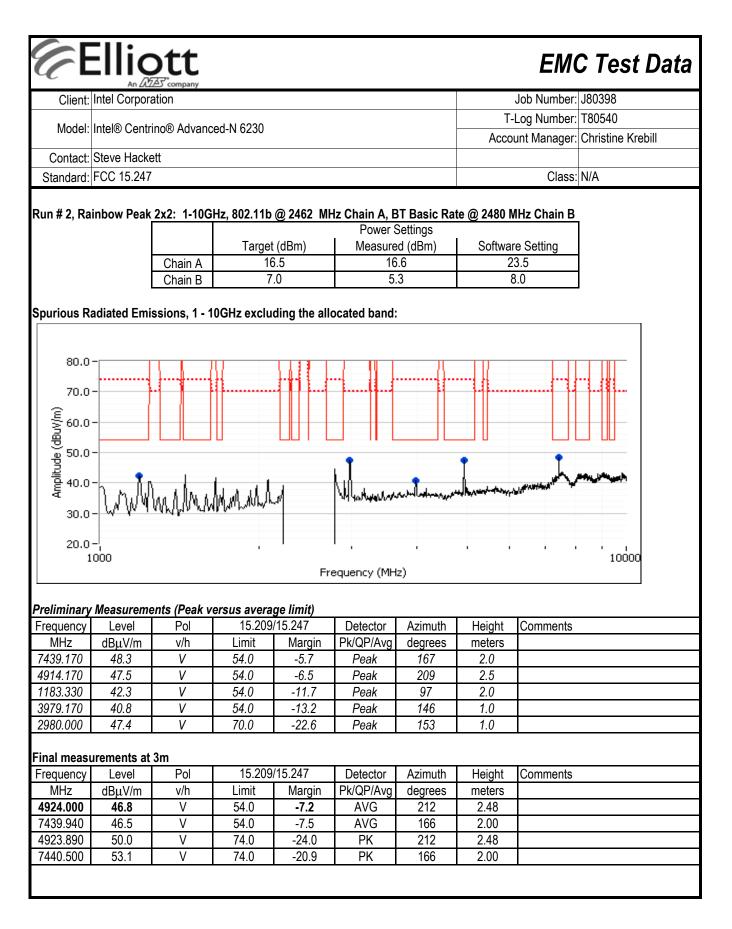
Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

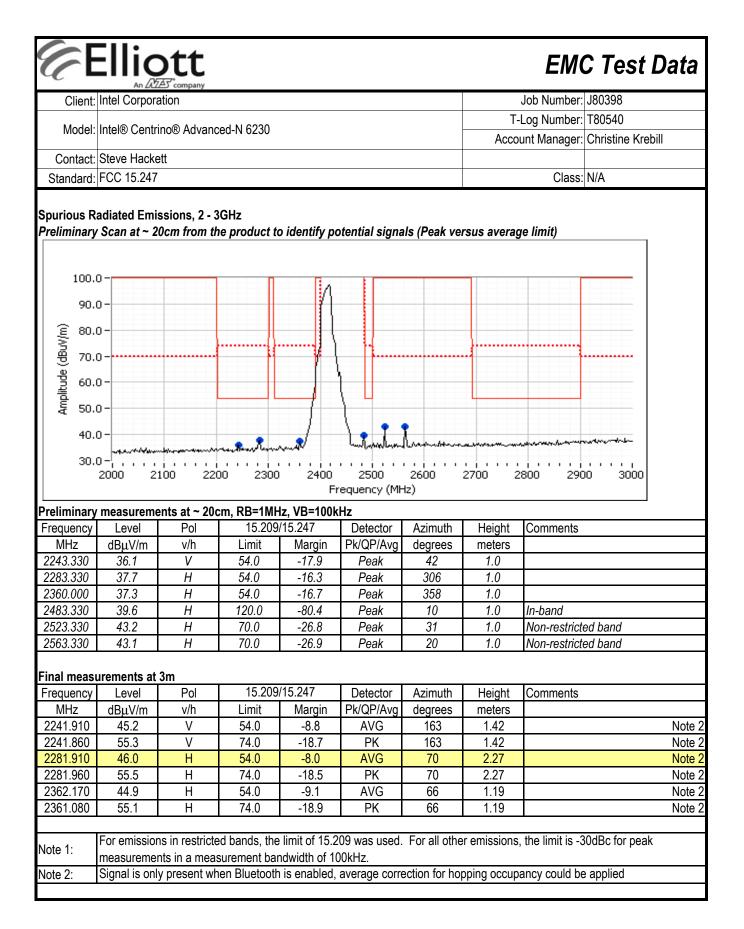
With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100ms period is 4 x 3.125ms = 12.5ms.

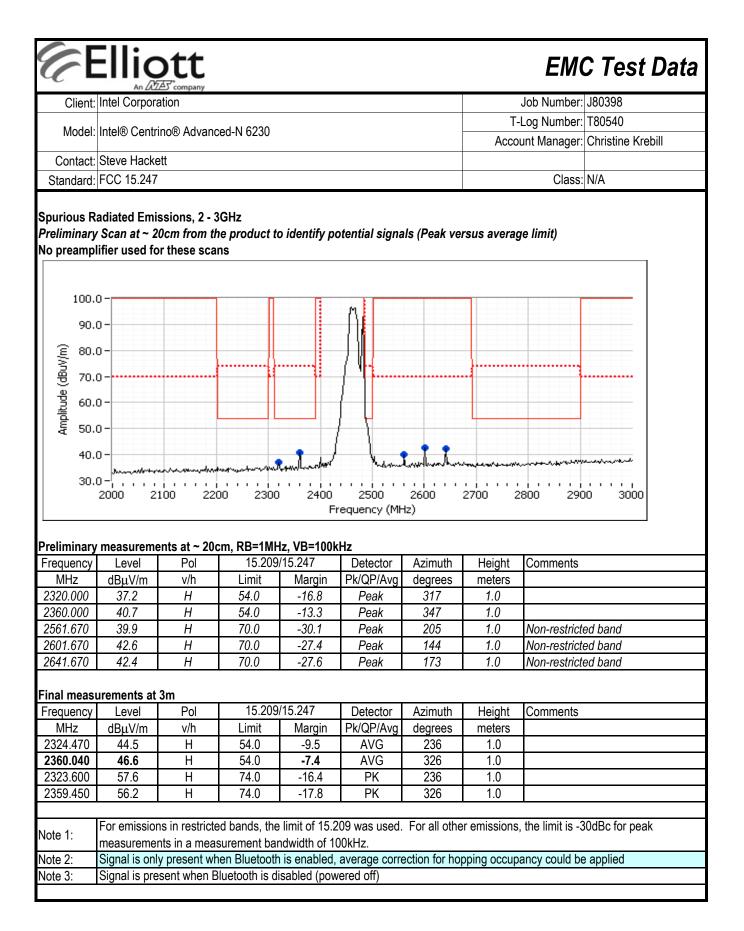

The average correction factor is, therefore, 20log(12.5/100) =-18dB

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.

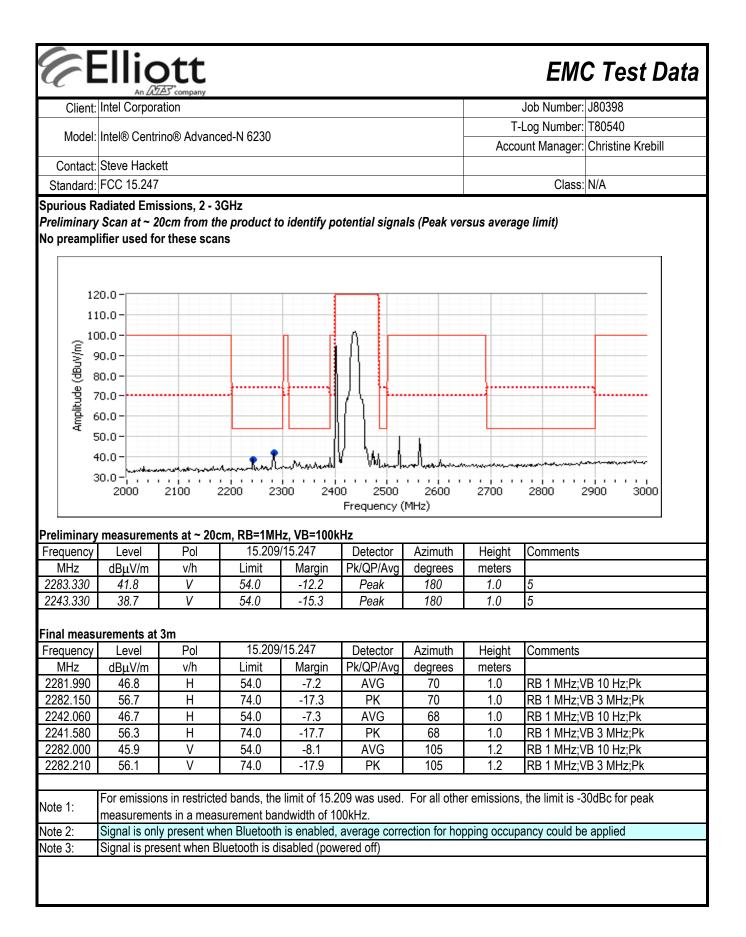
All measurements in this data sheet do not include the average correction factor.

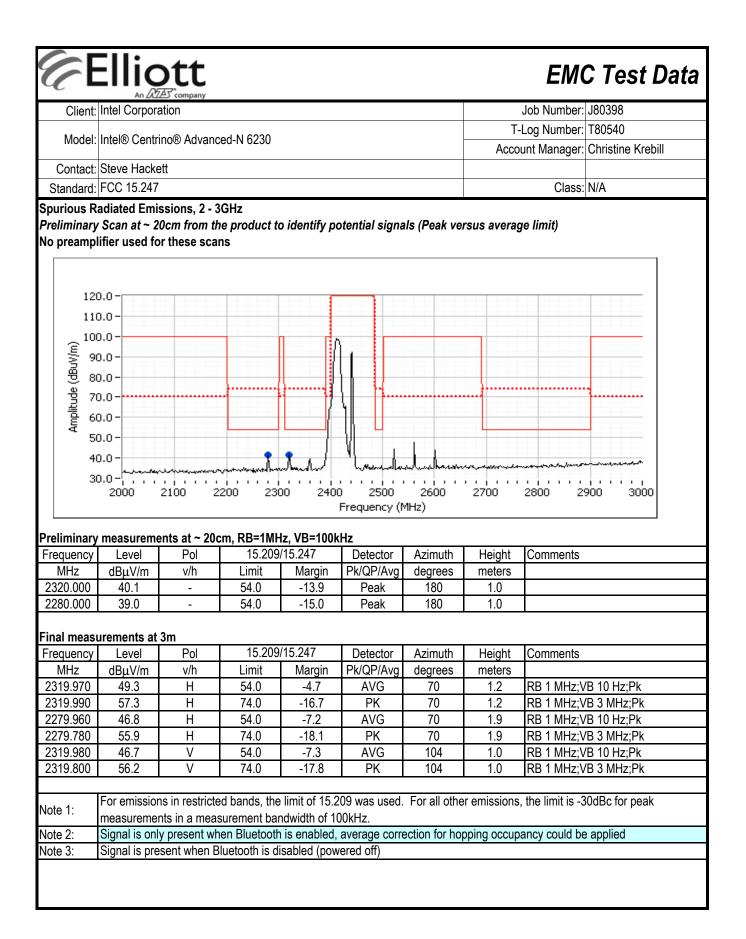

Client:	Intel Corpora	ation						Job Number: J80398
Madal							T-	Log Number: T80540
Model:	Intel® Centr	ino® Advanc	ed-N 6230				Acco	unt Manager: Christine Krebi
Contact:	Steve Hacke	ett						U
	FCC 15.247							Class: N/A
n # 1, Ra	inbow Peak	2x2: 1-10G	Hz, 802.11b	@ 2412 MI	Hz Chain A, E		te @ 2402 N	MHz Chain B
					Power	-		
			Target	· · ·	Measure	()		re Setting
		Chain A		õ.5		5.5		4.5
		Chain B	7	.0	4.	.4	8	8.0
80.0 70.0 (@	-							
		WMM.	u Montul		equency (MH	z,zerlevén "zek	U	4
30.0 20.0 20.0				ge limit)			Height	10000
30.0 20.0 20.0	/ Measureme	Pol	15.209	ge limit) /15.247	Detector	Azimuth	Height	Comments
30.0 20.0 20.0 20.0 2 20.0 2 20.0 2 20.0 2 20.0 2 2 20.0 2 2 2 2	/ Measureme Level dBµV/m	Pol v/h	15.209 Limit	ge limit) /15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	10000
30.0 20.0 <i>liminary</i> quency MHz 22.500	- μοσο / Measureme Level dBμV/m 46.0	Pol v/h V	15.209 Limit 54.0	ge limit) /15.247 Margin -8.0	Detector Pk/QP/Avg Peak	Azimuth degrees 154	meters 1.0	10000
30.0 20.0 20.0 2 20.00 20.00 22.500 92.500	- 1000 (Measureme Level dBμV/m 46.0 42.9	Pol v/h	15.209 Limit 54.0 54.0	ge limit) /15.247 Margin -8.0 -11.1	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 154 82	meters 1.0 1.5	10000
30.0 20.0 20.0 20.0 20.0 20.0 22.500 80.000	- μοσο / Measureme Level dBμV/m 46.0	Pol v/h V V V	15.209. Limit 54.0 54.0 70.0	ge limit) /15.247 Margin -8.0 -11.1 -23.6	Detector Pk/QP/Avg Peak	Azimuth degrees 154	meters 1.0	10000
30.0 20.0 20.0 20.0 20.0 20.00 22.500 20.000 30.000	 Measureme Level dBμV/m 46.0 42.9 46.4 	Pol v/h V V V	15.209. Limit 54.0 54.0 70.0	ge limit) /15.247 Margin -8.0 -11.1	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 154 82	meters 1.0 1.5	10000
30.0 20.0 20.0 20.00 22.500 22.500 30.000 al meas quency MHz	 Measureme Δ.000 Measureme Δ.000 Measureme Δ.000 Δ.000<	Pol v/h V V 3m Pol v/h	15.209 Limit 54.0 54.0 70.0 15.209 Limit	ge limit) /15.247 Margin -8.0 -11.1 -23.6	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg	Azimuth degrees 154 82 154 Azimuth degrees	meters 1.0 1.5 1.0 Height meters	Comments
30.0 20.0 20.0 20.0 20.00 30.000 30.000 al meas quency MHz 24.000	- 10000 (Measureme Level dBμV/m 46.0 42.9 46.4 urements at Level dBμV/m 48.0	Pol v/h V V 3m Pol v/h V	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0	ge limit) /15.247 <u>Margin -8.0 -11.1 -23.6 /15.247 Margin <u>-6.0</u></u>	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg AVG	Azimuth degrees 154 82 154 Azimuth degrees 153	meters 1.0 1.5 1.0 Height meters 1.16	Comments
30.0 20.0 20.0 22.0 <u>100</u> 22.500 30.000 30.000 al meas quency MHz 24.000 23.900	 Measureme Level dBμV/m 46.0 42.9 46.4 urements at Level dBμV/m 48.0 50.8 	Pol v/h V V 3m Pol v/h V V	15.209. Limit 54.0 54.0 70.0 15.209. Limit 54.0 74.0	ge limit) /15.247 Margin -8.0 -11.1 -23.6 /15.247 Margin -6.0 -23.2	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg AVG PK	Azimuth degrees 154 82 154 Azimuth degrees 153 153	meters 1.0 1.5 1.0 Height meters	Comments
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.000	- 10000 (Measureme Level dBμV/m 46.0 42.9 46.4 urements at Level dBμV/m 48.0	Pol v/h V V 3m Pol v/h V	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0	ge limit) /15.247 <u>Margin -8.0 -11.1 -23.6 /15.247 Margin <u>-6.0</u></u>	Detector Pk/QP/Avg Peak Peak Peak Detector Pk/QP/Avg AVG	Azimuth degrees 154 82 154 Azimuth degrees 153	meters 1.0 1.5 1.0 Height meters 1.16	Comments

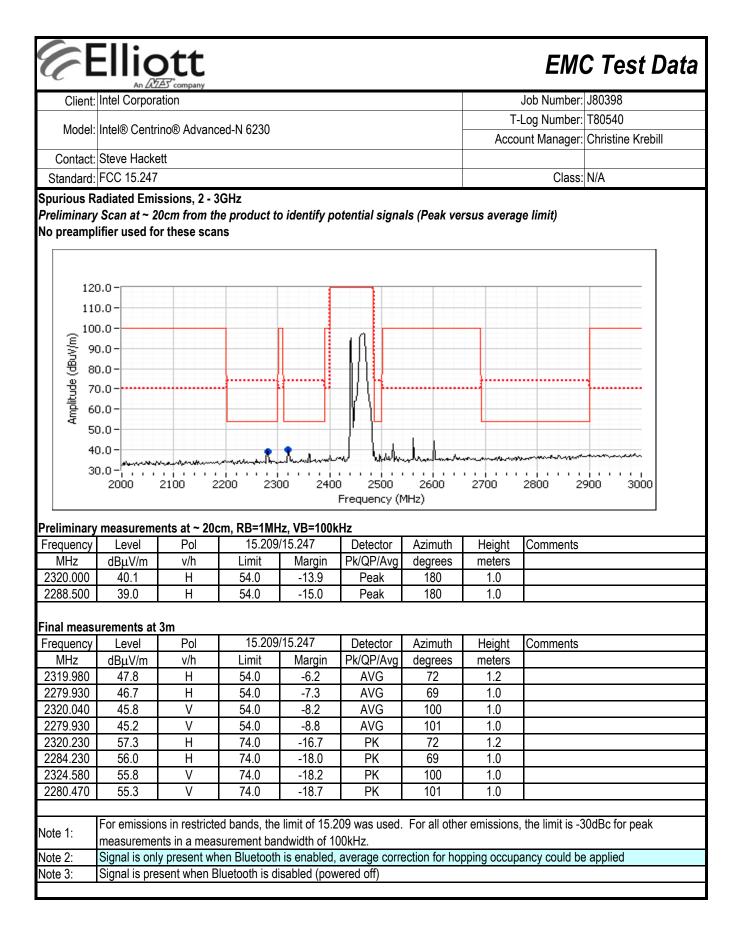
	Intel Corpora	ation						Job Number:	J80398
Model:	Intel® Centri	no® Advanc	ed-N 6230					Log Number:	
							Acco	unt Manager:	Christine Krebill
	Steve Hacke	tt						0	N1/A
Standard:	FCC 15.247							Class:	N/A
	adiated Emi / Scan at ~ 2			o identify po	otential signa	als (Peak ve	rsus avera <u>ç</u>	ge limit)	
100.	0		П		E F				
90.	0-								
Ê 80.	0-						-		
9 9 70.	0			1	1				
ይ / 2	n-			ľ					
<u> </u>									
(m/\ng) 80. 70. 60. 50.									
40.	0 - 0 - 0 -				2500				
40. 30.	0 - 0 - 0 -		00 2300) 2400 Fr	2500 requency (Mł	2600			
40. 30. Preliminary Frequency	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	e nts at ~ 20 0 Pol	00 2300 200 2300 200 2300 200 2300 200 2300	i 2400 Fi iz, VB=100k /15.247	2500 requency (Mł (Hz Detector	2600 Hz) Azimuth	2700 2 Height		
40. 30. Preliminary Frequency MHz	0 - 0 - 2000 2 / measureme Level dBµV/m	ents at ~ 200 Pol v/h	cm, RB=1MH 15.209	2400 Fr iz, VB=100k /15.247 Margin	2500 requency (Mł (Hz Detector Pk/QP/Avg	2600 Hz) Azimuth degrees	2700 2 Height meters	2800 290	
40. 30. Preliminary Frequency MHz 2283.330	0 - 0 - 2000 2 / measureme Level dBμV/m 38.3	ents at ~ 200 Pol v/h H	2300 2300 200 2300 200 2300 2300 2300 23	1 2400 Fr 1 z, VB=100k /15.247 Margin -15.7	2500 requency (Mł KHz Detector Pk/QP/Avg Peak	2600 Hz) Azimuth degrees 321	2700 2 Height meters 1.0	Comments	
40, 30, Preliminary Frequency MHz 2283,330 2483,330	0 - 0 - 2000 2: / measureme Level dBµV/m 38.3 39.8	ents at ~ 200 Pol v/h H H	2300 2300 2300 2300 2300 15.209 Limit 54.0 120.0	2400 Fi iz, VB=100k /15.247 Margin -15.7 -80.2	2500 requency (MH Hz Detector Pk/QP/Avg Peak Peak	2600 Hz) Azimuth degrees 321 4	2700 2 Height meters 1.0 1.0	Comments	00 3000
40. 30. Preliminary Frequency MHz 2283.330 2483.330 2523.330	0 - 0 - 2000 2 γ measureme Level dBμV/m 38.3	ents at ~ 200 Pol v/h H	2300 2300 200 2300 200 2300 2300 2300 23	1 2400 Fr 1 z, VB=100k /15.247 Margin -15.7	2500 requency (Mł KHz Detector Pk/QP/Avg Peak	2600 Hz) Azimuth degrees 321	2700 2 Height meters 1.0	Comments	00 3000
40. 30. Preliminary Frequency MHz 2283.330 2483.330 2523.330 2523.330	0 - 0 - 2000 2 / measureme Level dBµV/m 38.3 39.8 43.6 43.4	ents at ~ 200 Pol v/h H H H H	2300 2300 2300 2300 25209 Limit 54.0 120.0 70.0	2400 Fi Iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4	2500 requency (MH Detector Pk/QP/Avg Peak Peak Peak	2600 Hz) Azimuth degrees 321 4 0	2700 2 Height meters 1.0 1.0 1.0	Comments In band Non-restrict	00 3000
40, 30, Preliminary Frequency MHz 2283,330 2483,330 2523,330 2563,330	0 - 0 - 2000 2: γ measureme Level dBμV/m 38.3 39.8 43.6 43.4 urements at	ents at ~ 200 Pol v/h H H H H 3m	2300 2300 2300 2500 15.209 Limit 54.0 120.0 70.0 70.0	2400 Fi iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4 -26.6	2500 requency (MH Hz Detector Pk/QP/Avg Peak Peak Peak Peak	2600 Hz) Azimuth degrees 321 4 0 212	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0	Comments In band Non-restrict	00 3000
40, 30, Preliminary Frequency MHz 2283,330 2483,330 2523,330 2563,330	0 - 0 - 2000 2 / measureme Level dBµV/m 38.3 39.8 43.6 43.4	ents at ~ 200 Pol v/h H H H H	2300 2300 2300 2500 15.209 Limit 54.0 120.0 70.0 70.0	2400 Fi Iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4	2500 requency (MH Detector Pk/QP/Avg Peak Peak Peak	2600 Hz) Azimuth degrees 321 4 0	2700 2 Height meters 1.0 1.0 1.0	Comments In band Non-restrict	00 3000
40. 30. Preliminary Frequency MHz 2283.330 2483.330 2563.330 2563.330 5final meas Frequency MHz	0 - 0 - 2000 2: / measureme dBµV/m 38.3 39.8 43.6 43.4 urements at Level	ents at ~ 200 Pol v/h H H H H 3m Pol	2300 2300 2300 25.209 Limit 54.0 120.0 70.0 70.0 15.209	2400 Fi iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4 -26.6	2500 requency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Detector	Azimuth degrees 321 4 0 212 Azimuth	2700 2 Height <u>meters</u> 1.0 1.0 1.0 1.0 Height	Comments In band Non-restrict	00 3000
40. 30. Preliminary Frequency MHz 2283.330 2523.330 2563.330 2563.330 2563.330 5requency MHz 2281.900	0 - 0 - 2000 2: / measureme Level dBµV/m 38.3 39.8 43.6 43.4 urements at Level dBµV/m	ents at ~ 200 Pol V/h H H H H 3m Pol V/h	2300 2300 2300 2500 15.209 120.0 70.0 70.0 15.209 Limit	2400 Fi Iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4 -26.6 /15.247 Margin	2500 requency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Detector Pk/QP/Avg	2600 Hz) Azimuth degrees 321 4 0 212 Azimuth degrees	Height meters 1.0 1.0 1.0 1.0 Height meters	Comments In band Non-restrict	ed band ed band
40. 30. Preliminary Frequency MHz 2283.330 2483.330 2523.330 2563.330 2563.330 Final meas Frequency	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ents at ~ 200 Pol V/h H H H 3m Pol V/h H H s in restrictents in a measurements	2300 2300 2300 2300 2509 Limit 54.0 70.0 70.0 70.0 15.209 Limit 54.0 74.0 24.0 24.0 254.0 254.0 254.0 255.0	2400 Fi iz, VB=100k /15.247 Margin -15.7 -80.2 -26.4 -26.6 /15.247 Margin -8.0 -18.4 e limit of 15.2 ndwidth of 10	2500 requency (Mł KHz Detector Pk/QP/Avg Peak Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK	Azimuth degrees 321 4 0 212 Azimuth degrees 69 69 69	2700 2 Height <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u>	Comments In band Non-restrict Comments Comments , the limit is -3	ed band ed band ed band Note 2 Note 2 30dBc for peak

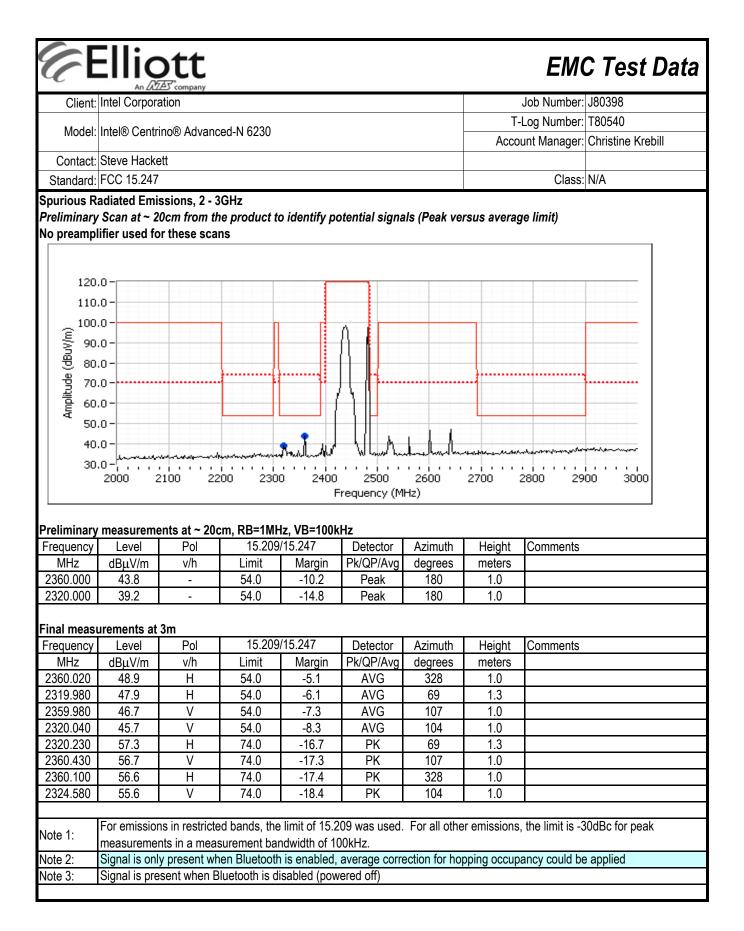


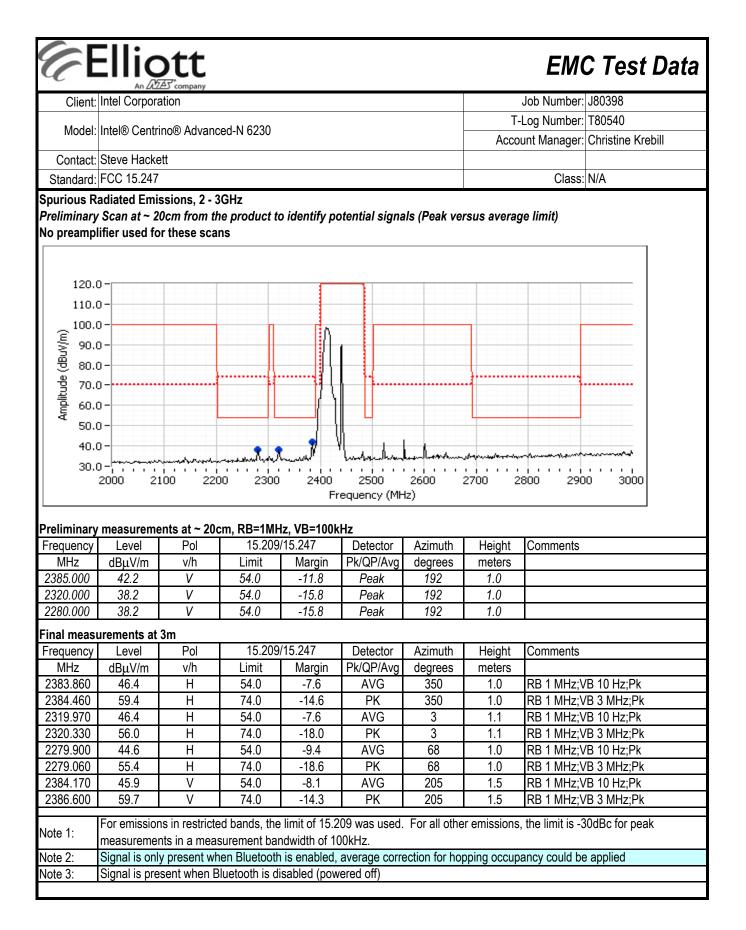
Client:		A company						Job Number:	180398	
Cilent.							T.	Log Number:		
Model:	Intel® Centri	ino® Advanc	ed-N 6230				Account Manager: Christine Krebill			
Contact:	Steve Hacke	ett						<u></u>		
	FCC 15.247							Class:	N/A	
•	adiated Emi v Scan at ~ 2	-		o identify po	otential signa	ıls (Peak ve	rsus avera	ge limit)		
100.	0-		Π		0					
90.	o –									
Ê 80.	o-				- [\]					
~ 명 70.	0				1					
9 /0.					74					
4mplitude (dBuV/m) 90. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2										
-										
40. 30.	a	100 220			2500		•		,	
30. Preliminary	2000 2	ents at ~ 20c	cm, RB=1M⊦	2400 Fr Iz, VB=100k	2500 equency (MH	2600 tz)	2700 2	2800 290	, 00 3000	
30. P reliminary Frequency	measureme	ents at ~ 200 Pol	cm, RB=1M F 15.209	2400 Fr Iz, VB=100k /15.247	2500 equency (MH Hz Detector	2600 Hz) Azimuth	2700 2 Height		,	
30. P reliminary Frequency MHz	measureme dBµV/m	ents at ~ 200 Pol v/h	:m, RB=1M F 15.209 Limit	2400 Fr Iz, VB=100k /15.247 Margin	2500 equency (MH Hz Detector Pk/QP/Avg	2600 Hz) Azimuth degrees	2700 2 Height meters	2800 290		
30. Preliminary Frequency MHz 2320.000	measureme	ents at ~ 200 Pol	cm, RB=1M F 15.209	2400 Fr Iz, VB=100k /15.247	2500 equency (MH Hz Detector	2600 Hz) Azimuth	2700 2 Height	2800 290		
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000	0 - 2000 2 2000 2 measureme dBμV/m 37.9 40.3 37.4	ents at ~ 200 Pol v/h H H H	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0	2400 Fr 1 z, VB=100k /15.247 Margin -16.1 -13.7 -32.6	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352	2700 2 Height meters 1.0 1.0 1.0	Comments	ed band	
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670	0 - 2000 2 2000 2 measureme <u>Level</u> <u>dBμV/m</u> <u>37.9</u> <u>40.3</u> <u>37.4</u> <u>39.1</u>	ents at ~ 200 Pol v/h H H H H	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0	2400 Fr 15.247 Margin -16.1 -13.7 -32.6 -30.9	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0	Comments Non-restricte Non-restricte	ed band ed band	
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670	0 – 2000 2 2000 2 2	ents at ~ 200 Pol v/h H H H H H	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0	2400 Fr Iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75 144	2700 2 Height neters 1.0 1.0 1.0 1.0 1.0 1.0	Comments Comments Non-restricte Non-restricte Non-restricte	ed band ed band ed band	
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2641.670	σ σ 2000 2 measureme Level dBμV/m 37.9 40.3 37.4 39.1 42.1 42.5 42.5	ents at ~ 200 Pol v/h H H H H H H	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0	2400 Fr 15.247 Margin -16.1 -13.7 -32.6 -30.9	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0	Comments Non-restricte Non-restricte	ed band ed band ed band	
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2641.670 inal meas	σ π 2000 2 σ π 2000 2 σ π dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 μrements at	ents at ~ 200 Pol v/h H H H H H H 3m	cm, RB=1M 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0 70.0	2400 Fr 1z, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.5	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75 144 147	2700 2 Height <u>neters</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u> <u>1.0</u>	Comments Comments Non-restricte Non-restricte Non-restricte Non-restricte	ed band ed band ed band	
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2641.670 2641.670 Frequency	α 2000 2 α 2000 2 α dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 42.5 urements at Level 1	ents at ~ 200 Pol V/h H H H H H 3m Pol	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0 70.0 15.209	2400 Fr 15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.5	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 Height	Comments Comments Non-restricte Non-restricte Non-restricte	ed band ed band ed band	
30. reliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2641.670 inal meas Frequency MHz	0 – 2000 2 2000 2 7 measureme Level dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 urements at Level dBµV/m	ents at ~ 200 Pol V/h H H H H H M 3m Pol v/h	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0 70.0 15.209 Limit	2400 Fr Iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.5 /15.247 Margin	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth degrees	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters	Comments Comments Non-restricte Non-restricte Non-restricte Non-restricte	ed band ed band ed band	Nrd
30, reliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2601.070	σ σ 2000 2 measureme Level dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 Level urements at Level dBµV/m 46.3	ents at ~ 200 Pol V/h H H H H H M Sm Pol V/h H	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0 70.0 15.209 Limit 54.0	2400 Fr iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.9 -27.5 /15.247 Margin -7.7	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg AVG	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth degrees 345	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Comments Non-restricte Non-restricte Non-restricte Non-restricte	ed band ed band ed band	
30. reliminary Frequency MHz 2320.000 2360.000 2400.000 2601.670 2601.670 2601.670 2601.670 2601.670 2601.070 2320.070 2319.830	0 – 2000 2 2000 2 7 measureme Level dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 urements at Level dBµV/m	ents at ~ 200 Pol V/h H H H H H M 3m Pol v/h	cm, RB=1MH 15.209 Limit 54.0 54.0 70.0 70.0 70.0 70.0 70.0 15.209 Limit	2400 Fr Iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.5 /15.247 Margin	2500 equency (MH Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth degrees	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters	Comments Comments Non-restricte Non-restricte Non-restricte Non-restricte	ed band ed band ed band	Na Na Na
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2601.670 2601.670 2601.670 2601.670 2601.670 2601.670 2320.070 2320.070 2319.830 2360.020	α α 2000 2 α α 2000 2 α α<	ents at ~ 200 Pol v/h H H H H H 3m Pol v/h H H	cm, RB=1MH 15.209 Limit 54.0 70.0 70.0 70.0 70.0 70.0 15.209 Limit 54.0 74.0	2400 Fr Iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.9 -27.5 /15.247 Margin -7.7 -17.4	2500 equency (MH Petector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth degrees 345 345	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Comments Non-restricte Non-restricte Non-restricte Non-restricte	ed band ed band ed band	No
30. Preliminary Frequency MHz 2320.000 2360.000 2400.000 2561.670 2601.670 2641.670 Final meas Frequency	σ σ 2000 2 measureme Level dBµV/m 37.9 40.3 37.4 39.1 42.1 42.5 Level dBµV/m 46.3 56.6 48.4 57.2 For emission	ents at ~ 200 Pol V/h H H H H H Sm Pol V/h H H H H H H H H H	cm, RB=1MH 15.209 Limit 54.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 7	2400 Fr Iz, VB=100k /15.247 Margin -16.1 -13.7 -32.6 -30.9 -27.9 -27.9 -27.5 /15.247 Margin -7.7 -17.4 -5.6 -16.8 Ilimit of 15.2	2500 equency (MH Hz Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	2600 Hz) Azimuth degrees 185 338 352 75 144 147 147 Azimuth degrees 345 345 345 345 70 70 70	2700 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Comments Non-restricte Non-restricte Non-restricte Comments Comments	ed band ed band ed band	No No

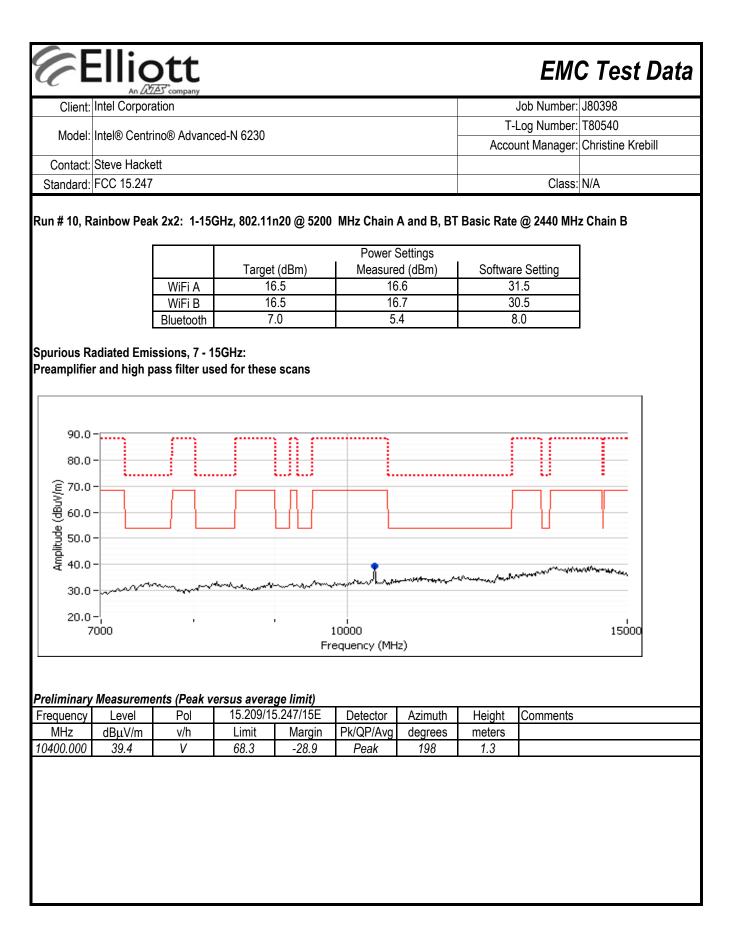

	An 🖉	Company						1.1.NL	100000
Client:	Intel Corpora	ation						Job Number:	
Model:	Intel® Centr	ino® Advanc	ed-N 6230					Log Number:	
							Acco	unt Manager:	Christine Krebill
	Steve Hacke								
Standard:	FCC 15.247	,						Class:	N/A
					Iz Chain A, B ocated band:		e @ 2402 M	IHz Chain B	
					Power S				
				Target (dBm) Measured (dBm)				re Setting	
	Chain			<u>6.5</u>		5.3 4		1.0	
		Chain B	/	.0	4.4		8.0		l
litude (dBu	-								
20.0 1					equency (MH	יעה איז			10000
30.0 20.0 1 reliminary		ents (Peak v					Height	 	· 10000
30.0 20.0 1 reliminary		ents (Peak v Pol v/h		ge limit)	equency (MH	میں میں میں اسیر Iz) Azimuth degrees	Height meters	Comments	 10000
30.0 20.0 1 eliminary equency MHz 183.330	- - - - - - - - - - - - - - - - - - -	Pol v/h V	15.209 Limit 54.0	ge limit) /15.247 Margin -11.2	Detector Pk/QP/Avg Peak	Azimuth degrees 102	meters 2.0		 10000
30.0 20.0 1 eliminary requency MHz 183.330 449.170	- - - - - - - - - - - - - - - - - - -	Pol v/h V H	15.209 Limit 54.0 54.0	ge limit) /15.247 Margin -11.2 -11.5	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 102 138	meters 2.0 1.5	Comments	 10000
30.0 20.0 1 eliminary requency MHz 183.330 449.170 822.500	- - - - - - - - - - - - - - - - - - -	Pol v/h V H V	15.209 Limit 54.0 54.0 54.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 102 138 283	meters 2.0 1.5 2.0	Comments	· 10000
30.0 20.0 1 eliminary requency MHz 183.330 449.170 822.500 980.000		Pol V/h V H V V	15.209 Limit 54.0 54.0	ge limit) /15.247 Margin -11.2 -11.5	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 102 138	meters 2.0 1.5	Comments	· 10000
30.0 20.0 1 eliminary equency MHz 183.330 449.170 822.500 980.000 nal measu	- - - - - - - - - - - - - - - - - - -	Pol V/h V H V V 3m	15.209 Limit 54.0 54.0 54.0 70.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6	Detector Pk/QP/Avg Peak Peak Peak Peak	Azimuth degrees 102 138 283 153	meters 2.0 1.5 2.0 1.0		· 10000
30.0 20.0 1 20.0 20.0	- - - - - - - - - - - - - -	Pol V/h V H V Sm Pol	15.209 Limit 54.0 54.0 54.0 70.0 15.209	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6	Detector Pk/QP/Avg Peak Peak Peak Peak Detector	Azimuth degrees 102 138 283 153 Azimuth	meters 2.0 1.5 2.0 1.0 Height	Comments Comments	· 10000
30.0 20.0 1 20.0 1 20.0 1 20.0 1 20.0 1 20.0 20.0	- - - - - - - - - - - - - - - - - - -	Pol v/h V H V V 3m Pol v/h	15.209 Limit 54.0 54.0 54.0 70.0 15.209 Limit	ge limit) /15.247 -11.2 -11.5 -11.9 -23.6 /15.247 Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg	Azimuth degrees 102 138 283 153 Azimuth degrees	meters 2.0 1.5 2.0 1.0 Height meters		· 10000
30.0 20.0 1 20.0 20.0	- - - - - - - - - - - - - -	Pol V/h V V V 3m Pol V/h H	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG	Azimuth degrees 102 138 283 153 Azimuth degrees 132	meters 2.0 1.5 2.0 1.0 Height meters 1.33		· 10000
30.0 20.0 1 20.0 20.0	Measureme Δ.0000 Measureme Δ.0000 </td <td>Pol V/h V V Sm Pol V/h H H</td> <td>15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0</td> <td>ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6</td> <td>Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK</td> <td>Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132</td> <td>meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.33</td> <td></td> <td>· 10000</td>	Pol V/h V V Sm Pol V/h H H	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK	Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132	meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.33		· 10000
30.0 20.0 1 20.0 1 20.0 1 20.0 1 20.0 1 1 20.0 1 1 20.0 1 1 20.0 1 1 20.0 1 1 20.0 1 1 20.0 1 2 20.0 1 1 20.0 1 1 2 20.0 1 1 2 20.0 1 1 2 20.0 1 1 2 20.0 1 1 2 2 2 0 1 1 2 2 2 0 1 1 2 2 2 0 1 1 2 2 2 0 0 1 1 2 2 2 0 0 1 1 2 2 2 0 0 1 1 2 2 2 0 0 1 2 2 2 0 0 1 1 2 2 2 0 0 1 2 2 2 0 0 1 2 2 2 0 0 2 2 2 0 0 2 2 2 5 00 2 2 2 5 00 2 2 2 5 00 2 2 2 5 00 2 2 2 5 00 2 2 2 5 00 2 2 2 5 00 2 2 2 2	Measureme Δ.0000 Measureme Δ.0000 </td <td>Pol v/h V H V Sm Pol v/h H H V</td> <td>15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0 54.0</td> <td>ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6 -11.5</td> <td>Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK AVG</td> <td>Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132 89</td> <td>meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.99</td> <td></td> <td>· 10000</td>	Pol v/h V H V Sm Pol v/h H H V	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0 54.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6 -11.5	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132 89	meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.99		· 10000
30.0 20.0 1 reliminary requency MHz 183.330 449.170 822.500 980.000 nal measu requency	Measureme Δ.0000 Measureme Δ.0000 </td <td>Pol V/h V V Sm Pol V/h H H</td> <td>15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0</td> <td>ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6</td> <td>Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK</td> <td>Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132</td> <td>meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.33</td> <td></td> <td>· 100000</td>	Pol V/h V V Sm Pol V/h H H	15.209 Limit 54.0 54.0 70.0 15.209 Limit 54.0 74.0	ge limit) /15.247 Margin -11.2 -11.5 -11.9 -23.6 /15.247 Margin -10.8 -28.6	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg AVG PK	Azimuth degrees 102 138 283 153 153 Azimuth degrees 132 132	meters 2.0 1.5 2.0 1.0 Height meters 1.33 1.33		· 100000

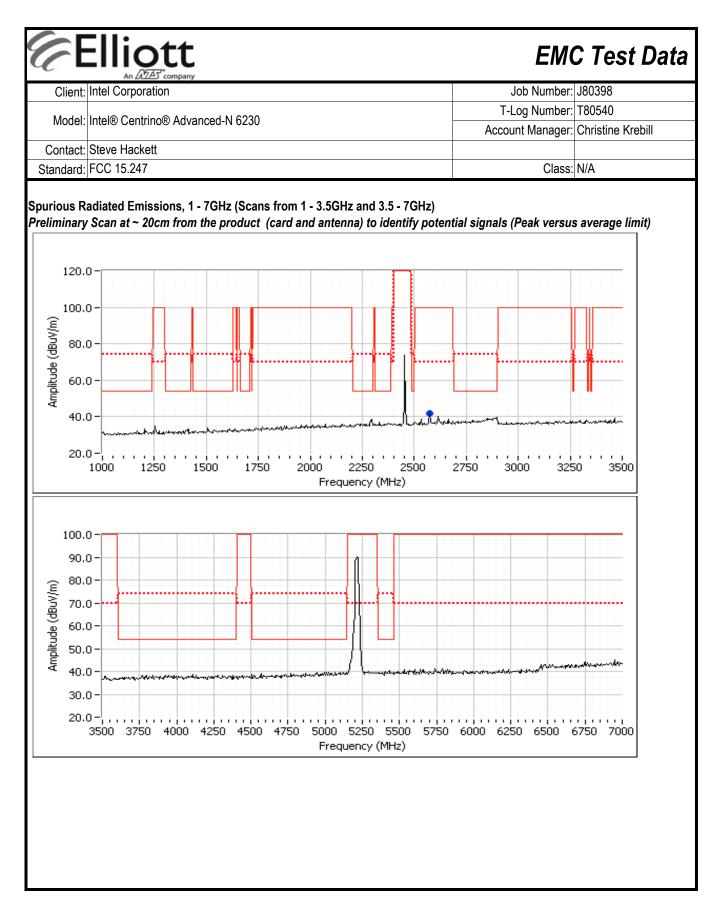

Client:	Intel Corpora	ation						Job Number:	J80398
Model	Intol® Contr	ino® Advanc	od N 6230				T-	Log Number:	T80540
wouer.			eu-in 0230				Acco	unt Manager:	Christine Krebill
	Steve Hacke								
Standard:	FCC 15.247							Class:	N/A
n # 4, Ra	inbow Peak	2x2: 1-10G	Hz, 802.11g	@ 2462 MH	Iz Chain A, B [·]	F Basic Rate	e @ 2480 M	Hz Chain B	
					Power S	Settings			
			Targe	t (dBm)	Measure		Softwar	e Setting	
		Chain A		ô.5	16			9.5	
		Chain B	7	.0	5.	3	8	3.0	
urious R	adiated Emi	ssions. 1 - 1	0GHz exclu	ding the all	ocated band:				
80.0	-								
			H	1441		{}			
70.0	-		1	-1 1		1			1-111
Ê 560.0									
3 00.0									
) je 50.0	-							•	
3					. 1				
르	1								ALL 400 440
Amplitude (dBuV/m) 20.0 40.0 40.0		. ele s	ار بر ا	d	Mulerten ber	مرر محمدالعل	J.	NAME AND A DESCRIPTION OF A DESCRIPTIONO	
-	MAR	WANN	Marthandal	1	Warmon	whenter	Jerrydonnes	and the second sec	
편 역 40.0 전 30.0	MAR	WALMAN	Manhand	.M	Warmhin	www.	Jerrydoneses	and the second sec	~~~
- 30.0 20.0	- ~~~W	mann	Manhard	1	Warrenter	when we		and the second sec	
- 30.0 20.0	-hrwl	WALAM	Ymment.	1	Werner	whene	J	and the second	10000
- 30.0 20.0	- ~~~W	WALAW	Yarfandad	"ľ	equency (MH	2)			10000
30.0 20.0		WW MWW	Ymment.		equency (MH:	ubulaanaan , z)		· · · ·	10000
30.0 20.0 1 20.0		ents (Peak vo		ge limit)		-	Height	Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- Measureme	Pol	15.209	ge limit) /15.247	Detector	Azimuth	Height meters	Comments	10000
30.0 20.0 20.0 2 20.0 2 20.0 2 20.0 2 2 2 2		Pol v/h	15.209 Limit	ge limit) /15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	10000
30.0 20.0 20.0 20.0 2 20.0 2 2 2 2 2 2 2		Pol	15.209 Limit 54.0	ge limit) /15.247 Margin -4.8	Detector Pk/QP/Avg Peak	Azimuth degrees 174	meters 1.5	Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		Pol v/h V	15.209 Limit	ge limit) /15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		Pol v/h V V	15.209 Limit 54.0 54.0	ge limit) /15.247 Margin -4.8 -12.9	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 174 181	meters 1.5 2.5	Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		Pol v/h V V V V	15.209 Limit 54.0 54.0 70.0	ge limit) /15.247 Margin -4.8 -12.9 -23.4	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 174 181 160	meters 1.5 2.5 1.0	Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- μ	Pol v/h V V V H 3m	15.209 Limit 54.0 54.0 70.0 70.0	ge limit) /15.247 Margin -4.8 -12.9 -23.4 -26.6	Detector Pk/QP/Avg Peak Peak Peak Peak	Azimuth degrees 174 181 160 152	meters 1.5 2.5 1.0		10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- μ	Pol v/h V V H 3m Pol	15.209 Limit 54.0 54.0 70.0 70.0 15.209	ge limit) /15.247 Margin -4.8 -12.9 -23.4 -26.6	Detector Pk/QP/Avg Peak Peak Peak Peak Detector	Azimuth degrees 174 181 160 152 Azimuth	meters 1.5 2.5 1.0 1.5 Height	Comments Comments	10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- μ	Pol v/h V V H 3m Pol v/h	15.209 Limit 54.0 54.0 70.0 70.0 15.209 Limit	ge limit) /15.247 Margin -4.8 -12.9 -23.4 -26.6 /15.247 Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Detector Pk/QP/Avg	Azimuth degrees 174 181 160 152 Azimuth degrees	meters 1.5 2.5 1.0 1.5 Height meters		10000
30.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- μ	Pol v/h V V H 3m Pol	15.209 Limit 54.0 54.0 70.0 70.0 15.209	ge limit) /15.247 Margin -4.8 -12.9 -23.4 -26.6	Detector Pk/QP/Avg Peak Peak Peak Peak Detector	Azimuth degrees 174 181 160 152 Azimuth	meters 1.5 2.5 1.0 1.5 Height		10000

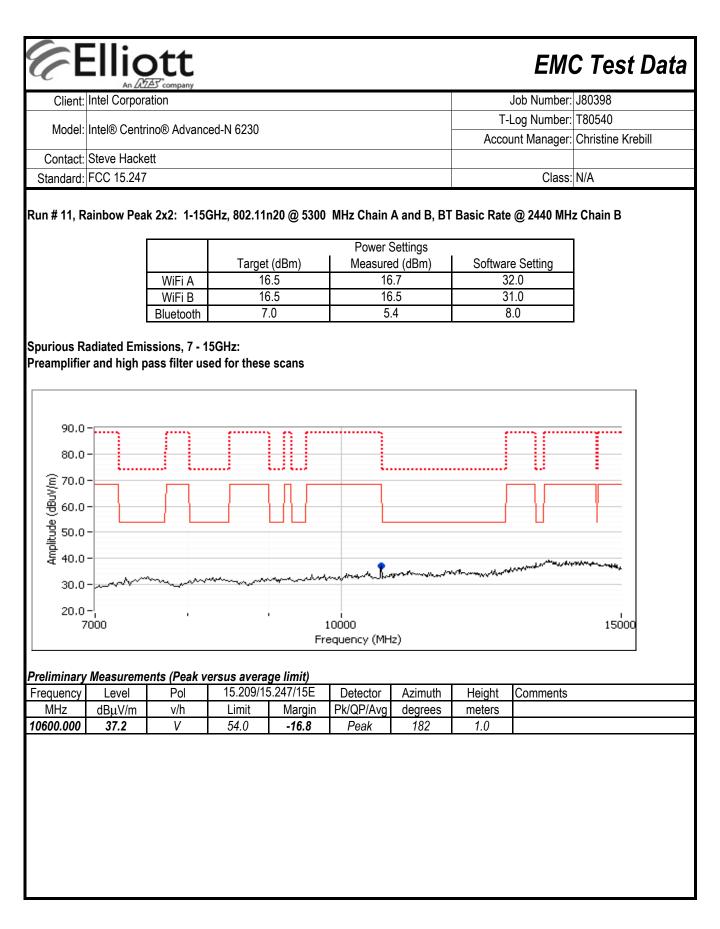

EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 5, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 16.6 23.5 Chain A 7.0 4.3 8.0 Chain B Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band: Preamplifier and notch filter used for these scans 120.0 100.0 Amplitude (dBuV/m) 80.0 60.0 40.0 25.0 1000 10000 Frequency (MHz) Preliminary Measurements (Peak versus average limit) 15.209/15.247 Frequency Level Pol Detector Azimuth Height Comments dBuV/m Limit Margin Pk/QP/Ava MHz v/h degrees meters 1457.620 43.2 Н 54.0 -10.8 130 1.5 Peak -11.4 2.0 1199.820 42.6 V 54.0 Peak 96 Final measurements at 3m 15.209/15.247 Frequency Level Pol Detector Azimuth Comments Height MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1200.140 40.1 V 54.0 -13.9 AVG 100 2.0 1457.570 43.0 Η 54.0 -11.0 AVG 127 1.4 44.7 74.0 -29.3 ΡK 100 2.0 1199.950 V 1457.490 45.1 Η 74.0 -28.9 ΡK 127 1.4 Note: 4804MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurious measurements.

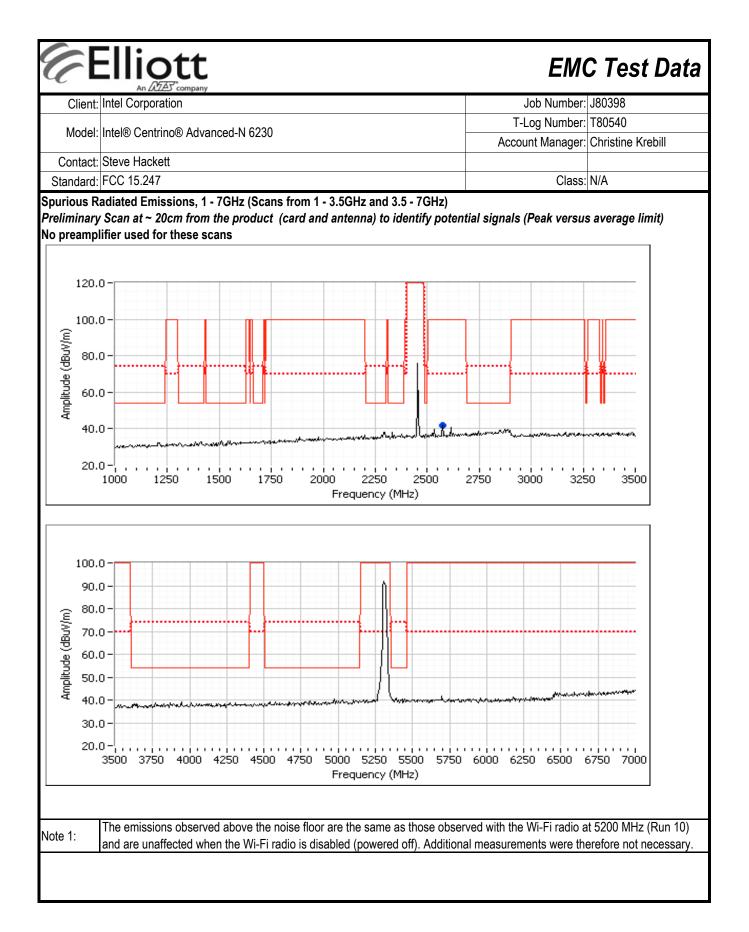

		▲ company						EMC Test Da
Client:	Intel Corpora	ation						Job Number: J80398
Model:	Intel® Centri	no® Advanc	ed-N 6230					Log Number: T80540 unt Manager: Christine Krebill
Contact:	Steve Hacke	ett						
	FCC 15.247							Class: N/A
		2x2: 1-10G	Hz, 802.11b	@ 2412 MF	Iz Chain A, B	T Basic Rate	e @ 2440 M	
	ſ				Power S	Settings		
			Targe	t (dBm)	Measure	-	Softwar	e Setting
	ľ	Chain A	-	6.5	16	()		3.5
		Chain B	7	7.0	5.	4	8	3.0
(@/\ngp) 900. (@/\ngp) 900. 40. 20.	0-	MM	WAL-MA		hillerseeter			
	1000			F	requency (Mł	tz)		10000
	Measureme	e nts (Peak v Pol		ige limit) 0/15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
quency	47.9	V	70.0	-22.1	Peak	141	1.0	
quency ИHz		V	54.0	-9.4	Peak	149	1.0	
quency //Hz)8.330	44.6		54.0	-6.9	Peak	165	1.9	
quency MHz 98.330 23.990	44.6 47.1	V						
Quency /Hz /8.330 23.990 (6.670	47.1							1
quency /Hz /8.330 23.990 6.670			15.209	9/15.247	Detector	Azimuth	Height	Comments
quency /Hz 8.330 23.990 6.670 I measu quency	47.1 urements at	3m	15.209 Limit	9/15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
quency /Hz /8.330 /3.990 6.670 I measu quency /Hz	47.1 urements at Level	3m Pol						Comments RB 1 MHz;VB 10 Hz;Pk
quency //Hz /8.330 23.990 (6.670 I measu quency //Hz 23.980	47.1 urements at Level dBμV/m 44.9 48.4	3m Pol v/h V V	Limit	Margin	Pk/QP/Avg	degrees	meters	
quency MHz 98.330 23.990 16.670	47.1 urements at Level dBµV/m 44.9	3m Pol v/h V	Limit 54.0	Margin -9.1	Pk/QP/Avg AVG	degrees 149	meters 1.3	RB 1 MHz;VB 10 Hz;Pk

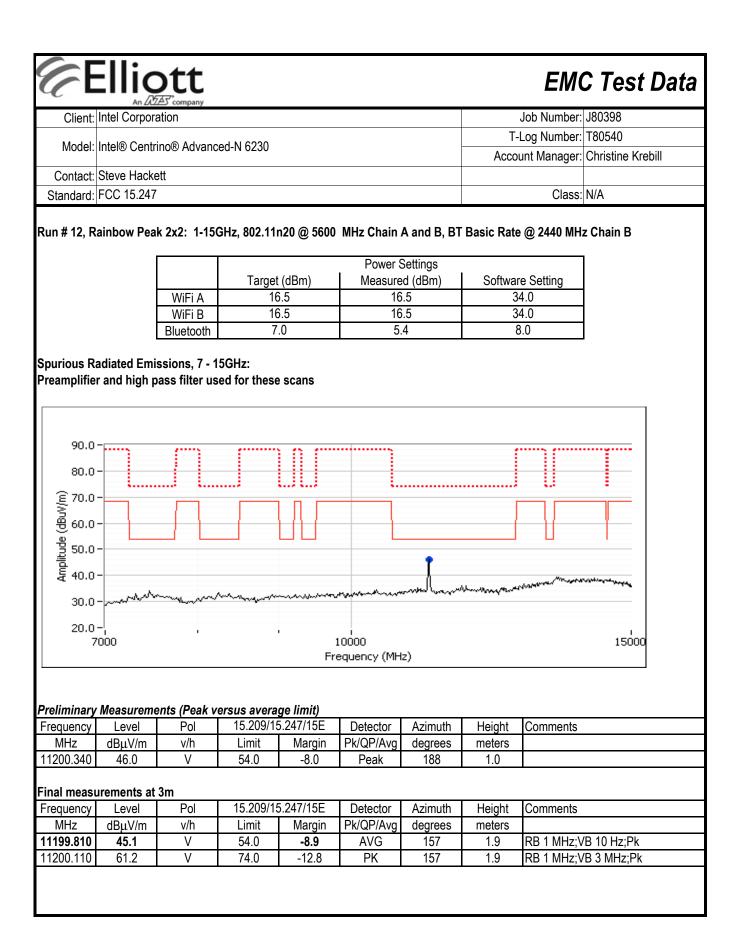

		company						EMC Test Da
Client:	mier Corpora	IIIUI I					т	Log Number: T80540
Model:	Intel® Centri	no® Advanc	ed-N 6230					unt Manager: Christine Krebill
Contact:	Steve Hacke	tt					, 1000	
	FCC 15.247							Class: N/A
		2x2: 1-10G	Hz, 802.11b	@ 2462 MH	Iz Chain A, B	T Basic Rate	e @ 2440 M	
	Г				Power S	Settings		
			Targe	t (dBm)	Measure	-	Softwar	re Setting
	Chain A			6.5	16	()		3.5
		Chain B	7	7.0	5.	4	8	3.0
(@/\ngp) 80.((@/\ngp) 80.(60.(40.(20.(0- 0- 0-\	www	Mrnah					· · · 10000
				1	requeries (m			
liminary	Measureme				<u> </u>			
	Level	Pol)/15.247	Detector	Azimuth	Height	Comments
quency	dBμV/m 47.7	v/h V	Limit 70.0	Margin -22.3	Pk/QP/Avg Peak	degrees 141	meters 1.0	
quency MHz	45.3	V V	54.0	-8.7	Peak	166	1.6	
quency MHz 30.000	46.3	V	54.0	-7.7	Peak	182	1.6	
quency MHz 30.000 23.860 22.500								
quency MHz 30.000 23.860 22.500		2m	15 000	15 047	Detector	ماند مورته	Haisht	Commonto
quency MHz 30.000 23.860 22.500	urements at 3			9/15.247	Detector	Azimuth degrees	Height meters	Comments
quency MHz 30.000 23.860 22.500 al measu quency	Level	Pol		Margin			INCLEIS	1
quency MHz 30.000 23.860 22.500 al measu quency MHz	Level dBµV/m	Pol v/h	Limit	Margin -6.4	Pk/QP/Avg AVG	-		RB 1 MHz·\/R 10 Hz·Pk
quency MHz 30.000 23.860 22.500 al measu quency MHz 23.980	Level dBµV/m 47.6	Pol v/h V	Limit 54.0	-6.4	AVG	166	1.7	RB 1 MHz;VB 10 Hz;Pk RB 1 MHz:VB 3 MHz:Pk
quency MHz 30.000 23.860 22.500	Level dBµV/m	Pol v/h	Limit		<u> </u>	-		RB 1 MHz;VB 10 Hz;Pk RB 1 MHz;VB 3 MHz;Pk RB 1 MHz;VB 10 Hz;Pk

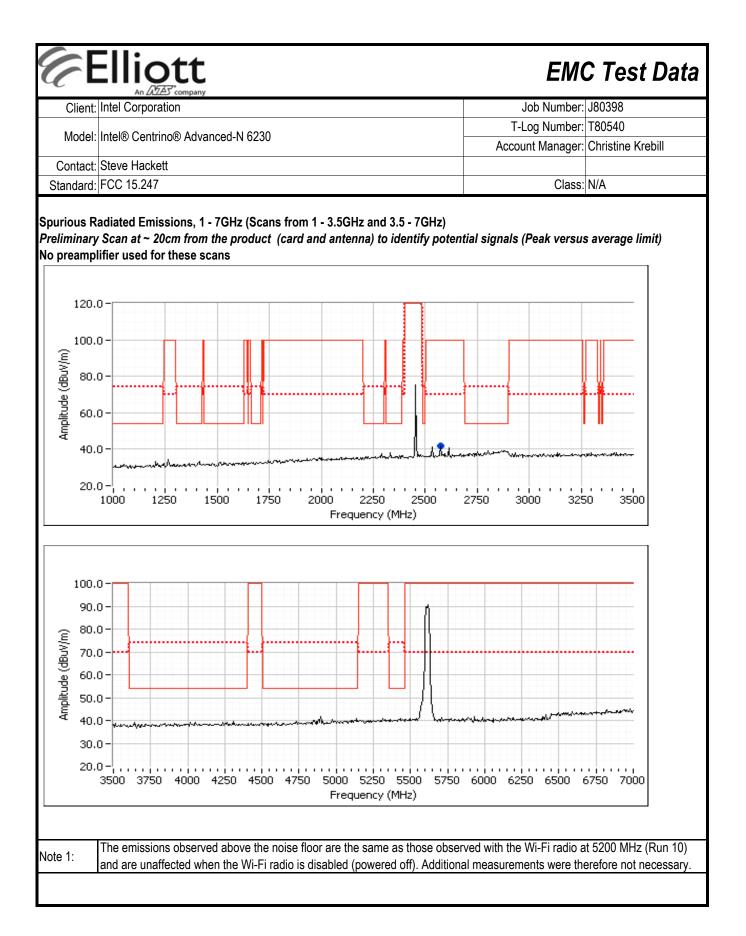


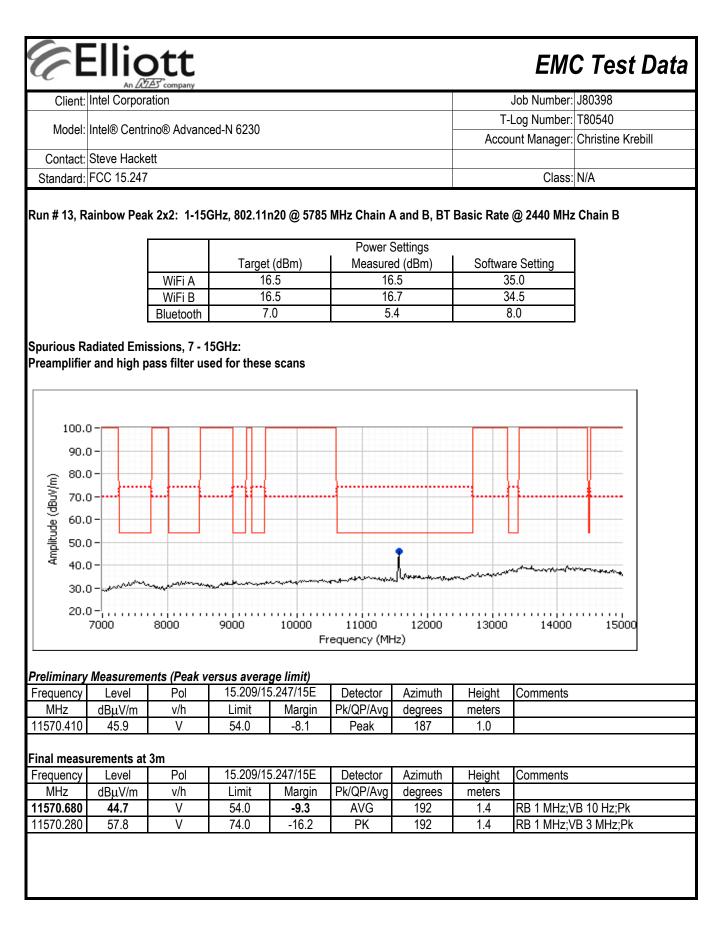

Client		Company						Job Number:	180308
Cherit.								Log Number:	
Model:	Intel® Centri	ino® Advanc	ed-N 6230					2	Christine Krebill
Contact:	Steve Hacke	ett						<u></u>	
	FCC 15.247							Class:	N/A
# 8, Ra	inbow Peak	2x2: 1-10G	Hz, 802.11b	@ 2437 MH	Iz Chain A, B	T Basic Rate	e @ 2480 M	IHz Chain B	
	ĺ				Power S	Settings]
			•	t (dBm)	Measure	\ /		re Setting	
		Chain A		ô.5	16			3.5	
		Chain B	7	⁷ .0	5.	1	8	3.0	
	.0- .0- .0- .0- .0- .0- .0- 1000	MnAMm		F	Frequency (M	Hz)			100000
	Measureme Level	ents (Peak v Pol		ge limit) /15.247	Detector	Azimuth	Height	Comments	
quency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
30.000	48.4	V	70.0	-21.6	Peak	148	1.0	1	
73.880	45.0	V	54.0	-9.0	Peak	148	1.3		
39.170	49.5	V	54.0	-4.5	Peak	166	2.2		
	uromonte at	3m							
l maasi	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
quency		V	54.0	-8.8	AVG	146	1.2	RB 1 MHz;V	/B 10 Hz;Pk
quency MHz	45.2		74.0	-25.0	PK	146	1.2	RB 1 MHz;∖	/B 3 MHz Pk
quency MHz 74.020		V	74.0						00 Wi12,1 K
al measu quency MHz 74.020 74.030 40.000 40.270	45.2	V V V	54.0 74.0	-9.1 -21.8	AVG PK	167 167	1.5 1.5		/B 10 Hz;Pk /B 3 MHz;Pk


	Intel Corpora	ation						Job Number:	
Model	Intel® Centri	no® Advanc	ed-N 6230	-	T-Log Number Account Manager				
Contact	Steve Hacke	tt		ACCO	unt manager.				
	FCC 15.247				Class:	N/A			
		2x2: 1-10G	Hz, 802.11b	0 @ 2412 M⊦	Iz Chain A, B	Г EDR @ 24	40 MHz Cha		
	ſ				Power S	Settinas			1
		Target (dBm)		t (dBm)	Measure		Software Setting		
	Cł		1	6.5	16	.5	2	3.5	
	[Chain B	7	7.0	1.	4	8	8.0	
Amplitude (dBuV/m) 00 08 00 00 08	.0-	huntu	Mohan		pelleur schw				
	.0 - 1000			F	requency (MF	łz)			
20	1000	nte (Daak w			requency (MH	łz)			
20 eliminary		e nts (Peak v e Pol			requency (MI	Iz) Azimuth	Height	Comments	
20 reliminary requency MHz	1000 / Measureme Level dBµV/m	Pol v/h	15.209 Limit	ge limit))/15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
20 eliminary equency MHz 998.330	1000 / Measureme Level dBμV/m 46.7	Pol v/h V	15.209 Limit 70.0	age limit))/15.247 Margin -23.3	Detector Pk/QP/Avg Peak	Azimuth degrees 130	meters 1.0	Comments	
20 reliminary requency MHz 998.330	1000 / Measureme Level dBµV/m	Pol v/h	15.209 Limit	ge limit))/15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
20 reliminary requency MHz 998.330 823.990	1000 / Measureme Level dBμV/m 46.7	Pol v/h V V	15.209 Limit 70.0 54.0	age limit) 0/15.247 Margin -23.3 -10.0	Detector Pk/QP/Avg Peak	Azimuth degrees 130	meters 1.0	Comments	
20 reliminary requency MHz 998.330 823.990 nal meas requency	1000 / Measureme Level dBμV/m 46.7 44.0 urements at	Pol v/h V V 3m Pol	15.209 Limit 70.0 54.0	age limit))/15.247 Margin -23.3	Detector Pk/QP/Avg Peak Peak Detector	Azimuth degrees 130	meters 1.0	Comments	
20 reliminar requency MHz 998.330 823.990 nal meas requency MHz	1000 / Measureme Level dBµV/m 46.7 44.0 urements at Level dBµV/m	Pol v/h V V 3m Pol v/h	15.209 Limit 70.0 54.0 15.209 Limit	age limit) 0/15.247 <u>Aargin</u> -23.3 -10.0 0/15.247 Margin	Detector Pk/QP/Avg Peak Peak Detector Pk/QP/Avg	Azimuth degrees 130 134 Azimuth degrees	meters 1.0 1.6 Height meters	Comments	
20 reliminary requency MHz 998.330 823.990 nal meas requency	1000 / Measureme Level dBμV/m 46.7 44.0 urements at Level	Pol v/h V V 3m Pol	15.209 Limit 70.0 54.0 15.209	age limit) D/15.247 Margin -23.3 -10.0	Detector Pk/QP/Avg Peak Peak Detector	Azimuth degrees 130 134 Azimuth	meters 1.0 1.6 Height	Comments RB 1 MHz;\	/ <u>B 10 Hz;Pk</u> /B 3 MHz;Pk








		D tt						EMO	C Test I	Data
Client:	Client: Intel Corporation Model: Intel® Centrino® Advanced-N 6230 Contact: Steve Hackett							Job Number: J80398		
								T-Log Number: T80540		
Model:								Account Manager: Christine Kre		II
Contact [.]								<u>_</u>		
	FCC 15.247							Class	N/A	
Stanuaru.	100 13.247			Class: N/A						
Spurious R	adiated Emis	ssions, 1 - 7	GHz (Scans	from 1 - 3.	5GHz and 3.5	- 7GHz)				
-										
	measureme			і<u>г, vв=100к</u> /15.247	1 1	Arimuth	Hoight	O a management		
Frequency MHz	Level	Pol			Detector	Azimuth	Height	Comments		
2560.000	dBµV/m 40.1	v/h V	Limit 100.0	Margin -59.9	Pk/QP/Avg	degrees 360	meters 1.0			
2000.000	4U. I	V	100.0	-วษ.ษ	Peak	200	1.0			
Final moace	urements at	3m								
Final measure	Level	Pol	15 209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commento		
2280.000	41.9	H	54.0	-12.1	AVG	0	1.2	RB 1 MHz;V	/B 10 Hz·Pk	Note 2
2320.000	41.7	V	54.0	-12.3	AVG	77	1.2	RB 1 MHz;V	,	Note 2
2360.000	39.6	V	54.0	-14.4	AVG	77	1.0	RB 1 MHz;V		Note 2
2320.000	39.4	H	54.0	-14.6	AVG	206	1.2	RB 1 MHz;V	,	Note 2
2360.000	38.1	H	54.0	-15.9	AVG	39	1.0	RB 1 MHz;V	•	Note 2
2280.000	37.8	V	54.0	-16.2	AVG	140	1.2	RB 1 MHz;V	,	Note 2
2320.000	55.0	V	74.0	-19.0	PK	77	1.3		/B 3 MHz;Pk	Note 2
2560.000	50.6	Ĥ	70.0	-19.4	PK	168	1.4		/B 3 MHz;Pk	Note 2
2560.000	46.9	V	70.0	-23.1	PK	216	1.9		/B 3 MHz;Pk	Note 2
2280.000	46.8	H	74.0	-27.2	PK	0	1.2		/B 3 MHz;Pk	Note 2
2320.000	46.2	H	74.0	-27.8	PK	206	1.2		/B 3 MHz;Pk	Note 2
2360.000	45.4	V	74.0	-28.6	PK	77	1.0		/B 3 MHz;Pk	Note 2
2360.000	44.3	Ĥ	74.0	-29.7	PK	39	1.2		/B 3 MHz;Pk	Note 2
2280.000	44.0	V	74.0	-30.0	PK	140	1.0		/B 3 MHz;Pk	Note 2
2560.000	46.3	H	100.0	-53.7	AVG	168	1.4	RB 1 MHz;V	,	Note 2
2560.000	40.5	V	100.0	-59.5	AVG	216	1.9	RB 1 MHz;V	,	Note 2
Note 1:						For all othe	er emissions	, the limit is -3	80dBc for peak	
	measuremer									
Note 2:	Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied									

