

EMC Test Report

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E

Model: Intel® Centrino® Advanced-N 6230 (model 62230HMW)

IC CERTIFICATION #: 1000M-62230ANH and 1000M-62230ANHU

FCC ID: PD962230ANH and PD962230ANHU

APPLICANT: Intel Corporation

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-7

REPORT DATE: October 11, 2010

FINAL TEST DATES: September 22, 23, 24, 27, 28, 30, October 4, and

5, 2010

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80792 Page 1 of 25

Test Report Report Date: October 11, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-11-2010	First release	

File: R80792 Page 2 of 25

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
ADDITIONAL MEASUREMENTS	
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALGENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	13
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEMINSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	24
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	25
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

File: R80792 Page 4 of 25

Test Report Report Date: October 11, 2010

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80792 Page 5 of 25

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Intended for indoor hosts only	N/A	Complies
15.407(a) (2)		26dB Bandwidth	> 20MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a: 42 mW n20MHz: 45 mW n40MHz: 44 mW (Max eirp: 95.5mW)	17dBm	Complies
15.407 (a) (1)	-	Power Spectral	3.7 dBm/MHz	4 dBm/MHz	Complies
-	A9.5 (2)	Density	3.7 QDIII/IVITIZ	6.4 dBm/MHz	Complies

Operation in the 5.25 – 5.35 GHz Band

operation in the					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power 802.11a: 44 mW n 20MHz: 46 mW n40MHz: 40 mW (Max eirp: 102.3mW)		17dBm (50mW)	Complies
15.407(a) (2)	-	Power Spectral Density	4.0 dBm/MHz	11 dBm/MHz	Complies
-	A9.2(2) / A9.5 (2)	Power Spectral Density		11 dBm / MHz ¹	Complies

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description Measured Value / Comments		Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	26dB Bandwidth > 20MHz		N/A
15.407(a) (2)	A9.2(2)	Output Power	Output Power 802.11a: 45 mW n 20MHz: 44 mW n40MHz: 44 mW (Max eirp: 134.9mW)		Complies
15.407(a) (2))		Power Spectral Density	4.2 dBm/MHz	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density		11 dBm / MHz ²	Complies
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate in the 5600 – 5650 MHz band – client device with passive scanning in this band.		Complies

Page 6 of 25 File: R80792

¹ Reduced from 11dBm because highest value exceeded the average value by more than 3dB ² Reduced from 11dBm because highest value exceeded the average value by more than 3dB

Test Report Report Date: October 11, 2010

Requirements for all U-NII/LELAN bands

Requirements	equirements for all U-NII/LELAN bands					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	41.2dBμV/m @ 662.52MHz	Defer to page 24	Complies (-4.8dB)	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions above 1GHz	53.0dBμV/m @ 5460.0MHz	Refer to page 24	Complies (-1.0dB)	
15.407(a)(6)	-	Peak Excursion Ratio	9.9 dB	< 13dB	Complies	
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	Complies	
15		Chamer Selection	Measurements on three channels in each band	and center channels in each band	Complies	
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description page 9)	Device shall automatically discontinue operation in the absence of information to transmit	Complies	
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 20ppm (Operational Description page 9)	Signal shall remain in-band.	Complies	
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report			
	A9.9g	User Manual information	Refer to pages 11 and 12 of the user's manual	Warning about satellite systems	Complies	

File: R80792 Page 7 of 25

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique	Integral or unique connector required	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	41.2dBμV/m @ 662.52MHz	Refer to page 22	Complies (-4.8dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	40.6dBμV @ 14.758MHz	Refer to page 21	Complies (-9.4dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual pages 8, 12	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to pages 11 and 12 of the user's manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	N/A
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11a: 17.1 MHz n20MHz: 18.1 MHz n40MHz: 36.4 MHz	Information only	N/A

ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

15.2109 RSS 210 Spurious emissions 11199 8MHz bands, all others (-8.9dB	FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
· Zoube	15.2109	RSS 210	Spurious emissions			Complies (-8.9dB)

Signal was actually second harmonic of 802.11 signal and not an inter-modulation product, but this was the highest level signal observed with both Bluetooth and Wi-Fi transmitters operational simultaneously.

File: R80792 Page 8 of 25

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

File: R80792 Page 9 of 25

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) is a PCIe half mini card form factor Bluetooth/IEEE 802.11a/b/g/n wireless network adapter. The card supports MIMO (2x2) for 802.11n modes and MISO (1x2) for 802.11a/b/g modes. Bluetooth only operation mode is a 1x1. When Bluetooth is operational then 802.11b/g/n modes operate as SISO (1x1). 802.11a/n modes still operate as MIMO (2x2) with Bluetooth operational.

The card is sold under two different FCC/IC ID numbers (see table below). The ID's ending in "U" are intended to allow user install conditions and host systems must be provided with a BIOS locking feature that prevents installation of unauthorized devices.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 13, 2010 and tested on September 22, 23, 24, 27, 28, 30, October 4, and 5, 2010. The EUT consisted of the following component(s):

Manufacturer	Model	Description	MAC Address	FCC ID and Canada UPN
Intel Corneration	62230ANHMW	PCIe Half Mini Card form factor Bluetooth / IEEE	00150079AD10	PD962230ANH PD962230ANHU 1000M-62230ANH
Intel Corporation	62230ANHU	802.11a/b/g/n wireless network adapter	001300/9AD10	1000M-62230ANHU

ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

File: R80792 Page 10 of 25

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel Corporation	1	Test Fixture	D9164573K0B0	N/A
DELL	Latitude D520	Laptop PC	HM9383J	N/A
Agilent	E3610A	DC Supply	MY4001740	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Polt	То	Description	Shielded or Unshielded	Length(m)
Laptop USB	Fixture USB	USB cable	Shielded	
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	
DC Power	Fixture DC power	2-wire	unshielded	

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11a, 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used when evaluating the WiFi transmitter were the lowest data rates for each 802.11 mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements – refer to test data for actual measurements).

The field strength at the band edges was evaluated for each mode and on each chain individually on the lowest and highest channels at the rated power for the channel under test. Where the power at the edge channels was lower than the power at the center channels additional measurements were made at the adjacent channels. MIMO and SISO modes were fully evaluated.

File: R80792 Page 11 of 25

Test Report Report Date: October 11, 2010

Spurious emissions measurements at frequencies away from the band edges were made at the highest power rating for the band in each mode. For 802.11n modes both chains were active (MIMO mode) but with each chain at the highest power rating per chain (MIMO power setting) to cover both modes of operation at the same time.

Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s.

Receiver spurious emissions in 802.11 modes were evaluated in single chain and multichain modes. Bluetooth receiver spurious were evaluated for single chain only as MISO is not supported for Bluetooth.

The PC was using the Intel test utility DRTU Version 1.2.12-0197 and the device driver was version 14.0.0.39.

File: R80792 Page 12 of 25

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	n Numbers	Location
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 7	A2LA accreditation	2845B-7	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R80792 Page 13 of 25

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R80792 Page 14 of 25

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

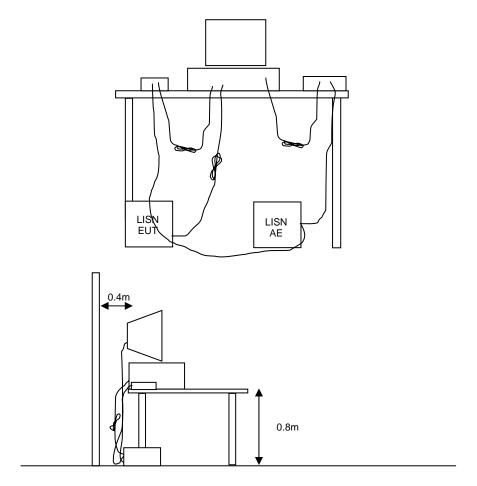
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R80792 Page 15 of 25


TEST PROCEDURES

EUT AND CABLE PLACEMENT

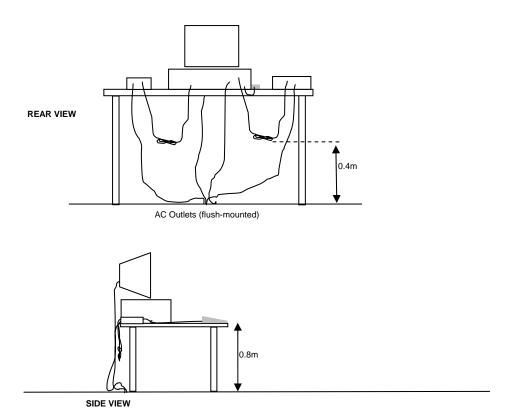
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

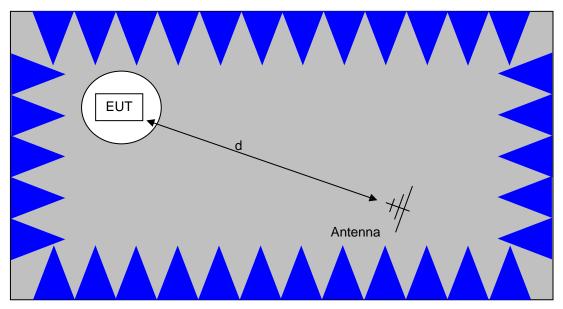
File: R80792 Page 16 of 25

RADIATED EMISSIONS

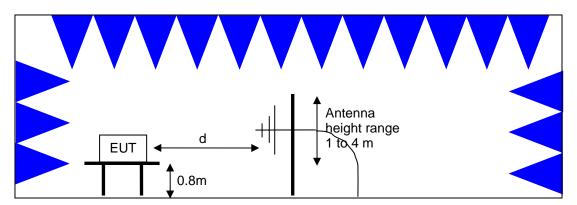

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

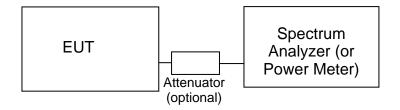
File: R80792 Page 17 of 25


Typical Test Configuration for Radiated Field Strength Measurements

File: R80792 Page 18 of 25

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

File: R80792 Page 19 of 25

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R80792 Page 20 of 25

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R80792 Page 21 of 25

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands³ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

 $^{^{\}rm 3}$ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R80792 Page 22 of 25

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ⁴ 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm) ⁵ 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by $10\log(EBW)$ where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R80792 Page 23 of 25

⁴ If EIRP exceeds 500mW the device must employ TPC

⁵ If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed –7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R80792 Page 24 of 25

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

File: R80792 Page 25 of 25

Test Report Report Date: October 11, 2010

Appendix A Test Equipment Calibration Data

	1000 - 40,000 MHz, 22-Sep-10			0.15
Manufacturer ENGO	Description	Model 2445	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	6/25/2011
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1728	2/1/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Hewlett Packard	Head (Inc W1-W4, 1946, 1947) Purple	84125C	1772	5/6/2011
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/18/2011
Radio Antenna Port (E	Sandadge) 23-San-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
Hewiell Fackard	(SA40) Blue	0304L (04123C)	1393	4/14/2011
5GHz Bandedges, 23-	Sen-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
nowett donard	(SA40) Blue	(011200)	1000	1/11/2011
UNII Spurious Emission	ons, 27-Sep-10			
Manufacturer	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Narda West	High Pass Filter, 8 GHz	HPF 180	821	3/29/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
nomen rachara	(SA40) Blue	00012 (011200)	.000	.,, 20
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/3/2011
UNII Bandedge, MIMO	•		_	
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB, 50 ohm,	20dB, 10W, Type N	1556	2/5/2011
	10W, DC-18 GHz			
	s - AC Power Ports, 28-Sep-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	2/3/2011
Solar Electronics	LISN	8028-50-TS-24-BNC support	904	3/2/2011
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	10/19/2010
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	11/11/2010

File: R80792 Appendix Page 1 of 3

Test Report Report Date: October 11, 2010

Radiated Emissions, 3	80 - 1,000 MHz, 28-Sep-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz	8593EM	1319	10/19/2010
	- 22 GHz			
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337	11/11/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2234	5/19/2011
RE, Wi-Fi & BT Simult	aneous Tx, 30-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010
	26.5GHz			
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue			
Rohde & Schwarz	Power Sensor 100 uW - 10	NRV-Z53	1555	2/5/2011
	Watts			
Rohde & Schwarz	Attenuator, 20 dB, 50 ohm,	20dB, 10W, Type N	1556	2/5/2011
	10W, DC-18 GHz			
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	1683	8/10/2011
	MHz			
Radiated Emissions, 0	04 05 06-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Rohde & Schwarz	Power Sensor 100 uW - 10	NRV-Z53	1555	2/5/2011
Ronde & Johnwarz	Watts	INIXV-ZJJ	1000	2/3/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
	Purple	(011200)		5, 25, 25 . 1

File: R80792 Appendix Page 2 of 3

Appendix B Test Data

T80540

AC Conducted Emissions 84 Pages

Radiated Spurious Emissions

T80759

Antenna Port Measurements 59 Pages

T80540

Radiated Spurious Emissions –

simultaneous transmissions from 30 Pages

Bluetooth and Wi-Fi transceivers

File: R80792 Appendix Page 3 of 3

Ellio		EI	MC Test Data
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

	Elliott An AZES company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIILEI® Ceritiiilo® Advanceu-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/28/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

General Test Configuration

The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 21.9 °C

Rel. Humidity: 42 %

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

Run#	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	RSS 210 / 15.207	Pass	40.6dBµV @ 14.758MHz (-9.4dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	ntel Corporation	Job Number: J80398
Model:	ntel® Centrino® Advanced-N 6230	T-Log Number: T80540 Account Manager: Christine Krebill
ontact:	Steve Hackett	Account Manager. Christine Niebili
ndard:	FCC 15.247	Class: B
1: AC	Power Port Conducted Emissions, 0.15 - 30MHz, 120V	/50Hz
- 30 M	Hz, 120V/60Hz, Line	
70.0		
60.0		
50.0 40.0		
, 50.0 !		
40.0		7 / N
		/\ / \
30.0	MALIMAY COLLINS DELLA DELLA DELLA CALLA CA	Hart of heart was
	Half is in the health of the same of the same of the land of the l	At Mark Company At Mark Virginia
20.0 0	', , , , , , , , , , , , , , , , , , ,	10.000 30.000
	Frequency	(MHz)
- 30 M	Hz, 120V/60Hz, Neutral	
70.0		
70.0 60.0		1
70.0 60.0		
70.0	16.1	JAN \
70.0 60.0 50.0 40.0	M. March production and the second se	Marken advantage de months of the second sec
70.0 60.0 50.0 40.0 30.0	150 1,000	Markinstein der ale and Million of the Market annual Market annual and the Market annual an
70.0 60.0 50.0 40.0 30.0	150 1.000 Frequency	10.000 30.000
70.0 60.0 50.0 40.0 30.0	150 1.000	10.000 30.000
70.0 60.0 50.0 40.0 30.0	150 1.000	10.000 30.000

	Intel Corpora	ation					Job Number:	J80398
Madalı	Intel® Contr	in = @	-4 VI CO3O				T-Log Number:	T80540
woder.	Intel® Centr	ino® Advanc	ea-in 6230				Account Manager:	Christine Krebill
Contact:	Steve Hacke	ett						
Standard:	FCC 15.247	,					Class:	В
Preliminary	peak readir	ngs captured	l during pre	-scan (peak	readings v	s. average limit)	1	
requency	Level	AC		ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
2.739	30.4	Line 1	46.0	-15.6	Peak			
4.528	31.8	Line 1	46.0	-14.2	Peak			
9.571	41.2	Line 1	50.0	-8.8	Peak			
14.272	44.9	Line 1	50.0	-5.1	Peak			
14.925	45.4	Line 1	50.0	-4.6	Peak			
9.073	44.0	Neutral	50.0	-6.0	Peak			
9.336	44.9	Neutral	50.0	-5.1	Peak			
14.758	47.7	Neutral	50.0	-2.3	Peak			
inal quasi requency	-peak and av	verage readi		ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
14.758	40.6	Neutral	50.0	-9.4	AVG	AVG (0.100s)		
14.272	40.1	Line 1	50.0	-9.9	AVG	AVG (0.100s)		
14.925	35.7	Line 1	50.0	-14.3	AVG	AVG (0.100s)		
17.525	44.8	Line 1	60.0	-15.2	QP	QP (1.000s)		
14.272	34.6	Neutral	50.0	-15.4	AVG	AVG (0.100s)		
	44.6	Neutral	60.0	-15.4	QP	QP (1.000s)		
14.272	77.0	Neutral	50.0	-17.3	AVG	AVG (0.100s)		
14.272 9.336	32.7	Houtiai	EO 0	-17.4	AVG	AVG (0.100s)		
14.272 9.336 14.758		Line 1	50.0		0.0	QP (1.000s)		
9.336 14.758 9.073 9.571 14.925	32.7 32.6 42.4	1	60.0	-17.6	QP			
14.272 9.336 14.758 9.073 9.571	32.7 32.6	Line 1		-17.6 -20.1	QP QP	QP (1.000s)		
14.272 9.336 14.758 9.073 9.571 14.925	32.7 32.6 42.4	Line 1 Line 1	60.0					

4.	All Barry Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(e)® Ceritiii)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/28/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 21.9 °C Rel. Humidity: 42 %

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	41.2dBµV/m @ 662.52MHz (-4.8dB)

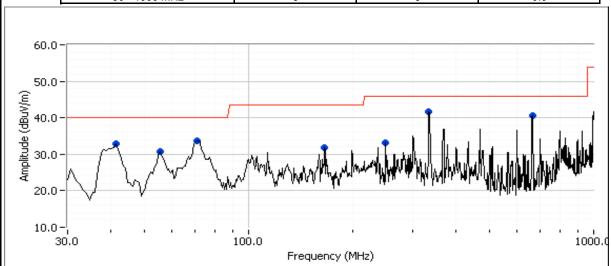
Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.



Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Ceritiii)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	В

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Configured to TX, 802.11b 16.5dBm on each chain (settings 23.5) on channel 6, Bluetooth 7dBm, 1Mb/s (settings 8.0)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
39.869	33.0	V	40.0	-7.0	Peak	185	2.5	
55.317	30.8	V	40.0	-9.2	Peak	333	1.0	
70.276	33.6	V	40.0	-6.4	Peak	40	1.0	
166.249	31.8	V	43.5	-11.7	Peak	202	1.0	
250.000	33.1	Н	46.0	-12.9	Peak	154	1.5	
299.217	36.3	Н	46.0	-9.7	Peak	172	1.0	
332.857	41.7	Н	46.0	-4.3	Peak	116	1.0	
662.560	40.5	V	46.0	-5.5	Peak	44	1.0	

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
662.515	41.2	V	46.0	-4.8	QP	44	1.0	QP (1.000s)
332.857	36.9	Н	46.0	-9.1	QP	116	1.0	QP (1.000s)
39.869	29.7	V	40.0	-10.3	QP	185	2.5	QP (1.000s)
70.276	29.3	V	40.0	-10.7	QP	40	1.0	QP (1.000s)
55.317	27.1	V	40.0	-12.9	QP	333	1.0	QP (1.000s)
166.249	27.3	V	43.5	-16.2	QP	202	1.0	QP (1.000s)

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions - Band Edges

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Run #1	n40 Chain A	#38 5190MHz	16.5	12.5	Restricted Band Edge at 5150 MHz	15.209	52.5dBµV/m @ 5150.0MHz (-1.5dB)
Run #1	n40 Chain A	#62 5310MHz	16.5	11.5	Restricted Band Edge at 5350 MHz	15.209	52.2dBµV/m @ 5350.0MHz (-1.8dB)
Run #1	n40	#102	16.5	15.8	Restricted Band Edge at 5460 MHz	15.209	53.0dBµV/m @ 5460.0MHz (-1.0dB)
I\uπ1	Chain A	5510MHz	10.5	13.0	Band Edge at 5470 MHz	15 E	60.5dBµV/m @ 5470.0MHz (-7.8dB)
Run #1	n40 Chain A	#134 5670MHz	16.5	16.5	Band Edge at 5725 MHz	15 E	47.6dBµV/m @ 5725.0MHz (-20.7dB)
Run # 2	n20 Chain A	#36 5180MHz	16.5	15.9	Restricted Band Edge at 5150 MHz	15.209	51.6dBµV/m @ 5150.0MHz (-2.4dB)
Run # 2	n20 Chain A	#64 5320MHz	16.5	16.7	Restricted Band Edge at 5350 MHz	15.209	48.7dBµV/m @ 5350.0MHz (-5.3dB)
Run # 2	n20	#100	16.5	16.7	Restricted Band Edge at 5460 MHz	15.209	44.3dBµV/m @ 5460.0MHz (-9.7dB)
Rull # Z	Chain A	5500MHz	0.01	10.7	Band Edge at 5470 MHz	15 E	50.4dBµV/m @ 5470.0MHz (-17.9dB)
Run # 2	n20 Chain A	#140 5700MHz	16.5	16.7	Band Edge at 5725 MHz	15 E	54.6dBµV/m @ 5725.0MHz (-13.7dB)
Run # 3	802.11a Chain A	#36 5180MHz	16.5	16.5	Restricted Band Edge at 5150 MHz	15.209	50.1dBµV/m @ 5150.0MHz (-3.9dB)
Run # 3	802.11a Chain A	#64 5320MHz	16.5	16.7	Restricted Band Edge at 5350 MHz	15.209	48.5dBµV/m @ 5350.0MHz (-5.5dB)
D # 2	802.11a	#100	1C F	16.6	Restricted Band Edge at 5460 MHz	15.209	44.2dBµV/m @ 5459.9MHz (-9.8dB)
Run # 3	Chain A	5500MHz	16.5	16.6	Band Edge at 5470 MHz	15 E	50.7dBµV/m @ 5470.0MHz (-17.6dB)
Run # 3	802.11a Chain A	#140 5700MHz	16.5	16.7	Band Edge at 5725 MHz	15 E	51.1dBµV/m @ 5725.0MHz (-17.2dB)

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-IV 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation.

The fundamental field strength is always measured at a 3m test distance.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1, Band Edge Field Strength - n40, Chain A Run #1a, EUT on Channel #38 5190MHz - n40, Chain A Date of Test: 9/22/2010 Test Location: FT Chamber#7 Config Change: none Test Engineer: Joseph Cadigal Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.5 21.0 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5193.000 90.9 ٧ AVG 184 1.0 RB 1 MHz;VB 10 Hz;Pk -٧ PK 1.0 5193.670 98.7 184 RB 1 MHz;VB 3 MHz;Pk 5193.070 91.3 Η **AVG** 304 1.0 RB 1 MHz;VB 10 Hz;Pk 5191.400 99.2 Н PΚ 304 1.0 RB 1 MHz;VB 3 MHz;Pk 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 99.2 98.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 91.3 90.9 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **38.8** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 60.4 dBuV/m Calculated Band-Edge Measurement (Avg): 52.5 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.0 dB -1.5 52.5 54 Avg Delta Marker - 1MHz/10Hz: 38.3 dB -13.6 60.4 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.2 dBuV/m Calculated Band-Edge Measurement (Avg): 53.0 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5150.000 52.5 54.0 -1.5 Using 100kHz delta value Ava -10.0 Analyzer Settings HP8564E,EMICF: 5150.000 -20.0 SPAN: 130,000 MHz RB: 100 kHz -30.0 VB: 100 kHz Detector: POS -40.0 Attn: 10 DB 된 -50.0 RL Offset: 0.0 DB Sweep Time: 72.0ms Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 5150 MHz -80.0 5140 5160 5085 5100 5180 Frequency (MHz) -54.50 💠 🔆 🆫 🕏 🔻 Cursor 1 5148,2666 Delta Freq. 39.217

Cursor 2 5187.4834

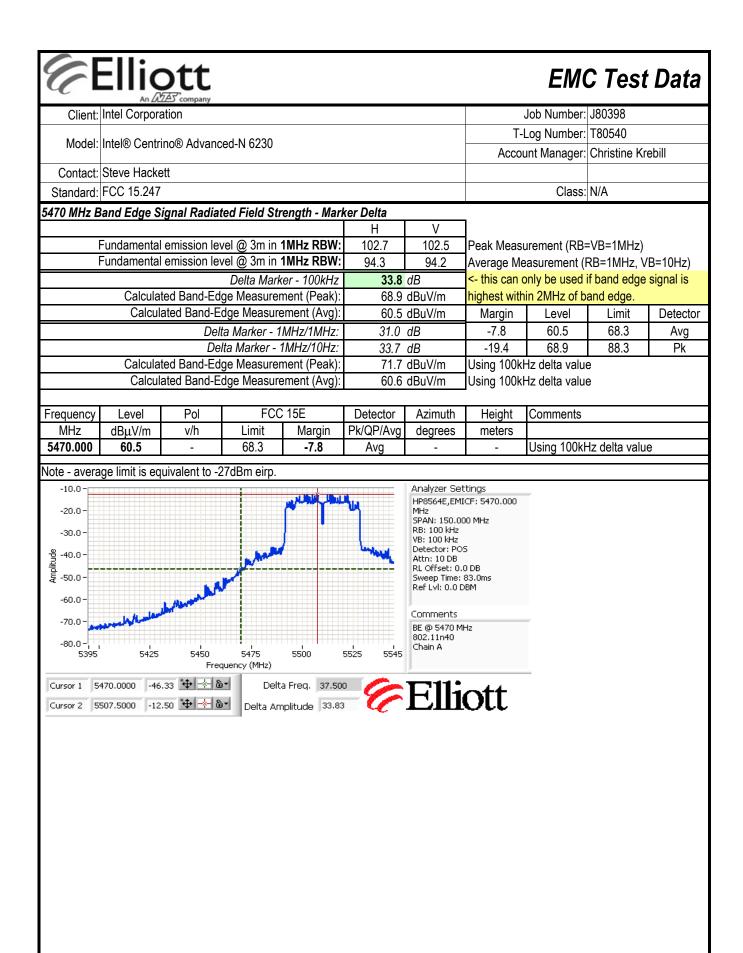
-15.67 💠 📥 🗟 🕆

Delta Amplitude 38.83

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1b, EUT on Channel #62 5310MHz - n40, Chain A Date of Test: 9/22/2010 Test Location: FT Chamber #7 Test Engineer: Joseph Cadigal Config Change: none **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 11.5 21.0 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Comments Height Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 5312.730 89.4 ٧ AVG 305 1.0 RB 1 MHz;VB 10 Hz;Pk -97.2 ٧ PK 1.0 5316.870 305 RB 1 MHz;VB 3 MHz;Pk 5307.000 93.0 Η **AVG** 305 1.3 RB 1 MHz;VB 10 Hz;Pk 5303.670 101.1 Н PΚ 305 1.3 RB 1 MHz;VB 3 MHz;Pk 5350 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 101.1 97.2 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 93.0 89.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 39.5 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.6 dBuV/m Calculated Band-Edge Measurement (Avg): 53.5 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 36.2 dB -1.8 52.2 54 Avg Delta Marker - 1MHz/10Hz: 40.8 dB -12.4 61.6 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 64.9 dBuV/m Calculated Band-Edge Measurement (Avg): 52.2 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5350.000 52.2 54 0 -1.8 Using 1MHz delta value Ava Analyzer Settings -20.0 -25.0 HP8564E,EMICF: 5350.000 -30.0 SPAN: 130,000 MHz -35.0 RB: 1.000 MHz -40.0 · VB: 10 Hz Detector: Sample 월 -45.0· Attn: 10 DB 등-55.0 RL Offset: 0.0 DB Sweep Time: 49.0s Ref Lvl: 0.0 DBM -60.0 -65.0 Comments -70.0 BE @ 5350 MHz -75.0 -802.11n40 -80.0 Chain A 5340 5360 5380 5285 5300 5400 5415 Frequency (MHz)

-20,33 💠 -*- 🎅 ▼

-61.17 💠 📥 🖫


Cursor 1 5297.7832

Cursor 2 5350.0000

Delta Freq. 52.217

Delta Amplitude 40.83

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1c, EUT on Channel #102 5510MHz - n40, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 15.8 28.5 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Comments Pol Height v/h Limit Pk/QP/Avq degrees MHz dBuV/m Margin meters 5513.130 94.2 ٧ **AVG** 177 1.0 RB 1 MHz;VB 10 Hz;Pk 5517.330 102.5 ٧ PΚ 177 1.0 RB 1 MHz;VB 3 MHz;Pk 94.3 Η **AVG** 224 1.0 RB 1 MHz;VB 10 Hz;Pk 5497.530 --5497.270 102.7 Н PΚ 224 1.0 RB 1 MHz;VB 3 MHz;Pk 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 102.7 102.5 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 94.3 94.2 <- this can only be used if band edge signal is Delta Marker - 100kHz 40.0 dB highest within 2MHz of band edge. Calculated Band-Edge Measurement (Peak): 62.7 dBuV/m Calculated Band-Edge Measurement (Avg): 54.3 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 35.5 dB -1.0 53.0 54 Avg Delta Marker - 1MHz/10Hz: -11.3 74 41.3 dB 62.7 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 67.2 dBuV/m Calculated Band-Edge Measurement (Avg) 53.0 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Pol Detector Azimuth Comments Level Height dBuV/m Pk/QP/Avq MHz v/h Limit Margin degrees meters 5460.000 53.0 54.0 -1.0 Using 1MHz delta value Avg -10.0 Analyzer Settings HP8564E,EMICF: 5460.000 -20.0 SPAN: 150,000 MHz RB: 1,000 MHz -30.0 VB: 10 Hz Detector: Sample 월 -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 56.0s Ref Lvl: 0.0 DBM -60.0 Comments: -70.0 BE @ 5460 MHz 802.11n40 -80.0 5425 5450 5475 5385 5400 5500 5525 5535 Frequency (MHz) -57.50 💠 🔆 ७₹ Delta Freq. 37.750 Cursor 1 5460.0000 **Elliott** -16.17 💠 🛧 🖫 Delta Amplitude 41.33 Cursor 2 5497,7500

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1d, EUT on Channel #134 5670MHz - n40, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.5 29.5 Chain A Fundamental Signal Field Strength Frequency 15.209 / 15.247 Detector Azimuth Comments Level Pol Height Limit Pk/QP/Avq MHz dBuV/m v/h Margin degrees meters 5657.730 94.9 ٧ **AVG** 209 1.0 RB 1 MHz;VB 10 Hz;Pk 5657.800 103.4 ٧ PΚ 209 1.0 RB 1 MHz;VB 3 MHz;Pk 5661.930 93.8 Η **AVG** 1.0 RB 1 MHz;VB 10 Hz;Pk --346 5664.000 102.3 Н PΚ 346 1.0 RB 1 MHz;VB 3 MHz;Pk 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 102.3 103.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 93.8 94.9 <- this can only be used if band edge signal is Delta Marker - 100kHz **47.3** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 56.1 dBuV/m Calculated Band-Edge Measurement (Avg): 47.6 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 42.2 dB -20.7 47.6 68.3 Avg Delta Marker - 1MHz/10Hz: 46.7 dB -32.2 56.1 88.3 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 61.2 dBuV/m Calculated Band-Edge Measurement (Avg) 48.2 dBuV/m Using 100kHz delta value FCC 15E Pol Detector Comments Frequency Level Azimuth Height dBuV/m Pk/QP/Avq degrees MHz v/h Limit Margin meters 5725.000 47.6 -20.7 68.3 Using 100kHz delta value Avg Note - average limit is equivalent to -27dBm eirp. Analyzer Settings HP8564E,EMICF: 5725.000 -20.0 SPAN: 160,000 MHz RB: 100 kHz -30.0 VB: 100 kHz Detector: POS -40.0 Attn: 10 DB RL Offset: 0.0 DB Sweep Time: 88.0ms Ref Lvl: 0.0 DBM -50.0 Comments -70.0 BE @ 5725 MHz 802.11n40 -80.0 Chain A 5740 5780 5720 5760 5645 5660 5680 5700 Frequency (MHz) Cursor 1 5667.6665 -11.67 ♣ ♣ ७ ▼ Delta Freq. 58.400 -59.00 💠 🚣 ७҇▾ Delta Amplitude 47.33

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2, Band Edge Field Strength - n20, Chain A Run # 2a, EUT on Channel #36 5180MHz - n20, Chain A Date of Test: 9/22/2010 Test Location: FT Chamber#7 Config Change: none Test Engineer: Joseph Cadigal **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 15.9 24.5 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5173.030 96.3 ٧ AVG 183 1.0 RB 1 MHz;VB 10 Hz;Pk -5173.270 ٧ PK 1.0 104.4 183 RB 1 MHz;VB 3 MHz;Pk 5173.070 98.4 Η **AVG** 305 1.4 RB 1 MHz;VB 10 Hz;Pk 5174.530 106.7 Н PΚ 305 1.4 RB 1 MHz;VB 3 MHz;Pk 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 106.7 104.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 98.4 96.3 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 46.5 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 60.2 dBuV/m Calculated Band-Edge Measurement (Avg): 51.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 41.0 dB -2.4 51.6 54 Avg Delta Marker - 1MHz/10Hz: 46.8 dB -13.8 60.2 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.7 dBuV/m Calculated Band-Edge Measurement (Avg): 51.6 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5150.000 51.6 54 0 -2.4 Using 1MHz delta value Avq Analyzer Settings -10.0 HP8564E,EMICF: 5150.000 -20.0 MHz. SPAN: 90.000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB 분 -50.0· Sweep Time: 34.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 5150 MHz 802.11n20 -80.0 Chain A 5105 5130 5140 5150 5160 5170 5180 5120 Frequency (MHz) Delta Freq. 35.100

Cursor 2 5185.1001 -12.83 💠 🗻 🗟

Delta Amplitude 46.83

	Ellic	ott Zer*company						ЕМ	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J80398	
Madal	1 1 - 10 0	'	- I NI CO2O				T-I	Log Number:	T80540	
Model	Intel® Centr	ino® Advanc	:ea-in 6230				Accou	unt Manager:	Christine Kr	ebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247	,						Class:	N/A	
	Date of Test:	9/22/2010 Joseph Cad Chain A	igal Targel	(dBm)	Cor Power S Measure	Test Location: FT Chamber #7 Config Change: none Power Settings Measured (dBm) Software Setting 16.7 26.5				
Fundament Frequency	al Signal Fie	eld Strength Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5313.130	95.5	V	-	-	AVG	163	1.0	1.0 RB 1 MHz;VB 10 Hz;Pk		
5315.200	103.5	V	-	-	PK	163	1.0		/B 3 MHz;Pk	
5313.070	98.7	Н	-	-	AVG	348	1.4	RB 1 MHz;V	· · · · · · · · · · · · · · · · · · ·	
5312.930	106.5	Н	-	-	PK	348	1.4	RB 1 MHz;V	/B 3 MHz;Pk	
5350 MHz B	and Edge S	ignal Radia	ted Field Str	ength - Mari	ker Delta H	V	7			
	domonto	l emission lev	rol @ 3m in	AMU~ DD\M·	106.5	103.5	Dook Mooo	:=amant /DD-	-\ /D-4\\ILI-\	
		l emission le			98.7	95.5		urement (RB= asurement (I	,	D=10H ₇)
	undamenta	T CTTIIOOIOTT IC		er - 100kHz	50.0			only be used		
	Calcula	ted Band-Ed				dBuV/m		in 2MHz of b	•	oiginai io
Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Avg):				dBuV/m	Margin	Level	Limit	Detector		
		Del	ta Marker - 1	MHz/1MHz:	41.7	dB	-5.3	48.7	54	Avg
		De	lta Marker - '	1MHz/10Hz:	50.0	dB	-17.5	56.5	74	Pk
Calculated Band-Edge Measurement (Peak): Calculated Band-Edge Measurement (Avg):					dBuV/m dBuV/m		Hz delta value z delta value	9		
Frequency	Level	Pol	FCC	15.209	Detector	Azimuth	Height	Comments		
NALL-	ID M	/۱-	1.5	N.A!	DI//OD/Ave	4				

v/h

Limit

54.0

dBμV/m

48.7

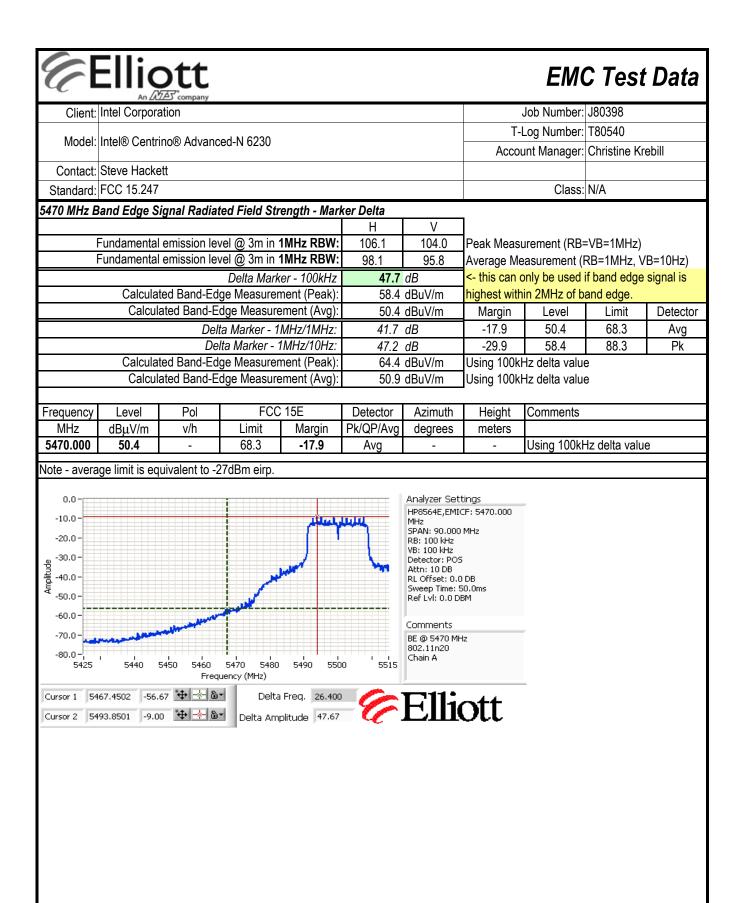
MHz

5350.000

Pk/QP/Avg

Avg

Margin

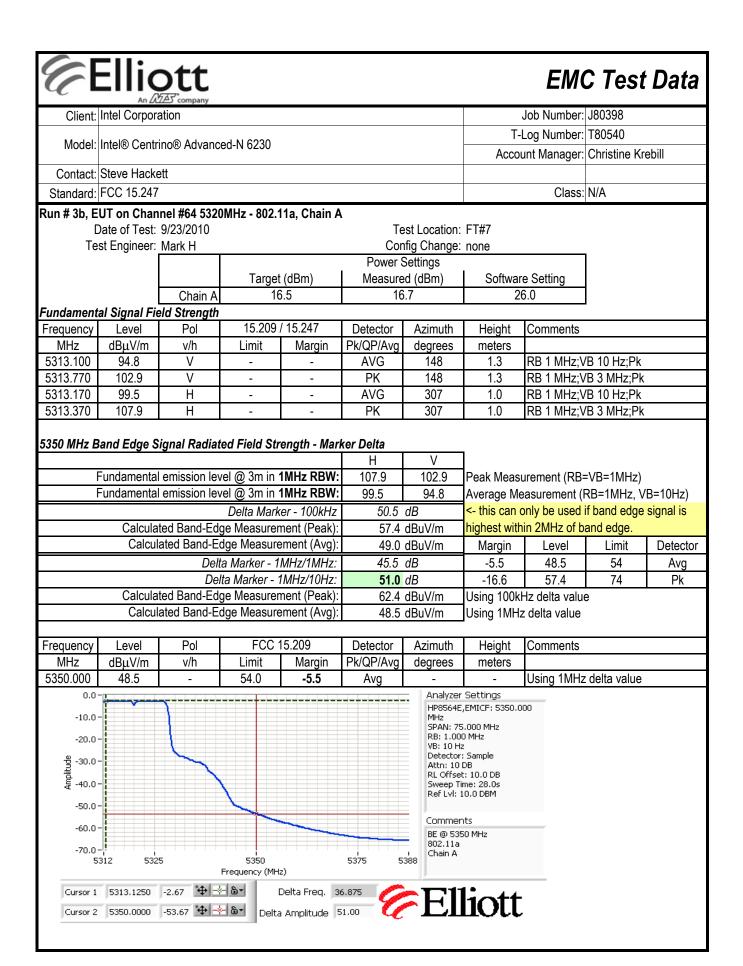

-5.3

degrees

meters

Using 1MHz delta value

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2c, EUT on Channel #100 5500MHz - n20, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.7 28.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Comments Pol Height Limit Pk/QP/Avq degrees MHz dBuV/m v/h Margin meters 5506.830 95.8 ٧ **AVG** 42 1.0 RB 1 MHz;VB 10 Hz;Pk 5507.700 104.0 ٧ PΚ 42 1.0 RB 1 MHz;VB 3 MHz;Pk 5493.170 98.1 Η **AVG** 224 1.0 RB 1 MHz;VB 10 Hz;Pk --5493.230 106.1 Н PΚ 224 1.0 RB 1 MHz;VB 3 MHz;Pk 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 106.1 104.0 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 98.1 95.8 <- this can only be used if band edge signal is Delta Marker - 100kHz 53.5 dB highest within 2MHz of band edge. Calculated Band-Edge Measurement (Peak): 52.6 dBuV/m Calculated Band-Edge Measurement (Avg): 44.6 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 45.8 dB -9.7 44.3 54 Avg Delta Marker - 1MHz/10Hz: -21.4 52.6 53.8 dB 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 60.3 dBuV/m Calculated Band-Edge Measurement (Avg) 44.3 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Pol Detector Azimuth Comments Level Height Pk/QP/Avq degrees MHz dBuV/m v/h Limit Margin meters 5460.000 44.3 54.0 -9.7 Using 1MHz delta value Avg -10.0 Analyzer Settings HP8564E,EMICF: 5460,000 SPAN: 120,000 MHz RB: 1,000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 45.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 5460 MHz 802.11n20 5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 Frequency (MHz) Cursor 1 5460.0000 -66.33 ↔ 🔆 🗟 🔻 Delta Freq. 34.400 Cursor 2 5494.3999 -12.50 💠 🛧 🗟 🔻 Delta Amplitude 53.83



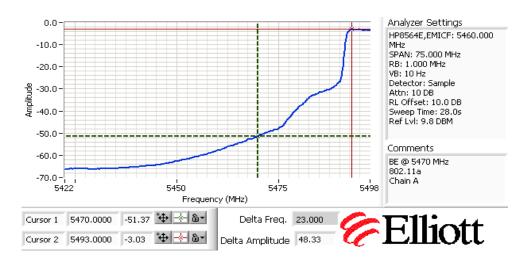
Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2d, EUT on Channel #140 5700MHz - n20, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.7 29.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Ava MHz dBµV/m v/h Limit Margin degrees meters 5693.000 95.9 ٧ AVG 212 1.0 RB 1 MHz;VB 10 Hz;Pk 5693.170 104.4 ٧ PΚ 212 1.0 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz;VB 10 Hz;Pk 5705.430 95.5 Н **AVG** 302 1.4 5706.430 103.8 Η PK 302 1.4 RB 1 MHz;VB 3 MHz;Pk 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 103.8 104.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 95.9 95.5 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 39.3 dB Calculated Band-Edge Measurement (Peak): 65.1 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 56.6 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.2 dB -13.7 54.6 68.3 Avg Delta Marker - 1MHz/10Hz: -23.2 41.3 dB 65.1 88.3 Pk Calculated Band-Edge Measurement (Peak): 70.2 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 54.6 dBuV/m Using 1MHz delta value FCC 15E Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg meters degrees 5725.000 Using 1MHz delta value 54.6 68.3 -13.7Ava Note - average limit is equivalent to -27dBm eirp -10.0 Analyzer Settings HP8564E,EMICF: 5725.000 -20.0 SPAN: 80,000 MHz RB: 1,000 MHz -30.0VB: 10 Hz Detector: Sample -40.0Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 30.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0BE @ 5725 MHz 802.11n20 -80.0 5765 5700 5710 5720 5730 5740 5750 5685 Cursor 1 5693.7998 -12.50 💠 🔆 🖫 Delta Freq. 31,200 Cursor 2 5725,0000 -53,83 💠 🛧 🗟 🔻 Delta Amplitude 41.33

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3, Band Edge Field Strength - 802.11a, Chain A Run # 3a, EUT on Channel #36 5180MHz - 802.11a, Chain A Date of Test: 9/23/2010 Test Location: FT#7 Config Change: none Test Engineer: Mark H Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 16.5 24.5 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5186.830 97.0 ٧ AVG 192 1.0 RB 1 MHz;VB 10 Hz;Pk -٧ PK 1.0 5186.800 105.0 192 RB 1 MHz;VB 3 MHz;Pk 5173.030 97.8 Η **AVG** 342 1.0 RB 1 MHz;VB 10 Hz;Pk 5173.630 105.8 Н PΚ 342 1.0 RB 1 MHz;VB 3 MHz;Pk 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 105.8 105.0 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 97.8 97.0 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 47.6 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 58.2 dBuV/m Calculated Band-Edge Measurement (Avg): 50.2 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 42.7 dB -3.9 50.1 54 Avg Delta Marker - 1MHz/10Hz: 47.7 dB -15.8 58.2 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 63.1 dBuV/m Calculated Band-Edge Measurement (Avg): 50.1 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5150.000 50.1 54.0 -3.9 Using 1MHz delta value Ava Analyzer Settings HP8564E,EMICF: 5150.000 -10.0 SPAN: 75.000 MHz RB: 1,000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB -40.0 Sweep Time: 28.0s Ref Lvl: 9.9 DBM -50.0° Comments -60.0 BE @ 5150 MHz 802.11a -70.0 5112 5150 5175 Frequency (MHz) Cursor 1 5150.0000 -50.93 ↔ 🔆 🖫 Delta Freq. 23.000

Cursor 2 5173.0000 -3.27 💠 🛧 🔊

Delta Amplitude 47.67

EMC Test Data


	All 2023 company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III (el® Cell (III) (ll Advallceu-IV 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V					
Fundamental emission level @ 3m in 1MHz RBW:	107.2	106.7	Peak Measurement (RB=VB=1MHz)				
Fundamental emission level @ 3m in 1MHz RBW:	99.0	98.7	Average Me	Average Measurement (RB=1MHz, VB=10Hz)			
Delta Marker - 100kHz	46.7	dB	<- this can only be used if band edge signal is				
Calculated Band-Edge Measurement (Peak):	60.5	dBuV/m	highest within 2MHz of band edge.				
Calculated Band-Edge Measurement (Avg):	52.3	52.3 dBuV/m		Level	Limit	Detector	
Delta Marker - 1MHz/1MHz:	42.5	dB	-17.6	50.7	68.3	Avg	
Delta Marker - 1MHz/10Hz:	48.3	48.3 dB		60.5	88.3	Pk	
Calculated Band-Edge Measurement (Peak):	64.7	dBuV/m	Using 100kh	Iz delta valu	Э		
Calculated Band-Edge Measurement (Avg):	50.7 dBuV/m		Using 1MHz	delta value			
· · · · · · · · · · · · · · · · · · ·							

Frequency	Level	Pol	FCC	: 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5470.000	50.7	-	68.3	-17.6	Avg	-	-	Using 1MHz delta value

Note - average limit is equivalent to -27dBm eirp.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3d, EUT on Channel #140 5700MHz - 802.11a, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain A 16.5 16.7 28.5 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments v/h Limit Pk/QP/Ava MHz dBµV/m Margin degrees meters 5693.070 97.4 ٧ AVG 200 1.0 RB 1 MHz;VB 10 Hz;Pk 5693.030 105.7 ٧ PΚ 200 1.0 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz;VB 10 Hz;Pk 5693.200 95.6 Н **AVG** 230 1.0 5694.230 105.0 Η PK 230 1.0 RB 1 MHz;VB 3 MHz;Pk 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н V Fundamental emission level @ 3m in 1MHz RBW: 105.0 105.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 95.6 97.4 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 44.5 dB Calculated Band-Edge Measurement (Peak): 61.2 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 52.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.8 dB -17.2 51.1 68.3 Avg Delta Marker - 1MHz/10Hz: -27.1 **46.3** dB 61.2 88.3 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 70.9 dBuV/m Calculated Band-Edge Measurement (Avg): 51.1 dBuV/m Using 1MHz delta value FCC 15E Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 5725.000 51.1 68.3 -17.2Ava Using 1MHz delta value Note - average limit is equivalent to -27dBm eirp Analyzer Settings HP8564E,EMICF: 5725.000 -10.0 SPAN: 75,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB 분 -40.0 Sweep Time: 28.0s Ref Lvl: 9.8 DBM -50.0 Comments -60.0 BE @ 5725 MHz 802.11a -70.0 5700 5750 Frequency (MHz) Cursor 1 5693.3750 -3.03 💠 🔆 🖫 Delta Freq. 31.625 Cursor 2 5725.0000 -49.37 💠 🛧 🖫 Delta Amplitude 46.33

EI!	liott An 还还 company
-----	------------------------

EMC Test Data

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions - Band Edges

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	n40 Chain B	#38 5190MHz	16.5	13.1	Restricted Band Edge at 5150 MHz	15.209	52.8dBµV/m @ 5148.7MHz (-1.2dB)
	n40 Chain B	#62 5310MHz	16.5	13.0	Restricted Band Edge at 5350 MHz	15.209	51.8dBµV/m @ 5350.0MHz (-2.2dB)
Run #1	n40	#102	16.5	15.7	Restricted Band Edge at 5460 MHz	15.209	51.4dBµV/m @ 5460.0MHz (-2.6dB)
	Chain B	5510MHz	10.5	10.7	Band Edge at 5470 MHz	15 E	57.8dBµV/m @ 5468.3MHz (-10.5dB)
	n40 Chain B	#134 5670MHz	16.5	16.6	Band Edge at 5725 MHz	15 E	50.3dBµV/m @ 5725.0MHz (-18.0dB)
	n20 Chain B	#36 5180MHz	16.5	16.7	Restricted Band Edge at 5150 MHz	15.209	52.4dBµV/m @ 5150.0MHz (-1.6dB)
	n20 Chain B	#64 5320MHz	16.5	16.6	Restricted Band Edge at 5350 MHz	15.209	48.1dBµV/m @ 5350.0MHz (-5.9dB)
Run # 2	n20	#100	16.5	16.7	Restricted Band Edge at 5460 MHz	15.209	46.0dBµV/m @ 5459.8MHz (-8.0dB)
	Chain B	5500MHz	10.5	10.7	Band Edge at 5470 MHz	15 E	52.3dBµV/m @ 5469.8MHz (-16.0dB)
	n20 Chain B	#140 5700MHz	16.5	16.6	Band Edge at 5725 MHz	15 E	56.7dBµV/m @ 5725.0MHz (-11.6dB)
	802.11a Chain B	#36 5180MHz	16.5	16.5	Restricted Band Edge at 5150 MHz	15.209	51.0dBµV/m @ 5149.3MHz (-3.0dB)
	802.11a Chain B	#64 5320MHz	16.5	16.8	Restricted Band Edge at 5350 MHz	15.209	46.6dBµV/m @ 5350.0MHz (-7.4dB)
Run # 3	802.11a	#100	16.5	16.7	Restricted Band Edge at 5460 MHz	15.209	44.6dBµV/m @ 5460.0MHz (-9.4dB)
	Chain B	1 165 1 167		10.7	Band Edge at 5470 MHz	15 E	50.8dBµV/m @ 5470.0MHz (-17.5dB)
	802.11a Chain B	#140 5700MHz	16.5	16.7	Band Edge at 5725 MHz	15 E	50.8dBµV/m @ 5725.0MHz (-17.5dB)

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

EMC Test Data

	An ZCZEO company		
Client:	Intel Corporation	Job Number:	J80398
Modal:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Rel. Humidity: 15 - 55 %

Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation.

The fundamental field strength is always measured at a 3m test distance.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1, Band Edge Field Strength - n40, Chain B Date of Test: 9/23/2010 Test Location: Chamber #7 Test Engineer: Mehran Birgani Config Change: None Run #1a, EUT on Channel #38 5190MHz - n40, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 13.1 20.5 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 5202.330 91.7 ٧ AVG 324 1.0 -٧ PK 324 1.0 5197.330 99.8 5177.530 92.2 Η **AVG** 114 1.0 5187.670 100.6 Н PΚ 114 1.0 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 100.9 99.8 Peak Measurement (RB=VB=1MHz) 92.6 Fundamental emission level @ 3m in 1MHz RBW: 91.7 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **39.8** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.1 dBuV/m Calculated Band-Edge Measurement (Avg): 52.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.5 dB -1.2 52.8 54 Avg Delta Marker - 1MHz/10Hz: 38.7 dB -12.9 61.1 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 66.4 dBuV/m Calculated Band-Edge Measurement (Avg): 53.9 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments Limit MHz dBμV/m v/h Margin Pk/QP/Avg degrees meters 5148.700 52.8 54.0 -1.2 Using 100kHz delta value Ava Analyzer Settings HP8564E,EMICF: 5150.000 -10.0 SPAN: 130,000 MHz RB: 100 kHz -20.0 VB: 100 kHz Detector: POS -30.0 Attn: 20 DB RL Offset: 0.0 DB -40.0 Sweep Time: 72.0ms Ref Lvl: 7.2 DBM -50.0 Comments -60.0BE @ 5150 MHz 802.11n 40MHz -70.0 Chain B 5140 5085 5100 5160 5180 5215 Frequency (MHz) Cursor 1 5148.7002 -44.80 ♣ - ♣ ७ • Delta Freq. 38.566

-4.97 💠 😽 🖫

Delta Amplitude 39.83

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1b, EUT on Channel #62 5310MHz - n40, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain B 16.5 13.0 21.5 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments v/h Limit Pk/QP/Ava MHz dBµV/m Margin degrees meters 5313.000 91.5 ٧ AVG 306 1.0 5302.200 99.6 ٧ PΚ 306 1.0 5307.000 89.6 Н **AVG** 258 1.0 5308.530 97.9 Н PK 258 1.0 5350 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Н Fundamental emission level @ 3m in 1MHz RBW: 97.9 99.6 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 89.6 Average Measurement (RB=1MHz, VB=10Hz) 91.5 Delta Marker - 100kHz <- this can only be used if band edge signal is 39.3 dB Calculated Band-Edge Measurement (Peak): 60.3 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 52.2 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 36.7 dB -2.2 51.8 54 Avg Delta Marker - 1MHz/10Hz: -13.7 60.3 **39.7** dB 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 62.9 dBuV/m Calculated Band-Edge Measurement (Avg): 51.8 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 5350.000 Using 1MHz delta value 51.8 54.0 -2.2 Ava 0.0 Analyzer Settings HP8564E,EMICF: 5350,000 -10.0 SPAN: 130,000 MHz -20.0 RB: 1,000 MHz VB: 10 Hz Detector: Sample -30.0Attn: 20 DB RL Offset: 0.0 DB -40.0 Sweep Time: 49.0s Ref Lvl: 6.3 DBM -50.0 Comments -60.0 BE @ 5350 MHz 802.11n 40MHz -70.0 Chain B 5340 5360 5380 5300 5320 5400 5415 Average 5285 Frequency (MHz) Delta Freq. 52.433 Cursor 2 5350.0000 -48.53 💠 🛧 🖫 Delta Amplitude 39.67

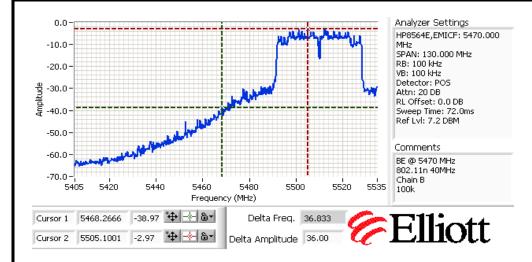
Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1c, EUT on Channel #102 5510MHz - n40, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 15.7 26.5 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Comments Pol Height Limit Pk/QP/Avq MHz dBuV/m v/h Margin degrees meters 5497.600 92.6 ٧ **AVG** 265 1.0 5497.270 101.3 ٧ PΚ 265 1.0 5513.130 94.2 Η **AVG** 1.0 --110 5508.000 102.3 Н PΚ 110 1.0 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 102.3 101.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 94.2 92.6 <- this can only be used if band edge signal is Delta Marker - 100kHz 41.2 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.1 dBuV/m Calculated Band-Edge Measurement (Avg): Margin 53.0 dBuV/m Level Limit Detector Delta Marker - 1MHz/1MHz: 38.7 dB -2.6 51.4 54 Avg Delta Marker - 1MHz/10Hz: -12.9 74 42.8 dB 61.1 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 63.6 dBuV/m Calculated Band-Edge Measurement (Avg) 51.4 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Pol Detector Azimuth Comments Level Height dBuV/m Pk/QP/Avq MHz v/h Limit Margin degrees meters 5460.000 51.4 54.0 -2.6 Using 1MHz delta value Avg Analyzer Settings HP8564E.EMICF: 5470.000 -10.0 MHz SPAN: 130,000 MHz -20.0 RB: 1,000 MHz VB: 10 Hz Detector: Sample -30.0 Attn: 20 DB RL Offset: 0.0 DB -40.0 Sweep Time: 49.0s Ref Lvl: 7.2 DBM -50.0 Comments -60.0 BE @ 5460 MHz 802.11n 40MHz -70.0± Chain B 5440 5460 5480 5500 5420 5520 5535 5405 Average Frequency (MHz) Delta Freq. 47.050 Cursor 1 5460,0000

Cursor 2 5507.0498

Delta Amplitude 42.83

Elliott

EMC Test Data

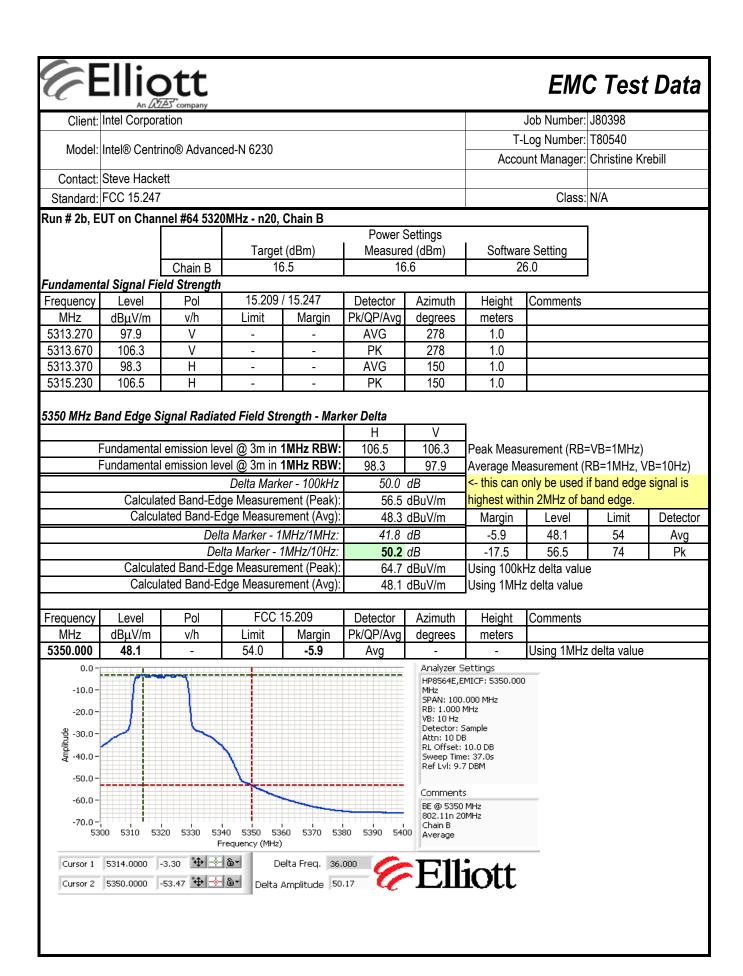

	An ATAS company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V	1			
Fundamental emission level @ 3m in 1MHz RBW:	102.3	101.3	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	93.8	92.6	Average Me	asurement (F	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	36.0	dB	<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	66.3	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	57.8	57.8 dBuV/m		Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	32.7	dB	-10.5	57.8	68.3	Avg
Delta Marker - 1MHz/10Hz:	35.3	35.3 dB		66.3	88.3	Pk
Calculated Band-Edge Measurement (Peak):	69.6	dBuV/m	Using 100kh	Iz delta valu	Э	
Calculated Band-Edge Measurement (Avg):	58.5 dBuV/m		Using 100kl	Iz delta value	Э	
		-	_			

Frequency	Level	Pol	FCC		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.266	57.8	-	68.3	-10.5	Avg	-	-	Using 100kHz delta value

Note - average limit is equivalent to -27dBm eirp.


Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run #1d, EUT on Channel #134 5670MHz - n40, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.6 30.0 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 5682.330 95.6 ٧ **AVG** 305 1.0 ٧ 5667.800 104.3 PΚ 1.0 -305 5657.870 94.1 Η **AVG** 106 1.0 5662.200 103.1 Н PK 106 1.0 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Η Fundamental emission level @ 3m in 1MHz RBW: 103.1 104.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 94.1 95.6 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 45.2 dB Calculated Band-Edge Measurement (Peak) highest within 2MHz of band edge. 59.1 dBuV/m Calculated Band-Edge Measurement (Avg): 50.4 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: -18.0 50.3 40.8 dB 68.3 Avg Delta Marker - 1MHz/10Hz: -29.2 59.1 45.3 dB 88.3 Pk Calculated Band-Edge Measurement (Peak): 63.5 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 50.3 dBuV/m Using 1MHz delta value FCC 15E Detector Frequency Level Pol Azimuth Height Comments dBμV/m Pk/QP/Avg MHz v/h Limit Margin degrees meters 5725.000 50.3 -18.0 Using 1MHz delta value Avg Note - average limit is equivalent to -27dBm eirp Analyzer Settings HP8564E,EMICF: 5708.600 -10.0 MHz -15.0 SPAN: 120,000 MHz -20.0 RB: 1.000 MHz -25.0 VB: 10 Hz Detector: Sample -30.0 -35.0 -40.0 Attn: 10 DB RL Offset: 10.0 DB Sweep Time: 45.0s Ref Lvl: 9.4 DBM -45.0 -50.0 Comments -55.0 BE @ 5725 MHz -60.0 802.11n 40MHz 5649 5660 5670 5680 5690 5700 5710 5720 5730 5740 5750 5760 5769 Frequency (MHz) Cursor 1 5658.0000 -6.77 💠 😽 🔊 Delta Freq. 67.000 Cursor 2 5725.0000 -52.10 💠 🔆 🗟

Delta Amplitude 45.33

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2, Band Edge Field Strength - n20, Chain B Date of Test: 9/23/2010 Test Location: Chamber #7 Test Engineer: Mehran Birgani Config Change: None Run # 2a, EUT on Channel #36 5180MHz - n20, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 16.7 25.0 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5185.330 99.1 ٧ AVG 313 1.0 -5186.200 ٧ PK 1.0 107.3 313 5172.800 98.2 Η **AVG** 112 1.0 5174.000 106.5 Н PΚ 112 1.0 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 106.5 107.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 98.2 99.1 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 45.8 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.5 dBuV/m Calculated Band-Edge Measurement (Avg): 53.3 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 41.5 dB -1.6 52.4 54 Avg Delta Marker - 1MHz/10Hz: 46.7 dB -12.5 61.5 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.8 dBuV/m Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5150.000 54.0 -1.6 Using 1MHz delta value 52.4 Avg Analyzer Settings HP8564E,EMICF: 5143.500 -10.0 SPAN: 100,000 MHz RB: 1,000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB 40.0 Sweep Time: 37.0s Ref Lvl: 9.7 DBM -50.0 Comments -60.0 BE @ 5150 MHz 802.11n 20MHz -70.0 -Chain B 50945100 5110 5120 5130 5140 5150 5160 5170 5180 Average Frequency (MHz) -49.63 💠 🔆 🖫 🕏 🔻 Cursor 1 5150.0000 Delta Freq. 24.167 -2.97 💠 🔆 🖫 🔭

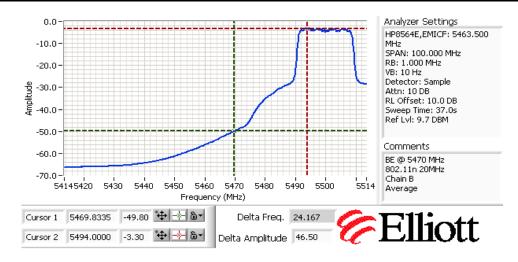
Cursor 2 5174.1665

Delta Amplitude 46.67

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2c, EUT on Channel #100 5500MHz - n20, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.7 28.0 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments Limit Pk/QP/Ava MHz dBμV/m v/h Margin degrees meters 5492.970 96.4 ٧ AVG 265 1.0 5493.200 105.3 ٧ PΚ 265 1.0 5492.900 98.8 Н **AVG** 109 1.0 5493.100 107.6 Η PK 109 1.0 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н Fundamental emission level @ 3m in 1MHz RBW: 107.6 105.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 98.8 96.4 Delta Marker - 100kHz <- this can only be used if band edge signal is 52.8 dB Calculated Band-Edge Measurement (Peak): 54.8 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 46.0 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 45.2 dB -8.0 46.0 54 Avg Delta Marker - 1MHz/10Hz: -19.2 54.8 52.8 dB 74 Pk Calculated Band-Edge Measurement (Peak): 62.4 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 46.0 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg meters degrees 5459.834 46.0 54.0 Avg Using 1MHz delta value Analyzer Settings HP8564E,EMICF: 5463.500 -10.0 MHz. SPAN: 100.000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB -40.0 Sweep Time: 37.0s Ref Lvl: 9.7 DBM -50.0 Comments -60.0 BE @ 5460 MHz -70.0 Chain B 5440 5450 5460 5470 5480 5490 5500 54145420 5430 Cursor 1 5459.8335 -56.13 💠 🔆 🔊 Delta Freq. 34.333 Cursor 2 5494.1665 -3.30 💠 🐣 🔊 Delta Amplitude 52.83

Elliott

EMC Test Data

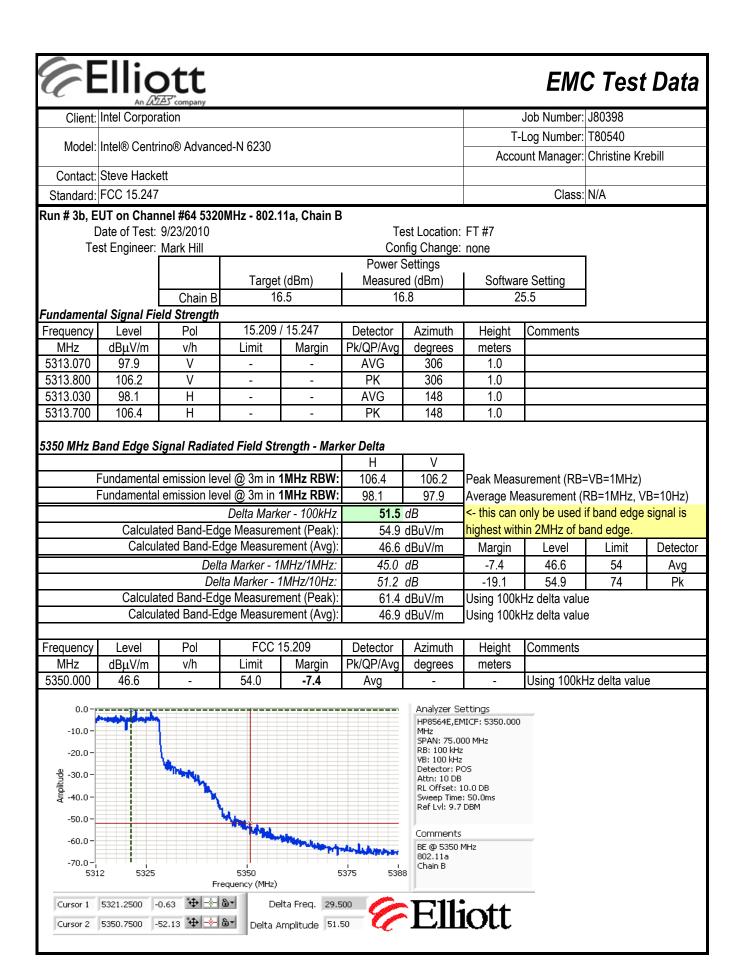

	An ATAS company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIILEI® Ceritiiio® Advanceu-iv 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	107.6	105.3	Peak Measu	rement (RB=	=VB=1MHz)	
Fundamental emission level @ 3m in 1MHz RBW:	98.8	96.4	Average Measurement (RB=1MHz, VB=10Hz)			B=10Hz)
Delta Marker - 100kHz	Delta Marker - 100kHz 46.3 dB <- this can only be used if band			if band edge	and edge signal is	
Calculated Band-Edge Measurement (Peak):	61.3	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	52.5	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	46.7	dB	-16.0	52.3	68.3	Avg
Delta Marker - 1MHz/10Hz:	46.5	dB	-27.4	60.9	88.3	Pk
Calculated Band-Edge Measurement (Peak):	60.9	dBuV/m	Using 1MHz	delta value		
Calculated Band-Edge Measurement (Avg):	52.3	dBuV/m	Using 1MHz	delta value		
	-		_			

Frequency	Level	Pol	FCC	: 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.834	52.3	-	68.3	-16.0	Avg	-	-	Using 1MHz delta value

Note - average limit is equivalent to -27dBm eirp.



Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2d, EUT on Channel #140 5700MHz - n20, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.6 29.0 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Ava MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5692.970 98.0 ٧ AVG 306 1.0 5694.700 106.5 ٧ PΚ 306 1.0 5693.130 96.2 Н **AVG** 97 1.0 97 5693.630 104.7 Н PK 1.0 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н Fundamental emission level @ 3m in 1MHz RBW: 104.7 106.5 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.2 Average Measurement (RB=1MHz, VB=10Hz) 98.0 Delta Marker - 100kHz 39.2 dB <- this can only be used if band edge signal is Calculated Band-Edge Measurement (Peak): 67.3 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 58.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.0 dB -11.6 56.7 68.3 Avg Delta Marker - 1MHz/10Hz: -21.0 41.3 dB 67.3 88.3 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 72.5 dBuV/m Calculated Band-Edge Measurement (Avg): 56.7 dBuV/m Using 1MHz delta value FCC 15E Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg meters degrees 5725.000 56.7 68.3 -11.6 Ava Using 1MHz delta value Note - average limit is equivalent to -27dBm eirp Analyzer Settings HP8564E,EMICF: 5738.000 -10.0 SPAN: 100,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB -40.0 Sweep Time: 37.0s Ref Lvl: 9.7 DBM -50.0 Comments -60.0 BE @ 5725 MHz 802.11n 20MHz -70.0 -5730 5740 5750 5760 5770 5780 5788 5710 5720 Frequency (MHz) Cursor 1 5693.1665 -3.63 💠 -*- ७⋅ Delta Freq. 31.833 Cursor 2 5725.0000 -44.97 💠 🐣 🗟 🕶 Delta Amplitude 41.33

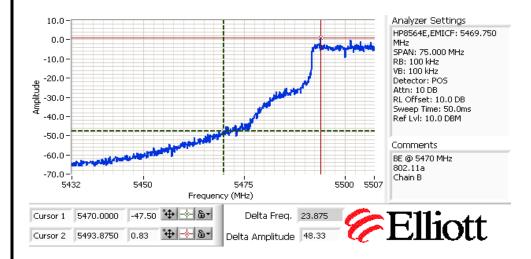
Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3, Band Edge Field Strength - 802.11a, Chain B Run # 3a, EUT on Channel #36 5180MHz - 802.11a, Chain B Date of Test: 9/23/2010 Test Location: Chamber #7 Test Engineer: Mehran Birgani Config Change: None Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 16.5 24.5 Chain B Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5186.530 98.7 ٧ AVG 314 1.0 ٧ PK 1.0 5186.100 106.7 314 5172.970 99.0 Η **AVG** 108 1.0 5174.070 107.6 Н PΚ 108 1.0 5150 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 107.6 106.7 Peak Measurement (RB=VB=1MHz) 99.0 Fundamental emission level @ 3m in 1MHz RBW: 98.7 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **48.0** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 59.6 dBuV/m Calculated Band-Edge Measurement (Avg): 51.0 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 42.7 dB -3.0 51.0 54 Avg Delta Marker - 1MHz/10Hz: 47.8 dB -14.4 59.6 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 64.9 dBuV/m Calculated Band-Edge Measurement (Avg): 51.2 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments Pk/QP/Avg MHz v/h Limit Margin dBµV/m degrees meters 5149.334 51.0 54.0 -3.0 Using 100kHz delta value Avq 10.0 Analyzer Settings HP8564E,EMICF: 5143.500 MHz SPAN: 100.000 MHz -10.0 RB: 100 kHz VB: 100 kHz -20.0 Detector: POS Attn: 10 DB Amplitude -30.0 RL Offset: 10.0 DB Sweep Time: 55.0ms Ref Lvl: 9.7 DBM -40.0 -50.0 Comments BE @ 5150 MHz 802.11a -70.0 Chain B 5130 5140 5150 5160 5170 5180 50945100 5110 5120 Frequency (MHz) Cursor 1 5149.3335 -47.63 💠 🛧 🗟 🕶 Delta Freq. 35.667

Cursor 2 5185.0000 0.37

Delta Amplitude 48.00

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3c, EUT on Channel #100 5500MHz - 802.11a, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.7 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments v/h Limit Pk/QP/Ava MHz $dB\mu V/m$ Margin degrees meters 5492.930 96.0 ٧ AVG 265 1.0 5493.700 104.1 ٧ PΚ 265 1.0 5493.070 99.1 Н **AVG** 110 1.0 5493.530 107.4 Η PK 110 1.0 5460 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 107.4 Peak Measurement (RB=VB=1MHz) 104.1 Fundamental emission level @ 3m in 1MHz RBW: 99.1 Average Measurement (RB=1MHz, VB=10Hz) 96.0 Delta Marker - 100kHz <- this can only be used if band edge signal is 54.3 dB Calculated Band-Edge Measurement (Peak): 53.1 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 44.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 46.8 dB -9.4 44.6 54 Avg Delta Marker - 1MHz/10Hz: -20.9 53.1 **54.5** dB 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 60.6 dBuV/m Calculated Band-Edge Measurement (Avg): 44.6 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 5460.000 44.6 54.0 -9.4 Ava Using 1MHz delta value 0.0 Analyzer Settings HP8564E,EMICF: 5469.750 -10.0 MHz SPAN: 75,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB -40.0 Sweep Time: 28.0s Ref Lvl: 10.0 DBM -50.0 Comments -60.0 BE @ 5460 MHz -70.0 Chain B 5450 5500 5507 5475 Cursor 1 5460.0000 -57.50 💠 🔆 🗟 -Delta Freq. 33.000 Cursor 2 5493.0000 -3.00 💠 🛧 🔊 Delta Amplitude 54.50

EMC Test Data


	All Diffe Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	
Model.	III (el® Cell (III) (ll Advallceu-IV 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	107.4	104.1	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	99.1	96.0	Average Measurement (RB=1MHz, VB=10Hz)			B=10Hz)
Delta Marker - 100kHz	er - 100kHz 48.3 dB		<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	59.1 dBuV/m		highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	50.8	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	43.7	dB	-17.5	50.8	68.3	Avg
Delta Marker - 1MHz/10Hz:	47.8	dB	-29.2	59.1	88.3	Pk
Calculated Band-Edge Measurement (Peak):	63.7	dBuV/m	Using 100kh	Iz delta valu	Э	
Calculated Band-Edge Measurement (Avg):	51.3	dBuV/m	Using 100kl	Iz delta value	Э	
			='			

Frequency	Level	Pol	FCC	: 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5470.000	50.8	-	68.3	-17.5	Avg	-	-	Using 100kHz delta value

Note - average limit is equivalent to -27dBm eirp.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3d, EUT on Channel #140 5700MHz - 802.11a, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.7 28.5 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Pol Detector Azimuth Height Comments Level Pk/QP/Ava MHz $dB\mu V/m$ v/h Limit Margin degrees meters 5693.130 96.1 ٧ AVG 186 1.1 5693.730 104.7 ٧ PΚ 186 1.1 5693.070 97.1 Н **AVG** 100 1.6 5693.800 105.6 Н PK 100 1.6 5725 MHz Restricted Band Edge Signal Radiated Field Strength - Marker Delta Н ٧ Fundamental emission level @ 3m in 1MHz RBW: 105.6 104.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 97.1 Average Measurement (RB=1MHz, VB=10Hz) 96.1 Delta Marker - 100kHz <- this can only be used if band edge signal is 44.0 dB Calculated Band-Edge Measurement (Peak): 61.6 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 53.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 39.2 dB -17.5 50.8 68.3 Avg Delta Marker - 1MHz/10Hz: -26.7 **46.3** dB 61.6 88.3 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 66.4 dBuV/m Calculated Band-Edge Measurement (Avg): 50.8 dBuV/m Using 1MHz delta value FCC 15E Pol Detector Comments Frequency Level Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg meters degrees 5725.000 50.8 68.3 -17.5Ava Using 1MHz delta value Note - average limit is equivalent to -27dBm eirp Analyzer Settings 0.0 HP8564E,EMICF: 5725.000 -10.0 SPAN: 75,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 10 DB RL Offset: 10.0 DB -40.0 Sweep Time: 28.0s Ref Lvl: 10.0 DBM -50.0 Comments -60.0 BE @ 5725 MHz 802.11a -70.0 Chain B 5688 5700 5725 5750 Delta Freq. 32.125 Cursor 2 5725.0000 -50.00 💠 🛧 🔊 Delta Amplitude 46.33

Elliott An ATE Company	EMC Test Data
Client: Intel Corporation	Job Number: J80398
Madel Intel® Centrine® Advanced N 6220	T-Log Number: T80540
Model: Intel® Centrino® Advanced-N 6230	Account Manager: Christine Krebill
Contact: Steve Hackett	
Standard: FCC 15.247	Class: N/A

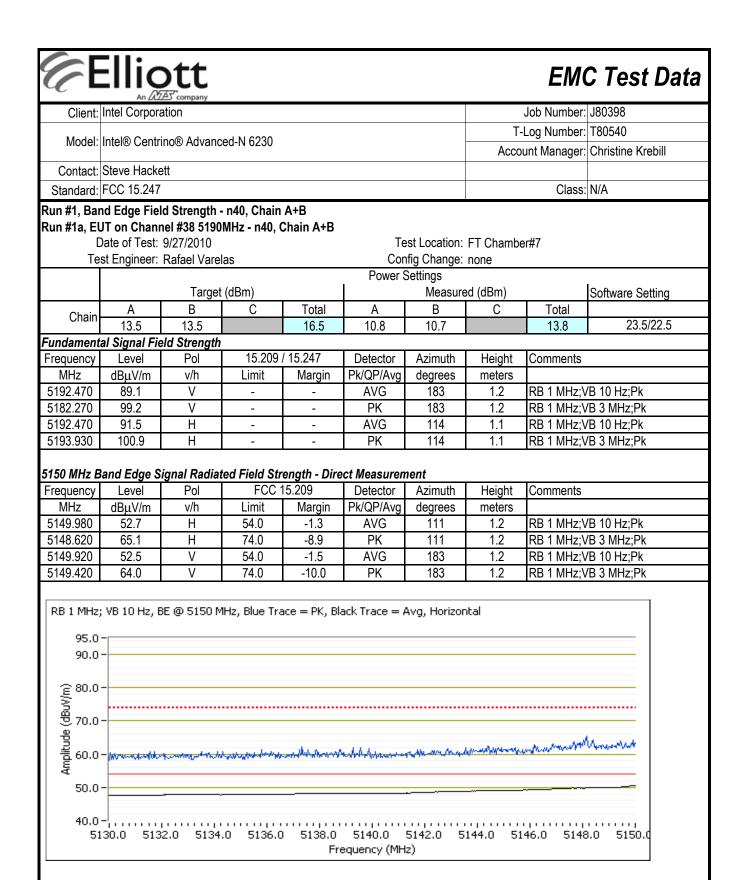
RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions - Band Edges

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Run #1	n40 Chain A+B	#38 5190MHz	A: 13.5 B: 13.5	A: 10.8 Restricted Band Edge at B: 10.7 5150 MHz		15.209	52.7dBµV/m @ 5150.0MHz (-1.3dB)
Run #1	n40 Chain A+B	#62 5310MHz	A: 13.5 B: 13.5	A: 13.0 B: 12.9	Restricted Band Edge at 5350 MHz	15.209	52.7dBµV/m @ 5350.1MHz (-1.3dB)
Run #1	n40	#102	A: 13.5	A: 13.5	Restricted Band Edge at 5460 MHz	15.209	52.3dBµV/m @ 5457.5MHz (-1.7dB)
IXUII # I	Chain A+B	5510MHz	B: 13.5	B: 13.5	Band Edge at 5470 MHz	15 E	55.3dBµV/m @ 5470.0MHz (-13.0dB)
Run #1	n40 Chain A+B	#134 5670MHz	A: 13.5 B: 13.5	A: 13.5 B: 13.5	Band Edge at 5725 MHz	15 E	51.0dBµV/m @ 5744.8MHz (-17.3dB)
Run # 2	n20 Chain A+B	#36 5180MHz	A: 13.5 B: 13.5	A: 13.5 B: 13.5	Restricted Band Edge at 5150 MHz	15.209	51.0dBµV/m @ 5149.3MHz (-3.0dB)
Run # 2	n20 Chain A+B	#64 5320MHz	A: 13.5 B: 13.5	A: 13.5 B: 13.5	Restricted Band Edge at 5350 MHz	15.209	50.3dBµV/m @ 5350.4MHz (-3.7dB)
Run # 2	n20	#100	A: 13.5	A: 13.5	Restricted Band Edge at 5460 MHz	15.209	50.3dBµV/m @ 5457.9MHz (-3.7dB)
ruii # Z	Chain A+B	5500MHz	B: 13.5	B: 13.5	Band Edge at 5470 MHz	15 E	50.8dBµV/m @ 5469.5MHz (-17.5dB)
Run # 2	n20 Chain A+B	#140 5700MHz	A: 13.5 B: 13.5	A: 13.5 B: 13.5	Band Edge at 5725 MHz	15 E	51.1dBµV/m @ 5725.0MHz (-17.2dB)

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.


Test Specific Details

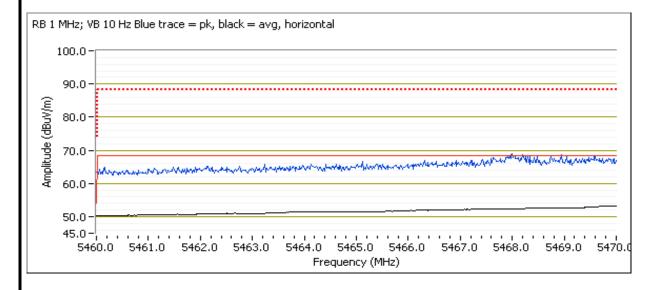
Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

	Elliott An WAS company		EMC Test D				
	Intel Corporation		Job Number:	J80398			
			T-Log Number:				
Model:	Intel® Centrino® Advanced-N 6230		Account Manager:				
	Steve Hackett						
	FCC 15.247		Class:	N/A			
Ambient	Conditions: Rel. Humidity: Temperature:	15 - 55 % 18 - 25 °C					
	ions Made During Testing tions were made to the EUT during testing						
	s From The Standard so were made from the requirements of the standard.						

Client:	Intel Corpora	tion				Job Number:	J80398		
	-				T-	Log Number:			
Model:	Intel® Centri	no® Advano	ed-N 6230						Christine Krebill
Contact:	Steve Hacke	tt							
Standard:	FCC 15.247					Class:	N/A		
	UT on Chann		MHz - n40,	Chain A+B	т.	. (1	ET Object		
	Date of Test: st Engineer:		las			st Location: fig Change:		er# <i>1</i>	
	ot Enginour.	raider vare	140		Power S		TIOTIO		
		Target	(dBm)			Measure	ed (dBm)		Software Setting
Chain	Α	В	С	Total	Α	В	С	Total	0= 0/00 =
	13.5	13.5		16.5	13.0	12.9		16.0	27.0/26.5
Fundament Frequency	al Signal Fie Level	<i>Id Strength</i> Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENTS	
5312.530	92.4	H	-	-	AVG	118	1.0	RB 1 MHz;\	/B 10 Hz:Pk
5313.130	102.6	H	-	-	PK	118	1.0	· ·	/B 3 MHz;Pk
5307.130	91.4	V	-	-	AVG	207	1.0	RB 1 MHz;\	/B 10 Hz;Pk
5302.330	101.3	V	-	-	PK	207	1.0	RB 1 MHz;\	/B 3 MHz;Pk
5350 MHz E Frequency MHz	Band Edge Si Level dBμV/m	i gnal Radia Pol v/h		ength - Dire 15.209 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
5350.060	52.7	Н	54.0	-1.3	AVG	112	1.0	RB 1 MHz;\	
5350.620	65.6	H	74.0	-8.4	PK	112	1.0		/B 3 MHz;Pk
5350.000	52.0	V	54.0	-2.0	AVG	150	1.3	RB 1 MHz;\	
5351.480	65.0	V	74.0	-9.0	PK	150	1.3	RB 1 MHZ;\	/B 3 MHz;Pk
95.0 90.0 90.00 70.0 90.0 50.0	Mayney	projektorojskoj kojektoroj	half the second dead of the seco	Astrophysia,	ack Trace = A	and the same of th	agalical consequences	the state of the s	

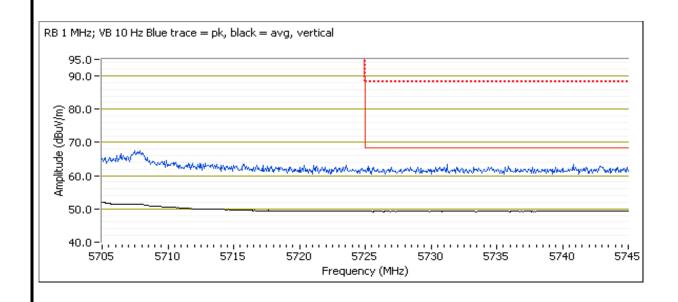

Client	Intel Corpora	tion company						Job Number:	.180398		
CIIEIIL.	into Corpora	uon					т	Log Number:			
Model:	Intel® Centri	no® Advanc	ed-N 6230						Christine Krebill		
Contact:	Steve Hacke	++					7000	uni manayer.	Christine Riebin		
	FCC 15.247										
		al #402 EE4	OMU40	Chain A I D				Class:	IN/A		
un # IC, E	JT on Chann	ei#102 551	<u> </u>	Chain A+D	Power S	Settings					
		Target	(dBm)		l	Measure	d (dBm)		Software Setting		
OL .:	Α	В	C	Total	Α	В	C	Total	contrare contrary		
Chain	13.5	13.5	-	16.5	13.5	13.5	-	16.5	28.5 / 28.0		
	•				•	•					
	al Signal Fie		1=		T			T-			
requency	Level	Pol	15.209		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	 			
5512.400	92.1	H H	112.3	-20.2	AVG	108	1.18	1			
5517.930	102.2 91.7	V	132.3	-30.1	PK	108	1.18				
5513.130 5513.870	101.5	V	112.3 132.3	-20.6 -30.8	AVG PK	155 155	1.17 1.17				
requency MHz	Level dBuV/m	Pol v/h	FCC 1		Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments			
	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5457.500 5457.670	52.3 65.0	V	54.0 74.0	-1.7 -9.0	AVG PK	158 158	1.41 1.41				
5457.670	52.1	H	54.0	-9.0 -1.9	AVG	110	1.41				
5457.900	64.6	H	74.0	-1. 9 -9.4	PK	110	1.17				
	; VB 10 Hz Blu					110	,				
100.	0-										
90.	0 -										
Amplitude (dBuV/m) 90. 20.	0-										
) 월 70.	n -		•••••					•••••			
를 70.						1.		المائيلة بيدان	Alone I		
₩ 60.	0-	ه داد هود خان ال	والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج	water	deres de la companya	aribajtiquequedurale	wageweelthad	A	· · · · (Marris, service)		

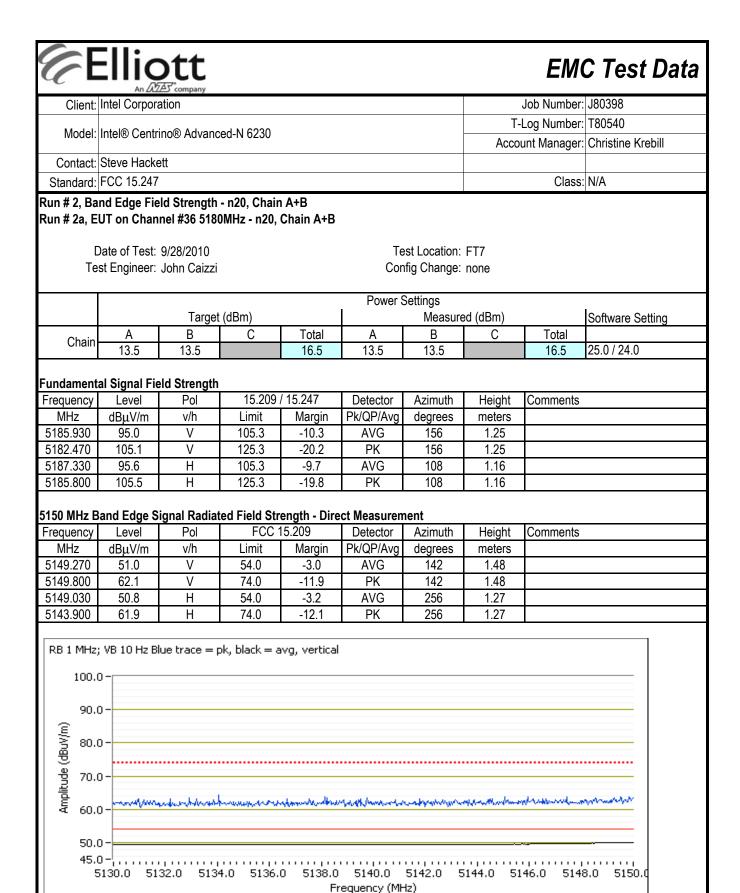
	All Dates Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Celitiiilo® Advanced-iv 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.950	55.3	Н	68.3	-13.0	AVG	111	1.13	
5469.730	67.0	Н	88.3	-21.3	PK	111	1.13	
5469.870	55.0	V	68.3	-13.3	AVG	158	1.41	
5467.120	67.6	V	88.3	-20.7	PK	158	1.41	

	All Dez Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Celiliiilo® Advanced-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Run #1d, EUT on Channel #134 5670MHz - n40, Chain A+B

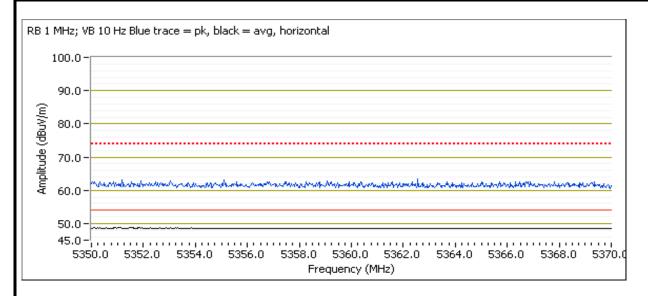

		Power Settings									
		Target	(dBm)		Measured (dBm)				Software Setting		
Chain	Α	В	С	Total	Α	В	С	Total			
Criairi	13.5	13.5		16.5	13.5	13.5		16.5	29.5 / 29.0		

5725 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5744.830	51.0	V	68.3	-17.3	AVG	87	1.90	
5727.670	62.2	V	88.3	-26.1	PK	87	1.90	
5730.470	51.0	Н	68.3	-17.3	AVG	312	2.07	
5733.400	61.7	Н	88.3	-26.6	PK	312	2.07	

Note - average limit is equivalent to -27dBm eirp.

	All Dez Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Celiliiilo® Advanced-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

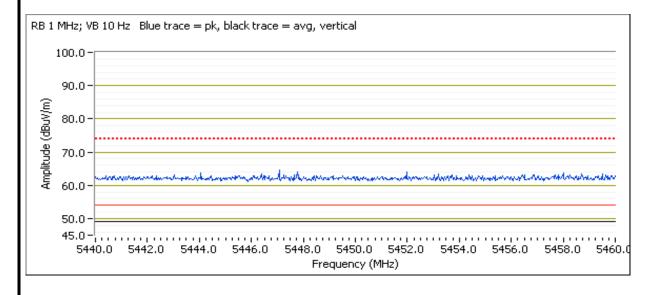

Run # 2b, EUT on Channel #64 5320MHz - n20, Chain A+B

Date of Test: 9/28/2010 Test Location: FT7
Test Engineer: John Caizzi Config Change: none

					Power	Settings			
		Target	(dBm)		Measured (dBm)				Software Setting
Chain	Α	В	С	Total	Α	В	С	Total	
Cilalii	13.5	13.5		16.5	13.5	13.5		16.5	25.5 / 24.5

5350 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.400	50.3	Н	54.0	-3.7	AVG	123	1.41	
5350.970	61.0	Н	74.0	-13.0	PK	123	1.41	
5355.830	50.1	V	54.0	-3.9	AVG	240	2.25	
5353.170	61.9	V	74.0	-12.1	PK	240	2.25	

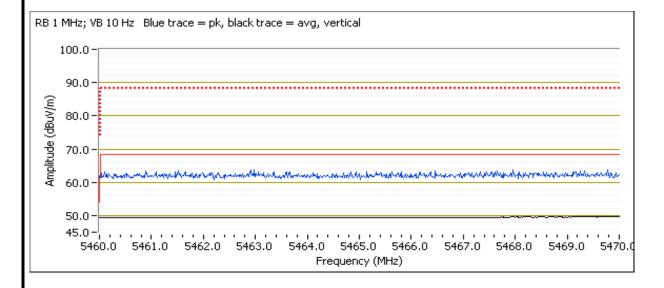

	All Bazz Stormpuny		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 2c, EUT on Channel #100 5500MHz - n20, Chain A+B

		Power Settings											
		Target	(dBm)			Measure	Software Setting						
Chain	Α	В	С	Total	Α	В	С	Total					
Gliaili	13.5	13.5		16.5	13.5	13.5		16.5	28.0 / 28.0				

5460 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5457.930	50.3	V	54.0	-3.7	AVG	0	1.31			
5449.370	62.6	V	74.0	-11.4	PK	0	1.31			
5448.700	50.3	Н	54.0	-3.7	AVG	358	2.11			
5447.830	61.5	Н	74.0	-12.5	PK	358	2.11			



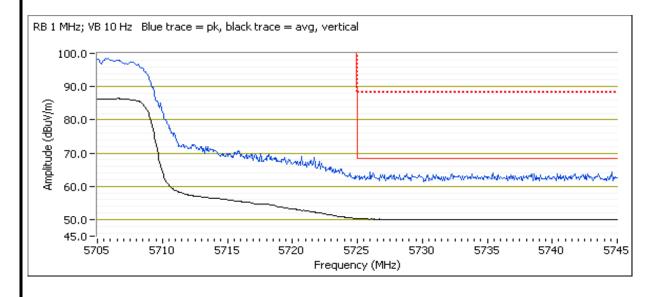
	All Dez Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Celiliiilo® Advanced-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

5470 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·							
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.530	50.8	V	68.3	-17.5	AVG	0	1.31	
5465.030	62.3	V	88.3	-26.0	PK	0	1.31	
5467.400	50.5	Н	68.3	-17.8	AVG	358	2.11	
5461.680	61.7	Н	88.3	-26.6	PK	358	2.11	

Note - average limit is equivalent to -27dBm eirp.

	···· bus company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Run # 2d, EUT on Channel #140 5700MHz - n20, Chain A+B

	Power Settings								
	Target (dBm)				Measured (dBm)				Software Setting
Chain	Α	В	С	Total	Α	В	С	Total	
Cilalii	13.5	13.5		16.5	13.5	13.5		16.5	29.0 / 29.0

5725 MHz Band Edge Signal Radiated Field Strength - Direct Measurement

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.000	51.1	V	68.3	-17.2	AVG	342	1.21	
5736.230	62.4	V	88.3	-25.9	PK	342	1.21	
5725.170	51.1	Н	68.3	-17.2	AVG	50	1.68	
5735.600	62.1	Н	88.3	-26.2	PK	50	1.68	

Note - average limit is equivalent to -27dBm eirp.

€FI	liott
	An ATAS company

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillio® Advanced-14 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39										
Run#	Mode	Channel	Target power	Measured Power	Test Performed	Limit	Result / Margin			
Scans on center channel in all three OFDM modes in each operatintg band were used to determine the worst case. Note that for n20 and										
n40 mode the output power was set to 16.5dBm per chain, the maximum power per chain in MIMO mode would be 13.5dBm, however as										
the single chain power could be 16.5dBm the scans were run at the higher single-chain power level but with both chains active to cover										
both MIMO	both MIMO and MISO modes.									
	802.11a	#40	16.5	16.5			41.7dBµV/m @			
	Chain A	5200MHz	10.0	10.0			1192.6MHz (-12.3dB)			
	802.11a	#40	16.5	16.6			41.5dBµV/m @			
	Chain B	5200MHz			Radiated Emissions,	FCC 15.209 / 15 E	1192.6MHz (-12.5dB)			
	n20	#40	A: 16.5	A: 16.7	1 - 40 GHz	1 00 10:2007 10 2	41.2dBµV/m @			
Run #1	Chain A+B		B: 16.5	B: 16.6			1192.4MHz (-12.8dB)			
(5150-	n40	#38	A: 16.5	A: 16.6			44.1dBµV/m @			
5250MHz	Chain A+B		B: 16.5	B: 16.6			1192.6MHz (-9.9dB)			
Band) Worst case mode - top and bottom channels. As the worst case mode was 802.11n 40MHz 5180MHz with no "low channel"										
	5180 MHz ir				channel and n40 5230MF	Iz evaluated as high char				
		#38	A: 16.5	A: 16.6	16.6 Radiated Emissions, 16.5 1 - 40 GHz	FCC 15.209 / 15 E	33.0dBµV/m @			
	n20 / n40	5180MHz	B: 16.5	B: 16.6			2323.1MHz (-21.0dB)			
	Chain A+B	#46	A: 16.5	A: 16.5			43.0dBµV/m @			
		5230MHz	B: 16.5	B: 16.6			2323.9MHz (-11.0dB)			
	802.11a	#60	16.5	16.6			43.4dBµV/m @			
	Chain A	5300MHz	10.0	10.0			1192.5MHz (-10.6dB)			
	802.11a	#60	16.5	16.6			43.5dBµV/m @			
	Chain B	5300MHz			Radiated Emissions,	FCC 15.209 / 15 E	1192.5MHz (-10.5dB)			
	n20	#60	A: 16.5	A: 16.7	1 - 40 GHz		37.0dBµV/m @			
	Chain A+B		B: 16.5	B: 16.6			2322.7MHz (-17.0dB)			
Run #2	n40	#62	A: 16.5	A: 16.6			37.8dBµV/m @			
(5250-	Chain A+B		B: 16.5	B: 16.6			2331.5MHz (-16.2dB)			
5350MHz	Worst case	mode (802.1	1a) - top and	bottom char	nnels.					
Band)		#52	16.5	16.6			42.5dBµV/m @			
,	802.11a	5260MHz			Radiated Emissions,	FCC 15.209 / 15 E	2325.4MHz (-11.5dB)			
	Chain A	#48	16.5	16.5	1 - 40 GHz		41.4dBµV/m @			
		5320MHz					2331.9MHz (-12.6dB)			
		#52	16.5	16.7			41.4dBµV/m @			
	802.11a	5260MHz			Radiated Emissions,	FCC 15.209 / 15 E	2331.5MHz (-12.6dB)			
	Chain B	#48	16.5	16.7	1 - 40 GHz		41.2dBµV/m @			
		5320MHz	. 3.0	. 3			2331.7MHz (-12.8dB)			

	Ellic	ott Arcompany				EMO	C Test Data
Client:	Intel Corpora	ation				Job Number:	J80398
	1.1.10.0		1.11.0000	T-Log Number:	T80540		
Model:	Intel® Centr	ino® Advano	ed-N 6230	Account Manager:	Christine Krebill		
Contact:	Steve Hacke	ett					
Standard:	FCC 15.247					Class:	N/A
D #	Mode	Channal	Target	Measured	Toot Dorformed	Limit	Docult / Margin
Run#	Mode	Channel	power	Power	Test Performed	Limit	Result / Margin
	802.11a	#116	16.5	16.6			37.3dBµV/m @
	Chain A	5580MHz	10.0	10.0			2322.9MHz (-16.7dB)
	802.11a	#116	16.5	16.6			37.6dBµV/m @
	Chain B	5580MHz			Radiated Emissions,	FCC 15.209 / 15 E	2323.2MHz (-16.4dB)
Run #3	n20	#116	A: 16.5	A: 16.6	1 - 40 GHz		41.8dBµV/m @
(5470-	Chain A+B		B: 16.5	B: 16.6			2323.0MHz (-12.2dB)
5725MHz	n40	#110	A: 16.5	A: 16.5			43.7dBµV/m @
Band)	Chain A+B		B: 16.5 nd bottom ch	B: 16.5			1192.6MHz (-10.3dB)
	WOISI Case	#102	A: 16.5	A: 16.5			42.5dBµV/m @
	n40	#102 5510MHz	B: 16.5	B: 16.5	Radiated Emissions, 1 - 40 GHz		1192.6MHz (-11.5dB)
	Chain A+B		A: 16.5	A: 16.6		FCC 15.209 / 15 E	45.3dBµV/m @
	Ondan 70 B	5670MHz	B: 16.5	B: 16.6	1 10 0112		11399.4MHz (-8.7dB)
Receive mo	ode	0010111112	D. 10.0	D. 10.0			(0.1 0.2)
			Ob alia A				40.7dBµV/m @
			Chain A	-		RSS 210	2324.2MHz (-13.3dB)
		#40	Oh eire D		Radiated Emissions,		41.0dBµV/m @
		5200MHz	Chain B	-	1 - 18 GHz	K33 2 10	2322.8MHz (-13.0dB)
			Chain A+B	-			38.4dBµV/m @
			ChairAib				2330.0MHz (-15.6dB)
			Chain A	_			38.1dBµV/m @
	Receive		O Hamily (2986.3MHz (-15.9dB)
Run #4	Chain A,	#60	Chain B	-	Radiated Emissions,	RSS 210	38.0dBµV/m @
	Chain B,	5300MHz			1 - 18 GHz		2331.7MHz (-16.0dB)
	Chain A+B		Chain A+B	-			35.8dBµV/m @
							2986.4MHz (-18.2dB)
			Chain A	-			39.2dBµV/m @ 2322.7MHz (-14.8dB)
		#116			Radiated Emissions,		38.5dBµV/m @
		5580MHz	Chain B	-	1 - 18 GHz	RSS 210	2988.2MHz (-15.5dB)
		JJJJJIII IZ			1 - 10 0112		39.4dBµV/m @
			Chain A+B	-			2326.2MHz (-14.6dB)

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

An ZAZEO company						
Client:	Intel Corporation	Job Number:	J80398			
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540			
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247	Class:	N/A			

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

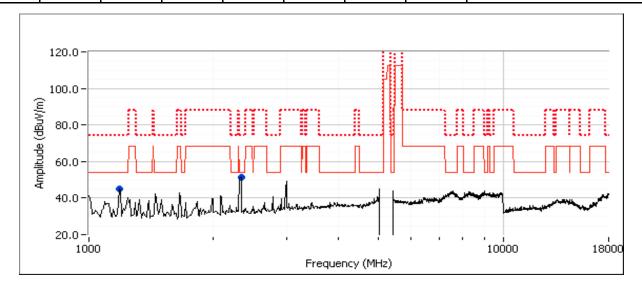
Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1, Radiated Spurious Emissions, 1-40GHz, Center Channl 5150-5250MHz - 802.11a, n20, n40, Chain A, B

Date of Test: 9/24/2010 Test Location: Chamber #7
Test Engineer: Mehran Birgani Config Change: None

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). As the power measured is average power this is considered an average limit so the peak limit would be 88.3dBuV/m at 3m.

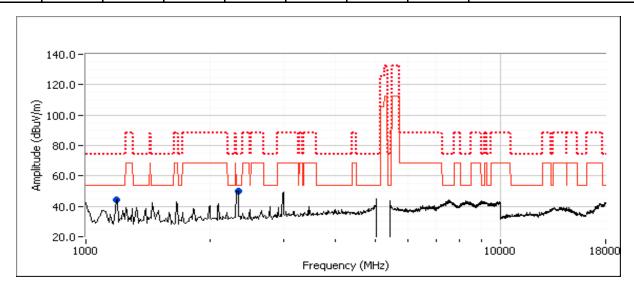


	An Diff. Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
	IIILEI® Celitiiilo® Auvaliceu-iv 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #1a: Channel #40 5200MHz - 802.11a,Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	25.0

Frequency	Level	Pol	15.209	15.209 / 15E		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1192.550	41.7	V	54.0	-12.3	AVG	154	1.0	
2331.440	40.7	V	54.0	-13.3	AVG	39	1.0	
2329.470	58.1	V	74.0	-15.9	PK	39	1.0	
1192.680	44.2	V	74.0	-29.8	PK	154	1.0	



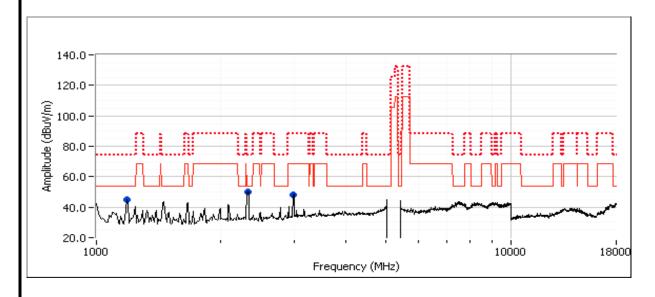
	All Deed Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(e)® Ceritiii)0® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #1b: Channel #40 5200MHz - 802.11a,Chain B

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain B	16.5	16.6	24.0					

opanious no	Obarrous reasitated Emissions:										
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1192.550	41.5	V	54.0	-12.5	AVG	156	1.0				
2322.890	41.2	V	54.0	-12.8	AVG	229	1.0				
2321.830	58.6	V	74.0	-15.4	PK	229	1.0				
1192.650	44.2	V	74.0	-29.8	PK	156	1.0				

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

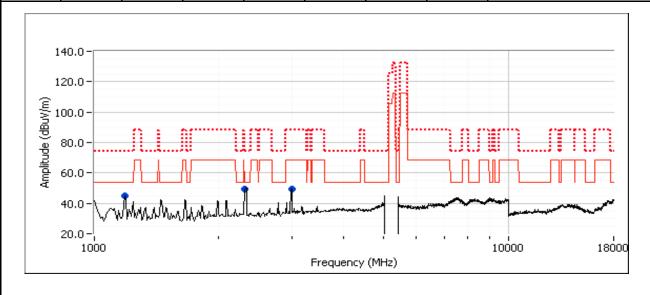

Run #1c: Channel #40 5200MHz - 802.11n20,Chain A + B

Date of Test: 9/24/2010 Test Location: Chamber #7
Test Engineer: Joseph Cadigal Config Change: None

		Power Settings Power Settings									
		Target	(dBm)		Measured (dBm)				Software Setting		
Chain	Α	В	С	Total	Α	В	С	Total			
Gilaili	16.5	16.5		19.5	16.7	16.6		19.7	31.0, 29.5		
Spurious Radiated Emissions:											
Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments			
MUZ	dDu\//m	v/h	Limit	Margin	Dr/OD/Ava	dogroos	motore				

•								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1192.370	41.2	V	54.0	-12.8	AVG	83	2.0	RB 1 MHz;VB 10 Hz;Pk
2331.510	36.7	V	54.0	-17.3	AVG	35	1.0	RB 1 MHz;VB 10 Hz;Pk
2331.590	53.3	V	74.0	-20.7	PK	35	1.0	RB 1 MHz;VB 3 MHz;Pk
2986.200	38.6	V	68.3	-29.7	AVG	126	1.0	RB 1 MHz;VB 10 Hz;Pk
1192.490	44.0	V	74.0	-30.0	PK	83	2.0	RB 1 MHz;VB 3 MHz;Pk
2985.070	56.4	V	88.3	-31.9	PK	126	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 2: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range



	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #1d: Channel #38 5190MHz - 802.11n40, Chain A+B

	Power Settings											
		Target	(dBm)			Measure	Software Setting					
Chain	Α	В	С	Total	Α	В	С	Total				
Chain	16.5	16.5		19.5	16.6	16.6		19.6	32.0, 31.0			

opulious N	adiated Liiii	3310113.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1192.560	44.1	V	54.0	-9.9	AVG	110	2.0	
2331.690	36.0	V	54.0	-18.0	AVG	69	1.0	
2333.200	52.7	V	74.0	-21.3	PK	69	1.0	
1192.540	46.0	V	74.0	-28.0	PK	110	2.0	
2986.650	40.0	V	68.3	-28.3	AVG	140	1.0	
2985.230	57.8	V	88.3	-30.5	PK	140	1.0	

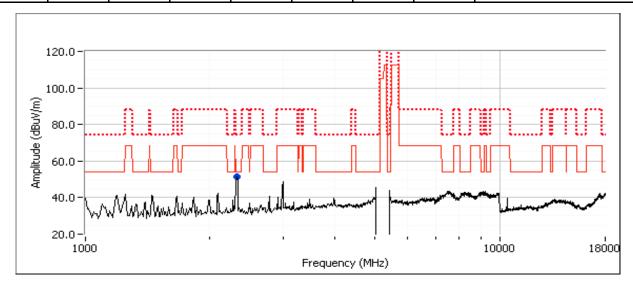


	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #1e: Channel #36 5180MHz - 802.11n20,Chain A + B

with the chainst hot of country country.											
	Power Settings										
		Target	t (dBm)			Measure	Software Setting				
Chain	Α	В	С	Total	Α	В	С	Total			
Citalii	16.5	16.5		19.5	16.6	16.6		19.6	32.0, 31.0		

oparious in	purious radiated Emissions:									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2323.110	33.0	V	54.0	-21.0	AVG	4	2.5			
2321.980	48.7	V	74.0	-25.3	PK	4	2.5			



	All Dates Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

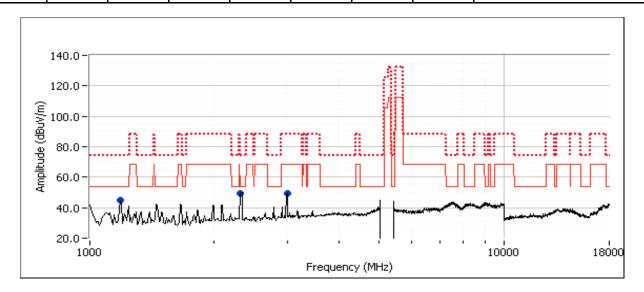
Run #1f: Channel #46 5230MHz - 802.11n40,Chain A + B

	Power Settings									
	Target (dBm)				Measured (dBm)				Software Setting	
Chain	Α	В	С	Total	Α	В	С	Total		
Chain	16.5	16.5		19.5	16.5	16.6		19.6	33.0, 32.5	

Opurious Radiated Ellissions.									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2323.940	43.0	V	54.0	-11.0	AVG	6	1.0		
2323.640	60.7	V	74.0	-13.3	PK	6	1.0		

	An ZAZZZ Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2, Radiated Spurious Emissions, 1-40GHz, Center Channel 5250-5350MHz - 802.11a, n20, n40, Chain A, B

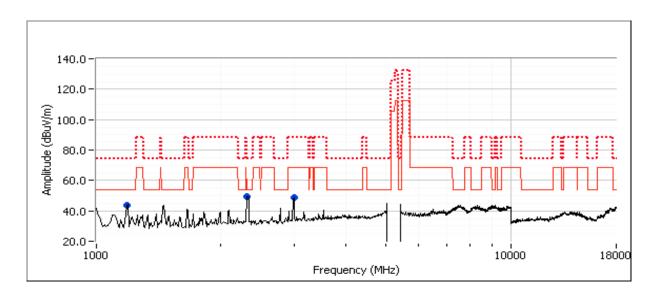

Date of Test: 9/23/2010 Test Location: FT Chamber#7
Test Engineer: Joseph Cadigal Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). As the power measured is average power this is considered an average limit so the peak limit would be 88.3dBuV/m at 3m.

Run #2a: Channel #60 5300MHz - 802.11a, Chain A

		Power Settings							
	Software Setting								
Chain A	16.5	16.6	26.5						

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1192.530	43.4	V	54.0	-10.6	AVG	110	2.0	
2331.800	36.4	V	54.0	-17.6	AVG	69	1.0	
2331.510	52.9	V	74.0	-21.1	PK	69	1.0	
1192.570	45.9	V	74.0	-28.1	PK	110	2.0	
2986.370	40.1	V	68.3	-28.2	AVG	140	1.0	
2985.090	58.0	V	88.3	-30.3	PK	140	1.0	



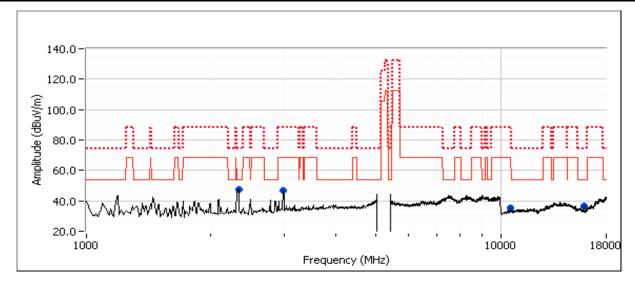
	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2b: Channel #60 5300MHz - 802.11a,Chain B

	,	Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain B	16.5	16.6	25.0

oparious in	adiatod Eiiii	00101101						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1192.540	43.5	٧	54.0	-10.5	AVG	109	2.0	
2331.670	36.4	٧	54.0	-17.6	AVG	46	1.0	
2333.090	53.9	V	74.0	-20.1	PK	46	1.0	
1192.560	45.6	V	74.0	-28.4	PK	109	2.0	
2997.550	38.1	V	68.3	-30.2	AVG	147	1.0	
2997.160	55.4	V	88.3	-32.9	PK	147	1.0	

	All Dates Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

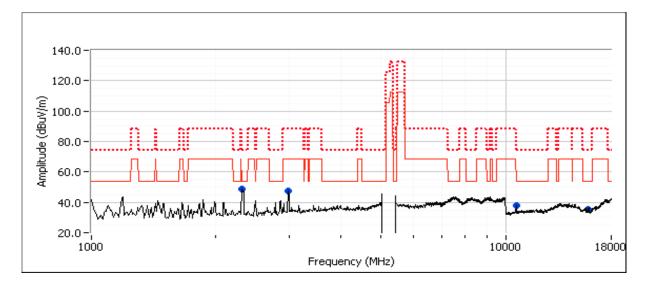

Run #2c: Channel #60 5300MHz - 802.11n20,Chain A + B

wii #201 0114111101 #00 0000111112 0021111120,011411111										
	Power Settings									
		Target	(dBm)		Measured (dBm)				Software Setting	
Chain	A B C Total				Α	В	С	Total		
Cilalii	16.5	16.5		19.5	16.7	16.6		19.7	31.0, 31.0	

Spurious Radiated Emissions:

opulious IN	purious Rudiated Emissions.								
Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2331.980	34.0	V	54.0	-20.0	AVG	49	1.0		
2333.120	50.2	V	74.0	-23.8	PK	49	1.0		
10638.470	27.5	V	54.0	-26.5	AVG	208	1.0		
2998.360	38.7	V	68.3	-29.6	AVG	144	1.0		
2998.010	56.6	V	88.3	-31.7	PK	144	1.0		
10639.790	39.4	V	74.0	-34.6	PK	208	1.0		

Note 2: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

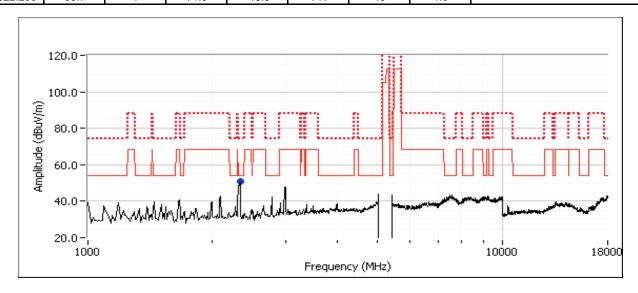


	All Date: Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillio® Advanced-14 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2d: Channel #62 5310MHz - 802.11n40, Chain A+B

	Power Settings											
		Target	rget (dBm) Measured (dBm)					Software Setting				
Chain	Α	В	С	Total	Α	В	С	Total				
Citalii	16.5	16.5		19.5	16.6	16.6		19.6	31.0, 32.0			

opunous N	adiated Ellin	3310113.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2322.700	37.0	V	54.0	-17.0	AVG	211	1.5	
2323.190	54.2	V	74.0	-19.8	PK	211	1.5	
15903.550	32.8	V	54.0	-21.2	AVG	170	1.0	
10611.870	27.7	V	54.0	-26.3	AVG	284	1.0	
15904.060	44.2	V	74.0	-29.8	PK	170	1.0	
2986.430	38.4	V	68.3	-29.9	AVG	148	1.0	
2986.550	55.7	V	88.3	-32.6	PK	148	1.0	
10612.410	38.5	V	74.0	-35.5	PK	284	1.0	

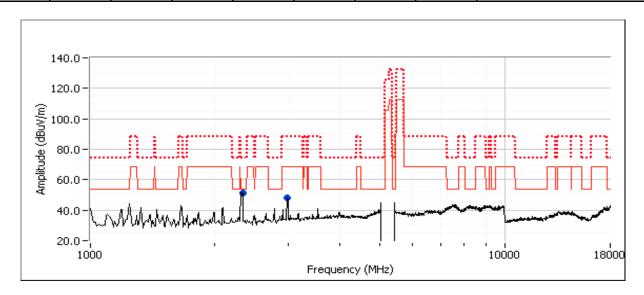


	All Directions Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2e: Channel #52 5260MHz - 802.11a,Chain A

	,	Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.6	26.0

opanious n	parious ituates minosionei										
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2325.400	42.5	V	54.0	-11.5	AVG	46	1.0				
2322.200	60.7	V	74.0	-13.3	PK	46	1.0				

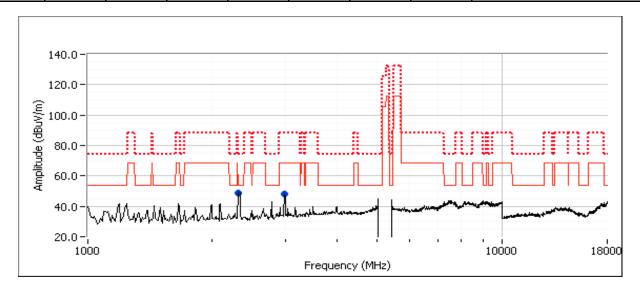

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III (el® Cell (III) (ll Advallceu-IV 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2f: Channel #64 5320MHz - 802.11a, Chain A

Date of Test: 9/24/2010 Test Location: FT Chamber#7
Test Engineer: Joseph Cadigal Config Change: none

		Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.5	26.5						

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2331.900	41.4	V	54.0	-12.6	AVG	43	1.0	
2332.100	59.1	V	74.0	-14.9	PK	43	1.0	
2986.210	36.2	V	68.3	-32.1	AVG	165	1.0	
2985.370	52.8	V	88.3	-35.5	PK	165	1.0	



	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2g: Channel #52 5260MHz - 802.11a,Chain B

	,	Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain B	16.5	16.7	26.0

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2331.500	41.4	V	54.0	-12.6	AVG	50	1.0	
2331.760	59.8	V	74.0	-14.2	PK	50	1.0	
2993.500	39.5	V	68.3	-28.8	AVG	154	1.0	
2991.850	56.5	V	88.3	-31.8	PK	154	1.0	



	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2h: Channel #64 5320MHz - 802.11a,Chain B

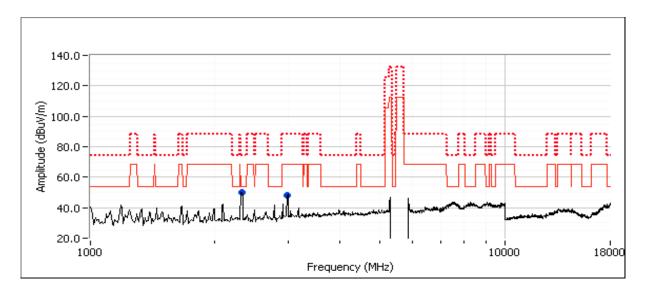
	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain B	16.5	16.7	26.0					

oparious in	adiatod Eiiii	00101101						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2331.650	41.2	V	54.0	-12.8	AVG	45	1.0	
2331.850	59.0	V	74.0	-15.0	PK	45	1.0	
2986.300	40.1	V	68.3	-28.2	AVG	148	1.0	
2984.910	57.8	V	88.3	-30.5	PK	148	1.0	

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Ceritiiio® Advanced-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #3, Radiated Spurious Emissions, 1-40GHz, Center Channel 5470-5725MHz - 802.11a, n20, n40, Chain A, B

Date of Test: 9/24/2010 Test Location: FT Chamber#7

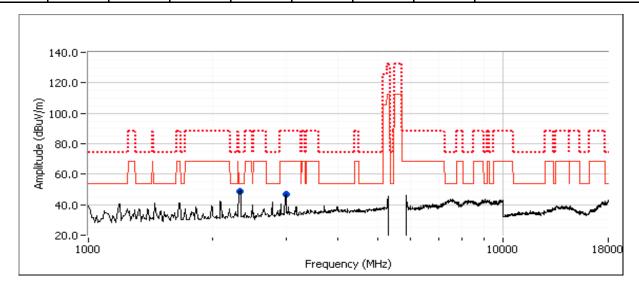

Test Engineer: Joseph Cadigal Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). As the power measured is average power this is considered an average limit so the peak limit would be 88.3dBuV/m at 3m.

Run #3a: Channel #116 5580MHz - 802.11a,Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.6	28.5

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2322.920	37.3	V	54.0	-16.7	AVG	0	2.0	
2321.940	54.6	V	74.0	-19.4	PK	0	2.0	
2998.360	37.4	V	68.3	-30.9	AVG	160	1.0	
2998.080	54.2	V	88.3	-34.1	PK	160	1.0	



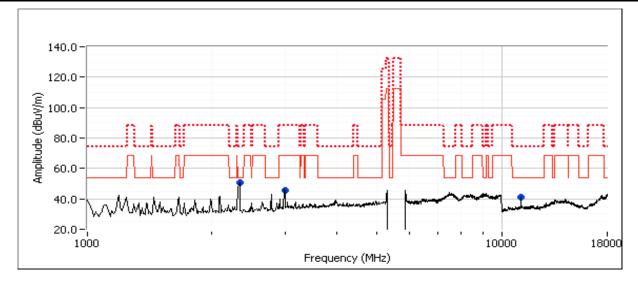
	All Deed Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #3b: Channel #116 5580MHz - 802.11a,Chain B

	Power Settings								
	Target (dBm) Measured (dBm) Software Se								
Chain B	16.5	16.6	28.0						

Opanious n	<u> </u>	00.00.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2323.180	37.6	V	54.0	-16.4	AVG	211	1.5	
2323.420	55.1	V	74.0	-18.9	PK	211	1.5	
2986.210	35.7	V	68.3	-32.6	AVG	165	1.0	
2984.950	52.6	V	88.3	-35.7	PK	165	1.0	

	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-IV 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Run #3c: Channel #116 5580MHz - 802.11n20,Chain A + B

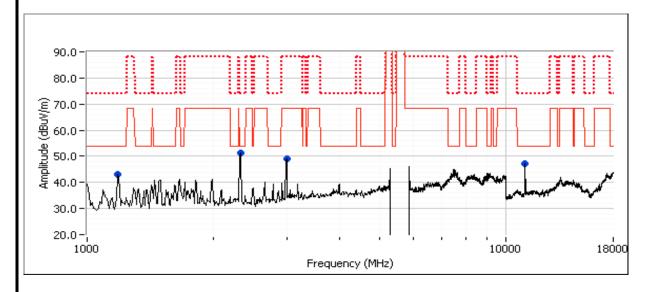
wit not one interpreted the control of the control										
	Power Settings									
	Target (dBm)				Measured (dBm)				Software Setting	
Chain	Α	В	С	Total	Α	В	С	Total		
Citalii	16.5	16.5		19.5	16.6	16.6		19.6	33.0, 33.0	

Spurious Radiated Emissions:

Spurious R	Spurious Radiated Emissions:										
Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2323.030	41.8	V	54.0	-12.2	AVG	0	1.0				
2321.940	59.4	V	74.0	-14.6	PK	0	1.0				
2998.100	36.3	V	68.3	-32.0	AVG	161	1.0				
2998.270	53.2	V	88.3	-35.1	PK	161	1.0				
11141.110	28.9	V	54.0	-25.1	AVG	197	1.5				
11140.800	40.0	V	74.0	-34.0	PK	197	1.5				

Note 2: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

	All Dates Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

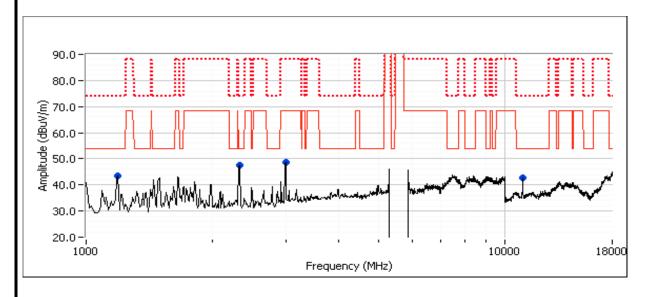

Run #3d: Channel #110 5550MHz - 802.11n40, Chain A+B

		Power Settings .										
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	Α	В	С	Total	Α	В	С	Total				
	16.5	16.5		19.5	16.5	16.5		19.5	34.5, 33.5			

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
11100.270	42.6	V	54.0	-11.4	AVG	162	2.0				
11107.330	53.3	V	74.0	-20.7	PK	162	2.0				
1192.550	43.7	V	54.0	-10.3	AVG	213	1.1				
1192.500	46.0	V	74.0	-28.0	PK	213	1.1				
2325.400	41.7	V	54.0	-12.3	AVG	3	1.0				
2330.600	59.8	V	74.0	-14.2	PK	3	1.0				
								-			

Note 1 Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

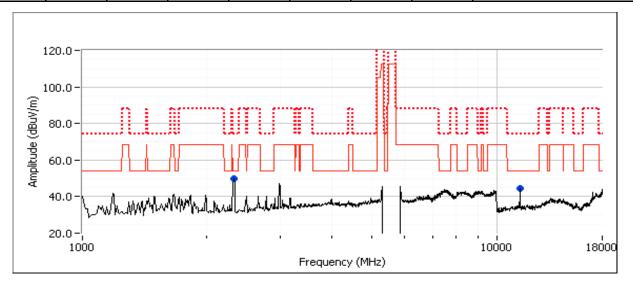


Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #3e: Channel #102 5510 MHz - 802.11n40, Chain A + B

		Power Settings										
		Target	(dBm)		Measured (dBm)				Software Setting			
Chain	Α	В	С	Total	Α	В	С	Total				
	16.5	16.5		19.5	16.5	16.5		19.5	33.0, 34.0			

oparious in	pariode Radiated Emicerene											
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
1192.570	42.5	V	54.0	-11.5	AVG	216	1.1					
2331.900	41.4	V	54.0	-12.6	AVG	3	1.0					
2993.010	39.6	V	68.3	-28.7	AVG	151	1.0					
11006.310	40.1	V	54.0	-13.9	AVG	162	1.1					
1192.440	44.8	V	74.0	-29.2	PK	216	1.1					
2331.230	59.5	V	74.0	-14.5	PK	3	1.0					
2993.210	57.0	V	88.3	-31.3	PK	151	1.0					
11006.310	50.9	V	74.0	-23.1	PK	162	1.1					



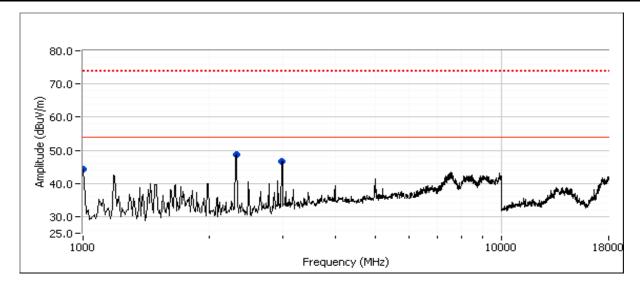
	All Dates Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #3f: Channel #140 5700MHz - 802.11n20,Chain A + B

		Power Settings										
		Target	(dBm)			Measure	Software Setting					
Chain	Α	В	С	Total	Α	В	С	Total				
Chain	16.5	16.5		19.5	16.6	16.6		19.6	35.5, 35.0			

Frequency	Level	Pol	15.209 / 15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2330.740	40.6	V	54.0	-13.4	AVG	0	1.0	
11399.380	45.3	V	54.0	-8.7	AVG	169	1.0	
2323.910	58.0	V	74.0	-16.0	PK	0	1.0	
11400.380	56.2	V	74.0	-17.8	PK	169	1.0	

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-IV 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Run #4, Radiated Spurious Emissions, 1-40GHz, Receive, Chain A, B, A+B

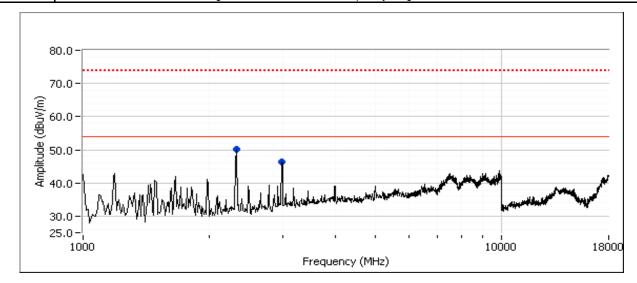
Date of Test: 9/27/2010 Test Location: Chamber #7
Test Engineer: Mehran Birgani Config Change: None

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). As the power measured is average power this is considered an average limit so the peak limit would be 88.3dBuV/m at 3m.

Run #4a: EUT on Channel #40 5200MHz - Receive, Chain A

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1000.010	34.4	V	54.0	-19.6	AVG	120	1.0	
2324.150	40.7	V	54.0	-13.3	AVG	293	1.0	
2998.610	39.1	V	54.0	-14.9	AVG	128	1.0	
1000.030	50.9	V	74.0	-23.1	PK	120	1.0	
2322.000	58.4	V	74.0	-15.6	PK	293	1.0	
2999.650	57.4	V	74.0	-16.6	PK	128	1.0	

An ZZZZ Company								
Client:	Intel Corporation	Job Number:	J80398					
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540					
	Intel® Centinio® Advanced-iv 0250	Account Manager:	Christine Krebill					
Contact:	Steve Hackett							
Standard:	FCC 15.247	Class:	N/A					

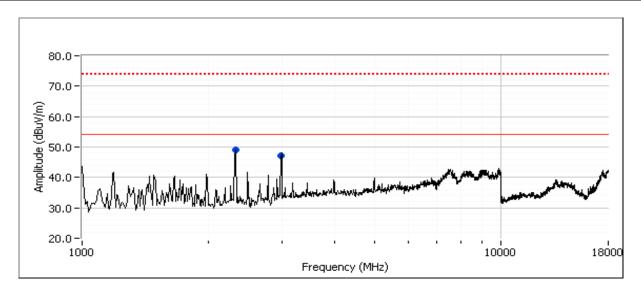

Run #4b: EUT on Channel #40 5200MHz - Receive, Chain B

Date of Test: 9/27/2010 Test Location: Chamber #7
Test Engineer: Joseph Cadigal Config Change: None

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2322.830	41.0	V	54.0	-13.0	AVG	352	1.0		
2997.670	39.3	V	54.0	-14.7	AVG	133	1.0		
2324.360	58.8	V	74.0	-15.2	PK	352	1.0		
2990.270	57.1	V	74.0	-16.9	PK	133	1.0		

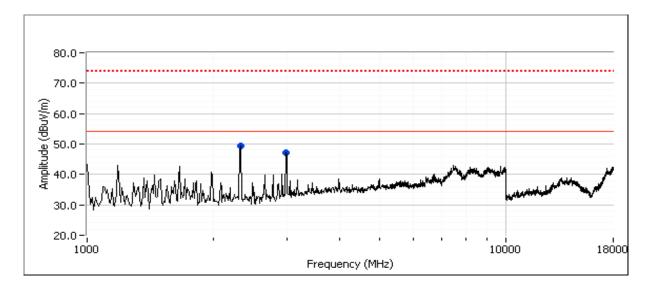
Note 1: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range



All Dazza company								
Client:	Intel Corporation	Job Number:	J80398					
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540					
	intel® Centino® Advanced-N 6250	Account Manager:	Christine Krebill					
Contact:	Steve Hackett							
Standard:	FCC 15.247	Class:	N/A					

Run #4c: EUT on Channel #40 5200MHz - Receive, Chain A+B

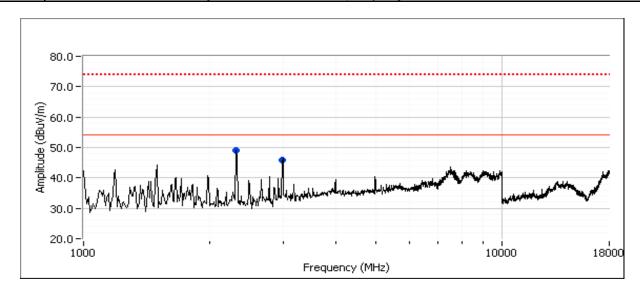
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2330.020	38.4	V	54.0	-15.6	AVG	300	1.0	RB 1 MHz;VB 10 Hz;Pk
2986.600	37.9	V	54.0	-16.1	AVG	156	1.0	RB 1 MHz;VB 10 Hz;Pk
2329.650	55.5	V	74.0	-18.5	PK	300	1.0	RB 1 MHz;VB 3 MHz;Pk
2986.310	55.2	V	74.0	-18.8	PK	156	1.0	RB 1 MHz;VB 3 MHz;Pk



All Dazza company								
Client:	Intel Corporation	Job Number:	J80398					
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540					
	intel® Centino® Advanced-N 6250	Account Manager:	Christine Krebill					
Contact:	Steve Hackett							
Standard:	FCC 15.247	Class:	N/A					

Run #4d: EUT on Channel #60 5300MHz - Receive, Chain A

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2986.300	38.1	V	54.0	-15.9	AVG	158	1.0	RB 1 MHz;VB 10 Hz;Pk	
2986.500	55.2	V	74.0	-18.8	PK	158	1.0	RB 1 MHz;VB 3 MHz;Pk	
2331.850	33.7	V	54.0	-20.3	AVG	357	1.0	RB 1 MHz;VB 10 Hz;Pk	
2333.040	49.7	V	74.0	-24.3	PK	357	1.0	RB 1 MHz;VB 3 MHz;Pk	

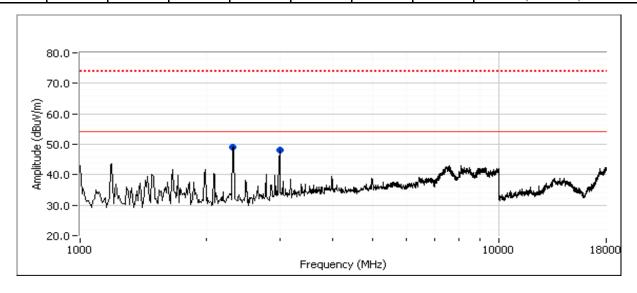

An 2022 company								
Client:	Intel Corporation	Job Number:	J80398					
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540					
	IIILEN CEITIIIION AUVAIICEU-N 0250	Account Manager:	Christine Krebill					
Contact:	Steve Hackett							
Standard:	FCC 15.247	Class:	N/A					

Run #4e: EUT on Channel #60 5300MHz - Receive, Chain B

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2331.700	38.0	V	54.0	-16.0	AVG	305	1.0	RB 1 MHz;VB 10 Hz;Pk	
2987.140	37.9	V	54.0	-16.1	AVG	129	1.0	RB 1 MHz;VB 10 Hz;Pk	
2987.250	55.7	V	74.0	-18.3	PK	129	1.0	RB 1 MHz;VB 3 MHz;Pk	
2329.570	54.8	V	74.0	-19.2	PK	305	1.0	RB 1 MHz;VB 3 MHz;Pk	

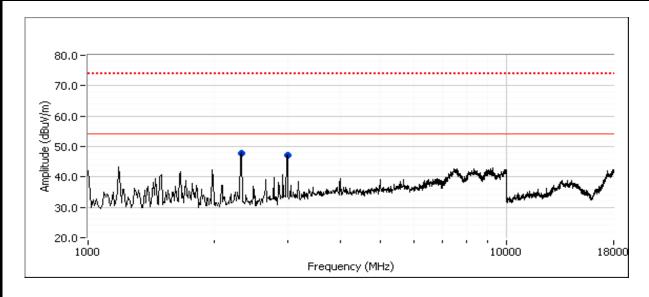
Note 1: Scans made between 18 - 40GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range



All 2022 Company						
Client:	Intel Corporation	Job Number:	J80398			
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540			
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247	Class:	N/A			

Run #4f: EUT on Channel #60 5300MHz - Receive, Chain A+B

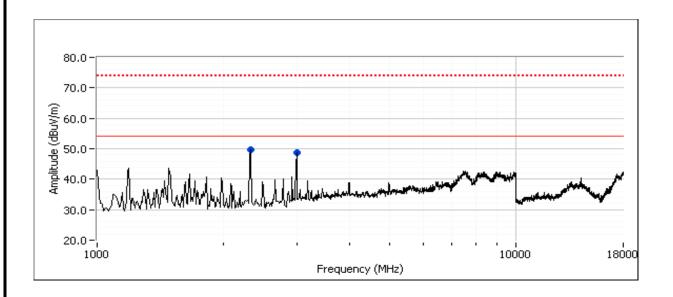
	/ WILLIAM - I WALKER -								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2986.410	35.8	V	54.0	-18.2	AVG	115	1.0	RB 1 MHz;VB 10 Hz;Pk	
2331.380	34.5	V	54.0	-19.5	AVG	287	1.0	RB 1 MHz;VB 10 Hz;Pk	
2985.560	53.0	V	74.0	-21.0	PK	115	1.0	RB 1 MHz;VB 3 MHz;Pk	
2332.050	50.8	V	74.0	-23.2	PK	287	1.0	RB 1 MHz;VB 3 MHz;Pk	



	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #4g: EUT on Channel #116 5580MHz - Receive, Chain A

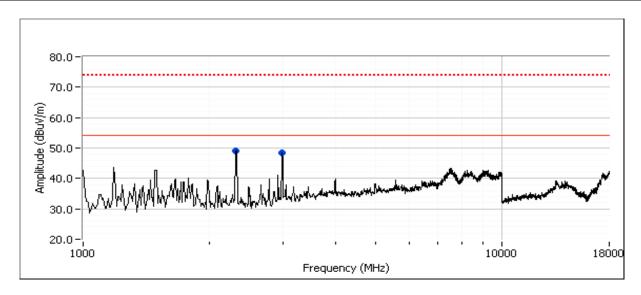
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2322.670	39.2	V	54.0	-14.8	AVG	55	1.0	RB 1 MHz;VB 10 Hz;Pk
2986.530	38.5	V	54.0	-15.5	AVG	140	1.0	RB 1 MHz;VB 10 Hz;Pk
2985.190	56.2	V	74.0	-17.8	PK	140	1.0	RB 1 MHz;VB 3 MHz;Pk
2323.290	56.2	V	74.0	-17.8	PK	55	1.0	RB 1 MHz;VB 3 MHz;Pk



	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #4h: EUT on Channel #116 5580MHz - Receive, Chain B

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2988.240	38.5	V	54.0	-15.5	AVG	127	1.0	RB 1 MHz;VB 10 Hz;Pk
2328.890	37.0	V	54.0	-17.0	AVG	304	1.0	RB 1 MHz;VB 10 Hz;Pk
2988.680	56.2	V	74.0	-17.8	PK	127	1.0	RB 1 MHz;VB 3 MHz;Pk
2328.820	53.4	V	74.0	-20.6	PK	304	1.0	RB 1 MHz;VB 3 MHz;Pk



All Date: Company							
Client:	Intel Corporation	Job Number:	J80398				
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540				
woder.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill				
Contact:	Steve Hackett						
Standard:	FCC 15.247	Class:	N/A				

Run #4i: EUT on Channel #116 5580MHz - Receive, Chain A+B

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2326.230	39.4	V	54.0	-14.6	AVG	300	1.0	RB 1 MHz;VB 10 Hz;Pk
2998.560	38.6	V	54.0	-15.4	AVG	154	1.0	RB 1 MHz;VB 10 Hz;Pk
2326.780	56.7	V	74.0	-17.3	PK	300	1.0	RB 1 MHz;VB 3 MHz;Pk
2999.970	55.8	V	74.0	-18.2	PK	154	1.0	RB 1 MHz;VB 3 MHz;Pk

Ellio ANDE	tt Prompany	EMC Test Data			
Client:	Intel Corporation	Job Number:	J80398		
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759		
		Account Manager:	Christine Krebill		
Contact:	Steve Hackett		-		
Emissions Standard(s):	FCC 15.247	Class:	В		
Immunity Standard(s):	-	Environment:	-		

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test:

	An MAS company	EMC Test Data			
Client:	Intel Corporation	Job Number:	J80398		
Model	Intel® Contring® Advanced N 6220	T-Log Number:	T80759		
wodei.	Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill		
Contact:	Steve Hackett				
Standard:	FCC 15.247	Class:	N/A		

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements - CHAIN A** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

○□□: - 44

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/4/2010 Config. Used: 1 Config Change: none Test Engineer: Rafael Varelas Test Location: FT Lab #4 Host Unit Voltage 120V/60Hz

Summary of Results - Chain A

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 42 mW 802.11n 20MHz: 45 mW 802.11n n40MHz: 44 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 3.9 dBm/MHz 802.11n 20MHz: 3.7 dBm/MHz 802.11n n40MHz: 1.1 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 44 mW 802.11n 20MHz: 46 mW 802.11n n40MHz: 40 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 4.0 dBm/MHz 802.11n 20MHz: 3.9 dBm/MHz 802.11n n40MHz: 0.8 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 45 mW 802.11n 20MHz: 44 mW 802.11n n40MHz: 44 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 4.2 dBm/MHz 802.11n 20MHz: 3.5 dBm/MHz 802.11n n40MHz: 1.4 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11a: 17.1 MHz 802.11n 20MHz: 18.1 MHz 802.11n n40MHz: 36.4 MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	9.6dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

	Elliott An AZAS company	EMC Test Data				
	Intel Corporation	Job Number:	J80398			
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759			
Model.		Account Manager:	Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247	Class:	N/A			

General Test Configuration

FILIORE

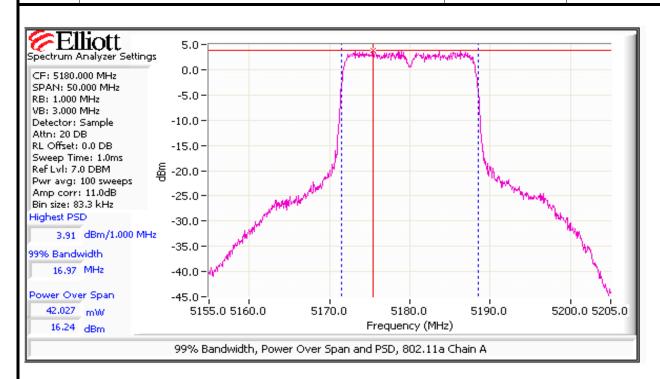
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

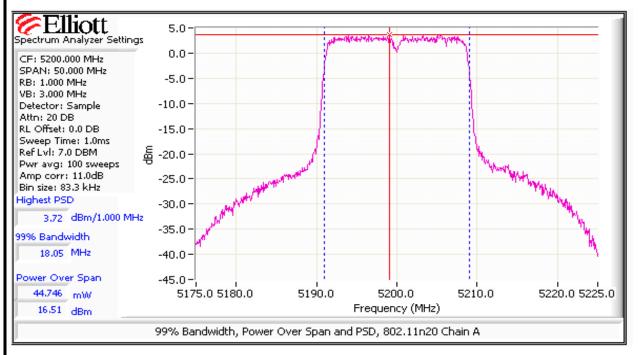
Ambient Conditions:

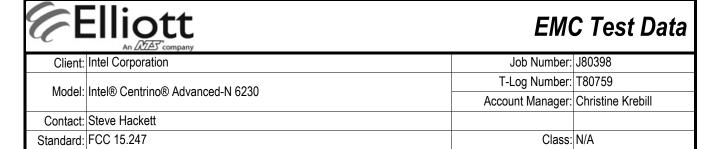
Temperature: 22.4 °C Rel. Humidity: 39 %

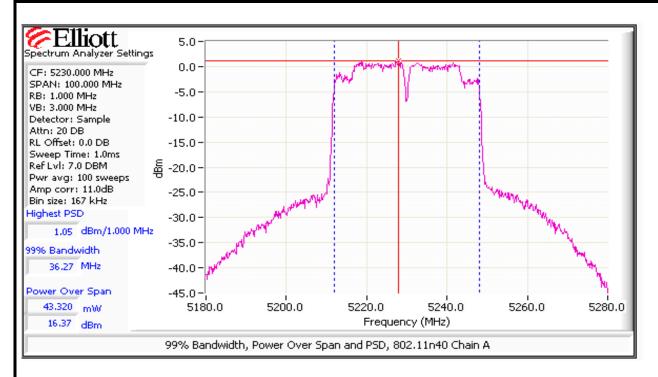
Modifications Made During Testing

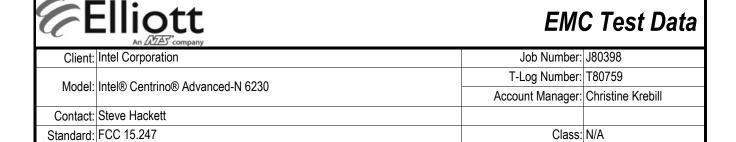
No modifications were made to the EUT during testing

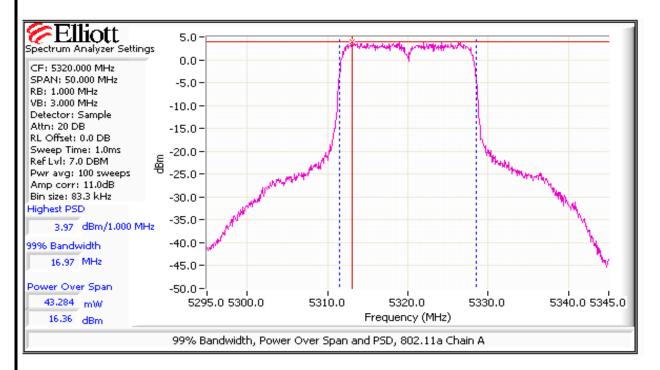

Deviations From The Standard

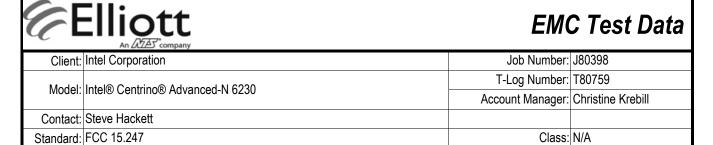

No deviations were made from the requirements of the standard.

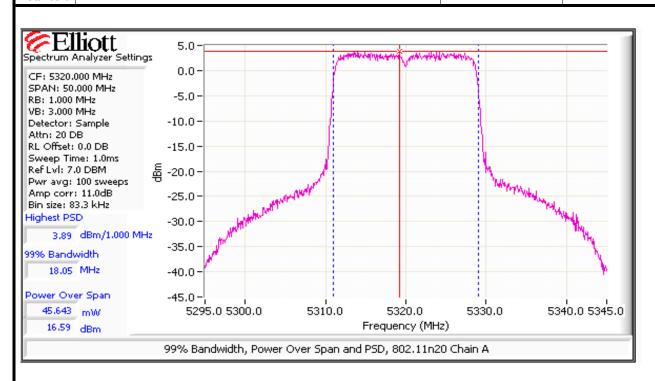

		ott A company						EM	C Test	Data	
Client:	Intel Corpora	ation					,	Job Number:	J80398		
Madal	1-4-10 04-	:	I N COOO				T-l	og Number:	T80759		
Model:	Intel® Centr	ino® Advanc	ea-IN 6230				Accou	ınt Manager:	Christine Kre	ebill	
Contact:	Steve Hacke	ett									
Standard:	FCC 15.247	FCC 15.247						Class:	N/A		
Run #1: Bandwidth, Output Power and Power Spectral Density - Single Chain Systems											
Note 1:	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power										
Note 1.	averaging on (transmitted signal was continuous) and power integration over 80 MHz (method 1 of DA-02-2138A1).										
Note 2:	Measured using the same analyzer settings used for output power.										
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is										
Note 3:				ected for insta							
Note 5.	`			oower divided	•	sured 99% b	andwidth) by	more than 3	dB by the am	ount that	
				rage by more							
Note 4:	99% Bandw	idth measure	ed in accorda	ance with RSS	GEN - RB	> 1% of spar	and VB >=3	xRB			
Single Chai	in Operation	-			FIDD	05.5		40.0	ID.		
		a Gain (dBi):	3.6		EIRP:	95.5			dBm		
Frequency	Software	Band	lwidth	Output Po	wer¹dBm	Power		SD ² dBm/Ml		Result	
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	rtoodit	
802.11a											
5180	24.5	32.8	17.0	16.2	17.0	0.042	3.9	4.0	6.4	Pass	
5200	24.5	33.2	17.0	16.2	17.0	0.042	3.7	4.0	6.4	Pass	
5240	24.5	33.7	17.0	15.9	17.0	0.039	3.4	4.0	6.4	Pass	
802.11n 20l											
5180	24.0	30.8	18.1	15.9	17.0	0.039	3.0	4.0	6.4	Pass	
5200	25.0	36.2	18.1	16.5	17.0	0.045	3.7	4.0	6.4	Pass	
5240	25.5	36.6	18.1	16.4	17.0	0.044	3.6	4.0	6.4	Pass	
802.11n 40l									-		
5190	21.0	39.3	36.3	12.8	17.0	0.019	-2.5	4.0	6.4	Pass	
5230	26.0	52.0	36.3	16.4	17.0	0.044	1.1	4.0	6.4	Pass	

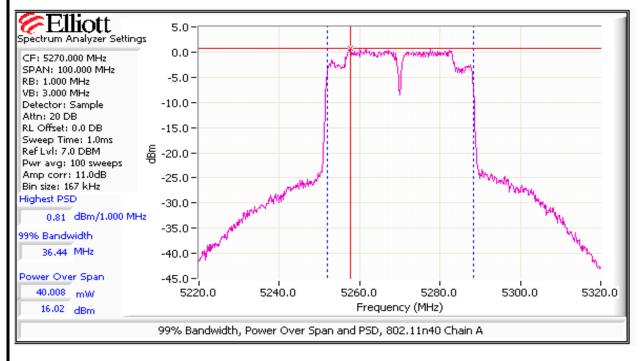


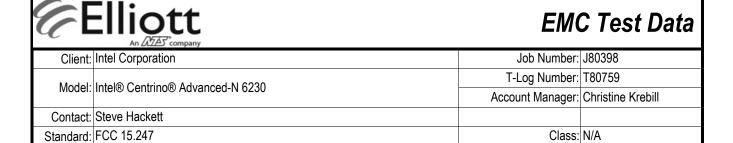

	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

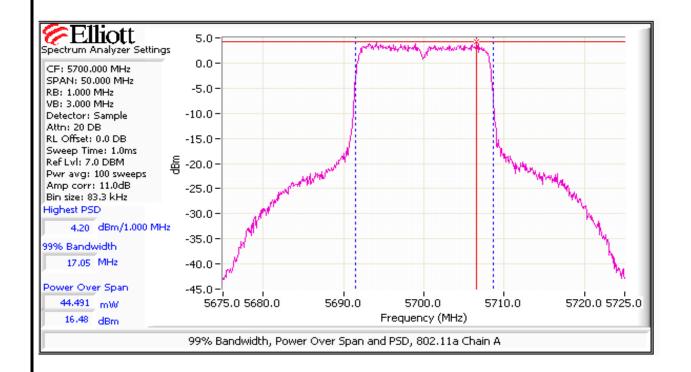


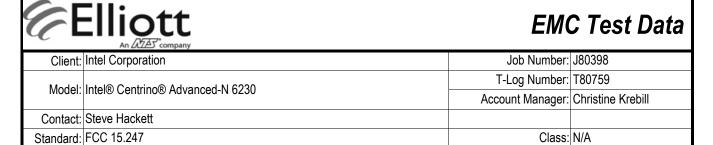


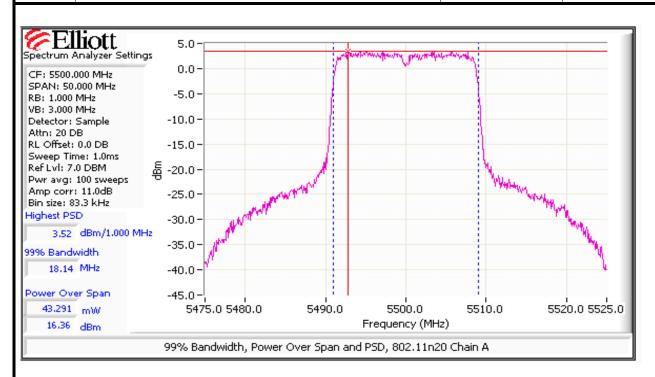


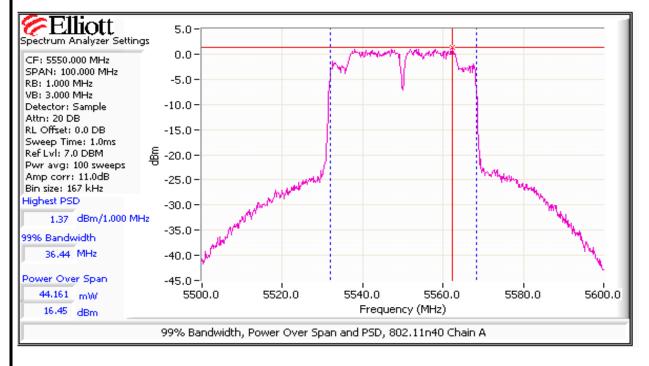

Single Chain Operation, 5250-5350 MHz Band


	Antenna	a Gain (dBi):	3.7		EIRP:	102.3	mW	20.1	dBm		
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/Ml	Нz	Result	
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result	
802.11a							•				
5260	25.0	32.5	17.0	15.9	24.0	0.039	3.6	11.0	11.0	Pass	
5300	25.5	35.3	17.0	16.3	24.0	0.043	4.0	11.0	11.0	Pass	
5320	25.5	34.4	17.0	16.4	24.0	0.044	4.0	11.0	11.0	Pass	
802.11n 20N	ЛHz										
5260	25.5	35.8	18.1	16.1	24.0	0.041	3.4	11.0	11.0	Pass	
5300	26.0	36.8	18.1	16.6	24.0	0.046	3.7	11.0	11.0	Pass	
5320	26.0	34.9	18.1	16.6	24.0	0.046	3.9	11.0	11.0	Pass	
802.11n 40N	802.11n 40MHz										
5270	26.5	62.3	36.4	16.0	24.0	0.040	0.8	11.0	11.0	Pass	
5310	20.5	39.3	36.1	11.5	24.0	0.014	-3.8	11.0	11.0	Pass	







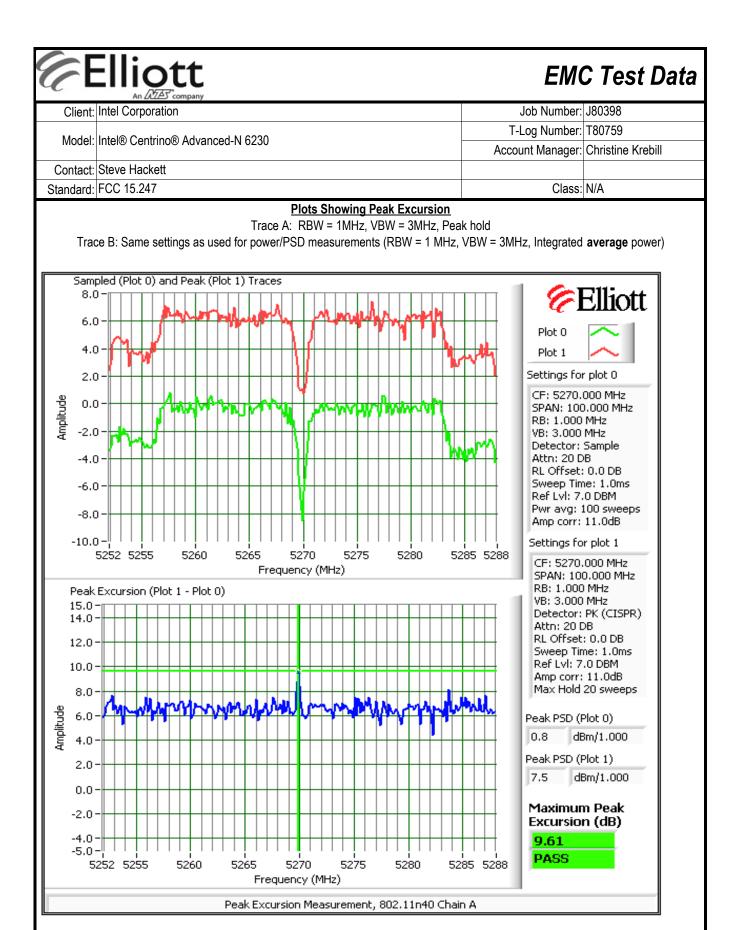

Single Chain Operation, 5470- 5725 MHz Band

Ů	Antenna	a Gain (dBi):	4.8		EIRP:	134.9	mW	21.3	dBm	
Frequency	Software	Band	lwidth	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/Mł	Нz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Nesuit
802.11a										
5500	27.5	33.5	17.0	16.4	24.0	0.044	3.9	11.0	11.0	Pass
5580	28.0	35.6	17.0	16.5	24.0	0.045	3.8	11.0	11.0	Pass
5700	28.5	35.0	17.1	16.5	24.0	0.045	4.2	11.0	11.0	Pass
802.11n 20l	ИHz									
5500	27.5	36.0	18.1	16.4	24.0	0.044	3.5	11.0	11.0	Pass
5580	28.0	36.6	18.1	16.4	24.0	0.044	3.5	11.0	11.0	Pass
5700	28.5	39.1	18.1	16.3	24.0	0.043	3.4	11.0	11.0	Pass
802.11n 40l	ИHz									
5510	27.5	53.7	36.3	15.5	24.0	0.035	0.3	11.0	11.0	Pass
5550	29.0	60.0	36.4	16.5	24.0	0.045	1.4	11.0	11.0	Pass
5670	29.5	67.8	36.4	16.4	24.0	0.044	1.2	11.0	11.0	Pass

	An 2/22 company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
wodei.	IIILEI® Celitiiilo® Auvaliceu-in 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2: Peak Excursion Measurement

802.11a: Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Freq Peak Excursion(dB)		Freq	Peak Excursion(dB)	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	7.8	13.0	5260	7.7	13.0	5500	7.9	13.0
5200	8.0	13.0	5300	8.1	13.0	5580	8.0	13.0
5240	8.3	13.0	5320	7.8	13.0	5700	7.5	13.0

n 20MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	9.1	13.0	5260	9.0	13.0	5500	7.9	13.0
5200	7.9	13.0	5300	8.5	13.0	5580	8.1	13.0
5240	8.2	13.0	5320	8.6	13.0	5700	8.5	13.0

n 40MHz: Device meets the requirement for the peak excursion

	Freq	Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
I	(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
	5190	8.4	13.0	5270	9.6	13.0	5510	8.4	13.0
Γ	5230	8.2	13.0	5310	9.4	13.0	5550	8.0	13.0
							5670	8.7	13.0

Page 13 of 59

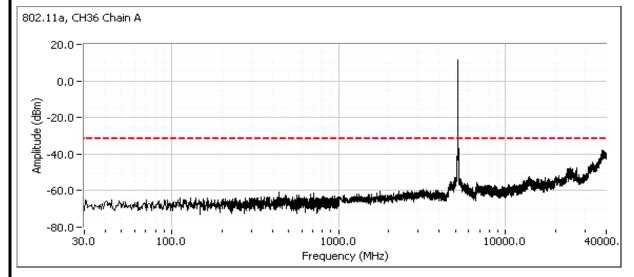
	An ZAZES company					
Client:	Intel Corporation	Job Number:	J80398			
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759			
woder.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	nt Manager: Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247	Class:	N/A			

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

802.11a

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

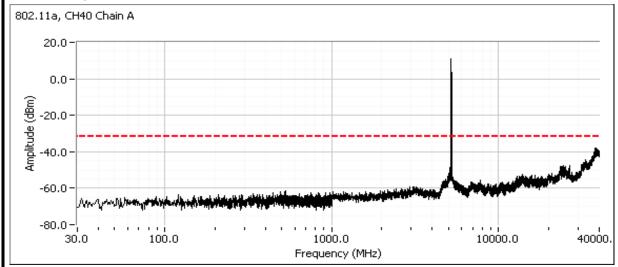
Spurious Limit: -27.0 dBm/MHz eirp

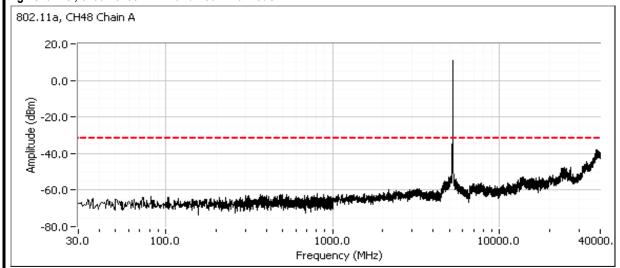

Limit Used On Plots Note 1: -31.8 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

-11.8 dBm/MHz Peak Limit (RB=VB=1MHz)

Plots Showing Out-Of-Band - 802.11a Mode Emissions (RBW=VBW=1MHz)

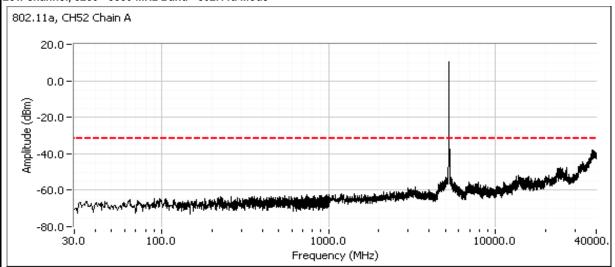
Low channel, 5150 - 5250 MHz Band - 802.11a Mode

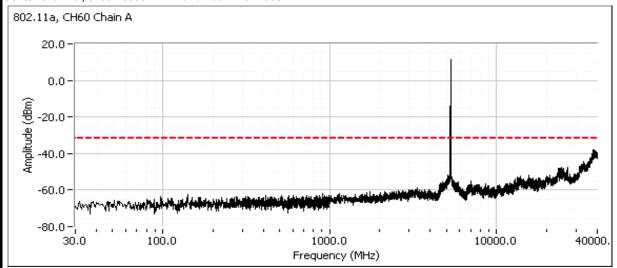

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

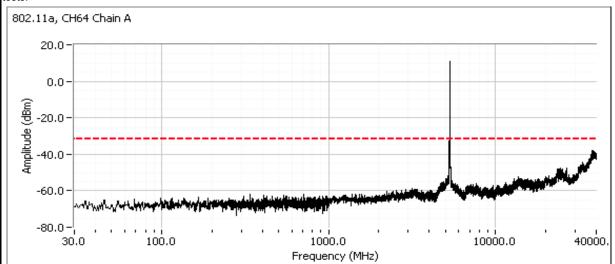
Center channel, 5150 - 5250 MHz Band - 802.11a Mode


High channel, 5150 - 5250 MHz Band - 802.11a Mode

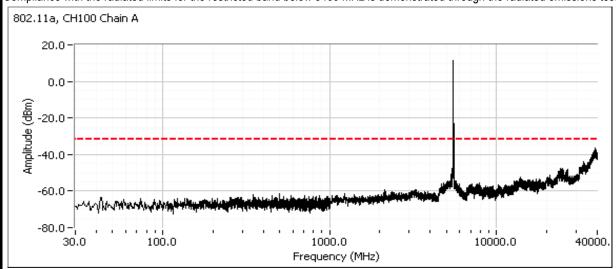


	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11a Mode

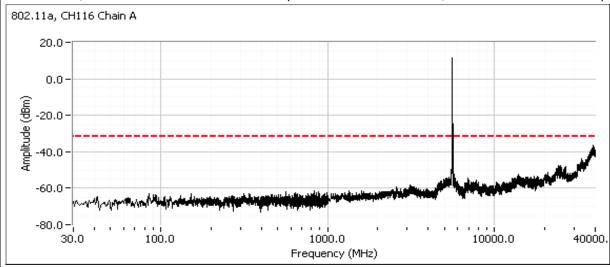

Center channel, 5250 - 5350 MHz Band - 802.11a Mode

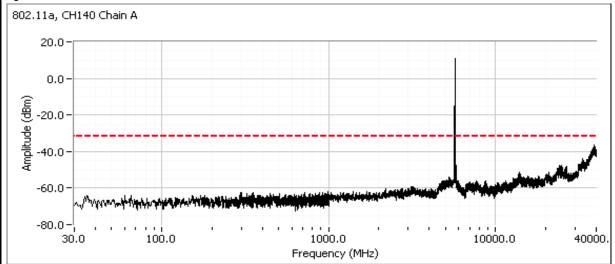
	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


High channel, 5250 - 5350 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11a Mode


Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.



	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11a Mode (20Mhz channel use 5580 MHz, 40MHz channel use 5550 MHz)

High channel, 5470 - 5725 MHz Band - 802.11a Mode

	An DCE company					
Client:	Intel Corporation	Job Number:	J80398			
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759			
wodei.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill			
Contact:	Steve Hackett					
Standard:	FCC 15.247	Class:	N/A			

802.11n Modes - n 20MHz

Note 2:

MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained with all chains transmitting simultaneously and connected to the analyzer via a combiner. Unused ports of the combiner were terminated in the appropriate load (50 ohms).

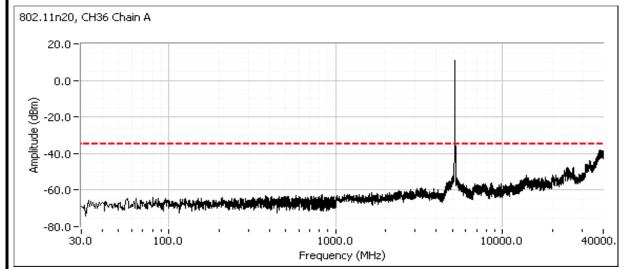
Number of transmit chains: 2

Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp

Limit Used On Plots Note 1: -34.8 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

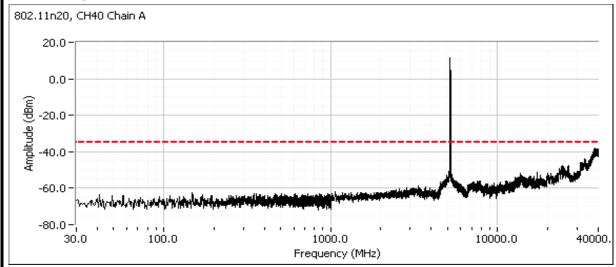
-14.8 dBm/MHz Peak Limit (RB=VB=1MHz)

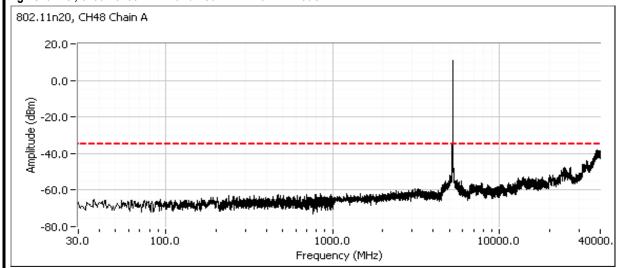

The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.

All spurious signals below 1GHz are measured during the radiated emissions test.

Plots Showing Out-Of-Band - 802.11n - 20MHz Mode Emissions (RBW=VBW=1MHz)

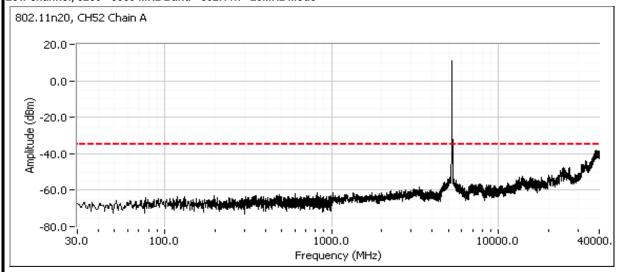
Low channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode


Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



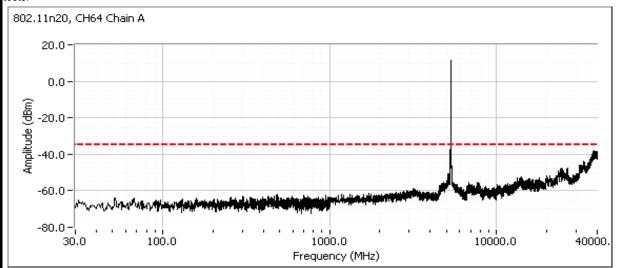
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Center channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

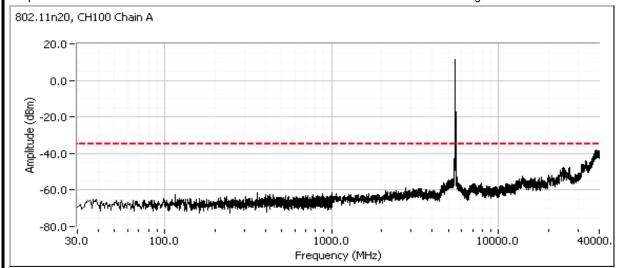

High channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIILENS CETILITION Advanced-IN 6250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

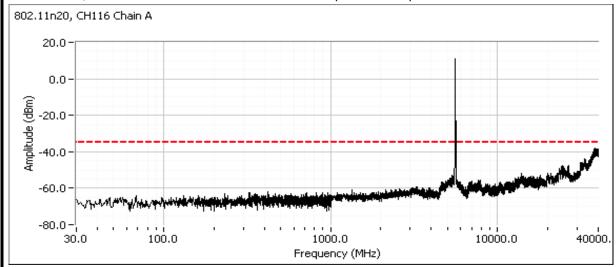

Center channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

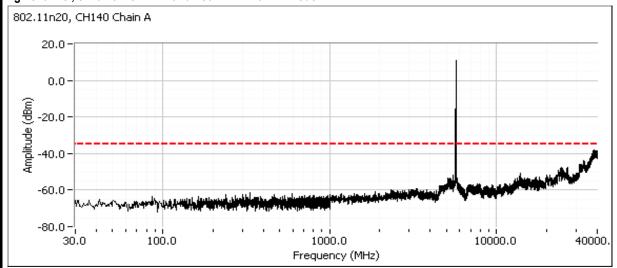
	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J80398
Madalı	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
woder.	IIILENS CETILITION Advanced-IN 6250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


High channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

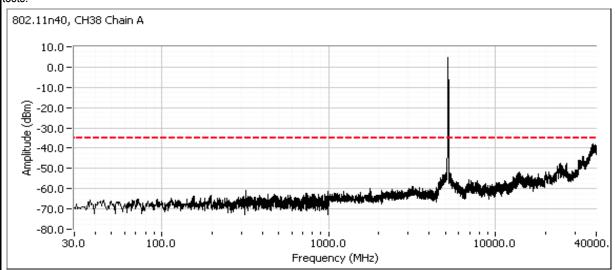

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.



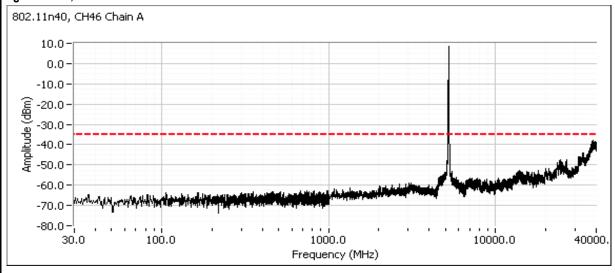
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Center channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode (use 5580 MHz)

High channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode



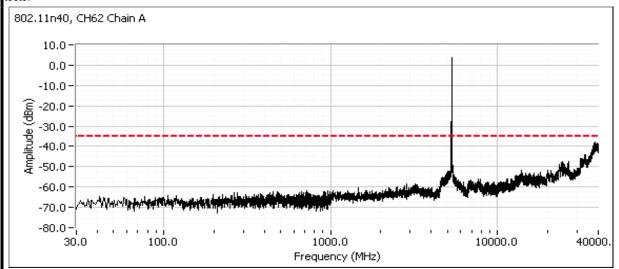
	Elliott EMC Test D		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
wouei.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Plots Showing Out-Of-Band - 802.11n - 40MHz Mode Emissions (RBW=VBW=1MHz)

Low channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

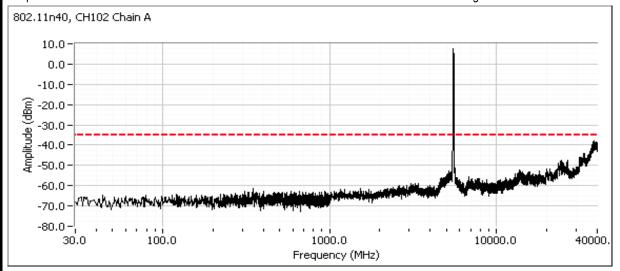
High channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

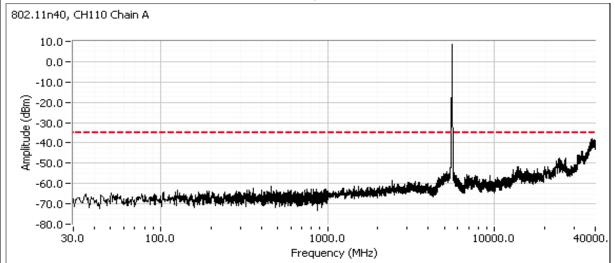

	All Dell's Company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
wodei.	III(e)® Ceritiii)0® Advanceu-iv 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

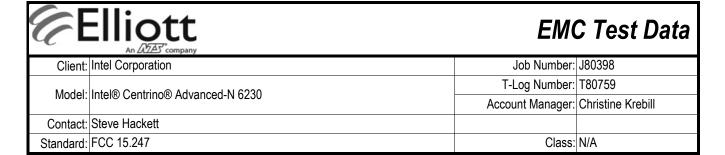
Low channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

High channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

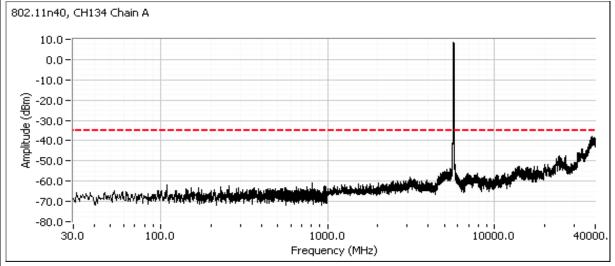
Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.




	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J80398
Madalı	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
woder.	IIILENS CETILITION Advanced-IN 6250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Low channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

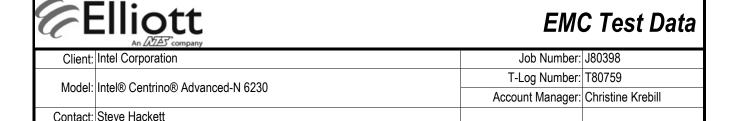


Center channel, 5470-5725MHz Band - 802.11n 40MHz Mode (20MHz channel use 5580MHz, 40MHz channel use 5550MHz)

High channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

	An ATAS company	EMC Test Data		
Client:	Intel Corporation	Job Number:	J80398	
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759	
Model.	IIILENS CENTINOS Advanced-IN 6230	Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247	Class:	N/A	

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements - Chain B Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions


Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results - Chain B

CII: ~44

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	PASS	802.11a: 39 mW 802.11n 20MHz: 40 mW 802.11n n40MHz: 38 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	PASS	802.11a: 3.6 dBm/MHz 802.11n 20MHz: 3.4 dBm/MHz 802.11n n40MHz: 0.6 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	PASS	802.11a: 39 mW 802.11n 20MHz: 37 mW 802.11n n40MHz: 33 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	PASS	802.11a: 3.4 dBm/MHz 802.11n 20MHz: 2.8 dBm/MHz 802.11n n40MHz: 0.1 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	PASS	802.11a: 37 mW 802.11n 20MHz: 37 mW 802.11n n40MHz: 38 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	PASS	802.11a: 3.1 dBm/MHz 802.11n 20MHz: 3.1 dBm/MHz 802.11n n40MHz: 0.5 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11a: 17.1 MHz 802.11n 20MHz: 18.1 MHz 802.11n n40MHz: 36.4 MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	PASS	9.9dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	PASS	All emissions below the -27dBm/MHz limit

General Test Configuration

Standard: FCC 15.247

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

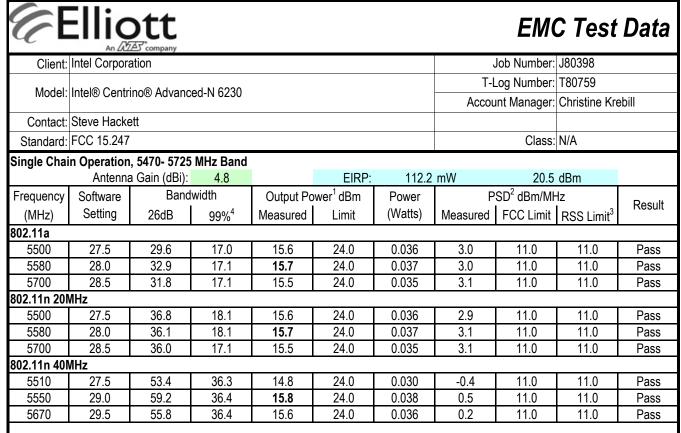
Ambient Conditions: Temperature: 18-23 °C

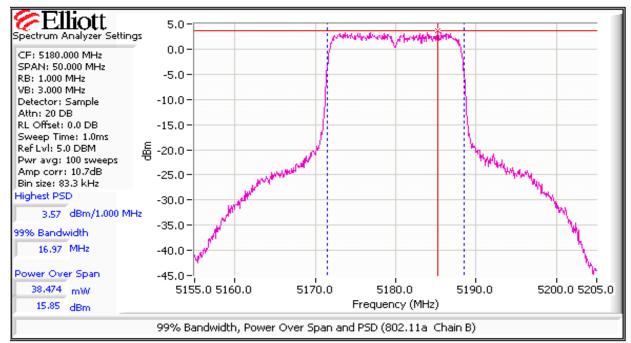
Rel. Humidity: 40-50 %

Modifications Made During Testing

No modifications were made to the EUT during testing

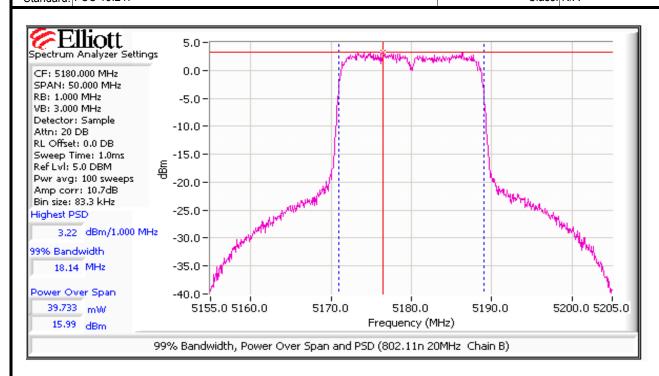
Deviations From The Standard

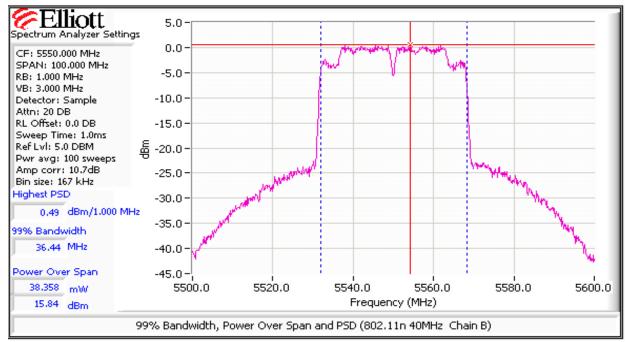

No deviations were made from the requirements of the standard.


Date of Test: 10/4/2010 Config. Used: Test Location: Lab #4 Config Change: -

Test Engineer: John Caizzi Test Engineer: Mehran Birgani Test Engineer: Joseph Cadigal Test Engineer: Rafael Varelas Host Unit Voltage 120V/60Hz

Class: N/A


	Elliç	ott						EMO	C Test	Data
	Intel Corpora	△ company						lob Number:	J80398	
0.10111.								og Number:		
Model:	Intel® Centr	ino® Advano	ed-N 6230						Christine Kre	ebill
Contact:	Steve Hacke	ett								
Standard:	FCC 15.247							Class:	N/A	
Run #1: Baı	ndwidth, Ou	tput Power	and Power	Spectral Den	sity - Single	Chain Syst	tems		J.	
Note 1:	Output power averaging or	er measured n (transmitte	using a spec d signal was	ctrum analyze continuous) a od 1 of DA-02	r (see plots band power in	elow). RBW	/=1MHz, VB=			
Note 2:				ettings used f						
Note 3:	10dBm/MHz PSD (calcula the measure	The limits a ated from the ed value exce	are also corre measured peeds the ave	5250 MHz bar ected for insta bower divided rage by more	inces where by the meas than 3dB.	the highest i sured 99% b	measured val andwidth) by	ue of the PS more than 3	D exceeds th	e average
Note 4:	99% Bandw	idth measure	ed in accorda	ince with RSS	GEN - RB >	1% of spar	n and VB >=3	xRB		
Single Chai	in Operation Antenna	, 5150-5250 a Gain (dBi):	MHz Band 3.6		EIRP:	89.1	mW		dBm	
Frequency	Software	Band	lwidth	Output Po	wer ¹ dBm	Power	P	SD ² dBm/Ml	łz	Resul
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Resui
302.11a			0070						THOO EITHE	
5180	24.0	32.5	17.0	15.9	17.0	0.039	3.6	4.0	6.4	Pass
5200	24.0	31.4	17.0	15.8	17.0	0.038	3.2	4.0	6.4	Pass
5240	24.5	32.4	17.0	15.7	17.0	0.037	3.4	4.0	6.4	Pass
302.11n 20 N	ИНz		•	•	•					
5180	24.5	27.9	18.1	16.0	17.0	0.040	3.2	4.0	6.4	Pass
5200	24.5	36.5	18.1	16.0	17.0	0.040	3.4	4.0	6.4	Pass
5240	25.0	35.6	18.1	15.9	17.0	0.039	3.2	4.0	6.4	Pass
302.11n 40l			T	1	-					
5190	21.0	39.3	36.3	12.7	17.0	0.019	-2.7	4.0	6.4	Pass
5230	26.0	54.8	36.4	15.8	17.0	0.038	0.6	4.0	6.4	Pass
Single Chai	in Operation Antenna	, 5250-5350 a Gain (dBi):			EIRP:	91.2	mW	19.6	dBm	
Frequency	Software		lwidth	Output Po		Power	1			
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)			RSS Limit ³	Resul
302.11a	Johns	2000	JJ //0	MCGSGIGG	LIIIII	(1.13110)	MICASAIGA	1 OO LIIIIIL	NOO LIIIII	
5260	24.5	29.4	17.0	15.3	24.0	0.034	2.8	11.0	11.0	Pass
5300	25.0	29.2	17.0	15.4	24.0	0.035	3.1	11.0	11.0	Pass
5320	25.5	23.8	17.0	15.9	24.0	0.039	3.4	11.0	11.0	Pass
02.11n 20l										. 2.00
5260	25.0	34.1	18.1	15.4	24.0	0.035	2.8	11.0	11.0	Pass
5300	25.0	30.9	18.1	15.3	24.0	0.034	2.8	11.0	11.0	Pass
5320	25.5	30.8	18.1	15.7	24.0	0.037	2.8	11.0	11.0	Pass
5270 5310	26.0 22.0	53.2 39.4	36.4 36.1	15.2 12.4	24.0 24.0	0.033 0.017	0.1 -2.4	11.0 11.0	11.0 11.0	Pass Pass



	An 2(22) company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	III(e)® Ceritiii)0® Advanced-ii 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	III(el® Cell(III)0® Advanced-IV 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run #2: Peak Excursion Measurement

802.11a: Device meets the requirement for the peak excursion

Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.6	13.0	5260	8.0	13.0	5500	8.1	13.0
5200	8.2	13.0	5300	8.5	13.0	5580	7.6	13.0
5240	7.7	13.0	5320	8.1	13.0	5700	8.3	13.0

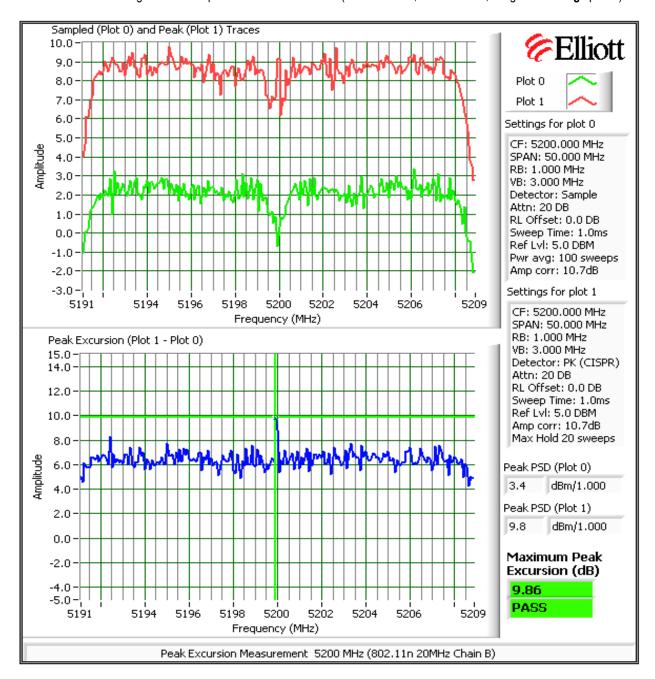
n 20MHz: Device meets the requirement for the peak excursion

Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	7.8	13.0	5260	8.6	13.0	5500	7.9	13.0
5200	9.9	13.0	5300	8.1	13.0	5580	7.8	13.0
5240	9.3	13.0	5320	7.9	13.0	5700	8.3	13.0

n 40MHz: Device meets the requirement for the peak excursion

Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)		Freq	Peak Excursion(dB)	
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190	9.1	13.0	5270	8.1	13.0	5510	8.7	13.0
5230	9.0	13.0	5310	8.3	13.0	5550	8.5	13.0
						5670	8.8	13.0

T80759 Rainbow Peak 2x2 UNII RF Port Chain B Page 32 of 59



	An 2022 company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

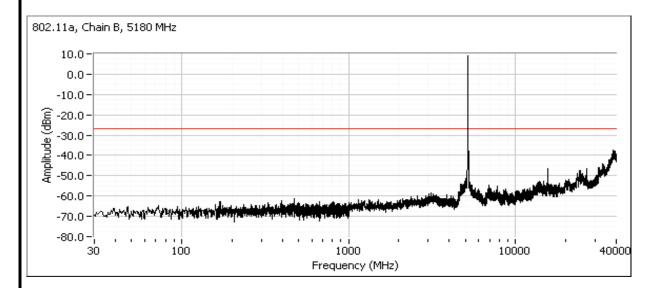
	An A/A' company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

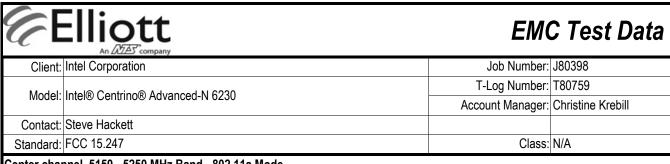
Run #3: Out Of Band Spurious Emissions - Antenna Conducted

802.11a

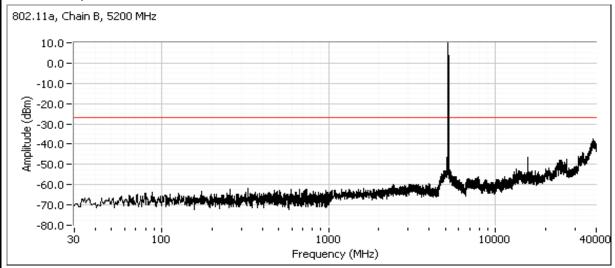
Maximum Antenna Gain: 4.8 dBi (worst case for all 3 bands)

Spurious Limit: -27.0 dBm/MHz eirp


Limit Used On Plots Note 1: -31.8 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)


-11.8 dBm/MHz Peak Limit (RB=VB=1MHz)

Plots Showing Out-Of-Band - 802.11a Mode Emissions (RBW=VBW=1MHz)

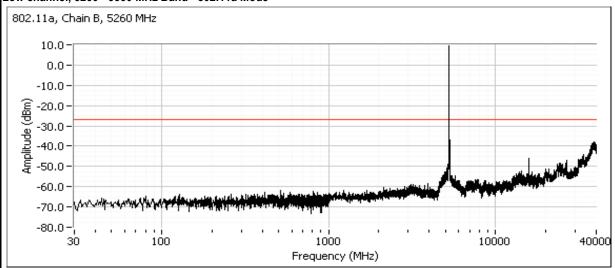

Low channel, 5150 - 5250 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



Center channel, 5150 - 5250 MHz Band - 802.11a Mode

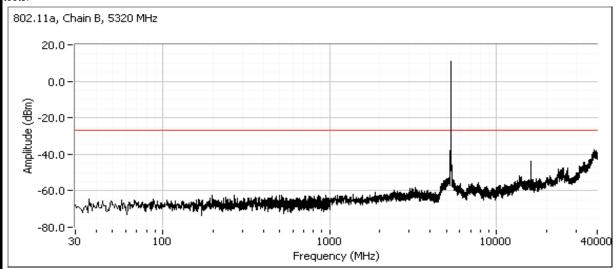
High channel, 5150 - 5250 MHz Band - 802.11a Mode



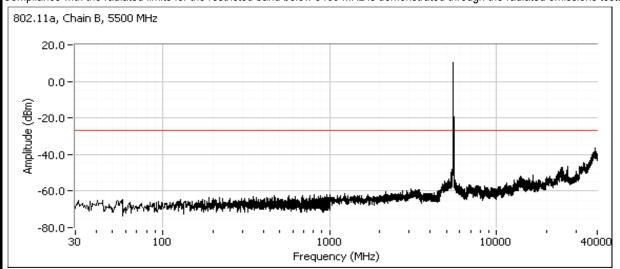

Page 36 of 59

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Low channel, 5250 - 5350 MHz Band - 802.11a Mode

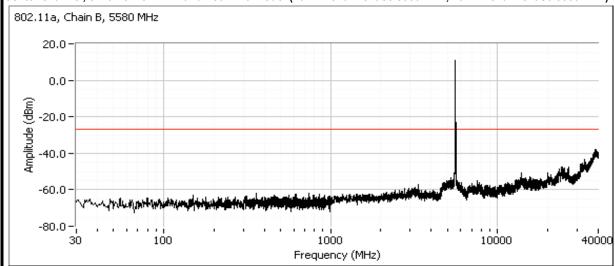

Center channel, 5250 - 5350 MHz Band - 802.11a Mode

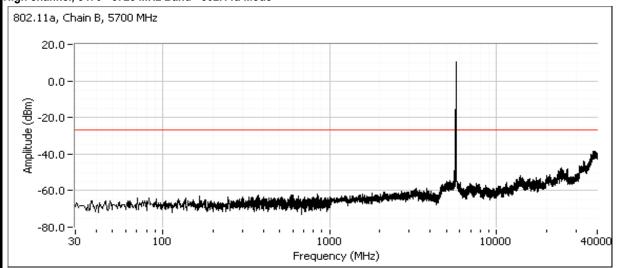
	An A/A' company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


High channel, 5250 - 5350 MHz Band - 802.11a Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Low channel, 5470 - 5725 MHz Band - 802.11a Mode

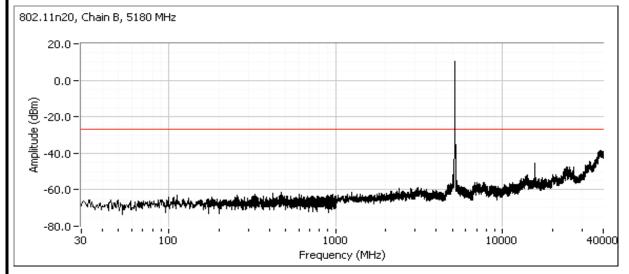

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

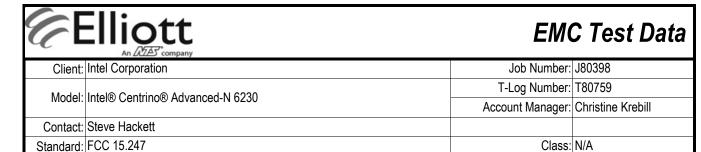


	An ACE company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
Model.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

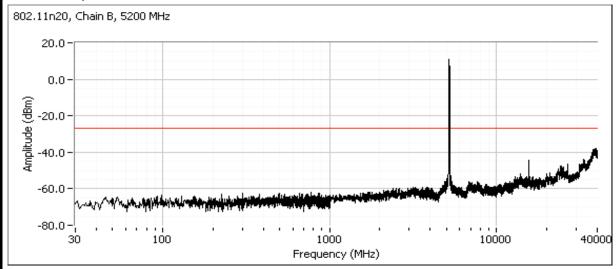
Center channel, 5470 - 5725 MHz Band - 802.11a Mode (20MHz channel use 5580 MHz, 40MHz channel use 5550 MHz)

High channel, 5470 - 5725 MHz Band - 802.11a Mode

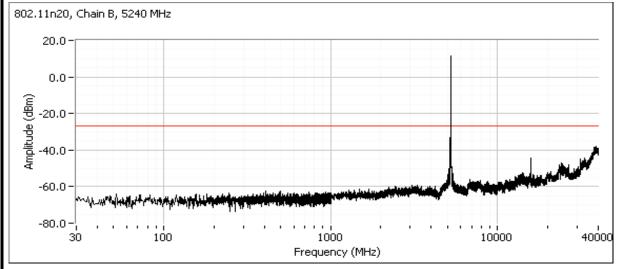



	Elliott An WAS company			ЕМО	C Test Data
	Intel Corporation			Job Number:	J80398
Madalı	Intol® Contring® Advanced N 6220			T-Log Number:	T80759
Model.	Intel® Centrino® Advanced-N 6230			Account Manager:	Christine Krebill
Contact:	Steve Hackett				
Standard:	FCC 15.247			Class:	N/A
802.11n Mo	des - n 20MHz Number of transmit chains: Maximum Antenna Gain: Spurious Limit: Limit Used On Plots Note 1:	2 4.8 dBi -27.0 dBm/MHz e -34.8 dBm/MHz -14.8 dBm/MHz	eirp Average Lin	for all 3 bands) nit (RB=1MHz, VB=10Hz) RB=VB=1MHz)	
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.				
Note 2:	All spurious signals below 1GHz are m	easured during the radi	ated emissior	ns test.	

Plots Showing Out-Of-Band - 802.11n - 20MHz Mode Emissions (RBW=VBW=1MHz)

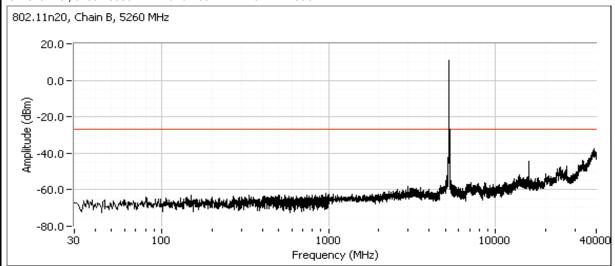

Low channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

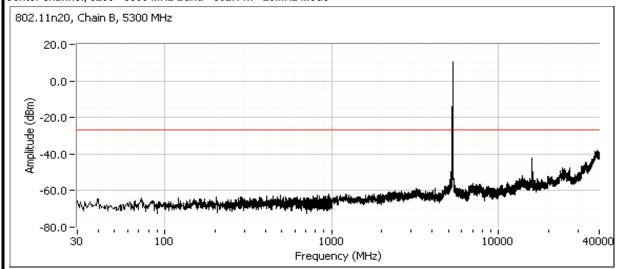


Center channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

High channel, 5150 - 5250 MHz Band - 802.11n - 20MHz Mode

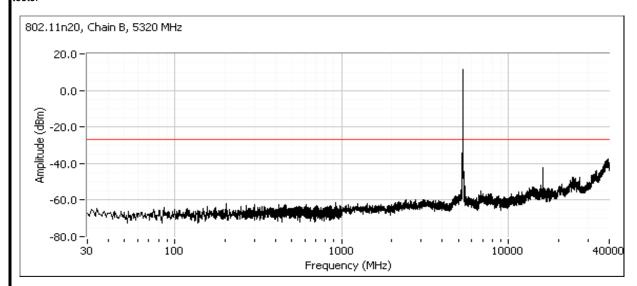


Page 40 of 59



	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

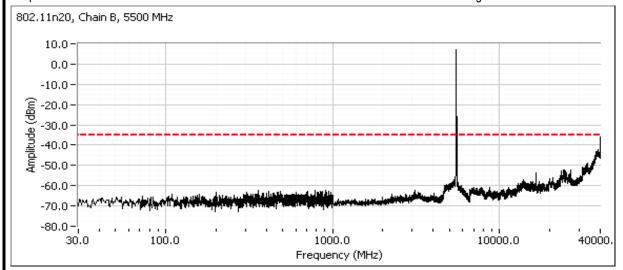
Low channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

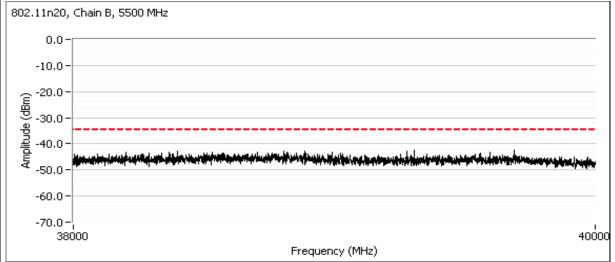

Center channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

	An DOZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

High channel, 5250 - 5350 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

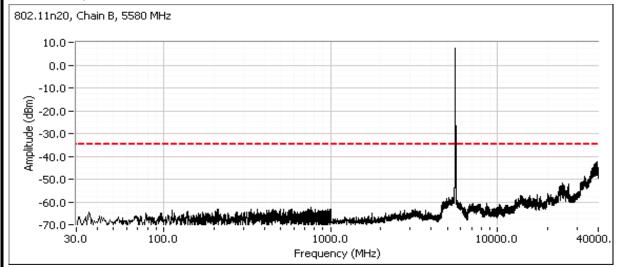


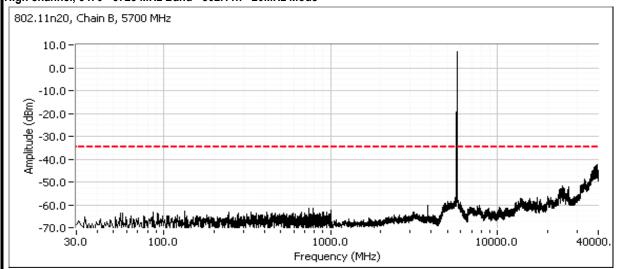


	An (A72) company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
woder.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Low channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.

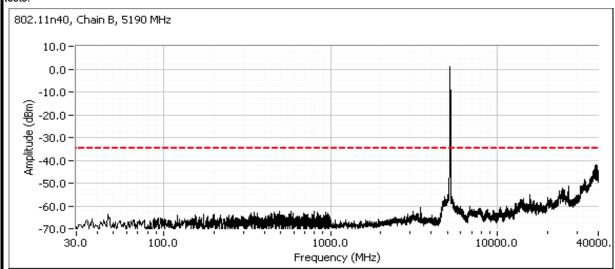




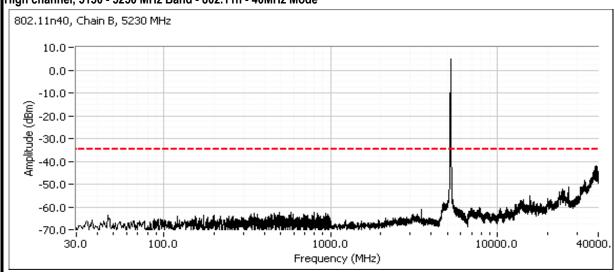
	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

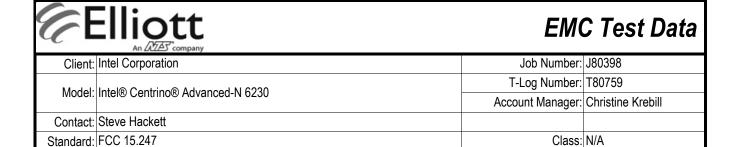
Center channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

High channel, 5470 - 5725 MHz Band - 802.11n - 20MHz Mode

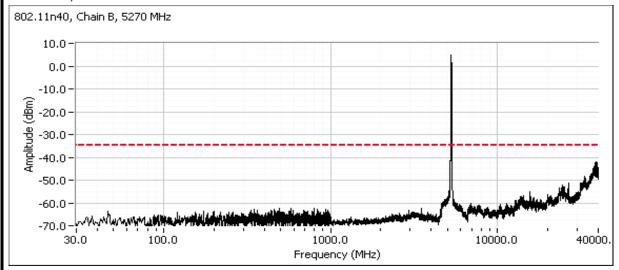

EI	liott An MAS company
----	----------------------

	An DOZED company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

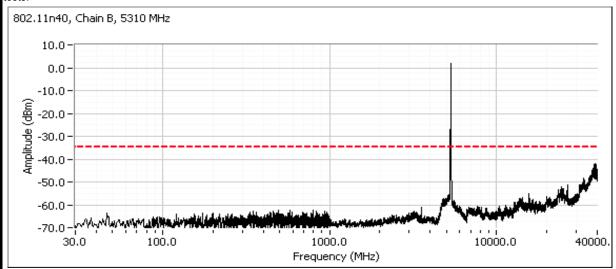

Plots Showing Out-Of-Band - 802.11n - 40MHz Mode Emissions (RBW=VBW=1MHz)


Low channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.



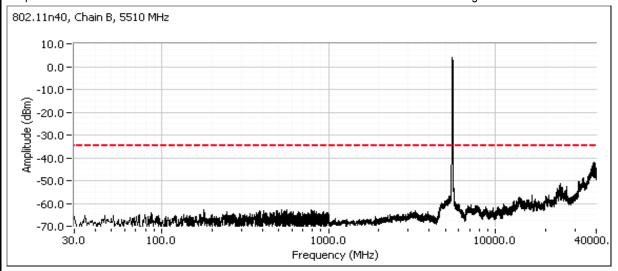
High channel, 5150 - 5250 MHz Band - 802.11n - 40MHz Mode

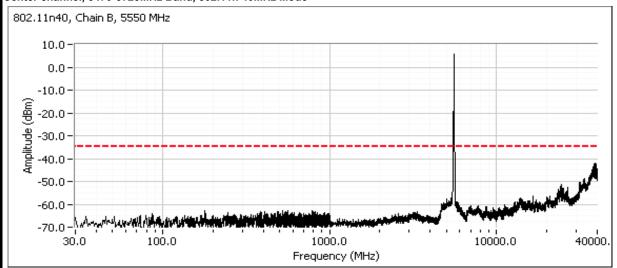


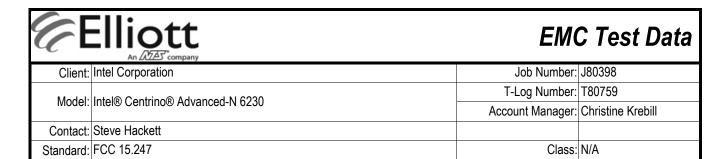
Low channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

High channel, 5250 - 5350 MHz Band - 802.11n - 40MHz Mode

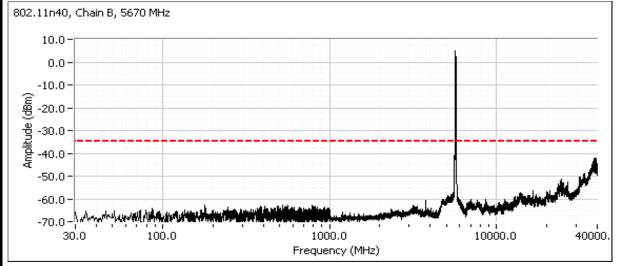
Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.




	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A


Low channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.



Center channel, 5470-5725MHz Band, 802.11n 40MHz Mode

High channel, 5470 - 5725 MHz Band - 802.11n - 40MHz Mode

	An \(\tilde{\mathcal{L}}\	LIVI	J Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Contrine® Advanced N 6220	T-Log Number:	T80759
wodei.	Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements - MIMO Mode (Chain A+B) Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Flliott

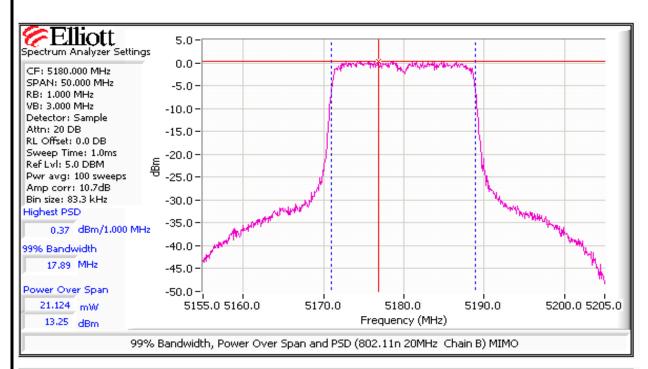
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

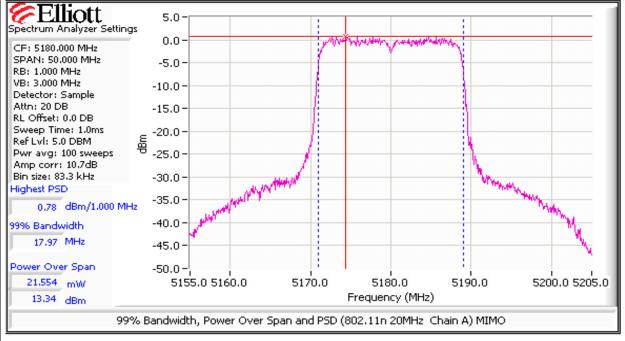
Date of Test: 10/5/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Host Unit Voltage 120V/60Hz Test Location: FT Lab #4

Summary of Results

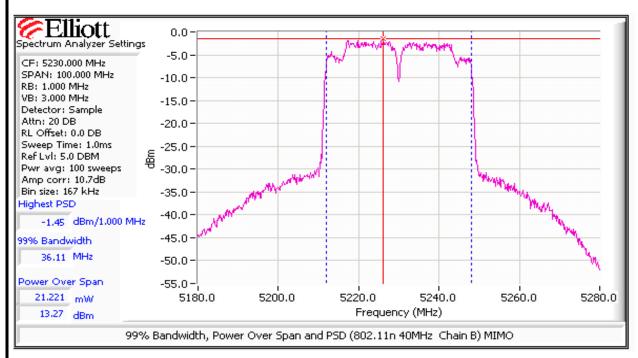
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 42.8 mW
,	1 0W01, 0 100 02001VII 12	10.107(a) (1), (2)	1 433	802.11n n40MHz: 43.3 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 3.6 dBm/MHz
,	1 05, 0100 0200WHZ	10.107(a) (1), (2)	1 433	802.11n n40MHz: 1.5 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 39.9 mW
'	1 0W01, 0200 00001VII 12	10.401(a) (1), (2)	1 433	802.11n n40MHz: 36 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 3.4 dBm/MHz
'	1 0B, 0200 0000Wi12	10.401(a) (1), (2)	1 433	802.11n n40MHz: 0.4 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 39.5 mW
'			1 433	802.11n n40MHz: 41.8 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 3.6 dBm/MHz
'	1 0B, 0470 0720W112		1 433	802.11n n40MHz: 1.2 dBm/MHz
1	26dB Bandwidth	15.407	_	> 20MHz for all modes (refer to
'	200B Buildwidtii	(Information only)		single chain data)
1	99% Bandwidth	RSS 210	N/A	Refer to single chain data
'	33 % Banawidin	(Information only)	IN//A	Trefer to single origin data
2	Peak Excursion Envelope	15.407(a) (6)		Refer to single chain data
	·	13dB		Trois to single origin data
3	Antenna Conducted - Out of Band	15.407(b)		Refer to single chain data
3	Spurious	-27dBm/MHz		There is single chair data

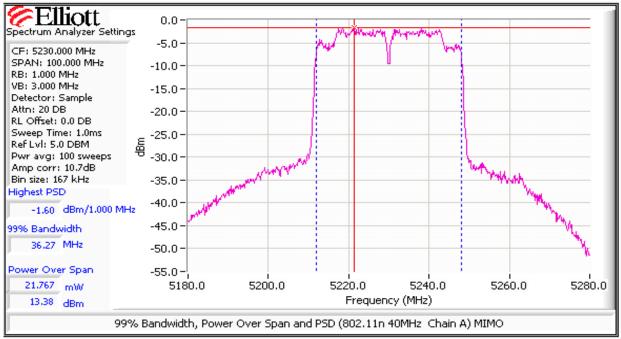
General Test Configuration

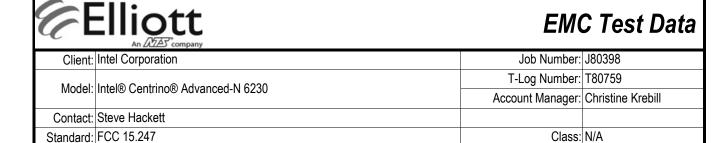

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.


Client: Intel Corporation Job Number: J80398 Model: Intel® Centrino® Advanced-N 6230 T-Log Number: T80759 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Note 1: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chailinear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain.		Elliott An Wild company	EIVIC	C Test Data
Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Note 1: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount if the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chail inear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	Client:	Intel Corporation	Job Number:	J80398
Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing Io modifications were made to the EUT during testing Deviations From The Standard Io deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213) Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain inear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	Model:	Intel® Centrino® Advanced-N 6230		
Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing Ito modifications were made to the EUT during testing Deviations From The Standard Ito deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Note 1: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chail inear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each			Account Manager:	Christine Krebill
Ambient Conditions: Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing Ito modifications were made to the EUT during testing Deviations From The Standard Ito deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Uutput power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chail inear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each			Class.	N/Δ
Temperature: 22.4 °C Rel. Humidity: 38 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems Note 1: Output power measured using a peak power meter Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213) Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chail linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each			Olass.	IN/A
Note 1: Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213). Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	Ambient	Temperature: 22.4 °C		
Note 1: Output power measured using a peak power meter Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	No modifica Deviation No deviation	is From The Standard s were made from the requirements of the standard.		
Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over bandwidth > EBW (method 1 of DA-02-213 Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chair linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each				
For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each		Output power measured using a spectrum analyzer (see plots below). RBV		
Note 3: 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the aver PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount the measured value exceeds the average by more than 3dB. Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	Note 2:	Measured using the same analyzer settings used for output power.		
For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chain linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each		10dBm/MHz. The limits are also corrected for instances where the highest PSD (calculated from the measured power divided by the measured 99% b the measured value exceeds the average by more than 3dB.	measured value of the PS pandwidth) by more than 30	D exceeds the average
linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determ the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each	Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span	n and VB >=3xRB	f the individual chains /
the EIRP is the product of the effective gain and total power.	Note 5:	linear terms). The antenna gain used to determine the EIRP and limits for mode of the MIMO device. If the signals on the non-coherent between the the limits is the highest gain of the individual chains and the EIRP is the sur chain. If the signals are coherent then the effective antenna gain is the sur	PSD/Output power depend transmit chains then the of m of the products of gain a	ds on the operating gain used to determine and power on each

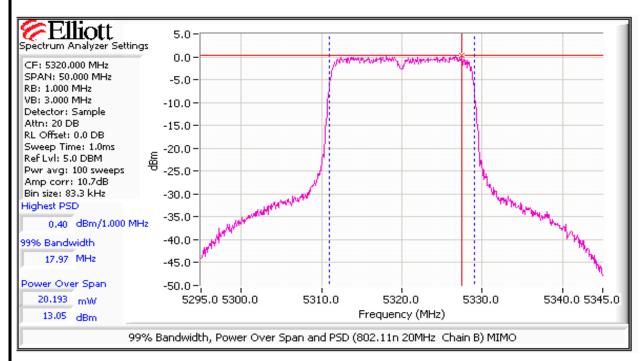
	-111•	4.4								
Ct	Ellic	OTT Zer company						EM	C Test	Data
Client:	Intel Corpor							Job Number:	J80398	
							T-	Log Number:	T80759	
Model:	Intel® Centr	ino® Advanc	ed-N 6230					unt Manager:		ebill
Contact:	Steve Hack	ett								
	FCC 15.247							Class:	N/A	
		50 MHz Band	1							
ininio Bevi	0100 02	OO MITTE BUIL	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	FIRP (mW)	EIRP (dBm)	1
	Antenna	a Gain (dBi):	3.6	3.6	Ondin 0	No	3.6	98.0	19.9	
Power		(- /	0.0	0.0			0.0	00.0		1
Frequency	Software	26dB BW	Measure	d Output Po	wer ¹ dBm	To	otal	L' - '(/ ID - ·)	Max Power	D
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or Fai
20MHz Mod	le									<u> </u>
5180	26.0/25.5	21.3	13.3	13.3		42.8	16.3	17.0		PASS
5200	26.0/25.5	21.2	13.2	13.2		41.8	16.2	17.0	0.043	PASS
5240	26.0/25.5	21.0	13.0	12.9		39.5	16.0	17.0		PASS
40MHz Mod									T	
5190	23.5/23.0	39.0	10.0	10.8		22.0	13.4	17.0	0.043	PASS
5230	27.5/27.0	41.8	13.4	13.3		43.3	16.4	17.0	0.010	PASS
PSD	1 4	I		2						
Frequency	99% ⁴	Total	Р	SD ² dBm/Ml	·-		I PSD		mit	Pass or Fai
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 400 01 1 41
20MHz Mod										
5180	18.0	16.3	0.8	0.4		2.3	3.6	4.0	6.4	PASS
5200	18.0	16.2	0.5	0.6		2.3	3.6	4.0	6.4	PASS
5240	18.0	16.0	0.4	0.5		2.2	3.5	4.0	6.4	PASS
40MHz Mod				•			1	•	1	•
5190	36.3	13.4	-4.9	-4.5		0.7	-1.7	4.0	6.4	PASS
5230	36.3	16.4	-1.6	-1.5		1.4	1.5	4.0	6.4	PASS
Ì										

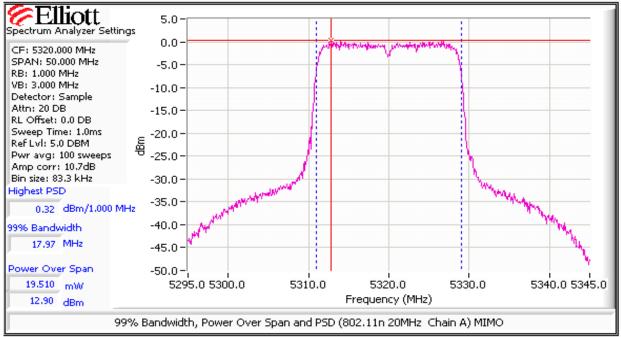

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A



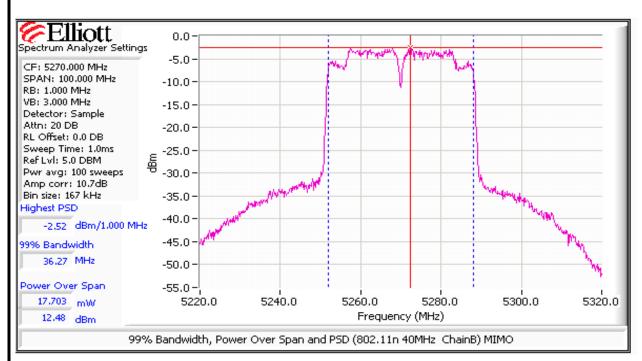


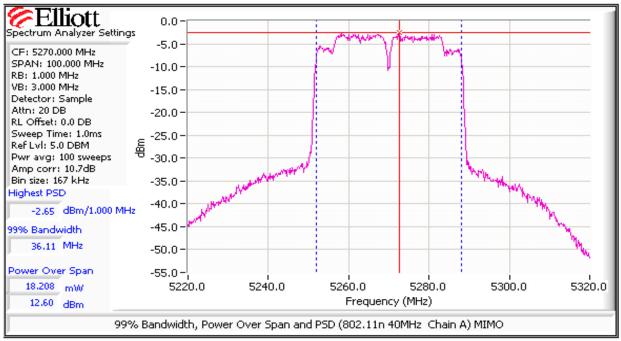
	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A



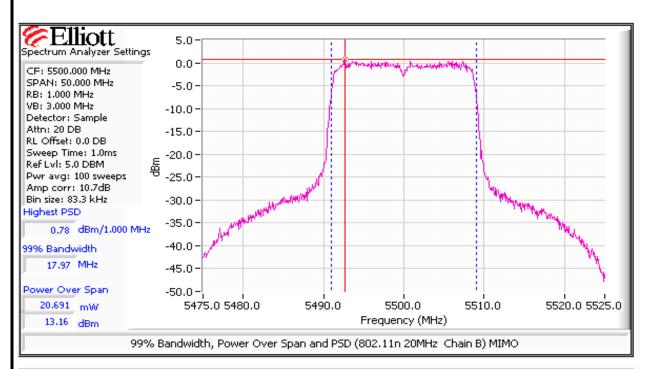


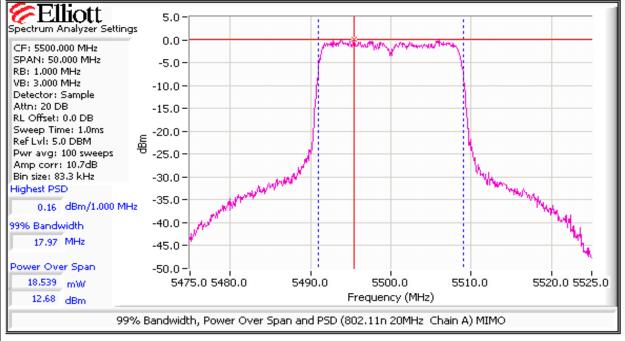
	Ellic	ott As company						EMO	C Test	Data
Client:	Intel Corpora						Job Number:	J80398		
			1 11 0000				T-I	_og Number:	T80759	
Model:	Intel® Centr	ino® Advanc	ed-N 6230				Accol	ınt Manager:	Christine Kr	ebill
Contact:	Steve Hacke	ett								
	FCC 15.247							Class:	N/A	
		50 MHz Band	1							
	0200 000	JO IIII IZ Danie	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵	FIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	3.7	3.7	0.10	No	3.7	93.6	19.7	
Power		(1)	V	· · ·			U	00.0		1
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	otal		Max Power	D .
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dBm)	(W)	Pass or Fai
20MHz Mod	le					<u>!</u>	I.	<u>!</u>		
5260	26.0/25.5	21.3	12.7	12.5		36.4	15.6	24.0		PASS
5300	26.5/26.0	21.3	13.2	12.6		39.1	15.9	24.0	0.040	PASS
5320	26.5/26.5	21.7	12.9	13.1		39.9	16.0	24.0		PASS
40MHz Mod						ı	ı	ı	T	T
5270	27.5/27.0	40.3	12.6	12.5		36.0	15.6	24.0	0.036	PASS
5310	27.0/26.5	39.0	12.4	12.3		34.4	15.4	24.0	0.000	PASS
PSD -	4			2		I			.,	1
Frequency	99%4	Total	•	SD ² dBm/Ml	·-		I PSD		mit	Pass or Fai
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	
20MHz Mod									1	1
5260	18.0	15.6	0.0	-0.1		2.0	3.0	11.0	11.0	PASS
5300	18.0	15.9	0.4	-0.1		2.1	3.2	11.0	11.0	PASS
5320	18.0	16.0	0.3	0.4		2.2	3.4	11.0	11.0	PASS
40MHz Mod		45.0	0.7	0.5		1 44	I 0.4	1440	14.0	DA00
5270	36.3	15.6	-2.7	-2.5		1.1	0.4	11.0	11.0	PASS
5310	36.1	15.4	-2.6	-3.0		1.1	0.2	11.0	11.0	PASS

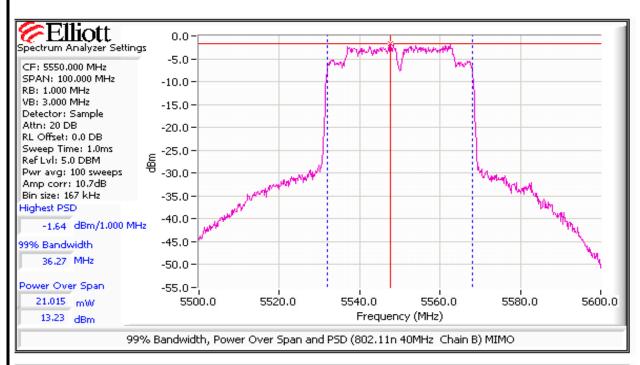

Class: N/A

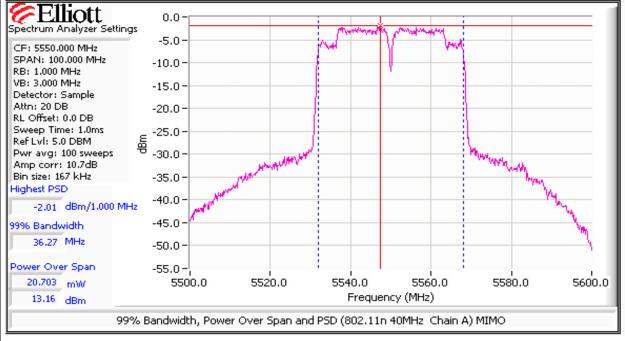


	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A






	Ellic	ott A company						EM	C Test	Data
Client:	Intel Corpora	ation				,	Job Number:	J80398		
							T-	Log Number:	T80759	
Model:	Intel® Centr	ino® Advanc	ed-N 6230					unt Manager:		ebill
Contact:	Steve Hacke	ett .								
	FCC 15.247							Class:	N/A	
								Olass.	IN//A	
MINO Devi	ce - 54/0-5/7	25 MHz Band		01 0	01-1-0	0.11	- " 5	FIDD ()A()	FIDD (ID)	1
	A . (O : ' - (ID')	Chain 1	Chain 2	Chain 3		Effective ⁵	` ,	EIRP (dBm)	
D	Antenna	a Gain (dBi):	4.8	4.8		No	4.8	119.3	20.8	
Power					1		1.1		I	<u> </u>
Frequency	Software	26dB BW		d Output Po			otal	Limit (dBm)	Max Power	Pass or Fai
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	,	(W)	
20MHz Mod					ī		Ť		Ť	T
5500	28.5/28.5	24.0	12.7	13.2		39.5	16.0	24.0		PASS
5580	29.0/29.0	23.1	12.7	13.2		39.5	16.0	24.0	0.040	PASS
5700	29.5/29.0	21.1	12.4	12.4		34.8	15.4	24.0		PASS
40MHz Mod					Ī		T		T	Ť
5510	30.0/29.5	42.3	13.1	13.0		40.4	16.1	24.0		PASS
5550	30.5/30.0	50.2	13.2	13.2		41.8	16.2	24.0	0.042	PASS
5670	30.5/30.0	39.0	12.6	12.8		37.3	15.7	24.0		PASS
PSD	1									T
Frequency	99% ⁴	Total	Р	SD ² dBm/Ml	Ηz	Total	PSD	Li	mit	Pass or Fai
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 455 01 1 41
20MHz Mod	le				•	•	•	•	•	•
5500	18.0	16.0	0.2	0.8		2.2	3.5	11.0	11.0	PASS
5580	18.0	16.0	0.3	0.9		2.3	3.6	11.0	11.0	PASS
5700	18.0	15.4	-0.2	-0.3		1.9	2.8	11.0	11.0	PASS
40MHz Mod										
5510	36.3	16.1	-2.0	-2.0		1.3	1.0	11.0	11.0	PASS
5550	36.3	16.2	-2.0	-1.6		1.3	1.2	11.0	11.0	PASS
5670	36.3	15.7	-2.7	-2.5		1.1	0.4	11.0	11.0	PASS



	An Z(ZE) company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80759
	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Ellio Ellio	tt Frompany	El	MC Test Data
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC 15.247	Class:	В
Immunity Standard(s):	-	Environment:	-

For The

Intel Corporation

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

	Elliott An ATAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
wodei.	III.el® Celitiilo® Auvanceu-N 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bgn and Bluetooth - Transmitter Mode

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC).

For conducted emissions testing the measurement antenna port.

Summary of Results

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band, both chains used in 5GHz bands.

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

		** 12 11 1 2 1 t			• · • · · · · · · · · · · · · · · · · ·		•
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
1	BT 1Mb/s 802.11b	2402MHz 2412MHz	7dBm 16.5dBm	4.4 16.5		FCC 15.247	48.0dBµV/m @ 4824.0MHz (-6.0dB)
2	BT 1Mb/s 802.11b	2480MHz 2462MHz	7dBm 16.5dBm	5.3 16.6	Radiated Emissions	FCC 15.247	48.4dBµV/m @ 2360.0MHz (-5.6dB)
3	BT 1Mb/s 802.11g	2402MHz 2412MHz	7dBm 16.5dBm	4.4 16.3	1- 10 GHz	FCC 15.247	46.0dBµV/m @ 2281.9MHz (-8.0dB)
4	BT 1Mb/s 802.11g	2480MHz 2462MHz	7dBm 16.5dBm	5.3 16.9		FCC 15.247	46.6dBµV/m @ 2360.0MHz (-7.4dB)
WiFi mode for the following runs based on worst case mode from runs 1 through 4							
5	BT 1Mb/s 802.11b	2402MHz 2437MHz	7dBm 16.5dBm	4.3 16.6	Radiated Emissions	FCC 15.247	46.8dBµV/m @ 2282.0MHz (-7.2dB)
6	BT 1Mb/s 802.11b	2440MHz 2412MHz	7dBm 16.5dBm	5.4 16.5	1- 10 GHz	FCC 15.247	49.3dBµV/m @ 2320.0MHz (-4.7dB)
7	BT 1Mb/s 802.11b	2440MHz 2462MHz	7dBm 16.5dBm	5.4 16.6	Radiated Emissions	FCC 15.247	47.8dBµV/m @ 2320.0MHz (-6.2dB)
8	BT 1Mb/s 802.11b	2480MHz 2437MHz	7dBm 16.5dBm	5.1 16.6	1- 10 GHz	FCC 15.247	48.9dBµV/m @ 2360.0MHz (-5.1dB)
WiFi mode a	and channel a	and Bluetootl	h channel ba	sed on the w	orst case mode from runs	1 through 8	
9	BT 3Mb/s 802.11b	2440 MHz 2412 MHz	7dBm 16.5dBm	1.4 16.5	Radiated Emissions 1- 10 GHz	FCC 15.247	46.4dBµV/m @ 2383.9MHz (-7.6dB)
	_		•	•			

Client:	Intel Corporation	Job Number:	J80398
Madal	L L 10 0 . L 1 . 0 A L L N COCO	T-Log Number:	T80540
Model:	Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

WiFi mode - 802.11n 20MHz with both chains active at 16.5dBm per chain, center channel in each 5GHz band. Bluetooth on center channel, 1Mb/s mode

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
10	BT 1Mb/s 802.11n20	2440MHz 5200MHz	7dBm 16.5/16.5	5.4 16.6/16.7		FCC 15.247	41.9dBµV/m @ 2280.0MHz (-12.1dB)
11	BT 1Mb/s 802.11n20	2440MHz 5300MHz	7dBm 16.5/16.5	5.4 16.7/16.5	Radiated Emissions	FCC 15.247	37.2dBµV/m @ 10600.0MHz (-16.8dB)
12	BT 1Mb/s 802.11n20	2440MHz 5600MHz	7dBm 16.5/16.5	5.4 16.5/16.5	1- 15 GHz	FCC 15.247	45.1dBµV/m @ 11199.8MHz (-8.9dB)
13	BT 1Mb/s 802.11n20	2440MHz 5785MHz	7dBm 16.5/16.5	5.4 16.5/16.7		FCC 15.247	44.7dBµV/m @ 11570.7MHz (-9.3dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

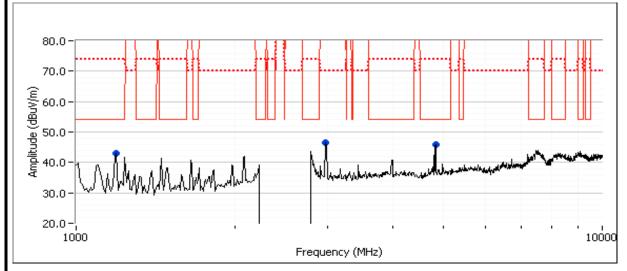
The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100ms period is 4 x 3.125ms = 12.5ms.

The average correction factor is, therefore, 20log(12.5/100) =-18dB

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.


All measurements in this data sheet do not include the average correction factor.

	Eliott An ATAS company	EMO	C Test Data
	Intel Corporation	Job Number:	J80398
Madalı	Intol® Contrinc® Advanced N 6220	T-Log Number:	T80540
woder.	Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

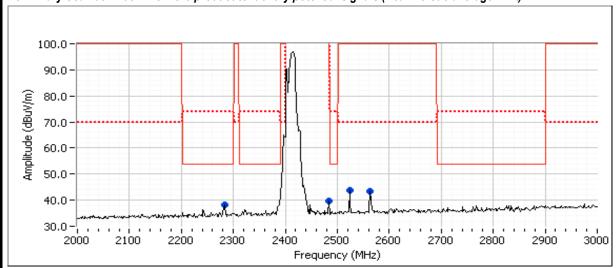
Run # 1, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	24.5
Chain B	7.0	4.4	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4822.500	46.0	V	54.0	-8.0	Peak	154	1.0	
1192.500	42.9	V	54.0	-11.1	Peak	82	1.5	
2980.000	46.4	V	70.0	-23.6	Peak	154	1.0	


Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.000	48.0	V	54.0	-6.0	AVG	153	1.16	
4823.900	50.8	V	74.0	-23.2	PK	153	1.16	
1192.530	42.9	V	54.0	-11.1	AVG	92	1.64	
1192.550	45.6	V	74.0	-28.4	PK	92	1.64	

	An ZAZZES company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

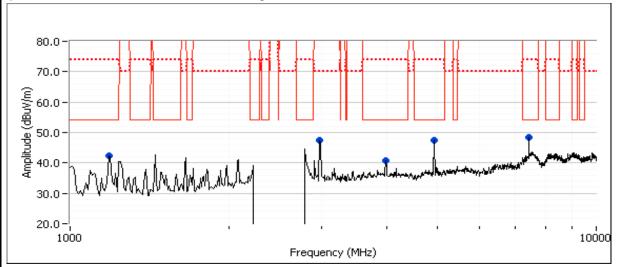
Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2283.330	38.3	Н	54.0	-15.7	Peak	321	1.0	
2483.330	39.8	Н	120.0	-80.2	Peak	4	1.0	In band
2523.330	43.6	Н	70.0	-26.4	Peak	0	1.0	Non-restricted band
2563.330	43.4	Н	70.0	-26.6	Peak	212	1.0	Non-restricted band

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2281.900	46.0	Н	54.0	-8.0	AVG	69	2.18	Note 2
2282.130	55.6	Н	74.0	-18.4	PK	69	2.18	Note 2


Note 2:	Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied
Note 1:	measurements in a measurement bandwidth of 100kHz.
Noto 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak

(FE	Elliott An 公本 company	ЕМО	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIILEI® CEIILIIIO® Auvanced-N 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 2, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

	Power Settings									
	Target (dBm)	Target (dBm) Measured (dBm) Software Setting								
Chain A	16.5	16.6	23.5							
Chain B	7.0	5.3	8.0							

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7439.170	48.3	V	54.0	-5.7	Peak	167	2.0	
4914.170	47.5	V	54.0	-6.5	Peak	209	2.5	
1183.330	42.3	V	54.0	-11.7	Peak	97	2.0	
3979.170	40.8	V	54.0	-13.2	Peak	146	1.0	
2980.000	47.4	V	70.0	-22.6	Peak	153	1.0	


Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4924.000	46.8	٧	54.0	-7.2	AVG	212	2.48	
7439.940	46.5	V	54.0	-7.5	AVG	166	2.00	
4923.890	50.0	V	74.0	-24.0	PK	212	2.48	
7440.500	53.1	V	74.0	-20.9	PK	166	2.00	

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

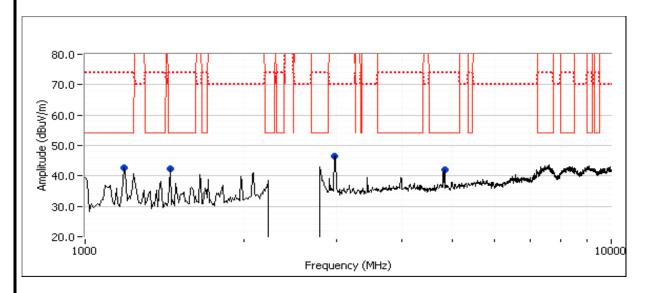
Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	37.9	Н	54.0	-16.1	Peak	185	1.0	
2360.000	40.3	Н	54.0	-13.7	Peak	338	1.0	
2400.000	37.4	Н	70.0	-32.6	Peak	352	1.0	Non-restricted band
2561.670	39.1	Н	70.0	-30.9	Peak	75	1.0	Non-restricted band
2601.670	42.1	Н	70.0	-27.9	Peak	144	1.0	Non-restricted band
2641.670	42.5	Н	70.0	-27.5	Peak	147	1.0	Non-restricted band

Final measurements at 3m

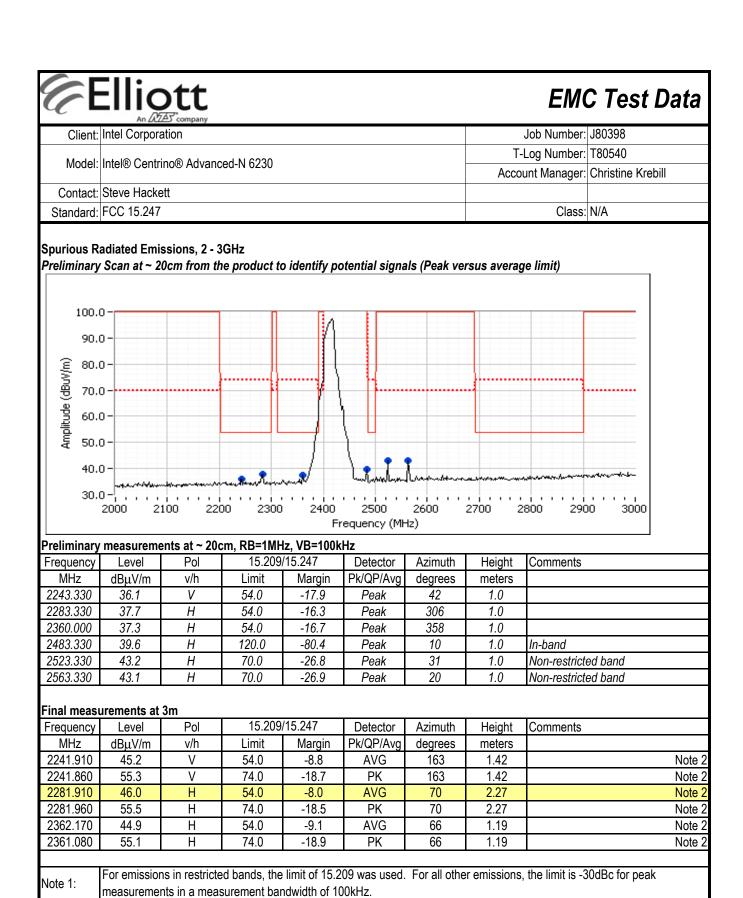
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.070	46.3	Н	54.0	-7.7	AVG	345	1.25	Note 2
2319.830	56.6	Н	74.0	-17.4	PK	345	1.25	Note 2
2360.020	48.4	Н	54.0	-5.6	AVG	70	1.27	Note 2
2360.000	57.2	Н	74.0	-16.8	PK	70	1.27	Note 2


Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

	Elliott An AZES company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® CEIILIIIO® Advanced-N 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 3, Rainbow Peak 2x2: 1-10GHz, 802.11g @ 2412 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B Spurious Radiated Emi<u>ssions,</u> 1 - 10GHz excluding the allocated band:


	Power Settings									
	Target (dBm)	Target (dBm) Measured (dBm) Software Setting								
Chain A	16.5	16.3	31.0							
Chain B	7.0	4.4	8.0							

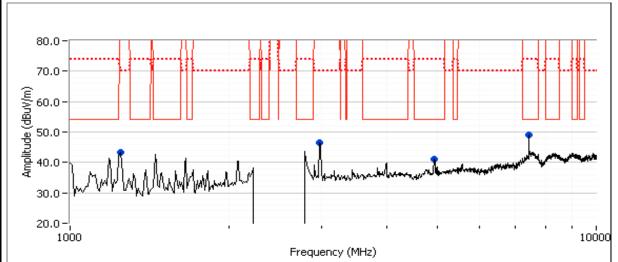
Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1183.330	42.8	V	54.0	-11.2	Peak	102	2.0	
1449.170	42.5	Н	54.0	-11.5	Peak	138	1.5	
4822.500	42.1	V	54.0	-11.9	Peak	283	2.0	
2980.000	46.4	V	70.0	-23.6	Peak	153	1.0	

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1457.590	43.2	Н	54.0	-10.8	AVG	132	1.33	
1457.600	45.4	Н	74.0	-28.6	PK	132	1.33	
1192.560	42.5	V	54.0	-11.5	AVG	89	1.99	
1192.600	44.8	٧	74.0	-29.2	PK	89	1.99	
4823.900	40.7	V	54.0	-13.3	AVG	153	1.18	
4826.970	52.1	V	74.0	-21.9	PK	153	1.18	
	•							

Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 2:



Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIItel® Certtillo® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 4, Rainbow Peak 2x2: 1-10GHz, 802.11g @ 2462 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

	Power Settings								
	Target (dBm)	rget (dBm) Measured (dBm) Software Settir							
Chain A	16.5	16.9	29.5						
Chain B	7.0	5.3	8.0						

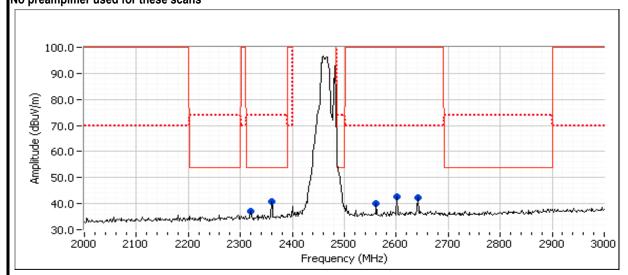
Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7439.170	49.2	V	54.0	-4.8	Peak	174	1.5	
4923.330	41.1	V	54.0	-12.9	Peak	181	2.5	
2980.000	46.6	V	70.0	-23.4	Peak	160	1.0	
1247.500	43.4	Н	70.0	-26.6	Peak	152	1.5	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7440.020	45.8	V	54.0	-8.2	AVG	178	1.52	
7439.570	52.7	V	74.0	-21.3	PK	178	1.52	


Note: 7440MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurious measurements.

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
woder.	IIILEI® Ceritimo® Advanced-in 6250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

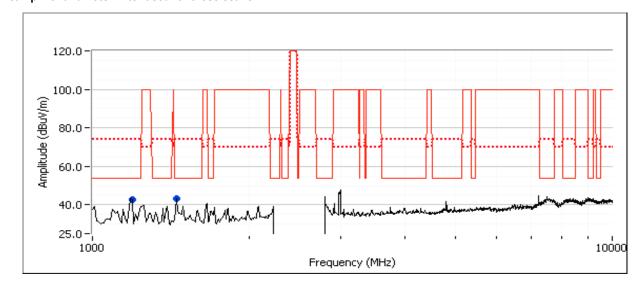
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	37.2	Н	54.0	-16.8	Peak	317	1.0	
2360.000	40.7	Н	54.0	-13.3	Peak	347	1.0	
2561.670	39.9	Н	70.0	-30.1	Peak	205	1.0	Non-restricted band
2601.670	42.6	Н	70.0	-27.4	Peak	144	1.0	Non-restricted band
2641.670	42.4	Н	70.0	-27.6	Peak	173	1.0	Non-restricted band

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2324.470	44.5	Н	54.0	-9.5	AVG	236	1.0	
2360.040	46.6	Н	54.0	-7.4	AVG	326	1.0	
2323.600	57.6	Н	74.0	-16.4	PK	236	1.0	
2359.450	56.2	Н	74.0	-17.8	PK	326	1.0	

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak
note 1.	measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied


Note 3: Signal is present when Bluetooth is disabled (powered off)

	Elliott An ATAS company	EM	C Test Data
	Intel Corporation	Job Number:	J80398
Madalı	Intel® Contrine® Advanced N 6220	T-Log Number:	T80540
Model.	Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 5, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.6	23.5						
Chain B	7.0	4.3	8.0						

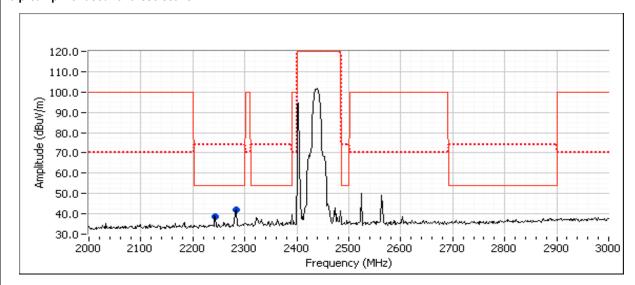
Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band: Preamplifier and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1457.620	43.2	Н	54.0	-10.8	Peak	130	1.5	
1199.820	42.6	V	54.0	-11.4	Peak	96	2.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1200.140	40.1	V	54.0	-13.9	AVG	100	2.0	
1457.570	43.0	Н	54.0	-11.0	AVG	127	1.4	
1199.950	44.7	V	74.0	-29.3	PK	100	2.0	
1457.490	45.1	Н	74.0	-28.9	PK	127	1.4	


Note: 4804MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurious measurements.

	An Z/ZZ=3 company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit) No preamplifier used for these scans

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2283.330	41.8	V	54.0	-12.2	Peak	180	1.0	5
2243.330	38.7	V	54.0	-15.3	Peak	180	1.0	5

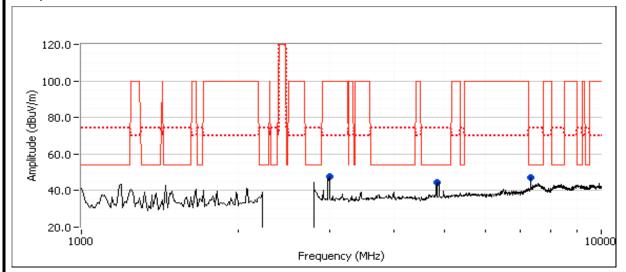
Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2281.990	46.8	Н	54.0	-7.2	AVG	70	1.0	RB 1 MHz;VB 10 Hz;Pk
2282.150	56.7	Н	74.0	-17.3	PK	70	1.0	RB 1 MHz;VB 3 MHz;Pk
2242.060	46.7	Н	54.0	-7.3	AVG	68	1.0	RB 1 MHz;VB 10 Hz;Pk
2241.580	56.3	Н	74.0	-17.7	PK	68	1.0	RB 1 MHz;VB 3 MHz;Pk
2282.000	45.9	V	54.0	-8.1	AVG	105	1.2	RB 1 MHz;VB 10 Hz;Pk
2282.210	56.1	V	74.0	-17.9	PK	105	1.2	RB 1 MHz;VB 3 MHz;Pk

Note 1	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak
Note 1:	measurements in a measurement bandwidth of 100kHz.

Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied Note 2:

Signal is present when Bluetooth is disabled (powered off) Note 3:


	Elliott An ATAS company	EM	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	Intel® Centino® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 6, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic Rate @ 2440 MHz Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	23.5
Chain B	7.0	5.4	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

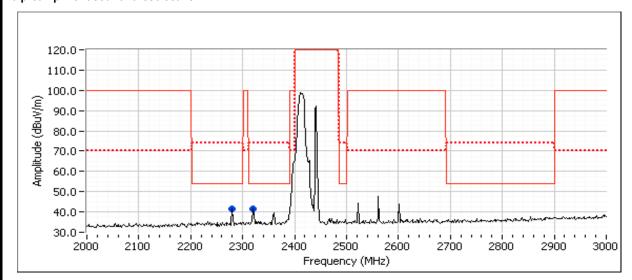
Preamplifier and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2998.330	47.9	V	70.0	-22.1	Peak	141	1.0	
4823.990	44.6	V	54.0	-9.4	Peak	149	1.0	
7316.670	47.1	V	54.0	-6.9	Peak	165	1.9	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.980	44.9	V	54.0	-9.1	AVG	149	1.3	RB 1 MHz;VB 10 Hz;Pk
4823.900	48.4	V	74.0	-25.6	PK	149	1.3	RB 1 MHz;VB 3 MHz;Pk
7319.940	43.6	V	54.0	-10.4	AVG	170	2.0	RB 1 MHz;VB 10 Hz;Pk
7319.350	51.4	V	74.0	-22.6	PK	170	2.0	RB 1 MHz;VB 3 MHz;Pk


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.

	An 47A5 company		
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® Ceritinio® Advanced-in 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

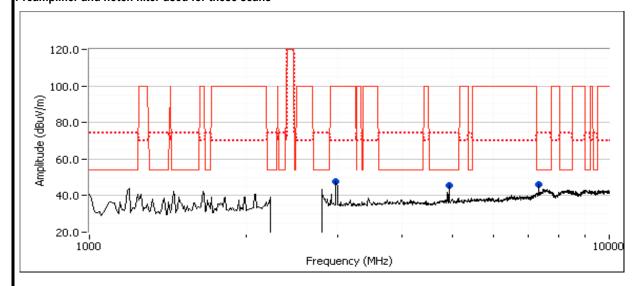
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	40.1	-	54.0	-13.9	Peak	180	1.0	
2280.000	39.0	-	54.0	-15.0	Peak	180	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2319.970	49.3	Н	54.0	-4.7	AVG	70	1.2	RB 1 MHz;VB 10 Hz;Pk
2319.990	57.3	Н	74.0	-16.7	PK	70	1.2	RB 1 MHz;VB 3 MHz;Pk
2279.960	46.8	Н	54.0	-7.2	AVG	70	1.9	RB 1 MHz;VB 10 Hz;Pk
2279.780	55.9	Н	74.0	-18.1	PK	70	1.9	RB 1 MHz;VB 3 MHz;Pk
2319.980	46.7	V	54.0	-7.3	AVG	104	1.0	RB 1 MHz;VB 10 Hz;Pk
2319.800	56.2	V	74.0	-17.8	PK	104	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak
Note 1.	measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied


Note 3: Signal is present when Bluetooth is disabled (powered off)

	Elliott An 公本 company	EM	C Test Data
	Intel Corporation	Job Number:	J80398
Madalı	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIILEI® CEITIIIIO® Auvanceu-N 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 7, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic Rate @ 2440 MHz Chain B

	Power Settings							
	Target (dBm)	Measured (dBm) Software Setting						
Chain A	16.5	16.6	23.5					
Chain B	7.0	5.4	8.0					

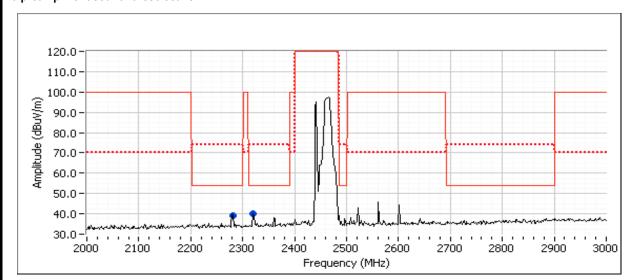
Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band: Preamplifier and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2980.000	47.7	V	70.0	-22.3	Peak	141	1.0	
4923.860	45.3	V	54.0	-8.7	Peak	166	1.6	
7322.500	46.3	V	54.0	-7.7	Peak	182	1.6	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.980	47.6	V	54.0	-6.4	AVG	166	1.7	RB 1 MHz;VB 10 Hz;Pk
4923.940	50.3	V	74.0	-23.7	PK	166	1.7	RB 1 MHz;VB 3 MHz;Pk
7320.050	41.2	V	54.0	-12.8	AVG	201	2.0	RB 1 MHz;VB 10 Hz;Pk
7320.180	49.5	V	74.0	-24.5	PK	201	2.0	RB 1 MHz;VB 3 MHz;Pk


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Model:	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIIIelo Cellilloo Advaliced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	40.1	Н	54.0	-13.9	Peak	180	1.0	
2288.500	39.0	Н	54.0	-15.0	Peak	180	1.0	

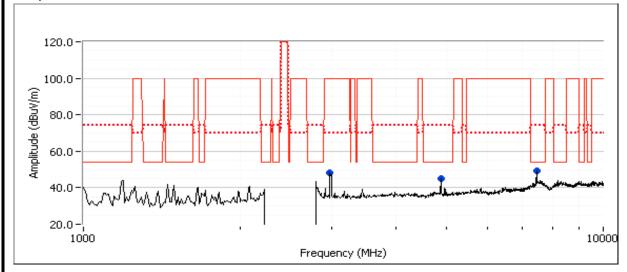
Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2319.980	47.8	Н	54.0	-6.2	AVG	72	1.2	
2279.930	46.7	Н	54.0	-7.3	AVG	69	1.0	
2320.040	45.8	V	54.0	-8.2	AVG	100	1.0	
2279.930	45.2	V	54.0	-8.8	AVG	101	1.0	
2320.230	57.3	Н	74.0	-16.7	PK	72	1.2	
2284.230	56.0	Н	74.0	-18.0	PK	69	1.0	
2324.580	55.8	V	74.0	-18.2	PK	100	1.0	
2280.470	55.3	V	74.0	-18.7	PK	101	1.0	

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak
note 1.	measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 3: Signal is present when Bluetooth is disabled (powered off)


	Elliott An AZAS company	EMO	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 8, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

	Power Settings							
	Target (dBm)	Measured (dBm) Software Setting						
Chain A	16.5	16.6	23.5					
Chain B	7.0	5.1	8.0					

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

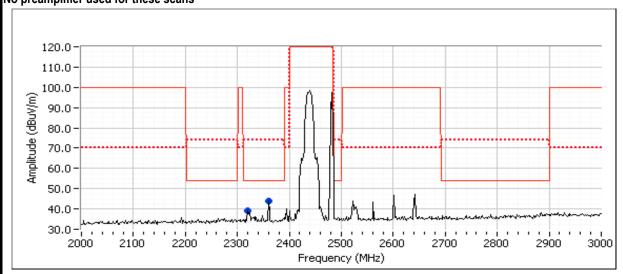
Preamplifier and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2980.000	48.4	V	70.0	-21.6	Peak	148	1.0	
4873.880	45.0	V	54.0	-9.0	Peak	148	1.3	
7439.170	49.5	V	54.0	-4.5	Peak	166	2.2	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.020	45.2	V	54.0	-8.8	AVG	146	1.2	RB 1 MHz;VB 10 Hz;Pk
4874.030	49.0	V	74.0	-25.0	PK	146	1.2	RB 1 MHz;VB 3 MHz;Pk
7440.000	44.9	V	54.0	-9.1	AVG	167	1.5	RB 1 MHz;VB 10 Hz;Pk
7440.270	52.2	V	74.0	-21.8	PK	167	1.5	RB 1 MHz;VB 3 MHz;Pk


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.

	An ZAZES company			
Client:	Intel Corporation	Job Number:	J80398	
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540	
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	T80540 Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247	Class:	N/A	

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

	r i c iiiiiiiiai y	IIIcasul cilic	tillo at " Zuc	יווו, ועם־ וועוו					
	Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
	2360.000	43.8	-	54.0	-10.2	Peak	180	1.0	
ı	2320.000	39.2	-	54.0	-14.8	Peak	180	1.0	

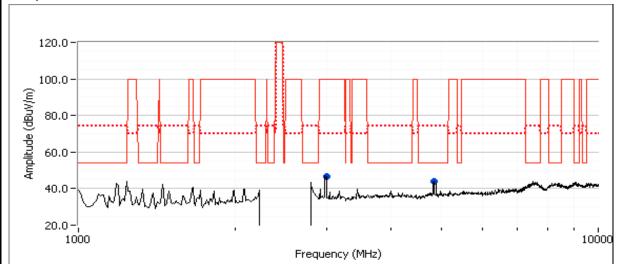
Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2360.020	48.9	Н	54.0	-5.1	AVG	328	1.0	
2319.980	47.9	Н	54.0	-6.1	AVG	69	1.3	
2359.980	46.7	V	54.0	-7.3	AVG	107	1.0	
2320.040	45.7	V	54.0	-8.3	AVG	104	1.0	
2320.230	57.3	Н	74.0	-16.7	PK	69	1.3	
2360.430	56.7	V	74.0	-17.3	PK	107	1.0	
2360.100	56.6	Н	74.0	-17.4	PK	328	1.0	
2324.580	55.6	V	74.0	-18.4	PK	104	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 3: Signal is present when Bluetooth is disabled (powered off)


	Elliott An AZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 9, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT EDR @ 2440 MHz Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.5	23.5
Chain B	7.0	1.4	8.0

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

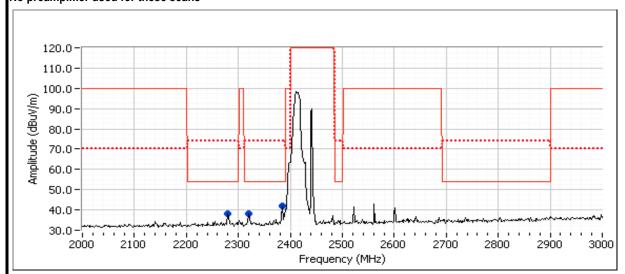
Preamplifier and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2998.330	46.7	V	70.0	-23.3	Peak	130	1.0	
4823.990	44.0	V	54.0	-10.0	Peak	134	1.6	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.030	43.1	V	54.0	-10.9	AVG	131	1.0	RB 1 MHz;VB 10 Hz;Pk
4823.990	47.7	V	74.0	-26.3	PK	131	1.0	RB 1 MHz;VB 3 MHz;Pk


Note: 4924 MHz is directly related to the WiFi (802.11b) signal and was observed during the 802.11b mode spurious m easurements.

	An ZAZES company			
Client:	Intel Corporation	Job Number:	J80398	
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540	
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	T80540 Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247	Class:	N/A	

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

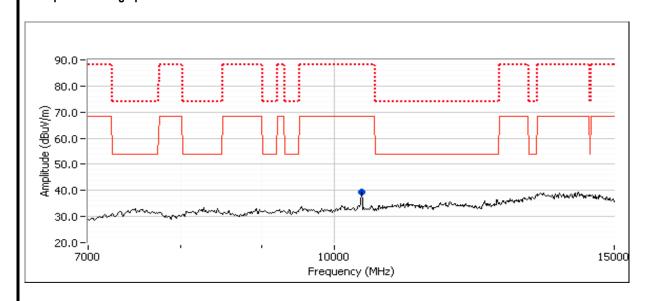
Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2385.000	42.2	V	54.0	-11.8	Peak	192	1.0	
2320.000	38.2	V	54.0	-15.8	Peak	192	1.0	
2280.000	38.2	V	54.0	-15.8	Peak	192	1.0	

Final measurements at 3m

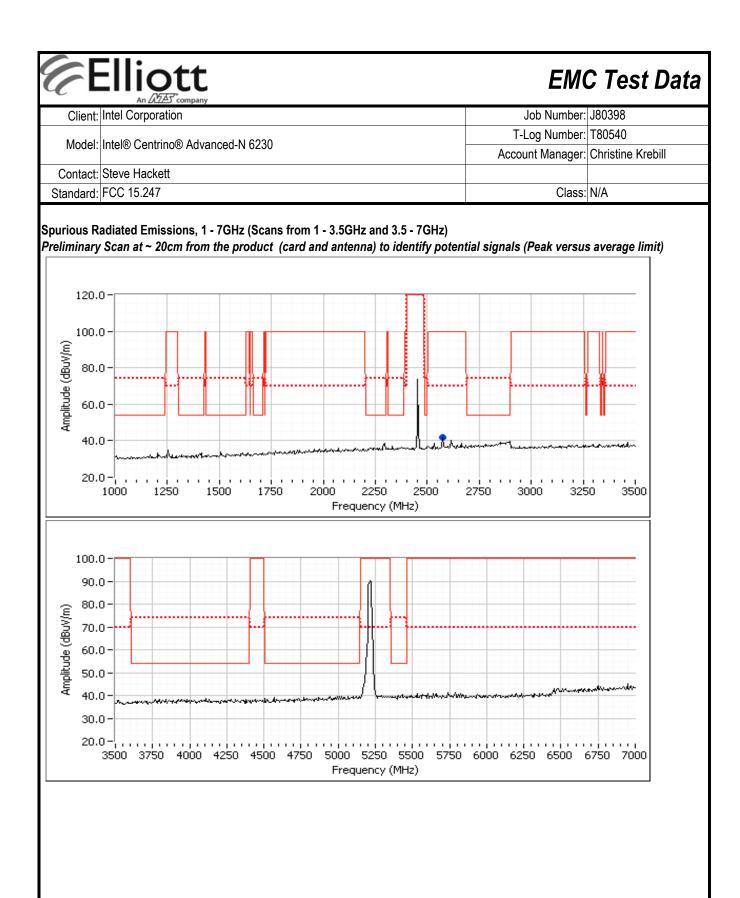
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2383.860	46.4	Н	54.0	-7.6	AVG	350	1.0	RB 1 MHz;VB 10 Hz;Pk
2384.460	59.4	Н	74.0	-14.6	PK	350	1.0	RB 1 MHz;VB 3 MHz;Pk
2319.970	46.4	Н	54.0	-7.6	AVG	3	1.1	RB 1 MHz;VB 10 Hz;Pk
2320.330	56.0	Н	74.0	-18.0	PK	3	1.1	RB 1 MHz;VB 3 MHz;Pk
2279.900	44.6	Н	54.0	-9.4	AVG	68	1.0	RB 1 MHz;VB 10 Hz;Pk
2279.060	55.4	Н	74.0	-18.6	PK	68	1.0	RB 1 MHz;VB 3 MHz;Pk
2384.170	45.9	V	54.0	-8.1	AVG	205	1.5	RB 1 MHz;VB 10 Hz;Pk
2386.600	59.7	V	74.0	-14.3	PK	205	1.5	RB 1 MHz;VB 3 MHz;Pk

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak	
Note 1:	measurements in a measurement bandwidth of 100kHz.	


Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied Note 3: Signal is present when Bluetooth is disabled (powered off)

	Elliott An ATAS company	EM	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intal® Contring® Advanced N 6220	T-Log Number:	T80540
Model.	: Intel® Centrino® Advanced-N 6230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 10, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5200 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

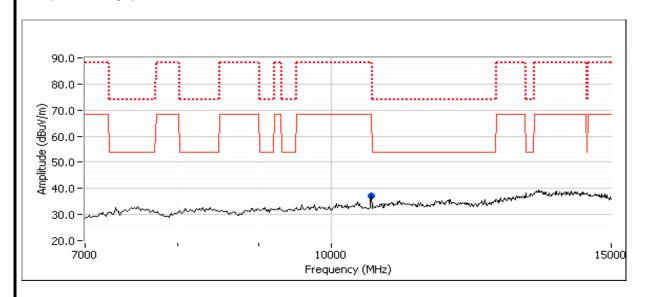

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
WiFi A	16.5	16.6	31.5
WiFi B	16.5	16.7	30.5
Bluetooth	7.0	5.4	8.0

Spurious Radiated Emissions, 7 - 15GHz: Preamplifier and high pass filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209/15	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10400.000	39.4	V	68.3	-28.9	Peak	198	1.3	

Client:	Intel Corpora	ition				Job Number:	J80398			
							T-	Log Number:	T80540	
Model:	Intel® Centri	no® Advano	ed-N 6230						Christine Krebi	II
Contact:	Steve Hacke	tt								
Standard:	FCC 15.247							Class:	N/A	
	adiated Emis		·		5GHz and 3.5 Hz	- 7GHz)				
requency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2560.000	40.1	V	100.0	-59.9	Peak	360	1.0			
inal measi requency	urements at	3m Pol	15 209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
2280.000	41.9	H	54.0	-12.1	AVG	0	1.2	RB 1 MHz;\	/B 10 Hz:Pk	No
2320.000	41.7	V	54.0	-12.3	AVG	77	1.3	RB 1 MHz;\		No
2360.000	39.6	V	54.0	-14.4	AVG	77	1.2	RB 1 MHz;\	•	No
2320.000	39.4	Н	54.0	-14.6	AVG	206	1.3	RB 1 MHz;\		No
2360.000	38.1	Н	54.0	-15.9	AVG	39	1.2	RB 1 MHz;\		Not
2280.000	37.8	V	54.0	-16.2	AVG	140	1.0	RB 1 MHz;\	/B 10 Hz;Pk	No
2320.000	55.0	V	74.0	-19.0	PK	77	1.3	RB 1 MHz;\	/B 3 MHz;Pk	No
2560.000	50.6	Н	70.0	-19.4	PK	168	1.4	RB 1 MHz;\	/B 3 MHz;Pk	No
2560.000	46.9	V	70.0	-23.1	PK	216	1.9	RB 1 MHz;\	/B 3 MHz;Pk	No
2280.000	46.8	Н	74.0	-27.2	PK	0	1.2	RB 1 MHz;\	/B 3 MHz;Pk	No
2320.000	46.2	Н	74.0	-27.8	PK	206	1.3	RB 1 MHz;\	/B 3 MHz;Pk	Not
2360.000	45.4	V	74.0	-28.6	PK	77	1.2	RB 1 MHz;\	/B 3 MHz;Pk	No
2360.000	44.3	Н	74.0	-29.7	PK	39	1.2	RB 1 MHz;\	/B 3 MHz;Pk	No
2280.000	44.0	V	74.0	-30.0	PK	140	1.0	RB 1 MHz;\	/B 3 MHz;Pk	No
2560.000	46.3	Н	100.0	-53.7	AVG	168	1.4	RB 1 MHz;\	/B 10 Hz;Pk	Not
2560.000	40.5	V	100.0	-59.5	AVG	216	1.9	RB 1 MHz;\	/B 10 Hz;Pk	Not
ote 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.									

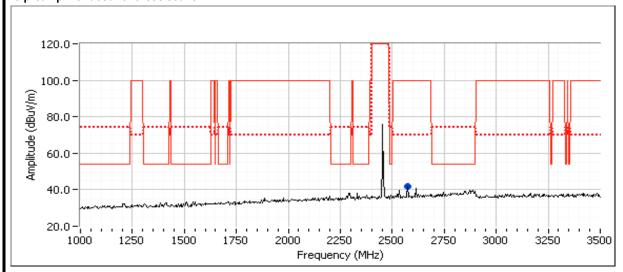

	Elliott An AZAS company	EMO	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	III(el® Cell(III)0® Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

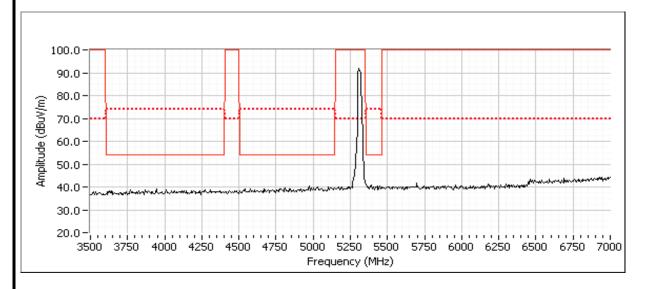
Run # 11, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5300 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
WiFi A	16.5	16.7	32.0
WiFi B	16.5	16.5	31.0
Bluetooth	7.0	5.4	8.0

Spurious Radiated Emissions, 7 - 15GHz:

Preamplifier and high pass filter used for these scans


Preliminary Measurements (Peak versus average limit)

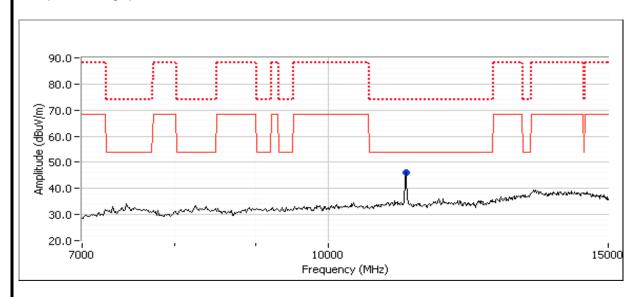

Frequency	Level	Pol	15.209/1	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10600.000	37.2	V	54.0	-16.8	Peak	182	1.0	

	Elliott An AZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIIIele Celitiiioe Advanced-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)
No preamplifier used for these scans

Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.


	Elliott An AZAS company	EMO	C Test Data
	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIIIel® Celitiiio® Advanced-in 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15 2/17	Class:	N/Δ

Run # 12, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5600 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
WiFi A	16.5	16.5	34.0
WiFi B	16.5	16.5	34.0
Bluetooth	7.0	5.4	8.0

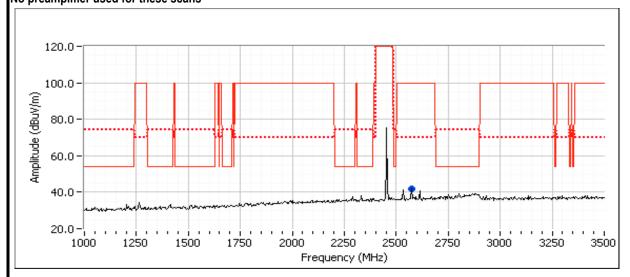
Spurious Radiated Emissions, 7 - 15GHz:

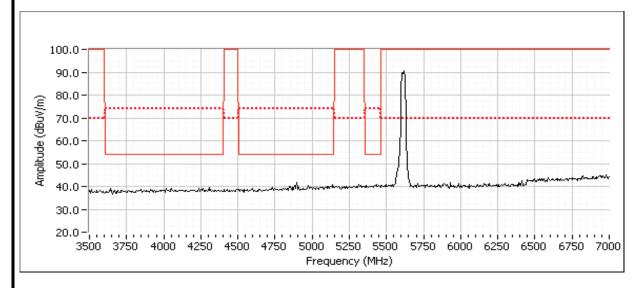
Preamplifier and high pass filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209/1	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11200.340	46.0	V	54.0	-8.0	Peak	188	1.0	

Final measurements at 3m


Frequency	Level	Pol	15.209/15	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11199.810	45.1	V	54.0	-8.9	AVG	157	1.9	RB 1 MHz;VB 10 Hz;Pk
11200.110	61.2	V	74.0	-12.8	PK	157	1.9	RB 1 MHz;VB 3 MHz;Pk


	Elliott An AZES company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80398
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
wodei.	IIIIel® Celitiilo® Advaliced-N 0230	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

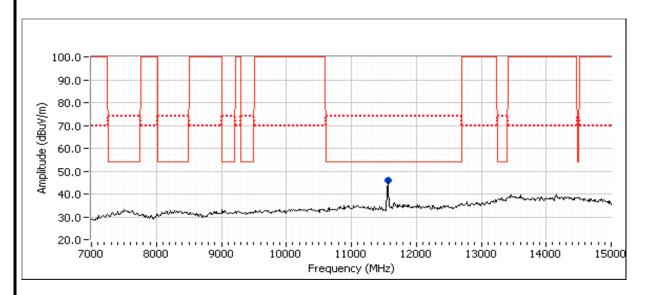
Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)

No preamplifier used for these scans

Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.

Elliott An AZAS company						
Client:	Intel Corporation					
Model:	Intel® Centrino® Advanced-N 6230					


	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80398
Madal	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540
Model.	IIItel® Certtillo® Advanceu-N 0250	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC 15.247	Class:	N/A

Run # 13, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5785 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

	Power Settings							
	Target (dBm) Measured (dBm) Software Setting							
WiFi A	16.5	16.5	35.0					
WiFi B	16.5	16.7	34.5					
Bluetooth	7.0	5.4	8.0					

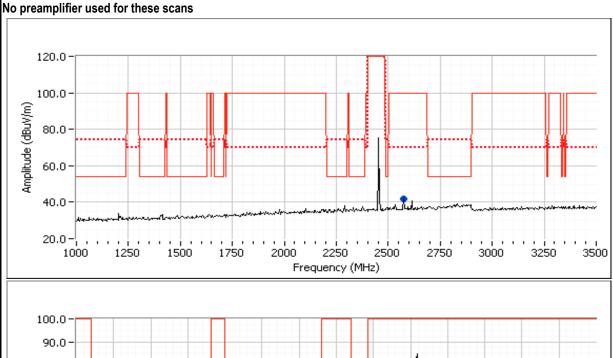
Spurious Radiated Emissions, 7 - 15GHz:

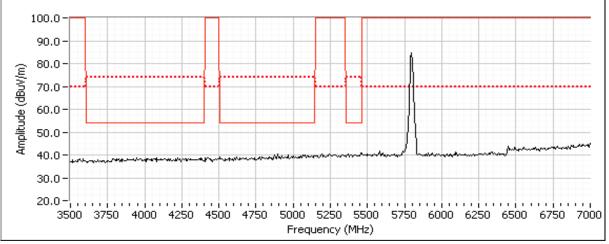
Preamplifier and high pass filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209/1	5.247/15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11570.410	45.9	V	54.0	-8.1	Peak	187	1.0	

Final measurements at 3m


Frequency	Level	Pol	15.209/15.247/15E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11570.680	44.7	V	54.0	-9.3	AVG	192	1.4	RB 1 MHz;VB 10 Hz;Pk
11570.280	57.8	V	74.0	-16.2	PK	192	1.4	RB 1 MHz;VB 3 MHz;Pk


	Elliott An ATAS company	EMC Test Data		
Client:	Intel Corporation	Job Number:	J80398	
Model	Intel® Centrino® Advanced-N 6230	T-Log Number:	T80540	
wodei.		Account Manager:	Christine Krebill	
Contact:	Steve Hackett			
Standard:	FCC 15.247	Class:	N/A	

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)

No preamplifier used for these scans

Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.