

### EMC Test Report

### Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel® Centrino® Advanced-N 6230 (model 62230HMW)

IC CERTIFICATION #: 1000M-62230ANH and 1000M-62230ANHU

FCC ID: PD962230ANH and PD962230ANHU

APPLICANT: Intel Corporation

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-7

REPORT DATE: October 11, 2010

FINAL TEST DATES: September 13-17, 20, 21, 28, 29, 30, October 1

and 4, 2010

AUTHORIZED/SIGNATORY:

Mark Briggs

Staff Engineer

Elliott Laboratories



Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80791 Page 1 of 22

## REVISION HISTORY

| Rev# | Date       | Comments      | Modified By |
|------|------------|---------------|-------------|
| 1    | 10-11-2010 | First release |             |

File: R80791 Page 2 of 22

### TABLE OF CONTENTS

| REVISION HISTORY                                                             | 2  |
|------------------------------------------------------------------------------|----|
| TABLE OF CONTENTS                                                            | 3  |
| SCOPE                                                                        | 4  |
| OBJECTIVE                                                                    |    |
| STATEMENT OF COMPLIANCE                                                      |    |
| DEVIATIONS FROM THE STANDARDS                                                |    |
| TEST RESULTS SUMMARY                                                         |    |
| DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz).                             | 6  |
| DIGITAL TRANSMISSION SYSTEMS (2400 – 2403.5MHz)                              |    |
| GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS.                                | 7  |
| ADDITIONAL MEASUREMENTS                                                      |    |
| MEASUREMENT UNCERTAINTIES.                                                   |    |
| EQUIPMENT UNDER TEST (EUT) DETAILS                                           |    |
| GENERAL                                                                      |    |
| ANTENNA SYSTEM                                                               |    |
| ENCLOSURE                                                                    |    |
| MODIFICATIONS                                                                |    |
| SUPPORT EQUIPMENT                                                            |    |
| EUT INTERFACE PORTS                                                          |    |
| EUT OPERATION                                                                |    |
| TEST SITE                                                                    | 12 |
| GENERAL INFORMATION                                                          |    |
| CONDUCTED EMISSIONS CONSIDERATIONS                                           |    |
| RADIATED EMISSIONS CONSIDERATIONS                                            |    |
| MEASUREMENT INSTRUMENTATION                                                  | 13 |
| RECEIVER SYSTEM                                                              |    |
| INSTRUMENT CONTROL COMPUTER                                                  |    |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN)                                  | 13 |
| FILTERS/ATTENUATORS                                                          | 14 |
| ANTENNAS                                                                     |    |
| ANTENNA MAST AND EQUIPMENT TURNTABLE                                         |    |
| INSTRUMENT CALIBRATION                                                       | 14 |
| TEST PROCEDURES                                                              | 15 |
| EUT AND CABLE PLACEMENT                                                      | 15 |
| CONDUCTED EMISSIONS                                                          | 15 |
| RADIATED EMISSIONS                                                           |    |
| RADIATED EMISSIONS                                                           | 16 |
| BANDWIDTH MEASUREMENTS                                                       |    |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS                                 |    |
| CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN | 19 |
| GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS                  |    |
| RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS                    |    |
| OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS                           |    |
| TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS      |    |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS                                    |    |
| SAMPLE CALCULATIONS - RADIATED EMISSIONS                                     |    |
| APPENDIX A TEST EQUIPMENT CALIBRATION DATA                                   |    |
| APPENDIX B TEST DATA                                                         | 4  |

#### **SCOPE**

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

#### **OBJECTIVE**

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R80791 Page 4 of 22

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

#### STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

#### DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80791 Page 5 of 22

#### TEST RESULTS SUMMARY

#### DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

| FCC<br>Rule Part      | RSS<br>Rule Part    | Description                                          | Measured Value /<br>Comments                                                     | Limit / Requirement                                         | Result            |
|-----------------------|---------------------|------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|
| 15.247(a)             | RSS 210<br>A8.2     | Digital Modulation                                   | Systems uses OFDM / DSSS techniques                                              | System must utilize digital transmission technology         | Complies          |
| 15.247 (a) (2)        | RSS 210<br>A8.2 (1) | 6dB Bandwidth                                        | 10.0 MHz                                                                         | >500kHz                                                     | Complies          |
| 15.247 (b) (3)        | RSS 210<br>A8.2 (4) | Output Power (multipoint systems)                    | 802.11b: 49 mW<br>802.11g: 38 mW<br>n20: 41 mW<br>n40: 34 mW<br>EIRP max = 102mW | 1Watt, EIRP limited to 4 Watts.                             | Complies          |
| 15.247(d)             | RSS 210<br>A8.2 (2) | Power Spectral<br>Density                            | -6.9 dBm / 3kHz                                                                  | 8dBm/3kHz                                                   | Complies          |
| 15.247(c)             | RSS 210<br>A8.5     | Antenna Port<br>Spurious Emissions<br>30MHz – 25 GHz | All spurious more than -30dBc.                                                   | < -30dBc Note 2                                             | Complies          |
| 15.247(c) /<br>15.209 | RSS 210<br>A8.5     | Radiated Spurious<br>Emissions<br>30MHz – 25 GHz     | 53.0dBµV/m @<br>2390.0MHz                                                        | 15.207 in restricted<br>bands, all others<br><-30dBc Note 2 | Complies (-1.0dB) |

Note 1: EIRP calculated using antenna gain of 3.2 dBi for the highest EIRP system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

#### DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

| FCC<br>Rule Part      | RSS<br>Rule Part              | Description                                            | Measured Value /<br>Comments                                                                            | Limit / Requirement                                                          | Result            |
|-----------------------|-------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|
| 15.247(a)             | RSS 210<br>A8.2               | Digital Modulation                                     | Systems uses OFDM techniques                                                                            | System must utilize digital transmission technology                          | Complies          |
| 15.247 (a) (2)        | RSS 210<br>A8.2 (1)           | 6dB Bandwidth                                          | 16.3MHz                                                                                                 | >500kHz                                                                      | Complies          |
| 15.247 (b)            | RSS 210<br>A8.2 (4)           | Output Power (multipoint systems)                      | 802.11a: 39.8 mW<br>n20: 39.8 mW<br>n40: 246 mW<br>EIRP = 0.778 W Note 1                                | 1Watt, EIRP limited to 4 Watts.                                              | Complies          |
| 15.247(d)             | RSS 210<br>A8.2 (2)           | Power Spectral<br>Density                              | -7.7 dBm / 3kHz                                                                                         | Maximum permitted is 8dBm/3kHz                                               | Complies          |
| 15.247(c)             | RSS 210<br>A8.5               | Antenna Port<br>Spurious Emissions –<br>30MHz – 40 GHz | All spurious<br>emissions < -20dBc<br>for n40 mode and<br>below -30dBc for<br>802.11a and n20<br>modes. | < -20dBc<br>< -30dBc Note 2                                                  | Complies          |
| 15.247(c) /<br>15.209 | RSS 210<br>A8.5<br>Table 2, 3 | Radiated Spurious<br>Emissions<br>30MHz – 40 GHz       | 49.4dBμV/m @<br>11650.5MHz                                                                              | 15.207 in restricted<br>bands, all others<br>< -20dBc / <-30dBc <sup>2</sup> | Complies (-4.6dB) |

Note 1: EIRP calculated using antenna gain of 5.0 dBi for the highest EIRP system.

Note 2: Limit of -30dBc used for 802.11a and 802.11n 20MHz modes because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst). The limit for 802.11n 40Mhz mode was -20dBc because the power measurements are peak power measurements.

File: R80791 Page 6 of 22

#### GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

| FCC Rule<br>Part                | RSS<br>Rule part            | Description                       | Measured Value /<br>Comments                                                        | Limit / Requirement                            | Result (margin)   |
|---------------------------------|-----------------------------|-----------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-------------------|
| 15.203                          | -                           | RF Connector                      | Unique                                                                              | Integral or unique connector required          | Complies          |
| 15.109                          | RSS GEN<br>7.2.3<br>Table 1 | Receiver spurious emissions       | 41.2dBµV/m @<br>662.52MHz                                                           | Refer to page 20                               | Complies (-4.8dB) |
| 15.207                          | RSS GEN<br>Table 2          | AC Conducted<br>Emissions         | 40.6dBμV @<br>14.758MHz                                                             | Refer to page 19                               | Complies (-9.4dB) |
| 15.247 (b)<br>(5)<br>15.407 (f) | RSS 102                     | RF Exposure<br>Requirements       | Refer to MPE<br>calculations, RSS 102<br>declaration and User<br>Manual pages 8, 12 | Refer to OET 65,<br>FCC Part 1 and RSS<br>102  | Complies          |
| -                               | RSP 100<br>RSS GEN<br>7.1.5 | User Manual                       | Refer to pages 11 and<br>12 of the user's<br>manual                                 | Statement required regarding non-interference  | Complies          |
| -                               | RSP 100<br>RSS GEN<br>7.1.5 | User Manual                       | Not applicable,<br>antenna is integral to<br>host systems.                          | Statement for products with detachable antenna | N/A               |
| _                               | RSP 100<br>RSS GEN          | 99% Bandwidth<br>(2400-2483.5MHz) | 802.11b: 13.6 MHz<br>802.11g: 17.1 MHz<br>n20: 18.3 MHz<br>n40: 36.6 MHz            | Information only                               | N/A               |
|                                 | 4.4.1                       | 99% Bandwidth<br>(5725-5850 MHz)  | 802.11a: 17.6MHz<br>n20: 18.7 MHz<br>n40: 38.8 MHz                                  |                                                |                   |

#### ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

| FCC Rule<br>Part | RSS<br>Rule part | Description        | Measured Value /<br>Comments | Limit / Requirement                                   | Result (margin)   |
|------------------|------------------|--------------------|------------------------------|-------------------------------------------------------|-------------------|
| 15.2109          | RSS 210          | Spurious emissions | 49.3dBμV/m @<br>2320.0MHz    | 15.209 in restricted<br>bands, all others<br>< -20dBc | Complies (-4.7dB) |

File: R80791 Page 7 of 22

#### **MEASUREMENT UNCERTAINTIES**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

| Measurement Type                        | Measurement<br>Unit | Frequency Range                     | Expanded Uncertainty |
|-----------------------------------------|---------------------|-------------------------------------|----------------------|
| RF power, conducted (power meter)       | dBm                 | 25 to 7000 MHz                      | ± 0.52 dB            |
| RF power, conducted (Spectrum analyzer) | dBm                 | 25 to 7000 MHz                      | $\pm 0.7 \text{ dB}$ |
| Conducted emission of transmitter       | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$ |
| Conducted emission of receiver          | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$ |
| Radiated emission (substitution method) | dBm                 | 25 to 26500 MHz                     | ± 2.5 dB             |
| Radiated emission (field strength)      | dBμV/m              | 25 to 1000 MHz<br>1000 to 40000 MHz | ± 3.6 dB<br>± 6.0 dB |
| Conducted Emissions (AC Power)          | dΒμV                | 0.15 to 30 MHz                      | ± 2.4 dB             |

File: R80791 Page 8 of 22

### EQUIPMENT UNDER TEST (EUT) DETAILS

#### GENERAL

The Intel Corporation model Intel® Centrino® Advanced-N 6230 (model 62230HMW) is a PCIe half mini card form factor Bluetooth/IEEE 802.11a/b/g/n wireless network adapter. The card supports MIMO (2x2) for 802.11n modes and MISO (1x2) for 802.11a/b/g modes. Bluetooth only operation mode is a 1x1. When Bluetooth is operational then 802.11b/g/n modes operate as SISO (1x1). 802.11a/n modes still operate as MIMO (2x2) with Bluetooth operational.

The card is sold under two different FCC/IC ID numbers (see table below). The ID's ending in "U" are intended to allow user install conditions and host systems must be provided with a BIOS locking feature that prevents installation of unauthorized devices.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 13, 2010 and tested on September 13-17, 20, 21, 28, 29, 30, October 1 and 4, 2010. The EUT consisted of the following component(s):

| Manufacturer      | Model      | Description                                            | MAC Address  | FCC ID and Canada<br>UPN                      |
|-------------------|------------|--------------------------------------------------------|--------------|-----------------------------------------------|
| Intel Corporation | 62230ANHMW | PCIe Half Mini<br>Card form factor<br>Bluetooth / IEEE | 00150079AD10 | PD962230ANH<br>PD962230ANHU<br>1000M-62230ANH |
|                   | 62230ANHU  | 802.11a/b/g/n<br>wireless network<br>adapter           | 001300/9AD10 | 1000M-62230ANHU                               |

#### ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

#### **ENCLOSURE**

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

#### **MODIFICATIONS**

No modifications were made to the EUT during the time the product was at Elliott.

File: R80791 Page 9 of 22

#### SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

| Company              | Model         | Description  | Serial Number | FCC ID |
|----------------------|---------------|--------------|---------------|--------|
| Intel<br>Corporation | 1             | Test Fixture | D9164573K0B0  | N/A    |
| DELL                 | Latitude D520 | Laptop PC    | HM9383J       | N/A    |
| Agilent              | E3610A        | DC Supply    | MY4001740     | N/A    |

#### **EUT INTERFACE PORTS**

The I/O cabling configuration during testing was as follows:

| Port               | Connected        |             | Cable(s)               |           |
|--------------------|------------------|-------------|------------------------|-----------|
| Poit               | То               | Description | Shielded or Unshielded | Length(m) |
| Laptop USB         | Fixture USB      | USB cable   | Shielded               |           |
| Laptop Mini<br>PCI | Fixture PCIe     | Ribbon      | unshielded             |           |
| DC Power           | Fixture DC power | 2-wire      | unshielded             |           |

#### **EUT OPERATION**

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11a, 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used when evaluating the WiFi transmitter were the lowest data rates for each 802.11 mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements – refer to test data for actual measurements).

The field strength at the band edges was evaluated for each mode and on each chain individually on the lowest and highest channels at the rated power for the channel under test. Where the power at the edge channels was lower than the power at the center channels additional measurements were made at the adjacent channels. MIMO and SISO modes were fully evaluated.

File: R80791 Page 10 of 22

Spurious emissions measurements at frequencies away from the band edges were made at the highest power rating for the band in each mode. For 802.11n modes both chains were active (MIMO mode) but with each chain at the highest power rating per chain (MIMO power setting) to cover both modes of operation at the same time.

Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s.

Receiver spurious emissions in 802.11 modes were evaluated in single chain and multichain modes. Bluetooth receiver spurious were evaluated for single chain only as MISO is not supported for Bluetooth.

The PC was using the Intel test utility DRTU Version 1.2.12-0197 and the device driver was version 14.0.0.39.

File: R80791 Page 11 of 22

#### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

| Site      | Registratio        | Location |                           |
|-----------|--------------------|----------|---------------------------|
| Site      | FCC                | Canada   | Location                  |
| Chamber 4 | 211948             | 2845B-4  | 41039 Boyce Road          |
| Chamber 7 | A2LA accreditation | 2845B-7  | Fremont,<br>CA 94538-2435 |

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

#### RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R80791 Page 12 of 22

#### **MEASUREMENT INSTRUMENTATION**

#### RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

#### INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

#### LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R80791 Page 13 of 22

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

#### **ANTENNAS**

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

#### ANTENNA MAST AND EQUIPMENT TURNTABLE

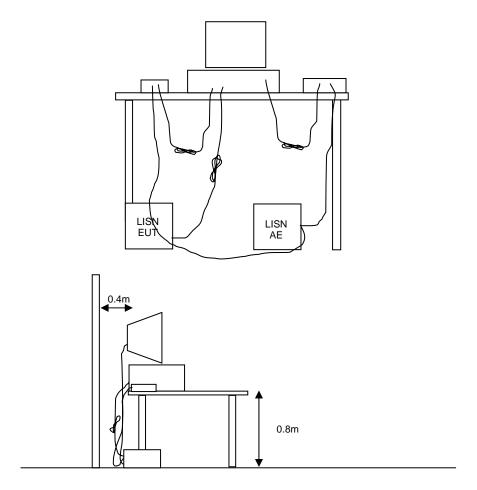
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### **INSTRUMENT CALIBRATION**

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R80791 Page 14 of 22


#### TEST PROCEDURES

#### EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

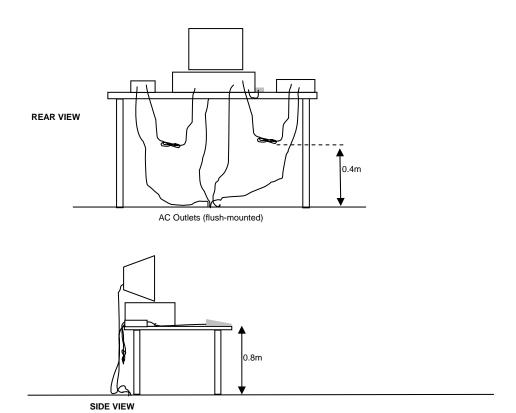
#### CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



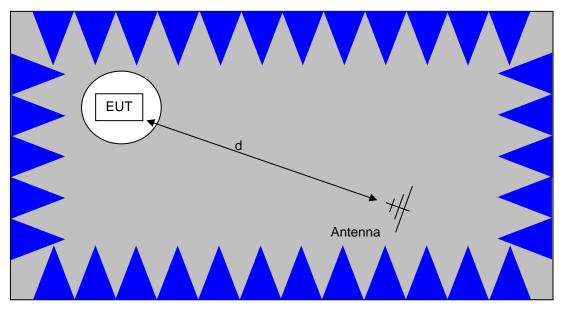
File: R80791 Page 15 of 22

#### RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

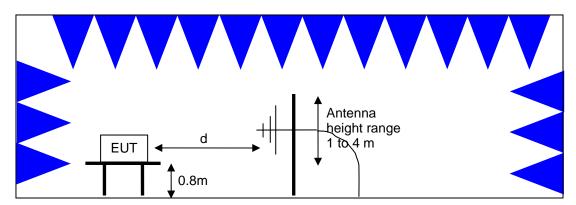
A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R80791 Page 16 of 22




Typical Test Configuration for Radiated Field Strength Measurements

File: R80791 Page 17 of 22



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

File: R80791 Page 18 of 22

#### **BANDWIDTH MEASUREMENTS**

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

#### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

#### CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

| Frequency (MHz) | Average<br>Limit<br>(dBuV)                                          | Quasi Peak<br>Limit<br>(dBuV)                                       |
|-----------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 0.150 to 0.500  | Linear decrease on logarithmic frequency axis between 56.0 and 46.0 | Linear decrease on logarithmic frequency axis between 66.0 and 56.0 |
| 0.500 to 5.000  | 46.0                                                                | 56.0                                                                |
| 5.000 to 30.000 | 50.0                                                                | 60.0                                                                |

File: R80791 Page 19 of 22

#### GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands<sup>1</sup> (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m)              | Limit (dBuV/m @ 3m)                                  |
|-----------------------------|------------------------------|------------------------------------------------------|
| 0.009-0.490                 | 2400/F <sub>KHz</sub> @ 300m | 67.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 300m |
| 0.490-1.705                 | 24000/F <sub>KHz</sub> @ 30m | 87.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 30m  |
| 1.705 to 30                 | 30 @ 30m                     | 29.5 @ 30m                                           |
| 30 to 88                    | 100 @ 3m                     | 40 @ 3m                                              |
| 88 to 216                   | 150 @ 3m                     | 43.5 @ 3m                                            |
| 216 to 960                  | 200 @ 3m                     | 46.0 @ 3m                                            |
| Above 960                   | 500 @ 3m                     | 54.0 @ 3m                                            |

#### RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

| Frequency<br>Range<br>(MHz) | Limit (uV/m @ 3m) | Limit (dBuV/m @ 3m) |
|-----------------------------|-------------------|---------------------|
| 30 to 88                    | 100               | 40                  |
| 88 to 216                   | 150               | 43.5                |
| 216 to 960                  | 200               | 46.0                |
| Above 960                   | 500               | 54.0                |

<sup>&</sup>lt;sup>1</sup> The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R80791 Page 20 of 22

#### **OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS**

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

| Operating Frequency (MHz) | Output Power    | Power Spectral Density |
|---------------------------|-----------------|------------------------|
| 902 – 928                 | 1 Watt (30 dBm) | 8 dBm/3kHz             |
| 2400 – 2483.5             | 1 Watt (30 dBm) | 8 dBm/3kHz             |
| 5725 - 5850               | 1 Watt (30 dBm) | 8 dBm/3kHz             |

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

#### TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

#### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r$  = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R80791 Page 21 of 22

#### SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $F_d$  = Distance Factor in dB

 $D_m$  = Measurement Distance in meters

 $D_S$  = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 $R_r$  = Receiver Reading in dBuV/m

 $F_d$  = Distance Factor in dB

 $R_c$  = Corrected Reading in dBuV/m

 $L_S$  = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R80791 Page 22 of 22

# Appendix A Test Equipment Calibration Data

| •                     | Bandedge), 13,14-Sep-10       |                   |         |            |
|-----------------------|-------------------------------|-------------------|---------|------------|
| <u>Manufacturer</u>   | <u>Description</u>            | <u>Model</u>      | Asset # | Cal Due    |
| EMCO                  | Antenna, Horn, 1-18 GHz       | 3115              | 1142    | 8/2/2012   |
|                       | (SA40-Red)                    |                   |         |            |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, (SA40) | 8564E (84125C)    | 1771    | 8/26/2011  |
|                       | Purple                        | ,                 |         |            |
|                       | '                             |                   |         |            |
| Radio Antenna Port (E | Bandedge), 15-Sep-10          |                   |         |            |
| Manufacturer          | Description                   | Model             | Asset # | Cal Due    |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, FT     | 8564E (84125C)    | 1393    | 4/14/2011  |
| 110Wiote 1 donard     | (SA40) Blue                   | (011200)          | 1000    | 1/1 1/2011 |
| EMCO                  | Antenna, Horn, 1-18 GHz       | 3115              | 1561    | 6/22/2012  |
| LIVICO                | Antenna, Hom, 1-10 GHZ        | 3113              | 1301    | 0/22/2012  |
| Radio Antenna Port (E | Randedge) 16-Sen-10           |                   |         |            |
| Manufacturer (2       | Description                   | Model             | Asset # | Cal Due    |
| EMCO                  | Antenna, Horn, 1-18GHz        | 3115              | 868     | 6/8/2012   |
|                       |                               |                   |         |            |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, (SA40) | 8564E (84125C)    | 1771    | 8/26/2011  |
|                       | Purple                        |                   |         |            |
| Badia (Spuriaua Emia  | sions) 16 San 10              |                   |         |            |
| Radio (Spurious Emis  |                               | Madal             | A 4 #   | Cal Dua    |
| <u>Manufacturer</u>   | <u>Description</u>            | Model             | Asset # | Cal Due    |
| Rohde & Schwarz       | Power Meter, Single Channel   | NRVS              | 1290    | 10/22/2010 |
| EMCO                  | Antenna, Horn, 1-18 GHz       | 3115              | 1561    | 6/22/2012  |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, (SA40) | 8564E (84125C)    | 1771    | 8/26/2011  |
|                       | Purple                        |                   |         |            |
| Rohde & Schwarz       | Attenuator, 20 dB, 10W, DC-18 | 20dB, 10W, Type N | 1795    | 6/2/2011   |
|                       | GHz                           |                   |         |            |
| Rohde & Schwarz       | Power Sensor 100 uW - 10      | NRV-Z53           | 1796    | 6/2/2011   |
|                       | Watts                         |                   |         |            |
|                       |                               |                   |         |            |
|                       | OTS Bandedge, 17-Sep-10       |                   |         |            |
| <u>Manufacturer</u>   | <u>Description</u>            | <u>Model</u>      | Asset # | Cal Due    |
| EMCO                  | Antenna, Horn, 1-18 GHz       | 3115              | 487     | 7/6/2012   |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, (SA40) | 8564E (84125C)    | 1771    | 8/26/2011  |
|                       | Purple                        |                   |         |            |
| Rohde & Schwarz       | Power Sensor 100 uW - 10      | NRV-Z53           | 1555    | 2/5/2011   |
|                       | Watts                         |                   |         |            |
| Rohde & Schwarz       | Attenuator, 20 dB, 50 ohm,    | 20dB, 10W, Type N | 1556    | 2/5/2011   |
|                       | 10W, DC-18 GHz                | , - , 31 -        |         |            |
| Rohde & Schwarz       | Power Meter, Dual Channel     | NRVD              | 1787    | 12/4/2010  |
| rtondo di Commanz     | Tower meter, Buar Grianner    |                   |         | 12/ 1/2010 |
| DTS Spurs, 20-Sep-10  |                               |                   |         |            |
| Manufacturer          | <u>Description</u>            | Model             | Asset # | Cal Due    |
| EMCO                  | Antenna, Horn, 1-18 GHz       | 3115              | 487     | 7/6/2012   |
| Hewlett Packard       | Microwave Preamplifier, 1-    | 8449B             | 870     | 6/25/2011  |
| riewiett i aekara     | 26.5GHz                       | 04430             | 070     | 0/20/2011  |
| Micro-Tronics         | Band Reject Filter, 2400-2500 | BRM50702-02       | 1683    | 8/10/2011  |
| MICIO- FIOLICS        |                               | DIVINOUTUZ-UZ     | 1003    | 0/10/2011  |
| Howlett Doolsond      | MHz                           | 0ECAE (0440EC)    | 1774    | 0/06/0044  |
| Hewlett Packard       | SpecAn 9 kHz - 40 GHz, (SA40) | 8564E (84125C)    | 1771    | 8/26/2011  |
|                       | Purple                        |                   |         |            |

File: R80791 Appendix Page 1 of 4

| Radiated Emissions.               | 1000 - 26,500 MHz, 20-Sep-10                                   |                    |                 |                              |
|-----------------------------------|----------------------------------------------------------------|--------------------|-----------------|------------------------------|
| Manufacturer                      | Description                                                    | Model              | Asset #         | Cal Due                      |
| EMCO                              | Antenna, Horn, 1-18 GHz                                        | 3115               | 487             | 7/6/2012                     |
| Hewlett Packard                   | Microwave Preamplifier, 1-<br>26.5GHz                          | 8449B              | 870             | 6/25/2011                    |
| Rohde & Schwarz                   | Power Sensor 100 uW - 10<br>Watts                              | NRV-Z53            | 1555            | 2/5/2011                     |
| Rohde & Schwarz                   | Attenuator, 20 dB, 50 ohm, 10W, DC-18 GHz                      | 20dB, 10W, Type N  | 1556            | 2/5/2011                     |
| Micro-Tronics                     | Band Reject Filter, 2400-2500<br>MHz                           | BRM50702-02        | 1683            | 8/10/2011                    |
| Hewlett Packard                   | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple                        | 8564E (84125C)     | 1771            | 8/26/2011                    |
| Hewlett Packard                   | Head (Inc W1-W4, 1946, 1947)<br>Purple                         | 84125C             | 1772            | 5/6/2011                     |
| Rohde & Schwarz                   | Power Meter, Dual Channel                                      | NRVD               | 1787            | 12/4/2010                    |
| A.H. Systems                      | Blue System Horn, 18-40GHz                                     | SAS-574, p/n: 2581 | 2159            | 3/18/2011                    |
|                                   | 1000 - 40,000 MHz, 21-Sep-10                                   |                    |                 |                              |
| Manufacturer                      | <u>Description</u>                                             | Model              | Asset #         | Cal Due                      |
| EMCO                              | Antenna, Horn, 1-18 GHz                                        | 3115               | 487             | 7/6/2012                     |
| Hewlett Packard                   | Microwave Preamplifier, 1-<br>26.5GHz                          | 8449B              | 870             | 6/25/2011                    |
| Micro-Tronics                     | Band Reject Filter, 5725-5875<br>MHz                           | BRC50705-02        | 1728            | 2/1/2011                     |
| Hewlett Packard                   | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple                        | 8564E (84125C)     | 1771            | 8/26/2011                    |
| Hewlett Packard                   | Head (Inc W1-W4, 1946, 1947)<br>Purple                         | 84125C             | 1772            | 5/6/2011                     |
| A.H. Systems  Conducted Emissions | Blue System Horn, 18-40GHz<br>s - AC Power Ports, 28-Sep-10    | SAS-574, p/n: 2581 | 2159            | 3/18/2011                    |
| <u>Manufacturer</u>               | <u>Description</u>                                             | <u>Model</u>       | Asset #         | Cal Due                      |
| Rohde & Schwarz                   | Pulse Limiter                                                  | ESH3 Z2            | 372             | 2/3/2011                     |
| Solar Electronics                 | LISN                                                           | 8028-50-TS-24-BNC  | 904             | 3/2/2011                     |
| EN4CO                             | LICNI 40 LILE 400 MILE                                         | support            | 4000            | 0/40/0044                    |
| EMCO                              | LISN, 10 kHz-100 MHz                                           | 3825/2             | 1292            | 3/12/2011                    |
| Hewlett Packard                   | EMC Spectrum Analyzer, 9 KHz - 22 GHz                          | 8593EM             | 1319            | 10/19/2010                   |
| Rohde & Schwarz                   | Test Receiver, 9 kHz-2750 MHz                                  | ESCS 30            | 1337            | 11/11/2010                   |
|                                   | 30 - 1,000 MHz, 28-Sep-10                                      | Model              | Accet #         | Cal Dua                      |
| Manufacturer Hewlett Packard      | <u>Description</u><br>EMC Spectrum Analyzer, 9 KHz<br>- 22 GHz | 8593EM             | Asset #<br>1319 | <u>Cal Due</u><br>10/19/2010 |
| Rohde & Schwarz                   | Test Receiver, 9 kHz-2750 MHz                                  | ESCS 30            | 1337            | 11/11/2010                   |
| Sunol Sciences                    | Biconilog, 30-3000 MHz                                         | JB3                | 1548            | 6/24/2012                    |
| Com-Power Corp.                   | Preamplifier, 30-1000 MHz                                      | PAM-103            | 2234            | 5/19/2011                    |
| Radio Antenna Port (I             | Power and Spurious Emissions), :                               | 28-Sep-10          |                 |                              |
| <u>Manufacturer</u>               | <u>Description</u>                                             | <u>Model</u>       | Asset #         | Cal Due                      |
| Rohde & Schwarz                   | Power Meter, Single Channel                                    | NRVS               | 1290            | 10/22/2010                   |
| Hewlett Packard                   | SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue                       | 8564E (84125C)     | 1393            | 4/14/2011                    |
| Rohde & Schwarz                   | Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)        | NRV-Z32            | 1536            | 9/13/2011                    |
| Rohde & Schwarz                   | Power Sensor 100 uW - 10<br>Watts                              | NRV-Z53            | 1555            | 2/5/2011                     |
| Rohde & Schwarz                   | Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz                     | 20dB, 10W, Type N  | 1556            | 2/5/2011                     |
|                                   |                                                                |                    |                 |                              |

File: R80791 Appendix Page 2 of 4

| RE, Wi-Fi & BT Simulta | RE, Wi-Fi & BT Simultaneous Tx, 30-Sep-10 |                   |         |            |  |  |  |  |
|------------------------|-------------------------------------------|-------------------|---------|------------|--|--|--|--|
| Manufacturer           | <u>Description</u>                        | <u>Model</u>      | Asset # | Cal Due    |  |  |  |  |
| Hewlett Packard        | Microwave Preamplifier, 1-<br>26.5GHz     | 8449B             | 263     | 12/15/2010 |  |  |  |  |
| EMCO                   | Antenna, Horn, 1-18 GHz                   | 3115              | 786     | 12/11/2011 |  |  |  |  |
| Rohde & Schwarz        | Power Meter, Single Channel               | NRVS              | 1290    | 10/22/2010 |  |  |  |  |
| Hewlett Packard        | SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue  | 8564E (84125C)    | 1393    | 4/14/2011  |  |  |  |  |
| Rohde & Schwarz        | Power Sensor 100 uW - 10<br>Watts         | NRV-Z53           | 1555    | 2/5/2011   |  |  |  |  |
| Rohde & Schwarz        | Attenuator, 20 dB, 50 ohm, 10W, DC-18 GHz | 20dB, 10W, Type N | 1556    | 2/5/2011   |  |  |  |  |
| Micro-Tronics          | Band Reject Filter, 2400-2500<br>MHz      | BRM50702-02       | 1683    | 8/10/2011  |  |  |  |  |
| Radio Spurious and P   | ower, 01-Oct-10                           |                   |         |            |  |  |  |  |
| <u>Manufacturer</u>    | <u>Description</u>                        | <u>Model</u>      | Asset # | Cal Due    |  |  |  |  |
| Hewlett Packard        | SpecAn 9 KHz-26.5 GHz, Non-<br>Program    | 8563E             | 284     | 1/29/2011  |  |  |  |  |
| EMCO                   | Antenna, Horn, 1-18GHz                    | 3115              | 868     | 6/8/2012   |  |  |  |  |
| Rohde & Schwarz        | Power Meter, Single Channel               | NRVS              | 1290    | 10/22/2010 |  |  |  |  |
| Rohde & Schwarz        | Power Sensor 100 uW - 10<br>Watts         | NRV-Z53           | 1555    | 2/5/2011   |  |  |  |  |
| Hewlett Packard        | Microwave Preamplifier, 1-<br>26.5GHz     | 8449B             | 2199    | 1/11/2011  |  |  |  |  |
| Radiated Emissions, 0  |                                           |                   |         |            |  |  |  |  |
| <u>Manufacturer</u>    | <u>Description</u>                        | <u>Model</u>      | Asset # | Cal Due    |  |  |  |  |
| Rohde & Schwarz        | Power Meter, Single Channel               | NRVS              | 1290    | 10/22/2010 |  |  |  |  |
| Rohde & Schwarz        | Power Sensor 100 uW - 10<br>Watts         | NRV-Z53           | 1555    | 2/5/2011   |  |  |  |  |
| EMCO                   | Antenna, Horn, 1-18 GHz                   | 3115              | 1561    | 6/22/2012  |  |  |  |  |
| Hewlett Packard        | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple   | 8564E (84125C)    | 1771    | 8/26/2011  |  |  |  |  |

File: R80791 Appendix Page 3 of 4

# Appendix B Test Data

T80540

**AC Conducted Emissions** 83 Pages

**Radiated Spurious Emissions** 

T80759

74 Pages

Antenna Port Measurements

T80540

Radiated Spurious Emissions – simultaneous transmissions from

30 Pages

Bluetooth and Wi-Fi transceivers

Appendix Page 4 of 4 File: R80791

| <b>Ellio</b>           |                                  | El               | MC Test Data      |
|------------------------|----------------------------------|------------------|-------------------|
| Client:                | Intel Corporation                | Job Number:      | J80398            |
| Model:                 | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
|                        |                                  | Account Manager: | Christine Krebill |
| Contact:               | Steve Hackett                    |                  | -                 |
| Emissions Standard(s): | FCC 15.247                       | Class:           | В                 |
| Immunity Standard(s):  | -                                | Environment:     | -                 |

For The

# **Intel Corporation**

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

|           | An ATAS company                      | EMO              | C Test Data       |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
| Model.    | IIILEI® Ceritiiilo® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
|           | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | В                 |

#### **Conducted Emissions**

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

#### **Test Specific Details**

**>**□II: - 44

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/28/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 21.9 °C

Rel. Humidity: 42 %

#### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run # | Test Performed          | Limit            | Result | Margin                        |
|-------|-------------------------|------------------|--------|-------------------------------|
| 1     | CE, AC Power, 120V/60Hz | RSS 210 / 15.207 | Pass   | 40.6dBµV @ 14.758MHz (-9.4dB) |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

| Client:                                | Intel Corporation                                                                                                                                                                                       |                | Job Number:  | J80398            |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------|
| \ladal:                                | Intel® Centrino® Advanced-N 6230                                                                                                                                                                        | T-             | Log Number:  | T80540            |
|                                        |                                                                                                                                                                                                         | Acco           | unt Manager: | Christine Krebill |
|                                        | Steve Hackett                                                                                                                                                                                           |                |              |                   |
|                                        | FCC 15.247                                                                                                                                                                                              |                | Class:       | В                 |
| +1. AU                                 | Power Port Conducted Emissions, 0.15 - 30MHz, 120V/50Hz                                                                                                                                                 |                |              |                   |
| - 30 N                                 | MHz, 120V/60Hz, Line                                                                                                                                                                                    |                |              |                   |
| 70.0                                   |                                                                                                                                                                                                         |                |              |                   |
| 70.0                                   |                                                                                                                                                                                                         |                |              |                   |
| 60.0                                   | 1-                                                                                                                                                                                                      | ······         |              |                   |
| i                                      |                                                                                                                                                                                                         |                |              |                   |
| 50.0                                   |                                                                                                                                                                                                         |                | _            |                   |
|                                        |                                                                                                                                                                                                         |                | A            |                   |
| 40.0                                   |                                                                                                                                                                                                         | ^              | ( / <b>V</b> |                   |
| 30.0                                   | -                                                                                                                                                                                                       | P              | <b>)</b>     |                   |
|                                        | ── <b>┆╴╟┍┩╻<sub>╍</sub>┆╻╫╫╄╀┦┦┩╃╿</b> ╙╬ <b>┰</b> ╏┯╬┱╃╄╋┺╱┌┰╱┑╭┌╌╲╅水╱ <sub>┡╾</sub> ┦┡ <sub>┍</sub> ┸╲╷ <sub>┡╾</sub> ┉╅ <sub>╇</sub> ╻┸┪╚┶ <sub>╇</sub> ┉╃ <sup>╈</sup> ┿⋑╃ <i>┱</i> <sup>┱</sup> ┩ | www.lwlw.lu.   | W/V )        | Marian Indiana    |
|                                        |                                                                                                                                                                                                         | m <sup>r</sup> |              |                   |
| 20.0                                   |                                                                                                                                                                                                         | m*             |              |                   |
|                                        | 1,000                                                                                                                                                                                                   |                | 000          | 30.000            |
|                                        | 0.150 1.000<br>Frequency (MHz)                                                                                                                                                                          |                | 000          | 30,000            |
| - 30 N                                 | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | 000          | 30.000            |
|                                        | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | 000          | 30.000            |
| - 30 f<br>70.0                         | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | 000          | 30,000            |
| - 30 M<br>70.0                         | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | 000          | 30.000            |
| - 30 M<br>70.0                         | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | 000          | 30,000            |
| - 30 M<br>70.0                         | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                |              | 30.000            |
| - 30 M<br>70.0                         | MHz, 120V/60Hz, Neutral                                                                                                                                                                                 |                | . A          | 30.000            |
| - 30 M<br>70.0<br>60.0<br>50.0         | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          |                | 1. /         | 30.000            |
| - 30 M<br>70.0                         | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          |                |              | 30.000            |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 7.150 1.000 Frequency (MHz)                                                                                                                                                                             | 10.            |              | 30,000            |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          | 10.            | 1. /         | 30.000            |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 7.150 1.000 Frequency (MHz)                                                                                                                                                                             | 10.            |              |                   |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          | 10.            |              |                   |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          | 10.            |              |                   |
| - 30 M<br>70.0<br>60.0<br>50.0<br>30.0 | 1.000 Frequency (MHz)  MHz, 120V/60Hz, Neutral                                                                                                                                                          | 10.            |              |                   |

| Client:                 | Intel Corpora | ation        |              |                |            |                            | Job Number:      | J80398            |
|-------------------------|---------------|--------------|--------------|----------------|------------|----------------------------|------------------|-------------------|
| Madalı                  | Intol® Contr  | ina Advana   | -4 VI 6030   |                |            |                            | T-Log Number:    | T80540            |
| woder:                  | Intel® Centr  | ino® Advanc  | ea-in 6230   |                |            |                            | Account Manager: | Christine Krebill |
| Contact:                | Steve Hacke   | ett          |              |                |            |                            |                  |                   |
| Standard:               | FCC 15.247    | ,            |              |                |            |                            | Class:           | В                 |
| Preliminary             | neak readir   | nas cantured | l during pre | -scan (neak    | readings v | s. average limit)          |                  |                   |
| Frequency               | Level         | AC AC        |              | ss B           | Detector   | Comments                   |                  |                   |
| MHz                     | dΒμV          | Line         | Limit        | Margin         | QP/Ave     |                            |                  |                   |
| 2.739                   | 30.4          | Line 1       | 46.0         | -15.6          | Peak       |                            |                  |                   |
| 4.528                   | 31.8          | Line 1       | 46.0         | -14.2          | Peak       |                            |                  |                   |
| 9.571                   | 41.2          | Line 1       | 50.0         | -8.8           | Peak       |                            |                  |                   |
| 14.272                  | 44.9          | Line 1       | 50.0         | -5.1           | Peak       |                            |                  |                   |
| 14.925                  | 45.4          | Line 1       | 50.0         | -4.6           | Peak       |                            |                  |                   |
| 9.073                   | 44.0          | Neutral      | 50.0         | -6.0           | Peak       |                            |                  |                   |
| 9.336                   | 44.9          | Neutral      | 50.0         | -5.1           | Peak       |                            |                  |                   |
| 14.758                  | 47.7          | Neutral      | 50.0         | -2.3           | Peak       |                            |                  |                   |
| inal quasi              | peak and a    | verage readi | ngs          |                |            |                            |                  |                   |
| requency                | Level         | AC           | Cla          | ss B           | Detector   | Comments                   |                  |                   |
| MHz                     | dΒμV          | Line         | Limit        | Margin         | QP/Ave     |                            |                  |                   |
| 14.758                  | 40.6          | Neutral      | 50.0         | -9.4           | AVG        | AVG (0.100s)               |                  |                   |
| 14.272                  | 40.1          | Line 1       | 50.0         | -9.9           | AVG        | AVG (0.100s)               |                  |                   |
| 14.925                  | 35.7          | Line 1       | 50.0         | -14.3          | AVG        | AVG (0.100s)               |                  |                   |
| 14.272                  | 44.8          | Line 1       | 60.0         | -15.2          | QP         | QP (1.000s)                |                  |                   |
| 9.336                   | 34.6          | Neutral      | 50.0         | -15.4          | AVG        | AVG (0.100s)               |                  |                   |
| 14.758                  | 44.6          | Neutral      | 60.0         | -15.4          | QP         | QP (1.000s)                |                  |                   |
| 9.073                   | 32.7          | Neutral      | 50.0         | -17.3          | AVG        | AVG (0.100s)               |                  |                   |
| 9.571                   | 32.6          | Line 1       | 50.0         | -17.4          | AVG        | AVG (0.100s)               |                  |                   |
| 14.925                  | 42.4          | Line 1       | 60.0         | -17.6          | QP         | QP (1.000s)                |                  |                   |
|                         | 39.9          | Neutral      | 60.0         | -20.1          | QP         | QP (1.000s)                |                  |                   |
| 9.073                   | 39.7          | Neutral      | 60.0         | -20.3<br>-22.1 | QP<br>QP   | QP (1.000s)<br>QP (1.000s) |                  |                   |
| 9.073<br>9.336<br>9.571 | 37.9          | Line 1       |              |                |            | I/\D\/4\0\0\-\             |                  |                   |



|           | · · · · · · · · · · · · · · · · · · · |                  |                   |
|-----------|---------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                     | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230      | T-Log Number:    | T80540            |
| Model.    | IIIIele Celitiiloe Advanced-iv 0230   | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                         |                  |                   |
| Standard: | FCC 15.247                            | Class:           | В                 |

### Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

#### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/28/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

#### Ambient Conditions:

Temperature: 21.9 °C Rel. Humidity: 42 %

#### Summary of Results

#### MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run # | Test Performed                      | Limit                | Result | Margin                             |
|-------|-------------------------------------|----------------------|--------|------------------------------------|
| 1     | Radiated Emissions<br>30 - 1000 MHz | FCC 15.209 / RSS 210 | Pass   | 41.2dBµV/m @ 662.52MHz<br>(-4.8dB) |

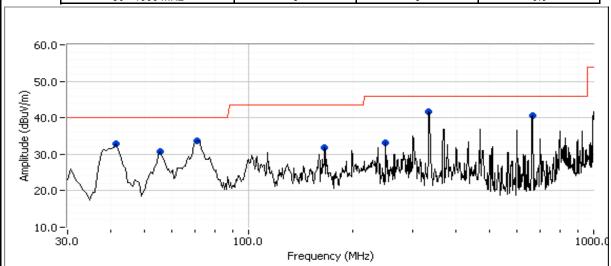
Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data

#### **Modifications Made During Testing**

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.




|           | All Deed Company                 |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
|           | Intel® Centino® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | В                 |

#### Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Configured to TX, 802.11b 16.5dBm on each chain (settings 23.5) on channel 6, Bluetooth 7dBm, 1Mb/s (settings 8.0)

| Frequency Range | Test Distance | Limit Distance | Extrapolation Factor |
|-----------------|---------------|----------------|----------------------|
| 30 - 1000 MHz   | 3             | 3              | 0.0                  |



Preliminary peak readings captured during pre-scan

| Frequency | Level  | Pol | FCC 15.209 | 9 / RSS 210 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|------------|-------------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit      | Margin      | Pk/QP/Avg | degrees | meters |          |
| 39.869    | 33.0   | V   | 40.0       | -7.0        | Peak      | 185     | 2.5    |          |
| 55.317    | 30.8   | V   | 40.0       | -9.2        | Peak      | 333     | 1.0    |          |
| 70.276    | 33.6   | V   | 40.0       | -6.4        | Peak      | 40      | 1.0    |          |
| 166.249   | 31.8   | V   | 43.5       | -11.7       | Peak      | 202     | 1.0    |          |
| 250.000   | 33.1   | Η   | 46.0       | -12.9       | Peak      | 154     | 1.5    |          |
| 299.217   | 36.3   | Η   | 46.0       | -9.7        | Peak      | 172     | 1.0    |          |
| 332.857   | 41.7   | Н   | 46.0       | -4.3        | Peak      | 116     | 1.0    |          |
| 662.560   | 40.5   | V   | 46.0       | -5.5        | Peak      | 44      | 1.0    |          |

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

| Frequency | Level  | Pol | FCC 15.209 | 9 / RSS 210 | Detector  | Azimuth | Height | Comments    |
|-----------|--------|-----|------------|-------------|-----------|---------|--------|-------------|
| MHz       | dBμV/m | v/h | Limit      | Margin      | Pk/QP/Avg | degrees | meters |             |
| 662.515   | 41.2   | V   | 46.0       | -4.8        | QP        | 44      | 1.0    | QP (1.000s) |
| 332.857   | 36.9   | Н   | 46.0       | -9.1        | QP        | 116     | 1.0    | QP (1.000s) |
| 39.869    | 29.7   | V   | 40.0       | -10.3       | QP        | 185     | 2.5    | QP (1.000s) |
| 70.276    | 29.3   | V   | 40.0       | -10.7       | QP        | 40      | 1.0    | QP (1.000s) |
| 55.317    | 27.1   | V   | 40.0       | -12.9       | QP        | 333     | 1.0    | QP (1.000s) |
| 166.249   | 27.3   | V   | 43.5       | -16.2       | QP        | 202     | 1.0    | QP (1.000s) |

| EI | liott           |
|----|-----------------|
|    | An ATAT company |

|           | An 2022 Company                    |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

## RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

|          |                | • · · · · · · · · · · · · · · · · · · · |                 |                   | 0101 11011 1001 110111 0/11         | Billion volcion i mololo | · ·                                |
|----------|----------------|-----------------------------------------|-----------------|-------------------|-------------------------------------|--------------------------|------------------------------------|
| Run#     | Mode           | Channel                                 | Target<br>Power | Measured<br>Power | Test Performed                      | Limit                    | Result / Margin                    |
| Run # 1  | n40            | #3<br>2422MHz                           | 16.5            | 10.5              | Restricted Band Edge at<br>2400 MHz | 15.209                   | 52.6dBµV/m @<br>2390.0MHz (-1.4dB) |
| Kull# I  | Chain A        | #9<br>2452MHz                           | 16.5            | 10.1              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 52.4dBµV/m @<br>2483.5MHz (-1.6dB) |
| Run # 2  | n40            | #4<br>2427MHz                           | 16.5            | 10.5              | Restricted Band Edge at 2400 MHz    | 15.209                   | 52.3dBµV/m @<br>2390.0MHz (-1.7dB) |
| Null#2   | Chain A        | #8<br>2447MHz                           | 16.5            | 10.2              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 52.9dBµV/m @<br>2483.5MHz (-1.1dB) |
| Run # 3  | n40            | #5<br>2432MHz                           | 16.5            | 12.5              | Restricted Band Edge at 2400 MHz    | 15.209                   | 53.0dBµV/m @<br>2390.0MHz (-1.0dB) |
| IXuII#3  | Chain A        | #7<br>2442MHz                           | 16.5            | 11.2              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 52.0dBµV/m @<br>2483.5MHz (-2.0dB) |
| Run # 4  | n40<br>Chain A | #6<br>2437MHz                           | 16.5            | 13.5              | Restricted Band Edge at<br>2400 MHz | 15.209                   | 49.9dBµV/m @<br>2390.0MHz (-4.1dB) |
| Rull#4   |                |                                         | 16.5            | 13.5              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 51.9dBµV/m @<br>2483.5MHz (-2.1dB) |
| Run # 5  | n20<br>Chain A | #1<br>2412MHz                           | 16.5            | 12.9              | Restricted Band Edge at 2400 MHz    | 15.209                   | 52.4dBµV/m @<br>2390.0MHz (-1.6dB) |
| Rull#3   |                | #11<br>2462MHz                          | 16.5            | 12.4              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 50.8dBµV/m @<br>2483.5MHz (-3.2dB) |
| Run # 6  | 802.11g        | #1<br>2412MHz                           | 16.5            | 14.1              | Restricted Band Edge at 2400 MHz    | 15.209                   | 51.9dBµV/m @<br>2390.0MHz (-2.1dB) |
| Rull # 0 | Chain A        | #11<br>2462MHz                          | 16.5            | 13.9              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 52.8dBµV/m @<br>2483.5MHz (-1.2dB) |
| Run # 7  | 802.11b        | #1<br>2412MHz                           | 16.5            | 16.5              | Restricted Band Edge at 2400 MHz    | 15.209                   | 50.7dBµV/m @<br>2389.6MHz (-3.3dB) |
| Aun#7    | Chain A        | #11<br>2462MHz                          | 16.5            | 16.9              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 49.3dBµV/m @<br>2485.3MHz (-4.7dB) |
| Run # 8  | 802.11n20      | #2<br>2417MHz                           | 16.5            | 15.7              | Restricted Band Edge at 2400 MHz    | 16.209                   | 52.7dBµV/m @<br>2390.0MHz (-1.3dB) |
| ruii#0   | Chain A        |                                         | 16.5            | 15.8              | Restricted Band Edge at 2483.5 MHz  | 15.209                   | 52.4dBµV/m @<br>2390.0MHz (-1.6dB) |

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.



| An <u>DCZP</u> ) company |                                     |                  |                   |  |  |  |  |  |
|--------------------------|-------------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:                  | Intel Corporation                   | Job Number:      | J80398            |  |  |  |  |  |
| Madali                   | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |  |  |  |  |  |
| woder.                   | IIItel® Certifillo® Advanced-N 0250 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:                 | Steve Hackett                       |                  |                   |  |  |  |  |  |
| Standard:                | FCC 15.247                          | Class:           | N/A               |  |  |  |  |  |

### Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

#### General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

#### Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

### Modifications Made During Testing

No modifications were made to the EUT during testing

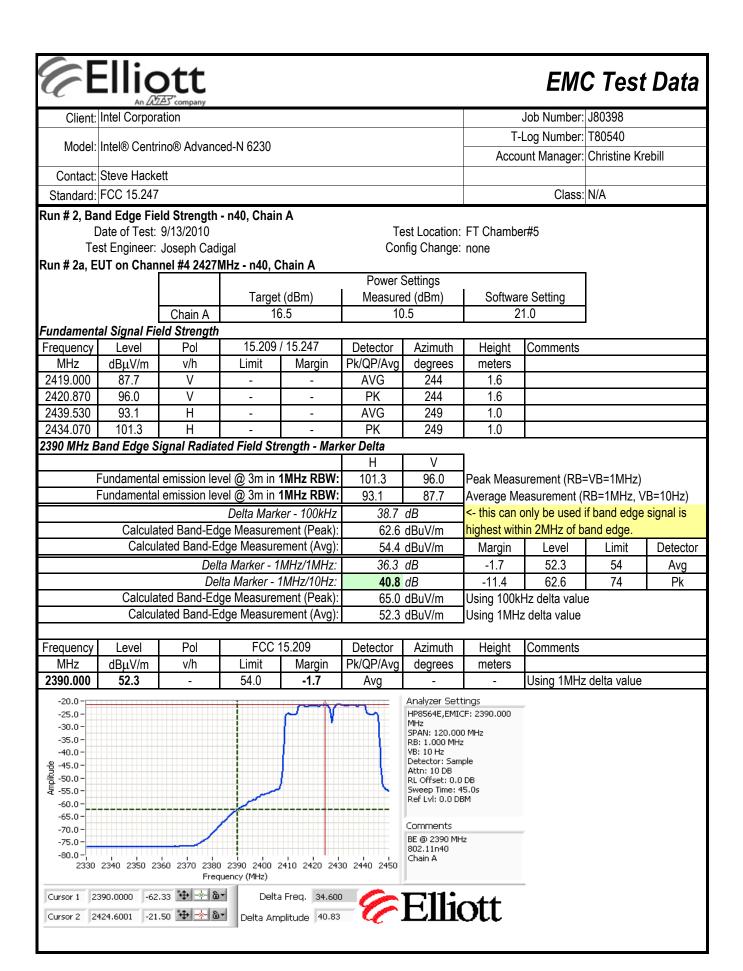
#### Deviations From The Standard

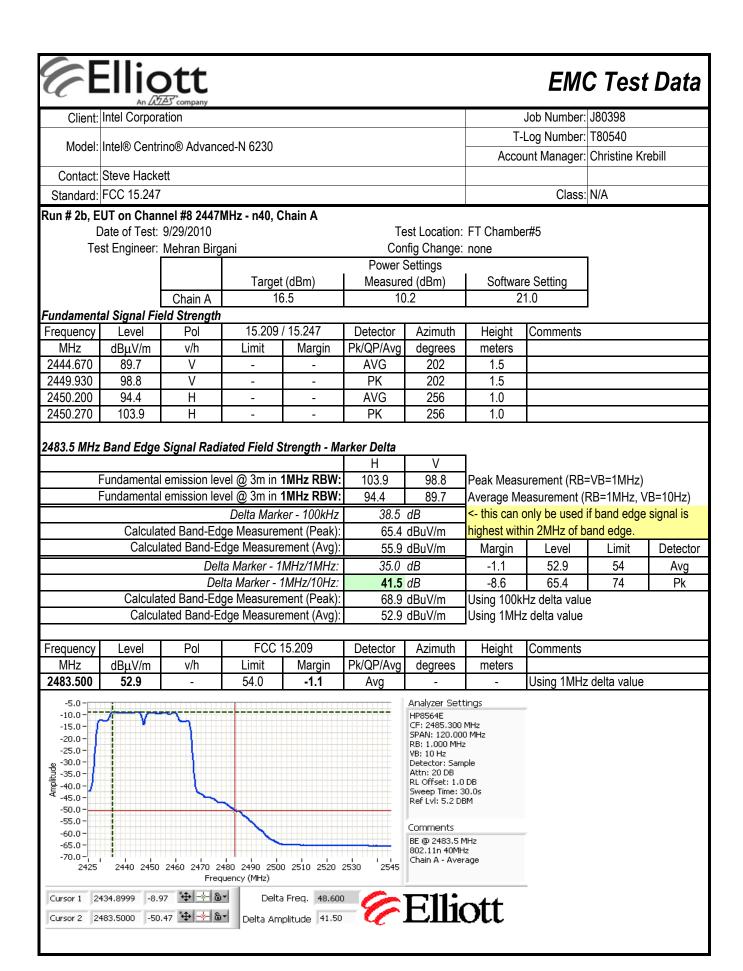
No deviations were made from the requirements of the standard.

#### Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation.

The fundamental field strength is always measured at a 3m test distance.


#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 1, Band Edge Field Strength - n40, Chain A Date of Test: 9/14/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none Run # 1a, EUT on Channel #3 2422MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 10.5 20.0 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2434.730 91.8 Η AVG 252 1.0 -2420.070 Н PK 252 1.0 99.8 2419.130 86.6 ٧ **AVG** 217 2.1 2416.000 94.7 ٧ PΚ 217 2.1 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 99.8 94.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 91.8 86.6 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 37.0 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 62.8 dBuV/m Calculated Band-Edge Measurement (Avg) 54.8 dBuV/m Margin Level Limit Detector -1.4 52.6 Delta Marker - 1MHz/1MHz: 35.8 dB 54 Avg Delta Marker - 1MHz/10Hz: **39.2** dB -11.2 62.8 74 Pk Calculated Band-Edge Measurement (Peak) 64.0 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 52.6 dBuV/m Using 1MHz delta value Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avq degrees meters 2390.000 54.0 -1.4 Using 1MHz delta value 52.6 Avg -20.0 Analyzer Settings HP8564E,EMICF: 2390.000 -25.0 -30.0 SPAN: 110.000 MHz -35.0 RB: 1.000 MHz -40.0 VB: 10 Hz Detector: Sample -45.0· Attn: 10 DB -50.0 RL Offset: 0.0 DB -55.0 Sweep Time: 41.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2390 MHz -75.0· 802.11n40 -80.0 -¦ 2350 2360 2370 2380 2390 2400 2410 2420 2430 Frequency (MHz) Cursor 1 2390.0000 -61.83 ♣ ♣ 🌬 Delta Freq. 19.983

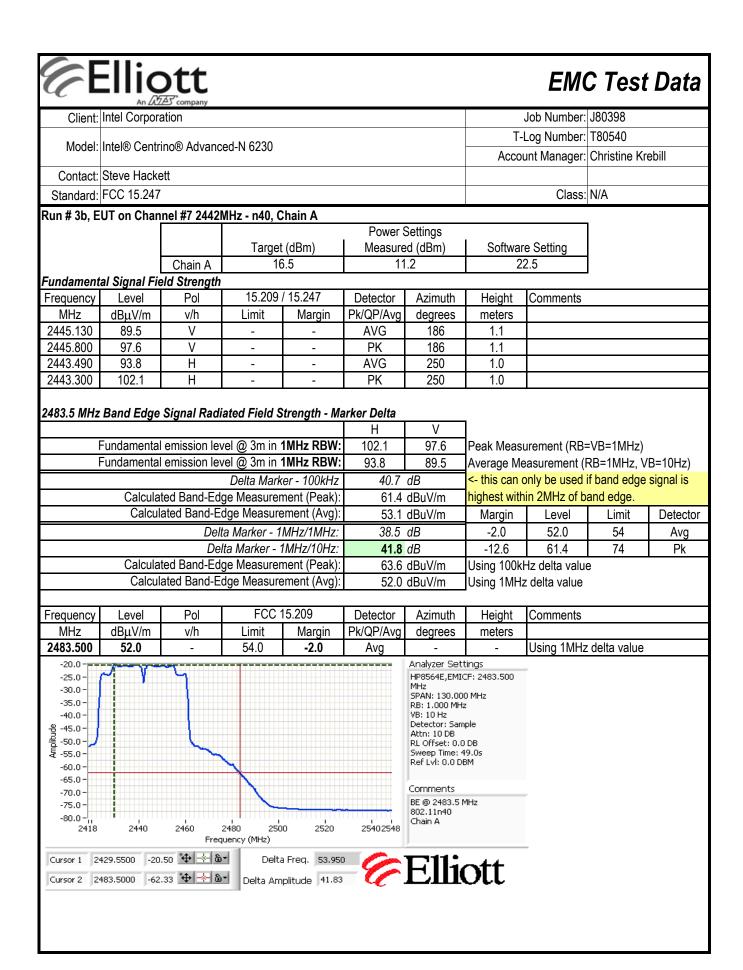

Cursor 2 2409,9834

-22.67 💠 😽 🖫

Delta Amplitude 39.17

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 1b, EUT on Channel #9 2452MHz - n40, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 10.0 21.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Comments Pol Height v/h Limit Pk/QP/Avq degrees MHz dBuV/m Margin meters 2449.000 89.4 ٧ **AVG** 189 1.6 2440.870 98.2 ٧ PΚ 189 1.6 90.1 Η **AVG** 254 1.0 2443.930 --2440.600 101.2 Н PΚ 254 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 98.2 101.2 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 90.1 89.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 35.2 dB Calculated Band-Edge Measurement (Peak): 66.0 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 54.9 dBuV/m Margin Level Detector Limit Delta Marker - 1MHz/1MHz: 34.0 dB -1.6 52.4 54 Avg Delta Marker - 1MHz/10Hz: **37.7** dB -8.0 66.0 74 Pk Calculated Band-Edge Measurement (Peak): 67.2 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 1MHz delta value Pol FCC 15.209 Detector Comments Frequency Level Azimuth Height Pk/QP/Avq MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2483.500 52.4 54.0 -1.6 Ava Using 1MHz delta value Analyzer Settings -25.0 HP8564E,EMICF: 2483,500 -30.0 SPAN: 110.000 MHz -35.0 RB: 1,000 MHz VB: 10 Hz -40.0 Detector: Sample -45.0· Attn: 10 DB -50.0 RL Offset: 0.0 DB Sweep Time: 41.0s -55.0 Ref Lvl: 0.0 DBM -60.0 -65.0· Comments -70.0 BE @ 2483.5 MHz -75.0 802.11n40 -80.0 -Chain A 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2538 Frequency (MHz) Cursor 1 2439.6833 -21.50 + --- 6 -Delta Freq. 43.817 Cursor 2 2483.5000 -59.17 💠 🛧 🖫 Delta Amplitude 37.67






#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 3, Band Edge Field Strength - n40, Chain A Date of Test: 9/15/2010 Test Location: FT Chamber #7 Test Engineer: Joseph Cadigal Config Change: none Run # 3a, EUT on Channel #5 2432MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.5 23.5 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2419.670 91.9 ٧ AVG 186 1.8 -٧ PK 1.8 2419.530 100.0 186 2444.600 95.3 Η **AVG** 252 1.0 2444.670 103.4 Н PΚ 252 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 103.4 100.0 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 95.3 91.9 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 40.5 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 62.9 dBuV/m Calculated Band-Edge Measurement (Avg): 54.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 38.0 dB -1.0 53.0 54 Avg Delta Marker - 1MHz/10Hz: 42.3 dB -11.1 62.9 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.4 dBuV/m Calculated Band-Edge Measurement (Avg): 53.0 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Comments Height MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 53.0 54.0 -1.0 Using 1MHz delta value Avq -15.0° Analyzer Settings -20.0 HP8564E,EMICF: 2390.000 -25.0 SPAN: 130,000 MHz $-30.0^{\circ}$ RB: 1.000 MHz -35.0 -VB: 10 Hz -40.0 Detector: Sample Attn: 10 DB -45.0 · RL Offset: 0.0 DB -50.0 -Sweep Time: 49.0s -55.0 Ref Lvl: 0.0 DBM -60.0 -65.0 Comments -70.0 BE @ 2390 MHz -75.0· 802.11n40 -80.0 -2340 2360 2400 2420 Delta Freq. 39.217

-19.00 💠 📥 🖫

Cursor 2 2429,2166

Delta Amplitude 42.33



#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 4, Band Edge Field Strength - n40, Chain A Date of Test: 9/15/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none EUT on Channel #6 2437MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 24.5 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2449.470 96.4 ٧ AVG 344 1.0 -2449.800 ٧ PK 1.0 104.8 344 2440.200 96.6 Η **AVG** 269 1.0 2449.730 104.8 Н PΚ 269 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 104.8 104.8 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.6 96.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **46.7** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 58.1 dBuV/m Calculated Band-Edge Measurement (Avg): 49.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 39.7 dB -4.1 49.9 54 Avg Delta Marker - 1MHz/10Hz: 46.5 dB -15.9 58.1 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.1 dBuV/m Calculated Band-Edge Measurement (Avg): 50.1 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 49.9 54.0 -4.1 Using 100kHz delta value Ava Analyzer Settings -10.0 HP8564E,EMICF: 2390.000 -20.0 SPAN: 140,000 MHz RB: 100 kHz -30.0 VB: 100 kHz Detector: POS -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 77.0ms Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2390 MHz 802.11n40 -80.0 2400 2320 2380 2420 Frequency (MHz) -59.00 ♣ -\*- ७-Delta Freq. 45.267 Cursor 1 2390,0000

Cursor 2 2435,2666

-12.33 💠 🗻 🖫

Delta Amplitude 46.67

#### **EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta Н V Fundamental emission level @ 3m in 1MHz RBW: 104.8 104.8 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.6 96.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 43.5 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.3 dBuV/m Calculated Band-Edge Measurement (Avg): 53.1 dBuV/m Margin Level Detector Limit -2.1 51.9 54 Delta Marker - 1MHz/1MHz: 38.3 dB Avg Delta Marker - 1MHz/10Hz: 44.7 dB -12.7 61.3 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 66.5 dBuV/m Calculated Band-Edge Measurement (Avg): 51.9 dBuV/m Using 1MHz delta value Pol FCC 15.209 Comments Frequency Level Detector Azimuth Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avq degrees meters 2483.500 51.9 54.0 -2.1 Avg Using 1MHz delta value -10.0 Analyzer Settings HP8564E,EMICF: 2483.500 -20.0 MHz SPAN: 140.000 MHz RB: 1.000 MHz VB: 10 Hz -30.0 Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 52.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2483.5 MHz -80.0 Chain A 2440 2480 2500 2520 2540 2554 2414 2460 Frequency (MHz) Cursor 1 2434.2666 -16.33 💠 🔆 🖫 Delta Freq. 49.233 -61.00 💠 📥 🔊 Delta Amplitude 44.67

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 5, Band Edge Field Strength - n20, Chain A Date of Test: 9/15/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none Run # 5a, EUT on Channel #1 2412MHz - n20, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.9 24.0 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2415.000 98.3 ٧ AVG 202 1.0 -٧ PK 1.0 2415.500 106.3 202 2415.270 100.1 Η **AVG** 320 1.0 2414.070 108.2 Н PΚ 320 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 108.2 106.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 100.1 98.3 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 47.0 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.2 dBuV/m Calculated Band-Edge Measurement (Avg): 53.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 37.5 dB -1.6 52.4 54 Avg Delta Marker - 1MHz/10Hz: **47.7** dB -12.8 61.2 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 70.7 dBuV/m Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 52.4 54 0 -1.6 Using 1MHz delta value Avq Analyzer Settings -10.0 HP8564E,EMICF: 2390.000 -20.0 SPAN: 70,000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 26.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2390 MHz -80.0 2420 2425 2355 2360 2380 2390 2400 2410 Frequency (MHz) Cursor 1 2390.0000 -61.00 ↔ 🛧 🗟 🕶 Delta Freq. 25,200

Cursor 2 2415.2000 -13.33 💠 📥 🗟 🖜

Delta Amplitude 47.67

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 5b, EUT on Channel #11 2462MHz - n20, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 12.4 23.5 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avq degrees meters 2465.230 97.3 ٧ **AVG** 344 1.0 2465.430 ٧ 105.5 PΚ 344 1.0 2465.130 96.6 Η **AVG** 320 1.0 PK 320 2465.300 104.9 Н 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 104.9 105.5 Peak Measurement (RB=VB=1MHz) Average Measurement (RB=1MHz, VB=10Hz) 96.6 Fundamental emission level @ 3m in 1MHz RBW: 97.3 <- this can only be used if band edge signal is Delta Marker - 100kHz **46.5** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 59.0 dBuV/m Calculated Band-Edge Measurement (Avg): 50.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: -3.2 50.8 54 37.2 dB Avg Delta Marker - 1MHz/10Hz: 46.3 dB -15.0 59.0 74 Pk Calculated Band-Edge Measurement (Peak): 68.3 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 51.0 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Azimuth Comments Frequency Level Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 54.0 -3.2 Using 100kHz delta value 50.8 Avg Analyzer Settings -10.0 HP8564E,EMICF: 2483.500 -20.0 SPAN: 70,000 MHz RB: 100 kHz -30.0 VB: 100 kHz Detector: POS -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 50.0ms Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2483.5 MHz 802.11n20 -80.0 Chain A 2460 2480 2490 2500 Frequency (MHz) Cursor 1 2467.1667 -10.17 💠 🔆 🖫 Delta Freq. 16.683 Cursor 2 2483.8501 -56.67 💠 🛧 🗟 🔻 Delta Amplitude 46.50

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 6, Band Edge Field Strength - 802.11g, Chain A Date of Test: 9/15/2010 Test Location: FT Chamber #7 Test Engineer: Joseph Cadigal Config Change: none Run # 6a, EUT on Channel #1 2412MHz - 802.11g, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 14.1 25.5 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2414.470 97.6 ٧ AVG 344 1.0 -2413.630 ٧ PK 1.0 105.8 344 2416.300 101.1 Η **AVG** 268 1.0 2415.030 109.2 Н PΚ 268 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 109.2 105.8 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 101.1 97.6 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 48.2 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.0 dBuV/m Calculated Band-Edge Measurement (Avg): 52.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 38.8 dB -2.1 51.9 54 Avg Delta Marker - 1MHz/10Hz: 49.2 dB -13.0 61.0 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 70.4 dBuV/m Calculated Band-Edge Measurement (Avg): 51.9 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 51.9 54.0 -2.1 Using 1MHz delta value Avq Analyzer Settings -10.0 HP8564E,EMICF: 2390.000 -20.0 SPAN: 70.000 MHz RB: 1.000 MHz -30.0 Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 26.0s Ref Lvl: 0.0 DBM Comments -70.0 BE @ 2390 MHz 802.11g -80.0 -Chain A 2355 2360 2370 2380 2390 2400 2410 2420 2425 Frequency (MHz) Cursor 1 2390.0000 -61.00 ↔ 🛧 🗟 🕶 Delta Freq. 21.117

Cursor 2 2411.1167 -11.83 💠 🐣 🔊

Delta Amplitude 49.17

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 6b, EUT on Channel #11 2462MHz - 802.11g, Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Comments Azimuth Height Pk/QP/Avq MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2464.170 98.8 ٧ 120.0 -21.2**AVG** 344 1.0 2465.230 106.9 ٧ 120.0 -13.1 PK 344 1.0 2460.540 100.0 Н 120.0 -20.0 **AVG** 268 1.0 2463.450 107.9 Н 120.0 -12.1PK 268 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta Η ٧ Fundamental emission level @ 3m in 1MHz RBW: 107.9 106.9 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 100.0 98.8 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 46.3 dB Calculated Band-Edge Measurement (Peak): 61.6 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 53.7 dBuV/m Margin Level Detector Limit Delta Marker - 1MHz/1MHz: 37.3 dB -1.2 52.8 54 Avg Delta Marker - 1MHz/10Hz: 47.2 dB -12.4 74 Pk 61.6 Calculated Band-Edge Measurement (Peak): Using 100kHz delta value dBuV/m Calculated Band-Edge Measurement (Avg): 52.8 dBuV/m Using 1MHz delta value FCC 15.209 Detector Pol Frequency Level Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 52.8 54.0 Using 1MHz delta value -1.2 Avg -10.0 Analyzer Settings HP8564E,EMICF: 2483.500 -20.0 SPAN: 70,000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 26.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2483.5 MHz 802.11g 2490 2460 2470 2480 2500 2510 2518 Cursor 1 2458.7666 -12.67 💠 🕸 🗟 🖜 Delta Freq. 24.733 Cursor 2 2483.5000 -59.83 💠 🐣 🔊 Delta Amplitude 47.17

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 7, Band Edge Field Strength - 802.11b, Chain A Date of Test: 9/15/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 7a, EUT on Channel #1 2412MHz - 802.11b, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.5 23.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2413.830 108.7 Н 120.0 -11.3 AVG 267 1.1 2413.200 112.1 Н 120.0 -7.9 PΚ 1.1 267 2410.370 103.4 ٧ 120.0 -16.6 **AVG** 202 1.0 2413.130 106.7 ٧ 120.0 -13.3 PΚ 202 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Η Fundamental emission level @ 3m in 1MHz RBW: 112.1 106.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 108.7 103.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 56.8 dB Calculated Band-Edge Measurement (Peak): 55.3 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 51.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 49.0 dB -3.3 50.7 54 Avg Delta Marker - 1MHz/10Hz: -18.7 55.3 74 Pk 58.0 dB Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 63.1 dBuV/m Calculated Band-Edge Measurement (Avg): Using 1MHz delta value 50.7 dBuV/m FCC 15.209 Frequency Pol Detector Comments Level Azimuth Height $dB\mu V/m$ Pk/QP/Ava MHz v/h Limit Margin degrees meters 2389.566 50.7 54.0 -3.3 Using 1MHz delta value Avg Analyzer Settings HP8564E,EMICF: 2390.000 -10.0 MHz SPAN: 65,000 MHz -20.0 RB: 1.000 MHz VB: 10 Hz Detector: Sample Attn: 10 DB -30.0 -40.0 RL Offset: 0.0 DB Sweep Time: 25.0s Ref Lvl: 0.0 DBM -50.0 -60.0

2370

Cursor 1 2389.5667 -63.67 💠 🔆 🖫

Cursor 2 2414.2666 -5.67 💠 🔆 🗟 🔻

2380

2390 Frequency (MHz)

Delta Freq. 24.700

Delta Amplitude 58.00

-70.0

-80.0

2358

Comments

Chain A

BE @ 2390 MHz 802.11b

| Client:                                                                                      | Intel Corpora   | ition        |                      |                |                       | Job Number:                                                    | J80398        |                  |               |         |
|----------------------------------------------------------------------------------------------|-----------------|--------------|----------------------|----------------|-----------------------|----------------------------------------------------------------|---------------|------------------|---------------|---------|
|                                                                                              |                 |              | T-Log Number: T80540 |                |                       |                                                                |               |                  |               |         |
| Model:                                                                                       | Intel® Centri   | no® Advanc   |                      | unt Manager:   |                       | ebill                                                          |               |                  |               |         |
|                                                                                              | Steve Hacke     | tt           |                      |                |                       |                                                                |               |                  |               |         |
| Standard:                                                                                    | FCC 15.247      |              |                      |                |                       |                                                                |               | Class:           | N/A           |         |
| Run # 7b, El                                                                                 | UT on Chan      | nel #11 2462 | 2MHz - 802.1         | 1b, Chain A    |                       |                                                                |               |                  | Ī             |         |
|                                                                                              |                 |              | Torgot               | (dDm)          | Power S<br>Measure    |                                                                | l Coffwor     | o Cottina        |               |         |
|                                                                                              | }               | Chain A      |                      | (dBm)<br>6.5   | ivieasure<br>16       | , ,                                                            |               | e Setting<br>3.5 |               |         |
|                                                                                              | L               | •            | - 10                 | 7.0            | 10                    | .0                                                             |               | J.U              |               |         |
|                                                                                              | al Signal Fie   |              | 15 200               | / 15.247       | Detector              | Λ =imu th                                                      | Haight        | Comments         |               |         |
| Frequency<br>MHz                                                                             | Level<br>dBµV/m | Pol<br>v/h   | Limit                | Margin         | Detector<br>Pk/QP/Avg | Azimuth degrees                                                | Height meters | Comments         |               |         |
| 2463.800                                                                                     | 104.6           | V/II         | 120.0                | -15.4          | AVG                   | 344                                                            | 1.0           | <del> </del>     |               |         |
| 2461.200                                                                                     | 107.9           | V            | 120.0                | -12.1          | PK                    | 344                                                            | 1.0           |                  |               |         |
| 2460.300                                                                                     | 107.8           | H            | 120.0                | -12.2          | AVG                   | 266                                                            | 1.0           | 1                |               |         |
| 2460.700                                                                                     | 111.0           | H            | 120.0                | -9.0           | PK                    | 266                                                            | 1.0           |                  |               |         |
| 2402 E MU-                                                                                   | Dand Edge       | Cianal Badi  | oted Field C         | tropoth M      | aukau Dalta           |                                                                |               |                  |               |         |
| 2463.3 IVITIZ                                                                                | Band Edge       | Signai Radi  | ated Field S         | trengtn - Ivia | H H                   | V                                                              | 1             |                  |               |         |
| F                                                                                            | undamental      | emission lev | vel @ 3m in 1        | 1MHz RBW:      | 111.0                 | 107.9                                                          | Peak Measi    | urement (RB=     | =VB=1MHz)     |         |
|                                                                                              | undamental      |              |                      |                | 107.8                 | 104.6                                                          |               | easurement (F    |               | B=10Hz) |
|                                                                                              |                 |              | Delta Mark           | er - 100kHz    | 58.5                  |                                                                |               | only be used     |               |         |
|                                                                                              | Calculat        | ed Band-Ed   | ge Measuren          | nent (Peak):   | 52.5                  | dBuV/m                                                         | highest with  | in 2MHz of b     | and edge.     |         |
|                                                                                              | Calcula         | ated Band-Ed | dge Measure          | ement (Avg):   | 49.3                  | dBuV/m                                                         | Margin        | Level            | Limit         | Detecto |
|                                                                                              |                 |              | a Marker - 1         |                | 47.0                  |                                                                | -4.7          | 49.3             | 54            | Avg     |
|                                                                                              |                 |              | ta Marker - 1        |                | 57.0                  |                                                                | -21.5         | 52.5             | 74            | Pk      |
|                                                                                              |                 |              | ge Measuren          |                |                       | dBuV/m                                                         | _             | Hz delta value   |               |         |
|                                                                                              | Calcula         | ated Band-Ed | dge Measure          | ement (Avg):   | 50.8                  | dBuV/m                                                         | Jusing Tuuki  | Hz delta value   | 9             |         |
| Frequency                                                                                    | Level           | Pol          |                      | 15.209         | Detector              | Azimuth                                                        | Height        | Comments         |               |         |
| MHz                                                                                          | dBμV/m          | v/h          | Limit                | Margin         | Pk/QP/Avg             | degrees                                                        | meters        |                  |               |         |
| 2485.340                                                                                     | 49.3            | -            | 54.0                 | -4.7           | Avg                   | -                                                              | -             | Using 100kh      | Iz delta valu | е       |
| -10.0 -<br>-20.0 -<br>-30.0 -<br>-30.0 -<br>-40.0 -<br>-50.0 -<br>-70.0 -<br>-80.0 -<br>2451 | 2460            |              | requency (MH         |                |                       | MHz SPAR RB: VB: Dete Attn RL C Swee Ref I  Com BE 6 802. Chai |               | ns               |               |         |

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 8, Band Edge Field Strength - 802.11n20MHz, Chain A Date of Test: 9/17/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 8a, EUT on Channel #2 2417MHz - 802.11n20MHz, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 15.7 28.0 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2413.770 103.2 Η 120.0 -16.8AVG 357 1.0 PK 1.0 2413.070 111.4 Н 120.0 -8.6 357 2413.970 98.9 ٧ 120.0 -21.1 **AVG** 204 1.2 2412.670 107.4 ٧ 120.0 -12.6PΚ 204 1.2 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 111.4 107.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 103.2 98.9 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 48.7 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 62.7 dBuV/m Calculated Band-Edge Measurement (Avg): 54.5 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 40.5 dB -1.3 52.7 54 Avg Delta Marker - 1MHz/10Hz: **50.5** dB -11.3 62.7 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 70.9 dBuV/m Calculated Band-Edge Measurement (Avg): 52.7 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avq MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2390.000 52.7 54.0 -1.3 Using 1MHz delta value Ava Analyzer Settings 0.0 HP8564E,EMICF: 2390.000 -10.0SPAN: 75,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 20 DB RL Offset: 0.0 DB -40.0 Sween Time: 28.0s Ref Lvl: 5.9 DBM

-50.0

-70.0

Cursor 1 2390.0000

Cursor 2 2420,2500

2400

Delta Freq. 30.250

Delta Amplitude 50.50

Frequency (MHz)

-60.10 **↔** \* 6•

-9.60 💠 🛧 ७⋅

Comments BE @ 2390 MHz 802.11n 20MHz

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 8b, EUT on Channel #10 2457MHz - 802.11n20MHz, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting Chain A 16.5 15.8 28.0 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments v/h Pk/QP/Ava MHz $dB\mu V/m$ Limit Margin degrees meters 2460.000 102.1 Η 120.0 -17.9AVG 14 1.0 2459.000 110.1 Η 120.0 -9.9 PΚ 14 1.0 2460.270 99.8 ٧ 120.0 -20.2 **AVG** 345 1.0 ٧ 2461.430 108.1 120.0 -11.9 PK 345 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Н Fundamental emission level @ 3m in 1MHz RBW: 110.1 108.1 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 102.1 99.8 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 48.7 dB Calculated Band-Edge Measurement (Peak): 61.4 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 53.4 dBuV/m Margin Level Limit Detector 39.7 dB Delta Marker - 1MHz/1MHz: -1.6 52.4 54 Avg Delta Marker - 1MHz/10Hz: -12.6 **49.7** dB 61.4 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 70.4 dBuV/m Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Level Pol Detector Azimuth Comments Height Pk/QP/Avg MHz v/h Limit Margin degrees dBμV/m meters 2483.500 52.4 54.0 Using 1MHz delta value -1.6 Avg Analyzer Settings 0.0 HP8564E,EMICF: 2483.500 -10.0 SPAN: 75,000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 20 DB RL Offset: 0.0 DB Sweep Time: 28.0s Ref Lvl: 5.9 DBM -40.0 -50.0 Comments -60.0 BE @ 2483.5 MHz 802.11n 20MHz -70.0 Chain A 2500 2446 2475 Frequency (MHz) Cursor 1 2460.3750 -9.93 ♣ -\*- 🏝 Delta Freq. 23.125 Cursor 2 2483.5000 -59.60 💠 🗻 🗟 🗖 Delta Amplitude 49.67

| EI | liott           |
|----|-----------------|
| -  | An ATAS company |

|           | An 2022 Company                    |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

## RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

| Run#      | Mode      | Channel        | Target<br>Power | Measured<br>Power | Test Performed                     | Limit                              | Result / Margin                    |                                    |                                    |
|-----------|-----------|----------------|-----------------|-------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Run # 1   | n40       | #3<br>2422MHz  | 16.5            | 9.1               | Restricted Band Edge at 2400 MHz   | 15.209                             | 52.9dBµV/m @<br>2389.3MHz (-1.1dB) |                                    |                                    |
| Kull# I   | Chain B   | #9<br>2452MHz  | 16.5            | 10.1              | Restricted Band Edge at 2483.5 MHz | 15.209                             | 53.0dBµV/m @<br>2484.2MHz (-1.0dB) |                                    |                                    |
| Run # 2   | n40       | #4<br>2427MHz  | 16.5            | 9.5               | Restricted Band Edge at 2400 MHz   | 15.209                             | 52.2dBµV/m @<br>2390.0MHz (-1.8dB) |                                    |                                    |
| Ruii # Z  | Chain B   | #8<br>2447MHz  | 16.5            | 9.9               | Restricted Band Edge at 2483.5 MHz | 15.209                             | 53.0dBµV/m @<br>2483.5MHz (-1.0dB) |                                    |                                    |
| Run # 3   | n40       | #5<br>2432MHz  | 16.5            | 11.9              | Restricted Band Edge at 2400 MHz   | 15.209                             | 52.2dBµV/m @<br>2389.6MHz (-1.8dB) |                                    |                                    |
| IXuII # 3 | Chain B   | #7<br>2442MHz  | 16.5            | 11.4              | Restricted Band Edge at 2483.5 MHz | 15.209                             | 52.9dBµV/m @<br>2483.5MHz (-1.1dB) |                                    |                                    |
| Run # 4   | n40       | #6             | 16.5            | 12.6              | Restricted Band Edge at 2400 MHz   | 16.209                             | 48.9dBµV/m @<br>2390.0MHz (-5.1dB) |                                    |                                    |
| IXuII#4   | Chain B   | Chain B        |                 |                   | 16.5                               | 12.6                               | Restricted Band Edge at 2483.5 MHz | 16.209                             | 52.1dBµV/m @<br>2483.5MHz (-1.9dB) |
| Run # 5   | n20       | #1<br>2412MHz  | 16.5            | 12.4              | Restricted Band Edge at 2400 MHz   | 16.209                             | 52.0dBµV/m @<br>2390.0MHz (-2.0dB) |                                    |                                    |
| Kuii # 5  | Chain B   |                | 16.5            | 12.3              | Restricted Band Edge at 2483.5 MHz | 16.209                             | 52.6dBµV/m @<br>2483.5MHz (-1.4dB) |                                    |                                    |
| Run # 6   | 802.11g   | #1<br>2412MHz  | 16.5            | 13.8              | Restricted Band Edge at 2400 MHz   | 16.209                             | 52.1dBµV/m @<br>2390.0MHz (-1.9dB) |                                    |                                    |
| Kuii # 0  | Chain B   | Chain B        |                 | 16.5              | 13.4                               | Restricted Band Edge at 2483.5 MHz | 16.209                             | 51.9dBµV/m @<br>2483.5MHz (-2.1dB) |                                    |
| Run # 7   | 802.11b   | #1<br>2412MHz  | 16.5            | 16.7              | Restricted Band Edge at 2400 MHz   | 15.209                             | 49.4dBµV/m @<br>2389.9MHz (-4.6dB) |                                    |                                    |
| IXUII # 7 | Chain B   | #11<br>2462MHz | 16.5            | 16.7              | Restricted Band Edge at 2483.5 MHz | 15.209                             | 48.1dBµV/m @<br>2483.5MHz (-5.9dB) |                                    |                                    |
| Run # 8   | 802.11n20 | #2<br>2417MHz  | 16.5            | 16.2              | Restricted Band Edge at 2400 MHz   | 16.209                             | 49.5dBµV/m @<br>2390.0MHz (-4.5dB) |                                    |                                    |
| Null # 0  | Chain B   |                | 16.5            | 16.3              | Restricted Band Edge at 2483.5 MHz | 15.209                             | 52.5dBµV/m @<br>2483.5MHz (-1.5dB) |                                    |                                    |

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

| EI | liott          |
|----|----------------|
|    | An 🔼 🔼 company |

|           | An A(ZA) company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

## Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

## **General Test Configuration**

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

### Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

### Modifications Made During Testing

No modifications were made to the EUT during testing

### Deviations From The Standard

No deviations were made from the requirements of the standard.

### Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. The fundamental field strength is always measured at a 3m test distance.

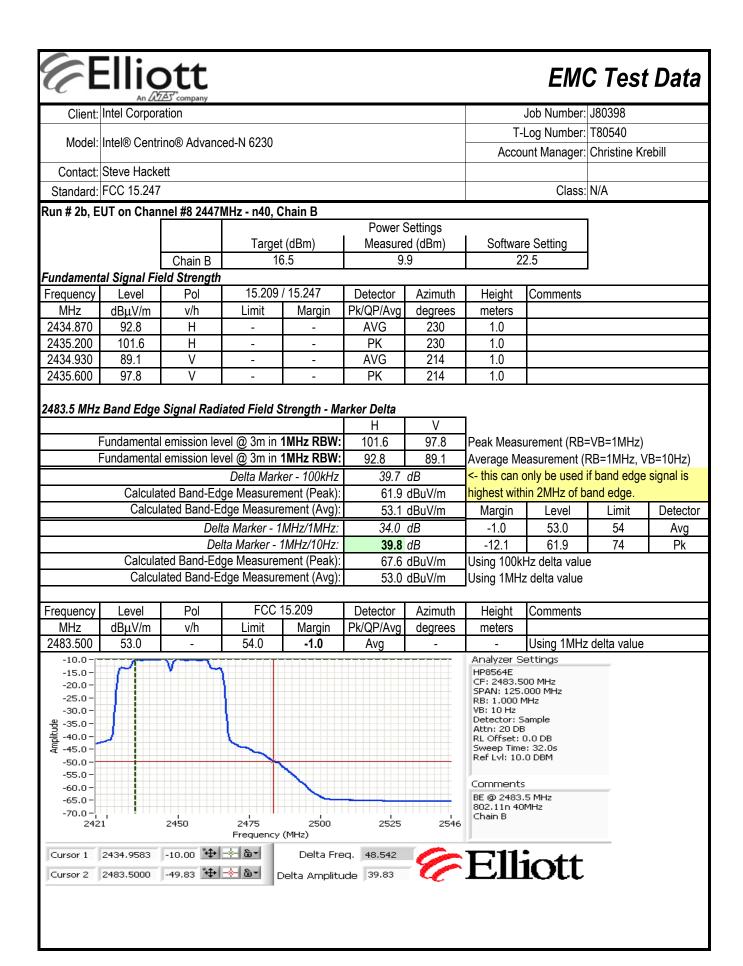
#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 1, Band Edge Field Strength - n40, Chain B Date of Test: 9/15/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 1a, EUT on Channel #3 2422MHz - n40, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 9.1 21.5 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Pol Level Detector Azimuth Height Comments MHz v/h Pk/QP/Avg $dB\mu V/m$ Limit Margin degrees meters 2434.730 91.4 Н **AVG** 238 1.0 2432.600 99.6 Η PΚ 238 1.0 -٧ 2410.000 88.5 **AVG** 231 1.0 ٧ 231 2410.870 96.6 PK 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta Fundamental emission level @ 3m in 1MHz RBW: 99.6 96.6 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 91.4 88.5 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 38.3 dB Calculated Band-Edge Measurement (Peak): 61.3 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 53.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.2 dB -1.1 52.9 54 Avg Delta Marker - 1MHz/10Hz: -12.7 61.3 74 **38.5** dB Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 65.4 dBuV/m Calculated Band-Edge Measurement (Avg): 52.9 dBuV/m Using 1MHz delta value FCC 15.209 Pol Comments Frequency Level Detector Azimuth Height MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.266 52.9 54.0 Using 1MHz delta value -1.1 Avg Analyzer Settings -20.0 -25.0 HP8564E,EMICF: 2390.000 -30.0SPAN: 110,000 MHz -35.0 RB: 1.000 MHz VB: 10 Hz -40.0 Detector: Sample -45.0 Attn: 10 DB -50.0 RL Offset: 0.0 DB Sweep Time: 41.0s Ref Lvl: -1.0 DBM -55.0 -60.0 -65.0 Comments -70.0 BE @ 2390 MHz -75.0 802.11n 40MHz -80.0 2350 2360 2370 2380 2390 2400 2410 2420 2430 2445

Cursor 1 2389.2666

Cursor 2 2419.3333

Delta Freq. 30.067

Delta Amplitude 38.50


Frequency (MHz)

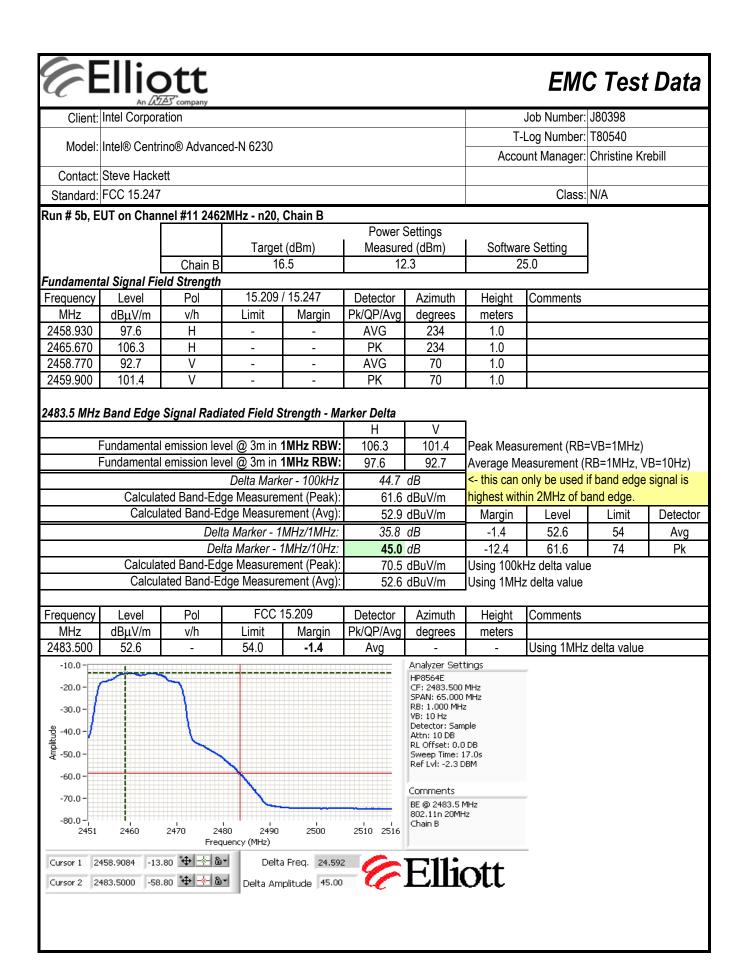
-59,33 💠 -\*- ७-

-20.83 💠 🗻 ७७

| Client           | Intel Corpora          | ation                      |                           |              |             |                                                                                                                                         |                                                                                             | Job Number:  | J80398      |           |
|------------------|------------------------|----------------------------|---------------------------|--------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|-------------|-----------|
|                  |                        |                            |                           |              |             |                                                                                                                                         | og Number:                                                                                  |              |             |           |
| Model:           | Intel® Centr           | ino® Advanc                | ed-N 6230                 |              |             |                                                                                                                                         |                                                                                             | int Manager: |             | ebill     |
| Contact:         | Steve Hacke            | ett                        |                           |              |             |                                                                                                                                         |                                                                                             |              |             |           |
|                  | FCC 15.247             |                            |                           |              |             |                                                                                                                                         |                                                                                             | Class:       | N/A         |           |
|                  |                        | nel #9 2452l               | MHz - n40. C              | hain B       |             |                                                                                                                                         |                                                                                             |              |             |           |
| ,                |                        |                            | ,                         |              | Power S     | Settings                                                                                                                                | _                                                                                           |              |             |           |
|                  |                        |                            |                           | (dBm)        | Measure     | /                                                                                                                                       |                                                                                             | e Setting    |             |           |
|                  |                        | Chain B                    | 16                        | 5.5          | 10          | ) <u>.1</u>                                                                                                                             | 22                                                                                          | 2.5          | ]           |           |
|                  | ai Signai Fie<br>Level | eld Strength<br>Pol        | 15 209                    | / 15.247     | Detector    | Azimuth                                                                                                                                 | Height                                                                                      | Comments     |             |           |
| Frequency<br>MHz | dBµV/m                 | v/h                        | Limit                     | Margin       | Pk/QP/Avg   | degrees                                                                                                                                 | meters                                                                                      | Comments     |             |           |
| 2439.670         | 89.7                   | Н                          | -                         | -            | AVG         | 239                                                                                                                                     | 1.0                                                                                         |              |             |           |
| 2440.600         | 98.0                   | Н                          | -                         | -            | PK          | 239                                                                                                                                     | 1.0                                                                                         |              |             |           |
| 2439.930         | 89.3                   | V                          | -                         | -            | AVG         | 322                                                                                                                                     | 1.0                                                                                         |              |             |           |
| 2445.870         | 97.8                   | V                          | -                         | -            | PK          | 322                                                                                                                                     | 1.0                                                                                         |              |             |           |
| 2483.5 MHz       | Band Edge              | Signal Radi                | ated Field S              | trength - Ma | arker Delta |                                                                                                                                         |                                                                                             |              |             |           |
|                  |                        |                            |                           |              | Н           | V                                                                                                                                       | ]                                                                                           |              |             |           |
|                  |                        | emission lev               |                           |              | 98.0        | 97.8                                                                                                                                    | Peak Measurement (RB=VB=1MHz)                                                               |              |             |           |
|                  | -undamental            | emission lev               |                           |              | 89.7        | 89.3                                                                                                                                    | Average Measurement (RB=1MHz, VB=10Hz)                                                      |              |             |           |
|                  | Calaula                | tad Dand Ed                |                           | er - 100kHz  | 33.7        |                                                                                                                                         | <- this can only be used if band edge signal is<br>highest within 2MHz of band edge.        |              |             | signal is |
|                  |                        | ted Band-Ed<br>ated Band-E |                           |              |             | dBuV/m<br>dBuV/m                                                                                                                        |                                                                                             |              |             | Detecto   |
|                  | Odicui                 |                            | ta Marker - 1             | <u> </u>     | 32.8        |                                                                                                                                         |                                                                                             |              |             | Avg       |
|                  |                        |                            | Ita Marker - 1            |              | 36.7        |                                                                                                                                         | -9.7                                                                                        | 64.3         | 74          | Pk        |
|                  | Calcula                | ted Band-Ed                | ge Measurer               | nent (Peak): |             | dBuV/m                                                                                                                                  | Using 100kHz delta value                                                                    |              |             |           |
|                  | Calcul                 | ated Band-E                | dge Measure               | ement (Avg): | 53.0        | dBuV/m                                                                                                                                  | Using 1MHz                                                                                  | delta value  |             |           |
| Frequency        | Level                  | Pol                        | FCC 1                     | 15.209       | Detector    | Azimuth                                                                                                                                 | Height                                                                                      | Comments     |             |           |
| MHz              | dBμV/m                 | v/h                        | Limit                     | Margin       | Pk/QP/Avg   | degrees                                                                                                                                 | meters                                                                                      |              |             |           |
| 2484.166         | 53.0                   | -                          | 54.0                      | -1.0         | Avg         | -                                                                                                                                       | -                                                                                           | Using 1MHz   | delta value |           |
| -20.0            | 2440 2450              |                            | 2480 2490<br>quency (MHz) | 2500 2510    | 2520 253    | MHz SPAN: 100. RB: 1.000 N VB: 10 Hz Detector: S Attn: 10 DE RL Offset: Sweep Time Ref Lvl: -1.  Comments BE @ 2483. 802.11n 40 Chain B | MICF: 2483,500<br>000 MHz<br>MHz<br>MHz<br>3<br>0,0 DB<br>9: 37.0s<br>0 DBM<br>5 MHz<br>MHz |              |             |           |

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 2, Band Edge Field Strength - n40, Chain B Date of Test: 9/16/2010 Test Location: Chamber #7 Test Engineer: Mehran Birgani/R. Varelas Config Change: none Run # 2a, EUT on Channel #4 2427MHz - n40, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 9.5 22.0 Chain B Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2419.670 93.2 Η AVG 233 1.0 -PK 233 1.0 2421.530 101.9 Н 2414.870 89.3 ٧ **AVG** 218 1.0 2416.530 98.1 ٧ PΚ 218 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 101.9 98.1 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 93.2 89.3 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 38.2 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 63.7 dBuV/m Calculated Band-Edge Measurement (Avg): 55.0 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 37.7 dB -1.8 52.2 54 Avg Delta Marker - 1MHz/10Hz: 41.0 dB -10.3 63.7 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 64.2 dBuV/m Calculated Band-Edge Measurement (Avg): 52.2 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments v/h Limit Margin Pk/QP/Avg MHz dBµV/m degrees meters 2390.000 52.2 54.0 -1.8 Using 1MHz delta value Avq Analyzer Settings -5.0 HP8564E -10.0 CF: 2390.000 MHz -15.0 SPAN: 120.000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz -25.0 Detector: Sample Attn: 20 DB -30.0 를 -35.0 -투 -40.0 · RL Offset: 1.0 DB Sweep Time: 30.0s Ref Lvl: 10.8 DBM -45.0 -50.0 Comments -55.0 BE @ 2390 MHz -60.0 802.11n 40MHz -65.0 -Chain B 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 Frequency (MHz) Cursor 1 2390,0000 -50.37 💠 🔆 💁 🕏 🖜 Delta Freq. 25,200 Cursor 2 2415.2000 -9.37 Delta Amplitude 41.00




| Model:   Intel® Centrino® Advanced-N 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (rebill     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Account Manager: Christine   Contact:   Steve Hackett   Standard:   FCC 15.247   Class:   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (rebill     |
| Account Manager: Christine   Contact   Steve Hackett   Standard: FCC 15.247   Class: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (rebill     |
| Standard   FCC 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| Test Location: Chamber #7   Test Location: Chamber #7   Test Engineer: Mehran Birgani/R. Varelas   Test Location: Chamber #7   Config Change: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Test Location: Chamber #7   Test Location: Chamber #7   Test Engineer: Mehran Birgani/R. Varelas   Test Location: Chamber #7   Config Change: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Date of Test: 9/16/2010   Test Engineer: Mehran Birgani/R. Varelas   Config Change: none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Power Settings   Power Settings   Power Settings   Power Setting   Power Se  |             |
| Power Settings   Measured (dBm)   Software Setting   24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Target (dBm)   Measured (dBm)   Software Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Chain B   16.5   11.9   24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Fundamental Signal Field Strength           Frequency         Level         Pol         15.209 / 15.247         Detector         Azimuth         Height         Comments           MHz         dBμV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           2420.000         95.4         H         -         -         AVG         236         1.0           2420.730         104.3         H         -         -         AVG         217         1.0           2420.400         100.4         V         -         -         PK         217         1.0           2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta           Fundamental emission level @ 3m in 1MHz RBW:         104.3         100.4         Peak Measurement (RB=VB=1MH           Delta Marker - 100kHz         43.2 dB         -         -         -this can only be used if band edge           Calculated Band-Edge Measurement (Peak):         61.1 dBuV/m         Margin         Level         Limit           Delta Marker - 1MHz/1MHz:         39.2 dB         -1.8         52.2         54           Delta Marker - 1MHz/10Hz:         43.0 dB         -12.9         61.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Frequency   Level   Pol   15.209 / 15.247   Detector   Azimuth   Height   Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| MHz         dBμV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           2420.000         95.4         H         -         -         AVG         236         1.0           2420.730         104.3         H         -         -         PK         236         1.0           2419.870         91.6         V         -         -         PK         217         1.0           2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta         H         V         V         -         -         PK         217         1.0         Peak Measurement (RB=VB=1MH         -         -         PK         217         1.0         -         -         2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 2420.000   95.4   H   -   -   AVG   236   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2420.730   104.3   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| 2420.400 100.4 V PK 217 1.0  2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta  Fundamental emission level @ 3m in 1MHz RBW: 104.3 100.4 Fundamental emission level @ 3m in 1MHz RBW: 95.4 91.6  Delta Marker - 100kHz 43.2 dB - this can only be used if band edge Calculated Band-Edge Measurement (Peak): 61.1 dBuV/m highest within 2MHz of band edge Calculated Band-Edge Measurement (Avg): 52.2 dBuV/m Margin Level Limit Delta Marker - 1MHz/1MHz: 39.2 dB - 1.8 52.2 54  Delta Marker - 1MHz/10Hz: 43.0 dB - 12.9 61.1 74  Calculated Band-Edge Measurement (Peak): 65.1 dBuV/m Using 100kHz delta value Usi      |             |
| 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker DeltaFundamental emission level @ 3m in 1MHz RBW:104.3100.4Peak Measurement (RB=VB=1MH Average Measurement (RB=1MH:Fundamental emission level @ 3m in 1MHz RBW:95.491.6Average Measurement (RB=1MH:Delta Marker - 100kHz43.2 dB<- this can only be used if band edge and band-Edge Measurement (Peak):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Fundamental emission level @ 3m in 1MHz RBW: 104.3 100.4 Peak Measurement (RB=VB=1MH Average Measurement (RB=1MH |             |
| Fundamental emission level @ 3m in 1MHz RBW: 104.3 100.4 Peak Measurement (RB=VB=1MH Fundamental emission level @ 3m in 1MHz RBW: 95.4 91.6 Average Measurement (RB=1MH Peak Measurement (RB=1MH Peak Measurement (RB=1MH Peak Peak Peak Measurement (RB=1MH Peak Peak Measurement (RB=1MH Peak Peak Peak Measurement (RB=1MH Peak Peak Peak Peak Peak Peak Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| Fundamental emission level @ 3m in 1MHz RBW: 95.4 91.6  Delta Marker - 100kHz 43.2 dB <- this can only be used if band ed highest within 2MHz of band edge Calculated Band-Edge Measurement (Peak): 61.1 dBuV/m highest within 2MHz of band edge Calculated Band-Edge Measurement (Avg): 52.2 dBuV/m Margin Level Limit Delta Marker - 1MHz/1MHz: 39.2 dB -1.8 52.2 54  Delta Marker - 1MHz/10Hz: 43.0 dB -12.9 61.1 74  Calculated Band-Edge Measurement (Peak): 65.1 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 100kHz delta value Using |             |
| Delta Marker - 100kHz43.2 dB<- this can only be used if band edCalculated Band-Edge Measurement (Peak):61.1 dBuV/mhighest within 2MHz of band edgeCalculated Band-Edge Measurement (Avg):52.2 dBuV/mMarginLevelLimitDelta Marker - 1MHz/1MHz:39.2 dB-1.852.254Delta Marker - 1MHz/10Hz:43.0 dB-12.961.174Calculated Band-Edge Measurement (Peak):65.1 dBuV/mUsing 100kHz delta valueCalculated Band-Edge Measurement (Avg):52.4 dBuV/mUsing 100kHz delta valueFrequencyLevelPolFCC 15.209DetectorAzimuthHeightCommentsMHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters2389.58352.2-54.0-1.8AvgUsing 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Calculated Band-Edge Measurement (Peak):  Calculated Band-Edge Measurement (Avg):  Delta Marker - 1MHz/1MHz:  Delta Marker - 1MHz/10Hz:  Calculated Band-Edge Measurement (Peak):  Delta Marker - 1MHz/10Hz:  43.0 dB  -1.8 52.2 54  Delta Marker - 1MHz/10Hz:  Calculated Band-Edge Measurement (Peak):  Calculated Band-Edge Measurement (Avg):  Calculated Band-Edge Measurement (Avg):  Trequency Level Pol FCC 15.209  Detector Azimuth Height Comments  MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters  2389.583 52.2 - 54.0 -1.8 Avg - Using 100kHz delta value  Analyzer Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Calculated Band-Edge Measurement (Avg):52.2 dBuV/mMarginLevelLimitDelta Marker - 1MHz/1MHz:39.2 dB-1.852.254Delta Marker - 1MHz/10Hz:43.0 dB-12.961.174Calculated Band-Edge Measurement (Peak):65.1 dBuV/mUsing 100kHz delta valueCalculated Band-Edge Measurement (Avg):52.4 dBuV/mUsing 100kHz delta valueFrequencyLevelPolFCC 15.209DetectorAzimuthHeightCommentsMHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters2389.58352.2-54.0-1.8Avg-Using 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e signai is |
| Delta Marker - 1MHz/1MHz:       39.2 dB       -1.8       52.2       54         Delta Marker - 1MHz/10Hz:       43.0 dB       -12.9       61.1       74         Calculated Band-Edge Measurement (Peak):       65.1 dBuV/m       Using 100kHz delta value         Calculated Band-Edge Measurement (Avg):       52.4 dBuV/m       Using 100kHz delta value         Frequency       Level       Pol       FCC 15.209       Detector       Azimuth       Height       Comments         MHz       dBμV/m       v/h       Limit       Margin       Pk/QP/Avg       degrees       meters         2389.583       52.2       -       54.0       -1.8       Avg       -       Using 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector    |
| Delta Marker - 1MHz/10Hz:43.0 dB-12.961.174Calculated Band-Edge Measurement (Peak):65.1 dBuV/mUsing 100kHz delta valueCalculated Band-Edge Measurement (Avg):52.4 dBuV/mUsing 100kHz delta valueFrequencyLevelPolFCC 15.209DetectorAzimuthHeightCommentsMHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters2389.58352.2-54.0-1.8AvgUsing 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Avg         |
| Calculated Band-Edge Measurement (Peak):  Calculated Band-Edge Measurement (Avg):  Solution 52.4 dBuV/m  Using 100kHz delta value  Vising 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pk          |
| Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Using 100kHz delta value  Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments  MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters  2389.583 52.2 - 54.0 -1.8 Avg - Using 100kHz delta value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>    |
| Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments  MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters  2389.583 52.2 - 54.0 -1.8 Avg Using 100kHz delta v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters  2389.583 52.2 - 54.0 -1.8 Avg - Using 100kHz delta v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| 2389.583 52.2 - 54.0 -1.8 Avg Using 100kHz delta v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 0.0 - Analyzer Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| -10.0 - HP8564E<br>-10.0 - CF: 2390.000 MHz<br>SPAN: 125.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| -20.0 - RB: 100 kHz<br>-20.0 - VB: 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 智 RL Offset: 0.0 DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Ref Lvl: 10.0 DBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| -50.0 - Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| -60.0 - Comments<br>BE @ 2390 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| -70.0 – 802.11n 40MHz<br>-70.0 – Chain B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 2328 2350 2375 2400 2425 2452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Cursor 1 2389.5833 -47.50 + Delta Freq. 34.583 Elliott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Deita Amplitude 43.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |

| Ciletit.                    | Intel Corpora                           | ation                                               |                                                                   | Job Number: J80398                                                        |                                                       |                              |                                                          |                                                                                                                |               |                     |
|-----------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|---------------------|
| Model                       | Intol® Contri                           | ino® Advanc                                         | od NI 6330                                                        | T-Log Number: T80540                                                      |                                                       |                              |                                                          |                                                                                                                |               |                     |
| Model.                      | intel® Centri                           | now Advanc                                          | Acco                                                              | unt Manager:                                                              | Christine Kr                                          | ebill                        |                                                          |                                                                                                                |               |                     |
|                             | Steve Hacke                             | ett                                                 |                                                                   |                                                                           |                                                       |                              |                                                          |                                                                                                                |               |                     |
| Standard:                   | FCC 15.247                              |                                                     |                                                                   |                                                                           |                                                       |                              |                                                          | Class:                                                                                                         | N/A           |                     |
| un # 3b, El                 | JT on Chan                              | nel #7 2442                                         | //Hz - n40, C                                                     | Chain B                                                                   |                                                       |                              |                                                          |                                                                                                                | Ī             |                     |
|                             |                                         |                                                     | Target                                                            | (dDm)                                                                     | Power S<br>Measure                                    | •                            | I Coffwar                                                | e Setting                                                                                                      |               |                     |
|                             |                                         | Chain B                                             |                                                                   | t (dBm)<br>5.5                                                            | ivieasure<br>11                                       |                              |                                                          | 3.5                                                                                                            |               |                     |
|                             | L                                       | Onamb                                               | - 10                                                              | 5.0                                                                       | ''                                                    | • •                          |                                                          | 0.0                                                                                                            |               |                     |
| undamenta                   | al Signal Fie                           | eld Strength                                        |                                                                   |                                                                           |                                                       |                              |                                                          |                                                                                                                |               |                     |
| requency                    | Level                                   | Pol                                                 |                                                                   | / 15.247                                                                  | Detector                                              | Azimuth                      | Height                                                   | Comments                                                                                                       |               |                     |
| MHz                         | dBμV/m                                  | v/h                                                 | Limit                                                             | Margin                                                                    | Pk/QP/Avg                                             | degrees                      | meters                                                   | -                                                                                                              |               |                     |
| 2429.800<br>2431.530        | 94.6<br>103.6                           | H<br>H                                              | -                                                                 | -                                                                         | AVG<br>PK                                             | 231<br>231                   | 1.0<br>1.0                                               | <del> </del>                                                                                                   |               |                     |
| 2429.930                    | 90.7                                    | V                                                   | -                                                                 | -                                                                         | AVG                                                   | 214                          | 1.0                                                      | <del> </del>                                                                                                   |               |                     |
| 2430.730                    | 99.2                                    | V                                                   | -                                                                 | -                                                                         | PK                                                    | 214                          | 1.0                                                      |                                                                                                                |               |                     |
|                             | Calculat                                | ted Band-Edg                                        |                                                                   | <i>cer - 100kHz</i><br>ment (Peak):                                       | <i>41.7</i> 61.9                                      | dBuV/m                       |                                                          | only be used in 2MHz of b                                                                                      |               | Signal is           |
|                             |                                         |                                                     |                                                                   |                                                                           |                                                       |                              |                                                          |                                                                                                                |               |                     |
|                             | Calcula                                 | ated Band-Ed                                        |                                                                   | ement (Avg):                                                              |                                                       | dBuV/m                       | Margin                                                   | Level                                                                                                          | Limit         |                     |
|                             | Calcula                                 | Delt                                                | a Marker - 1                                                      | ement (Avg):<br>MHz/1MHz:                                                 | 37.3                                                  | dB                           | Margin<br>-1.1                                           | 52.9                                                                                                           | 54            | Avg                 |
|                             |                                         | Delt<br>Del                                         | a Marker - 1<br>ta Marker -                                       | ement (Avg):<br>MHz/1MHz:<br>1MHz/10Hz:                                   | 37.3<br>41.7                                          | dB<br>dB                     | Margin<br>-1.1<br>-12.1                                  | 52.9<br>61.9                                                                                                   | 54<br>74      |                     |
|                             | Calcula                                 | Delt                                                | a Marker - 1<br>ta Marker -<br>ge Measurer                        | ement (Avg):<br>MHz/1MHz:<br>1MHz/10Hz:<br>ment (Peak):                   | 37.3<br>41.7<br>66.3                                  | dB                           | Margin -1.1 -12.1 Using 100kl                            | 52.9                                                                                                           | 54<br>74      | Avg                 |
|                             | Calculat<br>Calcula                     | Delt<br>Del<br>ted Band-Edo<br>ated Band-Ed         | a Marker - 1<br>ta Marker -<br>ge Measurer<br>dge Measure         | ement (Avg):<br>MHz/1MHz:<br>1MHz/10Hz:<br>ment (Peak):<br>ement (Avg):   | 37.3<br>41.7<br>66.3<br>52.9                          | dB<br>dB<br>dBuV/m<br>dBuV/m | Margin -1.1 -12.1 Using 100kl Using 1MHz                 | 52.9<br>61.9<br>Hz delta value<br>z delta value                                                                | 54<br>74      | Avg                 |
|                             | Calculat<br>Calculat<br>Level           | Delt<br>Del<br>ted Band-Edg<br>ated Band-Edg<br>Pol | a Marker - 1<br>ta Marker -<br>ge Measurer<br>dge Measurer<br>FCC | ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak): ement (Avg): 15.209        | 37.3<br>41.7<br>66.3<br>52.9                          | dB<br>dB<br>dBuV/m<br>dBuV/m | Margin -1.1 -12.1 Using 100kl Using 1MHz                 | 52.9<br>61.9<br>Hz delta value                                                                                 | 54<br>74      | Avg                 |
| requency<br>MHz<br>2483.500 | Calculat<br>Calcula                     | Delt<br>Del<br>ted Band-Edo<br>ated Band-Ed         | a Marker - 1<br>ta Marker -<br>ge Measurer<br>dge Measure         | ement (Avg):<br>MHz/1MHz:<br>1MHz/10Hz:<br>ment (Peak):<br>ement (Avg):   | 37.3<br>41.7<br>66.3<br>52.9                          | dB<br>dB<br>dBuV/m<br>dBuV/m | Margin -1.1 -12.1 Using 100kl Using 1MHz Height meters - | 52.9<br>61.9<br>Hz delta value<br>z delta value<br>Comments<br>Using 1MHz                                      | 54<br>74<br>e | Detect<br>Avg<br>Pk |
| MHz                         | Calculat<br>Calculat<br>Level<br>dBµV/m | Delt<br>Del<br>ted Band-Edg<br>ated Band-Edg<br>Pol | a Marker - 1 ta Marker - ge Measurer dge Measurer FCC             | ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak): ement (Avg): 15.209 Margin | 37.3<br>41.7<br>66.3<br>52.9<br>Detector<br>Pk/QP/Avg | dB<br>dB<br>dBuV/m<br>dBuV/m | Margin -1.1 -12.1 Using 100kl Using 1MHz                 | 52.9 61.9 Hz delta value z delta value Comments Using 1MHz Settings 5000 MHz MHz MHz Sample B 0.0 DB In: 32.0s | 54<br>74<br>e | Avg                 |

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 4, Band Edge Field Strength - n40, Chain B Date of Test: 9/16/2010 Test Location: Chamber #7 Test Engineer: Mehran Birgani/R. Varelas Config Change: none EUT on Channel #6 2437MHz - n40, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.6 25.0 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2424.870 96.6 Η AVG 234 1.0 -2425.330 Н PK 234 1.0 105.3 2424.870 92.5 ٧ **AVG** 215 1.3 2425.070 101.3 ٧ PΚ 215 1.3 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 105.3 101.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.6 92.5 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 47.7 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 57.6 dBuV/m Calculated Band-Edge Measurement (Avg): 48.9 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 41.3 dB -5.1 48.9 54 Avg Delta Marker - 1MHz/10Hz: 47.2 dB -16.4 57.6 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 64.0 dBuV/m Calculated Band-Edge Measurement (Avg): 49.4 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 48.9 54.0 -5.1 Using 100kHz delta value Avq Analyzer Settings 0.0 HP8564E CF: 2390.000 MHz -10.0 SPAN: 125,000 MHz RB: 100 kHz -20.0 VB: 100 kHz Detector: POS Attn: 20 DB -30.0 RL Offset: 0.0 DB -40.0 Sweep Time: 50.0ms Ref Lvl: 4.8 DBM Comments -60.0 BE @ 2390 MHz 802.11n 40MHz -70.0 -Chain B 2400 2425 Frequency (MHz) Cursor 1 2390.0000 -51.53 💠 😽 🔊 Delta Freq. 51.875 2441.8750 Delta Amplitude

#### **EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Η Fundamental emission level @ 3m in 1MHz RBW: 105.3 101.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.6 92.5 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz 44.0 dB <- this can only be used if band edge signal is Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.3 dBuV/m Calculated Band-Edge Measurement (Avg): 52.6 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: -1.9 52.1 39.2 dB 54 Avg Delta Marker - 1MHz/10Hz: -12.7 61.3 74 Pk 44.5 dB Calculated Band-Edge Measurement (Peak) 66.1 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 52.1 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Level Pol Detector Azimuth Height Comments Margin MHz $dB\mu V/m$ Pk/QP/Avg v/h Limit degrees meters 2483.500 52.1 54.0 -1.9 Using 1MHz delta value Avq Analyzer Settings 0.0 HP8564E CF: 2483.500 MHz -10.0SPAN: 125.000 MHz RB: 1.000 MHz -20.0 VB: 10 Hz Detector: Sample -30.0 Attn: 20 DB RL Offset: 0.0 DB -40.0 Sweep Time: 32.0s Ref Lvl: 10.0 DBM -50.0 Comments -60.0 BE @ 2483.5 MHz 802.11n 40MHz -70.0 2450 2475 2500 2525 Frequency (MHz) -7.17 **↔** -\*- &• Delta Freq. 58.958 Cursor 1 2424.5417 -51.67 💠 🛧 ७҇▾ Cursor 2 2483,5000 Delta Amplitude 44.50

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 5, Band Edge Field Strength - n20, Chain B Date of Test: 9/16/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 5a, EUT on Channel #1 2412MHz - n20, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.4 25.0 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2415.030 98.8 Η AVG 234 1.0 -Н PK 234 1.0 2415.500 108.0 2415.170 97.3 ٧ **AVG** 70 1.0 2416.670 106.3 ٧ PΚ 70 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 108.0 106.3 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 98.8 97.3 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 46.7 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.3 dBuV/m Calculated Band-Edge Measurement (Avg): 52.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 35.8 dB -2.0 52.0 54 Avg Delta Marker - 1MHz/10Hz: 46.8 dB -12.7 61.3 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 72.2 dBuV/m Calculated Band-Edge Measurement (Avg): 52.0 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments dBμV/m v/h Limit Margin Pk/QP/Avg MHz degrees meters 2390.000 52.0 54.0 -2.0 Using 1MHz delta value Avq -10.0 Analyzer Settings HP8564E CF: 2390.000 MHz SPAN: 65.000 MHz -20.0 RB: 1.000 MHz VB: 10 Hz Detector: Sample Attn: 10 DB RL Offset: 0.0 DB -30.0 -40.0 Sweep Time: 17.0s Ref Lvl: -2.3 DBM -50.0 Comments -70.0 BE @ 2390 MHz 802.11n 20MHz Chain B -80.0 <sup>-</sup> 2358 2370 2380 2390 2400 2410 Frequency (MHz) Cursor 1 2390.0000 -60.30 💠 🔆 🖫 Cursor 2 2414.8083 -13.47 💠 🔆 🖫 Delta Amplitude



#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 6, Band Edge Field Strength - 802.11g, Chain B Date of Test: 9/16/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 6a, EUT on Channel #1 2412MHz - 802.11g, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 13.8 26.5 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2415.730 100.4 Η AVG 235 1.0 -2415.200 Н PK 235 1.0 109.0 2414.570 98.8 ٧ **AVG** 70 1.0 2415.030 107.4 ٧ PΚ 70 1.0 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 109.0 107.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 100.4 98.8 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 47.7 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 61.3 dBuV/m Calculated Band-Edge Measurement (Avg): 52.7 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 37.3 dB -1.9 52.1 54 Avg Delta Marker - 1MHz/10Hz: 48.3 dB -12.7 61.3 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 71.7 dBuV/m Calculated Band-Edge Measurement (Avg): 52.1 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 52.1 54 0 -1.9 Ava Using 1MHz delta value -10.0 Analyzer Settings HP8564E -20.0 CF: 2390,000 MHz SPAN: 65.000 MHz RB: 1,000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 17.0s Ref Lvl: -2.3 DBM -60.0 Comments -70.0 BE @ 2390 MHz 802.11g -80.0 Chain B 2370 2400 2410 2358 2380 2422 2390 Frequency (MHz) -60.30 💠 🔆 ७▾ Cursor 1 2390,0000 Delta Freq. 24.917 -11.97 💠 📥 🖫

Delta Amplitude 48.33

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 6b, EUT on Channel #11 2462MHz - 802.11g, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 13.4 26.0 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Comments Pol Height v/h Limit Pk/QP/Avq MHz dBuV/m Margin degrees meters 2460.300 98.9 Η **AVG** 232 1.0 2458.270 107.7 Н PΚ 232 1.0 2457.870 94.0 ٧ **AVG** 1.0 --70 ٧ 2457.930 102.7 PΚ 70 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 107.7 102.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 98.9 94.0 <- this can only be used if band edge signal is Delta Marker - 100kHz 44.8 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 62.9 dBuV/m Calculated Band-Edge Measurement (Avg): Margin 54.1 dBuV/m Level Limit Detector Delta Marker - 1MHz/1MHz: 40.0 dB -2.1 51.9 54 Avg Delta Marker - 1MHz/10Hz: -11.1 62.9 74 47.0 dB Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 67.7 dBuV/m Calculated Band-Edge Measurement (Avg) 51.9 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Pol Detector Azimuth Comments Level Height dBuV/m Pk/QP/Avq MHz v/h Limit Margin degrees meters 2483.500 51.9 54.0 -2.1 Using 1MHz delta value Avg Analyzer Settings HP8564E CF: 2483.500 MHz -20.0 SPAN: 65,000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 17.0s Ref Lvl: -2.3 DBM -60.0 Comments -70.0 BE @ 2483.5 MHz 802.11g -80.0 Chain B 2480 2490 2470 2500 2510 2516 2451 2460 Frequency (MHz) -12.80 ♣ -\*- 🌣 • Delta Freq. 23.400 Cursor 1 2460.1001 -59.80 💠 📥 🆫 🖜 2483.5000 Cursor 2 Delta Amplitude 47.00

#### **EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 7, Band Edge Field Strength - 802.11b, Chain B Date of Test: 9/16/2010 Test Location: FT Chamber #7 Test Engineer: Rafael Varelas Config Change: none Run # 7a, EUT on Channel #1 2412MHz - 802.11b, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.7 24.5 Chain B Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz Limit Margin Pk/QP/Avg $dB\mu V/m$ v/h degrees meters 2413.900 103.6 ٧ **AVG** 70 1.0 ٧ PK 70 1.0 2413.230 107.6 104.9 Η 235 1.0 2413.930 AVG 2413.630 108.9 PK 235 1.0 Η 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Н Fundamental emission level @ 3m in 1MHz RBW: 108.9 107.6 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 104.9 103.6 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is **55.5** dB Calculated Band-Edge Measurement (Peak): 53.4 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): Margin 49.4 dBuV/m Detector Level Limit Delta Marker - 1MHz/1MHz: 45.8 dB -4.6 49.4 54 Avq Delta Marker - 1MHz/10Hz: -20.6 53.4 74 55.2 dB Pk Calculated Band-Edge Measurement (Peak) 63.1 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 49.7 dBuV/m Using 100kHz delta value FCC 15.209 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 2389.892 49.4 54.0 Using 100kHz delta value -4.6 Avq 0.0 Analyzer Settings HP8564E -10.0 CF: 2390.000 MHz SPAN: 65,000 MHz -20.0 RB: 100 kHz VB: 100 kHz -30.0 Detector: POS Attn: 10 DB -40.0 RL Offset: 0.0 DB Sweep Time: 50.0ms Ref Lvl: -2.4 DBM -50.0 -60.0 Comments BE @ 2390 MHz 802.11b -80.0 Chain B 2370 2410 2358 2400

2414.1584

2380

**⊕** -\*- 6-

2389.8916 -62.73 💠 🐣 🖫

-7.23

2390 Frequency (MHz)

Delta Freq. 24.267

Delta Amplitude

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 7b, EUT on Channel #11 2462MHz - 802.11b, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.7 24.5 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Detector Azimuth Height Comments Pol v/h Limit Pk/QP/Avq degrees MHz dBuV/m Margin meters 2459.530 98.7 ٧ **AVG** 69 1.0 2460.770 102.6 ٧ PΚ 69 1.0 2460.300 104.1 Η **AVG** 235 1.0 --2460.700 108.1 Н PΚ 235 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 108.1 102.6 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: Average Measurement (RB=1MHz, VB=10Hz) 104.1 98.7 <- this can only be used if band edge signal is Delta Marker - 100kHz 55.2 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 52.9 dBuV/m Calculated Band-Edge Measurement (Avg): Margin 48.9 dBuV/m Level Limit Detector Delta Marker - 1MHz/1MHz: 45.3 dB -5.9 48.1 54 Avg Delta Marker - 1MHz/10Hz: -21.1 52.9 74 **56.0** dB Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 62.8 dBuV/m Calculated Band-Edge Measurement (Avg) 48.1 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Pol Detector Azimuth Comments Level Height Pk/QP/Avq degrees MHz dBuV/m v/h Limit Margin meters 2483.500 48.1 54.0 -5.9 Using 1MHz delta value Avg Analyzer Settings 0.0 HP8564E -10.0 CF: 2483.500 MHz SPAN: 65.000 MHz -20.0 RB: 1.000 MHz VB: 10 Hz Detector: Sample Attn: 10 DB RL Offset: 0.0 DB 40.0 Sweep Time: 17.0s Ref Lvl: -2.4 DBM -50.0 -60.0 Comments -70.0 BE @ 2483.5 MHz 802.11b -80.0 Chain B 2490 2500 2480 2510 2516 Frequency (MHz) -7.40 ♣ ♣ ७ • Cursor 1 2459.3416 Delta Freg. 24.158 -63.40 💠 📥 🛍 × Cursor 2 2483,5000 Delta Amplitude 56.00

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 8, Band Edge Field Strength - 802.11n20MHz, Chain B Date of Test: 10/5/2010 Test Location: FT Chamber #4 Test Engineer: Mehran Birgani Config Change: None Run # 8a, EUT on Channel #2 2417MHz - 802.11n20MHz, Chain B Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 16.2 29.5 Chain B Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2420.070 97.8 ٧ AVG 267 1.0 -2421,400 ٧ PK 1.0 106.1 267 2413.830 101.7 Η **AVG** 236 1.2 2413.200 110.2 Н PΚ 236 1.2 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 110.2 106.1 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 101.7 97.8 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 51.0 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 59.2 dBuV/m Calculated Band-Edge Measurement (Avg): 50.7 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 40.8 dB -4.5 49.5 54 Avg Delta Marker - 1MHz/10Hz: 59.2 **52.2** dB -14.8 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 69.4 dBuV/m Calculated Band-Edge Measurement (Avg): 49.5 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avq MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2390.000 49.5 54.0 -4.5 Using 1MHz delta value Ava Analyzer Settings HP8564E,EMICF: 2390.000 20.0 SPAN: 80,000 MHz 10.0 RB: 1.000 MHz VB: 10 Hz 0.0 Detector: Sample Attn: 20 DB -10.0 RL Offset: 23.0 DB Sweep Time: 30.0s -20.0 Ref Lvl: 33.0 DBM Comments -40.0 BE @ 2390 MHz 802.11n 20MHz -50.0 Chain B 2370 2390 Frequency (MHz)

Cursor 1 2390.0000

Cursor 2 2420.1333

-29.33 💠 🗻 🌬 🖜

22.83 💠 🗻 🖫

Delta Freq. 30.133

Delta Amplitude 52.17

#### **Elliott EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80540 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Run # 8b, EUT on Channel #10 2457MHz - 802.11n20MHz, Chain B **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.3 29.5 Chain B Fundamental Signal Field Strength 15.209 / 15.247 Frequency Pol Detector Azimuth Height Comments Level Pk/QP/Ava MHz dBµV/m v/h Limit Margin degrees meters 2460.270 95.7 ٧ AVG 245 1.0 2461.530 103.8 ٧ PΚ 245 1.0 2460.030 102.3 Н **AVG** 248 1.0 2461.330 110.6 Н PK 248 1.0 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Н Fundamental emission level @ 3m in 1MHz RBW: 110.6 103.8 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 102.3 95.7 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 47.5 dB Calculated Band-Edge Measurement (Peak): 63.1 dBuV/m highest within 2MHz of band edge. Calculated Band-Edge Measurement (Avg): 54.8 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 39.5 dB -1.5 52.5 54 Avg Delta Marker - 1MHz/10Hz: -10.9 **49.8** dB 63.1 74 Pk Calculated Band-Edge Measurement (Peak): Using 100kHz delta value 71.1 dBuV/m Calculated Band-Edge Measurement (Avg): 52.5 dBuV/m Using 1MHz delta value FCC 15.209 Frequency Level Pol Detector Comments Azimuth Height Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2483.500 54.0 Using 1MHz delta value 52.5 -1.5 Avg Analyzer Settings 30.0 HP8564E,EMICF: 2483.500 20.0 MHz SPAN: 80,000 MHz 10.0 RB: 1.000 MHz VB: 10 Hz 0.0 Detector: Sample Attn: 20 DB -10.0 RL Offset: 23.0 DB Sweep Time: 30.0s -20.0 Ref Lvl: 28.2 DBM Comments -40.0 BE @ 2483.5 MHz 802.11n 20MHz -50.0 2524 2490 2500 2444 2450 2460 2470 2480 2510 Frequency (MHz) Cursor 1 2453.8999 22.53 💠 🔆 🖫 Delta Freq. 29,600 Cursor 2 2483,5000 -27,30 💠 🛧 🗟 🖜 Delta Amplitude 49.83

| €FI | liott           |
|-----|-----------------|
|     | An ATAS company |

|           | An 2022 Company                     |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | IIILEI® Ceritiiio® Advanced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

## RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

| Run#       | Mode      | Channel | Target<br>Power | Measured<br>Power | Test Performed          | Limit  | Result / Margin    |
|------------|-----------|---------|-----------------|-------------------|-------------------------|--------|--------------------|
|            |           | #3      | A: 13.5         | A: 7.3            | Restricted Band Edge at | 15.209 | 52.3dBµV/m @       |
| Run # 1    | n40       | 2422MHz | B: 13.5         | B: 6.9            | 2400 MHz                | 15.209 | 2389.9MHz (-1.7dB) |
| Rull# I    | Chain A+B | #9      | A: 13.5         | A: 6.8            | Restricted Band Edge at | 15.209 | 52.8dBµV/m @       |
|            |           | 2452MHz | B: 13.5         | B: 6.4            | 2483.5 MHz              | 15.209 | 2484.2MHz (-1.2dB) |
|            |           | #4      | A: 13.5         | A: 8.2            | Restricted Band Edge at | 15.209 | 51.0dBµV/m @       |
| Run # 2    | n40       | 2427MHz | B: 13.5         | B: 8.4            | 2400 MHz                | 15.209 | 2389.8MHz (-3.0dB) |
| Rull# Z    | Chain A+B | #8      | A: 13.5         | A: 8.2            | Restricted Band Edge at | 15.209 | 53.0dBµV/m @       |
|            |           | 2447MHz | B: 13.5         | B: 8.5            | 2483.5 MHz              | 15.209 | 2484.4MHz (-1.0dB) |
|            |           | #5      | A: 13.5         | A: 10.5           | Restricted Band Edge at | 15.209 | 52.6dBµV/m @       |
| Run # 3    | n40       | 2432MHz | B: 13.5         | B: 10.6           | 2400 MHz                |        | 2390.0MHz (-1.4dB) |
| IXuII# 3   | Chain A+B | #7      | A: 13.5         | A: 10.5           | Restricted Band Edge at | 15.209 | 52.9dBµV/m @       |
|            |           | 2442MHz | B: 13.5         | B: 10.7           | 2483.5 MHz              | 13.203 | 2483.5MHz (-1.1dB) |
|            |           |         |                 |                   | Restricted Band Edge at | 15.209 | 51.8dBµV/m @       |
| Run # 4    | n40       | #6      | A: 13.5         | A: 12.3           | 2400 MHz                |        | 2389.8MHz (-2.2dB) |
| IXuIIπ ¬   | Chain A+B | 2437MHz | B: 13.5         | B: 12.4           | Restricted Band Edge at | 15.209 | 52.8dBµV/m @       |
|            |           |         |                 |                   | 2483.5 MHz              | 13.203 | 2483.5MHz (-1.2dB) |
|            |           | #1      | A: 13.5         | A: 11.4           | Restricted Band Edge at | 15.209 | 51.9dBµV/m @       |
| Run # 5    | n20       | 2412MHz | B: 13.5         | B: 11.6           | 2400 MHz                |        | 2390.0MHz (-2.1dB) |
| rtuii π σ  | Chain A+B | #11     | A: 13.5         | A: 11.1           | Restricted Band Edge at | 15.209 | 53.0dBµV/m @       |
|            |           | 2462MHz | B: 13.5         | B: 10.7           | 2483.5 MHz              | 13.203 | 2483.5MHz (-1.0dB) |
|            |           | #2      | A: 13.5         | A: 13.5           | Restricted Band Edge at | 15.209 | 49.3dBµV/m @       |
| Run # 6    | n20       | 2417MHz | B: 13.5         | B: 13.7           | 2400 MHz                |        | 2389.9MHz (-4.7dB) |
| i (uii π 0 | Chain A+B | #10     | A: 13.5         | A: 13.6           | Restricted Band Edge at | 15.209 | 50.6dBµV/m @       |
|            |           | 2457MHz | B: 13.5         | B: 14.0           | 2483.5 MHz              | 10.203 | 2483.5MHz (-3.4dB) |

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.



|           | An ZAZZZ Company                     |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIItel® Certtillio® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

## **Test Specific Details**

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

## **General Test Configuration**

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

## **Ambient Conditions:**

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

## Modifications Made During Testing

No modifications were made to the EUT during testing

### Deviations From The Standard

No deviations were made from the requirements of the standard.

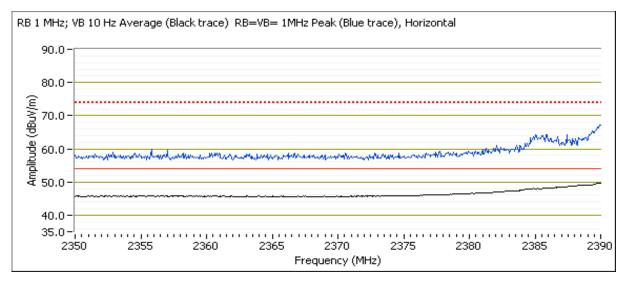


|           | An ZAZZES company                    |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIILEI® Ceritiiilo® Advanced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

## Run # 1, Band Edge Field Strength - n40, Chain A+B

Date of Test: 9/21/2010 Test Location: FT7
Test Engineer: Mehran Config Change: none

### Run # 1a, EUT on Channel #3 2422MHz - n40, Chain A+B


|        |              | Power Settings |   |       |     |         |                  |       |            |  |  |
|--------|--------------|----------------|---|-------|-----|---------|------------------|-------|------------|--|--|
|        | Target (dBm) |                |   |       |     | Measure | Software Setting |       |            |  |  |
| Chain  | Α            | В              | С | Total | Α   | В       | С                | Total |            |  |  |
| Challi | 13.5         | 13.5           |   | 16.5  | 7.3 | 6.9     |                  | 10.1  | 21.5, 22.5 |  |  |

### Fundamental Signal Field Strength

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2434.870  | 93.3   | V   | -      | -        | AVG       | 335     | 1.0    |          |
| 2434.670  | 104.1  | V   | -      | -        | PK        | 335     | 1.0    |          |
| 2409.730  | 92.9   | Н   | -      | -        | AVG       | 11      | 1.3    |          |
| 2415.470  | 103.4  | Н   | -      | -        | PK        | 11      | 1.3    |          |

### Direct measurement of bandedge

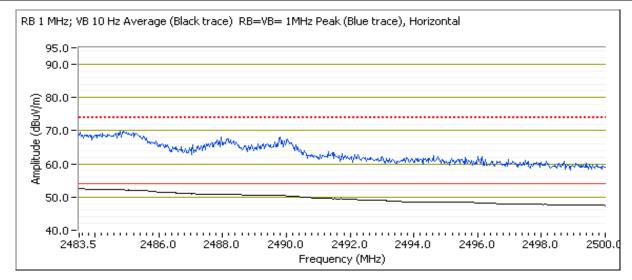
| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2389.870  | 52.3   | Н   | 54.0   | -1.7     | AVG       | 11      | 1.3    |          |
| 2389.730  | 49.3   | V   | 54.0   | -4.7     | AVG       | 335     | 1.0    |          |
| 2389.270  | 65.2   | Н   | 74.0   | -8.8     | PK        | 11      | 1.3    |          |
| 2383.870  | 60.6   | V   | 74.0   | -13.4    | PK        | 335     | 1.0    |          |





|           | All Date: Company                    |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIItel® Certtillio® Advanced-IV 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

## Run # 1b, EUT on Channel #9, 2452MHz - n40, Chain A+B


|         |      | Power Settings |       |       |     |         |                  |       |            |  |  |
|---------|------|----------------|-------|-------|-----|---------|------------------|-------|------------|--|--|
|         |      | Target         | (dBm) |       |     | Measure | Software Setting |       |            |  |  |
| Chain   | Α    | В              | С     | Total | Α   | В       | С                | Total |            |  |  |
| Citalii | 13.5 | 13.5           |       | 16.5  | 6.8 | 6.4     |                  | 9.6   | 21.0, 22.0 |  |  |

Fundamental Signal Field Strength

| · allaalliolic | anaumonta orgina i rola otrongin |     |        |          |           |         |        |          |  |  |  |
|----------------|----------------------------------|-----|--------|----------|-----------|---------|--------|----------|--|--|--|
| Frequency      | Level                            | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |  |  |  |
| MHz            | dBμV/m                           | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |  |  |  |
| 2464.870       | 92.6                             | Η   | -      | -        | AVG       | 16      | 1.0    |          |  |  |  |
| 2463.470       | 102.7                            | Н   | -      | -        | PK        | 16      | 1.0    |          |  |  |  |
| 2439.400       | 91.0                             | V   | -      | -        | AVG       | 205     | 1.0    |          |  |  |  |
| 2444.470       | 100.6                            | V   | -      | -        | PK        | 205     | 1.0    |          |  |  |  |

### Direct measurement of bandedge

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2484.240  | 52.8   | Н   | 54.0   | -1.2     | AVG       | 16      | 1.0    |          |
| 2484.460  | 50.8   | V   | 54.0   | -3.2     | AVG       | 205     | 1.0    |          |
| 2484.520  | 68.3   | Н   | 74.0   | -5.7     | PK        | 16      | 1.0    |          |
| 2484.350  | 63.3   | V   | 74.0   | -10.7    | PK        | 205     | 1.0    |          |

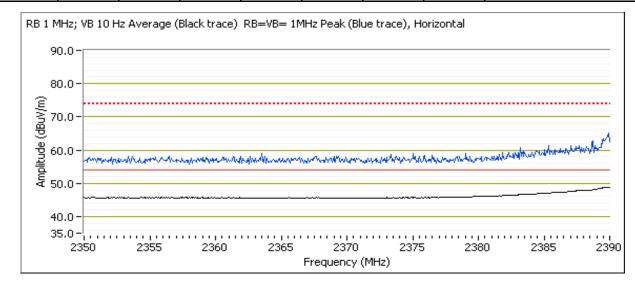




|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 2, Band Edge Field Strength - n40, Chain A+B

Date of Test: 9/21/2010 Test Engineer: Mehran Test Location: FT7 Config Change: none


### Run # 2a, EUT on Channel #4, 2427MHz - n40, Chain A+B

|       |      | Power Settings |       |       |     |         |                  |       |            |  |  |
|-------|------|----------------|-------|-------|-----|---------|------------------|-------|------------|--|--|
|       |      | Target         | (dBm) |       |     | Measure | Software Setting |       |            |  |  |
| Chain | Α    | В              | С     | Total | Α   | В       | С                | Total |            |  |  |
| Chain | 13.5 | 13.5           |       | 16.5  | 8.2 | 8.4     |                  | 11.3  | 22.5, 23.5 |  |  |

#### Fundamental Signal Field Strength

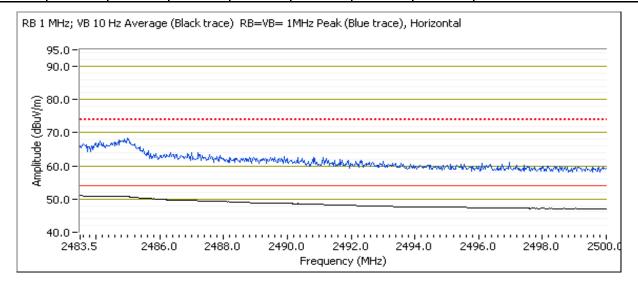
|           | · · · · | · · · · · · · · · · · · · · · · · · · |        |          |           |         |        |          |
|-----------|---------|---------------------------------------|--------|----------|-----------|---------|--------|----------|
| Frequency | Level   | Pol                                   | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
| MHz       | dBμV/m  | v/h                                   | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2430.000  | 92.2    | V                                     | -      | -        | AVG       | 205     | 1.0    |          |
| 2438.330  | 102.4   | V                                     | -      | -        | PK        | 205     | 1.0    |          |
| 2434.870  | 94.3    | Н                                     | -      | -        | AVG       | 336     | 1.0    |          |
| 2432.330  | 104.7   | Н                                     | -      | -        | PK        | 336     | 1.0    |          |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2389.800  | 51.0   | Н   | 54.0   | -3.0     | AVG       | 336     | 1.0    |          |
| 2389.730  | 51.0   | V   | 54.0   | -3.0     | AVG       | 205     | 1.0    |          |
| 2387.670  | 64.5   | V   | 74.0   | -9.5     | PK        | 205     | 1.0    |          |
| 2389.730  | 63.4   | Н   | 74.0   | -10.6    | PK        | 336     | 1.0    |          |





|           | range company                        |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIItel® Certtillio® Advanced-IV 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |


### Run # 2b, EUT on Channel #8 2447MHz - n40, Chain A+B

|         |      | Power Settings |       |       |                |     |   |       |                  |  |  |  |
|---------|------|----------------|-------|-------|----------------|-----|---|-------|------------------|--|--|--|
|         |      | Target         | (dBm) |       | Measured (dBm) |     |   |       | Software Setting |  |  |  |
| Chain   | Α    | В              | С     | Total | Α              | В   | С | Total |                  |  |  |  |
| Gilalli | 13.5 | 13.5           |       | 16.5  | 8.2            | 8.5 |   | 11.4  | 22.5, 23.5       |  |  |  |

Fundamental Signal Field Strength

| i anaamont | anaamontai olgitai i lota oli oligai |     |        |          |           |         |        |          |  |  |  |  |
|------------|--------------------------------------|-----|--------|----------|-----------|---------|--------|----------|--|--|--|--|
| Frequency  | Level                                | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |  |  |  |  |
| MHz        | dBμV/m                               | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |  |  |  |  |
| 2434.730   | 94.1                                 | Н   | •      | -        | AVG       | 337     | 1.0    |          |  |  |  |  |
| 2439.670   | 103.8                                | Н   | •      | -        | PK        | 337     | 1.0    |          |  |  |  |  |
| 2434.600   | 92.9                                 | V   | -      | -        | AVG       | 205     | 1.0    |          |  |  |  |  |
| 2442.270   | 103.2                                | V   | -      | -        | PK        | 205     | 1.0    |          |  |  |  |  |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2484.410  | 53.0   | Н   | 54.0   | -1.0     | AVG       | 337     | 1.0    |          |
| 2484.650  | 51.4   | V   | 54.0   | -2.6     | AVG       | 205     | 1.0    |          |
| 2484.820  | 67.8   | Н   | 74.0   | -6.2     | PK        | 337     | 1.0    |          |
| 2484.980  | 64.2   | V   | 74.0   | -9.8     | PK        | 205     | 1.0    |          |





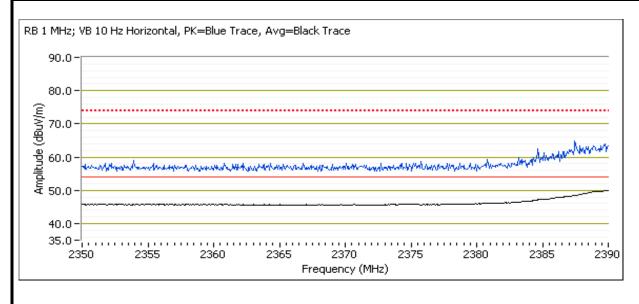
|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 3, Band Edge Field Strength - n40, Chain A+B

Date of Test: 9/17/2010
Test Engineer: Rafael Varelas

Test Location: FT Chamber #7

Config Change: none


Run # 3a, EUT on Channel #5 2432MHz - n40, Chain A+B

|        |      | Power Settings |       |       |      |         |                  |       |           |  |  |  |
|--------|------|----------------|-------|-------|------|---------|------------------|-------|-----------|--|--|--|
|        |      | Target         | (dBm) |       |      | Measure | Software Setting |       |           |  |  |  |
| Chain  | Α    | В              | С     | Total | Α    | В       | С                | Total |           |  |  |  |
| Criain | 13.5 | 13.5           |       | 16.5  | 10.5 | 10.6    |                  | 13.6  | 24.5/26.0 |  |  |  |

Fundamental Signal Field Strength

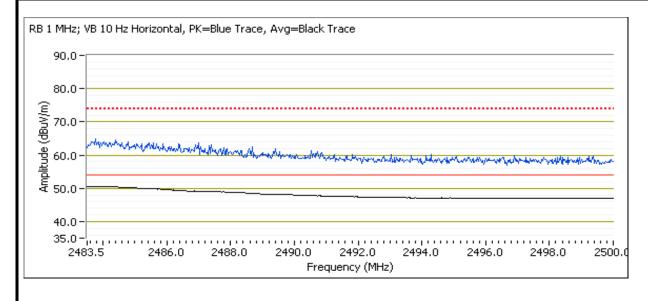
| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2434.800  | 96.7   | Н   | 120.0  | -23.3    | AVG       | 9       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2427.000  | 106.4  | Н   | 120.0  | -13.6    | PK        | 9       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2429.330  | 92.6   | V   | 120.0  | -27.4    | AVG       | 219     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2427.330  | 103.1  | V   | 120.0  | -16.9    | PK        | 219     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2389.950  | 52.6   | Η   | 54.0   | -1.4     | AVG       | 0       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2390.000  | 66.9   | Η   | 74.0   | -7.1     | PK        | 0       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2389.980  | 50.4   | V   | 54.0   | -3.6     | AVG       | 220     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2389.930  | 63.5   | V   | 74.0   | -10.5    | PK        | 220     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |





|           | All Dates Company                  |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |


### Run # 3b, EUT on Channel #7 2442MHz - n40, Chain A+B

|       |      | Power Settings . |       |       |                |      |   |       |                  |  |  |  |
|-------|------|------------------|-------|-------|----------------|------|---|-------|------------------|--|--|--|
|       |      | Target           | (dBm) |       | Measured (dBm) |      |   |       | Software Setting |  |  |  |
| Chain | Α    | В                | С     | Total | Α              | В    | С | Total |                  |  |  |  |
|       | 13.5 | 13.5             |       | 16.5  | 10.5           | 10.7 |   | 13.6  | 24.5/26.0        |  |  |  |

Fundamental Signal Field Strength

| i allaalliolit | undumontal orginal Flora outongth |     |        |          |           |         |        |                      |  |  |  |  |
|----------------|-----------------------------------|-----|--------|----------|-----------|---------|--------|----------------------|--|--|--|--|
| Frequency      | Level                             | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |  |  |  |  |
| MHz            | dBμV/m                            | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |  |  |  |  |
| 2429.400       | 93.4                              | V   | 120.0  | -26.6    | AVG       | 215     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |  |  |  |
| 2430.270       | 103.1                             | V   | 120.0  | -16.9    | PK        | 215     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |  |  |  |
| 2433.530       | 96.3                              | Н   | 120.0  | -23.7    | AVG       | 9       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |  |  |  |
| 2436.200       | 106.9                             | Н   | 120.0  | -13.1    | PK        | 9       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |  |  |  |

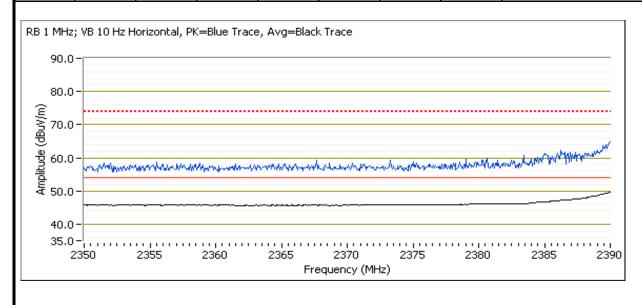
| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2483.540  | 52.9   | Н   | 54.0   | -1.1     | AVG       | 10      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2483.580  | 65.8   | Н   | 74.0   | -8.2     | PK        | 10      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2483.520  | 50.7   | V   | 54.0   | -3.3     | AVG       | 343     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2483.860  | 63.3   | V   | 74.0   | -10.7    | PK        | 343     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |





|           | An ZAZZES company                    |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
| Model.    | IIILEI® Ceritiiilo® Advanced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

### Run # 4, Band Edge Field Strength - n40, Chain A+B

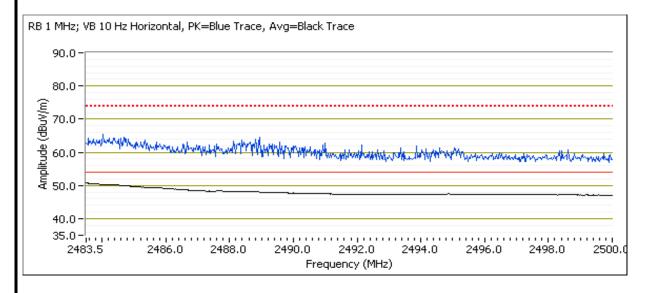

Date of Test: 9/17/2010 Test Location: FT Chamber #7
Test Engineer: Rafael Varelas Config Change: none

### EUT on Channel #6 2437MHz - n40, Chain A+B

|                                   |        | Power Settings |          |        |                |         |        |            |                  |  |  |  |
|-----------------------------------|--------|----------------|----------|--------|----------------|---------|--------|------------|------------------|--|--|--|
|                                   |        | Target         | (dBm)    |        | Measured (dBm) |         |        |            | Software Setting |  |  |  |
| Chain                             | Α      | В              | С        | Total  | Α              | В       | С      | Total      |                  |  |  |  |
| Chain                             | 13.5   | 13.5           |          | 16.5   | 12.3           | 12.4    |        | 15.4       | 26.5/28.0        |  |  |  |
| Fundamental Signal Field Strength |        |                |          |        |                |         |        |            |                  |  |  |  |
| Frequency                         | Level  | Pol            | 15.209 / | 15.247 | Detector       | Azimuth | Height | Comments   |                  |  |  |  |
| MHz                               | dBμV/m | v/h            | Limit    | Margin | Pk/QP/Avg      | degrees | meters |            |                  |  |  |  |
| 2425.600                          | 94.3   | V              | 120.0    | -25.7  | AVG            | 215     | 1.0    | RB 1 MHz;\ | /B 10 Hz;Pk      |  |  |  |
| 2432.130                          | 104.3  | V              | 120.0    | -15.7  | PK             | 215     | 1.0    | RB 1 MHz;\ | /B 3 MHz;Pk      |  |  |  |
| 2434.400                          | 98.4   | Н              | 120.0    | -21.6  | AVG            | 10      | 1.0    | RB 1 MHz;\ | /B 10 Hz;Pk      |  |  |  |
| 2432.670                          | 108.8  | Н              | 120.0    | -11.2  | PK             | 10      | 1.0    | RB 1 MHz;\ | /B 3 MHz;Pk      |  |  |  |

#### 2390 MHz Band Edge

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2389.790  | 51.8   | Н   | 54.0   | -2.2     | AVG       | 360     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2389.580  | 65.4   | Н   | 74.0   | -8.6     | PK        | 360     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2389.810  | 50.6   | V   | 54.0   | -3.4     | AVG       | 215     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2389.220  | 63.5   | V   | 74.0   | -10.5    | PK        | 215     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |






|           | All Diff. Company                    |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-IV 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

### 2483.5 MHz Band Edge

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2483.500  | 52.8   | Н   | 54.0   | -1.2     | AVG       | 8       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2484.700  | 65.3   | Н   | 74.0   | -8.7     | PK        | 8       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2483.500  | 50.4   | ٧   | 54.0   | -3.6     | AVG       | 342     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2485.220  | 63.3   | V   | 74.0   | -10.7    | PK        | 342     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

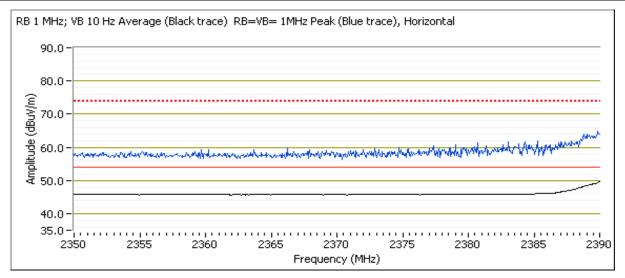




|           | All 2022 Company                     |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillio® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

### Run # 5, Band Edge Field Strength - n20, Chain A+B

Date of Test: 9/21/2010 Test Location: FT7
Test Engineer: Mehran Config Change: none


### Run # 5a, EUT on Channel #1 2412MHz - n20, Chain A+B

| •     |      | Power Settings |         |       |      |         |                  |       |            |  |  |  |
|-------|------|----------------|---------|-------|------|---------|------------------|-------|------------|--|--|--|
|       |      | Target         | t (dBm) |       |      | Measure | Software Setting |       |            |  |  |  |
| Chain | Α    | В              | С       | Total | Α    | В       | С                | Total |            |  |  |  |
| Chain | 13.5 | 13.5           |         | 16.5  | 11.4 | 11.6    |                  | 14.5  | 26.0, 27.5 |  |  |  |

#### Fundamental Signal Field Strength

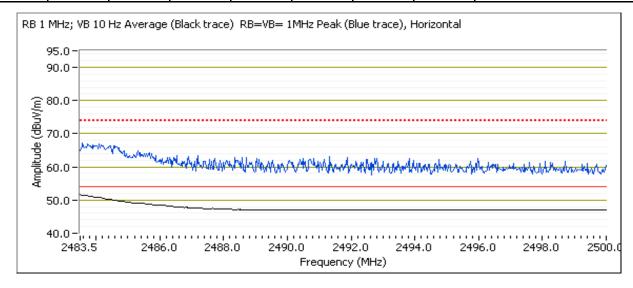
| i diladilicit | undamental dignar i leid direngar |     |        |          |           |         |        |          |  |  |  |  |
|---------------|-----------------------------------|-----|--------|----------|-----------|---------|--------|----------|--|--|--|--|
| Frequency     | Level                             | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |  |  |  |  |
| MHz           | dBμV/m                            | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |  |  |  |  |
| 2413.800      | 98.2                              | V   | 120.0  | -21.8    | AVG       | 189     | 1.0    |          |  |  |  |  |
| 2414.270      | 108.3                             | V   | 120.0  | -11.7    | PK        | 189     | 1.0    |          |  |  |  |  |
| 2416.170      | 100.6                             | Н   | 120.0  | -19.4    | AVG       | 17      | 1.0    |          |  |  |  |  |
| 2416.770      | 111.2                             | Н   | 120.0  | -8.8     | PK        | 17      | 1.0    |          |  |  |  |  |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2390.000  | 51.9   | Н   | 54.0   | -2.1     | AVG       | 17      | 1.0    |          |
| 2390.000  | 51.6   | V   | 54.0   | -2.4     | AVG       | 189     | 1.0    |          |
| 2389.870  | 63.8   | V   | 74.0   | -10.2    | PK        | 189     | 1.0    |          |
| 2389.730  | 63.4   | Н   | 74.0   | -10.6    | PK        | 17      | 1.0    |          |





|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |


### Run # 5b, EUT on Channel #11 2462MHz - n20, Chain A+B

| ran # 05, 201 on onamer #11 2402mile 1120, onam A.B |      |                |       |       |      |         |                  |       |            |  |  |  |  |
|-----------------------------------------------------|------|----------------|-------|-------|------|---------|------------------|-------|------------|--|--|--|--|
|                                                     |      | Power Settings |       |       |      |         |                  |       |            |  |  |  |  |
|                                                     |      | Target         | (dBm) |       |      | Measure | Software Setting |       |            |  |  |  |  |
| Chain                                               | Α    | В              | С     | Total | Α    | В       | С                | Total |            |  |  |  |  |
| Chalh                                               | 13.5 | 13.5           |       | 16.5  | 11.1 | 10.7    |                  | 13.9  | 25.5, 26.0 |  |  |  |  |

#### Fundamental Signal Field Strength

| - singsinones, organical roles of one |        |     |        |          |           |         |        |          |  |
|---------------------------------------|--------|-----|--------|----------|-----------|---------|--------|----------|--|
| Frequency                             | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |  |
| MHz                                   | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |  |
| 2466.600                              | 100.6  | Η   | -      | -        | AVG       | 15      | 1.0    |          |  |
| 2463.470                              | 110.7  | Н   | -      | -        | PK        | 15      | 1.0    |          |  |
| 2463.670                              | 96.7   | V   | -      | -        | AVG       | 187     | 0.9    |          |  |
| 2466.600                              | 107.1  | V   | -      | -        | PK        | 187     | 0.9    |          |  |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2483.500  | 53.0   | Н   | 54.0   | -1.0     | AVG       | 15      | 1.0    |          |
| 2483.500  | 51.3   | V   | 54.0   | -2.7     | AVG       | 187     | 0.9    |          |
| 2484.320  | 66.2   | Н   | 74.0   | -7.8     | PK        | 15      | 1.0    |          |
| 2483.500  | 63.5   | V   | 74.0   | -10.5    | PK        | 187     | 0.9    |          |

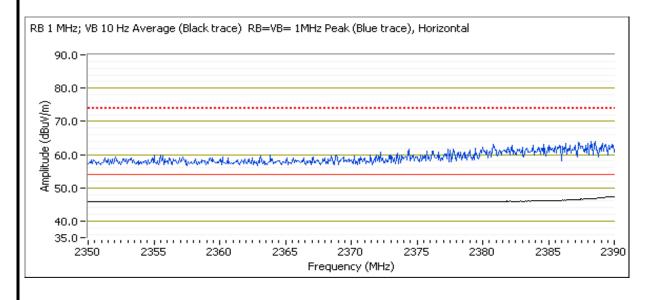




|           | An ZCZE3 company                      |                  |                   |
|-----------|---------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                     | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230      | T-Log Number:    | T80540            |
| Model.    | IIItel® Celitiiilo® Advaliced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                         |                  |                   |
| Standard: | FCC 15.247                            | Class:           | N/A               |

### Run # 6, Band Edge Field Strength - n20, Chain A+B

Date of Test: 9/21/2010 Test Location: Chamber #4
Test Engineer: Mehran Birgani Config Change: None


#### Run # 6a, EUT on Channel #2 2417MHz - n20, Chain A+B

|         | Power Settings |        |         |      |      |         |                  |       |            |  |  |
|---------|----------------|--------|---------|------|------|---------|------------------|-------|------------|--|--|
|         |                | Target | t (dBm) |      |      | Measure | Software Setting |       |            |  |  |
| Chain   | A B C Total    |        |         |      | Α    | В       | С                | Total |            |  |  |
| Citalii | 13.5           | 13.5   |         | 16.5 | 13.5 | 13 7    |                  | 16.6  | 28.5. 29.5 |  |  |

#### Fundamental Signal Field Strength

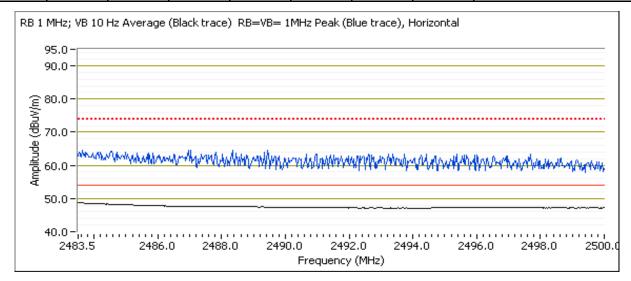
| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2412.800  | 103.0  | Н   | -      | -        | AVG       | 10      | 1.3    |          |
| 2415.570  | 113.1  | Н   | -      | -        | PK        | 10      | 1.3    |          |
| 2421.130  | 100.4  | V   | -      | -        | AVG       | 189     | 1.0    |          |
| 2414.200  | 110.8  | V   | -      | -        | PK        | 189     | 1.0    |          |

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |
| 2389.930  | 49.3   | Н   | 54.0   | -4.7     | AVG       | 10      | 1.3    |          |
| 2389.600  | 49.0   | V   | 54.0   | -5.0     | AVG       | 189     | 1.0    |          |
| 2385.270  | 64.2   | Н   | 74.0   | -9.8     | PK        | 10      | 1.3    |          |
| 2387.800  | 63.6   | V   | 74.0   | -10.4    | PK        | 189     | 1.0    |          |





|           | All Diff. Company                |                  | 100000            |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
| Model.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |


### Run # 6b, EUT on Channel #10 2457MHz - n20, Chain A+B

|         | Power Settings |        |       |       |      |         |                  |       |            |  |  |
|---------|----------------|--------|-------|-------|------|---------|------------------|-------|------------|--|--|
|         |                | Target | (dBm) |       |      | Measure | Software Setting |       |            |  |  |
| Chain   | Α              | В      | С     | Total | Α    | В       | С                | Total |            |  |  |
| Cilalii | 13.5           | 13.5   |       | 16.5  | 13.6 | 14.0    |                  | 16.8  | 28.5, 29.5 |  |  |

#### Fundamental Signal Field Strength

| · unuamontal orginal i lota ottorigati |        |     |        |          |           |         |        |          |  |  |
|----------------------------------------|--------|-----|--------|----------|-----------|---------|--------|----------|--|--|
| Frequency                              | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments |  |  |
| MHz                                    | dBμV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |          |  |  |
| 2460.870                               | 102.9  | Н   | 120.0  | -17.1    | AVG       | 15      | 1.0    |          |  |  |
| 2459.670                               | 113.0  | Н   | 120.0  | -7.0     | PK        | 15      | 1.0    |          |  |  |
| 2461.170                               | 98.9   | V   | 120.0  | -21.1    | AVG       | 197     | 1.0    |          |  |  |
| 2461.630                               | 109.1  | V   | 120.0  | -10.9    | PK        | 197     | 1.0    |          |  |  |

| Frequency | Level  | Pol | 15.209 | 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|--------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin | Pk/QP/Avg | degrees | meters |          |
| 2483.500  | 50.6   | Н   | 54.0   | -3.4   | AVG       | 15      | 1.0    |          |
| 2483.660  | 49.5   | V   | 54.0   | -4.5   | AVG       | 197     | 1.0    |          |
| 2483.770  | 64.9   | Н   | 74.0   | -9.1   | PK        | 15      | 1.0    |          |
| 2487.680  | 62.7   | V   | 74.0   | -11.3  | PK        | 197     | 1.0    |          |



| EII | iott An AZAS company |
|-----|----------------------|
|-----|----------------------|

|           | An ZAZZZ Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

| Run#   | Mode               | Channel        | Target<br>Power | Measured<br>Power | Test Performed                    | Limit               | Result / Margin                    |
|--------|--------------------|----------------|-----------------|-------------------|-----------------------------------|---------------------|------------------------------------|
|        |                    | #1<br>2412MHz  | 16.5            | 16.8              | Radiated Emissions,<br>1 - 26 GHz |                     | 51.4dBµV/m @<br>4824.0MHz (-2.6dB) |
|        | 802.11b<br>Chain A | #6<br>2437MHz  | 16.5            | 16.4              |                                   | FCC 15.209 / 15.247 | 49.1dBµV/m @<br>4874.0MHz (-4.9dB) |
| Run #1 |                    | #11<br>2462MHz | 16.5            | 16.8              |                                   |                     | 50.4dBµV/m @<br>4924.0MHz (-3.6dB) |
| Kull#1 | 802.11b<br>Chain B | #1<br>2412MHz  | 16.5            | 16.8              | Radiated Emissions,<br>1 - 26 GHz | FCC 15.209 / 15.247 | 50.0dBµV/m @<br>4824.0MHz (-4.0dB) |
|        |                    | #6<br>2437MHz  | 16.5            | 15.0              |                                   |                     | 50.7dBµV/m @<br>4874.0MHz (-3.3dB) |
|        |                    | #11<br>2462MHz | 16.5            | 15.9              |                                   |                     | 50.8dBµV/m @<br>4924.0MHz (-3.2dB) |

Scans on center channel in all three OFDM modes to determine the worst case mode. Note that for n20 and n40 mode the output power was set to 16.5dBm per chain. The maximum power per chain in MIMO mode would be 13.5dBm, however as the single chain power could be 16.5dBm the scans were run at the higher single-chain power level with both chains active.

|             | 802.11g                                          | #6      | 4C E   | 16.4   |                                   |                     | 40.8dBµV/m @        |  |  |
|-------------|--------------------------------------------------|---------|--------|--------|-----------------------------------|---------------------|---------------------|--|--|
|             | Chain A                                          | 2437MHz | 16.5   | 16.4   |                                   | FCC 15.209 / 15.247 | 4874.2MHz (-13.2dB) |  |  |
|             | 802.11g                                          | #6      | 16 F   | 16.7   | Radiated Emissions,<br>1 - 26 GHz |                     | 44.3dBµV/m @        |  |  |
| Run # 2     | Chain B                                          | 2437MHz | 16.5   |        |                                   |                     | 4874.4MHz (-9.7dB)  |  |  |
| Rull # 2    | 802.11n20                                        | #6      | A:16.5 | A:16.6 |                                   |                     | 45.0dBµV/m @        |  |  |
|             | Chain A+B                                        | 2437MHz | B:16.5 | B:16.5 |                                   |                     | 4873.2MHz (-9.0dB)  |  |  |
|             | 802.11n40                                        | #6      | A:16.5 | A:16.6 |                                   |                     | 39.5dBµV/m @        |  |  |
|             | Chain A+B                                        | 2437MHz | B:16.5 | B:16.5 |                                   |                     | 4873.9MHz (-14.5dB) |  |  |
| Top and bot | Top and bottom channels in worst case OFDM mode: |         |        |        |                                   |                     |                     |  |  |

| Run # 3 | Worst case<br>OFDM<br>802.11n | #1<br>2412MHz  | 16.5 | A:16.5<br>B:16.6 | Radiated Emissions, | FCC 15.209 / 15.247 | 36.5dBµV/m @<br>4827.0MHz (-17.5dB) |
|---------|-------------------------------|----------------|------|------------------|---------------------|---------------------|-------------------------------------|
| Kull#3  | 20MHz<br>Chain A+B            | #11<br>2462MHz | 16.5 | A:16.7<br>B:16.7 | 1 - 26 GHz          |                     | 43.3dBµV/m @<br>4923.1MHz (-10.7dB) |

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

| <b>EI</b> | liott           |
|-----------|-----------------|
|           | An AZAS company |

| Client:   | Intel Corporation                                 | Job Number:      | J80398            |
|-----------|---------------------------------------------------|------------------|-------------------|
| Martal    | 1 1 1 2 0 1 1 1 2 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | T-Log Number:    | T80540            |
| Model:    | Intel® Centrino® Advanced-N 6230                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                                     |                  |                   |
| Standard: | FCC 15.247                                        | Class:           | N/A               |

| Receiver S | Receiver Spurious Emissions |                  |                 |                   |                                    |         |                                     |  |  |  |
|------------|-----------------------------|------------------|-----------------|-------------------|------------------------------------|---------|-------------------------------------|--|--|--|
| Run#       | Mode                        | Channel          | Target<br>Power | Measured<br>Power | Test Performed                     | Limit   | Result / Margin                     |  |  |  |
|            | Receive                     | #6, Chain A      | ı               | -                 | Radiated Emissions,<br>1 - 7.5 GHz |         | 40.7dBµV/m @<br>1200.0MHz (-13.3dB) |  |  |  |
| Run # 4    |                             | #6, Chain B      | -               | 1                 |                                    | RSS 210 | 39.7dBµV/m @<br>2986.7MHz (-14.3dB) |  |  |  |
|            |                             | #6, Chain<br>A+B | -               | -                 |                                    |         | 39.2dBµV/m @<br>1200.1MHz (-14.8dB) |  |  |  |

### **Test Specific Details**

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

### **General Test Configuration**

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

### Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

### Modifications Made During Testing

No modifications were made to the EUT during testing

### **Deviations From The Standard**

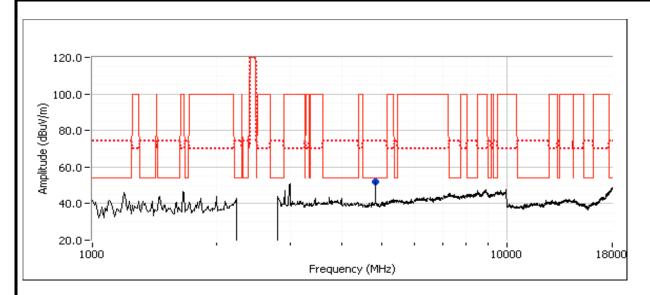
No deviations were made from the requirements of the standard.



|           | An ZAZES company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | IIItel® Certifillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

### Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Chain A

Date of Test: 9/17/2010 Test Location: FT Chamber #7


Test Engineer: Rafael Varelas Config Change: none

Run #1a, EUT on Channel #1 2412MHz - 802.11b, Chain A

| <br>    | ,            |                |                  |
|---------|--------------|----------------|------------------|
|         |              | Power Settings |                  |
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.8           | 23.5             |

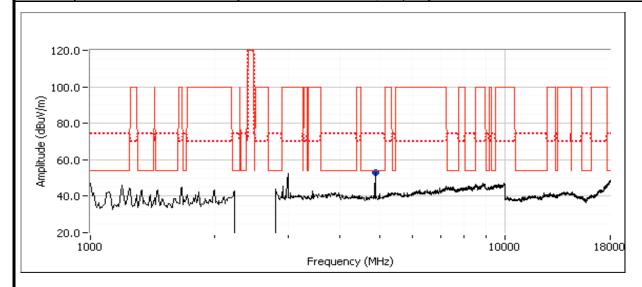
Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209/ | /15.247 | Detector  | Azimuth | Height | Comments             |  |  |
|-----------|--------|-----|---------|---------|-----------|---------|--------|----------------------|--|--|
| MHz       | dBμV/m | v/h | Limit   | Margin  | Pk/QP/Avg | degrees | meters |                      |  |  |
| 4824.020  | 51.4   | V   | 54.0    | -2.6    | AVG       | 2       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |  |
| 4824.030  | 54.7   | V   | 74.0    | -19.3   | PK        | 2       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |  |





|           | All 2022 Company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model     | IIItel® Celitiiio® Advanced-ii 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |


### Run #1b: , EUT on Channel #6 2437MHz - 802.11b, Chain A

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.4           | 23.0             |

#### Spurious Radiated Emissions:

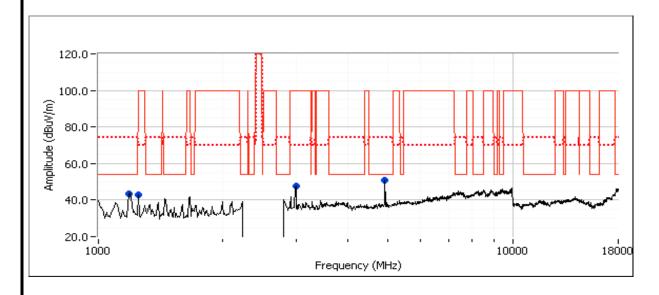
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4873.980  | 49.1   | V   | 54.0   | -4.9    | AVG       | 70      | 1.0    |          |
| 4873.980  | 52.2   | V   | 74.0   | -21.8   | PK        | 70      | 1.0    |          |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | All Diff. Company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |


Run #1c: , EUT on Channel #11 2462MHz - 802.11b, Chain A

|         | Power Settings |                |                  |  |  |  |
|---------|----------------|----------------|------------------|--|--|--|
|         | Target (dBm)   | Measured (dBm) | Software Setting |  |  |  |
| Chain A | 16.5           | 16.8           | 23.5             |  |  |  |

Spurious Radiated Emissions:

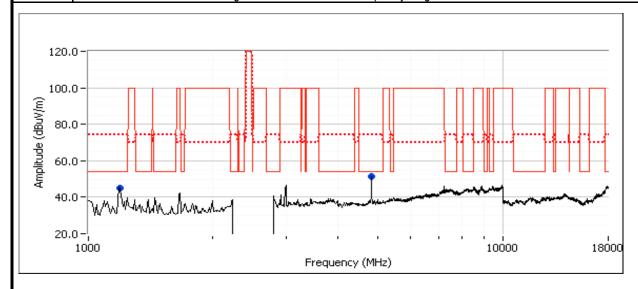
| opulious N | adiatod Eiiii | 00101101 |        |         |           |         |        |          |
|------------|---------------|----------|--------|---------|-----------|---------|--------|----------|
| Frequency  | Level         | Pol      | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
| MHz        | dBμV/m        | v/h      | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4924.030   | 50.4          | V        | 54.0   | -3.6    | AVG       | 155     | 1.0    |          |
| 4923.950   | 52.9          | V        | 74.0   | -21.1   | PK        | 155     | 1.0    |          |
| 1192.680   | 44.9          | Н        | 54.0   | -9.1    | AVG       | 120     | 1.7    |          |
| 1192.680   | 46.9          | Н        | 74.0   | -27.1   | PK        | 120     | 1.7    |          |
| 1220.250   | 33.8          | V        | 54.0   | -20.2   | AVG       | 183     | 1.0    |          |
| 1220.720   | 41.1          | V        | 74.0   | -32.9   | PK        | 183     | 1.0    |          |
| 2993.170   | 39.9          | V        | 100.0  | -60.1   | AVG       | 152     | 1.0    |          |
| 2999.570   | 57.6          | V        | 70.0   | -12.4   | PK        | 152     | 1.0    |          |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | All 2022 Company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model     | IIItel® Celitiiio® Advanced-ii 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |


Run #1d, EUT on Channel #1 2412MHz - 802.11b, Chain B

| • • • • |         |              |                                          |      |  |  |  |  |
|---------|---------|--------------|------------------------------------------|------|--|--|--|--|
|         |         |              | Power Settings                           |      |  |  |  |  |
|         |         | Target (dBm) | Target (dBm) Measured (dBm) Software Set |      |  |  |  |  |
|         | Chain B | 16.5         | 16.8                                     | 25.0 |  |  |  |  |

Spurious Radiated Emissions:

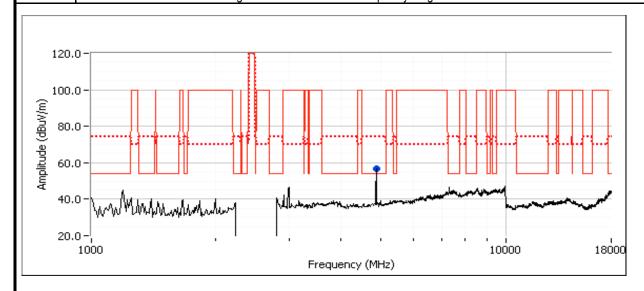
| opunous n | parious radiated Emissions. |     |        |         |           |         |        |          |  |  |
|-----------|-----------------------------|-----|--------|---------|-----------|---------|--------|----------|--|--|
| Frequency | Level                       | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |  |  |
| MHz       | dBμV/m                      | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |  |  |
| 4824.020  | 50.0                        | V   | 54.0   | -4.0    | AVG       | 191     | 1.0    |          |  |  |
| 1192.550  | 43.6                        | V   | 54.0   | -10.4   | AVG       | 210     | 1.1    |          |  |  |
| 4824.080  | 52.7                        | V   | 74.0   | -21.3   | PK        | 191     | 1.0    |          |  |  |
| 1192.700  | 46.5                        | V   | 74.0   | -27.5   | PK        | 210     | 1.1    |          |  |  |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | All 2022 Company                          |                  |                   |
|-----------|-------------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                         | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230          | T-Log Number:    | T80540            |
| Model.    | III (el® Cell (III) (ll Advallceu-IV 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                             |                  |                   |
| Standard: | FCC 15.247                                | Class:           | N/A               |


Run #1e: , EUT on Channel #6 2437MHz - 802.11b, Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain B | 16.5         | 15.0           | 23.0             |

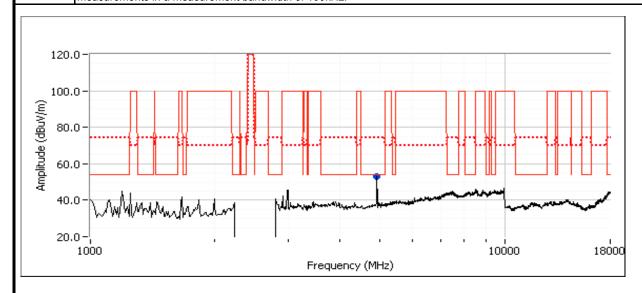
Spurious Radiated Emissions:

|           |        |     |         |         | 1         |         |        |          |
|-----------|--------|-----|---------|---------|-----------|---------|--------|----------|
| Frequency | Level  | Pol | 15.209/ | /15.247 | Detector  | Azimuth | Height | Comments |
| MHz       | dBμV/m | v/h | Limit   | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4873.990  | 50.7   | V   | 54.0    | -3.3    | AVG       | 172     | 1.0    |          |
| 4873.990  | 53.2   | V   | 74.0    | -20.8   | PK        | 172     | 1.0    |          |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.






|           | All Dates Company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(e)® Ceritiii)0® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

Run #1f: , EUT on Channel #11 2462MHz - 802.11b, Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain B | 16.5         | 15.9           | 23.5             |

Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |  |  |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|--|--|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters | Setting  |  |  |
| 4923.980  | 50.8   | V   | 54.0   | -3.2    | AVG       | 305     | 1.0    | 23.5     |  |  |
| 4923.920  | 53.2   | V   | 74.0   | -20.8   | PK        | 305     | 1.0    | 23.5     |  |  |

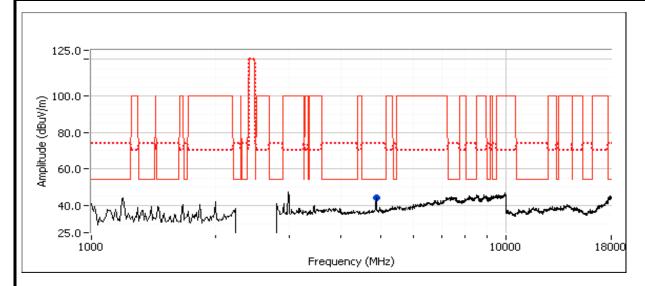




|           | An Z(ZE) company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 2, Radiated Spurious Emissions, 1-26GHz, 802.11g, n20 and n40, Chain A

Date of Test: 9/20/2010 Test Location: Chamber #7
Test Engineer: Mehran Birgani Config Change: None


Run # 2a, EUT on Channel #6 2437MHz - 802.11g Chain A

| Ī |         | Dower Cattings |                |                  |  |  |  |  |  |  |
|---|---------|----------------|----------------|------------------|--|--|--|--|--|--|
|   |         |                | Power Settings |                  |  |  |  |  |  |  |
|   |         | Target (dBm)   | Measured (dBm) | Software Setting |  |  |  |  |  |  |
|   | Chain A | 16.5           | 29.0           | 16.4             |  |  |  |  |  |  |

#### Spurious Radiated Emissions:

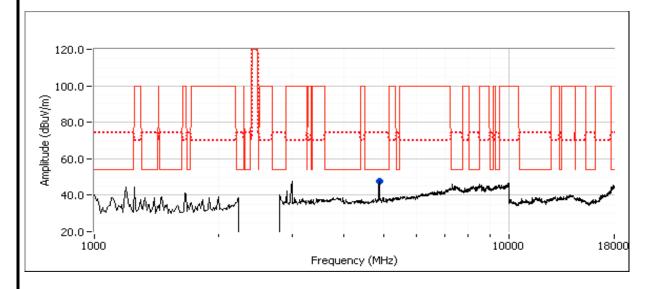
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4874.230  | 40.8   | V   | 54.0   | -13.2   | AVG       | 13      | 1.0    |          |
| 4875.150  | 52.4   | V   | 74.0   | -21.6   | PK        | 13      | 1.0    |          |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | All Diff. Company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |


Run # 2a, EUT on Channel #6 2437MHz - 802.11g Chain B

|         | <u> </u>     |                |                  |
|---------|--------------|----------------|------------------|
|         |              | Power Settings |                  |
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain B | 16.5         | 30.5           | 16.7             |

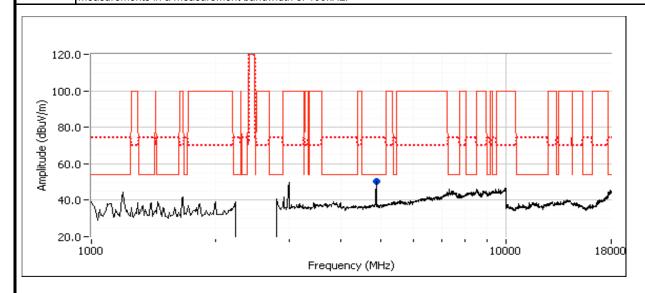
Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |  |  |  |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|--|--|--|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |  |  |  |
| 4874.350  | 44.3   | V   | 54.0   | -9.7    | AVG       | 181     | 1.0    |          |  |  |  |
| 4876.520  | 55.7   | V   | 74.0   | -18.3   | PK        | 181     | 1.0    |          |  |  |  |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.






|           | All Diff. Company                |                  | 100000            |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
| Model.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

### Run # 2c: , EUT on Channel #6 2437MHz - 802.11n20, Chain A+B

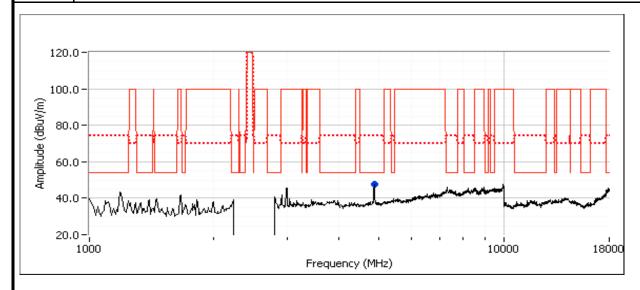
| ,       |                |        |       | ,     |                         |      |   |                  |            |  |
|---------|----------------|--------|-------|-------|-------------------------|------|---|------------------|------------|--|
|         | Power Settings |        |       |       |                         |      |   |                  |            |  |
|         |                | Target | (dBm) |       | Measured (dBm) Software |      |   | Software Setting |            |  |
| Chain   | Α              | В      | С     | Total | Α                       | В    | С | Total            |            |  |
| Gilaili | 16.5           | 16.5   |       | 19.5  | 16.6                    | 16.5 |   | 19.6             | 32.5, 34.0 |  |

Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247      | Detector  | Azimuth | Height | Comments |  |  |
|-----------|--------|-----|--------|--------------|-----------|---------|--------|----------|--|--|
| MHz       | dBμV/m | v/h | Limit  | Margin       | Pk/QP/Avg | degrees | meters |          |  |  |
| 4873.170  | 45.0   | V   | 54.0   | <b>-</b> 9.0 | AVG       | 180     | 1.1    |          |  |  |
| 4874.040  | 59.8   | V   | 74.0   | -14.2        | PK        | 180     | 1.1    |          |  |  |






|           | An 2022 Company                    |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Centillio® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 2d: , EUT on Channel #6 2437MHz - 802.11n40, Chain A+B

| , ,     |                |        |       |       |                                 |      |   |       |                  |  |  |
|---------|----------------|--------|-------|-------|---------------------------------|------|---|-------|------------------|--|--|
|         | Power Settings |        |       |       |                                 |      |   |       |                  |  |  |
|         |                | Target | (dBm) |       | Measured (dBm) Software Setting |      |   |       | Software Setting |  |  |
| Chain   | Α              | В      | С     | Total | Α                               | В    | С | Total |                  |  |  |
| Chain - | 16.5           | 16.5   |       | 19.5  | 16.6                            | 16.5 |   | 19.6  | 32.5, 34.0       |  |  |

Spurious Radiated Emissions:

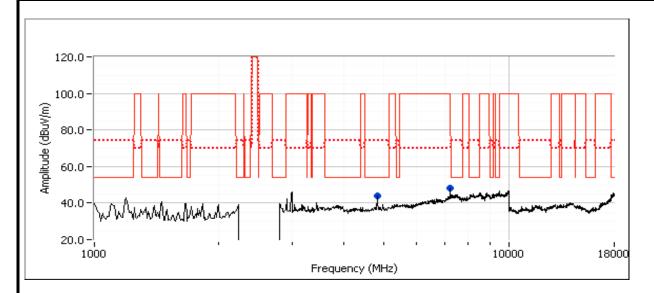
|           | -      |     |        |         |           |         |        |          |  |  |  |  |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|--|--|--|--|
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |  |  |  |  |
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |  |  |  |  |
| 4873.870  | 39.5   | Н   | 54.0   | -14.5   | AVG       | 120     | 1.1    |          |  |  |  |  |
| 4874.030  | 54.7   | Н   | 74.0   | -19.3   | PK        | 120     | 1.1    |          |  |  |  |  |





|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 3, Radiated Spurious Emissions, 1-26GHz, Worst case OFDM 802.11n 20MHz, Chain A+B


Date of Test: 9/20/2010 Test Location: Chamber #7
Test Engineer: Rafael Varelas Config Change: None

#### Run # 3a, EUT on Channel #1 2412MHz - 802.11n 20MHz, Chain A+B

|       | ,    |                |       |       |                |      |   |       |                  |  |  |  |
|-------|------|----------------|-------|-------|----------------|------|---|-------|------------------|--|--|--|
|       |      | Power Settings |       |       |                |      |   |       |                  |  |  |  |
|       |      | Target         | (dBm) |       | Measured (dBm) |      |   |       | Software Setting |  |  |  |
| Chain | Α    | В              | С     | Total | Α              | В    | С | Total |                  |  |  |  |
|       | 16.5 | 16.5           |       | 19.5  | 16.5           | 16.6 |   | 19.6  | 32.5, 34.0       |  |  |  |

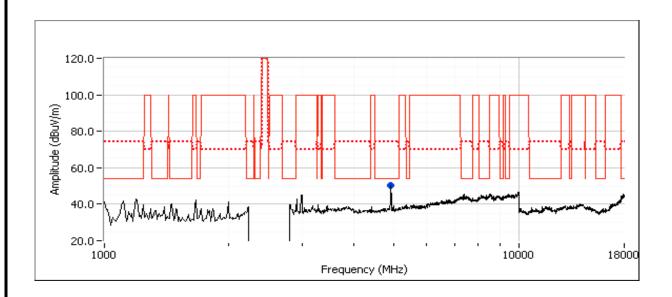
#### Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 4826.970  | 36.5   | V   | 54.0   | -17.5   | AVG       | 137     | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 4824.030  | 50.0   | V   | 74.0   | -24.0   | PK        | 137     | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 7236.050  | 48.4   | V   | 70.0   | -21.6   | Peak      | 167     | 1.0    |                      |





| An 2/27=3 company |                                       |                  |                   |  |  |  |  |  |
|-------------------|---------------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:           | Intel Corporation                     | Job Number:      | J80398            |  |  |  |  |  |
| Model:            | Intel® Centrino® Advanced-N 6230      | T-Log Number:    | T80540            |  |  |  |  |  |
|                   | IIItel® Celitiiilo® Advaliced-iv 0250 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:          | Steve Hackett                         |                  |                   |  |  |  |  |  |
| Standard:         | FCC 15.247                            | Class:           | N/A               |  |  |  |  |  |


### Run # 3b: , EUT on Channel #11 2462MHz - 802.11n 20MHz, Chain A+B

Date of Test: 9/20/2010 Test Location: Chamber #7
Test Engineer: Mehran Birgani Config Change: None

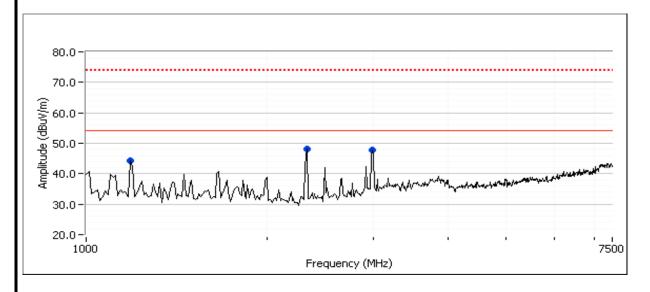
|       |      |        | Power Settings |       |                |      |   |       |                  |  |  |  |  |
|-------|------|--------|----------------|-------|----------------|------|---|-------|------------------|--|--|--|--|
|       |      | Target | (dBm)          |       | Measured (dBm) |      |   |       | Software Setting |  |  |  |  |
| Chain | Α    | В      | С              | Total | Α              | В    | С | Total |                  |  |  |  |  |
|       | 16.5 | 16.5   |                | 19.5  | 16.7           | 16.7 |   | 19.7  | 32.5, 34.0       |  |  |  |  |

#### Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4923.130  | 43.3   | V   | 54.0   | -10.7   | AVG       | 318     | 1.0    |          |
| 4924.130  | 58.1   | V   | 74.0   | -15.9   | PK        | 318     | 1.0    |          |





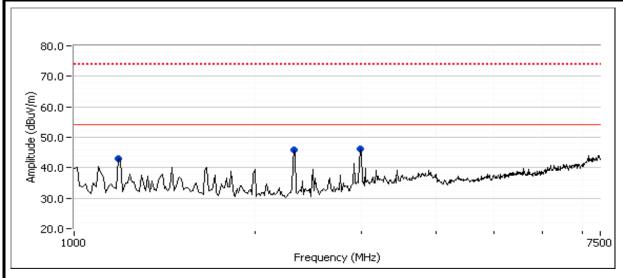

|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 4, Radiated Spurious Emissions, 1-26GHz, Receive, Chain A,B, A+B

Date of Test: 9/20/2010 Test Location: Chamber #7
Test Engineer: Rafael Varelas Config Change: none

### Run # 4a, EUT on Channel #6 2437MHz - Receive, Chain A

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 1200.040  | 40.7   | Н   | 54.0  | -13.3  | AVG       | 126     | 1.8    | RB 1 MHz;VB 10 Hz;Pk |
| 1200.060  | 46.3   | Н   | 74.0  | -27.7  | PK        | 126     | 1.8    | RB 1 MHz;VB 3 MHz;Pk |
| 2987.470  | 38.0   | V   | 54.0  | -16.0  | AVG       | 170     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 3000.000  | 55.0   | V   | 74.0  | -19.0  | PK        | 170     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2330.940  | 36.5   | V   | 54.0  | -17.5  | AVG       | 258     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2331.440  | 53.7   | V   | 74.0  | -20.3  | PK        | 258     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

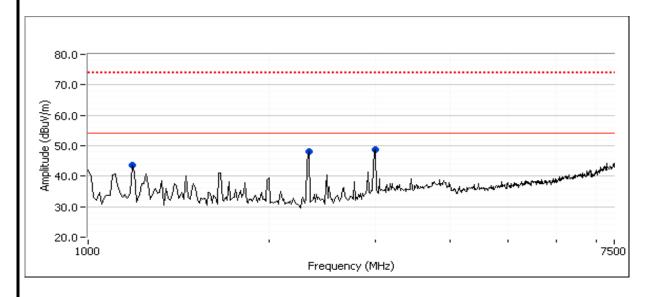





|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 4b: EUT on Channel #6 2437MHz - Receive, Chain B

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 2986.720  | 39.7   | V   | 54.0  | -14.3  | AVG       | 161     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2987.450  | 56.9   | V   | 74.0  | -17.1  | PK        | 161     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2324.000  | 37.6   | V   | 54.0  | -16.4  | AVG       | 186     | 1.3    | RB 1 MHz;VB 10 Hz;Pk |
| 2324.460  | 55.7   | V   | 74.0  | -18.3  | PK        | 186     | 1.3    | RB 1 MHz;VB 3 MHz;Pk |
| 1200.070  | 38.9   | Н   | 54.0  | -15.1  | AVG       | 120     | 1.7    | RB 1 MHz;VB 10 Hz;Pk |
| 1199.980  | 44.9   | Н   | 74.0  | -29.1  | PK        | 120     | 1.7    | RB 1 MHz;VB 3 MHz;Pk |






|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 4c: EUT on Channel #6 2437MHz - Receive, Chain A+B

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 1200.050  | 39.2   | V   | 54.0  | -14.8  | AVG       | 104     | 1.8    | RB 1 MHz;VB 10 Hz;Pk |
| 1199.910  | 45.4   | V   | 74.0  | -28.6  | PK        | 104     | 1.8    | RB 1 MHz;VB 3 MHz;Pk |
| 2987.130  | 38.9   | V   | 54.0  | -15.1  | AVG       | 154     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2985.230  | 56.5   | V   | 74.0  | -17.5  | PK        | 154     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2323.250  | 36.1   | V   | 54.0  | -17.9  | AVG       | 360     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2321.940  | 53.6   | V   | 74.0  | -20.4  | PK        | 360     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |



# Elliott

### EMC Test Data

|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

| Run# | Mode | Channel | Target<br>Power | Measured<br>Power | Test Performed | Limit | Result / Margin |
|------|------|---------|-----------------|-------------------|----------------|-------|-----------------|
|------|------|---------|-----------------|-------------------|----------------|-------|-----------------|

Scans on center channel in all three OFDM modes to determine the worst case. Note that for n20 and n40 mode the output power was set to 16.5dBm per chain, the maximum power per chain in MIMO mode would be 13.5dBm, however as the single chain power could be 16.5dBm the scans were run at the higher single-chain power level but with both chains active to cover both MIMO and MISO modes.

|             | 802.11a                                                           | #157      | 16 E | 16.7   |                                   |                     | 44.8dBµV/m @        |  |
|-------------|-------------------------------------------------------------------|-----------|------|--------|-----------------------------------|---------------------|---------------------|--|
| Dup # 1     | Chain A                                                           | 5785MHz   | 16.5 | 10.7   | Radiated Emissions,               | FCC 15.209 / 15.247 | 11570.3MHz (-9.2dB) |  |
| Run # 1     | 802.11a                                                           | #157      | 16.5 | 16.8   | 1 - 40 GHz                        | FCC 15.2097 15.247  | 45.1dBµV/m @        |  |
|             | Chain B                                                           | 5785MHz   | 10.5 | 10.0   |                                   |                     | 11570.2MHz (-8.9dB) |  |
|             |                                                                   | #157      | 16.5 | A=16.6 |                                   |                     | 47.6dBµV/m @        |  |
| Run # 2     | n20/n40                                                           | 5785MHz   | 10.5 | B=16.7 | Radiated Emissions,               | FCC 15.209 / 15.247 | 11570.8MHz (-6.4dB) |  |
| Rull # Z    | Chain A+B                                                         | #159      | 16.5 | A=16.6 | 1 - 40 GHz                        | FCC 15.209 / 15.247 | 46.3dBµV/m @        |  |
|             |                                                                   | 5795MHz   | 10.5 | B=16.7 |                                   |                     | 11590.1MHz (-7.7dB) |  |
| Top and bo  | Top and bottom channels in worst case OFDM mode (n20, Chain A+B): |           |      |        |                                   |                     |                     |  |
|             | Mode: n20                                                         | #149      | 16.5 | A=16.7 |                                   |                     | 46.4dBµV/m @        |  |
| Run # 3     |                                                                   | 5745MHz   | 10.5 | B=16.8 | Radiated Emissions,<br>1 - 40 GHz | FCC 15.209 / 15.247 | 11490.0MHz (-7.6dB) |  |
| Null#3      | Chain A+B                                                         | A+B #165  | 16.5 | A=16.6 |                                   |                     | 49.4dBµV/m @        |  |
|             |                                                                   | 5825MHz   | 10.5 | B=16.7 |                                   |                     | 11650.5MHz (-4.6dB) |  |
| Receiver Sp | ourious Emi                                                       | ssions    |      |        |                                   |                     |                     |  |
|             |                                                                   | #157,     |      |        |                                   |                     | 38.8dBµV/m @        |  |
|             | Receive                                                           | Chain A   | -    | -      |                                   |                     | 2998.7MHz (-15.2dB) |  |
| Run # 4     | Chain A,B,                                                        | #157,     |      |        | Radiated Emissions,               | RSS 210             | 38.7dBµV/m @        |  |
| IXuII # 4   | A+B                                                               | Chain B   | -    | •      | 1 - 7.5 GHz                       | 1100 2 10           | 2995.4MHz (-15.3dB) |  |
|             | A+D                                                               | #157,     |      |        |                                   |                     | 38.8dBµV/m @        |  |
|             |                                                                   | Chain A+B | -    | -      |                                   |                     | 2328.2MHz (-15.2dB) |  |

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

#### **Test Specific Details**

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

### **General Test Configuration**

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.



|           | An ZAZES company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| woder.    | IIILEI® Ceritiiio® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

### **Ambient Conditions:**

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

### Modifications Made During Testing

No modifications were made to the EUT during testing

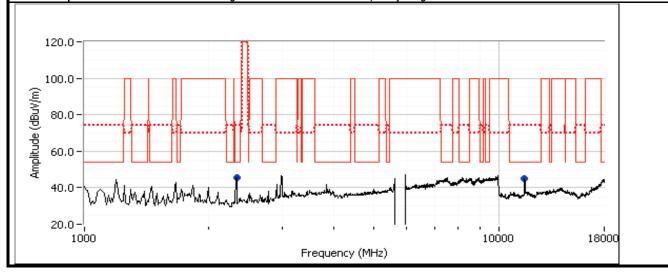
#### Deviations From The Standard

No deviations were made from the requirements of the standard.

#### Run # 1, Radiated Spurious Emissions, 1-40GHz, 802.11a

Date of Test: 9/21/2010 Test Location: FT chamber #4

Test Engineer: Rafael Varelas Config Change: none


Run # 1a, EUT on Channel #157 5785MHz - 802.11a, Chain A

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.7           | 29.5             |

Spurious Radiated Emissions:

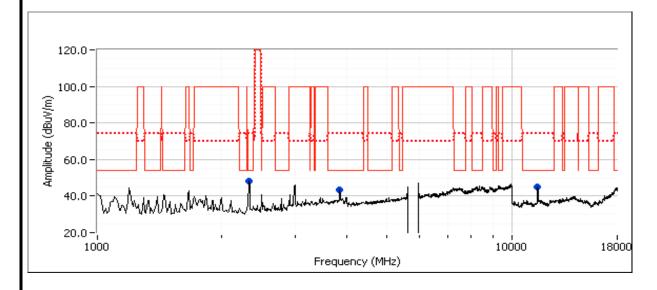
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 11570.250 | 44.8   | V   | 54.0   | -9.2    | AVG       | 162     | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 11571.650 | 55.7   | V   | 74.0   | -18.3   | PK        | 162     | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 2331.360  | 35.9   | V   | 54.0   | -18.1   | AVG       | 339     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2325.530  | 53.0   | V   | 74.0   | -21.0   | PK        | 339     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |


### Run # 1b: , EUT on Channel #157 5785MHz - 802.11a, Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.8           | 29.0             |

Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 11570.230 | 45.1   | V   | 54.0   | -8.9    | AVG       | 285     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 11564.300 | 56.9   | V   | 74.0   | -17.1   | PK        | 285     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2323.600  | 38.2   | V   | 54.0   | -15.8   | AVG       | 347     | 0.9    | RB 1 MHz;VB 10 Hz;Pk |
| 2321.900  | 56.9   | V   | 74.0   | -17.1   | PK        | 347     | 0.9    | RB 1 MHz;VB 3 MHz;Pk |
| 3856.700  | 44.2   | V   | 54.0   | -9.8    | AVG       | 219     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 3856.780  | 49.7   | V   | 74.0   | -24.3   | PK        | 219     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

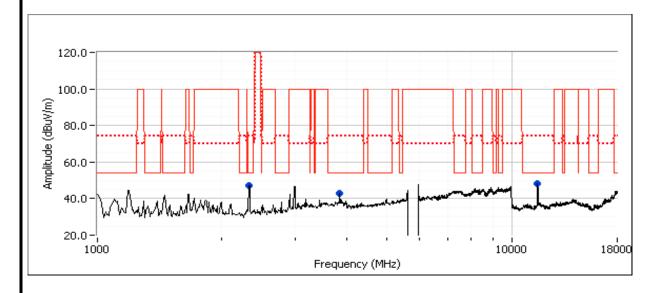




|           | An 2/22 company                       |                  |                   |
|-----------|---------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                     | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230      | T-Log Number:    | T80540            |
| wodei.    | IIItel® Celitiiilo® Advaliced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                         |                  |                   |
| Standard: | FCC 15.247                            | Class:           | N/A               |

### Run # 2, Radiated Spurious Emissions, 1-40GHz, 802.11n modes, Chain A+B

Date of Test: 9/21/2010 Test Location: FT chamber #4


Test Engineer: Rafael Varelas Config Change: none

### Run # 2a, EUT on Channel #157 5785MHz - n20/n40, Chain A+B

|        |      | Power Settings |       |       |      |         |                  |       |           |  |  |  |
|--------|------|----------------|-------|-------|------|---------|------------------|-------|-----------|--|--|--|
|        |      | Target         | (dBm) |       |      | Measure | Software Setting |       |           |  |  |  |
| Chain  | Α    | В              | С     | Total | Α    | В       | С                | Total |           |  |  |  |
| Criain | 16.5 | 16.5           |       | 19.5  | 16.6 | 16.7    |                  | 19.7  | 35.5/35.0 |  |  |  |

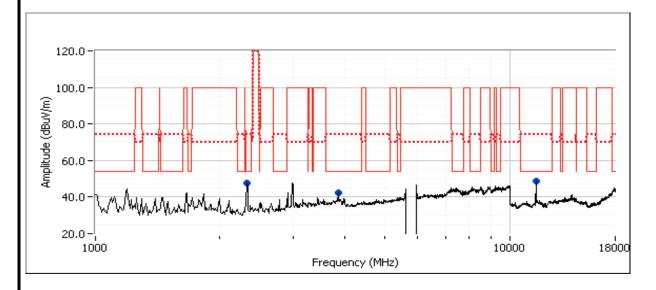
#### Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 11570.800 | 47.6   | V   | 54.0   | -6.4    | AVG       | 161     | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 11570.000 | 60.7   | V   | 74.0   | -13.3   | PK        | 161     | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 3856.660  | 43.2   | V   | 54.0   | -10.8   | AVG       | 269     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 3856.860  | 48.5   | V   | 74.0   | -25.5   | PK        | 269     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2331.460  | 38.4   | V   | 54.0   | -15.6   | AVG       | 180     | 1.4    | RB 1 MHz;VB 10 Hz;Pk |
| 2331.830  | 57.5   | V   | 74.0   | -16.5   | PK        | 180     | 1.4    | RB 1 MHz;VB 3 MHz;Pk |
|           |        |     |        |         |           |         |        |                      |





|           | All Date Company                     |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIItel® Certtillio® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |


### Run # 2b: , EUT on Channel #159 5795MHz - n20/n40, Chain A+B

| 10111 // |                                                             |        |         | •,, •a |      |         |                  |       |           |  |
|----------|-------------------------------------------------------------|--------|---------|--------|------|---------|------------------|-------|-----------|--|
|          | Power Settings Target (dBm) Measured (dBm) Software Setting |        |         |        |      |         |                  |       |           |  |
|          |                                                             | Target | t (dBm) |        |      | Measure | Software Setting |       |           |  |
| Chain    | Α                                                           | В      | С       | Total  | Α    | В       | С                | Total |           |  |
| Criairi  | 16.5                                                        | 16.5   |         | 19.5   | 16.6 | 16.7    |                  | 19.7  | 36.5/36.0 |  |

Spurious Radiated Emissions:

| opulious IN | Spanous Radiated Emissions. |     |        |         |           |         |        |                      |  |  |  |  |
|-------------|-----------------------------|-----|--------|---------|-----------|---------|--------|----------------------|--|--|--|--|
| Frequency   | Level                       | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |  |  |  |  |
| MHz         | dBμV/m                      | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |  |  |  |  |
| 11590.100   | 46.3                        | V   | 54.0   | -7.7    | AVG       | 253     | 1.3    | RB 1 MHz;VB 10 Hz;Pk |  |  |  |  |
| 11590.200   | 60.7                        | V   | 74.0   | -13.3   | PK        | 253     | 1.3    | RB 1 MHz;VB 3 MHz;Pk |  |  |  |  |
| 2323.240    | 37.9                        | V   | 54.0   | -16.1   | AVG       | 160     | 1.4    | RB 1 MHz;VB 10 Hz;Pk |  |  |  |  |
| 2325.640    | 55.5                        | V   | 74.0   | -18.5   | PK        | 160     | 1.4    | RB 1 MHz;VB 3 MHz;Pk |  |  |  |  |
| 3863.370    | 42.6                        | V   | 54.0   | -11.4   | AVG       | 132     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |  |  |  |
| 3863.360    | 47.6                        | V   | 74.0   | -26.4   | PK        | 132     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |  |  |  |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

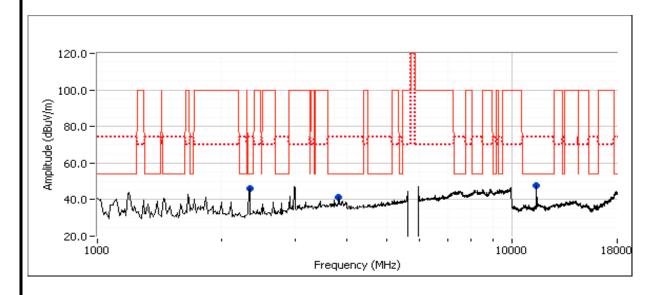




|           | An ZAZES company                     |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillio® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

### Run # 3, Radiated Spurious Emissions, 1-40GHz, 802.11n Mode, Chain A+B

Date of Test: 9/21/2010 Test Location: FT chamber #4


Test Engineer: Rafael Varelas Config Change: none

### Run # 3a, EUT on Channel #149 5745MHz - 802.11n 20MHz Chain A+B

|         |      | Power Settings |       |       |      |         |                  |       |           |  |  |  |
|---------|------|----------------|-------|-------|------|---------|------------------|-------|-----------|--|--|--|
|         |      | Target         | (dBm) |       |      | Measure | Software Setting |       |           |  |  |  |
| Chain   | Α    | В              | С     | Total | Α    | В       | С                | Total |           |  |  |  |
| Criairi | 16.5 | 16.5           |       | 19.5  | 16.7 | 16.8    |                  | 19.8  | 35.5/35.0 |  |  |  |

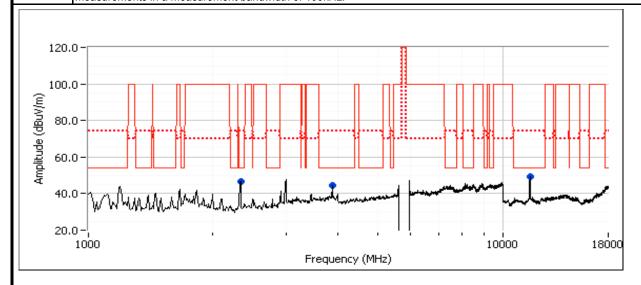
Spurious Radiated Emissions:

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 11490.000 | 46.4   | V   | 54.0   | -7.6    | AVG       | 159     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 11490.230 | 61.2   | V   | 74.0   | -12.8   | PK        | 159     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2332.460  | 37.2   | V   | 54.0   | -16.8   | AVG       | 167     | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 2331.730  | 55.8   | V   | 74.0   | -18.2   | PK        | 167     | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 3830.000  | 40.4   | V   | 54.0   | -13.6   | AVG       | 219     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 3829.910  | 47.5   | V   | 74.0   | -26.5   | PK        | 219     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
|           |        |     |        |         |           |         |        | ·                    |





|           | All Date Company                     |                  |                   |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80540            |
|           | IIItel® Certtillio® Advanced-14 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |


### Run # 3b, EUT on Channel #165 5825MHz - 802.11n 20MHz Chain A+B

| tuii π JD, ∟ | OI OII CIIAII  | 11161 # 103 30 | 23WII 12 - 002 | 2. 1 111 ZUIVII 12 | Cilaili A D |         |                  |       |           |  |  |  |  |
|--------------|----------------|----------------|----------------|--------------------|-------------|---------|------------------|-------|-----------|--|--|--|--|
|              | Power Settings |                |                |                    |             |         |                  |       |           |  |  |  |  |
|              |                | Target         | (dBm)          |                    |             | Measure | Software Setting |       |           |  |  |  |  |
| Chain        | Α              | В              | С              | Total              | Α           | В       | С                | Total |           |  |  |  |  |
| Ollaili      | 16.5           | 16.5           |                | 19.5               | 16.6        | 16.7    |                  | 19.7  | 35.5/35.0 |  |  |  |  |

Spurious Radiated Emissions:

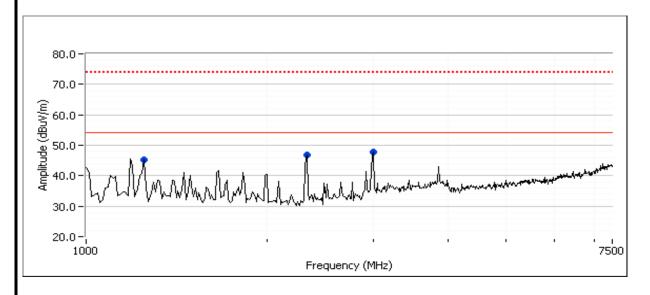
| opulious K | auialeu Eiiii | 33IUII3. |        |         |           |         |        |                      |
|------------|---------------|----------|--------|---------|-----------|---------|--------|----------------------|
| Frequency  | Level         | Pol      | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
| MHz        | dBμV/m        | v/h      | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 11650.470  | 49.4          | V        | 54.0   | -4.6    | AVG       | 159     | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 11650.170  | 61.6          | V        | 74.0   | -12.4   | PK        | 159     | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 2323.040   | 37.3          | V        | 54.0   | -16.7   | AVG       | 54      | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 2321.740   | 54.7          | V        | 74.0   | -19.3   | PK        | 54      | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 3883.330   | 43.7          | V        | 54.0   | -10.3   | AVG       | 50      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 3883.280   | 49.1          | V        | 74.0   | -24.9   | PK        | 50      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
|            |               |          |        |         |           |         |        | ·                    |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.





|           | An 2/22 company                       |                  |                   |
|-----------|---------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                     | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230      | T-Log Number:    | T80540            |
|           | IIItel® Celitiiilo® Advaliced-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                         |                  |                   |
| Standard: | FCC 15.247                            | Class:           | N/A               |

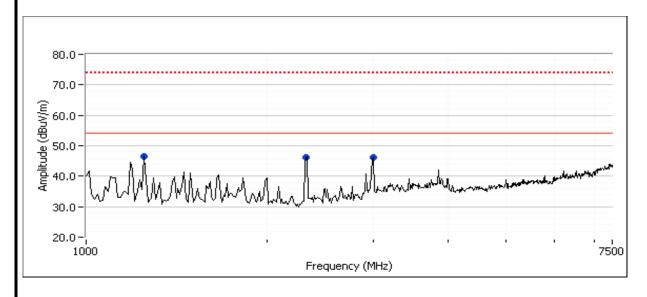

### Run # 4, Radiated Spurious Emissions, 1-26GHz, Receive, Chain A,B, A+B

Date of Test: 9/21/2010 Test Location: FT chamber #4

Test Engineer: Rafael Varelas Config Change: none

### Run # 4a, EUT on Channel #157 5785MHz - Receive, Chain A

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 2998.720  | 38.8   | V   | 54.0  | -15.2  | AVG       | 122     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2990.290  | 56.1   | V   | 74.0  | -17.9  | PK        | 122     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 1244.620  | 26.8   | V   | 54.0  | -27.2  | AVG       | 227     | 1.2    | RB 1 MHz;VB 10 Hz;Pk |
| 1242.850  | 37.4   | V   | 74.0  | -36.6  | PK        | 227     | 1.2    | RB 1 MHz;VB 3 MHz;Pk |
| 2323.220  | 36.6   | V   | 54.0  | -17.4  | AVG       | 111     | 1.3    | RB 1 MHz;VB 10 Hz;Pk |
| 2321.920  | 53.9   | V   | 74.0  | -20.1  | PK        | 111     | 1.3    | RB 1 MHz;VB 3 MHz;Pk |



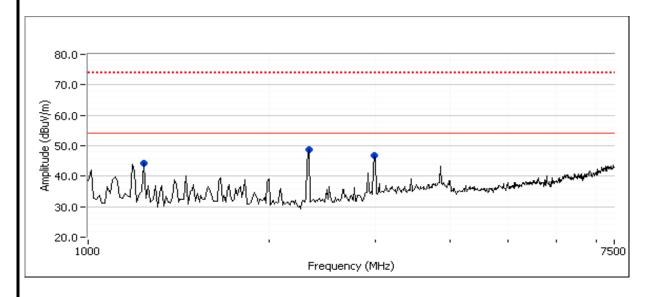



|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
|           | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 4b: EUT on Channel #157 5785MHz - Receive, Chain B

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 2995.410  | 38.7   | V   | 54.0  | -15.3  | AVG       | 113     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2999.210  | 56.0   | V   | 74.0  | -18.0  | PK        | 113     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2323.010  | 36.6   | V   | 54.0  | -17.4  | AVG       | 55      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2323.070  | 54.1   | V   | 74.0  | -19.9  | PK        | 55      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 1251.340  | 26.0   | V   | 54.0  | -28.0  | AVG       | 18      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 1251.020  | 37.8   | V   | 74.0  | -36.2  | PK        | 18      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |






# **EMC Test Data**

|           | All 2023 Company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### Run # 4c: EUT on Channel #157 5785MHz - Receive, Chain A+B

| Frequency | Level  | Pol | RSS   | 210    | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters |                      |
| 2328.210  | 38.8   | V   | 54.0  | -15.2  | AVG       | 353     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2329.210  | 56.6   | V   | 74.0  | -17.4  | PK        | 353     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2992.320  | 39.1   | V   | 54.0  | -14.9  | AVG       | 130     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2990.920  | 55.9   | V   | 74.0  | -18.1  | PK        | 130     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 1239.940  | 26.9   | V   | 54.0  | -27.1  | AVG       | 9       | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 1239.900  | 39.1   | V   | 74.0  | -34.9  | PK        | 9       | 1.0    | RB 1 MHz;VB 3 MHz;Pk |



| EMC Test Data                      |
|------------------------------------|
| Job Number: J80398                 |
| T-Log Number: T80759               |
| Account Manager: Christine Krebill |
| -                                  |
| Class: B                           |
| Environment: -                     |
| -                                  |

# **EMC Test Data**

For The

# **Intel Corporation**

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test:

|           | Elliott An (VZAS company)        | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intal® Contrins® Advanced N 6220 | T-Log Number:    | T80759            |
| wodei.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

#### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/1/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

#### Ambient Conditions:

21.9 °C Temperature: Rel. Humidity: 42 %

#### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run# | Pwr setting | Avg Pwr | Test Performed               | Limit     | Pass / Fail   | Result / Margin         |  |
|------|-------------|---------|------------------------------|-----------|---------------|-------------------------|--|
|      |             |         |                              |           |               | 802.11b: 49 mW          |  |
| 4    |             |         | Output Power                 | 15.247(b) | Daga          | 802.11g: 38 mW          |  |
| 1    |             |         | Output Power                 | 15.247(0) | Pass          | n20: 35.5 mW            |  |
|      |             |         |                              |           | n40: 17 mW    |                         |  |
| 2    |             |         | Power spectral Density (PSD) | 15.247(d) | Pass          | -7.4 dBm/3kHz           |  |
| 3    |             |         | Minimum 6dB Bandwidth        | 15.247(a) | Pass          | 10.2 MHz                |  |
|      |             |         |                              |           |               | 802.11b: 13.6 MHz       |  |
| 2    |             |         | 99% Bandwidth                | RSS GEN   |               | 802.11g: 17.1 MHz       |  |
| ა    |             |         | 99 % Dariuwiuiii             | KSS GEN   | -             | n20: 18.3 MHz           |  |
|      |             |         |                              |           | n40: 36.6 MHz |                         |  |
| 1    |             |         | Spurious emissions           | 15.247(b) | Pass          | All emissions below the |  |
| 4    |             |         | Sparious erriissions         | 13.247(0) | F d 5 5       | limit                   |  |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

# **EMC Test Data**

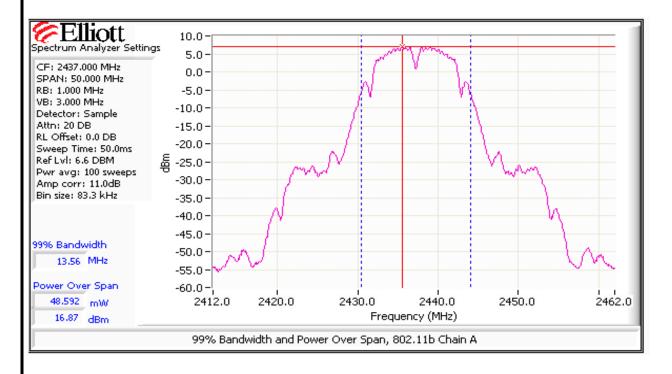
|           | An ZAZZZZ company                    |                  |                   |  |  |  |  |  |
|-----------|--------------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |  |  |  |  |  |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |  |  |  |  |  |
| Model.    | III(el® Cell(III)0® Advanced-IV 0230 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:  | Steve Hackett                        |                  |                   |  |  |  |  |  |
| Standard: | FCC 15.247                           | Class:           | N/A               |  |  |  |  |  |

#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.

#### Run #1: Output Power

#### 802.11b Mode


| Power                | Francisco (MIII-) | Output             | Power | Antenna    | Deault | EIRF | Note 2 | Output             | Power |
|----------------------|-------------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHz)   | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 23.5                 | 2412              | 16.7               | 46.8  | 3.2        | Pass   | 19.9 | 0.098  | 16.8               | 47.9  |
| 23.5                 | 2437              | 16.9               | 49.0  | 3.2        | Pass   | 20.1 | 0.102  | 16.8               | 47.9  |
| 23.5                 | 2462              | 16.8               | 47.9  | 3.2        | Pass   | 20.0 | 0.100  | 16.8               | 47.9  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

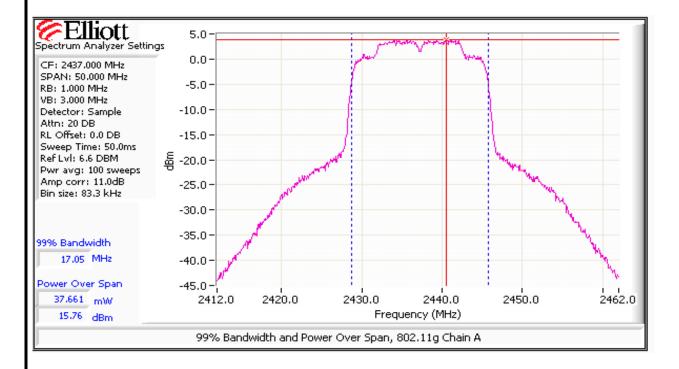
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power

Note 1: Note 1 or transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



## **EMC Test Data**


| Client:   | Intel Corporation                  | Job Number:      | J80398            |
|-----------|------------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | III.el® Ceritino® Advanced-in 6250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

802.11g Mode

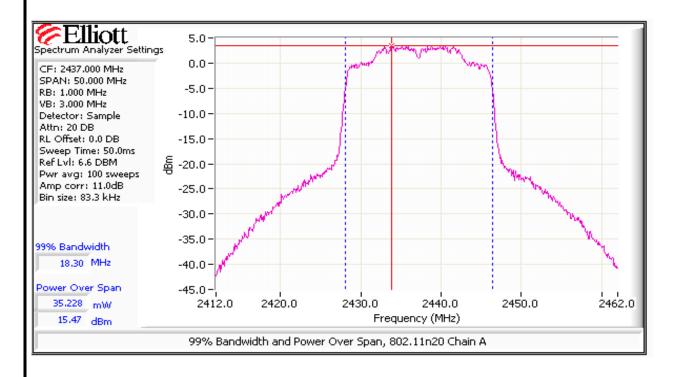
| Power                | Frequency (MHz) | Output             | Power | Antenna    | Result | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHZ) | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 25.5                 | 2412            | 12.9               | 19.5  | 3.2        | Pass   | 16.1 | 0.041  | 14.1               | 25.7  |
| 29                   | 2437            | 15.8               | 38.0  | 3.2        | Pass   | 19.0 | 0.079  | 16.6               | 45.7  |
| 25.5                 | 2462            | 13.1               | 20.4  | 3.2        | Pass   | 16.3 | 0.043  | 14.0               | 25.1  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



## **EMC Test Data**


| Client:   | Intel Corporation                  | Job Number:      | J80398            |
|-----------|------------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | III.el® Ceritino® Advanced-in 6250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### 802.11n 20MHz Mode

| Power                | Frequency (MHz) | Output             | Power | Antenna    | Result | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHZ) | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 24.5                 | 2412            | 12.0               | 15.8  | 3.2        | Pass   | 15.2 | 0.033  | 13.1               | 20.4  |
| 29                   | 2437            | 15.5               | 35.5  | 3.2        | Pass   | 18.7 | 0.074  | 16.5               | 44.7  |
| 24                   | 2462            | 11.6               | 14.5  | 3.2        | Pass   | 14.8 | 0.030  | 12.5               | 17.8  |

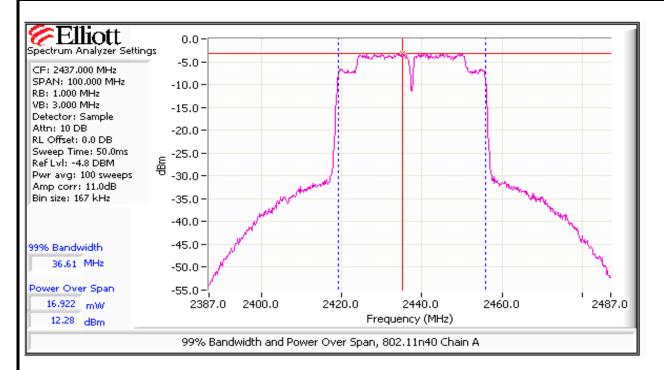
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



# Elliott An MAS company

## **EMC Test Data**


| Oli u     | Intel Company                        | Jak Ni wakaw     | 100200            |
|-----------|--------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                    | Job Number:      | 180398            |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillio® Advanced-IV 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                        |                  |                   |
| Standard: | FCC 15.247                           | Class:           | N/A               |

#### 802.11n 40MHz Mode

| Power                | Frequency (MHz) | Output             | Power | Antenna    | Result | EIRP | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | rrequency (MHZ) | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 22                   | 2422            | 9.3                | 8.5   | 3.2        | Pass   | 12.5 | 0.018  | 10.6               | 11.5  |
| 25                   | 2437            | 12.3               | 17.0  | 3.2        | Pass   | 15.5 | 0.035  | 13.6               | 22.9  |
| 21.5                 | 2452            | 8.7                | 7.4   | 3.2        | Pass   | 11.9 | 0.015  | 10.1               | 10.2  |

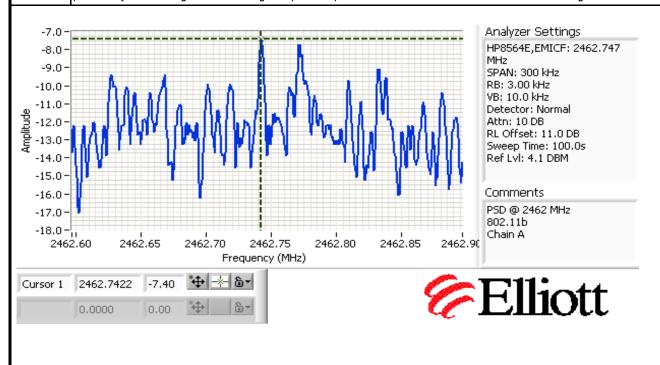
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **80 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc.** 

Note 2: Power setting - the software power setting used during testing, included for reference only.





# **EMC Test Data**


|           | An ZAZZES company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
|           | IIILEI® Ceritiiio® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

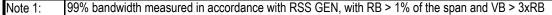
#### Run #2: Power spectral Density

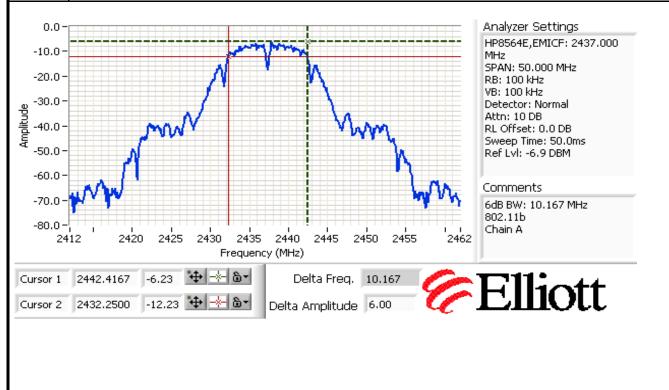
|         |         |                       |                   | r        |        |
|---------|---------|-----------------------|-------------------|----------|--------|
| Mode    | Power   | Frequency (MHz)       | PSD               | Limit    | Result |
|         | Setting | r requericy (ivii iz) | (dBm/3kHz) Note 1 | dBm/3kHz | Nesuit |
|         | 23.5    | 2412                  | -8.2              | 8.0      | Pass   |
| 802.11b | 23.5    | 2437                  | -8.2              | 8.0      | Pass   |
|         | 23.5    | 2462                  | -7.4              | 8.0      | Pass   |
|         | 25.5    | 2412                  | -10.4             | 8.0      | Pass   |
| 802.11g | 29      | 2437                  | -8.2              | 8.0      | Pass   |
|         | 25.5    | 2462                  | -10.7             | 8.0      | Pass   |
| 802.11n | 24.5    | 2412                  | -13.1             | 8.0      | Pass   |
| 20MHz   | 29      | 2437                  | -8.9              | 8.0      | Pass   |
| ZUIVITZ | 24      | 2462                  | -10.9             | 8.0      | Pass   |
| 802.11n | 22      | 2422                  | -16.7             | 8.0      | Pass   |
| 40MHz   | 25      | 2437                  | -13.4             | 8.0      | Pass   |
| 40IVITZ | 21.5    | 2452                  | -16.7             | 8.0      | Pass   |

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.







# **EMC** Test Data

|           | An ZAZZES company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
|           | IIILEI® Ceritiiio® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

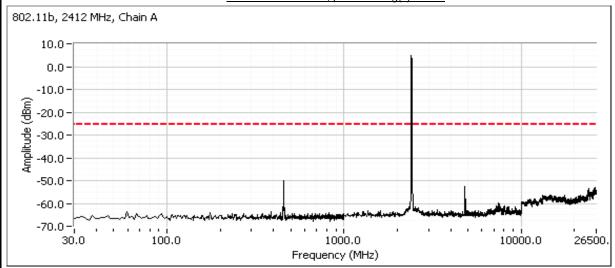
#### Run #3: Signal Bandwidth

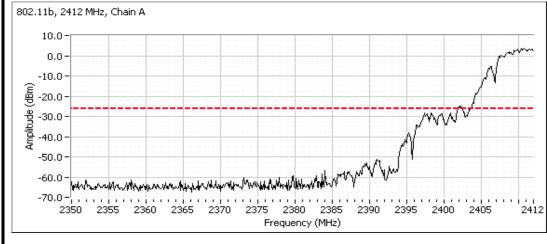
| Mode      | Power   | Eroguanay (MHz) | Resolution | Bandwid | th (MHz) |
|-----------|---------|-----------------|------------|---------|----------|
|           | Setting | Frequency (MHz) | Bandwidth  | 6dB     | 99%      |
|           | 23.5    | 2412            | 100kHz     | 10.2    | 13.6     |
| 802.11b   | 23.5    | 2437            | 100kHz     | 10.2    | 13.6     |
|           | 23.5    | 2462            | 100kHz     | 10.2    | 13.6     |
|           | 25.5    | 2412            | 100kHz     | 15.4    | 16.9     |
| 802.11g   | 29      | 2437            | 100kHz     | 15.2    | 17.1     |
|           | 25.5    | 2462            | 100kHz     | 15.3    | 16.9     |
| 802.11n   | 24.5    | 2412            | 100kHz     | 15.2    | 18.1     |
| 20MHz     | 29      | 2437            | 100kHz     | 15.3    | 18.3     |
| ZUIVII IZ | 24      | 2462            | 100kHz     | 15.2    | 18.1     |
| 802.11n   | 22      | 2422            | 100kHz     | 35.3    | 36.6     |
| 40MHz     | 25      | 2437            | 100kHz     | 35.3    | 36.6     |
| 4UIVINZ   | 21.5    | 2452            | 100kHz     | 35.5    | 36.6     |





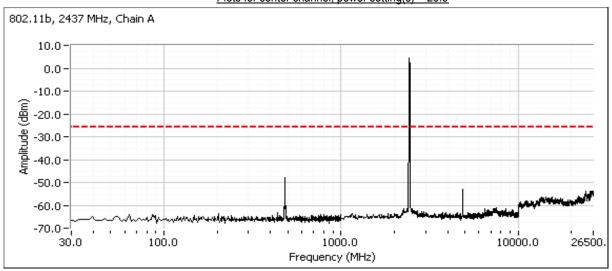
# **EMC Test Data**


| 1         | All Date: Company                  |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madalı    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

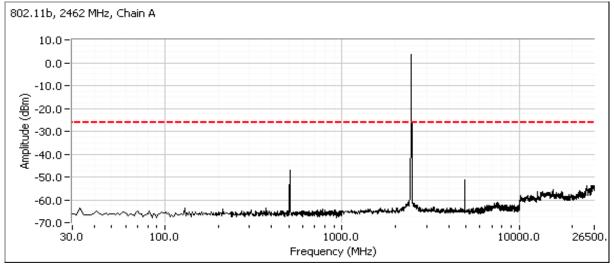

#### Run #4: Out of Band Spurious Emissions

802.11b Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |


#### Plots for low channel, power setting(s) = 23.5






| Elliott An WAS company |                                      | EMC Test Data    |                   |  |
|------------------------|--------------------------------------|------------------|-------------------|--|
| Client:                | Intel Corporation                    | Job Number:      | J80398            |  |
| Modal:                 | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |  |
| wodei.                 | IIILEI® Ceritiiilo® Advanced-iv 0250 | Account Manager: | Christine Krebill |  |
| Contact:               | Steve Hackett                        |                  |                   |  |
| Standard:              | FCC 15.247                           | Class:           | N/A               |  |

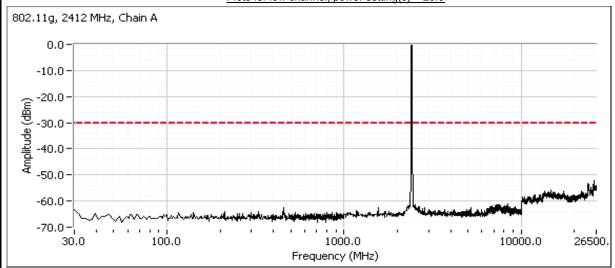
#### Plots for center channel, power setting(s) = 23.5

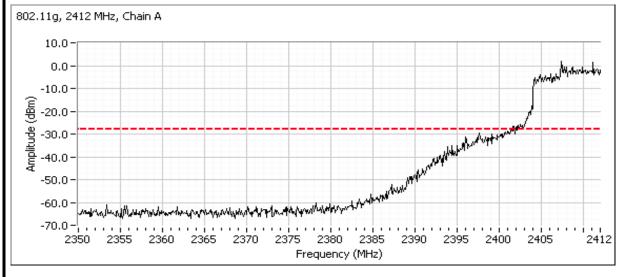


#### Plots for high channel, power setting(s) = 23.5



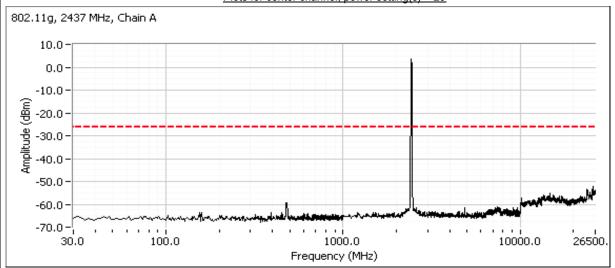
# Elliott An MAS company


# **EMC Test Data**

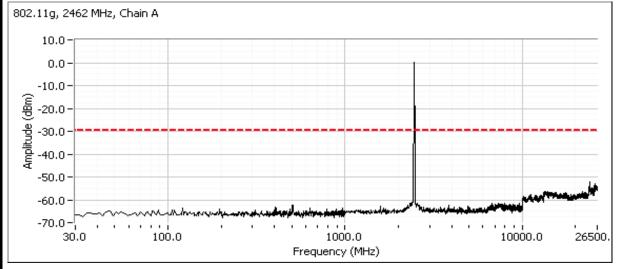

|           | The state of the s |                  |                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-Log Number:    | T80759            |
|           | IIILEI® Ceritiiilo® Advanceu-iv 0250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                   |
| Standard: | FCC 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Class:           | N/A               |

#### 802.11g Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |


#### Plots for low channel, power setting(s) = 25.5





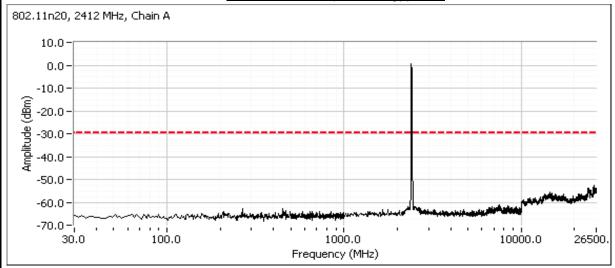

|           | Elliott<br>An ATAS company       | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intel® Contrine® Advanced N 6220 | T-Log Number:    | T80759            |
| Model.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

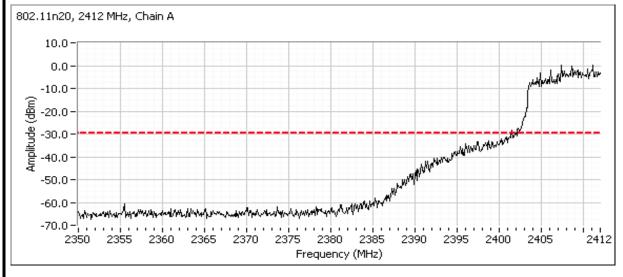
#### Plots for center channel, power setting(s) = 29



#### Plots for high channel, power setting(s) = 25.5




# **EMC Test Data**


|           | The state of the s |                  |                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T-Log Number:    | T80759            |
|           | IIILEI® Ceritiiilo® Advanceu-iv 0250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                   |
| Standard: | FCC 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Class:           | N/A               |

#### 802.11n 20MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |

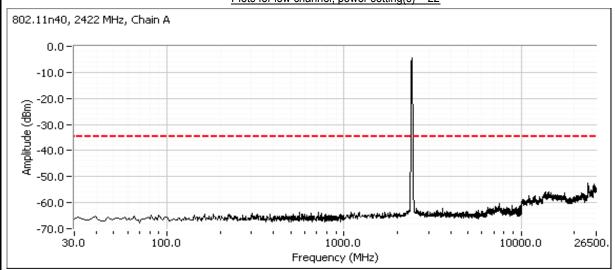
#### Plots for low channel, power setting(s) = 24.5

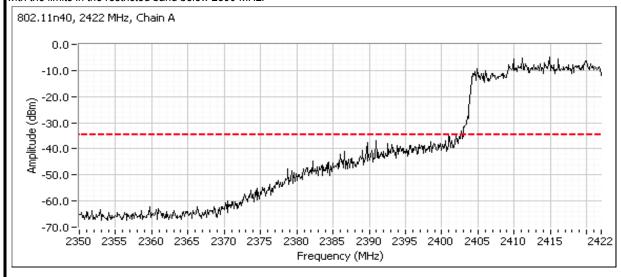




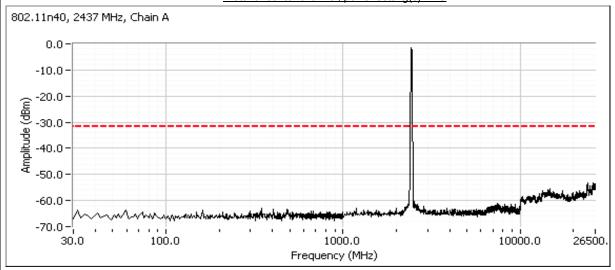
#### **EMC Test Data** Client: Intel Corporation Job Number: J80398 T-Log Number: T80759 Model: Intel® Centrino® Advanced-N 6230 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15.247 Class: N/A Plots for center channel, power setting(s) = 29 802.11n20, 2437 MHz, Chain A 10.0-0.0 -10.0 -20.0 -30.0 -40.0 -50.0 · -60.0 -70.0· 30.0 100.0 1000.0 10000.0 26500. Frequency (MHz) Plots for high channel, power setting(s) = 24 802.11n20, 2462 MHz, Chain A 0.0 -10.0-20.0 -20.0 --30.0 --40.0 --50.0 --60.0 -70.0 -¦ 1000.0 100.0 26500. 30.0 10000.0

Frequency (MHz)

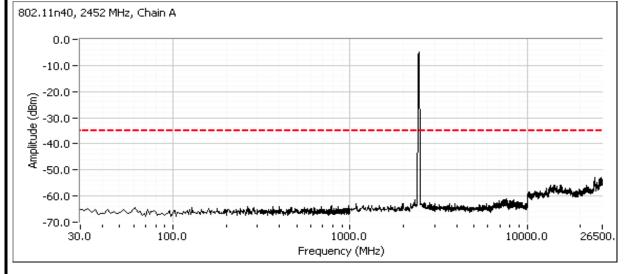

## **EMC Test Data**


|           | All Dates Company                    |                  |                   |  |  |  |  |  |
|-----------|--------------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |  |  |  |  |  |
| Madal     | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |  |  |  |  |  |
| Model.    | IIILEI® Celiliiilo® Advanced-iv 0250 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:  | Steve Hackett                        |                  |                   |  |  |  |  |  |
| Standard: | FCC 15.247                           | Class:           | N/A               |  |  |  |  |  |

#### 802.11n 40MHz Mode


| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2422            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2452            | -30dBc | Pass   |

#### Plots for low channel, power setting(s) = 22






# Client: Intel Corporation Model: Intel® Centrino® Advanced-N 6230 Contact: Steve Hackett Standard: FCC 15.247 Plots for center channel, power setting(s) = 25 802.11n40, 2437 MHz, Chain A



#### Plots for high channel, power setting(s) = 21.5



|           | Elliott<br>An AZAS company       | EMC Test Data    |                   |  |
|-----------|----------------------------------|------------------|-------------------|--|
| Client:   | Intel Corporation                | Job Number:      | J80398            |  |
| Model     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |
| Model.    |                                  | Account Manager: | Christine Krebill |  |
| Contact:  | Steve Hackett                    |                  |                   |  |
| Standard: | FCC 15.247                       | Class:           | N/A               |  |

#### RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

#### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 10/1/2010 Test Engineer: Rafael Varelas Config Change: none Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20-25 °C

> 40-50 % Rel. Humidity:

#### **Summary of Results**

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run# | Pwr setting          | Avg Pwr                 | Test Performed               | d Limit Pass / Fa         |               | Result / Margin   |  |  |
|------|----------------------|-------------------------|------------------------------|---------------------------|---------------|-------------------|--|--|
|      |                      |                         |                              |                           |               | 802.11b: 38 mW    |  |  |
| 1    |                      |                         | Output Bower                 | 15 047/h)                 | Door          | 802.11g: 34 mW    |  |  |
| ļ    |                      |                         | Output Power                 | 15.247(b)                 | Pass          | n20: 33.1 mW      |  |  |
|      |                      |                         |                              |                           |               | n40: 14.1 mW      |  |  |
| 2    |                      |                         | Power spectral Density (PSD) | 15.247(d)                 | Pass          | -6.9 dBm/3kHz     |  |  |
| 3    |                      |                         | Minimum 6dB Bandwidth        | 6dB Bandwidth 15.247(a)   |               | 10.0 MHz          |  |  |
|      |                      |                         |                              |                           |               | 802.11b: 13.7 MHz |  |  |
| 3    |                      |                         | 99% Bandwidth                | RSS GEN                   |               | 802.11g: 17.2 MHz |  |  |
| 3    |                      | 99% Balluwiutii RSS GEN |                              | 99% balluwidili K55 GEN - | -             | n20: 18.5 MHz     |  |  |
|      |                      |                         |                              |                           |               | n40: 36.6 MHz     |  |  |
| 1    | 4 Courieus emissions |                         | 15.247(b)                    | Pass                      | All emissions |                   |  |  |
| 4    |                      |                         | Spurious emissions           | 13.247(0)                 | rass          | below the limit   |  |  |

#### Modifications Made During Testing

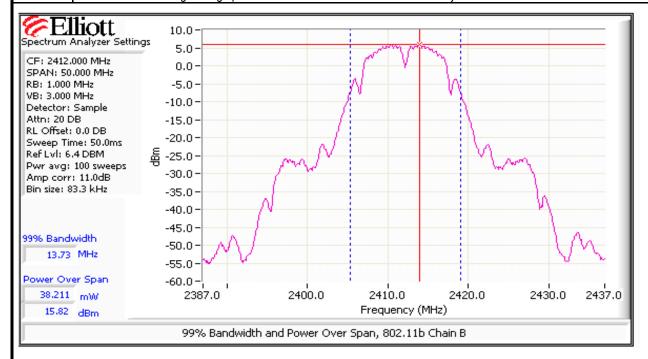
No modifications were made to the EUT during testing

#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.

## **EMC Test Data**

| Client:   | Intel Corporation                | Job Number:      | .180398           |
|-----------|----------------------------------|------------------|-------------------|
|           | •                                | T-Log Number:    |                   |
| Model:    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |


#### Run #1: Output Power

#### 802.11b Mode

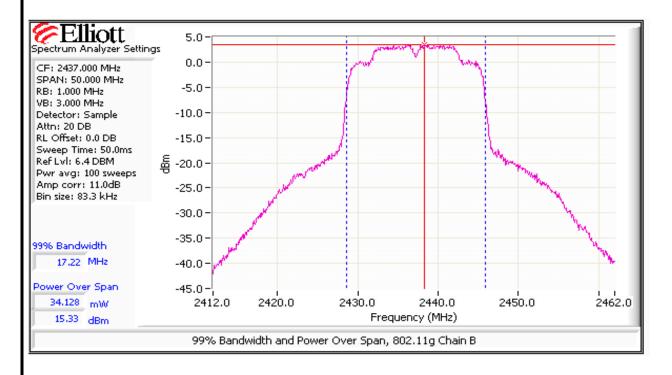
| Power                | Fraguerov (MH=) | Output Power       |      | Antenna    |        | Antenna Basult |       | EIRF               | Note 2 | Output | Power |
|----------------------|-----------------|--------------------|------|------------|--------|----------------|-------|--------------------|--------|--------|-------|
| Setting <sup>2</sup> | Frequency (MHz) | (dBm) <sup>1</sup> | mW   | Gain (dBi) | Result | dBm            | W     | (dBm) <sup>3</sup> | mW     |        |       |
| 25                   | 2412            | 15.8               | 38.0 | 3.2        | Pass   | 19.0           | 0.079 | 16.6               | 45.7   |        |       |
| 23                   | 2437            | 14.2               | 26.3 | 3.2        | Pass   | 17.4           | 0.055 | 15.0               | 31.6   |        |       |
| 24                   | 2462            | 15.3               | 33.9 | 3.2        | Pass   | 18.5           | 0.071 | 16.0               | 39.8   |        |       |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



## **EMC Test Data**


|           | All DEED Company                     |                  |                   |  |  |  |  |  |
|-----------|--------------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |  |  |  |  |  |
| Madal     | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |  |  |  |  |  |
| Model.    | III(el® Cell(III)0® Advanced-IV 0230 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:  | Steve Hackett                        |                  |                   |  |  |  |  |  |
| Standard: | FCC 15.247                           | Class:           | N/A               |  |  |  |  |  |

802.11g Mode

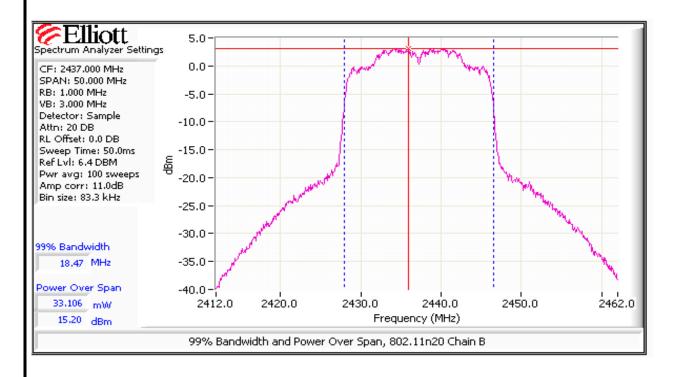
| Power                | Fraguency (MHz) Output Power Antenna Bogult |         | EIRP Note 2 |            | Output Power |      |       |                    |      |
|----------------------|---------------------------------------------|---------|-------------|------------|--------------|------|-------|--------------------|------|
| Setting <sup>2</sup> | Frequency (MHz)                             | (dBm) 1 | mW          | Gain (dBi) | Result       | dBm  | W     | (dBm) <sup>3</sup> | mW   |
| 27                   | 2412                                        | 12.1    | 16.2        | 3.2        | Pass         | 15.3 | 0.034 | 13.9               | 24.5 |
| 30.5                 | 2437                                        | 15.3    | 33.9        | 3.2        | Pass         | 18.5 | 0.071 | 16.7               | 46.8 |
| 26.5                 | 2462                                        | 12.0    | 15.8        | 3.2        | Pass         | 15.2 | 0.033 | 13.5               | 22.4 |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



## **EMC Test Data**


|           | All Dates Company                |                  |                   |  |  |  |  |  |
|-----------|----------------------------------|------------------|-------------------|--|--|--|--|--|
| Client:   | Intel Corporation                | Job Number:      | J80398            |  |  |  |  |  |
| Madal     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |  |  |  |  |
| Model.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |  |  |  |  |  |
| Contact:  | Steve Hackett                    |                  |                   |  |  |  |  |  |
| Standard: | FCC 15.247                       | Class:           | N/A               |  |  |  |  |  |

#### 802.11n 20MHz Mode

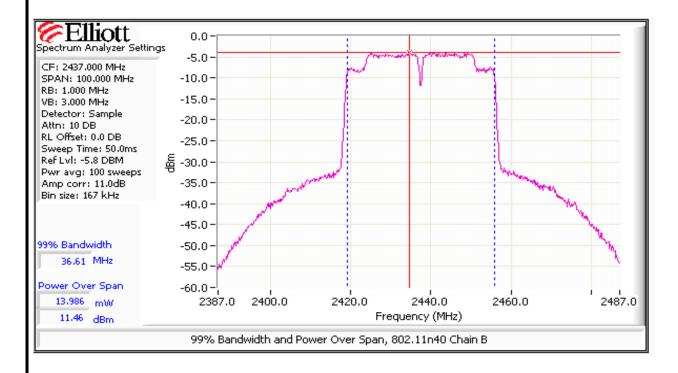
| Power                | Fraguerov (MH=) | Frequency (MHz) Output Power Antenna Popult |      | Output Power Antenna Result |        | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|---------------------------------------------|------|-----------------------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHz) | (dBm) <sup>1</sup>                          | mW   | Gain (dBi)                  | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 25.5                 | 2412            | 10.7                                        | 11.7 | 3.2                         | Pass   | 13.9 | 0.025  | 12.5               | 17.8  |
| 30.5                 | 2437            | 15.2                                        | 33.1 | 3.2                         | Pass   | 18.4 | 0.069  | 16.6               | 45.7  |
| 25.5                 | 2462            | 10.8                                        | 12.0 | 3.2                         | Pass   | 14.0 | 0.025  | 12.4               | 17.4  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.



## **EMC Test Data**


| Client:   | Intel Corporation                 | Job Number:      | J80398            |
|-----------|-----------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230  | T-Log Number:    | T80759            |
| woder.    | Intel® Centrino® Advanced-in 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                     |                  |                   |
| Standard: | FCC 15.247                        | Class:           | N/A               |

#### 802.11n 40MHz Mode

| Power                | Fragues av (MIII-) | Output             | Power | Antenna    | Result | EIRF | Note 2 | Output             | Power |
|----------------------|--------------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHz)    | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 22.0                 | 2422               | 8.0                | 6.3   | 3.2        | Pass   | 11.2 | 0.013  | 9.2                | 8.3   |
| 25.5                 | 2437               | 11.5               | 14.1  | 3.2        | Pass   | 14.7 | 0.030  | 12.7               | 18.6  |
| 23.0                 | 2452               | 8.8                | 7.6   | 3.2        | Pass   | 12.0 | 0.016  | 10.1               | 10.2  |

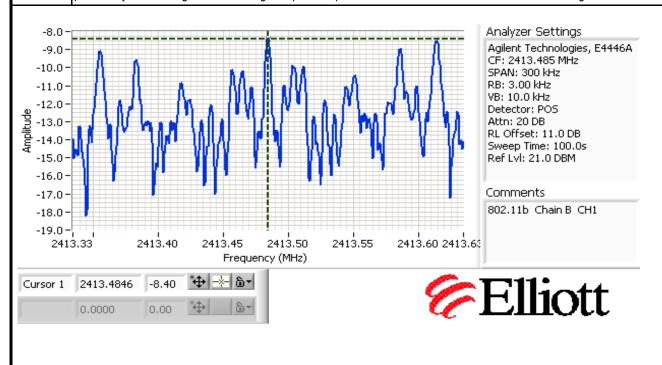
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **80 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

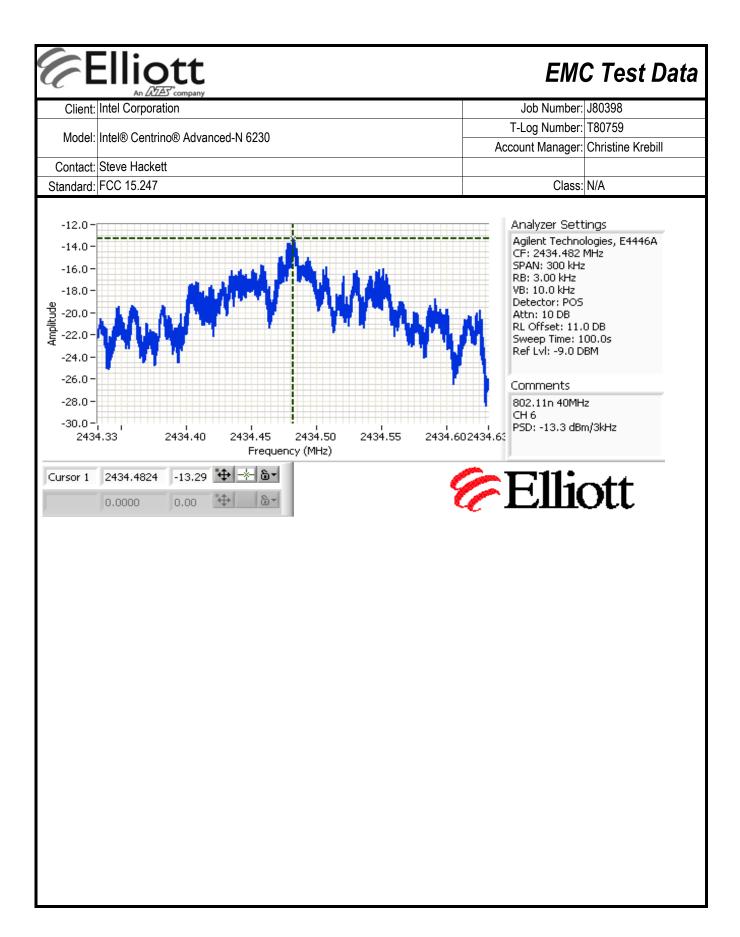




# **EMC Test Data**


|           | An 2/2/20 company                  |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |


#### Run #2: Power spectral Density


| Mode      | Power<br>Setting | Frequency (MHz) | PSD<br>(dBm/3kHz) <sup>Note 1</sup> | Limit<br>dBm/3kHz | Result |
|-----------|------------------|-----------------|-------------------------------------|-------------------|--------|
|           | 25.0             | 2412            | -8.4                                | 8.0               | Pass   |
| 802.11b   | 23.0             | 2437            | -9.8                                | 8.0               | Pass   |
|           | 24.0             | 2462            | -8.7                                | 8.0               | Pass   |
|           | 27.0             | 2412            | -9.1                                | 8.0               | Pass   |
| 802.11g   | 30.5             | 2437            | -7.8                                | 8.0               | Pass   |
|           | 26.5             | 2462            | -12.4                               | 8.0               | Pass   |
| 802.11n   | 25.5             | 2412            | -11.5                               | 8.0               | Pass   |
| 20MHz     | 30.5             | 2437            | -6.9                                | 8.0               | Pass   |
| ZUIVII IZ | 25.5             | 2462            | -11.9                               | 8.0               | Pass   |
| 802.11n   | 22.0             | 2422            | -17.0                               | 8.0               | Pass   |
| 40MHz     | 25.5             | 2437            | -13.3                               | 8.0               | Pass   |
| 4UIVINZ   | 21.0             | 2452            | -17.3                               | 8.0               | Pass   |

Note 1:

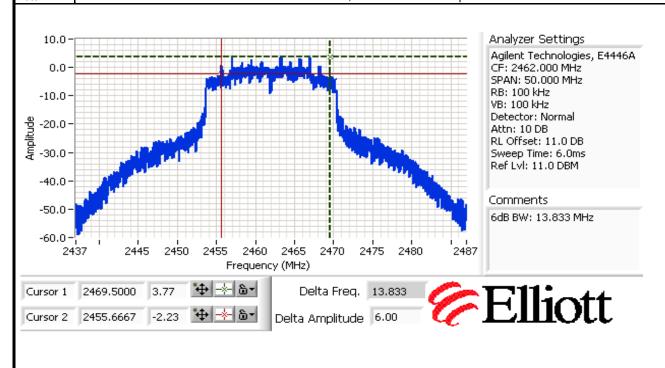
Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.










# **EMC Test Data**

|           | An 2/22 company                    |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

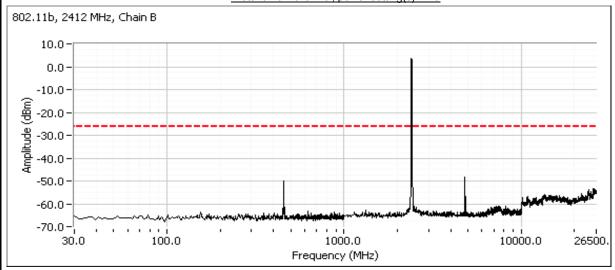
#### Run #3: Signal Bandwidth

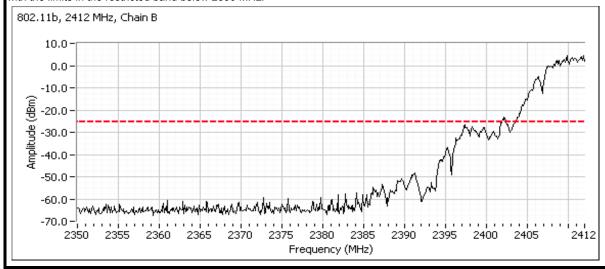
| Mode      | Power   | Eroquonov (MHz) | Resolution | Bandwid | th (MHz) |
|-----------|---------|-----------------|------------|---------|----------|
|           | Setting | Frequency (MHz) | Bandwidth  | 6dB     | 99%      |
|           | 25.0    | 2412            | 100kHz     | 10.0    | 13.7     |
| 802.11b   | 23.0    | 2437            | 100kHz     | 10.0    | 13.3     |
|           | 24.0    | 2462            | 100kHz     | 10.0    | 13.6     |
|           | 27.0    | 2412            | 100kHz     | 15.0    | 16.9     |
| 802.11g   | 30.5    | 2437            | 100kHz     | 15.0    | 17.2     |
|           | 26.5    | 2462            | 100kHz     | 13.8    | 16.9     |
| 802.11n   | 25.5    | 2412            | 100kHz     | 15.0    | 18.1     |
| 20MHz     | 30.5    | 2437            | 100kHz     | 15.0    | 18.5     |
| ZUIVII IZ | 25.5    | 2462            | 100kHz     | 15.0    | 18.1     |
| 802.11n   | 22.0    | 2422            | 100kHz     | 35.0    | 36.6     |
| 40MHz     | 25.5    | 2437            | 100kHz     | 35.0    | 36.6     |
| 4UIVINZ   | 21.0    | 2452            | 100kHz     | 35.0    | 36.6     |

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB



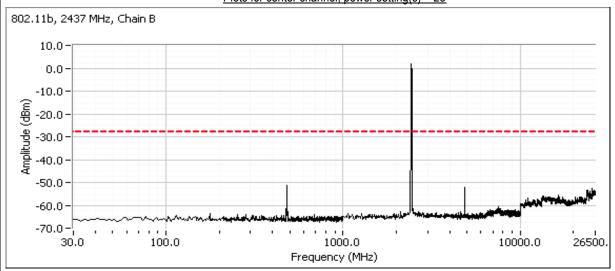
# **EMC Test Data**


| Client:   | Intel Corporation                  | Job Number:      | J80398            |
|-----------|------------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

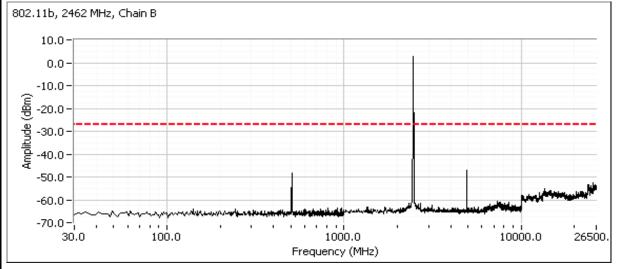

#### Run #4: Out of Band Spurious Emissions

802.11b Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |


Plots for low channel, power setting(s) = 25






| Elliott An ANDE Company |                                  | EMC Test Data    |                   |  |
|-------------------------|----------------------------------|------------------|-------------------|--|
| Client:                 | Intel Corporation                | Job Number:      | J80398            |  |
| Modal:                  | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |
| wodei.                  |                                  | Account Manager: | Christine Krebill |  |
| Contact:                | Steve Hackett                    |                  |                   |  |
| Standard:               | FCC 15.247                       | Class:           | N/A               |  |

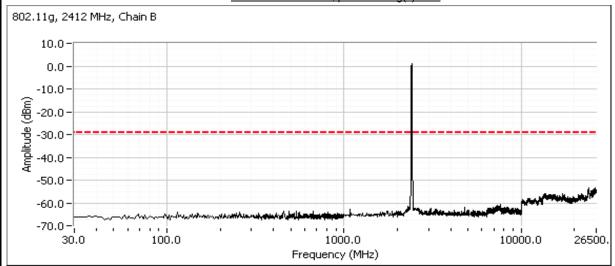
#### Plots for center channel, power setting(s) = 23

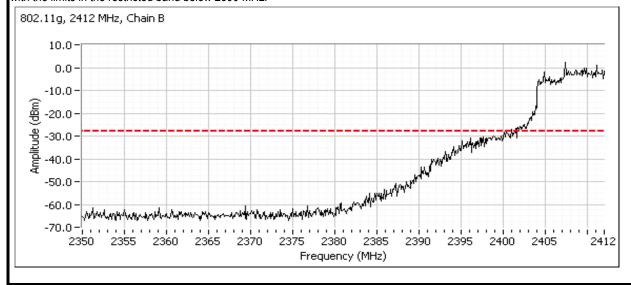


#### Plots for high channel, power setting(s) = 24



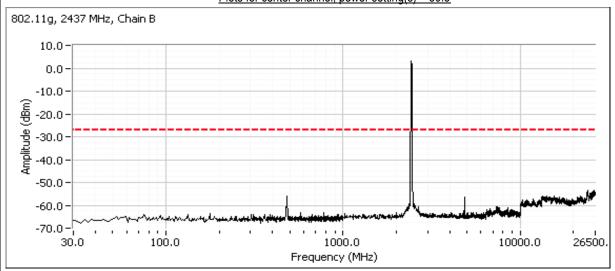
# Elliott AN ANDER COMPANY


# **EMC Test Data**

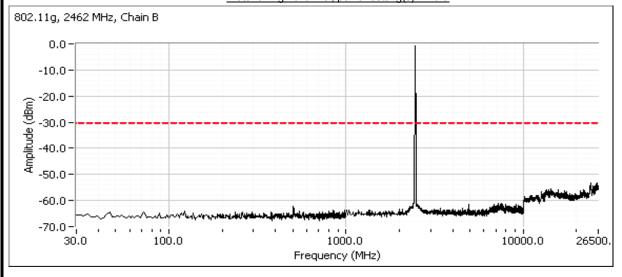

|           | Till 2011                          |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### 802.11g Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |


#### Plots for low channel, power setting(s) = 27





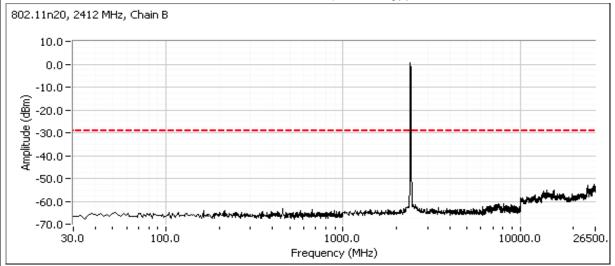

| Elliott An ANDE Company |                                  | EMC Test Data    |                   |  |
|-------------------------|----------------------------------|------------------|-------------------|--|
| Client:                 | Intel Corporation                | Job Number:      | J80398            |  |
| Model                   | Intol® Contrine® Advanced N 6220 | T-Log Number:    | T80759            |  |
| wodei.                  | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |  |
| Contact:                | Steve Hackett                    |                  |                   |  |
| Standard:               | FCC 15.247                       | Class:           | N/A               |  |

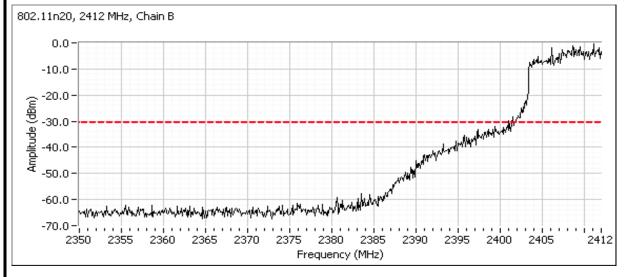
#### Plots for center channel, power setting(s) = 30.5



#### Plots for high channel, power setting(s) = 26.5

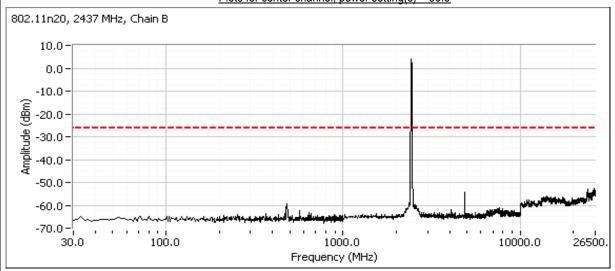



# **EMC Test Data**

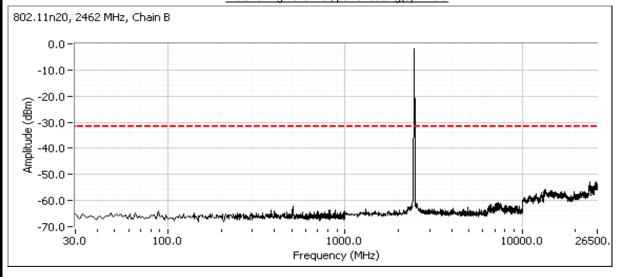

|           | All Balls Company                |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.    | Intel® Centino® Advanced-N 6250  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### 802.11n 20MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2412            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2462            | -30dBc | Pass   |


#### Plots for low channel, power setting(s) = 25.5





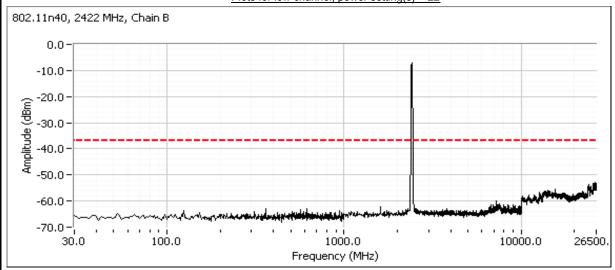

| Elliott An ATE Company |                                  | EMC Test Data    |                   |  |
|------------------------|----------------------------------|------------------|-------------------|--|
| Client:                | Intel Corporation                | Job Number:      | J80398            |  |
| Model:                 | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |
|                        |                                  | Account Manager: | Christine Krebill |  |
| Contact:               | Steve Hackett                    |                  |                   |  |
| Standard:              | FCC 15.247                       | Class:           | N/A               |  |

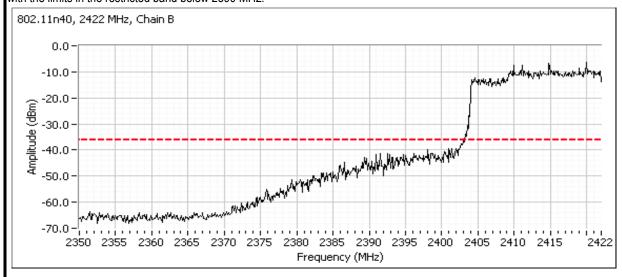
#### Plots for center channel, power setting(s) = 30.5



#### Plots for high channel, power setting(s) = 25.5

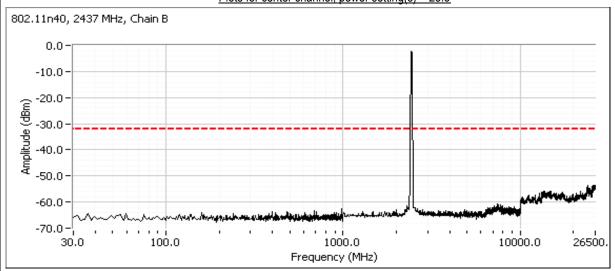



# **EMC Test Data**

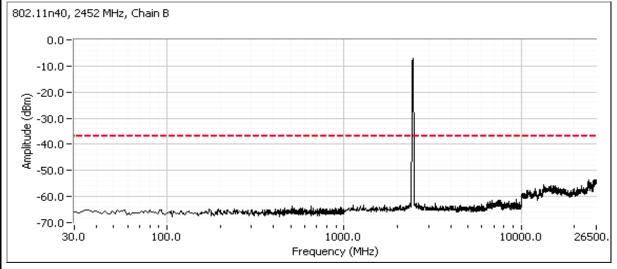

|           | All Delta Company                |                  |                   |  |
|-----------|----------------------------------|------------------|-------------------|--|
| Client:   | Intel Corporation                | Job Number:      | J80398            |  |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |
| Wodel.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |  |
| Contact:  | Steve Hackett                    |                  |                   |  |
| Standard: | FCC 15.247                       | Class:           | N/A               |  |

#### 802.11n 40MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 2422            | -30dBc | Pass   |
| 2437            | -30dBc | Pass   |
| 2452            | -30dBc | Pass   |


Plots for low channel, power setting(s) = 22






|           | Elliott<br>An DZAS company       | EMO              | EMC Test Data     |  |  |
|-----------|----------------------------------|------------------|-------------------|--|--|
| Client:   | Intel Corporation                | Job Number:      | J80398            |  |  |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |  |
|           |                                  | Account Manager: | Christine Krebill |  |  |
| Contact:  | Steve Hackett                    |                  |                   |  |  |
| Standard: | FCC 15.247                       | Class:           | N/A               |  |  |

#### Plots for center channel, power setting(s) = 25.5



#### Plots for high channel, power setting(s) = 21



| Elliott EMC Test |                                      |                  | C Test Data       |
|------------------|--------------------------------------|------------------|-------------------|
| Client:          | Intel Corporation                    | Job Number:      | J80398            |
| Model:           | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |
|                  | IIILEI® CEIILIIIO® Auvailceu-in 0230 | Account Manager: | Christine Krebill |
| Contact:         | Steve Hackett                        |                  |                   |
| Standard:        | FCC 15.247                           | Class:           | N/A               |

# RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements **MIMO and Smart Antenna Systems**

Power, PSD, Bandwidth and Spurious Emissions

#### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/4/2010 Config. Used: 1 Test Engineer: M. Birgani/R. Varelas Config Change: none Test Location: FT Lab #4 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single

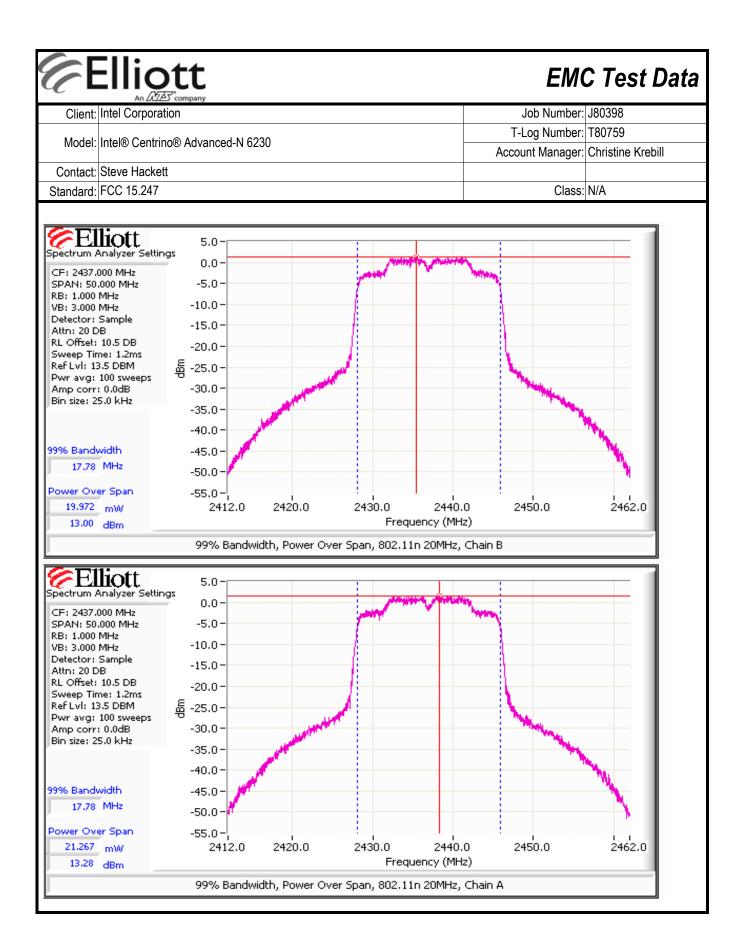
All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 22.4 °C

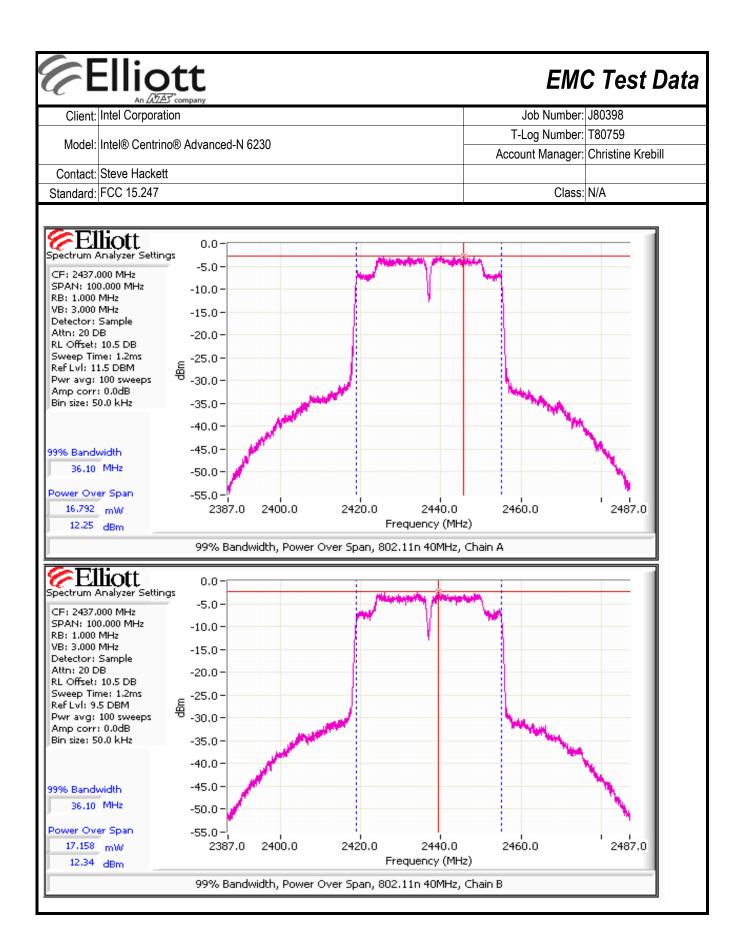
> 39 % Rel. Humidity:

#### Summary of Results

| Run# | Pwr setting | Avg Pwr | Test Performed               | Limit     | Pass / Fail | Result / Margin             |
|------|-------------|---------|------------------------------|-----------|-------------|-----------------------------|
| 1    |             |         | Output Power                 | 15.247(b) | Pass        | n20: 41 mW                  |
| 2    |             |         | Power spectral Density (PSD) | 15.247(d) | Pass        | n40: 34 mW<br>-8.6 dBm/3kHz |
| 3    |             |         | Minimum 6dB Bandwidth        | 15.247(a) | F a 5 5     | These measurements          |
| 3    |             |         | 99% Bandwidth                | RSS GEN   |             | are covered by the          |
| 4    |             |         | Spurious emissions           | 15.247(b) |             | single chain data           |


#### Modifications Made During Testing

No modifications were made to the EUT during testing


#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.

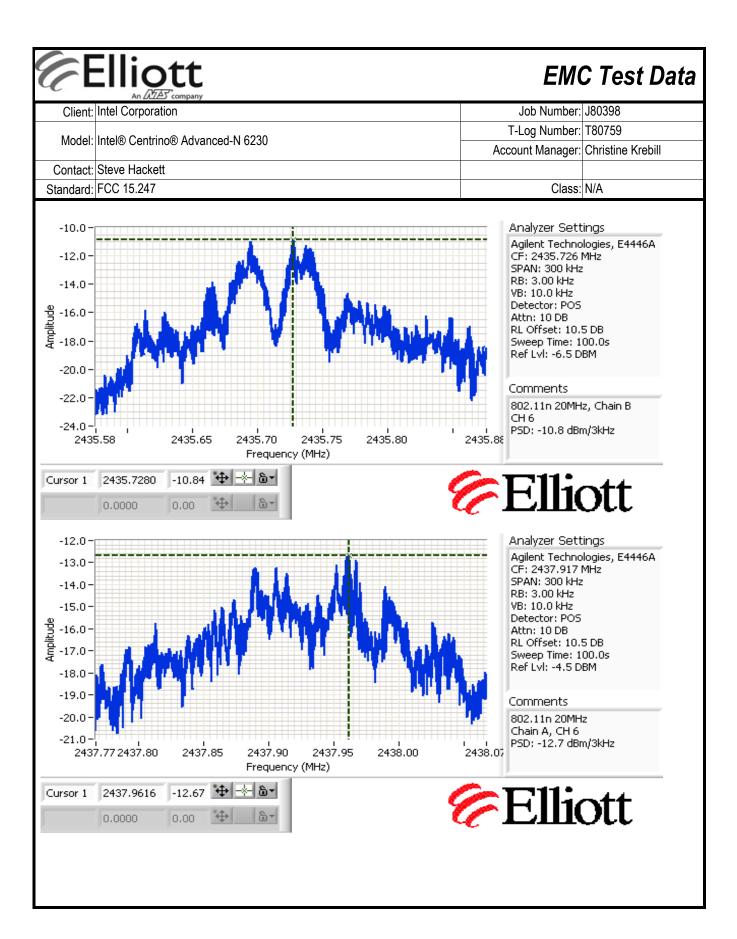
| Power Setting   Note 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| Account Manager. Christine I Contact: Steve Hackett Standard: FCC 15.247 Class; N/A Run #1: Output Power - Chain A + B Jise the same method for power measurement for each mode as was used for single chain measurements.  Operating Mode: Transmitted signal on chain is coherent? No  802.11 n 20MHz 2412 MHz Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 7 Chain 9 Chain 7 Chain 1 Chain 1 Chain 1 Chain 2 Chain 7 Chain 1 Chain 1 Chain 2 Chain 1 Chain 1 Chain 2 Chain 1 Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2 Chain 3 Chain |                                       |  |  |  |
| Class   N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Krebill                               |  |  |  |
| Run #1: Output Power - Chain A + B  Use the same method for power measurement for each mode as was used for single chain measurements.  Operating Mode:  Transmitted signal on chain is coherent? No  802.11 n 20MHz 2412 MHz  Chain 1 Chain 2 Chain 3  Output Power Setting Note 3 26.0 27.5  Output Power (dBm) Note 1 11.6 11.6 11.6 14.6 dBm 0.029 W 30.0 dBn output Power (dBm) Note 2 14.8 14.8 17.8 dBm 0.060 W  802.11 n 20MHz 2437 MHz  Chain 1 Chain 2 Chain 3  Output Power Setting Note 3 28.0 29.0 Total Across All Chains Output Power (dBm) Note 1 13.3 13.0 16.2 dBm 0.002 W  Output Power (dBm) Note 1 13.3 13.0 16.2 dBm 0.002 W  Output Power (dBm) Note 2 3.2 3.2 3.2 3.2 dBi output Power (dBm) Note 1 13.3 13.0 16.2 dBm 0.004 W 30.0 dBn output Power (dBm) Note 2 3.2 3.2 3.2 3.2 dBi output Power (dBm) Note 2 3.2 3.2 3.2 3.2 dBi output Power (dBm) Note 2 3.2 3.2 3.2 3.2 dBi output Power (dBm) Note 2  |                                       |  |  |  |
| Use the same method for power measurement for each mode as was used for single chain measurements.  Operating Mode:  Transmitted signal on chain is coherent?  No  802.11 n 20MHz 2412 MHz Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 Chain 6 Chain 6 Chain 7 Chain 8 Chain 7 Chain 8 Chain 7 Chain 8 Cha | Class: N/A                            |  |  |  |
| No   Section     |                                       |  |  |  |
| Source   Setting   Note 2   Setting   Note 3   Setting   Sett   |                                       |  |  |  |
| ## Royal Chain 1   Chain 2   Chain 3   Total Across All Chains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |  |  |  |
| Total Across All Chains   Source   Setting   Note 3   Setting   Note 3   Setting   Note 3   Setting   Note 2   Setting   Note 3   Setting   Note 4   Setting   Note 5   Setting   Note 6   Setting   Note 7   Setting   Note 8   Setting   Note 8   Setting   Note 9   Setting   Note 6   Setting   Note   |                                       |  |  |  |
| ## Prover Setting Note 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |  |  |  |
| Note 2   14.8   14.8   17.8 dBm   0.002 W   30.0 dBm   0.006 W   30.0 dBm   0.002 W   30.0 dBm   0.006 W   30.0    | Limit                                 |  |  |  |
| Dutput Power (dBm)   Note 2   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6   11.6    |                                       |  |  |  |
| 14.8   14.8   14.8   17.8 dBm   0.060 W   17.8 dBm   0.002 W   17.8 dBm   0.060 W   17.8 dB   | n 1.000 V                             |  |  |  |
| 14.8   14.8   14.8   17.8 dBm   0.060 W   17.8 dB   | Pass                                  |  |  |  |
| Power Setting   Note 3   28.0   29.0   3.0 dBm   0.002 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -ass                                  |  |  |  |
| Source   Setting   Note 3   28.0   29.0   3.0 dBm   0.002 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
| 3.0 dBm   0.002 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit                                 |  |  |  |
| Output Power (dBm) Note 1  13.3  13.0  16.2 dBm  0.041 W  30.0 dBm  3.2 dBi  3.2 dBi  19.4 dBm  0.086 W   802.11 n 20MHz 2462 MHz  Chain 1 Chain 2  Cower Setting Note 3  Output Power (dBm) Note 1  11.1  10.4  Chain 1 Chain 2  Cower Setting Note 3  Output Power (dBm) Note 1  Output Power (dBm) Note 2  3.2 dBi  17.0 dBm  0.002 W  3.0 dBm  0.002 W  3.0 dBm  0.002 W  3.0 dBm  0.002 W  3.0 dBm  0.005 W  Output Power (dBm) Note 2  3.2 dBi  17.0 dBm  0.050 W  Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample de averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
| Antenna Gain (dBi) Note 2 3.2 3.2 3.2 19.4 dBm 0.086 W  802.11 n 20MHz 2462 MHz Chain 1 Chain 2 19.4 dBm 0.086 W  Power Setting Note 3 25.5 26.0 3.0 dBm 0.002 W  Output Power (dBm) Note 1 11.1 10.4 13.8 dBm 0.024 W 30.0 dBm output Power (dBm) Note 2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n 1.000 V                             |  |  |  |
| 802.11 n 20MHz 2462 MHz Chain 1 Chain 2 Power Setting Note 3 Everage Power Note 3 Everage Power (dBm) Note 1 Everage Power (dBm) Note 2 Everage Power Note 3 Evera | 1 1.000 V                             |  |  |  |
| Rower Setting Note 3 25.5 26.0 Total Across All Chains 2 25.0 Total Across All Chains  | Pass                                  |  |  |  |
| Power Setting Note 3  Average Power Note 3  Output Power (dBm) Note 1  Interna Gain (dBi) Note 2  Interna Gain (dBi) Note 2  Output Power (dBm) Note 2  Interna Gain (dBi) Note 2  Inte |                                       |  |  |  |
| Output Power (dBm) Note 2  Output Power (dBm) No | Limit                                 |  |  |  |
| Output Power (dBm) Note 1 11.1 10.4 30.0 dBm ontenna Gain (dBi) Note 2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LIIIIII                               |  |  |  |
| Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample de averaging on (transmitted signal was continuous) and power integration over <b>50 MHz</b> (option #2, method 1 in Kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |  |  |
| Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample de averaging on (transmitted signal was continuous) and power integration over <b>50 MHz</b> (option #2, method 1 in Kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n 1.000 V                             |  |  |  |
| Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample de averaging on (transmitted signal was continuous) and power integration over <b>50 MHz</b> (option #2, method 1 in Kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pass                                  |  |  |  |
| Note 1: averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                   |  |  |  |
| Note 1: averaging on (transmitted signal was continuous) and power integration over <b>50 MHz</b> (option #2, method 1 in K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tector, powe                          |  |  |  |
| equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes <b>-30dBc.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DB 558074                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |
| As there is no coherency between chains the total EIRP is the sum of the individual EIRPs and effective antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a gain egua                           |  |  |  |
| Note 2: the eirp divide by the sum of the power on each chain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |  |  |  |
| Note 3: Power setting and average power are for reference only. Average power measured using average power sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or.                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |



|                            | tel Corporation                                                             |                              |                             |                               |               | 1                           | ob Number:        | .180398          |            |
|----------------------------|-----------------------------------------------------------------------------|------------------------------|-----------------------------|-------------------------------|---------------|-----------------------------|-------------------|------------------|------------|
|                            | noi Ooiporation                                                             |                              |                             |                               |               |                             | og Number:        |                  |            |
| Model: In                  | tel® Centrino® Advanc                                                       | ed-N 6230                    |                             |                               |               |                             | -                 | Christine Kre    | hill       |
| Contact: St                | teve Hackett                                                                |                              |                             |                               |               | 710000                      | in managor.       | Offitionino Parc | Juli       |
| Standard: F0               |                                                                             |                              |                             |                               |               |                             | Class:            | N/A              |            |
| Otaliaa a.                 |                                                                             |                              |                             |                               |               |                             |                   |                  |            |
|                            | 40MHz 2422 MHz                                                              | Chain 1                      | Chain 2                     | Chair 3                       | Chain 4       | Total Across                | All Chaina        | Lin              | ait        |
| Power Setting Note 3       |                                                                             | 21.5                         | 22.5                        |                               |               | Total Across                | S All Chains      | LIN              | 111.       |
| Average Powe               | er <sup>Note 3</sup>                                                        |                              |                             |                               |               | 3.0 dBm                     | 0.002 W           |                  |            |
| Output Power               | (dBm) Note 1                                                                | 7.3                          | 7.0                         |                               |               | 10.2 dBm                    | 0.010 W           | 30.0 dBm         | 1.000 W    |
| Antenna Gain               | (dBi) Note 2                                                                | 3.2                          | 3.2                         |                               |               |                             | 3.2 dBi           | Pa               | SS         |
| eirp (dBm) <sup>Note</sup> | 2                                                                           | 10.5                         | 10.2                        |                               |               | 13.4 dBm                    | 0.022 W           | . u              |            |
| 202 44 n                   | 40MHz 2437 MHz                                                              | Chain 1                      | Chain 0                     | (1184211118111                |               |                             |                   |                  |            |
| Power Setting <sup>N</sup> |                                                                             | 26.5                         | Chain 2<br>28.0             | (Fusiars)                     | (CA18011.4)   | Total Across                | All Chains        | Lin              | nit        |
| Average Powe               | Note 3                                                                      | 20.5                         | 20.0                        |                               |               | 3.0 dBm                     | 0.002 W           |                  |            |
| Output Power (             | (dRm) Note 1                                                                | 12.3                         | 12.3                        |                               |               | 15.3 dBm                    | 0.002 VV          | 30.0 dBm         | 1.000 W    |
| Antenna Gain (             |                                                                             | 3.2                          | 3.2                         |                               |               | 13.3 dbiii                  | 3.2 dBi           | 30.0 dDill       | 1.000 44   |
| eirp (dBm) Note            | 2                                                                           | 15.5                         | 15.5                        |                               |               | 18.5 dBm                    | 0.071 W           | Pa               | SS         |
| onp (abin)                 |                                                                             | 10.0                         | 10.0                        |                               |               | 10.0 dBiii                  | 0.071 **          |                  |            |
| 802.11 n                   | 40MHz 2452 MHz                                                              | Chain 1                      | Chain 2                     | Chain 3                       | (Chain 4)     | Tatal Assass                | All Chains        | Lia              | -:4        |
| Power Setting <sup>N</sup> | Note 3                                                                      | 20.5                         | 22.0                        |                               |               | Total Across                | S All Chains      | Lin              | III.       |
| Average Powe               | Note 3                                                                      |                              |                             |                               |               | 3.0 dBm                     | 0.002 W           |                  |            |
| Output Power (             | (dBm) Note 1                                                                | 6.5                          | 6.7                         |                               |               | 9.6 dBm                     | 0.009 W           | 30.0 dBm         | 1.000 W    |
| Antenna Gain (             | (dBi) Note 2                                                                | 3.2                          | 3.2                         |                               |               |                             | 3.2 dBi           | Pa               | ss         |
| eirp (dBm) <sup>Note</sup> | 2                                                                           | 9.7                          | 9.9                         |                               |               | 12.8 dBm                    | 0.019 W           | 1 0              |            |
| Note 1: av                 | utput power measured<br>veraging on (transmitted<br>quivalent to method 1 o | d signal was<br>f DA-02-2138 | continuous)<br>BA1 for U-NI | and power in<br>I devices). S | tegration ove | r 100 MHz (d<br>becomes -30 | option #2, medBc. | ethod 1 in KD    | B 558074,  |
| the                        | s there is no coherency<br>e eirp divide by the sur                         | n of the powe                | er on each c                | hain.                         |               |                             |                   |                  | ain equals |
| Note 3: Po                 | ower setting and avera                                                      | ge power are                 | for reference               | e only. Aver                  | age power m   | easured usin                | g average po      | ower sensor.     |            |



| Elliott An MAS company                  | EMC Test Dat                       |
|-----------------------------------------|------------------------------------|
| Client: Intel Corporation               | Job Number: J80398                 |
| Madel Intel® Centrine® Advanced N 6220  | T-Log Number: T80759               |
| Model: Intel® Centrino® Advanced-N 6230 | Account Manager: Christine Krebill |
| Contact: Steve Hackett                  |                                    |


Class: N/A

#### Run #2: Power spectral Density

Standard: FCC 15.247

| Power       | Fraguency (MUz) |         | PSI     | D (dBm/3kHz) Note 1 |       | Limit    | Result |
|-------------|-----------------|---------|---------|---------------------|-------|----------|--------|
| Setting     | Frequency (MHz) | Chain 1 | Chain 2 | Cham X X Cham X     | Total | dBm/3kHz | Result |
| 802.11n 20N | VIHz            |         |         |                     |       |          |        |
| 26.0/27.5   | 2412            | -12.6   | -11.5   |                     | -9.0  | 8.0      | Pass   |
| 28.0/ 29.0  | 2437            | -12.7   | -10.8   |                     | -8.6  | 8.0      | Pass   |
| 25.5/ 26.0  | 2467            | -14.0   | -13.2   |                     | -10.6 | 8.0      | Pass   |
| 802.11n 40N | VIHz            |         |         |                     |       |          |        |
| 21.5/ 22.5  | 2422            | -18.6   | -19.3   |                     | -15.9 | 8.0      | Pass   |
| 26.5/ 28.0  | 2437            | -13.7   | -13.9   |                     | -10.8 | 8.0      | Pass   |
| 20.5/ 22.0  | 2452            | -19.5   | -19.5   |                     | -16.5 | 8.0      | Pass   |

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.



|           | Elliott<br>An ATAS company          | EMO              | C Test Data       |
|-----------|-------------------------------------|------------------|-------------------|
|           | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
| wodei.    | IIItel® Certifillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

#### RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - Chain A

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/29/2010 Config. Used: Modular Test Engineer: John Caizzi/R. Varelas Config Change: none Test Location: FT Chamber #7 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

#### Ambient Conditions:

Temperature: 22.4 °C Rel. Humidity: 42 %

#### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run# | Pwr setting | Avg Pwr | Test Performed               | Limit     | Pass / Fail | Result / Margin         |
|------|-------------|---------|------------------------------|-----------|-------------|-------------------------|
|      |             |         |                              |           |             | 802.11a: 27.3 mW        |
| 1    | 30          | 16.5    | Output Power                 | 15.247(b) | Pass        | n20: 29.4 mW            |
|      |             |         |                              |           |             | n40: 95.5 mW            |
|      |             |         |                              |           |             | 802.11a:-8.1dBm/3kHz    |
| 2    | 29          | 16.5    | Power spectral Density (PSD) | 15.247(d) | Pass        | n20: -7.9 dBm/3kHz      |
|      |             |         |                              |           |             | n40: -10.3 dBm/3kHz     |
| 3    | 28.5        | 16.5    | Minimum 6dB Bandwidth        | 15.247(a) | Pass        | 16.4 MHz                |
|      |             |         |                              |           |             | 802.11a: 17.22 MHz      |
| 3    | 30.5        | 16.5    | 99% Bandwidth                | RSS GEN   | -           | n20: 18.39 MHz          |
|      |             |         |                              |           |             | n40: 38.8 MHz           |
| 4    | _           | 16.5    | Spurious emissions           | 15.247(b) | Pass        | All Emissions below the |
| -    |             | 10.0    | opanicae officialities       | 10.217(0) | 1 000       | limit                   |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

#### **Deviations From The Standard**

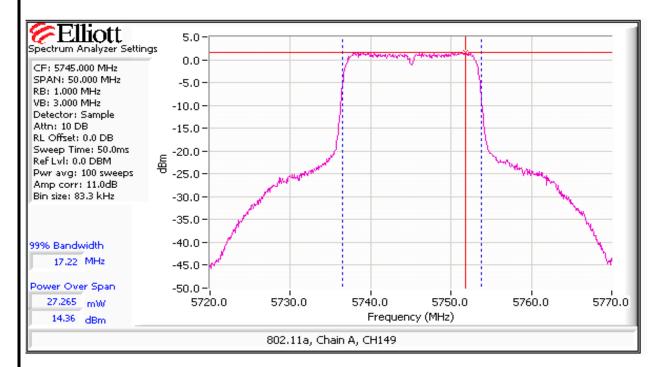
No deviations were made from the requirements of the standard.

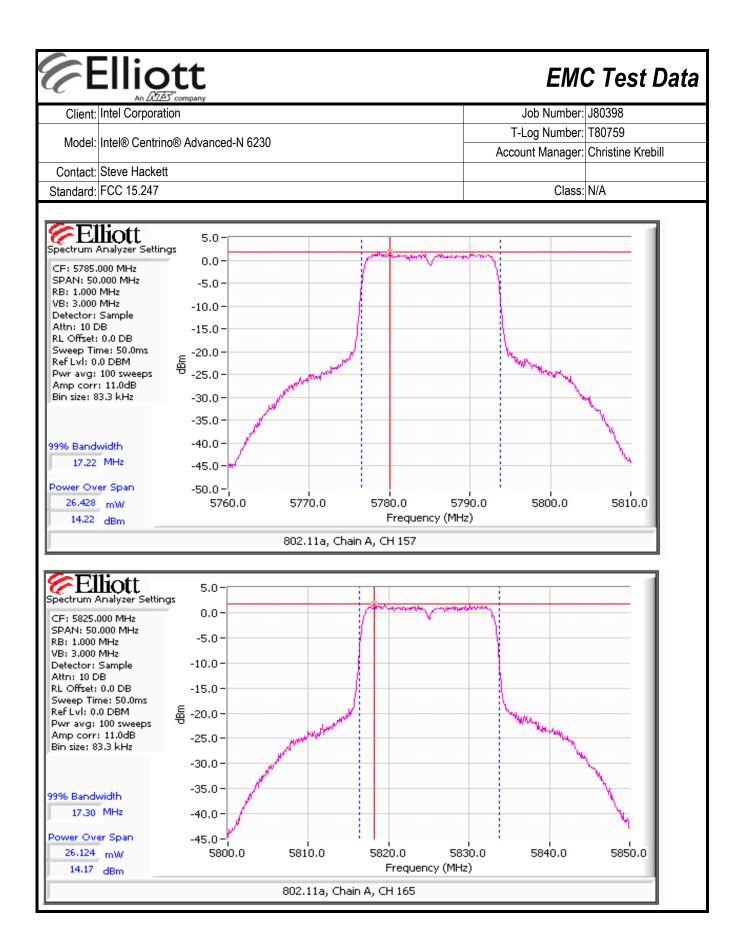
## Elliott

#### **EMC Test Data**

|           | All DOZES Company                |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| woder.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### Run #1: Output Power


#### 802.11a Mode


| Power                | Fragues ov (MHz) | Output             | Power | Antenna    | Dogult | EIRP | Note 2 | Output             | Power |
|----------------------|------------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> | Frequency (MHz)  | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 28.5                 | 5745             | 14.4               | 27.3  | 5.0        | Pass   | 19.4 | 0.086  | 16.5               | 44.7  |
| 28.5                 | 5785             | 14.2               | 26.4  | 5.0        | Pass   | 19.2 | 0.084  | 16.5               | 44.7  |
| 29.0                 | 5825             | 14.2               | 26.1  | 5.0        | Pass   | 19.2 | 0.083  | 16.5               | 44.7  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 **MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

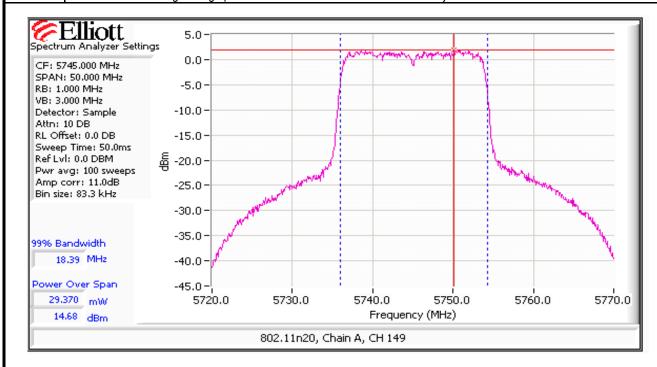


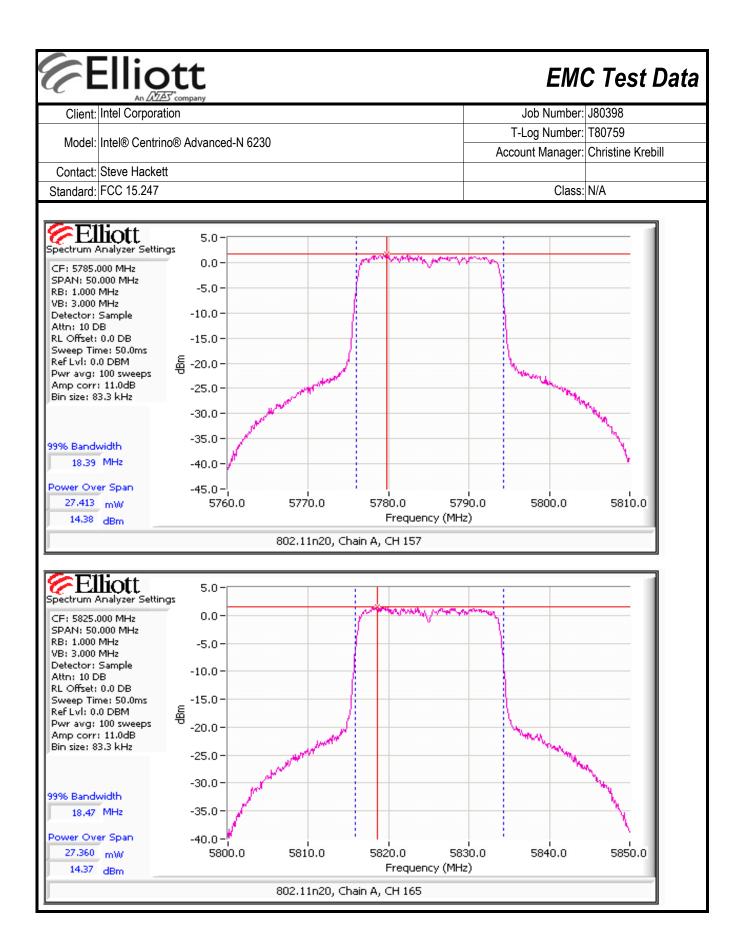


## Elliott

#### **EMC Test Data**

| Client:   | Intel Corporation                  | Job Number:      | J80398            |
|-----------|------------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |


#### 802.11n 20MHz Mode


| Power                | Frequency (MHz) | Output             | Power | Antenna    | Dogult | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> |                 | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 29.0                 | 5745            | 14.7               | 29.4  | 5.0        | Pass   | 19.7 | 0.093  | 16.6               | 45.7  |
| 29.0                 | 5785            | 14.4               | 27.4  | 5.0        | Pass   | 19.4 | 0.087  | 16.5               | 44.7  |
| 29.5                 | 5825            | 14.4               | 27.4  | 5.0        | Pass   | 19.4 | 0.086  | 16.5               | 44.7  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 **MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

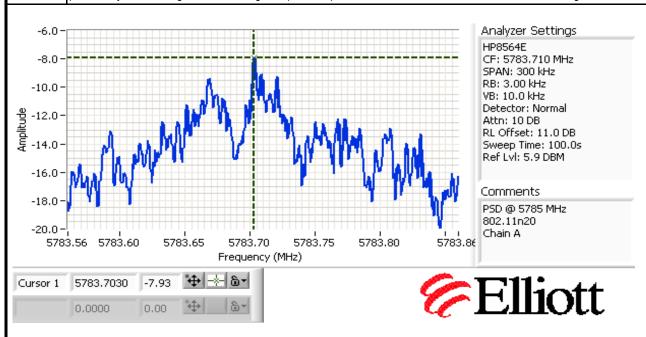




|                      | Intel Corporation         |                    |           |                 |               |      | Job Number | 180398          |       |
|----------------------|---------------------------|--------------------|-----------|-----------------|---------------|------|------------|-----------------|-------|
|                      |                           |                    |           |                 |               |      | Log Number |                 |       |
| Model:               | Intel® Centrino® Advance  | ed-N 6230          |           |                 |               |      | -          | : Christine Kre | ebill |
| Contact:             | Steve Hackett             |                    |           |                 |               |      |            |                 |       |
| Standard:            | FCC 15.247                |                    |           |                 |               |      | Class      | : N/A           |       |
| 2.11n 40i            | MHz Mode                  |                    |           |                 |               |      |            |                 |       |
| Power                |                           | Output             | Power     | Antenna         | Decult        | EIRF | Note 2     | Output          | Power |
| Setting <sup>2</sup> | Frequency (MHz)           | (dBm) <sup>1</sup> | mW        | Gain (dBi)      | Result        | dBm  | W          | (dBm) 3         | mW    |
| 30.0                 | 5755                      | 19.8               | 95.5      | 5.0             | Pass          | 24.8 | 0.302      | 16.5            | 44.7  |
| 30.5                 | 5795                      | 19.6               | 91.2      | 5.0             | Pass          | 24.6 | 0.288      | 16.5            | 44.7  |
| Note 1:              | Output power measured     | using a pool-      | nower met | or enurious lin | nit is _20dPa |      |            |                 |       |
| Note 1:              | Power setting - the softw |                    |           |                 |               |      | nlv        |                 |       |
| Note 3:              | Power measured using a    |                    |           |                 |               |      | шу.        |                 |       |
|                      |                           |                    |           |                 |               |      |            |                 |       |
|                      |                           |                    |           |                 |               |      |            |                 |       |
|                      |                           |                    |           |                 |               |      |            |                 |       |
|                      |                           |                    |           |                 |               |      |            |                 |       |

## Client: Intel Corporation

#### **EMC Test Data**


|           | All Bazz Stormpuny                 |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80759            |
| woder.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

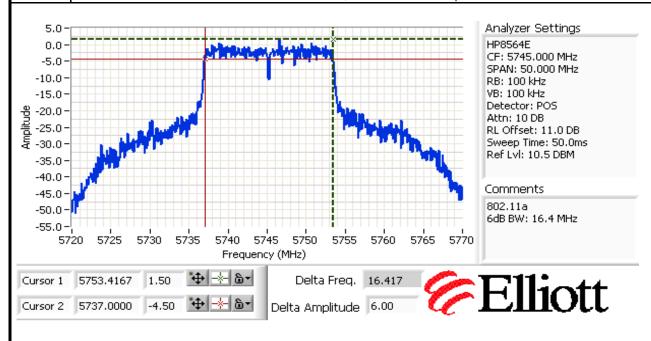
#### Run #2: Power spectral Density

| Mode      | Power<br>Setting | Frequency (MHz) | PSD<br>(dBm/3kHz) <sup>Note 1</sup> | Limit<br>dBm/3kHz | Result |
|-----------|------------------|-----------------|-------------------------------------|-------------------|--------|
|           | 28.5             | 5745            | -9.3                                | 8.0               | Pass   |
| 802.11a   | 28.5             | 5785            | -8.9                                | 8.0               | Pass   |
|           | 29               | 5825            | -8.1                                | 8.0               | Pass   |
| 802.11n   | 29               | 5745            | -10.6                               | 8.0               | Pass   |
| 20MHz     | 29               | 5785            | -7.9                                | 8.0               | Pass   |
| ZUIVII IZ | 29.5             | 5825            | -8.6                                | 8.0               | Pass   |
| 802.11n   | 30               | 5755            | -10.3                               | 8.0               | Pass   |
| 40MHz     | 30.5             | 5795            | -13.6                               | 8.0               | Pass   |

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.






|           | An ZAZZZ company                 |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
|           |                                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### Run #3: Signal Bandwidth

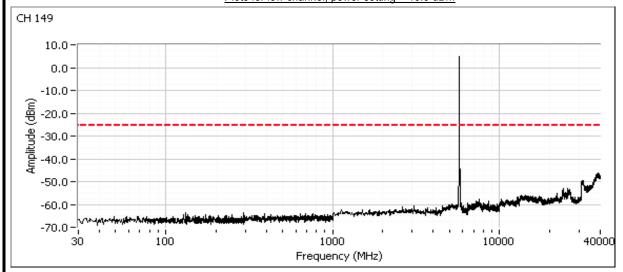
| Mode      | Power   | Frequency (MHz)  | Resolution | Bandwid | th (MHz) |
|-----------|---------|------------------|------------|---------|----------|
|           | Setting | riequency (Minz) | Bandwidth  | 6dB     | 99%      |
|           | 28.5    | 5745             | 100kHz     | 16.4    | 17.2     |
| 802.11a   | 28.5    | 5785             | 100kHz     | 16.4    | 17.2     |
|           | 29.0    | 5825             | 100kHz     | 16.5    | 17.3     |
| 802.11n   | 29.0    | 5745             | 100kHz     | 17.7    | 18.4     |
| 20MHz     | 29.0    | 5785             | 100kHz     | 17.8    | 18.4     |
| ZUIVII IZ | 29.5    | 5825             | 100kHz     | 17.3    | 18.5     |
| 802.11n   | 30.0    | 5755             | 100kHz     | 35.7    | 37.3     |
| 40MHz     | 30.5    | 5795             | 100kHz     | 36.2    | 38.8     |

#### Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

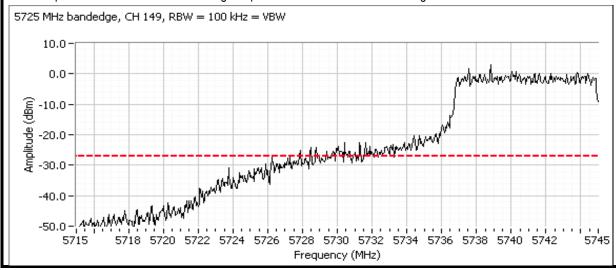


## Client: Intel Corporation

#### **EMC Test Data**

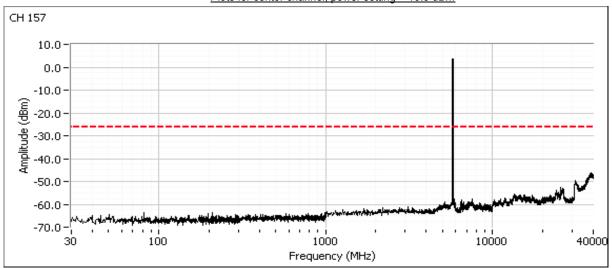

| Client:   | Intel Corporation                | Job Number:      | J80398            |
|-----------|----------------------------------|------------------|-------------------|
| Model:    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
|           |                                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### Run #4: Out of Band Spurious Emissions

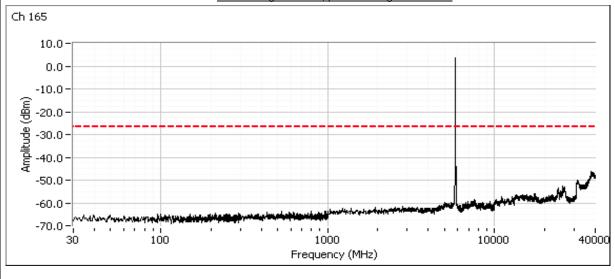

802.11a Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5745            | -30dBc | Pass   |
| 5785            | -30dBc | Pass   |
| 5825            | -30dBc | Pass   |

#### Plots for low channel, power setting = 16.5 dBm

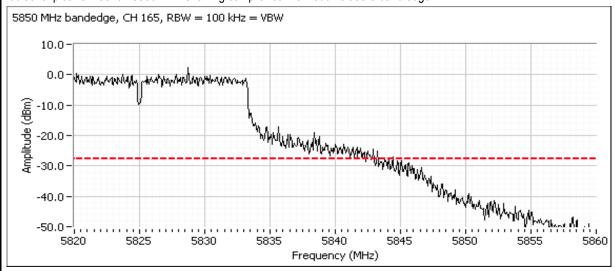



Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.




| EMC Test D |                                  | C Test Data      |                   |
|------------|----------------------------------|------------------|-------------------|
|            | Intel Corporation                | Job Number:      | J80398            |
| Madalı     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.     |                                  | Account Manager: | Christine Krebill |
| Contact:   | Steve Hackett                    |                  |                   |
| Standard:  | FCC 15.247                       | Class:           | N/A               |
| Otandard.  | 100 10.211                       | Oldoo.           | 1477              |

#### Plots for center channel, power setting = 16.5 dBm

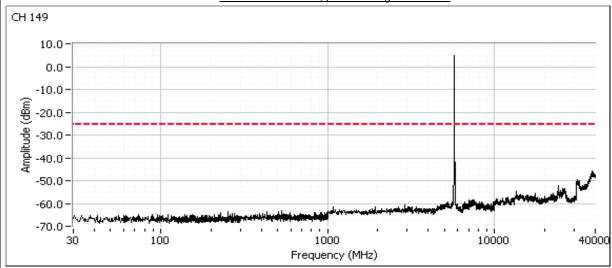



#### Plots for high channel, power setting = 16.5 dBm

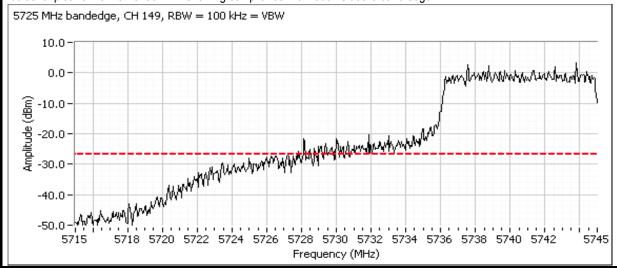


| Elliott An OVER company |                                  | ЕМО              | C Test Data       |
|-------------------------|----------------------------------|------------------|-------------------|
| Client:                 | Intel Corporation                | Job Number:      | J80398            |
| Model                   | Intel® Contrinc® Advanced N CO2O | T-Log Number:    | T80759            |
| wodei.                  | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:                | Steve Hackett                    |                  |                   |
| Standard:               | FCC 15.247                       | Class:           | N/A               |

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

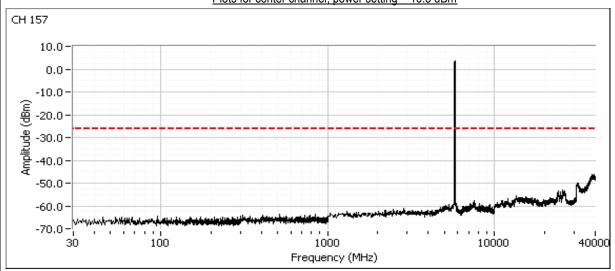



# Client: Intel Corporation Model: Intel® Centrino® Advanced-N 6230 Contact: Steve Hackett Standard: FCC 15.247 EMC Test Data Job Number: J80398 T-Log Number: T80759 Account Manager: Christine Krebill Class: N/A

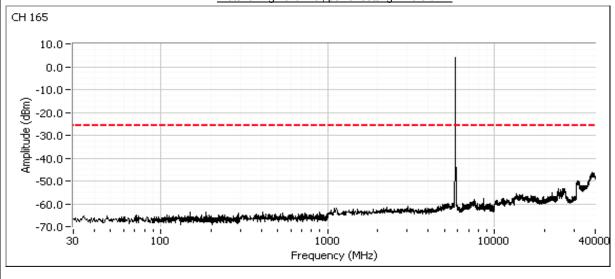

#### 802.11n 20MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5745            | -30dBc | Pass   |
| 5785            | -30dBc | Pass   |
| 5825            | -30dBc | Pass   |

#### Plots for low channel, power setting = 16.6 dBm

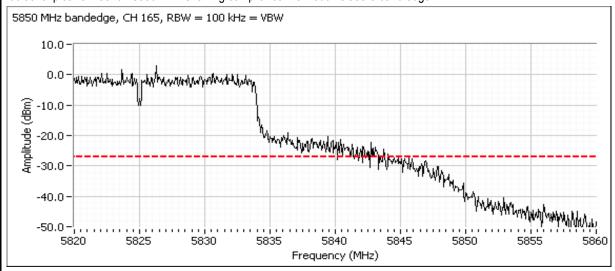



Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.




| EMC Test  |                                  | C Test Data      |                   |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| wodei.    |                                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

#### Plots for center channel, power setting = 16.5 dBm

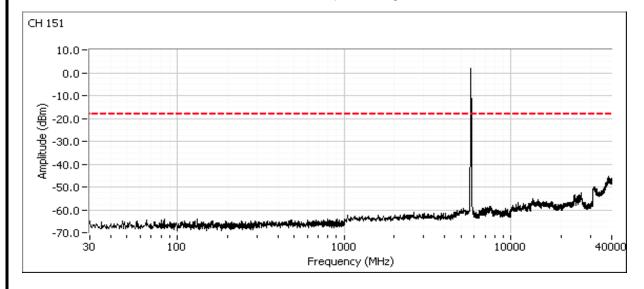


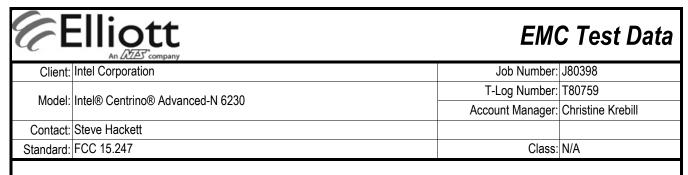

#### Plots for high channel, power setting = 16.5 dBm



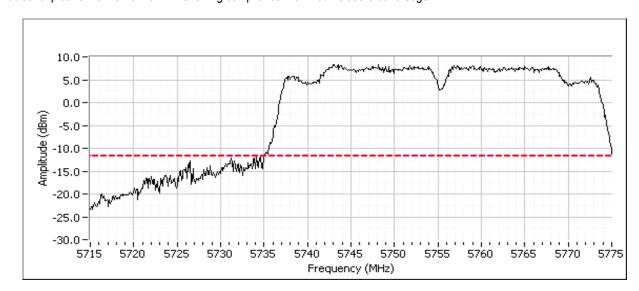
| Elliott An AND Company |                                  | EMO              | C Test Data       |
|------------------------|----------------------------------|------------------|-------------------|
| Client:                | Intel Corporation                | Job Number:      | J80398            |
| Model                  | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.                 |                                  | Account Manager: | Christine Krebill |
| Contact:               | Steve Hackett                    |                  |                   |
| Standard:              | FCC 15.247                       | Class:           | N/A               |

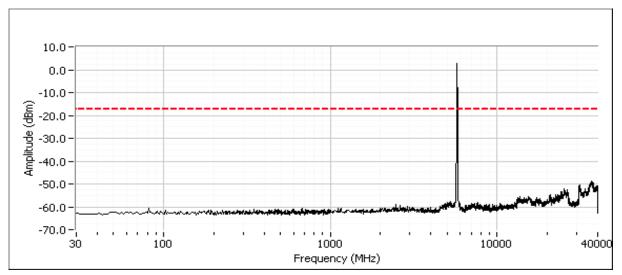
Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.





| EMC Tes   |                                  | C Test Data      |                   |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Madal     | Intel® Continue Advanced N 6220  | T-Log Number:    | T80759            |
| Model.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

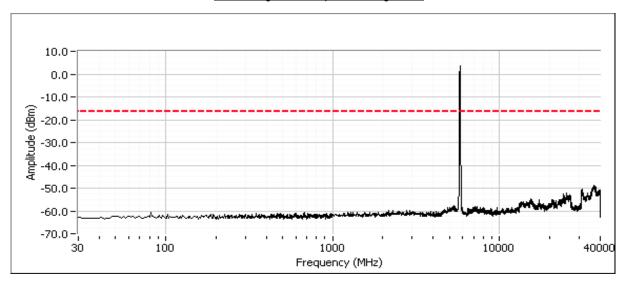
#### 802.11n 40MHz Mode


| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5795            | -20dBc | Pass   |
| 5755            | -20dBc | Pass   |

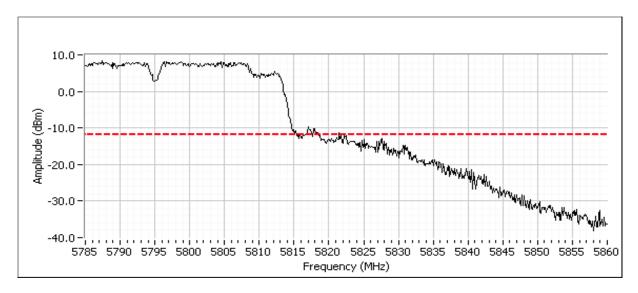

#### Plots for low channel, power setting = 16.5 dBm






Additional plot from 5715 - 5775 MHz showing compliance with -20dBc at the band edge.






| EMC Test              |                                  | C Test Data      |                   |
|-----------------------|----------------------------------|------------------|-------------------|
| Client:               | Intel Corporation                | Job Number:      | J80398            |
| Madalı                | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.                |                                  | Account Manager: | Christine Krebill |
| Contact:              | Steve Hackett                    |                  |                   |
| Standard: FCC 15.247  |                                  | Class:           | N/A               |
| Standard. 1 00 10.247 |                                  |                  |                   |

#### Plots for high channel, power setting = 16.5



Additional plot from 5785 - 5860 MHz showing compliance with -20dBc at the band edge.



|           | Eliott<br>An 必否。company          | EMC Test Data    |                   |  |  |
|-----------|----------------------------------|------------------|-------------------|--|--|
| Client:   | Intel Corporation                | Job Number:      | J80398            |  |  |
| Model     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |  |  |
| wodei.    | Intel® Centino® Advanced-in 6230 | Account Manager: | Christine Krebill |  |  |
| Contact:  | Steve Hackett                    |                  |                   |  |  |
| Standard: | FCC 15.247                       | Class:           | N/A               |  |  |

#### RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions - Chain B

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/29/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Test Location: FT Chamber #5 Host Unit Voltage 120V/60Hz

#### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

#### Ambient Conditions:

Temperature: 22.4 °C Rel. Humidity: 42 %

#### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run# | Pwr setting | Avg Pwr | Test Performed               | Limit     | Pass / Fail | Result / Margin         |  |  |
|------|-------------|---------|------------------------------|-----------|-------------|-------------------------|--|--|
|      |             |         |                              |           |             | 802.11a: 39.8 mW        |  |  |
| 1    | 30          | 16.6    | Output Power                 | 15.247(b) | Pass        | n20: 39.8 mW            |  |  |
|      |             |         |                              |           |             | n40: 102 mW             |  |  |
|      |             |         |                              |           |             | 802.11a:-7.7dBm/3kHz    |  |  |
| 2    | 29          | 16.7    | Power spectral Density (PSD) | 15.247(d) | Pass        | n20: -7.7dBm/3kHz       |  |  |
|      |             |         |                              |           |             | n40: -8.2dBm/3kHz       |  |  |
| 3    | 29          | 16.6    | Minimum 6dB Bandwidth        | 15.247(a) | Pass        | 16.3 MHz                |  |  |
|      |             |         |                              |           |             | 802.11a: 17.6 MHz       |  |  |
| 3    | 30          | 16.6    | 99% Bandwidth                | RSS GEN   | -           | n20: 18.7 MHz           |  |  |
|      |             |         |                              |           |             | n40: 37.8 MHz           |  |  |
| 1    | _           | _       | Spurious emissions           | 15.247(b) | Pass        | All emissions below the |  |  |
| 4    | _           | -       |                              | 10.247(0) | 1 433       | limit                   |  |  |

#### Modifications Made During Testing

No modifications were made to the EUT during testing

## Elliott

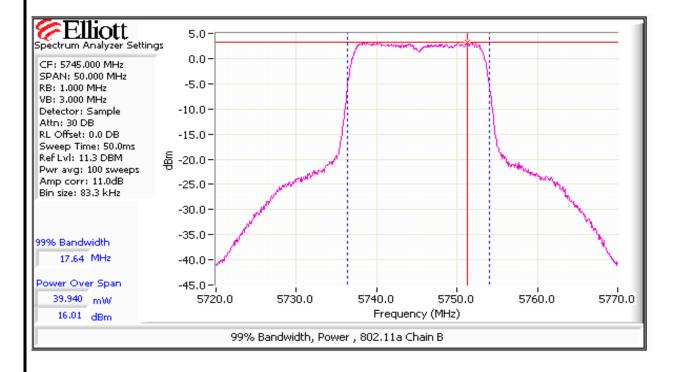
#### **EMC Test Data**

| Client:   | Intel Corporation                   | Job Number:      | J80398            |
|-----------|-------------------------------------|------------------|-------------------|
| Model:    | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
|           | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.

#### Run #1: Output Power


#### 802.11a Mode

| Power                | Frequency (MHz) | Output             | Power | Antenna    | Dogult | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> |                 | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 29                   | 5745            | 16.0               | 39.8  | 5.0        | Pass   | 21.0 | 0.126  | 16.7               | 46.8  |
| 29                   | 5785            | 15.9               | 38.9  | 5.0        | Pass   | 20.9 | 0.123  | 16.7               | 46.8  |
| 29                   | 5825            | 15.9               | 38.9  | 5.0        | Pass   | 20.9 | 0.123  | 16.6               | 45.7  |

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

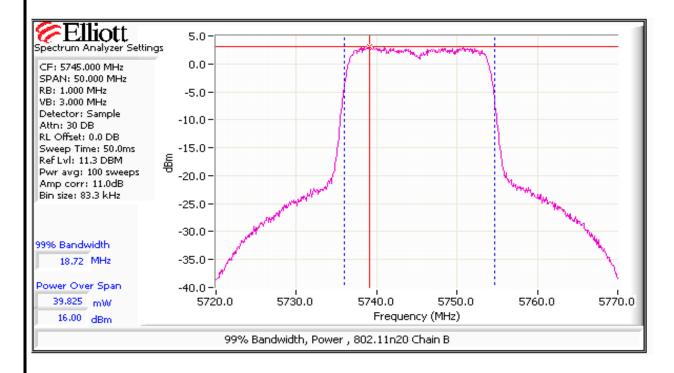
Note 3: Power measured using average power meter and is included for reference only.



## Elliott

#### **EMC Test Data**

| Client:   | Intel Corporation                   | Job Number:      | J80398            |
|-----------|-------------------------------------|------------------|-------------------|
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
| Model.    | IIILEI® Ceritiiio® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |


#### 802.11n 20MHz Mode

| Power                | Frequency (MHz) | Output             | Power | Antenna    | Result | EIRF | Note 2 | Output             | Power |
|----------------------|-----------------|--------------------|-------|------------|--------|------|--------|--------------------|-------|
| Setting <sup>2</sup> |                 | (dBm) <sup>1</sup> | mW    | Gain (dBi) | Result | dBm  | W      | (dBm) <sup>3</sup> | mW    |
| 29                   | 5745            | 16.0               | 39.8  | 5.0        | Pass   | 21.0 | 0.126  | 16.7               | 46.8  |
| 29                   | 5785            | 15.9               | 38.9  | 5.0        | Pass   | 20.9 | 0.123  | 16.6               | 45.7  |
| 29                   | 5825            | 15.9               | 38.9  | 5.0        | Pass   | 20.9 | 0.123  | 16.6               | 45.7  |

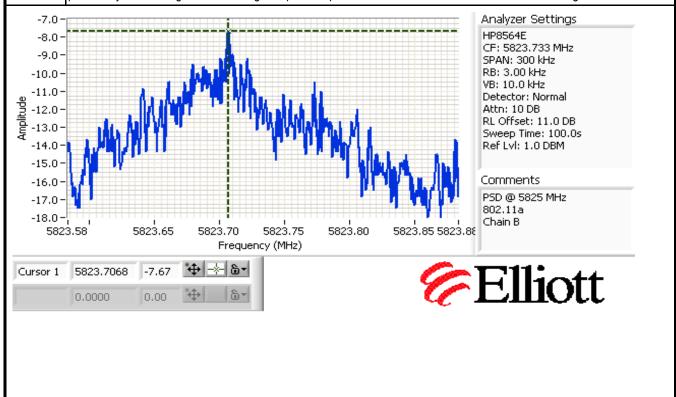
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **50 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.



| Elliott An ANDES company |                                  |                    |       |            |         |            | EMO          | C Test             | Data  |
|--------------------------|----------------------------------|--------------------|-------|------------|---------|------------|--------------|--------------------|-------|
|                          | Intel Corporation                |                    |       |            |         | ,          | Job Number:  | J80398             |       |
| Madal                    | Intel® Contrinc® Advance         | N 6000             |       |            |         | T-l        | _og Number:  | T80759             |       |
| Model:                   | Intel® Centrino® Advanced-N 6230 |                    |       |            |         | Accou      | ınt Manager: | Christine Kre      | ebill |
| Contact:                 | t: Steve Hackett                 |                    |       |            |         |            |              |                    |       |
| Standard:                | FCC 15.247                       |                    |       |            |         | Class: N/A |              |                    |       |
| 802.11n 40l              | MHz Mode                         |                    |       |            |         |            | . Note 2     |                    |       |
| Power                    | Frequency (MHz)                  | Output             | Power | Antenna    | Result  | EIRF       | Note 2       | Output             | Power |
| Setting <sup>2</sup>     | 1 requeries (ivii iz)            | (dBm) <sup>1</sup> | mW    | Gain (dBi) | rtocait | dBm        | W            | (dBm) <sup>3</sup> | mW    |
| 30                       | 5755                             | 20.1               | 102.3 | 5.0        | Pass    | 25.1       | 0.324        | 16.6               | 45.7  |
| 30                       | 5795                             | 20.1               | 102.3 | 5.0        | Pass    | 25.1       | 0.324        | 16.6               | 45.7  |

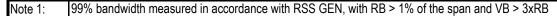

| Note 1: | Output power measured using a peak power meter, spurious limit is <b>-20dBc</b> .            |
|---------|----------------------------------------------------------------------------------------------|
| Note 2: | Power setting - the software power setting used during testing, included for reference only. |
| Note 3: | Power measured using average power meter and is included for reference only.                 |

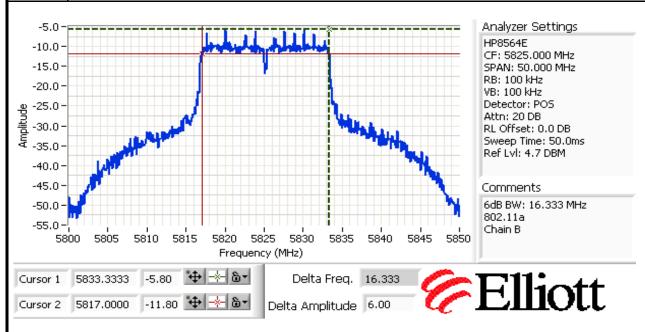
|           | Eliott<br>An MZES company            | EMC Test Data    |                   |  |
|-----------|--------------------------------------|------------------|-------------------|--|
| Client:   | Intel Corporation                    | Job Number:      | J80398            |  |
| Model:    | Intel® Centrino® Advanced-N 6230     | T-Log Number:    | T80759            |  |
| Model.    | IIILENS CETILITION AUVAITCEU-IN 0230 | Account Manager: | Christine Krebill |  |
| Contact:  | Steve Hackett                        |                  |                   |  |
| Standard: | FCC 15.247                           | Class:           | N/A               |  |

#### Run #2: Power spectral Density

| Mode      | Power   | Frequency (MHz)   | PSD               | Limit    | Result |
|-----------|---------|-------------------|-------------------|----------|--------|
|           | Setting | riequelicy (Minz) | (dBm/3kHz) Note 1 | dBm/3kHz | Result |
|           | 29      | 5745              | -9.2              | 8.0      | Pass   |
| 802.11a   | 29      | 5785              | -9.5              | 8.0      | Pass   |
|           | 29      | 5825              | -7.7              | 8.0      | Pass   |
| 802.11n   | 29      | 5745              | -10.7             | 8.0      | Pass   |
| 20MHz     | 29      | 5785              | -7.8              | 8.0      | Pass   |
| ZUIVII IZ | 29      | 5825              | -7.7              | 8.0      | Pass   |
| 802.11n   | 30      | 5755              | -8.2              | 8.0      | Pass   |
| 40MHz     | 30      | 5795              | -8.5              | 8.0      | Pass   |

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.




|           | An 2022 Company                     |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80759            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

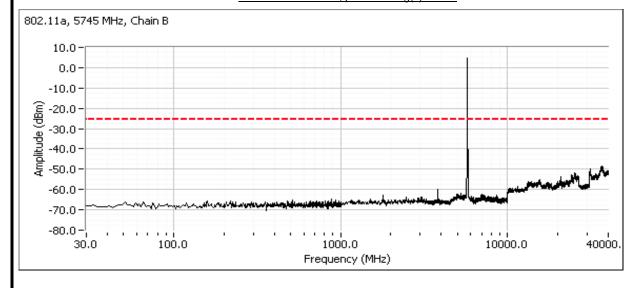
#### Run #3: Signal Bandwidth

| Mode      | Power Frequency (MHz) Reso |                  | Resolution | Bandwid | th (MHz) |
|-----------|----------------------------|------------------|------------|---------|----------|
|           | Setting                    | riequency (Min2) | Bandwidth  | 6dB     | 99%      |
|           | 29                         | 5745             | 100kHz     | 16.5    | 17.6     |
| 802.11a   | 29                         | 5785             | 100kHz     | 16.4    | 17.6     |
|           | 29                         | 5825             | 100kHz     | 16.3    | 17.6     |
| 802.11n   | 29                         | 5745             | 100kHz     | 17.1    | 18.7     |
| 20MHz     | 29                         | 5785             | 100kHz     | 17.4    | 18.7     |
| ZUIVII IZ | 29                         | 5825             | 100kHz     | 17      | 18.6     |
| 802.11n   | 30                         | 5755             | 100kHz     | 34      | 37.8     |
| 40MHz     | 30                         | 5795             | 100kHz     | 35.2    | 37.4     |





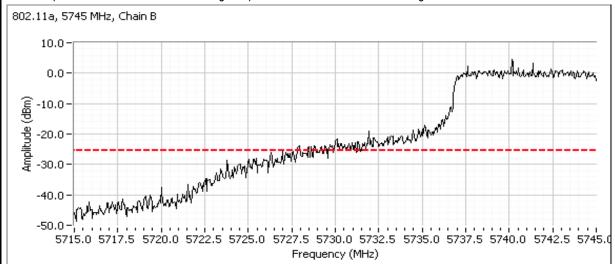



| 1         | All Date Company                 |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.    |                                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

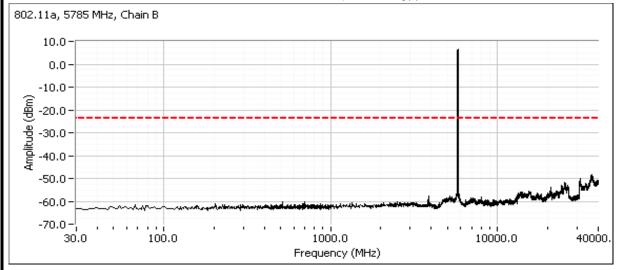
#### Run #4: Out of Band Spurious Emissions

802.11a Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5745            | -30dBc | Pass   |
| 5785            | -30dBc | Pass   |
| 5825            | -30dBc | Pass   |

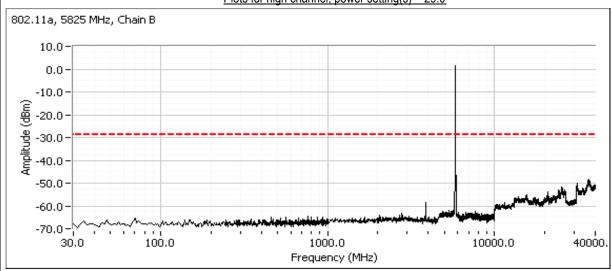

#### Plots for low channel, power setting(s) = 29.0



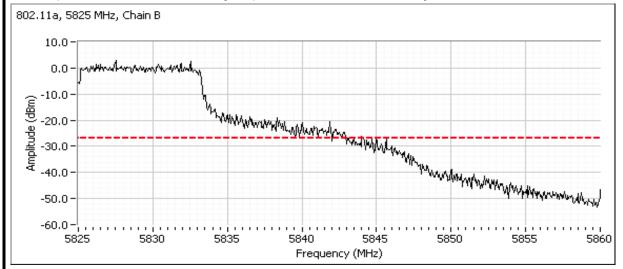



| 1         | All Date Company                 |                  |                   |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.    |                                  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.




Plots for center channel, power setting(s) = 29.0




| Elliott An AZAS company |                                  | ЕМО              | EMC Test Data     |  |
|-------------------------|----------------------------------|------------------|-------------------|--|
|                         | Intel Corporation                | Job Number:      | J80398            |  |
| Model                   | Intel® Contrine® Advanced N 6220 | T-Log Number:    | T80759            |  |
| wodei.                  | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |  |
| Contact:                | Steve Hackett                    |                  |                   |  |
| Standard:               | FCC 15.247                       | Class:           | N/A               |  |

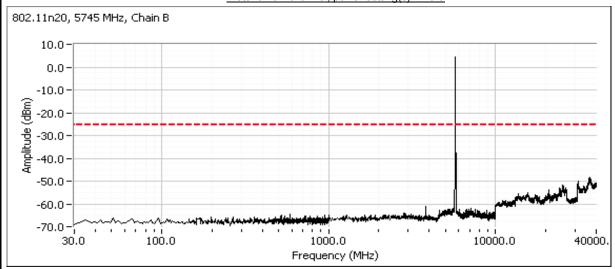
#### Plots for high channel, power setting(s) = 29.0



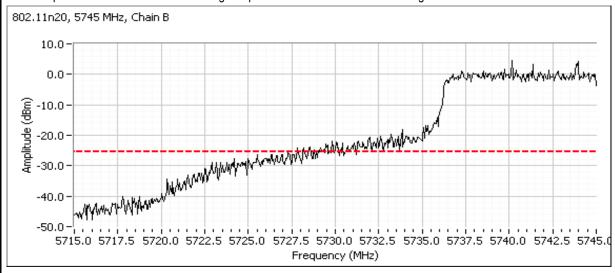
Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.



## Client: Intel Corporation Model: Intel® Centrino® Advance

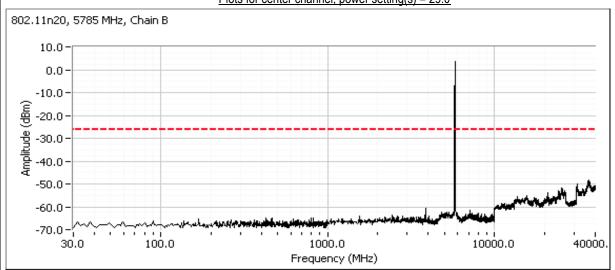

#### **EMC Test Data**

| All Diff. Company |                                  |                  |                   |
|-------------------|----------------------------------|------------------|-------------------|
| Client:           | Intel Corporation                | Job Number:      | J80398            |
| Model:            | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
|                   |                                  | Account Manager: | Christine Krebill |
| Contact:          | Steve Hackett                    |                  |                   |
| Standard:         | FCC 15.247                       | Class:           | N/A               |

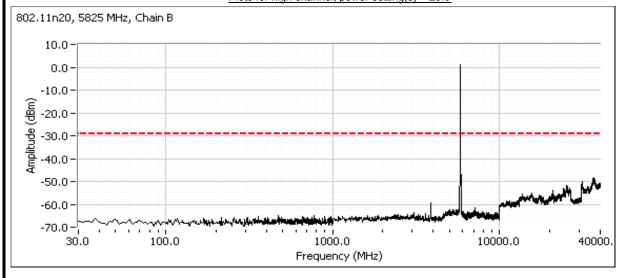

#### 802.11n 20MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5745            | -30dBc | Pass   |
| 5785            | -30dBc | Pass   |
| 5825            | -30dBc | Pass   |

#### Plots for low channel, power setting(s) = 29.0




Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

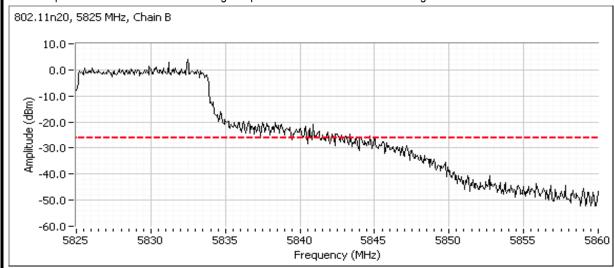



| Contract of the second | Elliott An Miles company |                                  | EN            | IC Test Date          |
|------------------------|--------------------------|----------------------------------|---------------|-----------------------|
|                        |                          | Intel Corporation                | Job Numb      | er: J80398            |
|                        | Model:                   | Intel® Continue Advanced N C220  | T-Log Numb    | er: T80759            |
| IVI                    |                          | Intel® Centrino® Advanced-N 6230 | Account Manag | er: Christine Krebill |
| Cor                    | ntact:                   | Steve Hackett                    |               |                       |
| Stan                   | dard:                    | FCC 15.247                       | Clas          | s: N/A                |

#### Plots for center channel, power setting(s) = 29.0



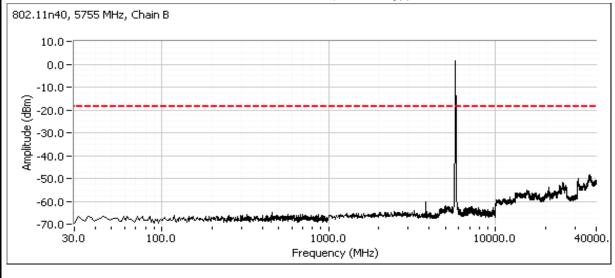
#### Plots for high channel, power setting(s) = 29.0




## Elliott An MAS company

#### **EMC** Test Data

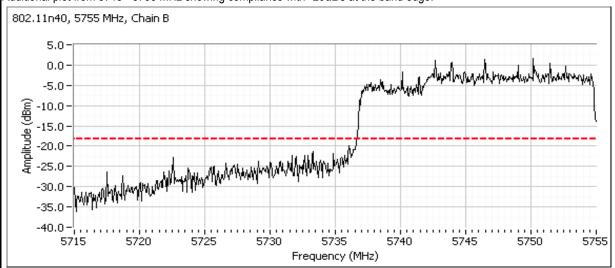
| All 2022 Company |                                  |                  |                   |
|------------------|----------------------------------|------------------|-------------------|
| Client:          | Intel Corporation                | Job Number:      | J80398            |
| Model:           | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
|                  |                                  | Account Manager: | Christine Krebill |
| Contact:         | Steve Hackett                    |                  |                   |
| Standard:        | FCC 15.247                       | Class:           | N/A               |


Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

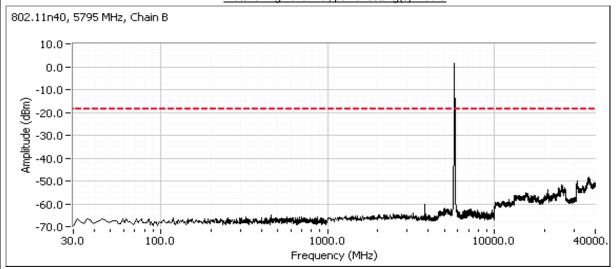


#### 802.11n 40MHz Mode

| Frequency (MHz) | Limit  | Result |
|-----------------|--------|--------|
| 5755            | -20dBc | Pass   |
| 5795            | -20dBc | Pass   |

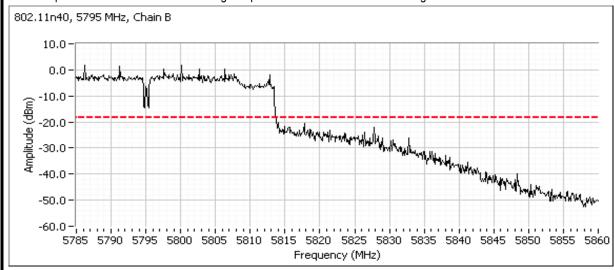

#### Plots for low channel, power setting(s) = 30.0






| An 2022 Company |                                  |                  |                   |
|-----------------|----------------------------------|------------------|-------------------|
| Client:         | Intel Corporation                | Job Number:      | J80398            |
| Madal           | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.          |                                  | Account Manager: | Christine Krebill |
| Contact:        | Steve Hackett                    |                  |                   |
| Standard:       | FCC 15.247                       | Class:           | N/A               |

Additional plot from 5715 - 5755 MHz showing compliance with -20dBc at the band edge.




#### Plots for high channel, power setting(s) = 30.0



| Elliott An AZAS company |                                  | ЕМО              | EMC Test Data     |  |
|-------------------------|----------------------------------|------------------|-------------------|--|
| Client:                 | Intel Corporation                | Job Number:      | J80398            |  |
| Model                   | Intel® Contrinc® Advanced N 6220 | T-Log Number:    | T80759            |  |
| wodei.                  | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |  |
| Contact:                | Steve Hackett                    |                  |                   |  |
| Standard:               | FCC 15.247                       | Class:           | N/A               |  |

Additional plot from 5785 - 5860 MHz showing compliance with **-20dBc** at the band edge.



|           | An AZAS company                  | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80759            |
| Model.    | Intel® Centillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

# RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO Antenna Systems - Chain A+B Power, PSD, Bandwidth and Spurious Emissions

### **Test Specific Details**

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/1/2010 Config. Used: 1 Test Engineer: David Bare Config Change: None Host Unit Voltage 120V/60Hz Test Location: Chamber 7

### **General Test Configuration**

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

#### Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 41 %

#### Summary of Results

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 Driver version 14.0.0.39

| Run#        | Pwr setting | Avg Pwr   | Test Performed Limit                           |           | Pass / Fail | Result / Margin                             |  |  |
|-------------|-------------|-----------|------------------------------------------------|-----------|-------------|---------------------------------------------|--|--|
| Chain A + B |             |           |                                                |           |             |                                             |  |  |
| 1           | See Below   | See Below | Output Power,<br>Average for n20, Peak for n40 | 15.247(b) | Pass        | n20: 21 mW<br>n40: 246 mW                   |  |  |
| 2           | See Below   | See Below | Power spectral Density (PSD)                   | 15.247(d) | Pass        | n20: -10.3 dBm/3kHz<br>n40: -12.2. dBm/3kHz |  |  |
| 3           |             |           | Minimum 6dB Bandwidth                          | 15.247(a) |             | covered by                                  |  |  |
| 3           |             |           | 99% Bandwidth                                  | RSS GEN   |             | single chain                                |  |  |
| 4           |             |           | Spurious emissions                             | 15.247(b) |             | Measurements                                |  |  |

### Modifications Made During Testing

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

| Client                                  | Elliott  An AZAS company  Intel Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                     |                                                           |                                                                  |                                                                          | lob Number:                                   | J80398        |                       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|---------------|-----------------------|
| NA . 1 . 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LN 0000                                                                         |                                                     |                                                           |                                                                  | T-L                                                                      | .og Number:                                   | T80759        |                       |
| Model: Intel® Centrino® Advanced-N 6230 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                     |                                                           |                                                                  |                                                                          | nt Manager:                                   | Christine Kre | ebill                 |
| Contact                                 | : Steve Hackett                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                     |                                                           |                                                                  |                                                                          |                                               |               |                       |
| Standard                                | : FCC 15.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                 |                                                     |                                                           |                                                                  |                                                                          | Class:                                        | N/A           |                       |
|                                         | output Power - Chain A -<br>Ope<br>ansmitted signal on chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erating Mode:                                                                   |                                                     |                                                           |                                                                  |                                                                          |                                               |               |                       |
| 802.11                                  | 1n 20MHz 5745 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chain 1                                                                         | Chain 2                                             | Chans                                                     | Chain 4                                                          | T 1 1 A                                                                  | All Objective                                 | 1             | . 11                  |
| ower Sett                               | ing <sup>Note 3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.0                                                                            | 28.0                                                |                                                           |                                                                  | Total Acros                                                              | s All Chains                                  | Lir           | nit                   |
| verage po                               | ower <sup>Note 3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6                                                                            | 13.5                                                |                                                           |                                                                  |                                                                          |                                               |               |                       |
| utput Pow                               | ver (dBm) Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4                                                                            | 10.2                                                |                                                           |                                                                  | 13.3 dBm                                                                 | 0.021 W                                       | 30.0 dBm      | 1.000                 |
| ntenna Ga                               | ain (dBi) <sup>Note 2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                               | 5                                                   |                                                           |                                                                  |                                                                          | 5.0 dBi                                       | Pa            | ee                    |
| rp (dBm)                                | Note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.4                                                                            | 15.2                                                |                                                           |                                                                  | 18.3 dBm                                                                 | 0.068 W                                       | T d           | 33                    |
| ower Setti<br>verage po                 | ower <sup>Note 3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chain 1<br>31.0<br>13.5                                                         | Chain 2<br>28.0<br>13.4                             | Chain 3                                                   | Chain 4                                                          | Total Across All Chains                                                  |                                               | Lir           | nit                   |
| Output Power (dBm) Note 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3                                                                            | 10.2                                                |                                                           |                                                                  | 13.3 dBm                                                                 | 0.021 W                                       | 30.0 dBm      | 1.000                 |
| ntenna Ga                               | ain (dBi) Note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                               | 5                                                   |                                                           |                                                                  |                                                                          | 5.0 dBi                                       | Pa            | SS                    |
| irp (dBm)                               | Note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.3                                                                            | 15.2                                                |                                                           |                                                                  | 18.3 dBm                                                                 | 0.067 W                                       |               |                       |
| 802.11<br>ower Setti<br>verage po       | In 20MHz 5825 MHz<br>ing Note 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain 1<br>31.0<br>13.3                                                         | Chain 2<br>28.5<br>13.7                             | Chain 3                                                   | Chain 4                                                          | Total Acros                                                              | s All Chains                                  | Lir           | nit                   |
| utput Pow                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2                                                                            | 10.4                                                |                                                           |                                                                  | 13.3 dBm                                                                 | 0.021 W                                       | 30.0 dBm      | 1.000                 |
|                                         | ain (dBi) <sup>Note 2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                               | 5                                                   |                                                           |                                                                  | 10.0 dBiii                                                               | 5.0 dBi                                       |               |                       |
| rp (dBm)                                | Note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.2                                                                            | 15.4                                                |                                                           |                                                                  | 18.3 dBm                                                                 | 0.068 W                                       | Pa            | SS                    |
| Note 1:<br>Note 2:<br>Note 3:           | Output power measured averaging on (transmitte equivalent to method 1 As there is no coherence the eirp divide by the surplement of the eirp divide by the eirp divide by the eirp divide by the eirp divide by the surplement of the eirp divide by the eirp divide by the surplement of the eirp divide by the eir | ed signal was<br>of DA-02-213<br>by between chain of the power<br>age power are | continuous) BA1 for U-Ni ains the tota er on each c | and power in<br>II devices). S<br>II EIRP is the<br>hain. | tegration over<br>purious limit<br>sum of the ir<br>age power is | er <b>50 MHz</b> (o <sub>l</sub><br>becomes <b>-30</b><br>ndividual EIRF | otion #2, me<br>d <b>Bc.</b><br>Ps and effect | thod 1 in KDE | 3 558074<br>gain equa |

| Client: Intel                     | Liott  An Wild Company  Corporation            |                 |                 |                 |                       |                      | Job Number:       | J80398        |           |
|-----------------------------------|------------------------------------------------|-----------------|-----------------|-----------------|-----------------------|----------------------|-------------------|---------------|-----------|
|                                   |                                                |                 |                 |                 |                       | T-Log Number: T80759 |                   |               |           |
| Model: Intel                      | Model: Intel® Centrino® Advanced-N 6230        |                 |                 |                 |                       |                      |                   | Christine Kr  | ebill     |
| Contact: Stev                     |                                                |                 |                 |                 |                       |                      |                   |               |           |
| Standard: FCC                     | 15.247                                         |                 |                 |                 |                       |                      | Class:            | N/A           |           |
| 000 44 401                        | ALL 5755 MIL                                   | Ob. 1. 4        | 010             | ALIAHUHHHA      |                       |                      |                   | ı             |           |
| 902.11n 40r<br>Power Setting Note | MHz 5755 MHz                                   | Chain 1<br>31.0 | Chain 2<br>29.0 | Chain 3         | Chain 4               | Total Acros          | s All Chains      | Lir           | mit       |
| verage power <sup>No</sup>        | te 3                                           | 13.5            | 13.5            |                 |                       |                      |                   |               |           |
| verage power                      | Note 1                                         | -               | -               |                 |                       | 03 0 dD              | 0.046.10/         | 20 0 dD       | 1.000     |
| Output Power (dE                  | 3m)                                            | 21              | 20.8            |                 |                       | 23.9 dBm             | 0.246 W           | 30.0 dBm      | 1.000     |
| Intenna Gain (dE                  | 31) **** -                                     | 5               | 5               |                 |                       | 00.0 ID              | 5.0 dBi           | Pa            | iss       |
| eirp (dBm) Note 2                 |                                                | 26              | 25.8            |                 |                       | 28.9 dBm             | 0.778 W           |               |           |
| 802.11n 40l                       | MHz 5795 MHz                                   | Chain 1         | Chain 2         | Chans           | (Chain 4)             | T. (.) A             | All OL C          | ļ ,.          | . 9       |
| Power Setting Note                | 3                                              | 31.0            | 29.0            |                 |                       | Total Acros          | s All Chains      | Limit         |           |
| verage power <sup>No</sup>        | te 3                                           | 13.3            | 13.4            |                 |                       |                      |                   |               |           |
| Output Power (dE                  | Bm) Note 1                                     | 20.6            | 20.7            |                 |                       | 23.7 dBm             | 0.232 W           | 30.0 dBm      | 1.000     |
| Antenna Gain (dE                  | 3i) Note 2                                     | 5               | 5               |                 |                       |                      | 5.0 dBi           | _             |           |
| eirp (dBm) Note 2                 | 3m) Note 2 25.6                                |                 | 25.7            |                 |                       | 28.7 dBm 0.735 W     |                   | Pa            | ISS       |
|                                   |                                                | 4               |                 | •               |                       |                      |                   |               |           |
| Note 1: Outp                      | out power measured                             | using a peak    | power meter     | er, spurious li | mit is <b>-20dB</b> d | <b>)</b> .           |                   |               |           |
| NIOTO 7'                          | nere is no coherency<br>eirp divide by the sur |                 |                 |                 | sum of the in         | dividual EIRI        | Ps and effect     | ive antenna ( | gain equa |
| NOTA 4.                           | er setting and avera<br>or. Power setting is   | • .             |                 | •               | • .                   | the power m          | easured usir      | ng an averag  | e power   |
| Power                             | spectral Density                               | Chain 1         | PSE<br>Chain 2  | O (dBm/3kHz)    | Note 1                | Total                | Limit<br>dBm/3kHz | Result        |           |
| 302.11n 20MHz ı                   |                                                |                 |                 |                 |                       |                      |                   |               |           |
| 31 / 28                           | 5745                                           | -14.8           | -15.2           |                 |                       | -12.0                | 8.0               | Pass          |           |
| 31 / 28                           | 5785                                           | -12.7           | -14.0           |                 |                       | -10.3                | 8.0               | Pass          |           |
| 31 / 28.5                         | 5825                                           | -14.5           | -14.8           |                 |                       | -11.6                | 8.0               | Pass          |           |
| 02.11n 40MHz ı                    |                                                | 45.5            | 40.7            |                 |                       | 40.0                 | 0.0               | ln            |           |
| 31 / 29<br>31 / 29                | 5755                                           | -15.5           | -16.7           |                 |                       | -13.0                | 8.0               | Pass          |           |
| 20 7 20 I                         | 5795                                           | -14.8           | -15.7           | HHHHHHHA        | VIIIIIIIIIX           | -12.2                | 8.0               | Pass          |           |

preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

| Ellio Ellio            | tt<br>Frompany                   | El               | MC Test Data      |
|------------------------|----------------------------------|------------------|-------------------|
| Client:                | Intel Corporation                | Job Number:      | J80398            |
| Model:                 | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
|                        |                                  | Account Manager: | Christine Krebill |
| Contact:               | Steve Hackett                    |                  | -                 |
| Emissions Standard(s): | FCC 15.247                       | Class:           | В                 |
| Immunity Standard(s):  | -                                | Environment:     | -                 |

For The

# **Intel Corporation**

Model

Intel® Centrino® Advanced-N 6230

Date of Last Test: 10/6/2010

|           | Elliott<br>An ATAS company         | EMO              | C Test Data       |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| wodei.    | III.el® Celitiilo® Auvanceu-N 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

# RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bgn and Bluetooth - Transmitter Mode

#### **Test Specific Details**

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

#### **General Test Configuration**

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC).

For conducted emissions testing the measurement antenna port.

#### Summary of Results

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit in the 2.4GHz band, both chains used in 5GHz bands.

MAC Address: 00150079AD1A DRTU Tool Version 1.2.12-0197 New tool from 9/14 Driver version 14.0.0.39

|             |                            | ** 12 11 1 2 1 t     |                 |                   | • · • · · · · · · · · · · · · · · · · · |             | •                                  |  |  |  |
|-------------|----------------------------|----------------------|-----------------|-------------------|-----------------------------------------|-------------|------------------------------------|--|--|--|
| Run #       | Mode                       | Channel              | Target<br>Power | Measured<br>Power | Test Performed                          | Limit       | Result / Margin                    |  |  |  |
| 1           | BT <b>1Mb/s</b><br>802.11b | 2402MHz<br>2412MHz   | 7dBm<br>16.5dBm | 4.4<br>16.5       |                                         | FCC 15.247  | 48.0dBµV/m @<br>4824.0MHz (-6.0dB) |  |  |  |
| 2           | BT <b>1Mb/s</b><br>802.11b | 2480MHz<br>2462MHz   | 7dBm<br>16.5dBm | 5.3<br>16.6       | Radiated Emissions                      | FCC 15.247  | 48.4dBµV/m @<br>2360.0MHz (-5.6dB) |  |  |  |
| 3           | BT <b>1Mb/s</b><br>802.11g | 2402MHz<br>2412MHz   | 7dBm<br>16.5dBm | 4.4<br>16.3       | 1- 10 GHz                               | FCC 15.247  | 46.0dBµV/m @<br>2281.9MHz (-8.0dB) |  |  |  |
| 4           | BT <b>1Mb/s</b><br>802.11g | 2480MHz<br>2462MHz   | 7dBm<br>16.5dBm | 5.3<br>16.9       |                                         | FCC 15.247  | 46.6dBµV/m @<br>2360.0MHz (-7.4dB) |  |  |  |
| WiFi mode f | or the followi             | ng runs base         | d on worst c    | ase mode fro      | om runs 1 through 4                     |             |                                    |  |  |  |
| 5           | BT <b>1Mb/s</b><br>802.11b | 2402MHz<br>2437MHz   | 7dBm<br>16.5dBm | 4.3<br>16.6       | Radiated Emissions                      | FCC 15.247  | 46.8dBµV/m @<br>2282.0MHz (-7.2dB) |  |  |  |
| 6           | BT <b>1Mb/s</b><br>802.11b | 2440MHz<br>2412MHz   | 7dBm<br>16.5dBm | 5.4<br>16.5       | 1- 10 GHz                               | FCC 15.247  | 49.3dBµV/m @<br>2320.0MHz (-4.7dB) |  |  |  |
| 7           | BT <b>1Mb/s</b><br>802.11b | 2440MHz<br>2462MHz   | 7dBm<br>16.5dBm | 5.4<br>16.6       | Radiated Emissions                      | FCC 15.247  | 47.8dBµV/m @<br>2320.0MHz (-6.2dB) |  |  |  |
| 8           | BT <b>1Mb/s</b><br>802.11b | 2480MHz<br>2437MHz   | 7dBm<br>16.5dBm | 5.1<br>16.6       | 1- 10 GHz                               | FCC 15.247  | 48.9dBµV/m @<br>2360.0MHz (-5.1dB) |  |  |  |
| WiFi mode a | and channel a              | and Bluetootl        | h channel ba    | sed on the w      | orst case mode from runs                | 1 through 8 |                                    |  |  |  |
| 9           | BT <b>3Mb/s</b><br>802.11b | 2440 MHz<br>2412 MHz | 7dBm<br>16.5dBm | 1.4<br>16.5       | Radiated Emissions<br>1- 10 GHz         | FCC 15.247  | 46.4dBµV/m @<br>2383.9MHz (-7.6dB) |  |  |  |
|             | _                          |                      |                 |                   |                                         |             |                                    |  |  |  |



| Client:   | Intel Corporation                | Job Number:      | J80398            |
|-----------|----------------------------------|------------------|-------------------|
| Madal     | 1,100,110,001                    | T-Log Number:    | T80540            |
| Model:    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

WiFi mode - 802.11n 20MHz with both chains active at 16.5dBm per chain, center channel in each 5GHz band. Bluetooth on center channel, 1Mb/s mode

| Run# | Mode                         | Channel            | Target<br>Power   | Measured<br>Power | Test Performed     | Limit      | Result / Margin                      |
|------|------------------------------|--------------------|-------------------|-------------------|--------------------|------------|--------------------------------------|
| 10   | BT <b>1Mb/s</b><br>802.11n20 | 2440MHz<br>5200MHz | 7dBm<br>16.5/16.5 | 5.4<br>16.6/16.7  |                    | FCC 15.247 | 41.9dBµV/m @<br>2280.0MHz (-12.1dB)  |
| 11   | BT <b>1Mb/s</b><br>802.11n20 | 2440MHz<br>5300MHz | 7dBm<br>16.5/16.5 | 5.4<br>16.7/16.5  | Radiated Emissions | FCC 15.247 | 37.2dBµV/m @<br>10600.0MHz (-16.8dB) |
| 12   | BT <b>1Mb/s</b><br>802.11n20 | 2440MHz<br>5600MHz | 7dBm<br>16.5/16.5 | 5.4<br>16.5/16.5  | 1- 15 GHz          | FCC 15.247 | 45.1dBµV/m @<br>11199.8MHz (-8.9dB)  |
| 13   | BT <b>1Mb/s</b><br>802.11n20 | 2440MHz<br>5785MHz | 7dBm<br>16.5/16.5 | 5.4<br>16.5/16.7  |                    | FCC 15.247 | 44.7dBµV/m @<br>11570.7MHz (-9.3dB)  |

## Modifications Made During Testing

No modifications were made to the EUT during testing

#### **Deviations From The Standard**

No deviations were made from the requirements of the standard.

#### Notes:

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

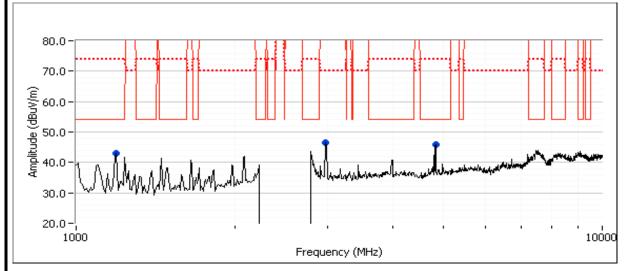
The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100ms period is 4 x 3.125ms = 12.5ms.

The average correction factor is, therefore, 20log(12.5/100) =-18dB

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.


All measurements in this data sheet do not include the average correction factor.

|           | Eliott<br>An ATAS company        | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Madalı    | Intol® Contrinc® Advanced N 6220 | T-Log Number:    | T80540            |
| woder.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

# Run # 1, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B

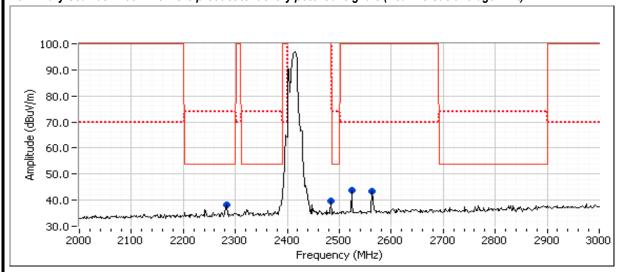
|         | Power Settings   |      |      |  |  |  |  |
|---------|------------------|------|------|--|--|--|--|
|         | Software Setting |      |      |  |  |  |  |
| Chain A | 16.5             | 16.5 | 24.5 |  |  |  |  |
| Chain B | 7.0              | 4.4  | 8.0  |  |  |  |  |

### Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:



Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4822.500  | 46.0   | V   | 54.0   | -8.0    | Peak      | 154     | 1.0    |          |
| 1192.500  | 42.9   | V   | 54.0   | -11.1   | Peak      | 82      | 1.5    |          |
| 2980.000  | 46.4   | V   | 70.0   | -23.6   | Peak      | 154     | 1.0    |          |


| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 4824.000  | 48.0   | V   | 54.0   | -6.0    | AVG       | 153     | 1.16   |          |
| 4823.900  | 50.8   | V   | 74.0   | -23.2   | PK        | 153     | 1.16   |          |
| 1192.530  | 42.9   | V   | 54.0   | -11.1   | AVG       | 92      | 1.64   |          |
| 1192.550  | 45.6   | V   | 74.0   | -28.4   | PK        | 92      | 1.64   |          |



|           | An ZAZZES company                  |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### Spurious Radiated Emissions, 2 - 3GHz

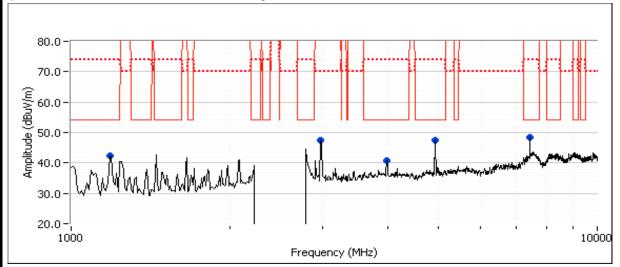
Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments            |
|-----------|--------|-----|--------|---------|-----------|---------|--------|---------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                     |
| 2283.330  | 38.3   | Н   | 54.0   | -15.7   | Peak      | 321     | 1.0    |                     |
| 2483.330  | 39.8   | Н   | 120.0  | -80.2   | Peak      | 4       | 1.0    | In band             |
| 2523.330  | 43.6   | Н   | 70.0   | -26.4   | Peak      | 0       | 1.0    | Non-restricted band |
| 2563.330  | 43.4   | Н   | 70.0   | -26.6   | Peak      | 212     | 1.0    | Non-restricted band |

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2281.900  | 46.0   | Н   | 54.0   | -8.0    | AVG       | 69      | 2.18   | Note 2   |
| 2282.130  | 55.6   | Н   | 74.0   | -18.4   | PK        | 69      | 2.18   | Note 2   |


| Note 1: | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
|         | measurements in a measurement bandwidth of 100kHz.                                                                     |
| Note 2: | Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied            |

| E E       | liott<br>An 必否*company             | ЕМО              | C Test Data       |
|-----------|------------------------------------|------------------|-------------------|
|           | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| woder.    | IIILEI® CEIILIIIO® Auvanced-N 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### Run # 2, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

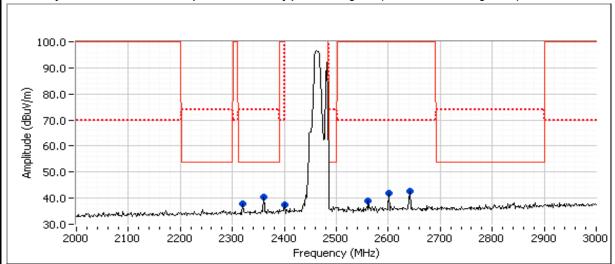
|         | Power Settings |                |                  |  |  |  |  |  |  |
|---------|----------------|----------------|------------------|--|--|--|--|--|--|
|         | Target (dBm)   | Measured (dBm) | Software Setting |  |  |  |  |  |  |
| Chain A | 16.5           | 16.6           | 23.5             |  |  |  |  |  |  |
| Chain B | 7.0            | 5.3            | 8.0              |  |  |  |  |  |  |

## Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:



#### Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 7439.170  | 48.3   | V   | 54.0   | -5.7    | Peak      | 167     | 2.0    |          |
| 4914.170  | 47.5   | V   | 54.0   | -6.5    | Peak      | 209     | 2.5    |          |
| 1183.330  | 42.3   | V   | 54.0   | -11.7   | Peak      | 97      | 2.0    |          |
| 3979.170  | 40.8   | V   | 54.0   | -13.2   | Peak      | 146     | 1.0    |          |
| 2980.000  | 47.4   | V   | 70.0   | -22.6   | Peak      | 153     | 1.0    |          |


| · mai moao | That modern one at one |     |        |         |           |         |        |          |  |  |
|------------|------------------------|-----|--------|---------|-----------|---------|--------|----------|--|--|
| Frequency  | Level                  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |  |  |
| MHz        | dBμV/m                 | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |  |  |
| 4924.000   | 46.8                   | V   | 54.0   | -7.2    | AVG       | 212     | 2.48   |          |  |  |
| 7439.940   | 46.5                   | V   | 54.0   | -7.5    | AVG       | 166     | 2.00   |          |  |  |
| 4923.890   | 50.0                   | V   | 74.0   | -24.0   | PK        | 212     | 2.48   |          |  |  |
| 7440.500   | 53.1                   | V   | 74.0   | -20.9   | PK        | 166     | 2.00   |          |  |  |
|            |                        |     |        |         |           |         |        |          |  |  |



|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)

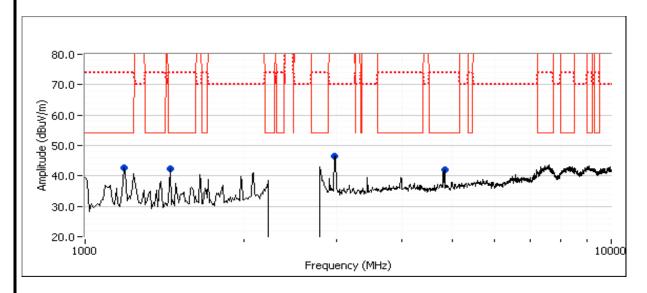


#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments            |
|-----------|--------|-----|--------|---------|-----------|---------|--------|---------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                     |
| 2320.000  | 37.9   | Н   | 54.0   | -16.1   | Peak      | 185     | 1.0    |                     |
| 2360.000  | 40.3   | Н   | 54.0   | -13.7   | Peak      | 338     | 1.0    |                     |
| 2400.000  | 37.4   | Н   | 70.0   | -32.6   | Peak      | 352     | 1.0    | Non-restricted band |
| 2561.670  | 39.1   | Н   | 70.0   | -30.9   | Peak      | 75      | 1.0    | Non-restricted band |
| 2601.670  | 42.1   | Н   | 70.0   | -27.9   | Peak      | 144     | 1.0    | Non-restricted band |
| 2641.670  | 42.5   | Н   | 70.0   | -27.5   | Peak      | 147     | 1.0    | Non-restricted band |

#### Final measurements at 3m

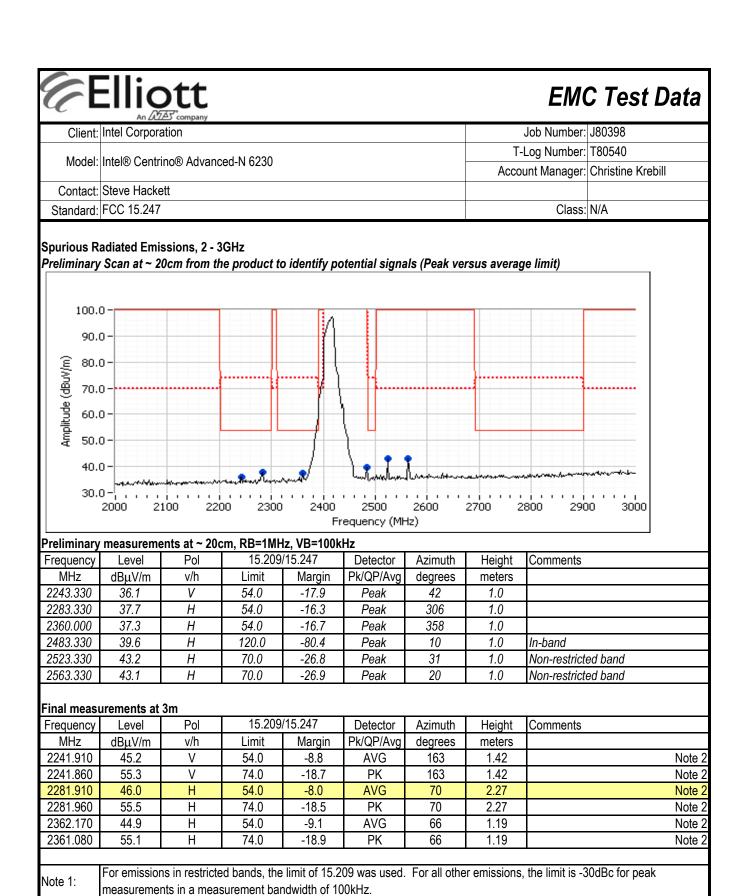
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2320.070  | 46.3   | Н   | 54.0   | -7.7    | AVG       | 345     | 1.25   | Note 2   |
| 2319.830  | 56.6   | Н   | 74.0   | -17.4   | PK        | 345     | 1.25   | Note 2   |
| 2360.020  | 48.4   | Н   | 54.0   | -5.6    | AVG       | 70      | 1.27   | Note 2   |
| 2360.000  | 57.2   | Н   | 74.0   | -16.8   | PK        | 70      | 1.27   | Note 2   |


Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

|           | Elliott<br>An AZES company         | EMO              | C Test Data       |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIILEI® CEIILIIIO® Advanced-N 0230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

Run # 3, Rainbow Peak 2x2: 1-10GHz, 802.11g @ 2412 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B Spurious Radiated Emi<u>ssions,</u> 1 - 10GHz excluding the allocated band:


|         | _            | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.3           | 31.0             |
| Chain B | 7.0          | 4.4            | 8.0              |



Preliminary Measurements (Peak versus average limit)

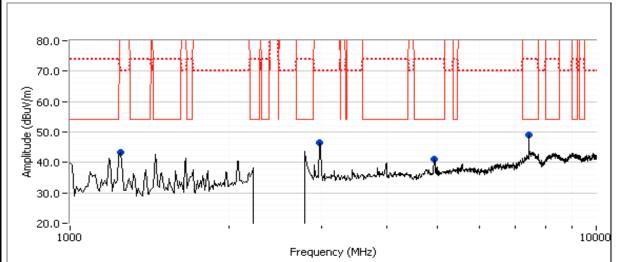
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 1183.330  | 42.8   | V   | 54.0   | -11.2   | Peak      | 102     | 2.0    |          |
| 1449.170  | 42.5   | Н   | 54.0   | -11.5   | Peak      | 138     | 1.5    |          |
| 4822.500  | 42.1   | V   | 54.0   | -11.9   | Peak      | 283     | 2.0    |          |
| 2980.000  | 46.4   | V   | 70.0   | -23.6   | Peak      | 153     | 1.0    |          |

| Frequency | Level  | Pol | 15.209 | 15.209/15.247 |           | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin        | Pk/QP/Avg | degrees | meters |          |
| 1457.590  | 43.2   | Н   | 54.0   | -10.8         | AVG       | 132     | 1.33   |          |
| 1457.600  | 45.4   | Н   | 74.0   | -28.6         | PK        | 132     | 1.33   |          |
| 1192.560  | 42.5   | V   | 54.0   | -11.5         | AVG       | 89      | 1.99   |          |
| 1192.600  | 44.8   | V   | 74.0   | -29.2         | PK        | 89      | 1.99   |          |
| 4823.900  | 40.7   | V   | 54.0   | -13.3         | AVG       | 153     | 1.18   |          |
| 4826.970  | 52.1   | V   | 74.0   | -21.9         | PK        | 153     | 1.18   |          |
| 4020.310  | JZ. I  | V   | 74.0   | -21.3         | 110       | 100     | 1.10   | 1        |



Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 2:




| Client:   | Intel Corporation                  | Job Number:      | J80398            |
|-----------|------------------------------------|------------------|-------------------|
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 4, Rainbow Peak 2x2: 1-10GHz, 802.11g @ 2462 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.9           | 29.5             |
| Chain B | 7.0          | 5.3            | 8.0              |

### Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

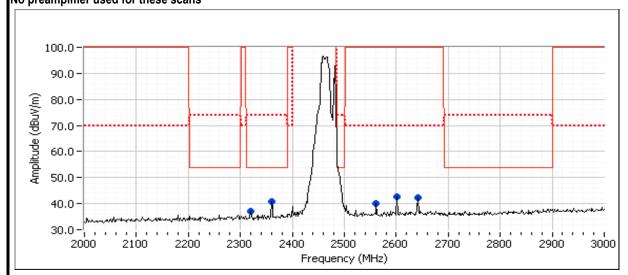


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 7439.170  | 49.2   | V   | 54.0   | -4.8    | Peak      | 174     | 1.5    |          |
| 4923.330  | 41.1   | V   | 54.0   | -12.9   | Peak      | 181     | 2.5    |          |
| 2980.000  | 46.6   | V   | 70.0   | -23.4   | Peak      | 160     | 1.0    |          |
| 1247.500  | 43.4   | Н   | 70.0   | -26.6   | Peak      | 152     | 1.5    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | 15.209/15.247 |           | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin        | Pk/QP/Avg | degrees | meters |          |
| 7440.020  | 45.8   | V   | 54.0   | -8.2          | AVG       | 178     | 1.52   |          |
| 7439.570  | 52.7   | V   | 74.0   | -21.3         | PK        | 178     | 1.52   |          |


Note: 7440MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurious measurements.



|           | An ZAZES company                    |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Woder.    | IIILEI® Ceritiiio® Advanceu-iv 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

#### Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

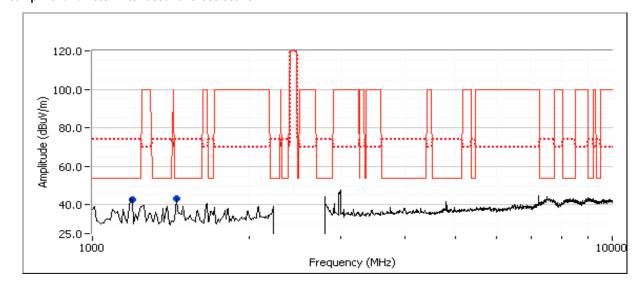
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments            |
|-----------|--------|-----|--------|---------|-----------|---------|--------|---------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                     |
| 2320.000  | 37.2   | Н   | 54.0   | -16.8   | Peak      | 317     | 1.0    |                     |
| 2360.000  | 40.7   | Н   | 54.0   | -13.3   | Peak      | 347     | 1.0    |                     |
| 2561.670  | 39.9   | Н   | 70.0   | -30.1   | Peak      | 205     | 1.0    | Non-restricted band |
| 2601.670  | 42.6   | Н   | 70.0   | -27.4   | Peak      | 144     | 1.0    | Non-restricted band |
| 2641.670  | 42.4   | Н   | 70.0   | -27.6   | Peak      | 173     | 1.0    | Non-restricted band |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2324.470  | 44.5   | Н   | 54.0   | -9.5    | AVG       | 236     | 1.0    |          |
| 2360.040  | 46.6   | Н   | 54.0   | -7.4    | AVG       | 326     | 1.0    |          |
| 2323.600  | 57.6   | Н   | 74.0   | -16.4   | PK        | 236     | 1.0    |          |
| 2359.450  | 56.2   | Н   | 74.0   | -17.8   | PK        | 326     | 1.0    |          |

| Note 1: | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
| note 1. | measurements in a measurement bandwidth of 100kHz.                                                                     |

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied


Note 3: Signal is present when Bluetooth is disabled (powered off)

|           | Elliott<br>An ATAS company       | EM               | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Madalı    | Intel® Contrine® Advanced N 6220 | T-Log Number:    | T80540            |
| Model.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

### Run # 5, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic Rate @ 2402 MHz Chain B

|         | Power Settings                               |      |      |  |  |  |  |  |  |
|---------|----------------------------------------------|------|------|--|--|--|--|--|--|
|         | Target (dBm) Measured (dBm) Software Setting |      |      |  |  |  |  |  |  |
| Chain A | 16.5                                         | 16.6 | 23.5 |  |  |  |  |  |  |
| Chain B | 7.0                                          | 4.3  | 8.0  |  |  |  |  |  |  |

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band: Preamplifier and notch filter used for these scans

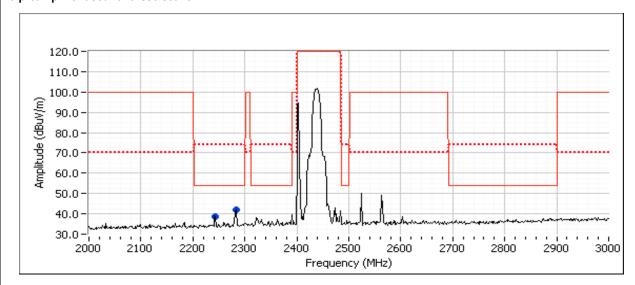


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 1457.620  | 43.2   | Н   | 54.0   | -10.8   | Peak      | 130     | 1.5    |          |
| 1199.820  | 42.6   | V   | 54.0   | -11.4   | Peak      | 96      | 2.0    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 1200.140  | 40.1   | V   | 54.0   | -13.9   | AVG       | 100     | 2.0    |          |
| 1457.570  | 43.0   | Н   | 54.0   | -11.0   | AVG       | 127     | 1.4    |          |
| 1199.950  | 44.7   | V   | 74.0   | -29.3   | PK        | 100     | 2.0    |          |
| 1457.490  | 45.1   | Н   | 74.0   | -28.9   | PK        | 127     | 1.4    |          |


Note: 4804MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurious measurements.



|           | An Z/Z/E3 company                   |                  |                   |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit) No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2283.330  | 41.8   | V   | 54.0   | -12.2   | Peak      | 180     | 1.0    | 5        |
| 2243.330  | 38.7   | V   | 54.0   | -15.3   | Peak      | 180     | 1.0    | 5        |

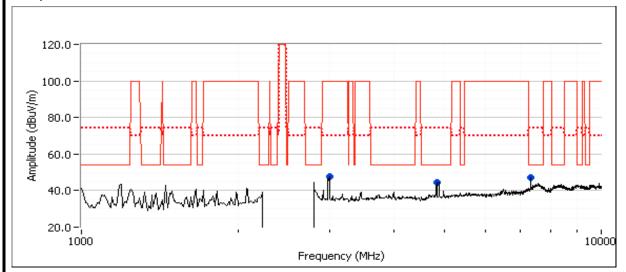
#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 2281.990  | 46.8   | Н   | 54.0   | -7.2    | AVG       | 70      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2282.150  | 56.7   | Н   | 74.0   | -17.3   | PK        | 70      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2242.060  | 46.7   | Н   | 54.0   | -7.3    | AVG       | 68      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2241.580  | 56.3   | Н   | 74.0   | -17.7   | PK        | 68      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2282.000  | 45.9   | V   | 54.0   | -8.1    | AVG       | 105     | 1.2    | RB 1 MHz;VB 10 Hz;Pk |
| 2282.210  | 56.1   | V   | 74.0   | -17.9   | PK        | 105     | 1.2    | RB 1 MHz;VB 3 MHz;Pk |

| Note 1  | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
| Note 1: | measurements in a measurement bandwidth of 100kHz.                                                                     |

Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied Note 2:

Signal is present when Bluetooth is disabled (powered off) Note 3:


|           | Elliott<br>An ATAS company       | EM               | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Madalı    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
| Model.    | Intel® Centino® Advanced-N 0250  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

### Run # 6, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT Basic Rate @ 2440 MHz Chain B

|         |                                              | Power Settings |      |  |  |  |  |  |  |
|---------|----------------------------------------------|----------------|------|--|--|--|--|--|--|
|         | Target (dBm) Measured (dBm) Software Setting |                |      |  |  |  |  |  |  |
| Chain A | 16.5                                         | 16.5           | 23.5 |  |  |  |  |  |  |
| Chain B | 7.0                                          | 5.4            | 8.0  |  |  |  |  |  |  |

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preamplifier and notch filter used for these scans

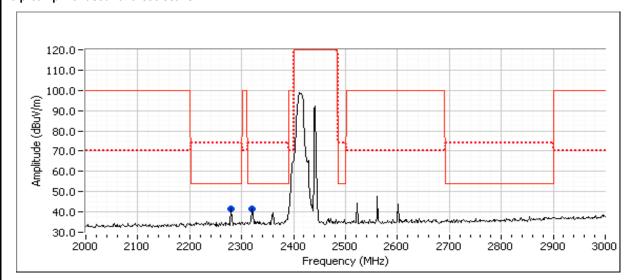


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2998.330  | 47.9   | V   | 70.0   | -22.1   | Peak      | 141     | 1.0    |          |
| 4823.990  | 44.6   | V   | 54.0   | -9.4    | Peak      | 149     | 1.0    |          |
| 7316.670  | 47.1   | V   | 54.0   | -6.9    | Peak      | 165     | 1.9    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 4823.980  | 44.9   | V   | 54.0   | -9.1    | AVG       | 149     | 1.3    | RB 1 MHz;VB 10 Hz;Pk |
| 4823.900  | 48.4   | V   | 74.0   | -25.6   | PK        | 149     | 1.3    | RB 1 MHz;VB 3 MHz;Pk |
| 7319.940  | 43.6   | V   | 54.0   | -10.4   | AVG       | 170     | 2.0    | RB 1 MHz;VB 10 Hz;Pk |
| 7319.350  | 51.4   | V   | 74.0   | -22.6   | PK        | 170     | 2.0    | RB 1 MHz;VB 3 MHz;Pk |


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.



|           | An ZiZE3 company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

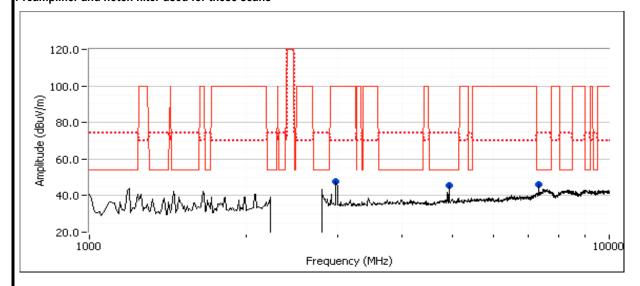
| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2320.000  | 40.1   | -   | 54.0   | -13.9   | Peak      | 180     | 1.0    |          |
| 2280.000  | 39.0   | -   | 54.0   | -15.0   | Peak      | 180     | 1.0    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 2319.970  | 49.3   | Н   | 54.0   | -4.7    | AVG       | 70      | 1.2    | RB 1 MHz;VB 10 Hz;Pk |
| 2319.990  | 57.3   | Н   | 74.0   | -16.7   | PK        | 70      | 1.2    | RB 1 MHz;VB 3 MHz;Pk |
| 2279.960  | 46.8   | Н   | 54.0   | -7.2    | AVG       | 70      | 1.9    | RB 1 MHz;VB 10 Hz;Pk |
| 2279.780  | 55.9   | Н   | 74.0   | -18.1   | PK        | 70      | 1.9    | RB 1 MHz;VB 3 MHz;Pk |
| 2319.980  | 46.7   | V   | 54.0   | -7.3    | AVG       | 104     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2319.800  | 56.2   | V   | 74.0   | -17.8   | PK        | 104     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |

| Note 1: | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
| Note 1. | measurements in a measurement bandwidth of 100kHz.                                                                     |

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied


Note 3: Signal is present when Bluetooth is disabled (powered off)

|           | Elliott<br>An AZAS company        | EM               | C Test Data       |
|-----------|-----------------------------------|------------------|-------------------|
|           | Intel Corporation                 | Job Number:      | J80398            |
| Madalı    | Intel® Centrino® Advanced-N 6230  | T-Log Number:    | T80540            |
| Model.    | IIILENS CENTINOS Advanced-IN 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                     |                  |                   |
| Standard: | FCC 15.247                        | Class:           | N/A               |

#### Run # 7, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2462 MHz Chain A, BT Basic Rate @ 2440 MHz Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.6           | 23.5             |
| Chain B | 7.0          | 5.4            | 8.0              |

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band: Preamplifier and notch filter used for these scans

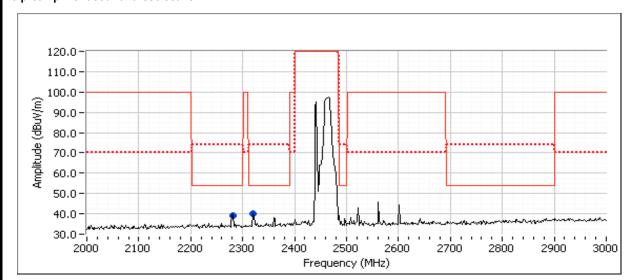


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | 15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|--------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin | Pk/QP/Avg | degrees | meters |          |
| 2980.000  | 47.7   | V   | 70.0   | -22.3  | Peak      | 141     | 1.0    |          |
| 4923.860  | 45.3   | V   | 54.0   | -8.7   | Peak      | 166     | 1.6    |          |
| 7322.500  | 46.3   | V   | 54.0   | -7.7   | Peak      | 182     | 1.6    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 4923.980  | 47.6   | V   | 54.0   | -6.4    | AVG       | 166     | 1.7    | RB 1 MHz;VB 10 Hz;Pk |
| 4923.940  | 50.3   | V   | 74.0   | -23.7   | PK        | 166     | 1.7    | RB 1 MHz;VB 3 MHz;Pk |
| 7320.050  | 41.2   | V   | 54.0   | -12.8   | AVG       | 201     | 2.0    | RB 1 MHz;VB 10 Hz;Pk |
| 7320.180  | 49.5   | V   | 74.0   | -24.5   | PK        | 201     | 2.0    | RB 1 MHz;VB 3 MHz;Pk |


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.



|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIIIel® Cellillio® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2320.000  | 40.1   | Н   | 54.0   | -13.9   | Peak      | 180     | 1.0    |          |
| 2288.500  | 39.0   | Н   | 54.0   | -15.0   | Peak      | 180     | 1.0    |          |

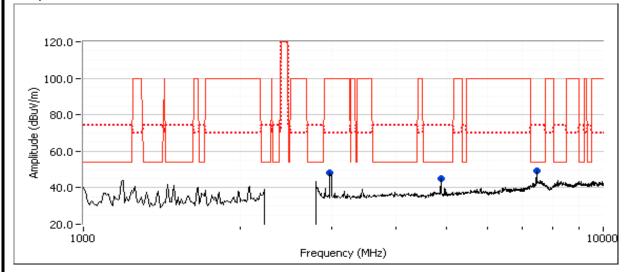
#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2319.980  | 47.8   | Н   | 54.0   | -6.2    | AVG       | 72      | 1.2    |          |
| 2279.930  | 46.7   | Н   | 54.0   | -7.3    | AVG       | 69      | 1.0    |          |
| 2320.040  | 45.8   | V   | 54.0   | -8.2    | AVG       | 100     | 1.0    |          |
| 2279.930  | 45.2   | V   | 54.0   | -8.8    | AVG       | 101     | 1.0    |          |
| 2320.230  | 57.3   | Н   | 74.0   | -16.7   | PK        | 72      | 1.2    |          |
| 2284.230  | 56.0   | Н   | 74.0   | -18.0   | PK        | 69      | 1.0    |          |
| 2324.580  | 55.8   | V   | 74.0   | -18.2   | PK        | 100     | 1.0    |          |
| 2280.470  | 55.3   | V   | 74.0   | -18.7   | PK        | 101     | 1.0    |          |

| Note 1: | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
| note 1. | measurements in a measurement bandwidth of 100kHz.                                                                     |

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 3: Signal is present when Bluetooth is disabled (powered off)


|           | Elliott<br>An AZAS company          | EMO              | C Test Data       |
|-----------|-------------------------------------|------------------|-------------------|
|           | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

### Run # 8, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2437 MHz Chain A, BT Basic Rate @ 2480 MHz Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.6           | 23.5             |
| Chain B | 7.0          | 5.1            | 8.0              |

Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preamplifier and notch filter used for these scans

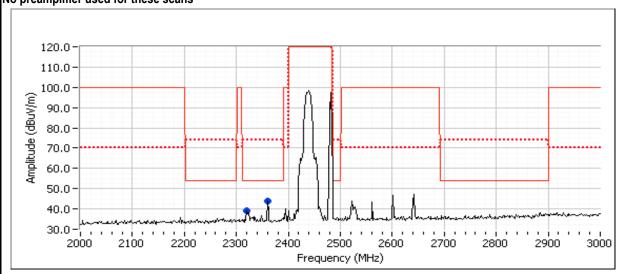


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2980.000  | 48.4   | V   | 70.0   | -21.6   | Peak      | 148     | 1.0    |          |
| 4873.880  | 45.0   | V   | 54.0   | -9.0    | Peak      | 148     | 1.3    |          |
| 7439.170  | 49.5   | V   | 54.0   | -4.5    | Peak      | 166     | 2.2    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 4874.020  | 45.2   | V   | 54.0   | -8.8    | AVG       | 146     | 1.2    | RB 1 MHz;VB 10 Hz;Pk |
| 4874.030  | 49.0   | V   | 74.0   | -25.0   | PK        | 146     | 1.2    | RB 1 MHz;VB 3 MHz;Pk |
| 7440.000  | 44.9   | V   | 54.0   | -9.1    | AVG       | 167     | 1.5    | RB 1 MHz;VB 10 Hz;Pk |
| 7440.270  | 52.2   | V   | 74.0   | -21.8   | PK        | 167     | 1.5    | RB 1 MHz;VB 3 MHz;Pk |


Note: 7320 MHz is directly related to the Bluetooth signal and was observed during the Bluetooth only spurio us measurements.



|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model:    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIIIel® Cellillio® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

#### Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2360.000  | 43.8   | -   | 54.0   | -10.2   | Peak      | 180     | 1.0    |          |
| 2320.000  | 39.2   | -   | 54.0   | -14.8   | Peak      | 180     | 1.0    |          |

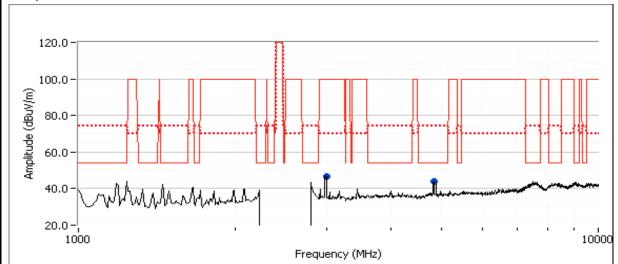
#### Final measurements at 3m

| MHz         dBμV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           2360.020         48.9         H         54.0         -5.1         AVG         328         1.0           2319.980         47.9         H         54.0         -6.1         AVG         69         1.3           2359.980         46.7         V         54.0         -7.3         AVG         107         1.0           2320.040         45.7         V         54.0         -8.3         AVG         104         1.0           2320.230         57.3         H         74.0         -16.7         PK         69         1.3           2360.430         56.7         V         74.0         -17.3         PK         107         1.0 | Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| 2319.980     47.9     H     54.0     -6.1     AVG     69     1.3       2359.980     46.7     V     54.0     -7.3     AVG     107     1.0       2320.040     45.7     V     54.0     -8.3     AVG     104     1.0       2320.230     57.3     H     74.0     -16.7     PK     69     1.3       2360.430     56.7     V     74.0     -17.3     PK     107     1.0                                                                                                                                                                                                                                                                                                                                                                                            | MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2359.980     46.7     V     54.0     -7.3     AVG     107     1.0       2320.040     45.7     V     54.0     -8.3     AVG     104     1.0       2320.230     57.3     H     74.0     -16.7     PK     69     1.3       2360.430     56.7     V     74.0     -17.3     PK     107     1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2360.020  | 48.9   | Н   | 54.0   | -5.1    | AVG       | 328     | 1.0    |          |
| 2320.040     45.7     V     54.0     -8.3     AVG     104     1.0       2320.230     57.3     H     74.0     -16.7     PK     69     1.3       2360.430     56.7     V     74.0     -17.3     PK     107     1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2319.980  | 47.9   | Н   | 54.0   | -6.1    | AVG       | 69      | 1.3    |          |
| 2320.230         57.3         H         74.0         -16.7         PK         69         1.3           2360.430         56.7         V         74.0         -17.3         PK         107         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2359.980  | 46.7   | V   | 54.0   | -7.3    | AVG       | 107     | 1.0    |          |
| 2360.430 56.7 V 74.0 -17.3 PK 107 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2320.040  | 45.7   | V   | 54.0   | -8.3    | AVG       | 104     | 1.0    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2320.230  | 57.3   | Н   | 74.0   | -16.7   | PK        | 69      | 1.3    |          |
| 0000 400 50 0 11 74 0 47 4 50 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2360.430  | 56.7   | V   | 74.0   | -17.3   | PK        | 107     | 1.0    |          |
| 2360.100   56.6   H   74.0   -17.4   PK   328   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2360.100  | 56.6   | Н   | 74.0   | -17.4   | PK        | 328     | 1.0    |          |
| 2324.580 55.6 V 74.0 -18.4 PK 104 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2324.580  | 55.6   | V   | 74.0   | -18.4   | PK        | 104     | 1.0    |          |

| Note 1: | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak |
|---------|------------------------------------------------------------------------------------------------------------------------|
| note 1. | measurements in a measurement bandwidth of 100kHz.                                                                     |

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied

Note 3: Signal is present when Bluetooth is disabled (powered off)


|           | Elliott<br>An AZAS company          | EMO              | C Test Data       |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

### Run # 9, Rainbow Peak 2x2: 1-10GHz, 802.11b @ 2412 MHz Chain A, BT EDR @ 2440 MHz Chain B

|         |              | Power Settings |                  |
|---------|--------------|----------------|------------------|
|         | Target (dBm) | Measured (dBm) | Software Setting |
| Chain A | 16.5         | 16.5           | 23.5             |
| Chain B | 7.0          | 1.4            | 8.0              |

#### Spurious Radiated Emissions, 1 - 10GHz excluding the allocated band:

Preamplifier and notch filter used for these scans

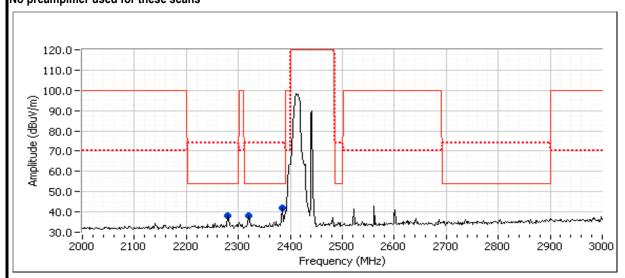


#### Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2998.330  | 46.7   | V   | 70.0   | -23.3   | Peak      | 130     | 1.0    |          |
| 4823.990  | 44.0   | V   | 54.0   | -10.0   | Peak      | 134     | 1.6    |          |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 4824.030  | 43.1   | V   | 54.0   | -10.9   | AVG       | 131     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 4823.990  | 47.7   | V   | 74.0   | -26.3   | PK        | 131     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |


Note: 4924 MHz is directly related to the WiFi (802.11b) signal and was observed during the 802.11b mode spurious m easurements.



|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madal     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to identify potential signals (Peak versus average limit)
No preamplifier used for these scans



#### Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

| Frequency | Level  | Pol | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|--------|---------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit  | Margin  | Pk/QP/Avg | degrees | meters |          |
| 2385.000  | 42.2   | V   | 54.0   | -11.8   | Peak      | 192     | 1.0    |          |
| 2320.000  | 38.2   | V   | 54.0   | -15.8   | Peak      | 192     | 1.0    |          |
| 2280.000  | 38.2   | V   | 54.0   | -15.8   | Peak      | 192     | 1.0    |          |

#### Final measurements at 3m

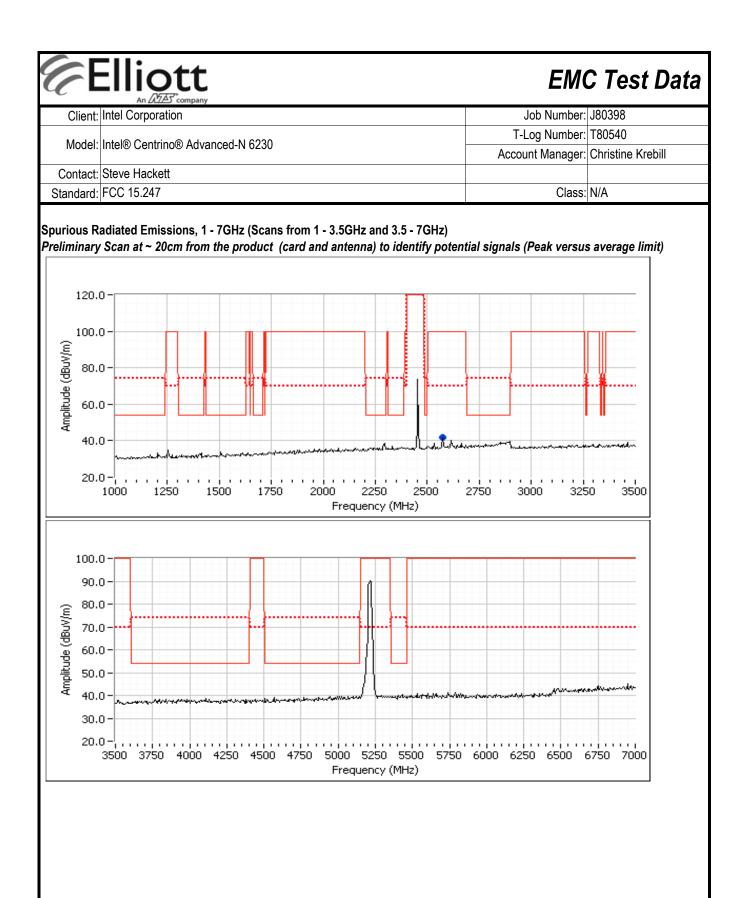
| · ····a· ·····cac· | ar orriorito at | <b>V</b> |        |         |           |         |        |                      |
|--------------------|-----------------|----------|--------|---------|-----------|---------|--------|----------------------|
| Frequency          | Level           | Pol      | 15.209 | /15.247 | Detector  | Azimuth | Height | Comments             |
| MHz                | dBμV/m          | v/h      | Limit  | Margin  | Pk/QP/Avg | degrees | meters |                      |
| 2383.860           | 46.4            | Н        | 54.0   | -7.6    | AVG       | 350     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2384.460           | 59.4            | Н        | 74.0   | -14.6   | PK        | 350     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2319.970           | 46.4            | Н        | 54.0   | -7.6    | AVG       | 3       | 1.1    | RB 1 MHz;VB 10 Hz;Pk |
| 2320.330           | 56.0            | Н        | 74.0   | -18.0   | PK        | 3       | 1.1    | RB 1 MHz;VB 3 MHz;Pk |
| 2279.900           | 44.6            | Н        | 54.0   | -9.4    | AVG       | 68      | 1.0    | RB 1 MHz;VB 10 Hz;Pk |
| 2279.060           | 55.4            | Н        | 74.0   | -18.6   | PK        | 68      | 1.0    | RB 1 MHz;VB 3 MHz;Pk |
| 2384.170           | 45.9            | V        | 54.0   | -8.1    | AVG       | 205     | 1.5    | RB 1 MHz;VB 10 Hz;Pk |
| 2386.600           | 59.7            | V        | 74.0   | -14.3   | PK        | 205     | 1.5    | RB 1 MHz;VB 3 MHz;Pk |

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Signal is only present when Bluetooth is enabled, average correction for hopping occupancy could be applied Note 3: Signal is present when Bluetooth is disabled (powered off)

|           | Elliott<br>An ATAS company       | EM               | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Madalı    | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
| Model.    | Intel® Centino® Advanced-N 0250  | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

## Run # 10, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5200 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B


|           |              | Power Settings |                  |
|-----------|--------------|----------------|------------------|
|           | Target (dBm) | Measured (dBm) | Software Setting |
| WiFi A    | 16.5         | 16.6           | 31.5             |
| WiFi B    | 16.5         | 16.7           | 30.5             |
| Bluetooth | 7.0          | 5.4            | 8.0              |

Spurious Radiated Emissions, 7 - 15GHz: Preamplifier and high pass filter used for these scans

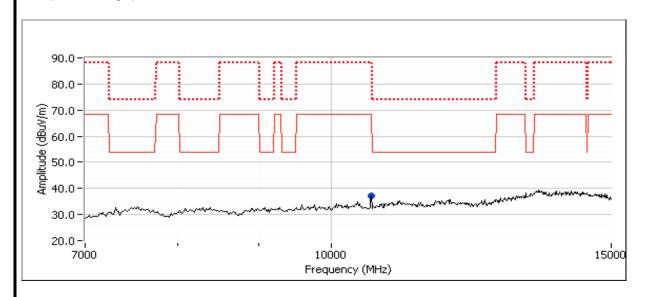


Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209/15 | 5.247/15E | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|-----------|-----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit     | Margin    | Pk/QP/Avg | degrees | meters |          |
| 10400.000 | 39.4   | V   | 68.3      | -28.9     | Peak      | 198     | 1.3    |          |



| Client:                 | Intel Corpora                                                                                                                                                             | ition      |           |         |                     |         |        | Job Number: | J80398          |         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------|---------------------|---------|--------|-------------|-----------------|---------|
|                         |                                                                                                                                                                           |            |           |         |                     |         | T-     | Log Number: | T80540          |         |
| Model:                  | Intel® Centri                                                                                                                                                             | no® Advano | ed-N 6230 |         |                     |         |        |             | Christine Krebi | <br>.ll |
| Contact:                | Steve Hacke                                                                                                                                                               | tt         |           |         |                     |         |        |             |                 |         |
| Standard:               | FCC 15.247                                                                                                                                                                |            |           |         |                     |         |        | Class:      | N/A             |         |
|                         | adiated Emis                                                                                                                                                              |            | ·         |         | 5GHz and 3.5<br>:Hz | - 7GHz) |        |             |                 |         |
| Frequency               | Level                                                                                                                                                                     | Pol        | 15.209    | /15.247 | Detector            | Azimuth | Height | Comments    |                 |         |
| MHz                     | dBμV/m                                                                                                                                                                    | v/h        | Limit     | Margin  | Pk/QP/Avg           | degrees | meters |             |                 |         |
| 2560.000                | 40.1                                                                                                                                                                      | V          | 100.0     | -59.9   | Peak                | 360     | 1.0    |             |                 |         |
| inal measu<br>Frequency | urements at                                                                                                                                                               | 3m<br>Pol  | 15.209    | /15.247 | Detector            | Azimuth | Height | Comments    |                 |         |
| MHz                     | dBμV/m                                                                                                                                                                    | v/h        | Limit     | Margin  | Pk/QP/Avg           | degrees | meters |             |                 |         |
| 2280.000                | 41.9                                                                                                                                                                      | Н          | 54.0      | -12.1   | AVG                 | 0       | 1.2    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2320.000                | 41.7                                                                                                                                                                      | V          | 54.0      | -12.3   | AVG                 | 77      | 1.3    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2360.000                | 39.6                                                                                                                                                                      | V          | 54.0      | -14.4   | AVG                 | 77      | 1.2    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2320.000                | 39.4                                                                                                                                                                      | Н          | 54.0      | -14.6   | AVG                 | 206     | 1.3    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2360.000                | 38.1                                                                                                                                                                      | Н          | 54.0      | -15.9   | AVG                 | 39      | 1.2    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2280.000                | 37.8                                                                                                                                                                      | V          | 54.0      | -16.2   | AVG                 | 140     | 1.0    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| 2320.000                | 55.0                                                                                                                                                                      | V          | 74.0      | -19.0   | PK                  | 77      | 1.3    | RB 1 MHz;V  | /B 3 MHz;Pk     | No      |
| 2560.000                | 50.6                                                                                                                                                                      | Н          | 70.0      | -19.4   | PK                  | 168     | 1.4    | RB 1 MHz;V  | /B 3 MHz;Pk     | No      |
| 2560.000                | 46.9                                                                                                                                                                      | V          | 70.0      | -23.1   | PK                  | 216     | 1.9    |             | /B 3 MHz;Pk     | No      |
| 2280.000                | 46.8                                                                                                                                                                      | Н          | 74.0      | -27.2   | PK                  | 0       | 1.2    |             | /B 3 MHz;Pk     | No      |
| 2320.000                | 46.2                                                                                                                                                                      | Н          | 74.0      | -27.8   | PK                  | 206     | 1.3    |             | /B 3 MHz;Pk     | No      |
| 2360.000                | 45.4                                                                                                                                                                      | V          | 74.0      | -28.6   | PK                  | 77      | 1.2    |             | /B 3 MHz;Pk     | No      |
| 2360.000                | 44.3                                                                                                                                                                      | Н          | 74.0      | -29.7   | PK                  | 39      | 1.2    |             | /B 3 MHz;Pk     | No      |
| 2280.000                | 44.0                                                                                                                                                                      | V          | 74.0      | -30.0   | PK                  | 140     | 1.0    | RB 1 MHz;V  | /B 3 MHz;Pk     | No      |
| 2560.000                | 46.3                                                                                                                                                                      | Н          | 100.0     | -53.7   | AVG                 | 168     | 1.4    | RB 1 MHz;V  |                 | No      |
| 2560.000                | 40.5                                                                                                                                                                      | V          | 100.0     | -59.5   | AVG                 | 216     | 1.9    | RB 1 MHz;V  | /B 10 Hz;Pk     | No      |
| ote 1:                  | For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz. |            |           |         |                     |         |        |             |                 |         |


|           | Elliott<br>An AZAS company          | EMO              | C Test Data       |
|-----------|-------------------------------------|------------------|-------------------|
|           | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| Model.    | III(el® Cell(III)0® Advanced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

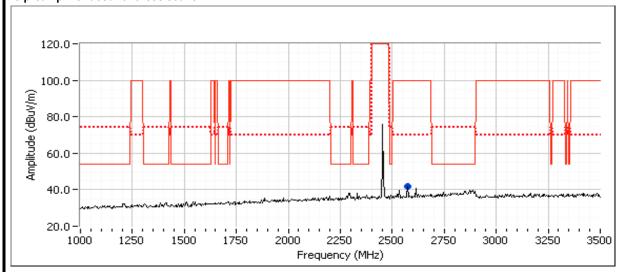
# Run # 11, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5300 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

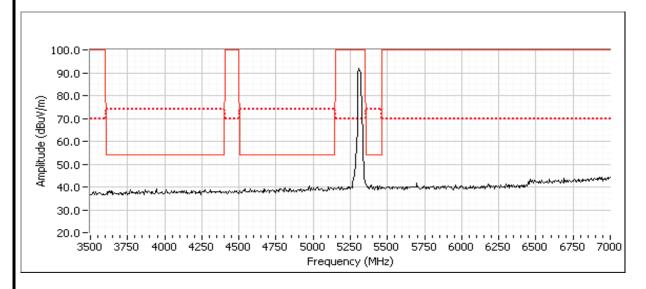
|           |              | Power Settings |                  |
|-----------|--------------|----------------|------------------|
|           | Target (dBm) | Measured (dBm) | Software Setting |
| WiFi A    | 16.5         | 16.7           | 32.0             |
| WiFi B    | 16.5         | 16.5           | 31.0             |
| Bluetooth | 7.0          | 5.4            | 8.0              |

Spurious Radiated Emissions, 7 - 15GHz:

Preamplifier and high pass filter used for these scans




Preliminary Measurements (Peak versus average limit)


| Frequency | Level  | Pol | 15.209/1 | 5.247/15E | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|----------|-----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit    | Margin    | Pk/QP/Avg | degrees | meters |          |
| 10600.000 | 37.2   | V   | 54.0     | -16.8     | Peak      | 182     | 1.0    |          |

|           | Elliott<br>An AZAS company       | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intel® Contring® Advanced N 6220 | T-Log Number:    | T80540            |
| Model.    | Intel® Centrino® Advanced-N 6230 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15.247                       | Class:           | N/A               |

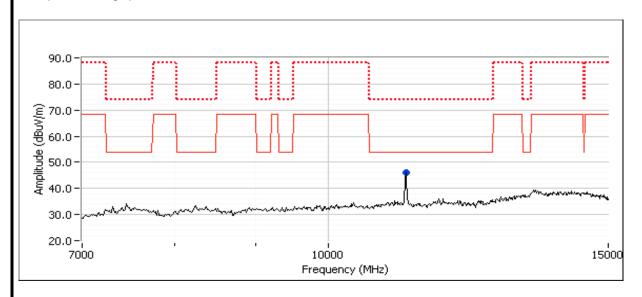
Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)
No preamplifier used for these scans





Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.


|           | Elliott<br>An AZAS company       | EMO              | C Test Data       |
|-----------|----------------------------------|------------------|-------------------|
|           | Intel Corporation                | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230 | T-Log Number:    | T80540            |
| Model.    | Intel® Centino® Advanced-IV 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                    |                  |                   |
| Standard: | FCC 15 2/17                      | Class:           | N/Δ               |

## Run # 12, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5600 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

|           | Power Settings |                |                  |  |  |  |  |  |
|-----------|----------------|----------------|------------------|--|--|--|--|--|
|           | Target (dBm)   | Measured (dBm) | Software Setting |  |  |  |  |  |
| WiFi A    | 16.5           | 16.5           | 34.0             |  |  |  |  |  |
| WiFi B    | 16.5           | 16.5           | 34.0             |  |  |  |  |  |
| Bluetooth | 7.0            | 5.4            | 8.0              |  |  |  |  |  |

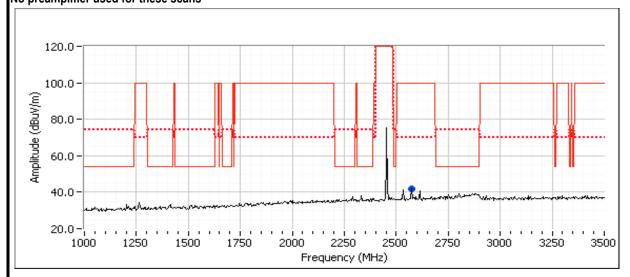
Spurious Radiated Emissions, 7 - 15GHz:

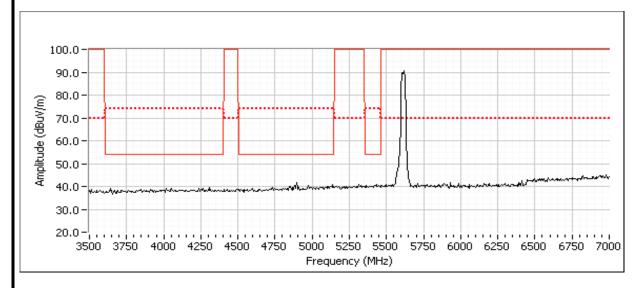
Preamplifier and high pass filter used for these scans



Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209/1 | 5.247/15E | Detector  | Azimuth | Height | Comments |
|-----------|--------|-----|----------|-----------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit    | Margin    | Pk/QP/Avg | degrees | meters |          |
| 11200.340 | 46.0   | V   | 54.0     | -8.0      | Peak      | 188     | 1.0    |          |


| Frequency | Level  | Pol | 15.209/15.247/15E |        | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------------------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit             | Margin | Pk/QP/Avg | degrees | meters |                      |
| 11199.810 | 45.1   | V   | 54.0              | -8.9   | AVG       | 157     | 1.9    | RB 1 MHz;VB 10 Hz;Pk |
| 11200.110 | 61.2   | V   | 74.0              | -12.8  | PK        | 157     | 1.9    | RB 1 MHz;VB 3 MHz;Pk |


|           | Elliott<br>An AZES company          | EMO              | C Test Data       |
|-----------|-------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                   | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230    | T-Log Number:    | T80540            |
| wodei.    | IIIIel® Celitiilo® Advaliced-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                       |                  |                   |
| Standard: | FCC 15.247                          | Class:           | N/A               |

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)

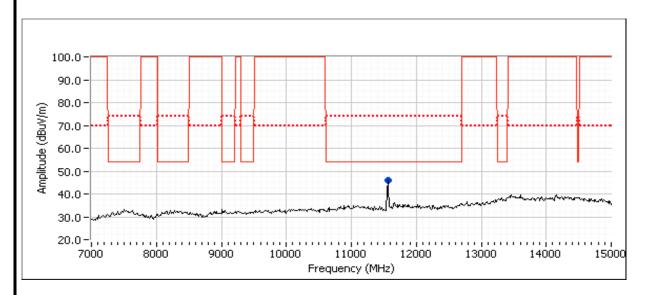
No preamplifier used for these scans





Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.

|         | Eliott<br>An DZES company        |
|---------|----------------------------------|
| Client: | Intel Corporation                |
| Model:  | Intel® Centrino® Advanced-N 6230 |


|           | An ZAZES company                   |                  |                   |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Madali    | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| Model.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

### Run # 13, Rainbow Peak 2x2: 1-15GHz, 802.11n20 @ 5785 MHz Chain A and B, BT Basic Rate @ 2440 MHz Chain B

|           | Power Settings |                |                  |  |  |  |  |  |
|-----------|----------------|----------------|------------------|--|--|--|--|--|
|           | Target (dBm)   | Measured (dBm) | Software Setting |  |  |  |  |  |
| WiFi A    | 16.5           | 16.5           | 35.0             |  |  |  |  |  |
| WiFi B    | 16.5           | 16.7           | 34.5             |  |  |  |  |  |
| Bluetooth | 7.0            | 5.4            | 8.0              |  |  |  |  |  |

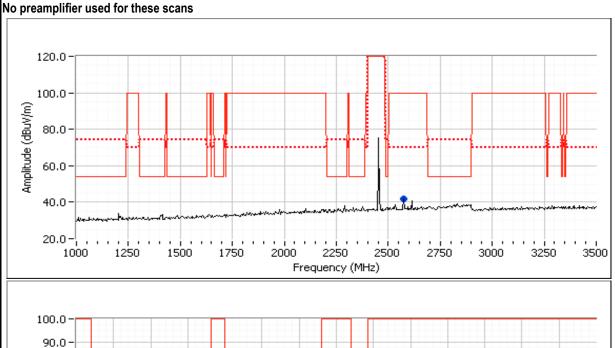
Spurious Radiated Emissions, 7 - 15GHz:

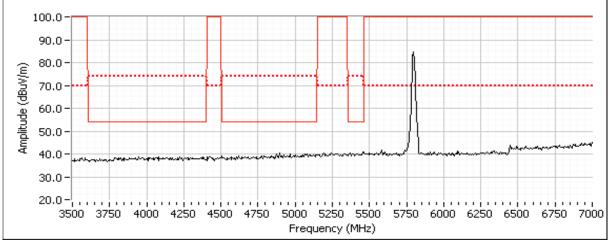
Preamplifier and high pass filter used for these scans



Preliminary Measurements (Peak versus average limit)

| Frequency | Level  | Pol | 15.209/1 | 15.209/15.247/15E |           | Azimuth | Height | Comments |
|-----------|--------|-----|----------|-------------------|-----------|---------|--------|----------|
| MHz       | dBμV/m | v/h | Limit    | Margin            | Pk/QP/Avg | degrees | meters |          |
| 11570.410 | 45.9   | V   | 54.0     | -8.1              | Peak      | 187     | 1.0    |          |


| Frequency | Level  | Pol | 15.209/15.247/15E |        | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|-------------------|--------|-----------|---------|--------|----------------------|
| MHz       | dBμV/m | v/h | Limit             | Margin | Pk/QP/Avg | degrees | meters |                      |
| 11570.680 | 44.7   | V   | 54.0              | -9.3   | AVG       | 192     | 1.4    | RB 1 MHz;VB 10 Hz;Pk |
| 11570.280 | 57.8   | V   | 74.0              | -16.2  | PK        | 192     | 1.4    | RB 1 MHz;VB 3 MHz;Pk |


|           | Elliott<br>An ATAS company         | EMO              | C Test Data       |
|-----------|------------------------------------|------------------|-------------------|
| Client:   | Intel Corporation                  | Job Number:      | J80398            |
| Model     | Intel® Centrino® Advanced-N 6230   | T-Log Number:    | T80540            |
| wodei.    | IIItel® Certtillo® Advanceu-N 0250 | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett                      |                  |                   |
| Standard: | FCC 15.247                         | Class:           | N/A               |

Spurious Radiated Emissions, 1 - 7GHz (Scans from 1 - 3.5GHz and 3.5 - 7GHz)

Preliminary Scan at ~ 20cm from the product (card and antenna) to identify potential signals (Peak versus average limit)

No preamplifier used for these scans





Note 1: The emissions observed above the noise floor are the same as those observed with the Wi-Fi radio at 5200 MHz (Run 10) and are unaffected when the Wi-Fi radio is disabled (powered off). Additional measurements were therefore not necessary.