

EMC Test Report

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel® Centrino® Advanced-N 6205

IC CERTIFICATION #: 1000M-622ANH

1000M-62205ANHU

FCC ID: PD962205ANH

PD962205ANHU

APPLICANT: Intel Corporation

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5

REPORT DATE: August 31, 2010

FINAL TEST DATES: August 2, 3, 4, 5, 6, 9, 10, 12, 13, 26 and 27,

2010

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Elliott Laboratories.

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80360 Page 1 of 21

Test Report Report Date: August 31, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	08-31-2010	First release	

File: R80360 Page 2 of 21

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz).	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS.	7
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	18
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	19
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	2

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Advanced-N 6205, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R80360 Page 4 of 21

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Advanced-N 6205 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Advanced-N 6205 and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80360 Page 5 of 21

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	> 10.33 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 17.1dBm 802.11g: 20.7dBm n 20MHz: 15.6dBm n 40MHz:15.2dBm EIRP = 0.248 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-7.5 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	802.11bg modes < - 20dBc 802.11n modes < - 30dBc	< -20dBc < -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.3dBµV/m @ 2389.9MHz	15.207 in restricted bands, all others <-30dBc Note 2	Complies (-0.7dB)

Note 1: EIRP calculated using antenna gain of 3.2 dBi for the highest EIRP system.

Note 2: Limit of -30dBc used because the power for the 802.11n modes was measured using the UNII test procedure (maximum power averaged over a transmission burst).

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth		>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a: 15.6dBm n 20MHz: 15.6dBm n 40MHz: 20.8dBm EIRP = 0.380 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-8.5 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	802.11n 40MHz < -20dBc n20 and 802.11a < -30dBc	< -20dBc < -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	47.1dBμV/m @ 11649.9MHz	15.207 in restricted bands, all others <-30dBc Note 2	Complies (-6.9dB)

Note 1: EIRP calculated using antenna gain of 5 dBi.

Note 2: Limit of -30dBc used because the power for one or more modes was measured using the UNII test procedure (maximum power averaged over a transmission burst).

File: R80360 Page 6 of 21

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	Non standard and typically integral to host system	Unique or integral	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	34.9dBμV/m @ 199.83MHz	Refer to page 19	Complies (-8.6dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	33.2dBμV @ 13.426MHz	Refer to page 18	Complies (-16.8dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual (page 8).	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	User Manual (page 11).	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Antenna is intended to be integrated into the host system.	Statement for products with detachable antenna	N/A
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 15.4MHz 802.11a/g: 17.0MHz n 20MHz: 18.4 MHz n 40MHz 36.9MHz:	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field	dBμV/m	25 to 1000 MHz	± 3.6 dB
strength)	αυμ ν/ΙΙΙ	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

File: R80360 Page 7 of 21

EQUIPMENT UNDER TEST (EUT) DETAILS GENERAL

The Intel Corporation model Intel® Centrino® Advanced-N 6205 is a PCIe Half Mini Card form factor IEEE 802.11a/b/g/n wireless network adapter that operates in both the 2.4 GHz and 5.0 GHz spectra. The card supports 2x2 MIMO for 802.11n modes in both 20MHz and 40MHz channels. In legacy modes 1x2 operation is supported.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card.

The card is being certified with both full modular approval and limited modular approval. The two versions are electrically identical using the same hardware. The full modular version is intended for factory installation only by the oem (FCC ID:PD962205ANH; IC:1000M-62205ANH). The limited modular version is intended to allow the oem to permit user installation when the host system is provided with a bios locking feature that prevents unauthorized installation (FCC ID:PD962205ANHU; IC:1000M-62205ANHU). All versions are approved under Intel model 62205ANHWW with the exception of the limited modular approval for Canada which is approved as model 62205ANHU (see table below).

The samples were received on August 2, 2010 and tested on August 2, 3, 4, 5, 6, 9, 10, 12, 13, 26 and 27, 2010. The first sample was tested from August 6 through to August 9, 2010. The second sample was used for all subsequent tests due to the rf connector on the first sample breaking. The EUT consisted of the following component(s):

Manufacturer	Model	Description	MAC address	FCC ID / IC UPN
Intel	62205ANHMW	PCIe Half Mini Card 802.11a/b/g/n	Sample #1: 001500633B2C	PD962205ANH PD962205ANHU 1000M-622ANH
Corporation	62205ANHU	wireless network adapter	Sample #2: 001500633B14	1000M- 62205ANHU

OTHER EUT DETAILS

The EUT antenna system consists of two PIFA antennas manufactured by the Shanghai Universe Communication Electron Co., Ltd.. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203. Further the antenna connectors are typically located inside the host PC without access to the end user. Where the end user can install the module the systems are protected by a BiOS Lock mechanism to ensure the card is only used with the approved antennas in the approved host systems.

File: R80360 Page 8 of 21

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Intel	-	test fixture	-	-
Dell	prototype	Laptop	-	-

INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Por	t		Cable(s)	
From	То	Description	Shielded/Unshielded	Length(m)
Fixture PCIe	Laptop PCIe	Ribbon	Shielded	1
Fixture USB	Laptop USB	-	Shielded	2
Fixture DC Power	DC Power Supply	-	Unshielded	1

File: R80360 Page 9 of 21

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11b, 802.11g, 802.11a, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth).

Legacy modes (SISO-only) were evaluated on each chain individually. The 802.11n modes were evaluated operating on each chain separately (SISO) and on both chains simultaneously (MIMO). Spurious measurements, other than band-edge measurements, were only performed on 802.11n modes with both chains transmitting simultaneously. For those tests the output power per chain was set to the higher single-chain power level to cover both SISO and MIMO operation.

The data rates used for all tests were the lowest data rates for each mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements – refer to test data for actual measurements).

The PC was using the Intel test utility DRTU Version 1.1.3 and the device driver was version 13.0.0.238.

File: R80360 Page 10 of 21

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont,
Chamber 5	211948	2845B-5	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R80360 Page 11 of 21

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R80360 Page 12 of 21

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

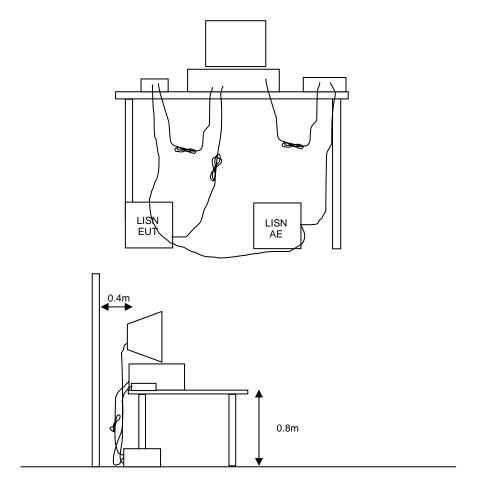
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R80360 Page 13 of 21


TEST PROCEDURES

EUT AND CABLE PLACEMENT

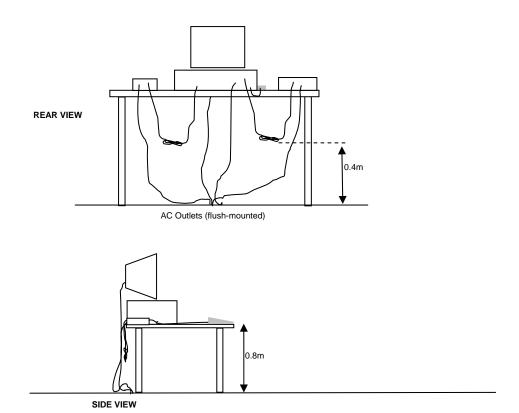
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

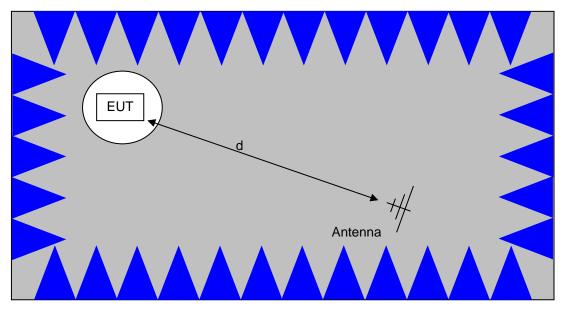
File: R80360 Page 14 of 21

RADIATED EMISSIONS

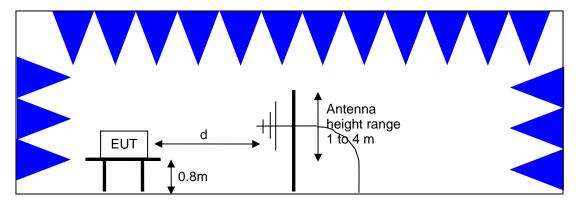

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R80360 Page 15 of 21


Typical Test Configuration for Radiated Field Strength Measurements

File: R80360 Page 16 of 21

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R80360 Page 17 of 21

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R80360 Page 18 of 21

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R80360 Page 19 of 21

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R80360 Page 20 of 21

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R80360 Page 21 of 21

Appendix A Test Equipment Calibration Data

RadiatedSpurious Em	nissions, 1 – 40GHz			
Manufacturer	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115 NDVC	487	7/6/2012
Rohde & Schwarz Hewlett Packard	Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT	NRVS 8564E (84125C)	1290 1393	10/22/2010 4/14/2011
Hewiell Fackaru	(SA40) Blue	03045 (041230)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10	NRV-Z53	1555	2/5/2011
	Watts			
Rohde & Schwarz	Attenuator, 20 dB, 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	5/17/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1071	6/1/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Micro-Tronics	Band Reject Filter, 5725-5875	BRC50705-02	1728	2/1/2011
	MHz			
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	11/4/2010
Hewlett Packard	мп2 Head (Inc W1-W4, 1946, 1947)	84125C	1772	5/6/2011
110WIORT GORGIG	Purple	011200		0/0/2011
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/18/2011
Antenna Port Conduc				
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
Manufacturer Rohde & Schwarz	<u>Description</u> Power Meter, Single Channel	NRVS	1290	10/22/2010
Manufacturer Rohde & Schwarz Hewlett Packard	<u>Description</u> Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	NRVS 8564E (84125C)	1290 1393	10/22/2010 4/14/2011
Manufacturer Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts	NRVS	1290	10/22/2010
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRVS 8564E (84125C) NRV-Z32	1290 1393 1536	10/22/2010 4/14/2011 9/2/2010
Manufacturer Rohde & Schwarz Hewlett Packard	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW,	NRVS 8564E (84125C)	1290 1393	10/22/2010 4/14/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRVS 8564E (84125C) NRV-Z32	1290 1393 1536	10/22/2010 4/14/2011 9/2/2010
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD	1290 1393 1536 1070	10/22/2010 4/14/2011 9/2/2010 5/17/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD	1290 1393 1536 1070	10/22/2010 4/14/2011 9/2/2010 5/17/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 Model 8028-50-TS-24-BNC	1290 1393 1536 1070 1071	10/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 <u>Model</u> 8028-50-TS-24-BNC support	1290 1393 1536 1070 1071 Asset # 904	10/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN Pulse Limiter	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD hissions, 13-Aug-10 Model 8028-50-TS-24-BNC support ESH3 Z2	1290 1393 1536 1070 1071 <u>Asset #</u> 904 1401	10/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011 4/20/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics Rohde & Schwarz Com-Power Corp.	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN Pulse Limiter Preamplifier, 30-1000 MHz	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 Model 8028-50-TS-24-BNC support ESH3 Z2 PA-103	1290 1393 1536 1070 1071 Asset # 904 1401 1632	10/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011 4/20/2011 4/23/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics Rohde & Schwarz Com-Power Corp. Sunol Sciences	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN Pulse Limiter Preamplifier, 30-1000 MHz Biconilog, 30-3000 MHz	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 Model 8028-50-TS-24-BNC support ESH3 Z2 PA-103 JB3	1290 1393 1536 1070 1071 Asset # 904 1401 1632 1657	70/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011 4/20/2011 4/23/2011 5/28/2012
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics Rohde & Schwarz Com-Power Corp. Sunol Sciences Rohde & Schwarz	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN Pulse Limiter Preamplifier, 30-1000 MHz Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 Model 8028-50-TS-24-BNC support ESH3 Z2 PA-103 JB3 ESIB7	1290 1393 1536 1070 1071 Asset # 904 1401 1632 1657 1756	70/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011 4/20/2011 4/23/2011 5/28/2012 3/16/2011
Manufacturer Rohde & Schwarz Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer Solar Electronics Rohde & Schwarz Com-Power Corp. Sunol Sciences	Description Power Meter, Single Channel SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155) Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel 30 - 1,000 MHz and Conducted Em Description LISN Pulse Limiter Preamplifier, 30-1000 MHz Biconilog, 30-3000 MHz	NRVS 8564E (84125C) NRV-Z32 NRV-Z51 NRVD nissions, 13-Aug-10 Model 8028-50-TS-24-BNC support ESH3 Z2 PA-103 JB3	1290 1393 1536 1070 1071 Asset # 904 1401 1632 1657	70/22/2010 4/14/2011 9/2/2010 5/17/2011 6/1/2011 Cal Due 3/2/2011 4/20/2011 4/23/2011 5/28/2012

File: R80360 Appendix Page 1 of 2

Appendix B Test Data

T80123 166 Pages

File: R80360 Appendix Page 2 of 2

Ellio	tt Ecompany	El	MC Test Data
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
		Account Manager:	Christine Krebil
Contact:	Steven Hackett		-
Emissions Standard(s):	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В
Immunity Standard(s):	-	Environment:	Radio

For The

Intel Corporation

Model

62205ANHMW (Intel® Centrino® Advanced-N 6205)

Date of Last Test: 8/26/2010

In normal operating modes the card uses power settings stored on EEPROM to set the output power. For a given nominal output power the actual transmit power is redcued as the data rate increases, therefore testing was performed at the lowest data rate in each mode as this data rate to determine compliance with the requirements at the highest power seting.

The following power measurements were made using an average power meter and the with the device configured in a continuous transmit mode on Chain A at the various data rates in each mode to verify this:

Mode	Data Rate	Power
	1	13.7
802.11b	2	13.7
002.110	5.5	13.4
	11	13.4
	6	15.1
	9	14.8
	12	14.7
802.11g	18	14.7
(802.11a)	24	14.5
(00=1110)	36	14.6
	48	13.3
	54	11.2
	6.5	14.9
	13	14.8
	19.5	14.5
802.11n	26	14.4
20MHz	39	14.2
	52	13.4
	58.5	10.7
	65	9.2
	13.5	14.9
	27	14.8
	40.5	14.8
802.11n	54	14.7
40MHz	81	14.5
	108	13.5
	121.5	10.8
	135	9.2

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woder:	02203ANTININ (IIILEI® CEITIIIII0® AUVAIICEU-IN 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (DTS/NII/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/13/2010 Config. Used: Modular Test
Test Engineer: Mark Hill Config Change: None
Test Location: FT #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 37 %

Summary of Results

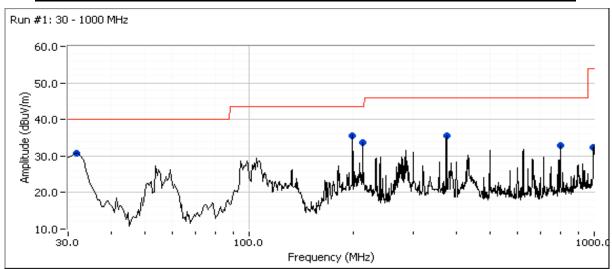
Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	34.9dBµV/m @ 199.83MHz (-8.6dB)

Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the **device operating at max power per chain on both chains in 802.11n 20MHz mode at 2437 MHz**.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITIIIIIO® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz Configured to TX at 16.5dBm on each chain (settings 33/31) on channel 6, HT8

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Preliminary peak readings captured during pre-scan

j		.9						
Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
199.830	35.5	Н	43.5	-8.0	Peak	232	1.5	
32.144	30.8	V	40.0	-9.2	Peak	83	1.0	
213.950	33.6	Н	43.5	-9.9	Peak	262	1.5	
374.346	35.6	Н	46.0	-10.4	Peak	283	1.0	
796.607	32.9	Н	46.0	-13.1	Peak	171	1.0	
996.867	32.3	Н	54.0	-21.7	Peak	238	1.5	

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

							1	
Frequency	Level	Pol	FCC 15.20	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
199.830	34.9	Н	43.5	-8.6	QP	251	1.5	QP (1.00s)
32.144	29.0	V	40.0	-11.0	QP	56	1.0	QP (1.00s)
374.346	33.2	Н	46.0	-12.8	QP	259	1.0	QP (1.00s)
213.950	30.1	Н	43.5	-13.4	QP	261	1.5	QP (1.00s)
796.607	31.8	Н	46.0	-14.2	QP	163	1.0	QP (1.00s)
996.867	28.3	Н	54.0	-25.7	QP	231	1.5	QP (1.00s)
		•						

	All 2012 Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodei:	02203ANTIMIN (IIITEI® CEITTITIO® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Emissions Band Edge Measurements

Summary of Results

MAC Address: 001500633B2C DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
Run # 1	n 40MHz	#3 2422MHz	9.0	9.1	Restricted Band Edge at 2400 MHz	15.209	51.2dBµV/m @ 2389.8MHz (-2.8dB)
Kull# I	Chain A	#9 2452MHz	9.5	9.6	Restricted Band Edge at 2483.5 MHz	15.209	52.9dBµV/m @ 2483.6MHz (-1.1dB)
Run # 2	n 40MHz	#4 2427MHz	10.5	10.7	Restricted Band Edge at 2400 MHz	15.209	51.8dBµV/m @ 2390.0MHz (-2.2dB)
Ruπ Z	Chain A	#8 2447MHz	10.5	10.3	Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.5MHz (-1.7dB)
Run # 3	n 40MHz	#5 2432MHz	12.5	12.4	Restricted Band Edge at 2400 MHz	15.209	50.1dBµV/m @ 2390.0MHz (-3.9dB)
rtuii " 3	Chain A	#7 2442MHz	12.5	12.6	Restricted Band Edge at 2483.5 MHz	15.209	51.8dBµV/m @ 2484.2MHz (-2.2dB)
Run # 4	n 40MHz Chain B	#3 2422MHz	9.5	9.6	Restricted Band Edge at 2400 MHz	15.209	44.3dBµV/m @ 2390.0MHz (-9.7dB)
Ruπ 4		#9 2452MHz	10.0	10.2	Restricted Band Edge at 2483.5 MHz	15.209	50.4dBµV/m @ 2483.5MHz (-3.6dB)
Run # 5	n 40MHz Chain B	#4 2427MHz	11.5	11.7	Restricted Band Edge at 2400 MHz	15.209	51.7dBµV/m @ 2390.0MHz (-2.3dB)
Rull# 3		#8 2447MHz	11.5	11.6	Restricted Band Edge at 2483.5 MHz	15.209	51.0dBµV/m @ 2483.5MHz (-3.0dB)
Run # 6	n 40MHz	#5 2432MHz	13.0	13.0	Restricted Band Edge at 2400 MHz	15.209	48.5dBµV/m @ 2390.0MHz (-5.5dB)
Ruii # 0	Chain B	#7 2442MHz	13.0	13.0	Restricted Band Edge at 2483.5 MHz	15.209	50.5dBµV/m @ 2483.5MHz (-3.5dB)
Run # 7	n 40MHz	#3 2422MHz	A: 6.5 B: 6.5	A: 6.5 B: 6.5	Restricted Band Edge at 2390 MHz	15.209	48.2dBµV/m @ 2390.0MHz (-5.8dB)
IXUII#7	Chain A+B	#9 2452MHz	A: 7.0 B: 7.0	A: 7.0 B: 7.0	Restricted Band Edge at 2483.5 MHz	15.209	49.1dBµV/m @ 2484.8MHz (-4.9dB)
Run # 7	n 40MHz	#3 2422MHz	A: 8.0 B: 8.0	A: 8 B: 8	Restricted Band Edge at 2390 MHz	15.209	50.8dBµV/m @ 2390.0MHz (-3.2dB)
Run # /	Chain A+B	#9 2452MHz	A: 8.5 B: 8.5	A: 8.6 B: 8.6	Restricted Band Edge at 2483.5 MHz	15.209	51.3dBµV/m @ 2484.5MHz (-2.7dB)

	All BEES Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEILLIIIO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #	Mode	Power		Limit	Result / Margin		
Run # 8	n 40MHz Chain A+B	#4 2427MHz	A: 10.0 B: 10.0	A: 10.3 B: 10.1	Restricted Band Edge at 2390 MHz	15.209	52.0dBµV/m @ 2389.7MHz (-2.0dB)
Ruii # 0		#8 2447MHz	A: 10.0 B: 10.0	A: 10.2 B: 10.2	Restricted Band Edge at 2483.5 MHz	15.209	51.7dBµV/m @ 2484.3MHz (-2.3dB)

Note - the measured powers are the average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

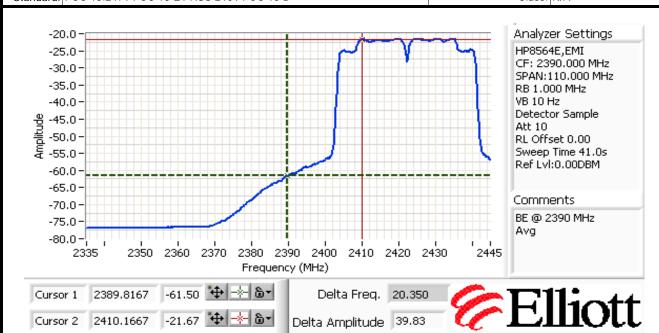
No modifications were made to the EUT during testing

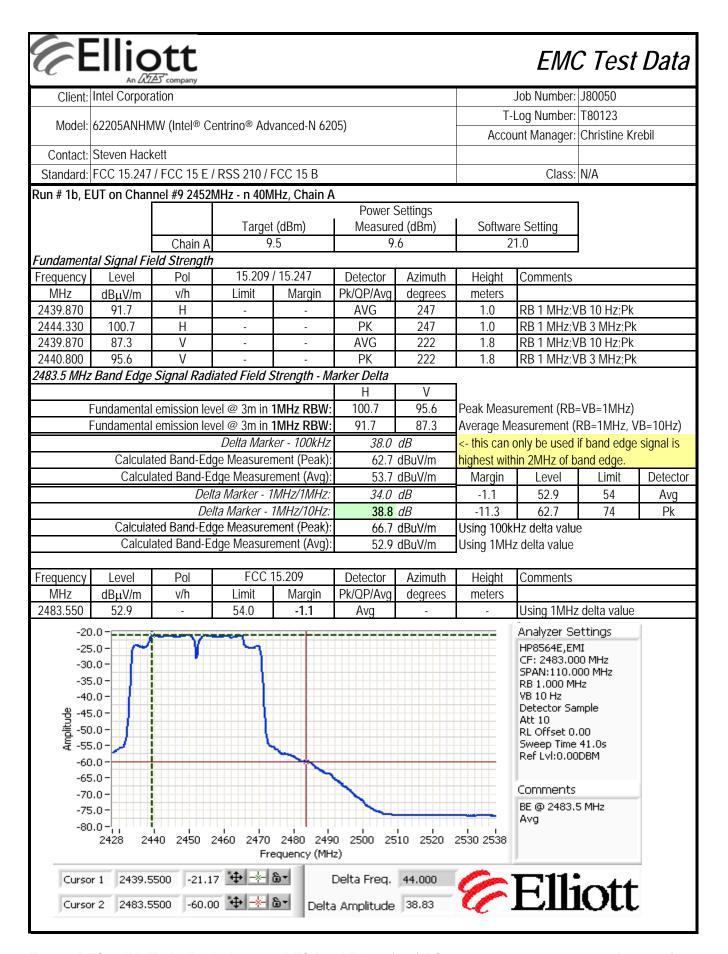
Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port via 10dB pad) for single chain operation and radiated (at a distance of ~ 50cm) for MIMO modes.


The fundamental field strength is always measured at a 3m test distance.


E E		ott 公子 company						EMO	C Test	Data
Client:	Intel Corpora	ation					J	lob Number:	J80050	
Mardal	(000E ANII IA	*** /L-1-1@ O	lala a @ A al	I N / O/	251		T-L	og Number:	T80123	
Modei:	62205ANHIV	/IW (Intel® C	entrino® Aav	vanced-N 620	05)		Accou	nt Manager:	Christine Kr	ebil
Contact:	Steven Hack	kett								
Standard:	FCC 15.247	/ FCC 15 E	RSS 210 /	FCC 15 B				Class:	N/A	
Run # 1, Ba	nd Edge Fie	eld Strength	- n 40MHz,	Chain A			II.		1	
	Date of Test:				Te	est Location:	Chamber #3	}		
	•	Suhaila Khu				nfig Change:	none			
Run # 1a, E	UT on Chan	nel #3 2422l	MHz - n 40N	1Hz, Chain A		2 111			1	
	T1 (4D)				Power S		Software Setting			
		Chain A		Target (dBm)Measured (dBm)Software Setting9.09.120.5						
Fundament	tal Signal Fig	e ld Strength		1.0	7.	. 1	20	7.5		
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2434.670	85.8	V	-	-	AVG	186	1.5	RB 1 MHz;V		
2434.470	94.0	V	-	-	PK	186	1.5	RB 1 MHz;V		
2414.270	91.0	Н	-	-	AVG	245	1.0	RB 1 MHz;V		
2413.130	98.9	Н	-	-	PK	245	1.0	RB 1 MHz;V	B 3 MHz;Pk	
2390 MHz E	Band Edge S	Signal Radia	ted Field St	rength - Mar		1/	1			
	Fundamontal	l emission lev	(al @ 2m in	1MUz DDM.	H 98.9	V 94.0	Dook Mooci	rement (RB=	_\/D_1\/U¬\	
		l emission lev			91.0	85.8	4	•	evb= ((vinz) RB=1MHz, V	'R-10H7)
	undamenta	i ciriissiori ici		ker - 100kHz	38.5		U		if band edge	
	Calcula	ted Band-Ed				dBuV/m		in 2MHz of b	U	orginal to
Calculated Band-Edge Measurement (Avg):						dBuV/m	Margin	Level	Limit	Detector
				1MHz/1MHz:	37.3		-2.8			Avg
				1MHz/10Hz:	39.8	dB	-13.6 60.4 74 Pk			Pk
		ted Band-Ed	0			dBuV/m	Using 100kHz delta value			
1	Calcul	ated Band-E	dge Measur	ement (Avg):	51.2	dBuV/m	Using 1MHz delta value			

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.810	51.2	-	54.0	-2.8	Avg	-	-	Using 1MHz delta value

All Delta Company								
Client:	Intel Corporation	Job Number:	J80050					
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123					
wodei.	02203ANTIMIW (IIIIei® Celiliiilo® Auvanceu-N 0203)	Account Manager:	Christine Krebil					
Contact:	Steven Hackett							
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A					

L	All Deep Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 2, Band Edge Field Strength - n 40MHz, Chain A

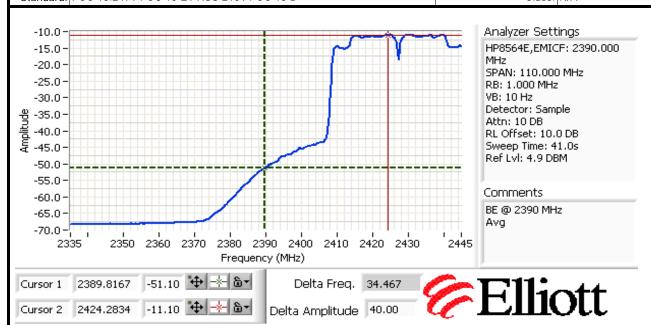
Date of Test: 8/2/2010 Test Location: Chamber #3
Test Engineer: Rafael Varelas Config Change: none

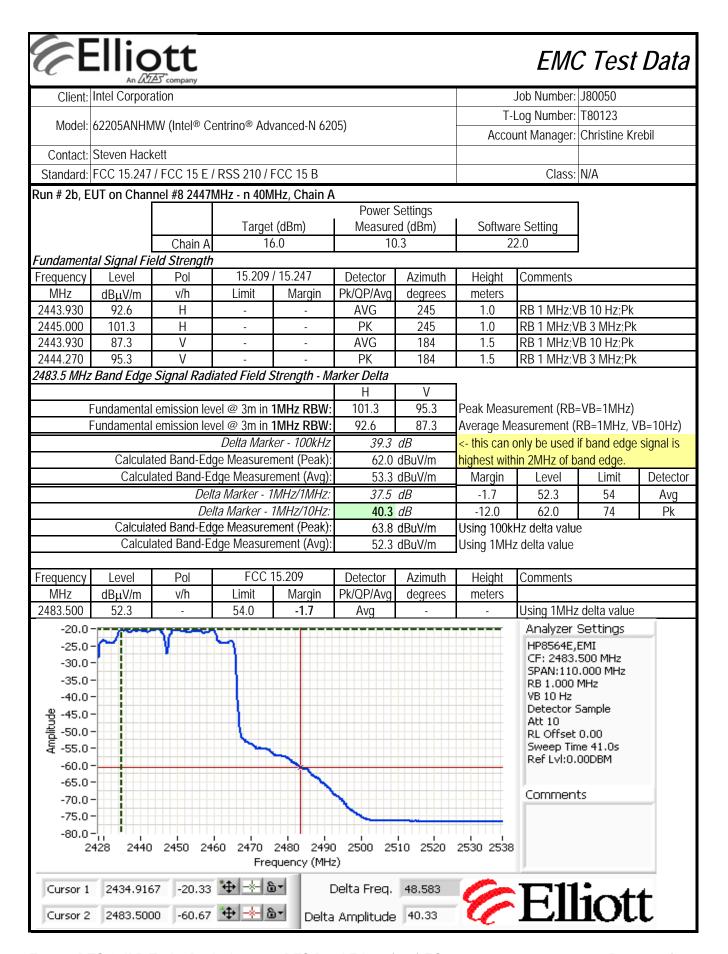
Run # 2a, EUT on Channel #4 2427MHz - n 40MHz, Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.0	10.7	22.5

Fundamental Signal Field Strength

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2425.500	91.8	Н	-	-	AVG	246	1.1	RB 1 MHz;VB 10 Hz;Pk
2425.660	100.3	Н	-	-	PK	246	1.1	RB 1 MHz;VB 3 MHz;Pk
2415.070	88.5	V	-	-	AVG	223	1.0	RB 1 MHz;VB 10 Hz;Pk
2419.530	97.3	V	-	-	PK	223	1.0	RB 1 MHz;VB 3 MHz;Pk


2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta


minimizer za za zago orginar mauratoa mora on origini mari	2		_			
	Η	V				
Fundamental emission level @ 3m in 1MHz RBW:	100.3	97.3	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	91.8	88.5	Average Me	asurement (I	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	38.0	dВ	<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	62.3	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	53.8	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	36.5	dВ	-2.2	51.8	54	Avg
Delta Marker - 1MHz/10Hz:	40.0	dB	-11.7	62.3	74	Pk
Calculated Band-Edge Measurement (Peak):	63.8	dBuV/m	Using 100kHz delta value			
Calculated Band-Edge Measurement (Avg):	51.8	dBuV/m	Using 1MHz delta value			
			_			

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	51.8	-	54.0	-2.2	Avg	-	-	Using 1MHz delta value

All Deep Company									
Client:	Intel Corporation	Job Number:	J80050						
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123						
	02203ANTIMIN (IIITEI® CEITTIIIO® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil						
Contact:	Steven Hackett								
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A						

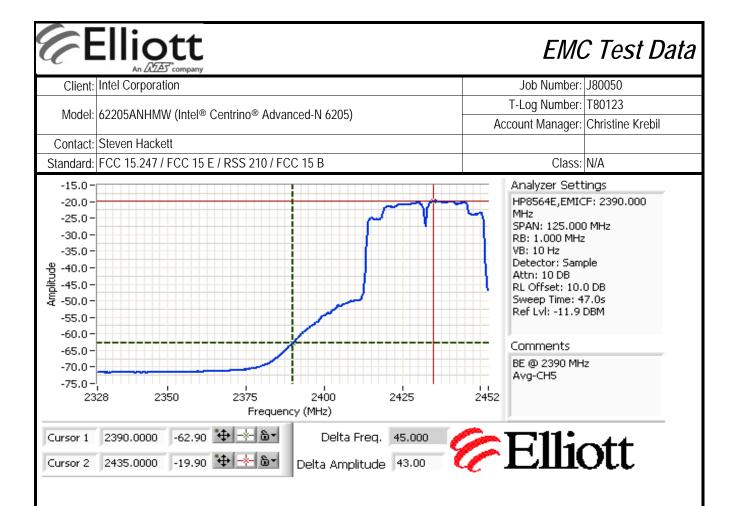
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIWW (IIILEI® CEILIIIIO® AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

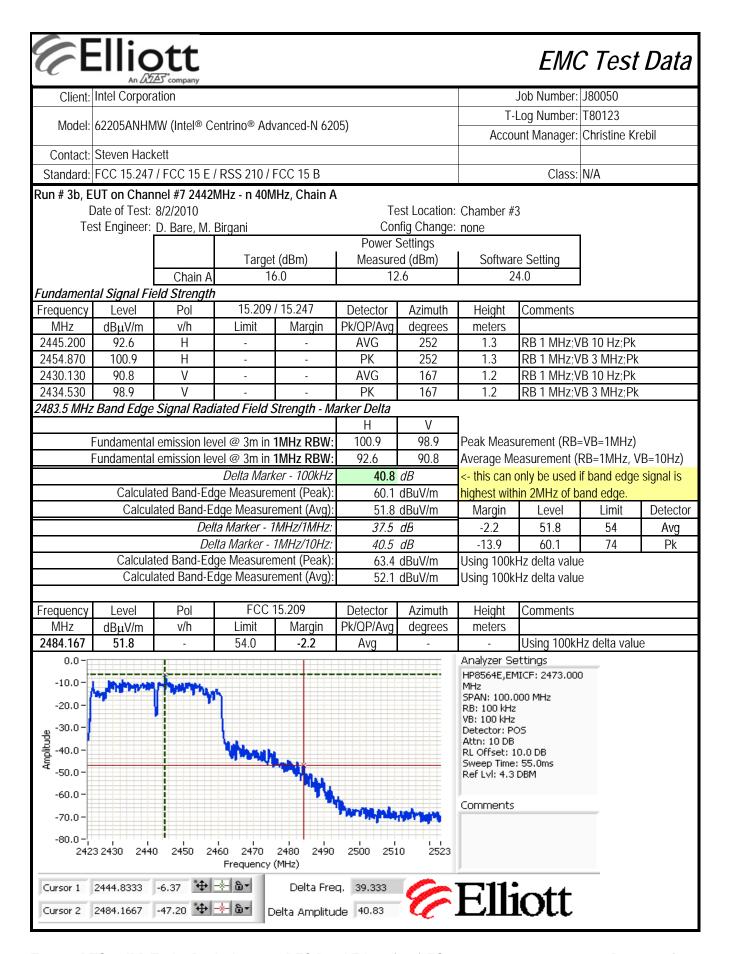
Run # 3, Band Edge Field Strength - n 40MHz, Chain A Run # 3a, EUT on Channel #5 2432MHz - n 40MHz, Chain A

Date of Test: 8/10/2010
Test Engineer: Mehran Birgani

Test Location: Chamber #3 Config Change: none

	Power Settings					
	Target (dBm)	Measured (dBm)	Software Setting			
Chain A	12.5	12.4	26.0			


Fundamental Signal Field Strength


\boldsymbol{y}								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2429.560	91.0	V	-	-	AVG	253	2.2	POS; RB 1 MHz; VB: 10 Hz
2430.360	97.7	V	-	-	PK	253	2.2	POS; RB 1 MHz; VB: 10 MHz
2444.600	93.1	Н	-	-	AVG	318	1.3	RB 1 MHz;VB 10 Hz;Pk
2444.600	101.3	Н	-	-	PK	318	1.3	RB 1 MHz;VB 3 MHz;Pk

2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V					
Fundamental emission level @ 3m in 1MHz RBW:	101.3	97.7	Peak Measurement (RB=VB=1MHz)				
Fundamental emission level @ 3m in 1MHz RBW:	93.1	91.0	Average Measurement (RB=1MHz, VB=10Hz)			/B=10Hz)	
Delta Marker - 100kHz	42.0	dB	<- this can only be used if band edge signal is			signal is	
Calculated Band-Edge Measurement (Peak):	59.3	59.3 dBuV/m		highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	51.1 dBuV/m		Margin	Level	Limit	Detector	
Delta Marker - 1MHz/1MHz:	38.5	38.5 dB		50.1	54	Avg	
Delta Marker - 1MHz/10Hz:	43.0	dB	-14.7	59.3	74	Pk	
Calculated Band-Edge Measurement (Peak):	culated Band-Edge Measurement (Peak): 62.8 dB		Using 100kHz delta value				
Calculated Band-Edge Measurement (Avg):	50.1 dBuV/m		Using 1MHz delta value				
			<u>-</u>				

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.1	-	54.0	-3.9	Avg	-	-	Using 1MHz delta value

L	All Deep Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

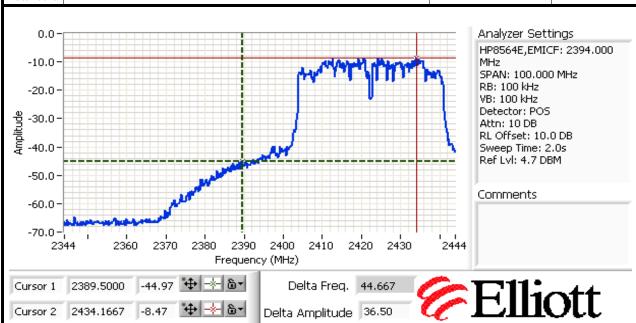
Run # 4, Band Edge Field Strength - n 40MHz, Chain B

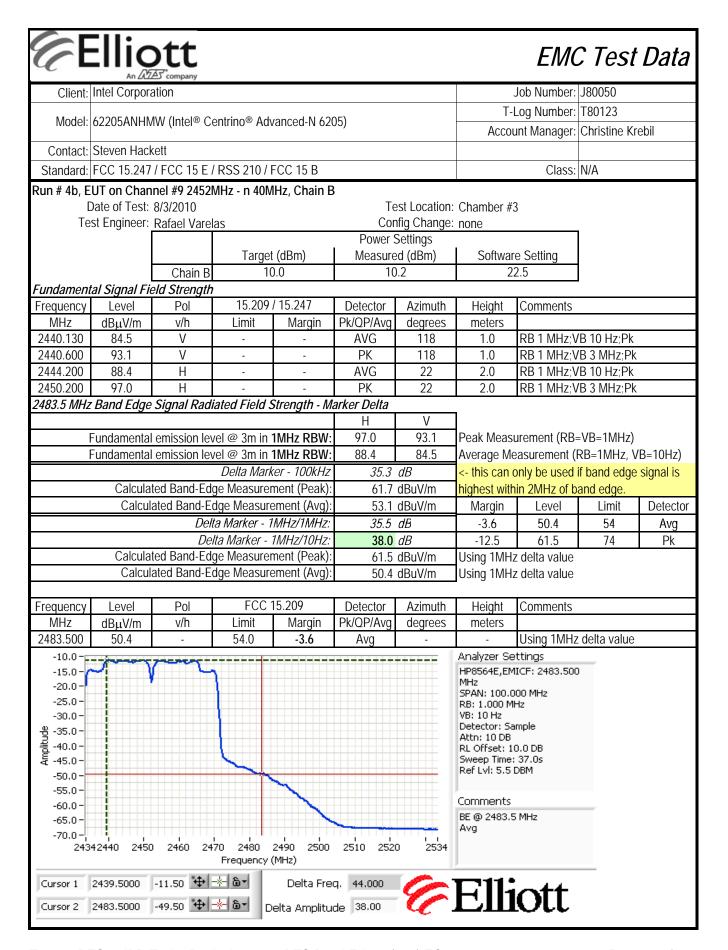
Date of Test: 8/2/2010 Test Location: Chamber #3
Test Engineer: Mehran Birgani Config Change: none

Run # 4a, EUT on Channel #3 2422MHz - n 40MHz, Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain B	9.5	9.6	18.5

Fundamental Signal Field Strength


Tundamentar Signar Field Strength								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2411.400	87.2	V	-	-	AVG	117	1.0	RB 1 MHz;VB 10 Hz;Pk
2411.730	95.2	V	-	-	PK	117	1.0	RB 1 MHz;VB 3 MHz;Pk
2411.470	89.0	Н	-	-	AVG	10	2.1	RB 1 MHz;VB 10 Hz;Pk
2411.930	97.2	Н	-	-	PK	10	2.1	RB 1 MHz;VB 3 MHz;Pk
2412.470	84.7	V	-	-	-	117	1.0	RB 100 kHz;VB 100 kHz;Pk
2410.270	87.3	Н	-	-	-	10	2.1	RB 100 kHz;VB 100 kHz;Pk


	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	97.2	95.2	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	89.0	87.2	Average Me	asurement (l	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	44.7	dB	<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	52.5	52.5 dBuV/m highest within 2MHz of band edge.				
Calculated Band-Edge Measurement (Avg):	44.3	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	47.0	dB	-9.7	44.3	54	Avg
Delta Marker - 1MHz/10Hz:	21.8	dB	-23.8	50.2	74	Pk
Calculated Band-Edge Measurement (Peak):	50.2	dBuV/m	Using 1MHz	delta value		
Calculated Band-Edge Measurement (Avg):	67.2	dBuV/m	Using 100kHz delta value			
			_			

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	44.3	-	54.0	-9.7	Avg	-	-	Using 100kHz delta value

	All DUZ Company		
Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodei.	02203ANTININ (IIITel® Celitililo® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

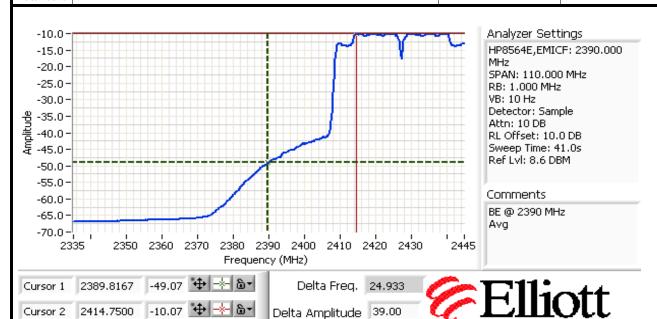
Run # 5, Band Edge Field Strength - n 40MHz, Chain B

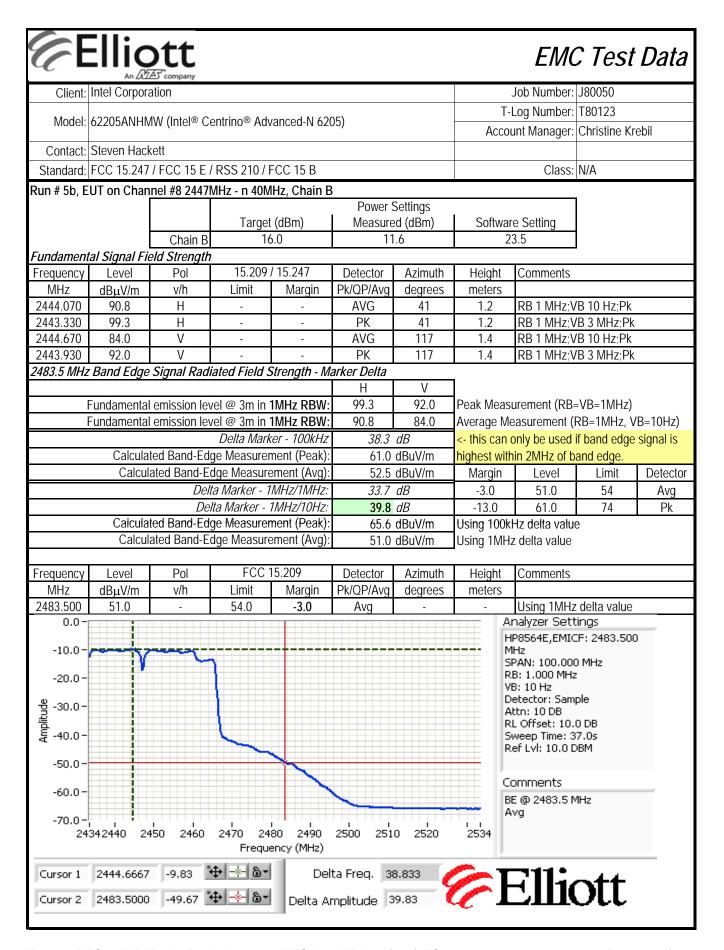
Date of Test: 8/3/2010 Test Location: Chamber #3
Test Engineer: Rafael Varelas Config Change: none

Run # 5a, EUT on Channel #4 2427MHz - n 40MHz, Chain B

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain B	16.0	11.7	23.5

Fundamental Signal Field Strength


i dilidaliliolit	undamonia eighar iola eti ongar								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2414.9	90.7	Н	-	-	AVG	17	2.0	RB 1 MHz;VB 10 Hz;Pk	
2414.8	98.9	Н	-	-	PK	17	2.0	RB 1 MHz;VB 3 MHz;Pk	
2414.5	85.8	V	-	-	AVG	93	2.1	RB 1 MHz;VB 10 Hz;Pk	
2415.5	94.0	V	-	-	PK	93	2.1	RB 1 MHz;VB 3 MHz;Pk	


2070 Will Bulla Lage Signal Radiated Fleid Streingth Wall	ter Dena		_			
	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	98.9	94.0	Peak Measu	rement (RB=	=VB=1MHz)	
Fundamental emission level @ 3m in 1MHz RBW:	90.7	85.8	Average Me	asurement (I	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	37.8	dB	<- this can o	nly be used	if band edge	signal is
Calculated Band-Edge Measurement (Peak):	61.1	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	52.9	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	35.5	dB	-2.3	51.7	54	Avg
Delta Marker - 1MHz/10Hz:	39.0	dB	-12.9	61.1	74	Pk
Calculated Band-Edge Measurement (Peak):	63.4 dBuV/m Using 100kHz delta value					
Calculated Band-Edge Measurement (Avg):	51.7	7 dBuV/m Using 1MHz delta value				

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	51.7	-	54.0	-2.3	Avg	-	-	Using 1MHz delta value

	All DUZ Company		
Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodei.	02203ANTININ (IIITel® Celitililo® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

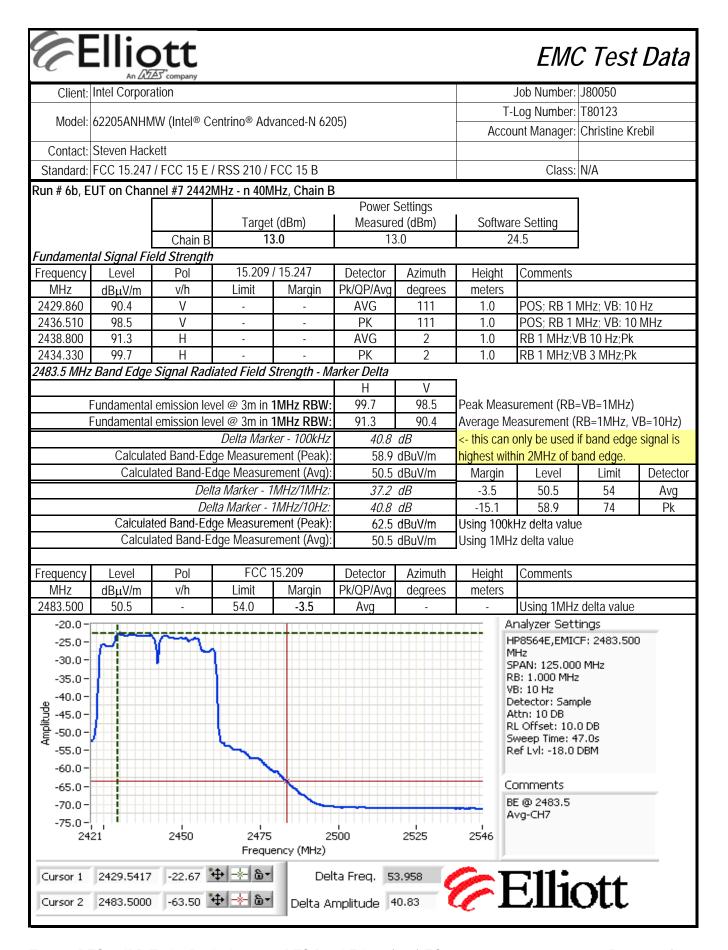
	All Des Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 6, Band Edge Field Strength - n 40MHz, Chain B

Date of Test: 8/10/2010 Test Location: Chamber #3
Test Engineer: Mehran Birgani Config Change: none

Run # 6a, EUT on Channel #5 2432MHz - n 40MHz, Chain B

1			D 0 111	
			Power Settings	
		Target (dBm)	Measured (dBm)	Software Setting
	Chain B	13.0	13.0	24.5


Fundamental Signal Field Strength

i dildallicit	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2434.850	89.1	V	-	-	AVG	111	1.0	POS; RB 1 MHz; VB: 10 Hz	
2439.250	97.8	V	-	-	PK	111	1.0	POS; RB 1 MHz; VB: 10 MHz	
2435.400	91.2	Н	-	-	AVG	360	1.0	RB 1 MHz;VB 10 Hz;Pk	
2442.600	100.0	Н	-	-	PK	360	1.0	RB 1 MHz;VB 3 MHz;Pk	

2070 Will Band Eage Signal Radiated Field Strength Wall	ter Dena					
	Н	V	1			
Fundamental emission level @ 3m in 1MHz RBW:	100.0	97.8	Peak Measu	rement (RB=	=VB=1MHz)	
Fundamental emission level @ 3m in 1MHz RBW:	91.2	89.1	Average Measurement (RB=1MHz, VB=10Hz)			B=10Hz)
Delta Marker - 100kHz	42.7	dB	<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	57.3	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	48.5	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	39.0	dB	-5.5	48.5	54	Avg
Delta Marker - 1MHz/10Hz:	42.2	dB	-16.7	57.3	74	Pk
Calculated Band-Edge Measurement (Peak):	61.0	61.0 dBuV/m Using 100kHz delta value				
Calculated Band-Edge Measurement (Avg):	49.0	dBuV/m	Using 100kl	Hz delta valu	9	

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	48.5	-	54.0	-5.5	Avg	-	-	Using 100kHz delta value

	An DCZES company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTINIV (IIILEI® CEITIIII0® Advanced-N 0200)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 7, Band Edge Field Strength - n 40MHz, Chain A+B - new traget of 8dBm per chain 8/25/2010

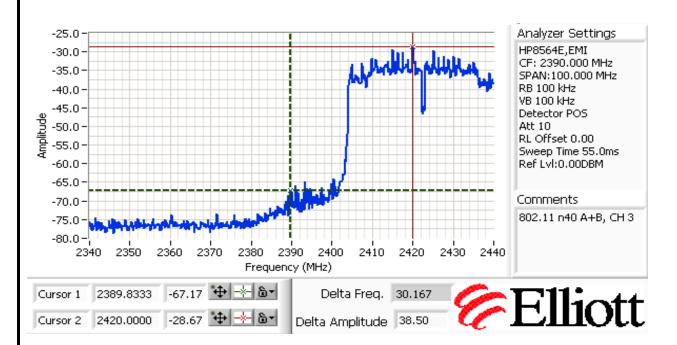
Date of Test: 8/26/2010 Test Location: FT#7
Test Engineer: Mark Hill Config Change: none

Sample: 0015000633B14

Run # 7a, EUT on Channel #3 2422MHz - n 40MHz, Chain A+B

	o i oii oiiaii		=	,					
					Power S	Settings			
	Target (dBm)				Measured (dBm)				Software Setting
Chain	Α	В	С	Total	А	В	С	Total	
Chain	Chain 8.0 8.0 11.0					8.0		11.0	23.5, 22

Fundamental Signal Field Strength


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2419.800	89.3	Н	-	-	AVG	224	1.1	RB 1 MHz;VB 10 Hz;Pk
2419.530	98.9	Н	-	-	PK	224	1.1	RB 1 MHz;VB 3 MHz;Pk
2434.870	87.1	V	-	-	AVG	86	1.0	RB 1 MHz;VB 10 Hz;Pk
2434.800	97.2	V	-	-	PK	86	1.0	RB 1 MHz;VB 3 MHz;Pk

	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	98.9	97.2	Peak Measu	rement (RB=	=VB=1MHz)	
Fundamental emission level @ 3m in 1MHz RBW:	89.3	87.1	Average Me	asurement (I	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	38.5	dB	<- this can o	<- this can only be used if band edge signal is		
Calculated Band-Edge Measurement (Peak):	60.4 dBuV/m highest within 2MHz of band edge.					
Calculated Band-Edge Measurement (Avg):	50.8 dBuV/m		Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	34.0	dB	-3.2	50.8	54	Avg
Delta Marker - 1MHz/10Hz:	37.5	dB	-13.6	60.4	74	Pk
Calculated Band-Edge Measurement (Peak):	64.9	dBuV/m	Using 100kHz delta value			
Calculated Band-Edge Measurement (Avg):	51.8	51.8 dBuV/m Using 100kHz delta value				
		·				

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.8	-	54.0	-3.2	Avg	-	-	Using 100kHz delta value

	All Deed Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIITel® Celitifilo® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 7b, EUT on Channel #9 2452MHz - n 40MHz, Chain A+B

Sample: 0015000633B14

Date of Test: 8/27/2010 Test Location: FT Chamber#4

Test Engineer: Joseph Cadigal Config Change: none

<u> </u>					3 3 .			
				Power S	Settings			
	Target	t (dBm)			Measure	ed (dBm)		Software Setting
Α	В	С	Total	Α	В	С	Total	
8.5	8.5		11.5	8.6	8.6		11.6	24,22.5
al Signal Fie	eld Strength	1						
Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
87.9	V	-	-	AVG	171	1.2	RB 1 MHz;\	/B 10 Hz;Pk
97.9	V	-	-	PK	171	1.2	RB 1 MHz;\	/B 3 MHz;Pk
91.1	Н	-	-	AVG	344	1.2	RB 1 MHz;\	/B 10 Hz;Pk
101.3	Н	-	-	PK	344	1.2	RB 1 MHz;\	/B 3 MHz;Pk
surement of	Field Streng	gth at the ba	ndedge					
Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments	
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
51.3	Н	54.0	-2.7	AVG	356	1.1	RB 1 MHz;\	/B 10 Hz;Pk
66.8	Н	74.0	-7.2	PK	356	1.1	RB 1 MHz;\	/B 3 MHz;Pk
49.9	V	54.0	-4.1	AVG	172	1.2	RB 1 MHz;\	/B 10 Hz;Pk
60.2	V	74.0	-13.8	PK	169	1.0	RB 1 MHz:\	/B 3 MHz;Pk
	A 8.5 Sal Signal Fid Level dBμV/m 87.9 97.9 91.1 101.3 surement of Level dBμV/m 51.3 66.8 49.9	Targe A B 8.5 8.5 Sal Signal Field Strength Level Pol dBμV/m V/h 87.9 V 97.9 V 91.1 H 101.3 H surement of Field Strength Level Pol dBμV/m V/h 51.3 H 66.8 H 49.9 V	8.5 8.5 lad Signal Field Strength Level Pol 15.209 of the strength strength 87.9 V	Target (dBm) A B C Total 8.5 8.5 11.5 **al Signal Field Strength** Level Pol 15.209 / 15.247 dBμV/m V/h Limit Margin 87.9 V 97.9 V 91.1 H 101.3 H surement of Field Strength at the bandedge Level Pol FCC 15.209 dBμV/m V/h Limit Margin 51.3 H 54.0 -2.7 66.8 H 74.0 -7.2 49.9 V 54.0 -4.1	Power State Power State	Power Settings Measure	Power Settings Measured (dBm)	Power Settings Measured (dBm)

	The Local Company		100050
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTINIV (IIILEI® CEIIIIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 8, Band Edge Field Strength - n 40MHz, Chain A+B - New Target powers 8/25/2010

Date of Test: 8/26/2010 Test Location: FT #7
Test Engineer: Mark Hill Config Change: none

Sample: 0015000633B14

Run # 8a, EUT on Channel #4 2427MHz - n 40MHz, Chain A+B

		Power Settings											
		Target	(dBm)		Measured (dBm)				Software Setting				
Chain	А	В	С	Total	Α	В	С	Total					
	10.0	10.0		13.0	10.3	10.1		13.2	26.5, 24.5				

Fundamental Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2424.330	91.3	Н	-	-	AVG	176	1.0	RB 1 MHz;VB 10 Hz;Pk
2421.800	101.6	Н	-	-	PK	176	1.0	RB 1 MHz;VB 3 MHz;Pk
2439.870	89.4	V	-	-	AVG	80	1.0	RB 1 MHz;VB 10 Hz;Pk
2439.800	99.2	V	-	-	PK	80	1.0	RB 1 MHz;VB 3 MHz;Pk

Direct Measurement of Field Strength at the bandedge

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.670	52.0	Н	54.0	-2.0	AVG	176	1.1	RB 1 MHz;VB 10 Hz;Pk
2389.800	66.4	Н	74.0	-7.6	PK	176	1.1	RB 1 MHz;VB 3 MHz;Pk

Run # 8b, EUT on Channel #8 2447MHz - n 40MHz, Chain A+B

Sample: 0015000633B14

					Power S	Settings					
		Target (dBm)			Measured (dBm)				Software Setting		
Chain	Α	В	С	Total	Α	В	С	Total			
Chain	10.0	10.0		13.0	10.2	10.2		13.2	26, 24.5		
Fundament	al Signal Fie	eld Strength)								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2444.400	91.7	Н	-	-	AVG	174	1.0	RB 1 MHz;VB 10 Hz;Pk			
2443.670	102.1	Н	-	-	PK	174	1.0	RB 1 MHz;\	RB 1 MHz;VB 3 MHz;Pk		
2449.800	88.9	V	-	-	AVG	178	1.0	RB 1 MHz;\	/B 10 Hz;Pk		
2442.270	99.3	V	-	-	PK	178	1.0	RB 1 MHz;\	/B 3 MHz;Pk		
Direct Meas	urement of F	ield Strength	at the band	edge							
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2484.300	51.7	Н	54.0	-2.3	AVG	183	1.0	RB 1 MHz;\	/B 10 Hz;Pk		
2484.900	66.4	Н	74.0	-7.6	PK	183	1.0	RB 1 MHz;\	/B 3 MHz;Pk		

	Tin Dall's Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHINO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Emissions Band Edge Measurements - 802.11b, 802.11g and 802.11n (20MHz)

Summary of Results

MAC Address: 001500633B2C and 001500633B14 DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
	- 201411-	#1		13.1	Restricted Band Edge	15.209	53.1dBµV/m @
Run # 1	n 20MHz	2412MHz			at 2400 MHz		2390.0MHz (-0.9dB)
	Chain A	#11		12.4	Restricted Band Edge	15.209	51.4dBµV/m @
		2462MHz			at 2483.5 MHz		2483.5MHz (-2.6dB)
	20MII-	#1		12.9	Restricted Band Edge	15.209	49.3dBµV/m @
Run # 2	n 20MHz	2412MHz			at 2400 MHz		2390.0MHz (-4.7dB)
	Chain B	#11		12.8	Restricted Band Edge	15.209	49.8dBµV/m @
		2462MHz			at 2483.5 MHz		2483.6MHz (-4.2dB)
	20MII-	#2		16.1	Restricted Band Edge	15.209	53.3dBµV/m @
Run # 3	n 20MHz	2417MHz			at 2400 MHz		2389.9MHz (-0.7dB)
	Chain A	#10		16.0	Restricted Band Edge	15.209	52.3dBµV/m @
		2457MHz			at 2483.5 MHz		2483.5MHz (-1.7dB)
	001411	#2		16.7	Restricted Band Edge	15.209	51.2dBµV/m @
Run # 4	n 20MHz	2417MHz			at 2400 MHz		2390.0MHz (-2.8dB)
	Chain B	#10		16.7	Restricted Band Edge	15.209	51.6dBµV/m @
		2457MHz			at 2483.5 MHz		2485.0MHz (-2.4dB)
		#1		14.0	Restricted Band Edge	15.209	52.3dBµV/m @
Run # 5	802.11g	2412MHz			at 2400 MHz		2390.0MHz (-1.7dB)
	Chain A	#11		14.1	Restricted Band Edge	15.209	51.8dBµV/m @
		2462MHz			at 2483.5 MHz		2483.5MHz (-2.2dB)
	000.11	#1		14.0	Restricted Band Edge	15.209	49.2dBµV/m @
Run # 6	802.11g	2412MHz			at 2400 MHz		2390.0MHz (-4.8dB)
	Chain B	#11		14.2	Restricted Band Edge	15.209	51.5dBµV/m @
		2462MHz			at 2483.5 MHz		2483.5MHz (-2.5dB)
		#1		15.8	Restricted Band Edge	15.209	43.9dBµV/m @
Run # 7	802.11b	2412MHz			at 2400 MHz		2386.4MHz (-10.1dB)
	Chain A	#11		15.5	Restricted Band Edge	15.209	44.3dBµV/m @
		2462MHz		10.0	at 2483.5 MHz	10.207	2483.5MHz (-9.7dB)
		#1		15.8	Restricted Band Edge	15.209	46.4dBµV/m @
Run # 8	802.11b	2412MHz		10.0	at 2400 MHz	10.207	2386.3MHz (-7.6dB)
	Chain B	#11		15.8	Restricted Band Edge	15.209	41.4dBµV/m @
		2462MHz			at 2483.5 MHz	10.207	2483.5MHz (-12.6dB)
	001417	#1	A: 11.5	A: 11.6	Restricted Band Edge	15.209	48.9dBµV/m @
Run # 9	Chain A+B	2412MHz	B: 11.5	B: 11.6	at 2390 MHz		2389.5MHz (-5.1dB)
, ,		#11	A: 11.5	A: 11.9	Restricted Band Edge	15.209	52.5dBµV/m @
		2462MHz	B: 11.5	B: 11.7	at 2483.5 MHz		2484.9MHz (-1.5dB)

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIITEI® CEITTITIO® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Note - the measured powers are the average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Test Specific Details

 $\begin{tabular}{ll} \textbf{Objective:} & \textbf{The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.} \end{tabular}$

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation and radiated (at a distance of ~ 50cm) for MIMO modes.

The fundamental field strength is always measured at a 3m test distance.

0" 1	Intel Company	Lala Niverala an	100050
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

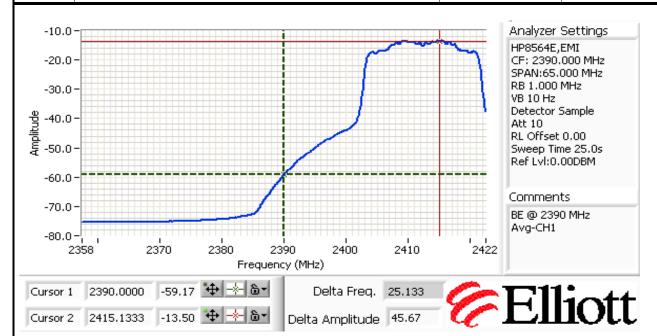
Run # 1, Band Edge Field Strength - n 20MHz, Chain A

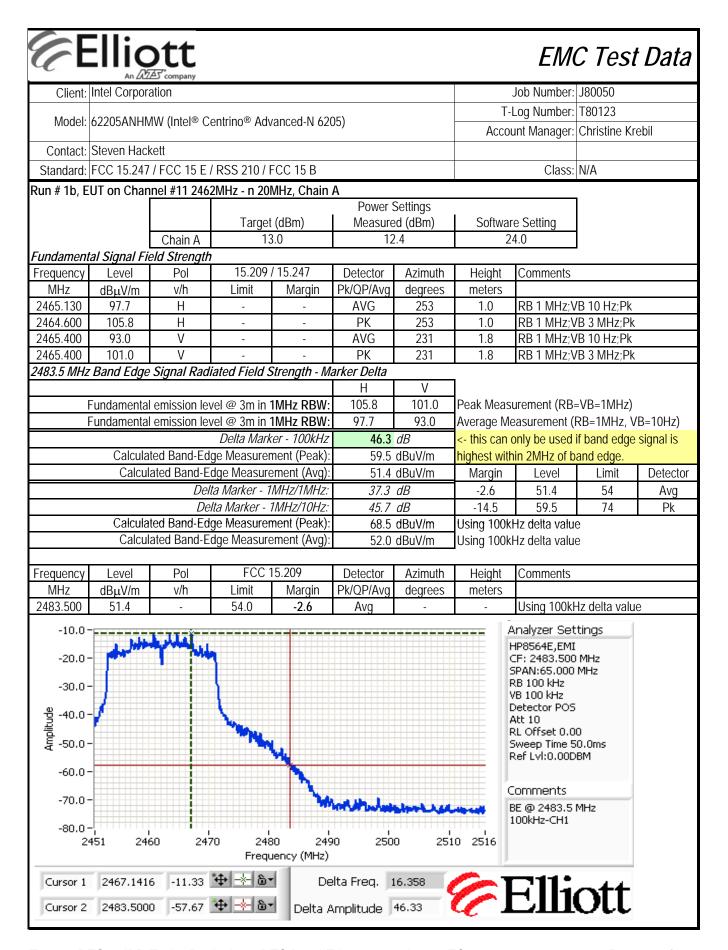
Date of Test: 8/3/2010 Test Location: Chamber #3
Test Engineer: Suhaila Khushzad Config Change: none

Run # 1a, EUT on Channel #1 2412MHz - n 20MHz, Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	13.0	13.1	25.5

Fundamental Signal Field Strength


	and amendar eight in the careful											
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
2415.000	98.8	Н	-	-	AVG	245	1.0	RB 1 MHz;VB 10 Hz;Pk				
2416.330	106.9	Н	-	-	PK	245	1.0	RB 1 MHz;VB 3 MHz;Pk				
2415.470	94.9	V	-	-	AVG	230	1.8	RB 1 MHz;VB 10 Hz;Pk				
2416.470	103.2	V	-	-	PK	230	1.8	RB 1 MHz;VB 3 MHz;Pk				


	9	9				_				
				Н	V					
Fı	undamenta	l emission le	vel @ 3m in 1MHz RBW:	106.9	103.2	Peak Measurement (RB=VB=1MHz)				
Fı	undamenta	l emission le	vel @ 3m in 1MHz RBW:	98.8	94.9	Average Me	easurement (F	RB=1MHz, V	B=10Hz)	
			Delta Marker - 100kHz	45.0	dB	<- this can only be used if band edge signal is				
	Calcula	ted Band-Ed	ge Measurement (Peak):	61.9	dBuV/m	highest within 2MHz of band edge.				
	Calcul	ated Band-E	dge Measurement (Avg):	53.8 dBuV/m Margin Level			Level	Limit	Detector	
		Del	ta Marker - 1MHz/1MHz:	35.5	dB	-0.9	53.1	54	Avg	
		De	lta Marker - 1MHz/10Hz:	45.7	dB	-12.1	61.9	74	Pk	
	Calcula	ted Band-Ed	ge Measurement (Peak):	71.4	dBuV/m	Using 100kHz delta value				
	Calcul	ated Band-E	dge Measurement (Avg):	53.1 dBuV/m		Using 1MHz delta value				
Frequency	Level	Pol	FCC 15.209	Detector	Azimuth	Height	Comments	•		

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.1	-	54.0	-0.9	Avg	-	-	Using 1MHz delta value

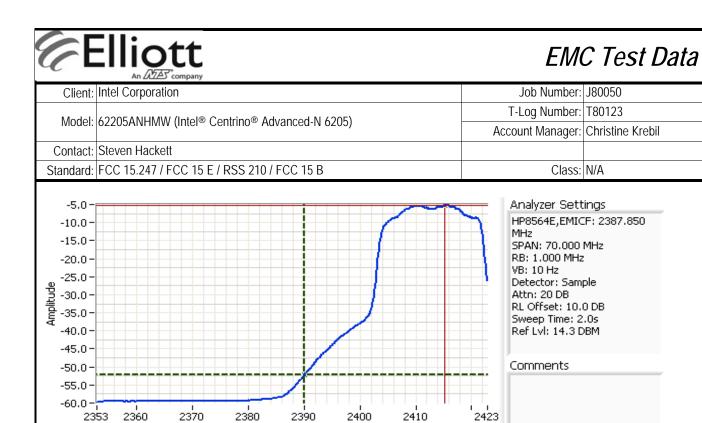
	All Date Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIN (IIIIei® Celitillo® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

	All DDD Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHINO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

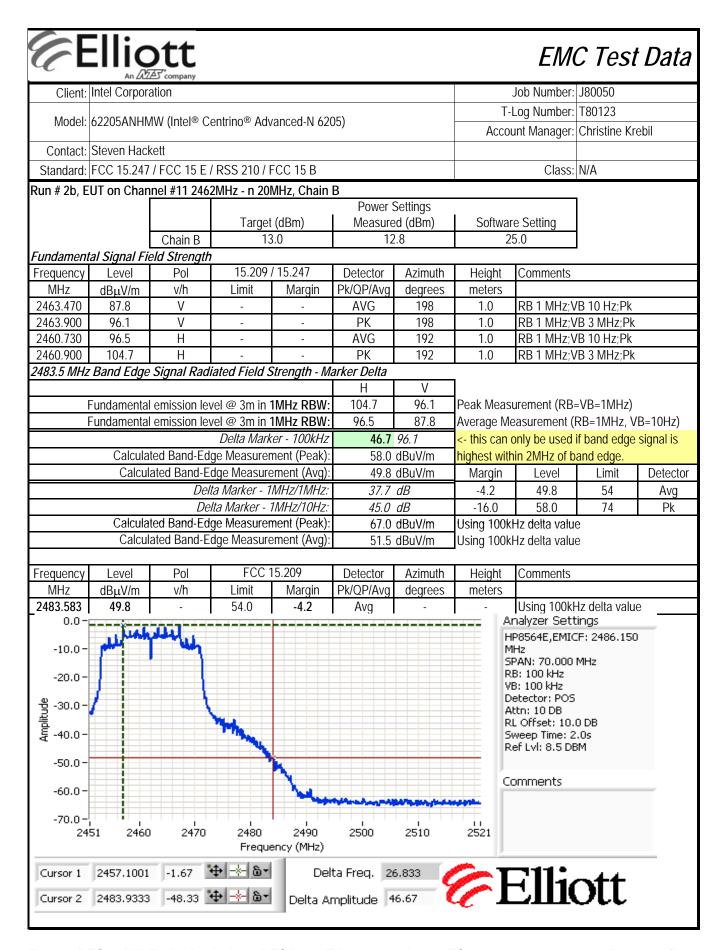
Run # 2, Band Edge Field Strength - n 20MHz, Chain B

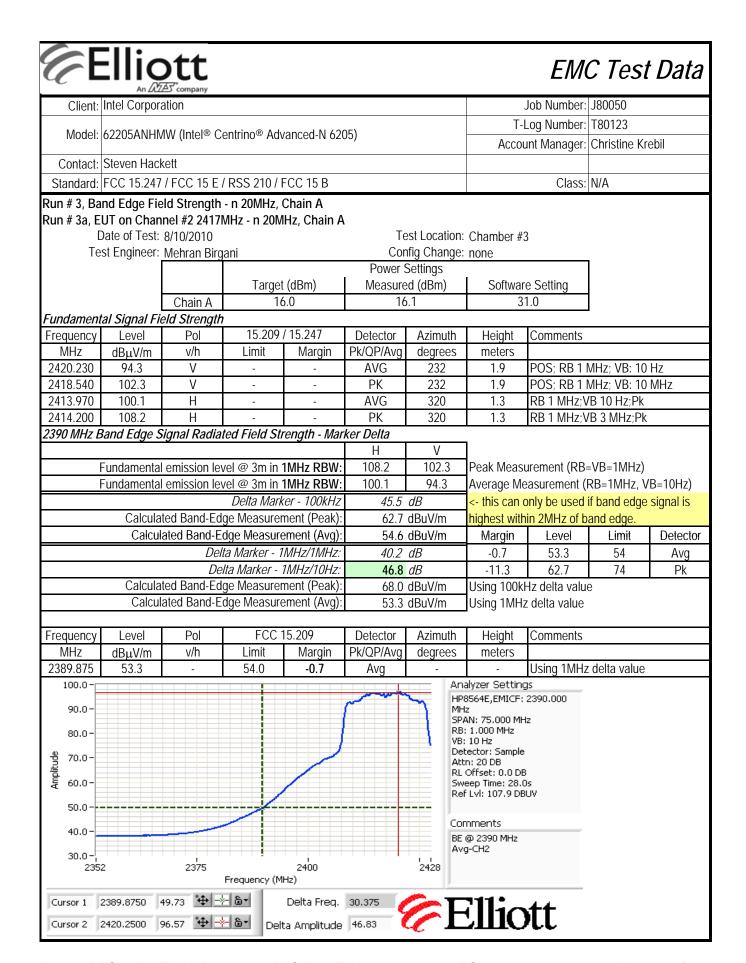
Date of Test: 8/3/2010 Test Location: Chamber #3
Test Engineer: Mehran Birgani Config Change: none

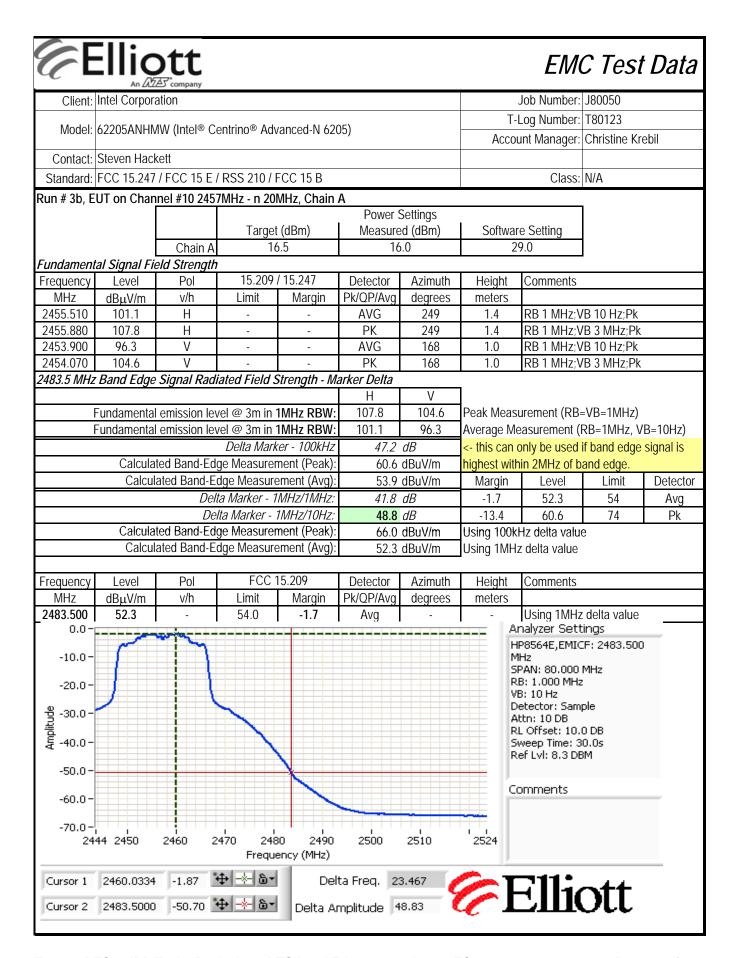
Run # 2a, EUT on Channel #1 2412MHz - n 20MHz, Chain B


	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain B	13.0	12.9	25.0					

Fundamental Signal Field Strength


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2415.230	92.0	V	-	-	AVG	263	1.0	RB 1 MHz;VB 10 Hz;Pk
2414.470	100.3	V	-	-	PK	263	1.0	RB 1 MHz;VB 3 MHz;Pk
2415.230	96.1	Н	-	-	AVG	194	1.0	RB 1 MHz;VB 10 Hz;Pk
2415.300	104.3	Н	-	-	PK	194	1.0	RB 1 MHz;VB 3 MHz;Pk


2370 IVII IZ Da	illu Luye 3	nyiiai Kaula	ieu i ieiu Sireriyiri - mari	NEI DEIIA		_					
				Н	V						
Fu	undamental	l emission le	vel @ 3m in 1MHz RBW:	104.3	100.3	Peak Measi	urement (RB=	=VB=1MHz)			
Fu	undamental	l emission le	vel @ 3m in 1MHz RBW:	96.1	92.0	Average Measurement (RB=1MHz, VB=10Hz)					
			Delta Marker - 100kHz	45.3	dB	<- this can o	nly be used	if band edge	signal is		
	ted Band-Ed	ge Measurement (Peak):	59.0	59.0 dBuV/m highest within 2MHz of band edge.			and edge.				
	ated Band-E	dge Measurement (Avg):	50.8 dBuV/m		Margin	Level	Limit	Detector			
		Dei	ta Marker - 1MHz/1MHz:	36.0 dB		-4.7	49.3	54	Avg		
		De	lta Marker - 1MHz/10Hz:	46.8	dB	-15.0	59.0	74	Pk		
	Calcula	ted Band-Ed	ge Measurement (Peak):	68.3	dBuV/m	Using 100kl	Hz delta value	Э			
	Calcul	ated Band-E	dge Measurement (Avg):	49.3	dBuV/m	Using 1MHz	delta value				
Frequency		P∩l	FCC 15 209	Detector	Δzimuth	Height	Comments				


Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	49.3	-	54.0	-4.7	Avg	-	-	Using 1MHz delta value

Frequency (MHz)

		-								
E		Dtt De company						EM	C Test	Data '
Client:	Intel Corpora	ation					,	Job Number:	J80050	
	/ 000 F A NU IA	NN / L L® O		1.11.70	05)		T-L	og Number:	T80123	
Model:	62205ANHN	/IW (Intel® C	entrino® Adv	anced-IN 620	J5)		Accou	ınt Manager:	Christine Kr	ebil
Contact:	Steven Hack	kett								
	FCC 15.247		/ RSS 210 / I	FCC 15 B				Class:	N/A	
	nd Edge Fie									
	Date of Test:		11 20111112	onani b	Τe	est Location:	Chamber #3	}		
	st Engineer:		ani			ifig Change:				
	UT on Chan			Hz, Chain B	}	0 0				
					Power S	Settings				
			Target	(dBm)	Measure	d (dBm)	Software	e Setting		
		Chain B		5.5	16	.7	29	9.5		
Fundament	tal Signal Fi						_			
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2413.870	94.8	V	-	-	AVG	96	1.0	RB 1 MHz;V		
2413.170	103.1	V	-	-	PK	96	1.0		/B 3 MHz;Pk	
2419.970	100.5	H	-	-	AVG	193	1.0	RB 1 MHz;V		
2420.370	109.0	H	- 	-	PK	193	1.0	RB 1 MHZ;V	/B 3 MHz;Pk	
2390 IVIHZ E	Band Edge S	ngnai kadia	tea Fiela Sti	engtn - Mar		V	1			
	Fundamental	Lomiccion lo	.ωl @ 2m in '	IMUz DDW.	H 109.0	103.1	Dook Moosi	rement (RB:	_\/D_1\/U¬\	
	Fundamental Fundamental					94.8	-	•		'R_10U7)
	i unuamenta	I CHIISSIOH IC		er - 100kHz		0.5 94.8 Average Measurement (RB=1MHz, VI 48.3 dB <- this can only be used if band edge				
	Calcula	ted Band-Ed				dBuV/m			•	signal is
		ated Band-E				dBuV/m	Margin	highest within 2MHz of band edge. Margin Level Limit De		
			ta Marker - 1		41.0		-2.8	51.2	54	Avg
						·				

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	51.2	-	54.0	-2.8	Avg	-	-	Using 1MHz delta value
2390.000	51.2	-	54.0	-2.8	Avg	-	-	Using 1MHz delta value

49.3 *dB*

68.0 dBuV/m

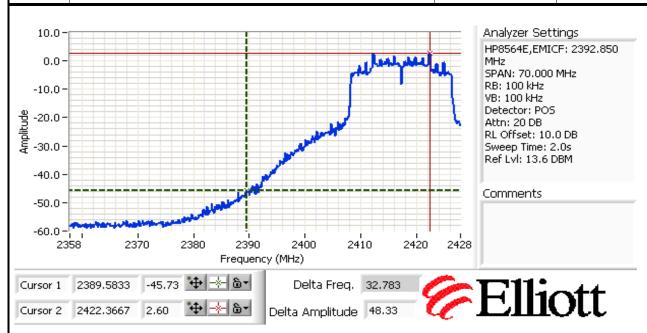
51.2 dBuV/m

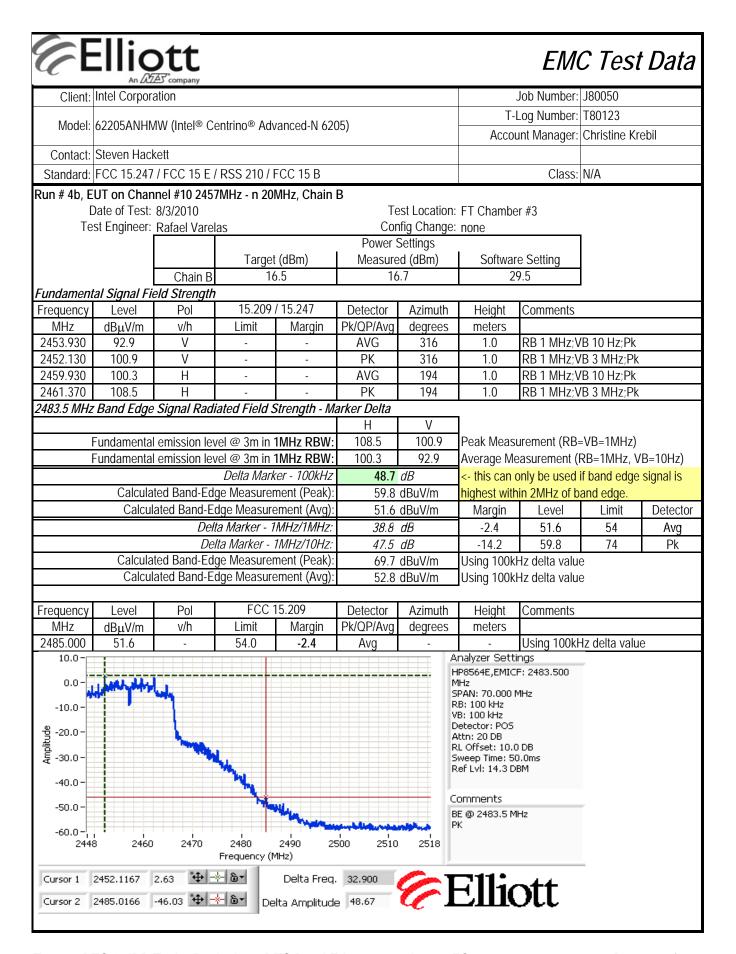
-13.3

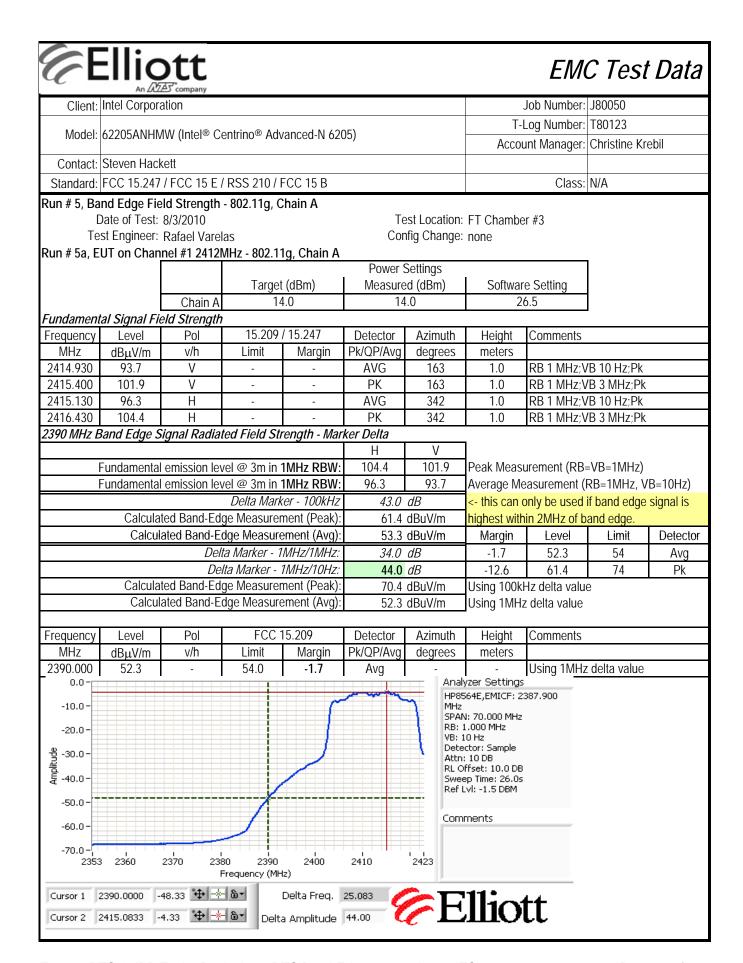
Using 100kHz delta value

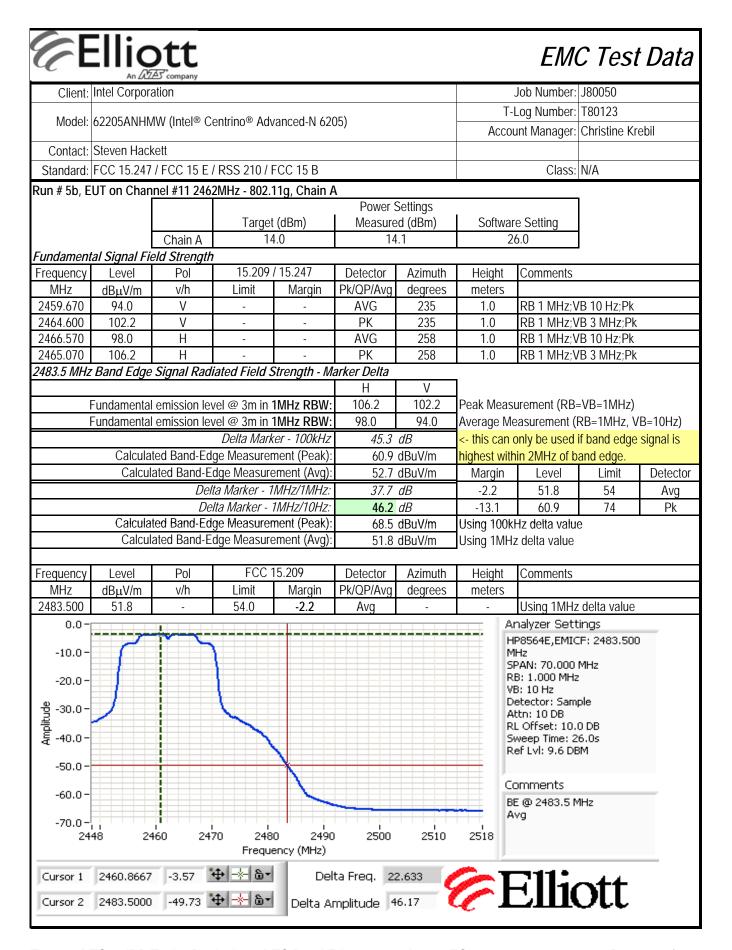
Using 1MHz delta value

74


Delta Marker - 1MHz/10Hz:


Calculated Band-Edge Measurement (Peak):


Calculated Band-Edge Measurement (Avg):



_	All Deep Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIIIei® Ceittiiiio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

E E	Ellic	ott						EM	C Test	' Data
Client:	Intel Corpor							Job Number:	J80050	
	•						T-I	_og Number:	T80123	
Model:	62205ANHN	/IW (Intel® Co	entrino® Adv	anced-N 620	05)		Accou	ınt Manager:	Christine Kr	ebil
Contact:	Steven Hacl	kett						<u> </u>		
		/ FCC 15 E /	' RSS 210 / F	FCC 15 B				Class:	N/A	
Run # 6, Ba [Te	nd Edge Fie Date of Test: st Engineer:	eld Strength	- 802 .11 g , C	chain B		est Location: ofig Change:	FT Chambe		ı	
Ruπ # oa, L	OT OIT CHAIL	11101#124121	VII IZ - 002. I	ig, Chain D	Power S	Settinas			1	
			Target	(dBm)	Measure		Softwar	e Setting		
		Chain B	14	1.0	14	.0	20	5.0		
Fundament		eld Strength							-	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	DD 4 MIL 1	/D 40 II DI	
2414.900	92.6	V	-	-	AVG	263	1.0	RB 1 MHz;V		
2416.500 2410.300	100.8 98.2	H	-	-	PK AVG	263 24	1.0	RB 1 MHz;V	/B 3 MHz;Pk	
2415.130	106.3	Н	-		PK	24	1.0		/B 3 MHz;Pk	
		Signal Radia	ted Field Str	ength - Mar			1.0	1 1 1 1 1 1 1 2 , 0	D O WII IZ/I K	
		<u> </u>			Н	V	1			
ŀ	undamenta	l emission lev	/el @ 3m in 1	1MHz RBW:	106.3	100.8	Peak Meası	urement (RB:	=VB=1MHz)	
[undamenta	l emission lev	/el @ 3m in <i>1</i>	1MHz RBW:	98.2	92.6	Average Me	easurement (RB=1MHz, V	B=10Hz)
	_			er - 100kHz	48.2			only be used	U	signal is
		ted Band-Ed				dBuV/m		in 2MHz of b	1	
	Calcul	ated Band-E				dBuV/m	Margin	Level	Limit	Detector
		Deli	ta Marker - 1	MHz/1MHz:	40.3	dВ	-4.8	49.2	54	Avg

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	49.2	-	54.0	-4.8	Avg	-	-	Using 1MHz delta value

49.0 *dB*

66.0 dBuV/m

49.2 dBuV/m

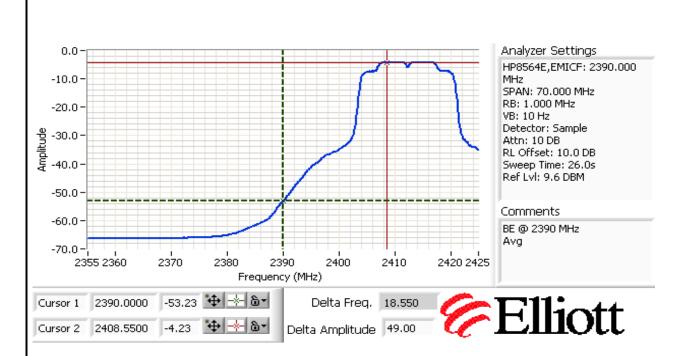
-15.9

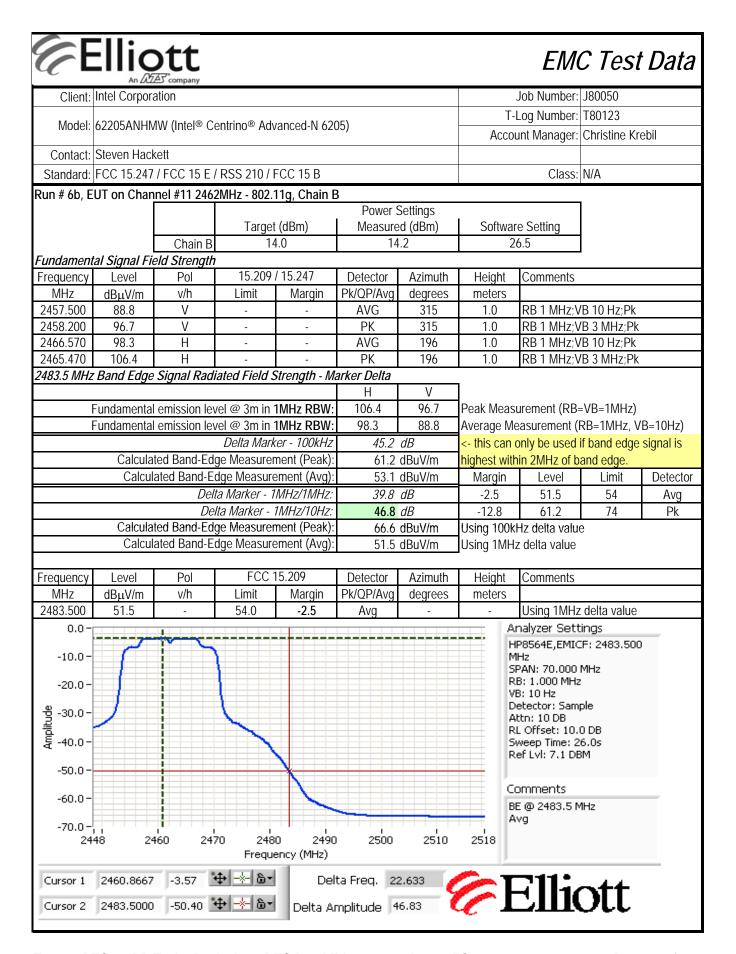
58.1

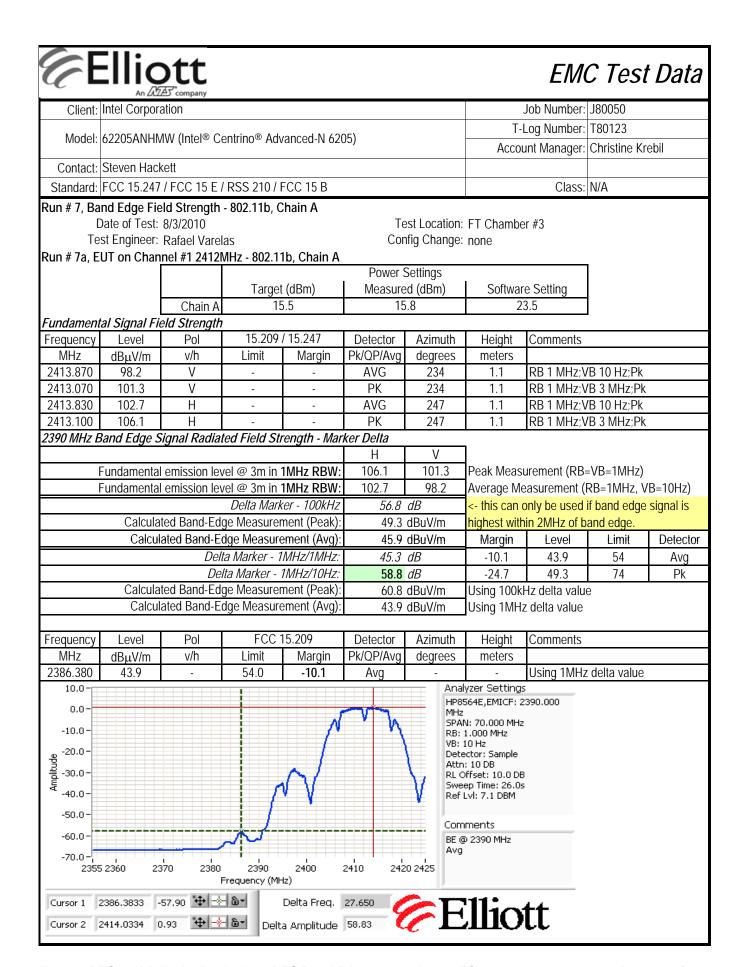
Using 100kHz delta value

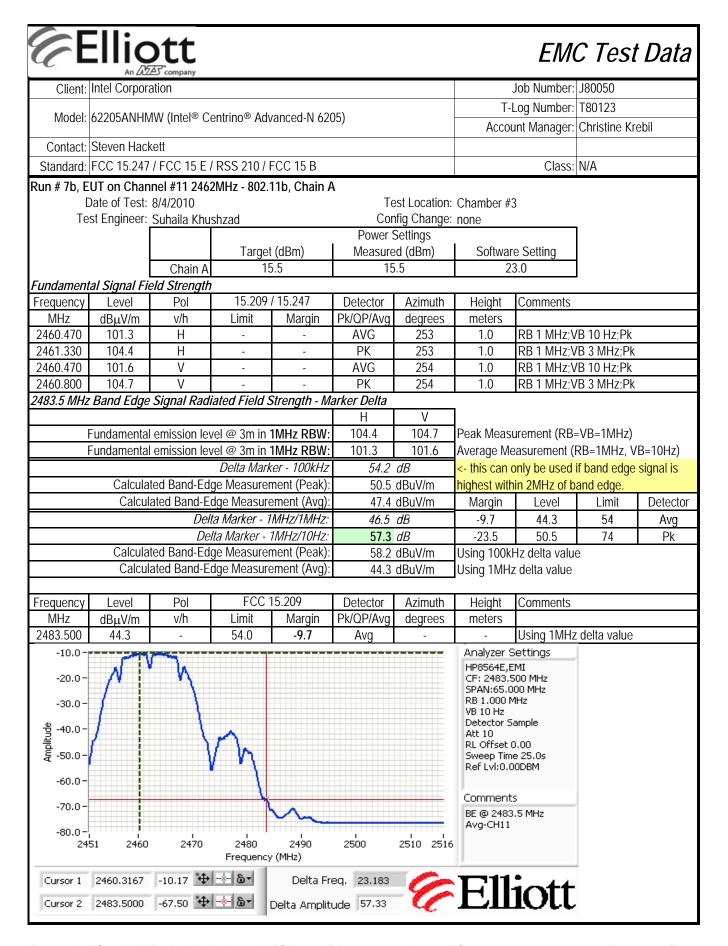
Using 1MHz delta value

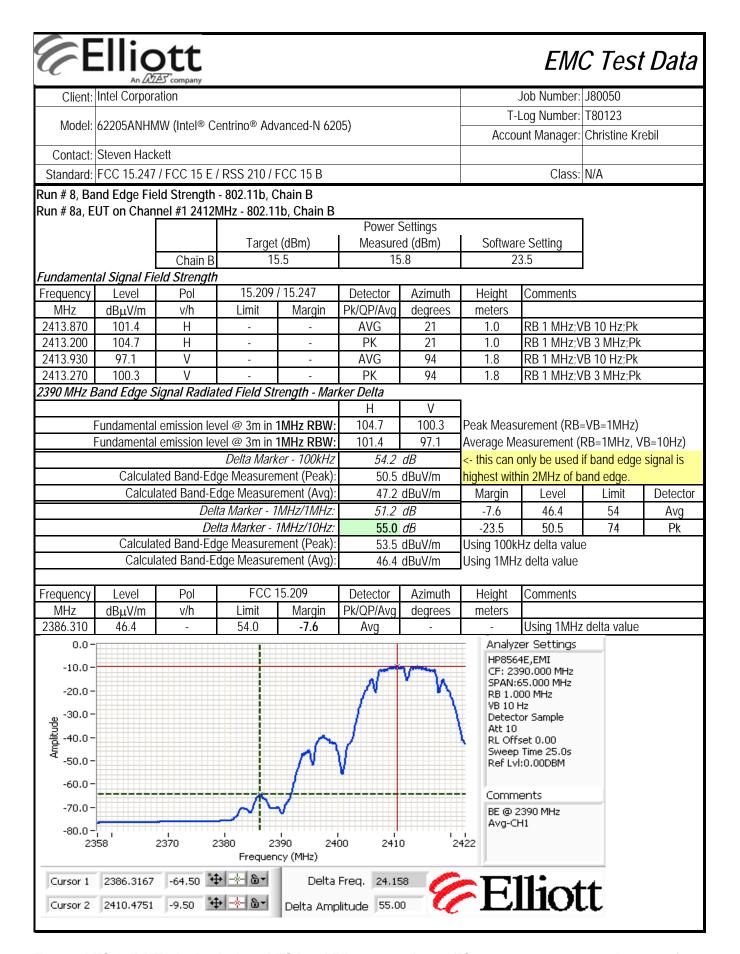
74

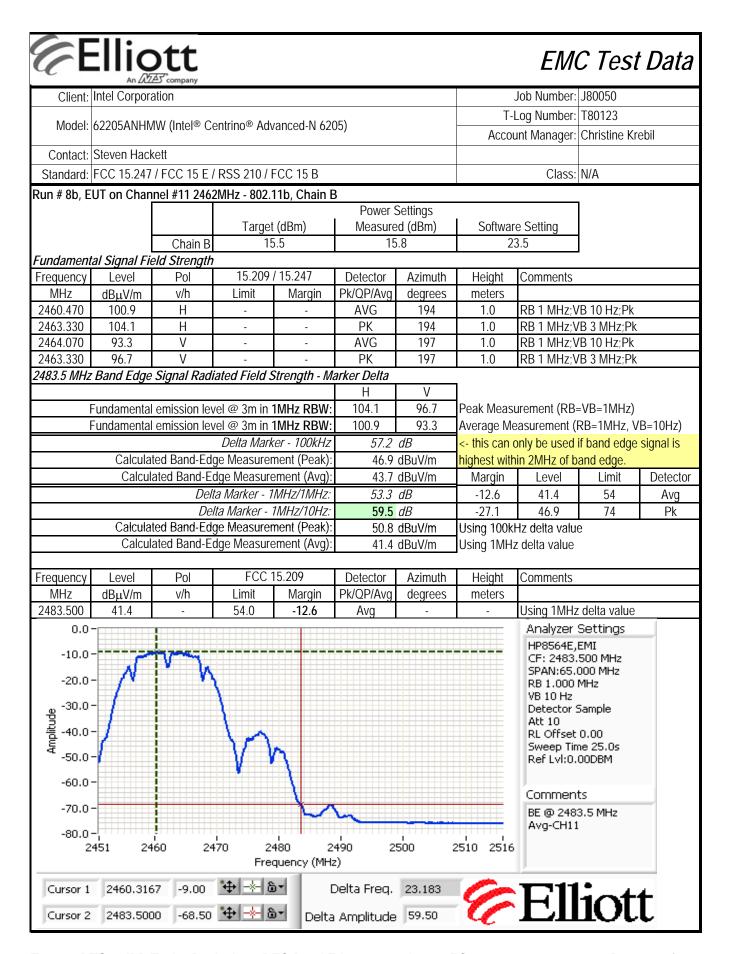

Delta Marker - 1MHz/10Hz:


Calculated Band-Edge Measurement (Peak):


Calculated Band-Edge Measurement (Avg):

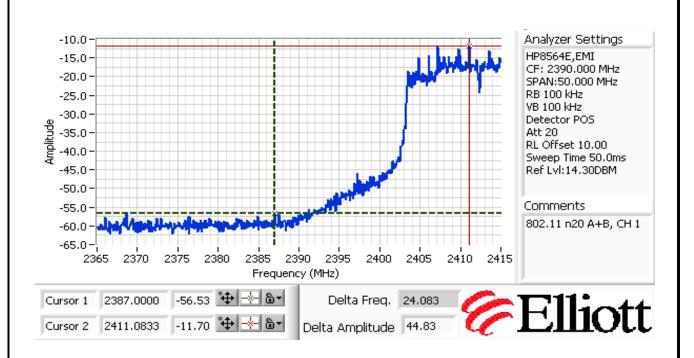


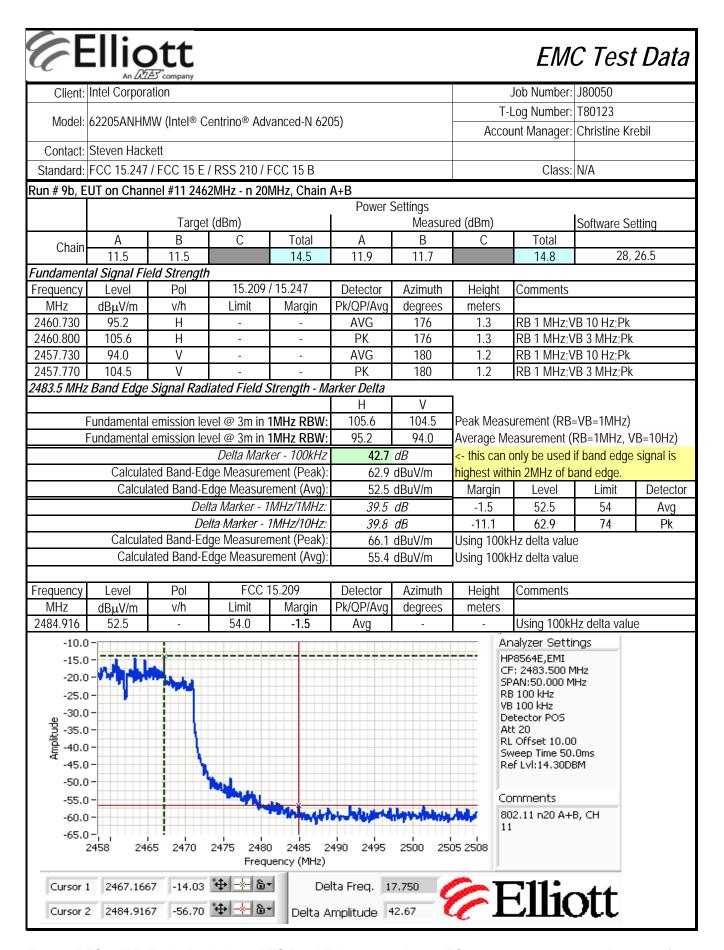

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
		Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



<u> </u>	All Details Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHINO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 9, Band Edge Field Strength - n 20MHz, Chain A+B - new target powers 8/25/2010


Test Location: FT#7 Date of Test: 8/26/2010 Test Engineer: Mark Hill Config Change: none


Sample: 0015000633B14

Run # 9a, E	UT on Chan	nel #1 2412l	MHz - n 20M	lHz, Chain A	ι+B					
	Power Settings									
		Target	(dBm)			Measur	ed (dBm)		Software Se	tting
Chain	Α	В	С	Total	Α	В	С	Total		
Criairi	11.5	11.5		14.5	11.6	11.6		14.6	28.5,	26.5
Fundament	al Signal Fi	e <mark>ld Strength</mark>	1							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2416.730	93.7	Н	120.0	-26.3	AVG	74	1.0	RB 1 MHz;\	/B 10 Hz;Pk	
2416.100	104.1	Н	120.0	-15.9	PK	74	1.0	RB 1 MHz;\	/B 3 MHz;Pk	
2413.280	93.1	V	120.0	-26.9	AVG	242	1.2	RB 1 MHz;\	/B 10 Hz;Pk	
2410.600	102.5	V	120.0	-17.5	PK	242	1.2	RB 1 MHz;\	/B 3 MHz;Pk	
2390 MHz E	Band Edge S	Signal Radia	ted Field Sti	rength - Mar	ker Delta		_			
					Н	V				
	undamental	emission lev	<i>r</i> el @ 3m in '	1MHz RBW:	104.1	102.5	Peak Measu	urement (RB	=VB=1MHz)	
	undamental	emission lev	<i>r</i> el @ 3m in '	1MHz RBW:	93.7	93.1	Average Me	easurement (RB=1MHz, V	B=10Hz)
			Delta Mark	er - 100kHz	44.8	dB			if band edge	
	Calcula	ted Band-Ed	ge Measurer	ment (Peak):	59.3	dBuV/m	highest within 2MHz of band edge.			J
		ated Band-E	•			dBuV/m	Margin	Level	Limit	Detector
				MHz/1MHz:			-5.1	48.9	54	Avg
		De	lta Marker -	1MHz/10Hz:	41.3		-14.7	59.3	74	Pk
	Calcula	ted Band-Ed	ge Measurer	ment (Peak):		dBuV/m	Usina 100kl	Hz delta valu		
		ated Band-E				dBuV/m		Hz delta valu		
			<u> </u>	ν 3/			J - 1			
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2389.450	48.9	-	54.0	-5.1	Avg	-	-	Using 100kl	Hz delta valu	

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIIIei® Celiliiio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Elli	Ott MAS company
-------------	--------------------

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model:	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (2.4GHz DTS) Transmitter and Receiver Spurious

Summary of Results

MAC Address: 001500633B2C DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
		#1 2412MHz	15.5	15.7			43.6dBµV/m @ 4824.0MHz (-10.4dB)
Run # 1	802.11b Chain A	#6 2437MHz	15.5	15.8	Radiated Emissions, 1 - 26 GHz	1 FCC 15 209 / 15 24 / I	46.8dBµV/m @ 4874.0MHz (-7.2dB)
		#11 2462MHz	15.5	15.8			47.9dBµV/m @ 4924.0MHz (-6.1dB)
		#1 2412MHz	15.5	15.8	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	44.0dBµV/m @ 7500.1MHz (-10.0dB)
Run # 2	802.11b Chain B	#6 2437MHz	15.5	15.8			44.1dBµV/m @ 7500.0MHz (-9.9dB)
		#11 2462MHz	15.5	15.8			43.5dBµV/m @ 4924.0MHz (-10.5dB)
Center chan	nel in 802.11	lg and n mod	les (OFDM)	to determine	the worst case. For n mo	odes we are testing with b	oth chains operating

simultaneously at the maximum single chain power to cover both single- and dual-chain operation.

		002 11a	#6 A	16.5	16.6	Radiated Emissions,		45.6dBµV/m @	
	Run # 3	802.11g	2437MHz			·	FCC 15.209 / 15.247	7500.1MHz (-8.4dB)	
		Chain A/B	#6 B	16.5	16.7	1 - 26 GHz		39.0dBµV/m @	
			2437MHz	10.5	10.7			4874.1MHz (-15.0dB)	
ı	Switched to sample MAC Address: 001500633B14 due to broken rf connector on original sample.								
			#6 n20	A:16.5	16.4			41.9dBµV/m @	
	Run # 4	n20 / n40	2437MHz	B:16.5	16.4	Radiated Emissions,	FCC 15.209 / 15.247	4873.5MHz (-12.1dB)	
	I\uII # 4	Chain A+B	#6 n40	A:16.5	16.4	1 - 26 GHz	1 00 13.2077 13.247	37.0dBµV/m @	
ı			2437MHz	B:16.5	16.3			4874.2MHz (-17.0dB)	
	Top and bottom channels in worst case OFDM mode:								
ı			#1	A: 16.5	16.7			37.8dBµV/m @	
ı	Run # 5	802.11g	2412MHz	A. 10.5	10.7	Radiated Emissions,	FCC 15.209 / 15.247	1592.9MHz (-16.2dB)	
ı		Chain A	#11	۸, 14 ۵	14 /	1 - 26 GHz	FGG 13.2097 13.247	42.0dBµV/m @	

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only.

2462MHz

A: 16.5

16.4

4925.7MHz (-12.0dB)

EII	iott	
	An AZAS company	

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woder.	02203ANTIMIW (IIIIei® Celiliilio® Auvanceu-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Receiver Spurious Emissions

I		Receive Chain A,	#6A 2437MHz	-	-	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	37.8dBµV/m @ 1328.7MHz (-16.2dB)
	Run # 6	Chain B	#6B 2437MHz	-	-			36.4dBµV/m @ 2517.5MHz (-17.6dB)
		and Chain A+B	#6A+B 2437MHz	-	-			32.3dBµV/m @ 1594.2MHz (-21.7dB)

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

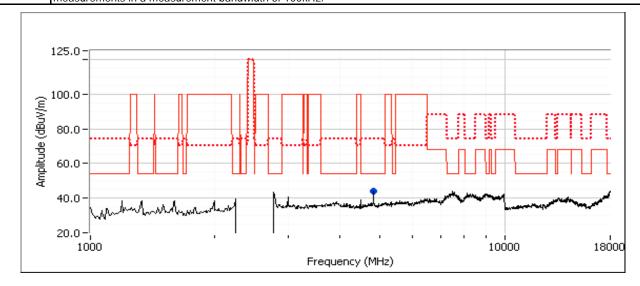
Deviations From The Standard

No deviations were made from the requirements of the standard.

ŀ		An Barry Company		
	Client:	Intel Corporation	Job Number:	J80050
	Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	Model.	02203ANTIWW (IIIle1 Celllillo Advanced-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Chain A

Date of Test: 8/5/2010 Test Location: FT Chamber #3


Test Engineer: Rafael Varelas Config Change: None

Run # 1a, EUT on Channel #1 2412MHz - 802.11b, Chain A

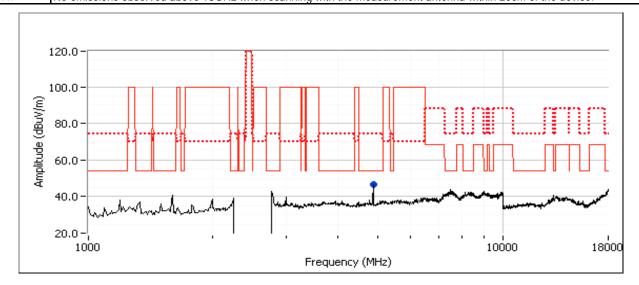
	Power Settings					
	Target (dBm)	Measured (dBm)	Software Setting			
Chain A	15.5	15.7	23.5			

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.000	43.6	V	54.0	-10.4	AVG	179	1.0	RB 1 MHz;VB 10 Hz;Pk
4824.060	47.4	V	74.0	-26.6	PK	179	1.0	RB 1 MHz;VB 3 MHz;Pk

Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 1b: , EUT on Channel #6 2437MHz - 802.11b, Chain A

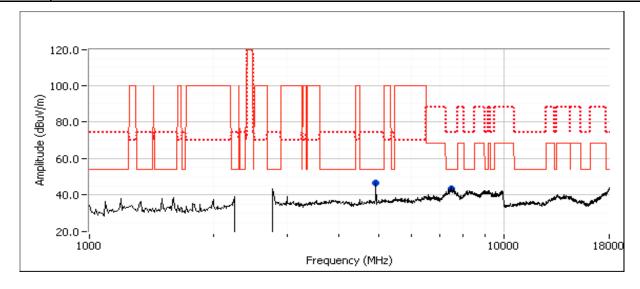

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	15.5	15.8	23.5					

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.980	46.8	V	54.0	-7.2	AVG	198	1.0	RB 1 MHz;VB 10 Hz;Pk
4874.020	49.5	V	74.0	-24.5	PK	198	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of the device.


Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 1c: , EUT on Channel #11 2462MHz - 802.11b, Chain A

	Power Settings					
	Target (dBm)	Software Setting				
Chain A	15.5	15.8	23.5			

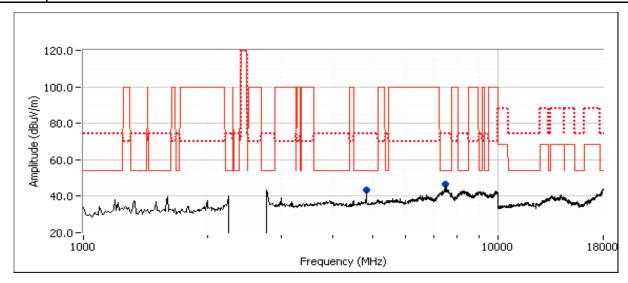
Spurious Radiated Emissions:

adiated Eiiii	3310113.						
Level	Pol	15.209/	/15.247	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
47.9	V	54.0	-6.1	AVG	195	1.0	RB 1 MHz;VB 10 Hz;Pk
51.0	V	74.0	-23.0	PK	195	1.0	RB 1 MHz;VB 3 MHz;Pk
43.5	V	54.0	-10.5	AVG	103	1.1	RB 1 MHz;VB 10 Hz;Pk
49.9	V	74.0	-24.1	PK	103	1.1	RB 1 MHz;VB 3 MHz;Pk
	Level dBµV/m 47.9 51.0 43.5	Level Pol dBμV/m v/h 47.9 V 51.0 V 43.5 V	dB _μ V/m v/h Limit 47.9 V 54.0 51.0 V 74.0 43.5 V 54.0	Level Pol 15.209/15.247 dBμV/m v/h Limit Margin 47.9 V 54.0 -6.1 51.0 V 74.0 -23.0 43.5 V 54.0 -10.5	Level Pol 15.209/15.247 Detector dBμV/m V/h Limit Margin Pk/QP/Avg 47.9 V 54.0 -6.1 AVG 51.0 V 74.0 -23.0 PK 43.5 V 54.0 -10.5 AVG	Level Pol 15.209/15.247 Detector Azimuth dBμV/m v/h Limit Margin Pk/QP/Avg degrees 47.9 V 54.0 -6.1 AVG 195 51.0 V 74.0 -23.0 PK 195 43.5 V 54.0 -10.5 AVG 103	Level Pol 15.209/15.247 Detector Azimuth Height dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 47.9 V 54.0 -6.1 AVG 195 1.0 51.0 V 74.0 -23.0 PK 195 1.0 43.5 V 54.0 -10.5 AVG 103 1.1

	All Deed Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 2, Radiated Spurious Emissions, 1-26GHz, 802.11b, Chain B

Date of Test: 8/5/2010 Test Location: FT Chamber #3


Test Engineer: Rafael Varelas Config Change: None

Run # 2a, EUT on Channel #1 2412MHz - 802.11b, Chain B

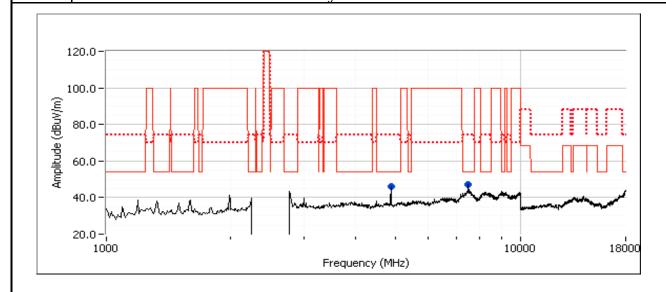
Ī		Power Settings						
		Target (dBm) Measured (dBm) Software Setti						
ľ	Chain B	15.5	15.8	23.5				

Spurious Radiated Emissions:

7								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7500.090	44.0	V	54.0	-10.0	AVG	101	1.1	RB 1 MHz;VB 10 Hz;Pk
7499.860	50.9	V	74.0	-23.1	PK	101	1.1	RB 1 MHz;VB 3 MHz;Pk
4824.000	42.6	V	54.0	-11.4	AVG	172	1.1	RB 1 MHz;VB 10 Hz;Pk
4824.120	47.3	V	74.0	-26.7	PK	172	1.1	RB 1 MHz;VB 3 MHz;Pk

Client:	Intel Corporation	Job Number:	J80050
Madali	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wouei.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 2b: , EUT on Channel #6 2437MHz - 802.11b, Chain B

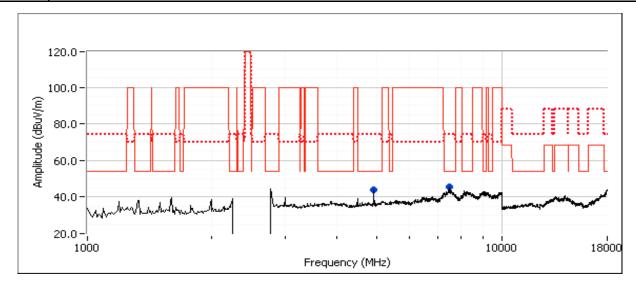

Γ		Power Settings					
		Target (dBm)	Measured (dBm)	Software Setting			
Γ	Chain B	15.5	15.8	23.5			

Spurious Radiated Emissions:

opanious national annocioner								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7500.040	44.1	V	54.0	-9.9	AVG	106	1.1	RB 1 MHz;VB 10 Hz;Pk
7500.180	52.0	V	74.0	-22.0	PK	106	1.1	RB 1 MHz;VB 3 MHz;Pk
4873.990	43.3	V	54.0	-10.7	AVG	179	1.0	RB 1 MHz;VB 10 Hz;Pk
4873.920	47.4	V	74.0	-26.6	PK	179	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of the device.


Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 2c: , EUT on Channel #11 2462MHz - 802.11b, Chain B

Γ			Power Settings	
		Software Setting		
Ī	Chain B	15.5	15.8	23.5

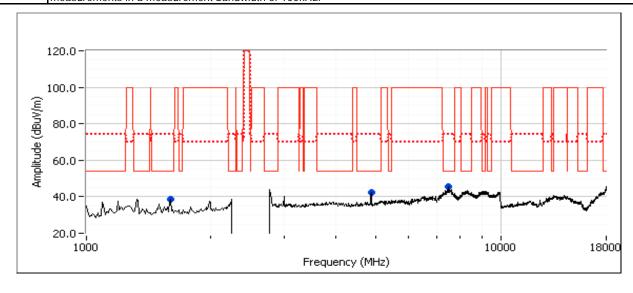
Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4924.000	43.5	V	54.0	-10.5	AVG	183	1.1	RB 1 MHz;VB 10 Hz;Pk
4923.980	47.6	V	74.0	-26.4	PK	183	1.1	RB 1 MHz;VB 3 MHz;Pk
7499.960	42.2	V	54.0	-11.8	AVG	147	1.0	RB 1 MHz;VB 10 Hz;Pk
7500.070	51.2	V	74.0	-22.8	PK	147	1.0	RB 1 MHz;VB 3 MHz;Pk

	All BEES Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHIIIO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 3, Radiated Spurious Emissions, 1-26GHz, 802.11g, Chain A

Date of Test: 8/6/2010 Test Location: FT Chamber #3

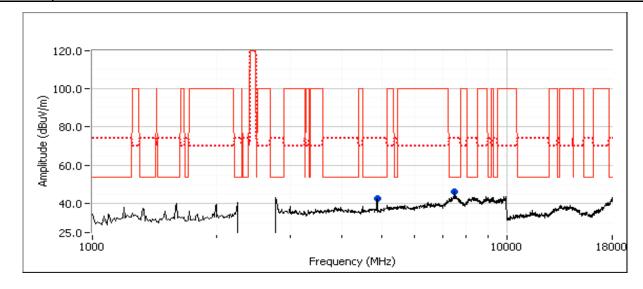

Test Engineer: David Bare Config Change: None

Run # 3a, EUT on Channel #6 A 2437MHz - 802.11g, Chain A

		Power Settings							
	Target (dBm) Measured (dBm) Software Sett								
Chain A/B	16.5	16.6	29.5						

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1594.680	45.9	V	74.0	-28.1	PK	174	1.4	
1595.960	32.1	V	54.0	-21.9	AVG	174	1.4	
4872.590	51.1	V	74.0	-22.9	PK	164	1.1	
4873.740	39.8	V	54.0	-14.2	AVG	164	1.1	
7500.110	45.6	V	54.0	-8.4	Peak	114	1.3	


	Tan Dall's company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 3b: , EUT on Channel #6 B 2437MHz - 802.11g, Chain B

		Power Settings				
	Target (dBm)	Target (dBm) Measured (dBm) So				
Chain A/B	16.5	16.7	29.5			

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4871.650	51.0	V	74.0	-23.0	PK	181	1.0	
4874.050	39.0	V	54.0	-15.0	AVG	181	1.0	
7306.850	47.5	V	74.0	-26.5	PK	150	1.0	
7309.850	35.5	V	54.0	-18.5	AVG	150	1.0	

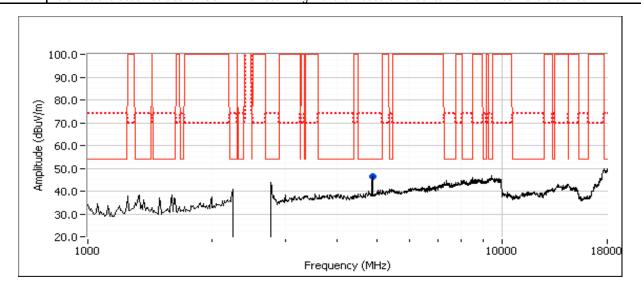
	An 2225 Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 4, Radiated Spurious Emissions, 1-26GHz, n20 / n40, Chain A+B

Date of Test: 8/9/2010 Test Location: CH #5

Test Engineer: John Caizzi Config Change: Backup sample, see EUT Description.

Run # 4a, EUT on Channel #6 n20 2437MHz, Chain A+B


		Power Settings								
	Target (dBm)			Measured (dBm)				Software Setting		
Chain	А	В	С	Total	Α	В	С	Total		
CHAIH	16.5	16.5		19.5	16.4	16.4		19.4	31.0 / 31.0	

Spurious Radiated Emissions:

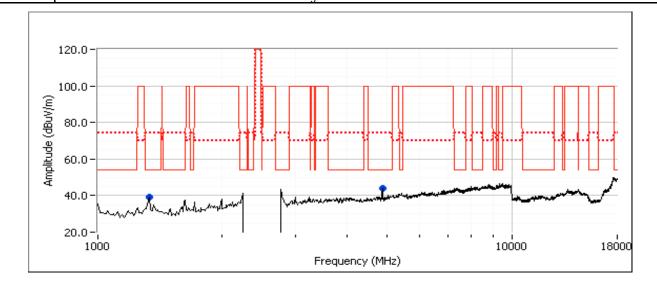
Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.530	41.9	V	54.0	-12.1	AVG	9	1.02	
4871.530	54.0	V	74.0	-20.0	PK	9	1.02	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of the device.

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 4b: , EUT on Channel #6 n40 2437MHz - Chain A+B


		Power Settings									
		Target	(dBm)		Measured (dBm)				Software Setting		
Chain	Α	В	С	Total	А	В	С	Total			
CHAIH	16.5	16.5		19.5	16.4	16.3		19.4	31.0 / 30.5		

Spurious Radiated Emissions:

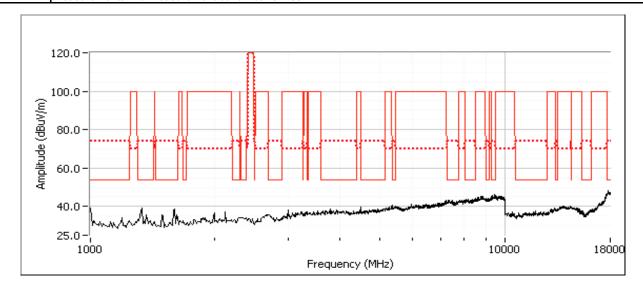
Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.200	37.0	V	54.0	-17.0	AVG	21	1.02	
4874.130	49.5	V	74.0	-24.5	PK	21	1.02	
1330.000	39.0	V	54.0	-15.0	Peak	262	1.3	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of the device.

	All Deed Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 5, Radiated Spurious Emissions, 1-26GHz, 802.11g, Chain A

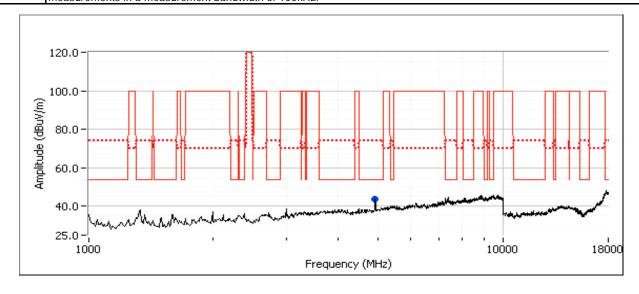

Date of Test: 8/9/2010 Test Location: Chamber #5
Test Engineer: Mehran Birgani Config Change: None

Run # 5a, EUT on Channel #1 2412MHz - 802.11g, Chain A

		Power Settings									
		Target	(dBm)		Measured (dBm)				Software Setting		
Chain	Α	В	С	Total	А	В	С	Total			
Chain	16.5			16.5	16.7			16.7	32.0		

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1592.890	37.8	V	54.0	-16.2	Peak	327	1.3	


Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 5b: , EUT on Channel #11 2462MHz - 802.11g, Chain A

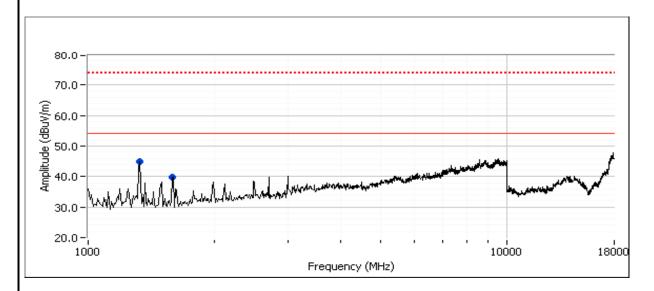
		Power Settings								
		Target	(dBm)		Measured (dBm)				Software Setting	
Chain	Α	В	С	Total	Α	В	С	Total		
Chain	16.5			16.5	16.4			16.4	30.0	

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4925.700	42.0	V	54.0	-12.0	AVG	12	1.0	Chain A
4925.430	54.3	V	74.0	-19.7	PK	12	1.0	Chain A
4923.970	36.6	V	54.0	-17.4	AVG	0	1.0	Chain B (setting 29, 16.5dBm)
4926.370	48.5	V	74.0	-25.5	PK	0	1.0	Chain B (setting 29, 16.5dBm)

	All Barry Company		
Client:	Intel Corporation	Job Number:	J80050
Modol	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHIIIO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 6, Radiated Spurious Emissions, 1-26GHz, Receive Mode Chain A, Chain B and Chain A+B


Date of Test: 8/9/2010 Test Location: FT Chamber #5

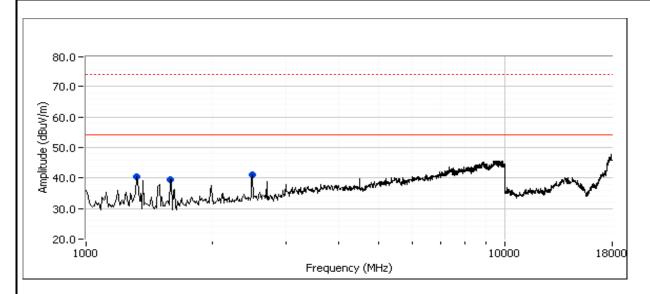
Test Engineer: Mehran Birgani Config Change: none

Run # 6a, EUT on Channel #6 2437MHz - Receive, Chain A

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1328.670	37.8	V	54.0	-16.2	AVG	33	1.0	RB 1 MHz;VB 10 Hz;Pk			
1330.970	52.5	V	74.0	-21.5	PK	33	1.0	RB 1 MHz;VB 3 MHz;Pk			
1590.120	23.2	V	54.0	-30.8	AVG	351	1.0	RB 1 MHz;VB 10 Hz;Pk			
1599.220	32.2	V	74.0	-41.8	PK	351	1.0	RB 1 MHz;VB 3 MHz;Pk			

	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

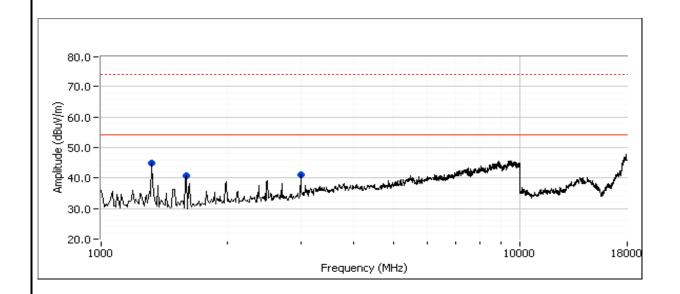

Run # 6b: , EUT on Channel #6B 2437MHz - Receive, Chain B

Date of Test: 8/9/2010 Test Location: FT Chamber #5

Test Engineer: Rafael Varelas Config Change: none

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2517.520	36.4	V	54.0	-17.6	AVG	293	1.0	RB 1 MHz;VB 10 Hz;Pk	
2526.160	42.3	V	74.0	-31.7	PK	293	1.0	RB 1 MHz;VB 3 MHz;Pk	
1321.450	30.1	Н	54.0	-23.9	AVG	46	1.6	RB 1 MHz;VB 10 Hz;Pk	
1321.650	42.2	Н	74.0	-31.8	PK	46	1.6	RB 1 MHz;VB 3 MHz;Pk	
1590.150	31.4	V	54.0	-22.6	AVG	355	1.0	RB 1 MHz;VB 10 Hz;Pk	
1598.710	43.0	V	74.0	-31.0	PK	355	1.0	RB 1 MHz;VB 3 MHz;Pk	



Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 6c: , EUT on Channel #6 A+B 2437MHz - Receive, Chain A+B

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1594.160	32.3	V	54.0	-21.7	AVG	321	1.3	RB 1 MHz;VB 10 Hz;Pk
1595.960	44.4	V	74.0	-29.6	PK	321	1.3	RB 1 MHz;VB 3 MHz;Pk
1314.260	30.8	Н	54.0	-23.2	AVG	296	1.9	RB 1 MHz;VB 10 Hz;Pk
1313.900	39.8	Н	74.0	-34.2	PK	296	1.9	RB 1 MHz;VB 3 MHz;Pk
3011.770	31.8	V	54.0	-22.2	AVG	30	1.0	RB 1 MHz;VB 10 Hz;Pk
3016.770	43.4	V	74.0	-30.6	PK	30	1.0	RB 1 MHz;VB 3 MHz;Pk

EII!	iott An MAS company
------	------------------------

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (5GHz DTS) Transmitter and Receiver Spurious

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

MAC Address: 001500633B14 DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Dun #	Run # Mode Channel Target Measured T		Test Performed	Limit	Result / Margin					
IXuII π	Mode	Charine	Power	Power	restrictionned	LIIIII	Result / Margin			
First set of measurements - center channel in each band to determine which mode has the highest emissions. SISO modes evaluated at										
the same per chain power as the highest single chain power to cover both MIMO & SISO operation.										
Run # 1	n40	#159	A: 16.5	A: 16.7	Radiated Emissions,	FCC 15.209/15.247	43.6dBµV/m @			
IXUII # I	Chain A+B	5795MHz	B: 16.5	B: 16.8	1 - 40 GHz	1 00 13.207/13.247	11590.6MHz (-10.4dB)			
Run # 2	n20	#157	A: 16.5	A: 16.7	Radiated Emissions,	FCC 15.209/15.247	46.9dBµV/m @			
I\uII π Z	Chain A+B	5785MHz	B: 16.5	B: 16.7	1 - 40 GHz	1 00 13.207/13.247	11569.7MHz (-7.1dB)			
	802.11a	#157	16.5	16.7	Radiated Emissions,	FCC 15.209/15.247	46.8dBµV/m @			
Run # 3	Chain A	5785MHz	10.5	10.7	1 - 40 GHz	1 00 13.207/13.247	11570.0MHz (-7.2dB)			
IXUIT II 3	802.11a	#157	16.5	16.7	Radiated Emissions,	FCC 15.209/15.247	40.7dBµV/m @			
	Chain B	5785MHz			1 - 40 GHz		11569.9MHz (-13.3dB)			
Final measu	irements - top	and bottom	channels in	each band ti	n the worst case mode fo	r each band.				
		#149	A: 16.5	A: 16.7			44.4dBµV/m @			
Run # 4	n20	5745MHz	B: 16.5	B: 16.8	Radiated Emissions,	FCC 15.209/15.247	11489.0MHz (-9.6dB)			
IXuII π 4	Chain A+B	#165	A: 16.5	A: 16.6	1 - 40 GHz	1 00 13.207/13.247	47.1dBµV/m @			
		5825MHz	B: 16.5	B: 16.8			11649.9MHz (-6.9dB)			
	Receive	#157A					35.2dBµV/m @			
	Chain A,	5795MHz		•			1328.9MHz (-18.8dB)			
Dup # F	*	#157B			Radiated Emissions,	RSS 210	39.8dBµV/m @			
Run # 5	Chain B	5795MHz	-	-	1 - 18 GHz	K33 210	1328.3MHz (-14.2dB)			
	and Chain	#157A+B					39.4dBµV/m @			
	A+B	5795MHz		-			1329.6MHz (-14.6dB)			

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

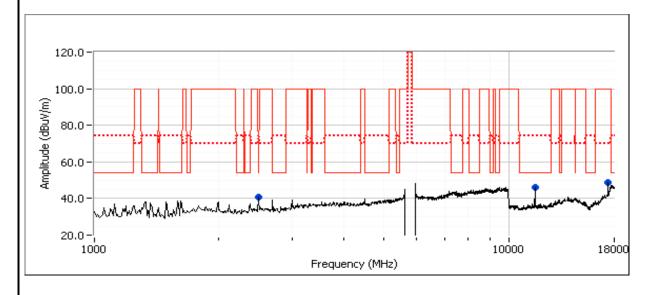
Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIN (IIIIei® Celiliiio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 1, Radiated Spurious Emissions, 1-40GHz, n40, Chain A+B

Date of Test: 8/9/2010 Test Location: FT Chamber #5


Test Engineer: Rafael Varelas Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc eirp measured in 100kHz.

Run # 1a: EUT on Channel #159 5795MHz - n40, Chain A+B

L	tall # 1al 201 off offatility of your 2												
Ī			Power Settings										
l			Target	Target (dBm) Measured (dBm)						Software Setting			
I	Chain	Α	В	С	Total	Α	В	С	Total				
I	CHAIH	16.5	16.5		19.5	16.7	16.8		19.8	33.0/32.5			

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11590.570	43.6	V	54.0	-10.4	AVG	43	1.5	RB 1 MHz;VB 10 Hz;Pk
11590.120	56.8	V	74.0	-17.2	PK	43	1.5	RB 1 MHz;VB 3 MHz;Pk
2489.210	40.5	V	54.0	-13.5	Peak	321	1.3	
17380.520	48.6	Н	70.0	-21.4	Peak	304	1.0	

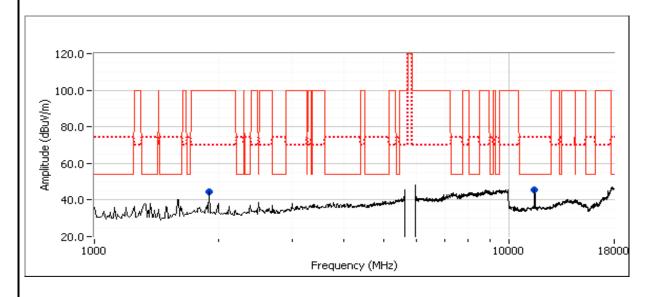
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIN (IIIIei® Celiliiii0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 2, Radiated Spurious Emissions, 1-40GHz, n20, Chain A+B

Date of Test: 8/9/2010 Test Location: FT Chamber #5

Test Engineer: Rafael Varelas Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc eirp measured in 100kHz.


Run # 2a: EUT on Channel #157 5785MHz - n20, Chain A+B

	• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	7 01141117112					
					Power	Settings			
		Target	(dBm)			Measure	ed (dBm)		Software Setting
Chain	Α	В	С	Total	Α	В	С	Total	
Cilalii	16.5	16.5		19.5	16.7	16.7		19.7	32.0/31.5

Spurious Radiated Emissions:

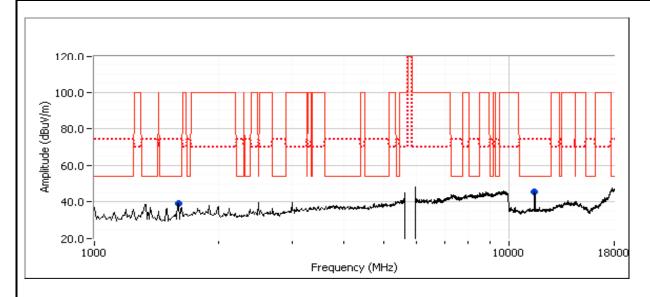
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.720	46.9	V	54.0	-7.1	AVG	360	1.9	RB 1 MHz;VB 10 Hz;Pk
11570.320	60.3	V	74.0	-13.7	PK	360	1.9	RB 1 MHz;VB 3 MHz;Pk
1866.660	44.6	Н	70.0	-25.4	Peak	77	1.3	

Note 1: No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of the device.

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTIMIN (IIIIei® Celiliiii0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 3, Radiated Spurious Emissions, 1-40GHz, 802.11a, Chain A and Chain B

Date of Test: 8/9/2010 Test Location: FT Chamber #5

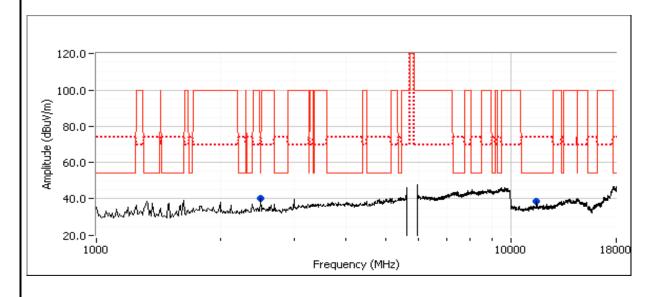

Test Engineer: Rafael Varelas Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc eirp measured in 100kHz.

Run # 3a: EUT on Channel #157 5785MHz - 802.11a Chain A

		Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.7	27.0						

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.980	46.8	V	54.0	-7.2	AVG	5	1.9	RB 1 MHz;VB 10 Hz;Pk
11566.180	57.6	V	74.0	-16.4	PK	5	1.9	RB 1 MHz;VB 3 MHz;Pk
1592.900	39.1	V	54.0	-14.9	Peak	326	1.3	



	Tan Dall's company		
Client:	Intel Corporation	Job Number:	J80050
Modol:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 3b: EUT on Channel #157 5785MHz - 802.11a Chain B

		Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting						
Chain B	16.5	16.7	26.0						

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.890	40.7	V	54.0	-13.3	AVG	0	1.0	MHz;VB 10 Hz;Pk
11569.180	52.6	V	74.0	-21.4	PK	0	1.0	MHz;VB 3 MHz;Pk
2494.170	40.1	V	54.0	-13.9	Peak	301	1.0	

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIITel® Celitililo® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 4, Radiated Spurious Emissions, 1-40GHz, n20, Chain A+B

Date of Test: 8/9/2010 Test Location: FT Chamber #5

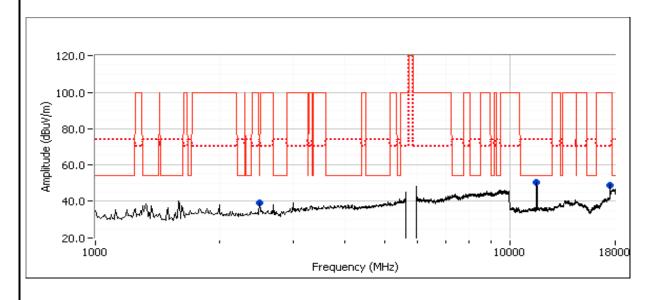
Test Engineer: Rafael Varelas Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc eirp measured in 100kHz.

Run # 4a: EUT on Channel #149 5745MHz - n20, Chain A+B

ı					1					
						Power	Settings			
			Target	t (dBm)			Measure	ed (dBm)		Software Setting
	Chain	Α	В	С	Total	А	В	С	Total	
I	CHAIH	16.5	16.5		19.5	16.7	16.8		19.8	31.5/31.5

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11488.980	44.4	V	54.0	-9.6	AVG	266	1.6	RB 1 MHz;VB 10 Hz;Pk
11490.320	57.4	V	74.0	-16.6	PK	266	1.6	RB 1 MHz;VB 3 MHz;Pk
2489.120	39.2	V	54.0	-14.8	Peak	310	1.3	
17234.540	45.8	Н	70.0	-24.2	Peak	313	1.0	



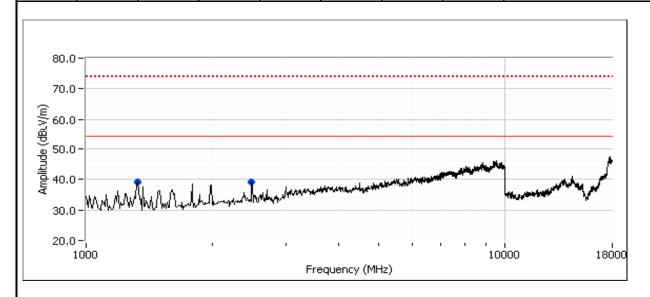
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wouei.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 4b: EUT on Channel #165 5825MHz - n20, Chain A+B

					Power :	Settings			
		Target	(dBm)			Measure	Software Setting		
Chain	Α	В	С	Total	Α	В	С	Total	
CHAIH	16.5	16.5		19.5	16.6	16.8		19.7	31.5/31.5

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11649.850	47.1	V	54.0	-6.9	AVG	117	1.7	RB 1 MHz;VB 10 Hz;Pk
11650.050	60.1	V	74.0	-13.9	PK	117	1.7	RB 1 MHz;VB 3 MHz;Pk
2491.330	38.9	V	54.0	-15.1	Peak	321	1.3	
17479.050	48.9	Н	70.0	-21.1	Peak	45	1.0	

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

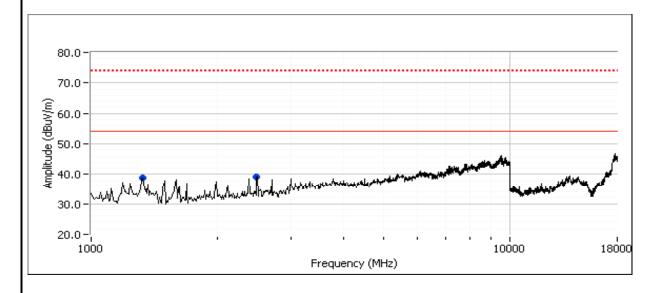

Run # 5, Radiated Spurious Emissions, 1-18GHz, Receive Mode Chain A, Chain B and Chain A+B

Date of Test: 8/9/2010 Test Location: FT Chamber #5

Test Engineer: Rafael Varelas Config Change: none

Run # 5a, EUT on 5785MHz - Receive, Chain A

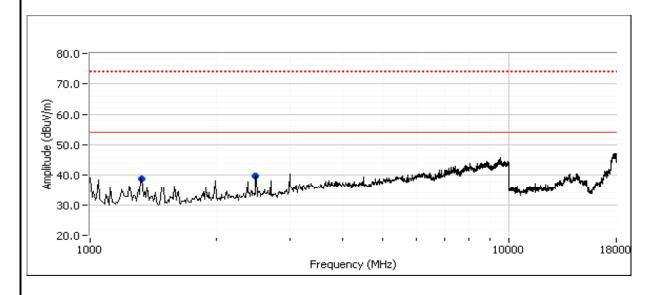
	<u> </u>	00.00.						
Frequency	Level	Pol	RSS	5 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1328.870	35.2	V	54.0	-18.8	AVG	259	1.0	RB 1 MHz;VB 10 Hz;Pk
1331.270	49.5	V	74.0	-24.5	PK	259	1.0	RB 1 MHz;VB 3 MHz;Pk
2489.970	32.7	V	54.0	-21.3	AVG	338	1.0	RB 1 MHz;VB 10 Hz;Pk
2490.630	47.4	V	74.0	-26.6	PK	338	1.0	RB 1 MHz;VB 3 MHz;Pk



Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wouei.	02203ANTIMIW (IIIIei® Celiliilio® Auvanceu-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 5b, EUT on 5785MHz - Receive, Chain B

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1328.270	39.8	V	54.0	-14.2	AVG	261	1.4	RB 1 MHz;VB 10 Hz;Pk
1331.530	51.6	V	74.0	-22.4	PK	261	1.4	RB 1 MHz;VB 3 MHz;Pk
2490.610	32.6	V	54.0	-21.4	AVG	296	1.0	RB 1 MHz;VB 10 Hz;Pk
2497.010	49.3	V	74.0	-24.7	PK	296	1.0	RB 1 MHz;VB 3 MHz;Pk



Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run # 5c, EUT on 5785MHz - Receive, Chain A+B

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1329.610	39.4	V	54.0	-14.6	AVG	275	1.4	RB 1 MHz;VB 10 Hz;Pk
1330.880	55.0	V	74.0	-19.0	PK	275	1.4	RB 1 MHz;VB 3 MHz;Pk
2489.930	33.1	V	54.0	-20.9	AVG	317	1.2	RB 1 MHz;VB 10 Hz;Pk
2490.700	48.8	V	74.0	-25.2	PK	317	1.2	RB 1 MHz;VB 3 MHz;Pk

Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 8/12/2010 Test Engineer: Rafael Varelas/Mark Hill Config Change: none Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 37 %

Summary of Results

MAC Address: 001500633B14 DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

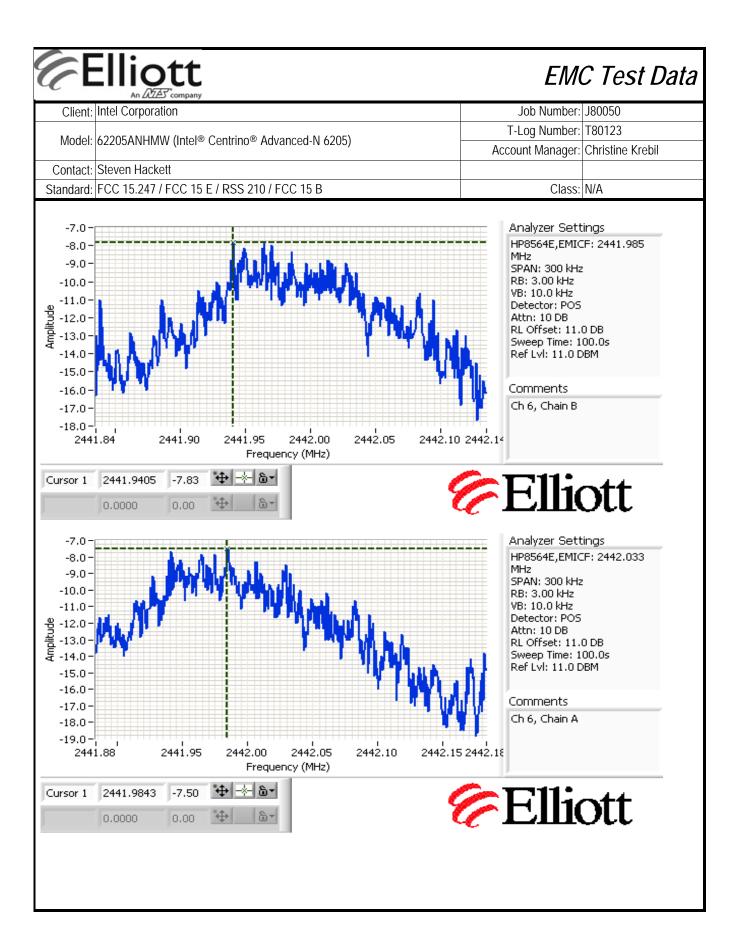
Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	15.5	802.11b Output Power	15.247(b)	Pass	17.1 dBm
1	-	16.5	802.11g Output Power	15.247(b)	Pass	20.7 dBm
2	-	15.5	802.11b Power spectral Density	15.247(d)	Pass	-10.0 dBm/3kHz
2	-	16.6	802.11g Power spectral Density	15.247(d)	Pass	-7.5 dBm/3kHz
3	-	15.5	802.11b Minimum 6dB Bandwidth	15.247(a)	Pass	10.33 MHz
3	-	15.5	802.11b 99% Bandwidth	RSS GEN	-	15.39 MHz
3	-	14.0	802.11g Minimum 6dB Bandwidth	15.247(a)	Pass	16.17 MHz
3	-	14.0	802.11g 99% Bandwidth	RSS GEN	-	16.97 MHz
4	-	-	802.11b/g Spurious emissions	15.247(b)	Pass	All emissions below -20dBc limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

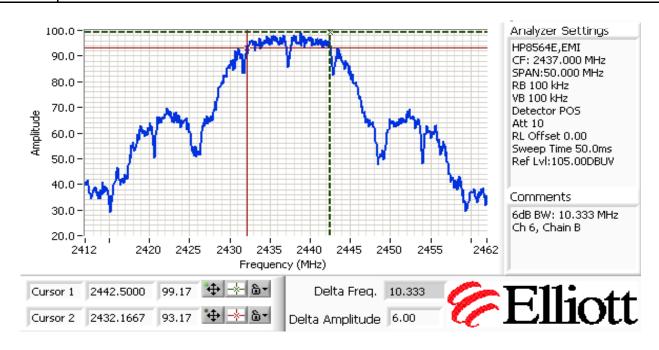

	Elliott An MAS company						EM	C Test	Data Data
Client:	Intel Corporation						Job Number:	J80050	
						T-Log Number: T80123			
Model:	62205ANHMW (Intel® C	Centrino® Adv	anced-N 62	205)		Account Manager: Christine Krebil			ebil
Contact:	Steven Hackett								
	Standard: FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B						Class:	NI/A	
-	utput Power	1							
Power	Frequency (MHz)		Power	Antenna	Result	EI	RP	Output	Power
Setting ²	, , ,	(dBm) ¹	mW	Gain (dBi)	Nosuit	dBm	W	(dBm) ³	mW
802.11b Mod									
25.5	2412	17.0	50.1	3.2	Pass	20.2	0.106	15.5	35.5
25.0	2437	17.1	51.3	3.2	Pass	20.3	0.107	15.7	37.2
		4/-	4/0	3.2	Pass	19.9	0.098	15.5	35.5
24.0	2462	16.7	46.8	J.Z	газз	17.7	0.090	10.0	
802.11b Mo	de, Chain B	•		<u>'</u>			1		
802.11b Moo 23.0	de, Chain B 2412	16.9	49.0	3.2	Pass	20.1	0.103	15.6	36.3
302.11b Mod 23.0 23.0	de, Chain B 2412 2437	16.9 17.0	49.0 50.1	3.2	Pass Pass	20.1 20.2	0.103 0.106	15.6 15.7	36.3 37.2
23.0 23.0 23.0 23.0	de, Chain B 2412 2437 2462	16.9	49.0	3.2	Pass	20.1	0.103	15.6	36.3
23.0 23.0 23.0 23.0 23.0 802.11g Mo	de, Chain B 2412 2437 2462 de, Chain A	16.9 17.0 17.0	49.0 50.1 50.1	3.2 3.2 3.2	Pass Pass Pass	20.1 20.2 20.2	0.103 0.106 0.106	15.6 15.7 15.6	36.3 37.2 36.3
802.11b Mod 23.0 23.0 23.0 23.0 802.11g Mod 28.5	de, Chain B 2412 2437 2462 de, Chain A 2412	16.9 17.0 17.0	49.0 50.1 50.1 79.4	3.2 3.2 3.2 3.2	Pass Pass Pass Pass	20.1 20.2 20.2 22.2	0.103 0.106 0.106	15.6 15.7 15.6	36.3 37.2 36.3 25.1
802.11b Mod 23.0 23.0 23.0 23.0 802.11g Mod 28.5 31.0	de, Chain B 2412 2437 2462 de, Chain A 2412 2437	16.9 17.0 17.0 19.0 20.5	49.0 50.1 50.1 79.4 112.2	3.2 3.2 3.2 3.2 3.2	Pass Pass Pass Pass Pass	20.1 20.2 20.2 22.2 23.7	0.103 0.106 0.106 0.167 0.237	15.6 15.7 15.6 14.0 16.6	36.3 37.2 36.3 25.1 45.7
302.11b Mod 23.0 23.0 23.0 23.0 802.11g Mod 28.5 31.0 27.5	de, Chain B 2412 2437 2462 de, Chain A 2412 2437 2462	16.9 17.0 17.0	49.0 50.1 50.1 79.4	3.2 3.2 3.2 3.2	Pass Pass Pass Pass	20.1 20.2 20.2 22.2	0.103 0.106 0.106	15.6 15.7 15.6	36.3 37.2 36.3 25.1
802.11b Mod 23.0 23.0 23.0 802.11g Mod 28.5 31.0 27.5 802.11g Mod	de, Chain B 2412 2437 2462 de, Chain A 2412 2437 2462 de, Chain B	16.9 17.0 17.0 19.0 20.5 19.0	49.0 50.1 50.1 79.4 112.2 79.4	3.2 3.2 3.2 3.2 3.2 3.2 3.2	Pass Pass Pass Pass Pass Pass	20.1 20.2 20.2 22.2 23.7 22.2	0.103 0.106 0.106 0.167 0.237 0.167	15.6 15.7 15.6 14.0 16.6 14.0	36.3 37.2 36.3 25.1 45.7 25.1
802.11b Mod 23.0 23.0 23.0 23.0 802.11g Mod 28.5 31.0 27.5 802.11g Mod 26.0	de, Chain B 2412 2437 2462 de, Chain A 2412 2437 2462 de, Chain B 2412	16.9 17.0 17.0 19.0 20.5 19.0	49.0 50.1 50.1 79.4 112.2 79.4	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	Pass Pass Pass Pass Pass Pass Pass Pass	20.1 20.2 20.2 22.2 23.7 22.2	0.103 0.106 0.106 0.167 0.237 0.167 0.175	15.6 15.7 15.6 14.0 16.6 14.0	36.3 37.2 36.3 25.1 45.7 25.1
802.11b Mod 23.0 23.0 23.0 802.11g Mod 28.5 31.0 27.5	de, Chain B 2412 2437 2462 de, Chain A 2412 2437 2462 de, Chain B	16.9 17.0 17.0 19.0 20.5 19.0	49.0 50.1 50.1 79.4 112.2 79.4	3.2 3.2 3.2 3.2 3.2 3.2 3.2	Pass Pass Pass Pass Pass Pass	20.1 20.2 20.2 22.2 23.7 22.2	0.103 0.106 0.106 0.167 0.237 0.167	15.6 15.7 15.6 14.0 16.6 14.0	36.3 37.2 36.3 25.1 45.7 25.1

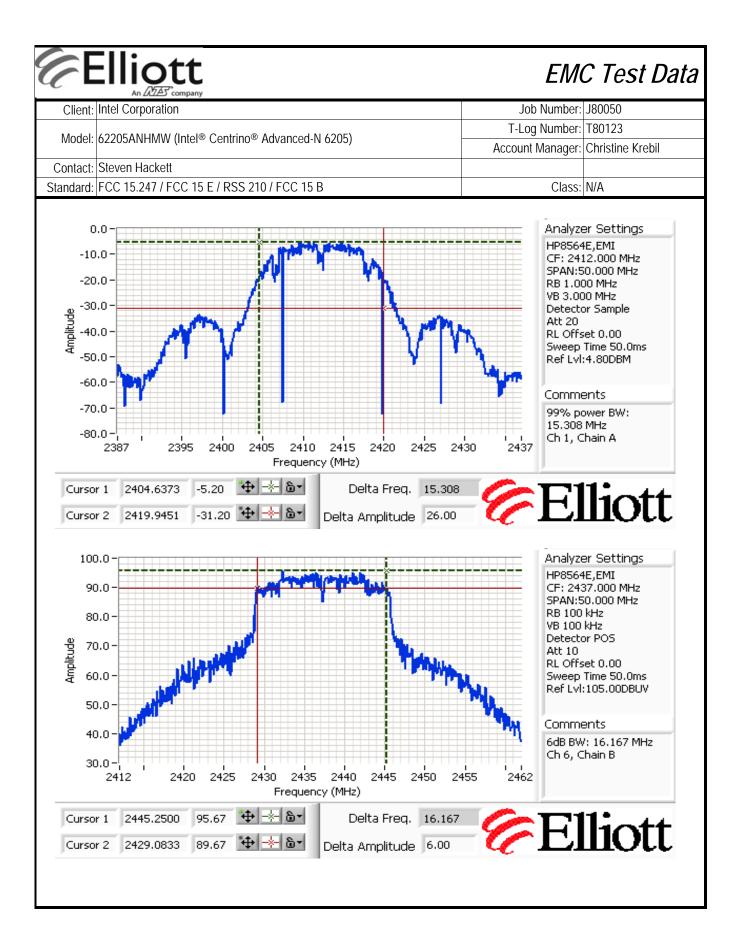
Note 2: Power setting - the software power setting used during testing, included for reference only.

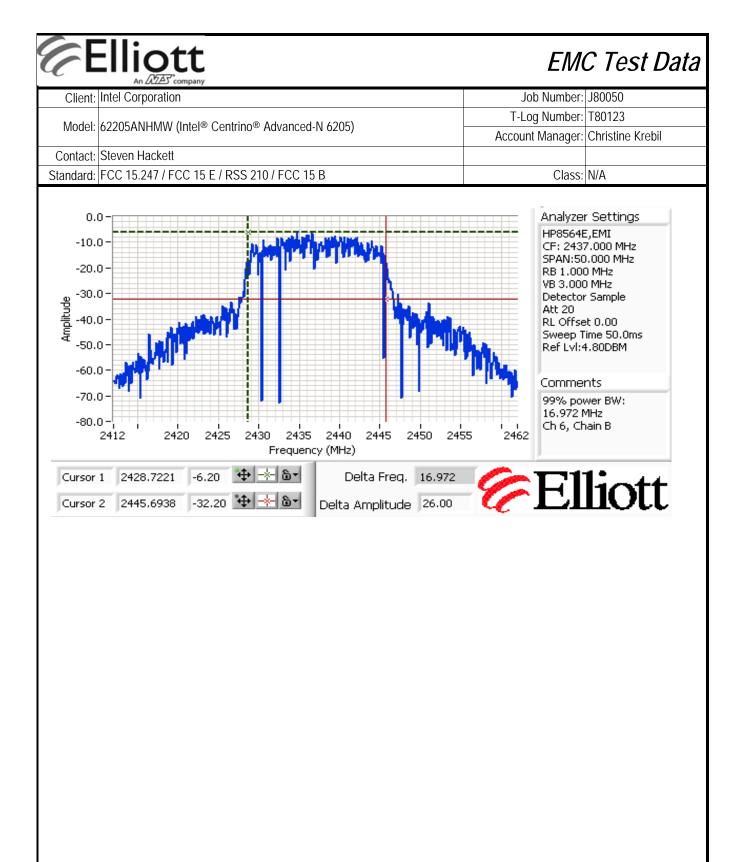
Note 3: Power measured using average power meter and is included for reference only.

	Elliott An AZAT* company				EM	C Test Dat
Client:	: Intel Corporation				Job Number:	J80050
Madal	/ 220F ANI IMAN / (Intal® C	Sarahira @ Advanced N /	205)		T-Log Number:	T80123
Model:	: 62205ANHMW (Intel® C	entrino® Advanced-in oz	205)		Account Manager:	Christine Krebil
Contact ⁻	: Steven Hackett			-	-	
	: FCC 15.247 / FCC 15 E	/ RSS 210 / FCC 15 B			Class:	N/A
	ower spectral Density	1100 210 110				147.
Muli "Z	mer speedal believe					
Power	5 (MILE)	PSD	Limit	Result	1	
Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz			
	ode, Chain A				I	
25.5	2413.987	-10.8	8.0	Pass		
25	2436.448	-10.0	8.0	Pass		
24	2460.987	-10.5	8.0	Pass		
	ode, Chain B				• •	
23	2413.987	-10.5	8.0	Pass		
23	2437.988	-10.0	8.0	Pass		
23	2462.987	-10.3	8.0	Pass		
	ode, Chain A	т			1	
28.5	2414.475	-10.8	8.0	Pass		
31	2435.393	-7.5	8.0	Pass		
27.5	2459.167	-11.4	8.0	Pass		
	ode, Chain B	1	1 00	т_	1	
26	2414.449	-11.0	8.0	Pass		
29	2435.736	-7.8	8.0	Pass		
26	2460.103	-12.0	8.0	Pass		

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

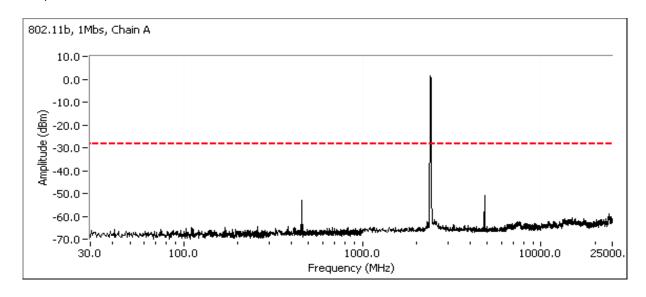

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
		Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

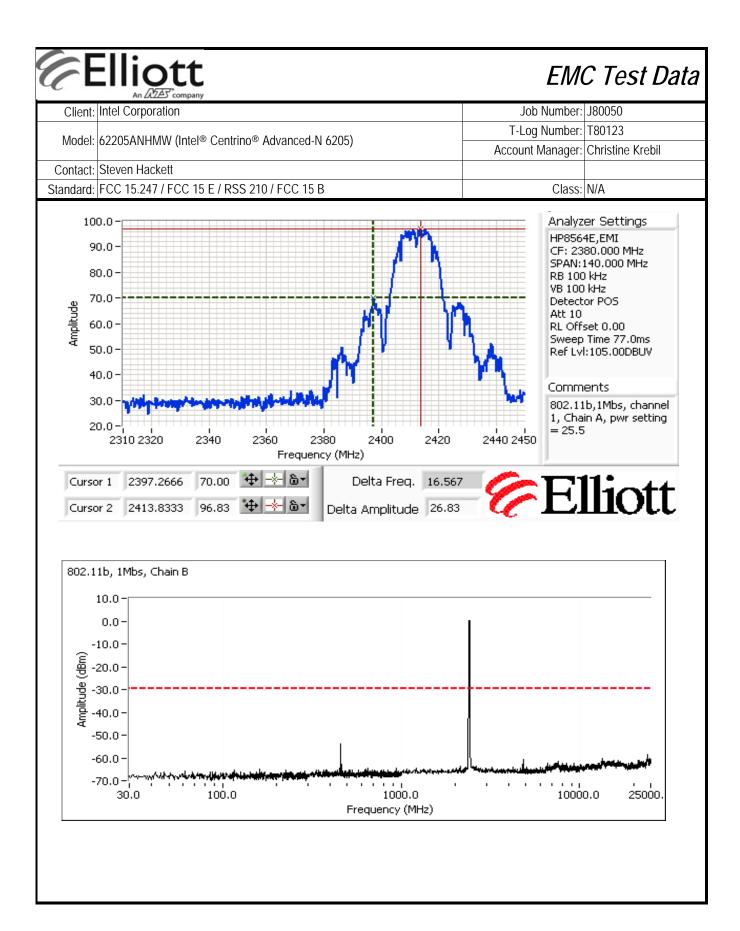

Run #3: Signal Bandwidth

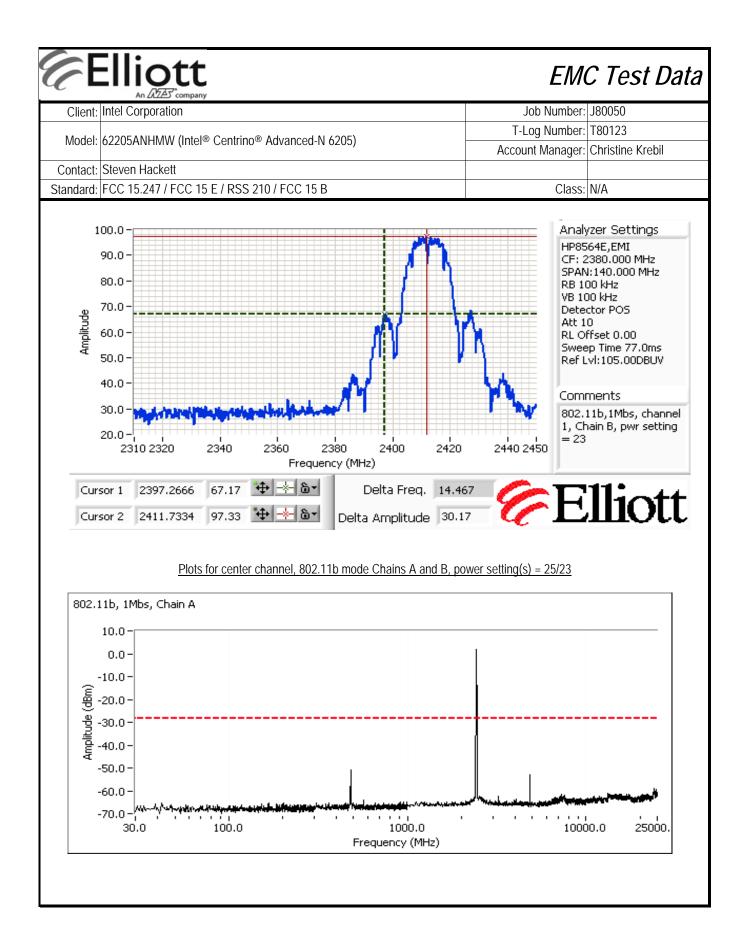

Power	Eroguanay (MUz)	Resolution	Bandwidth (MHz)				
Setting	Frequency (MHz)	Bandwidth	6dB	99%			
802.11b Mode							
25	2437, Chain A	100kHz	11.17	15.39			
23	2437, Chain B	100kHz	10.33	15.23			
23	2412, Chain B	100kHz	12.25	15.14			
23	2462, Chain B	100kHz	11.5	15.14			
802.11g Mode							
31	2437, Chain A	100kHz	16.5	16.97			
29	2437, Chain B	100kHz	16.17	16.97			
26	2412, Chain B	100kHz	16.42	16.81			
26	2462, Chain B	100kHz	16.42	16.89			

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB (taken from power measurement plots)

Note 2: 6dB bandwidth measured on the center channel for each chain and then on the top and bottom channels for the chain with the **narrowest** 6dB bandwidth.

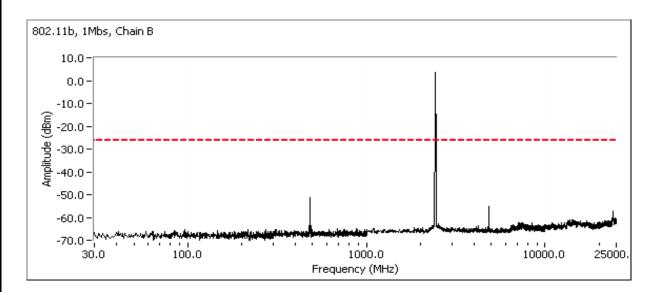


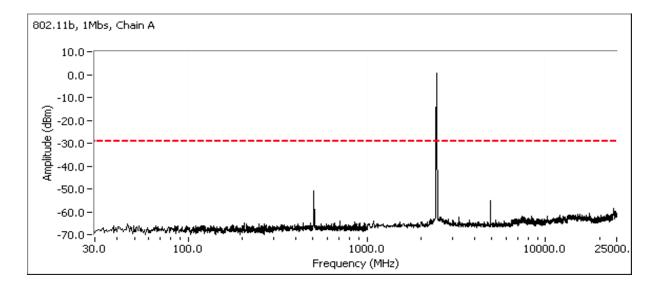

	All Barry Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number: T80123	
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A


Run #4: Out of Band Spurious Emissions

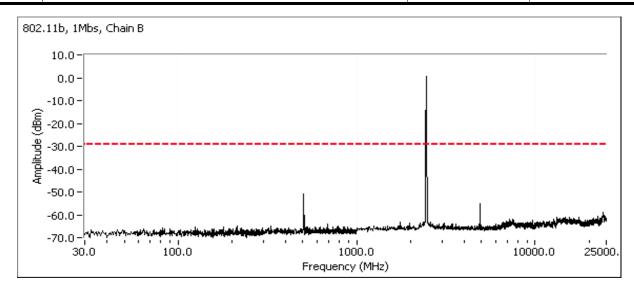
Mode	Chain	Frequency (MHz)	Limit	Result
		2412	-20dBc	Pass
	Α	2437	-20dBc	Pass
802.11b		2462	-20dBc	Pass
002.110		2412	-20dBc	Pass
	В	2437	-20dBc	Pass
		2462	-20dBc	Pass
		2412	-20dBc	Pass
	Α	2437	-20dBc	Pass
002 11a		2462	-20dBc	Pass
802.11g		2412	-20dBc	Pass
	В	2437	-20dBc	Pass
		2462	-20dBc	Pass

Plots for low channel, 802.11b mode Chains A and B, power setting(s) = 25.5/23

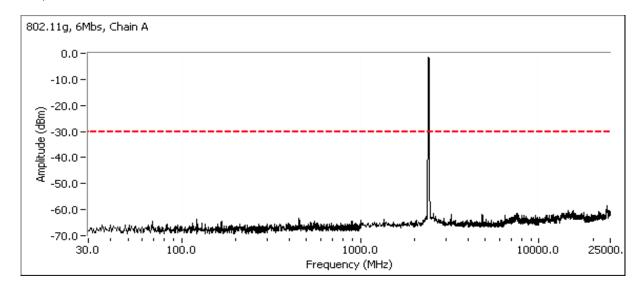


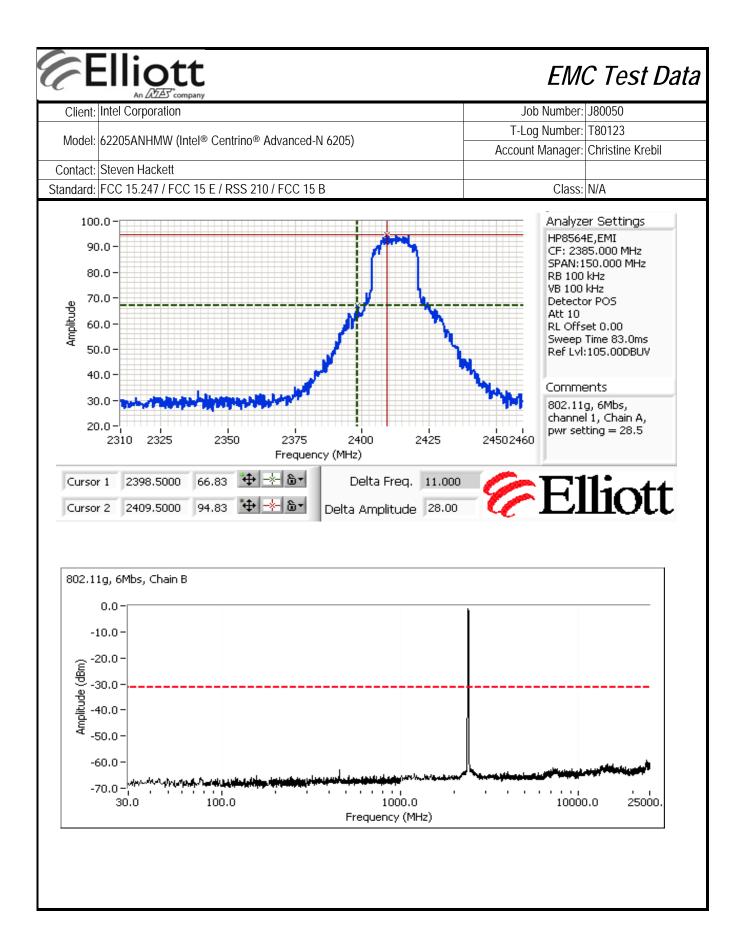


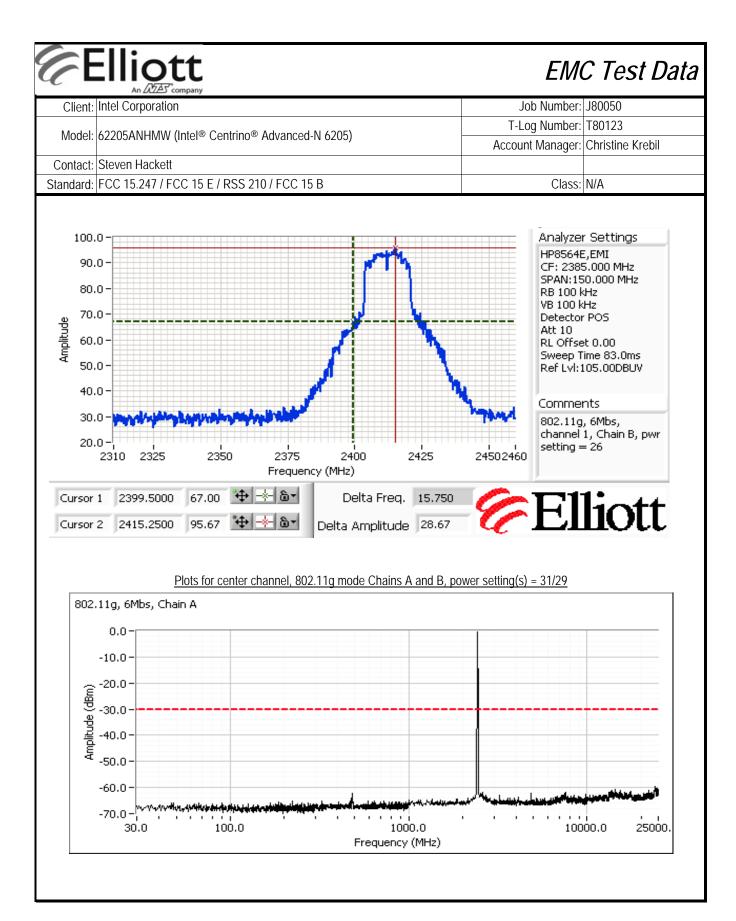
	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodei:	02203ANTIMIN (IIIIei Ceitiiiio Auvanceu-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



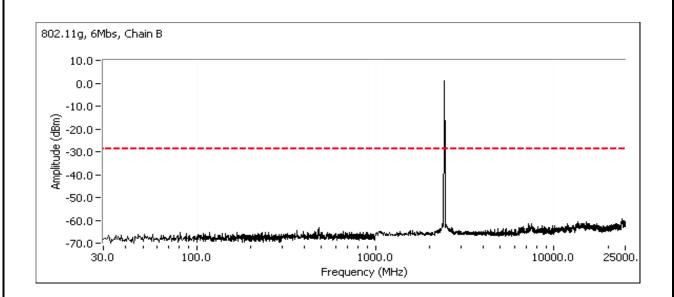
Plots for high channel, 802.11b mode Chains A and B, power setting(s) = 24/23

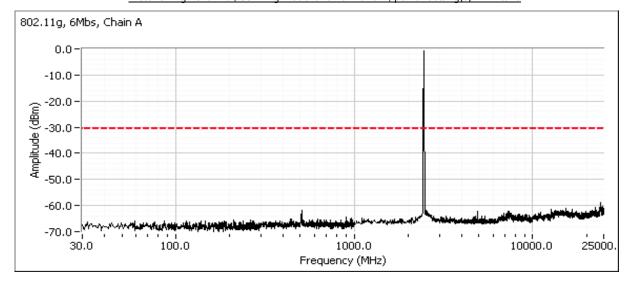


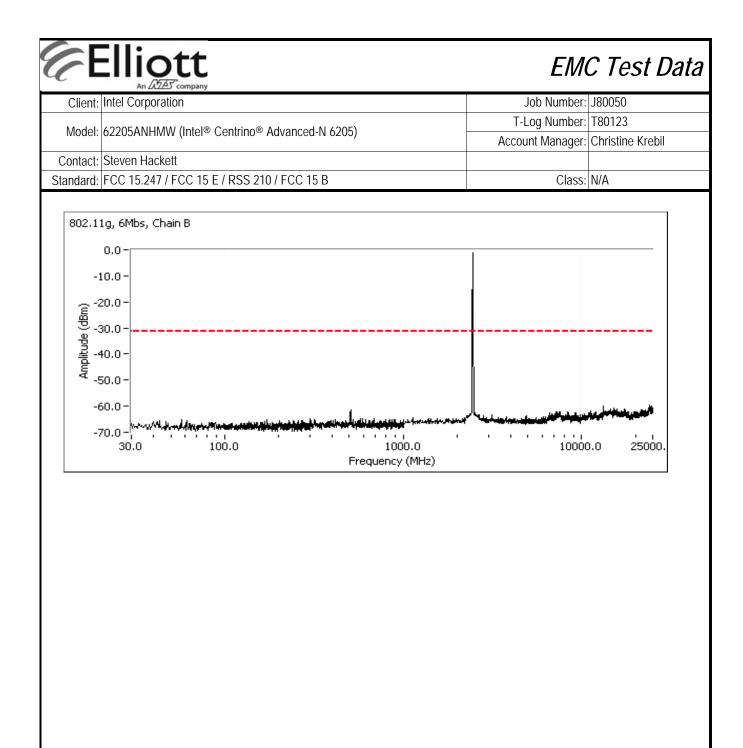



- 1		···· y			
	Client:	Intel Corporation	Job Number:	J80050	
	Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	nber: T80123	
		02203ANTIWW (IIILEI® CEILLIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil	
	Contact:	Steven Hackett			
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A	

Plots for low channel, 802.11g mode Chains A and B, power setting(s) = 28.5/26







	· · · · · · · · · · · · · · · · · · ·		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANHIVIW (IIILEI® CEITIIIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for high channel, 802.11g mode Chains A and B, power setting(s) = 27.5/26

	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number: T80123	
	02203ANTINIW (IIILEI® CEITHIIIO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 8/12/2010 Config Change: none Test Engineer: Rafael Varelas Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 21.8 °C Rel. Humidity: 38 %

Summary of Results

MAC Address: 001500633B14 DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	16.8	802.11n 20MHz Output Power	15.247(b)	Pass	15.6 dBm
1	-	16.6	802.11n 40MHz Output Power	15.247(b)	Pass	15.1 dBm
2	-	16.8	802.11n 20MHz Power spectral	15.247(d)	Pass	-7.8 dBm/3kHz
2	-	16.6	802.11n 40MHz Power spectral	15.247(d)	Pass	-10.7 dBm/3kHz
3	-	13.1	802.11n 20MHz Minimum 6dB	15.247(a)	Pass	15.1 MHz
3	-	16.8	802.11n 20MHz 99% Bandwidth	RSS GEN	-	18.4 MHz
3	-	16.6	802.11n 40MHz Minimum 6dB	15.247(a)	Pass	35.3 MHz
3	-	16.6	802.11n 40MHz 99% Bandwidth	RSS GEN	-	36.9 MHz
4			802.11n 20MHz/40MHz Spurious	1E 247/b)	Door	All emissions below
4	-	-	emissions	15.247(b)	Pass	-30dBc limit

Note: Used -30dBc as limit for spurious. As powers were measured using a peak power meter the limit actually required is -20dBc. The peak power was measured to remain consistent with the legacy mode power measurements in SISO mode where the device did not meet the -30dBc requirement at the 2400MHz band edge. As the n modes met the -30dBc requirements at the band edges the -30dBc was used to demonstrate compliance for the MIMO mode (which operate at a lower power per chain power), and the MIMO powers were measured using the NII average power method.

Elli	Ott MAS company
-------------	--------------------

	The state of the s		100050
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Modifications Made During Testing

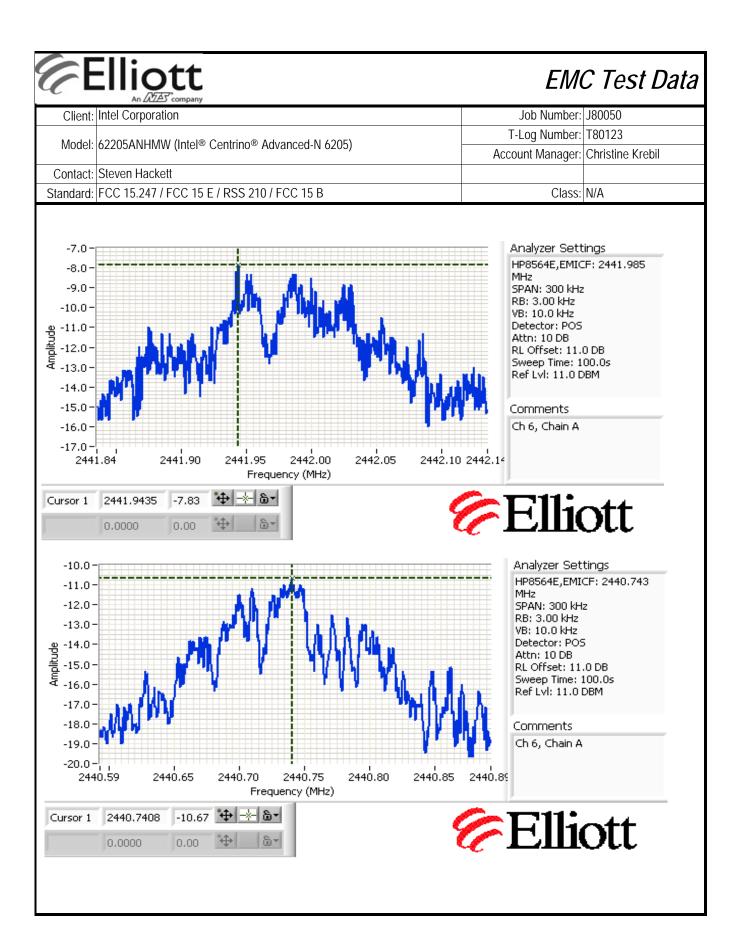
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Output Power

Power	Fraguanay (MHz)	Output	Power	Antenna	Docult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
802.11n 20N	MHz Mode, Chain A								
27.5	2412	11.1	12.9	3.2	Pass	14.3	0.027	13.1	20.4
31	2437	14.8	30.2	3.2	Pass	18.0	0.064	16.5	44.7
26.5	2462	11.0	12.6	3.2	Pass	14.2	0.027	12.4	17.4
802.11n 20N	MHz Mode, Chain B								
25	2412	11.9	15.5	3.2	Pass	15.1	0.033	13.1	20.4
29.5	2437	15.6	36.3	3.2	Pass	18.8	0.077	16.8	47.9
25	2462	11.4	13.8	3.2	Pass	14.6	0.029	12.8	19.1
802.11n 40N	MHz Mode, Chain A								
22.5	2422	7.5	5.6	3.2	Pass	10.7	0.012	9.1	8.1
31	2437	15.1	32.4	3.2	Pass	18.3	0.068	16.6	45.7
22.5	2452	8.2	6.6	3.2	Pass	11.4	0.014	9.6	9.1
802.11n 40N	MHz Mode, Chain B								
21	2422	8.5	7.1	3.2	Pass	11.7	0.015	9.6	9.1
29	2437	15.0	31.6	3.2	Pass	18.2	0.067	16.4	43.7
21.5	2452	8.6	7.2	3.2	Pass	11.8	0.015	10.0	10.0
						•			

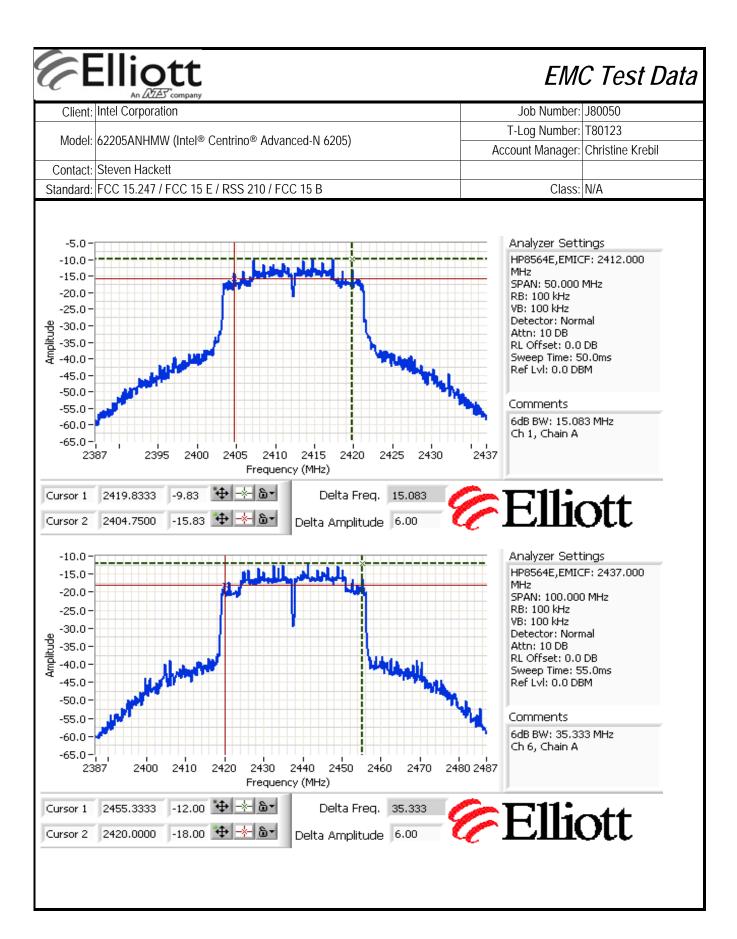

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **40 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

	Elliott An MAS company				EM	C Test Da
Client:	Intel Corporation				Job Number:	J80050
Madal					T-Log Number:	T80123
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)				Account Manager:	Christine Krebil
Contact:	Steven Hackett	Steven Hackett				
	FCC 15.247 / FCC 15 E	/ RSS 210 / FCC 15 B			Class:	N/A
	ower spectral Density					
Power	<u> </u>	PSD	Limit	Result		
Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz			
	MHz Mode, Chain A	(ubilifold 12)				
27.5	2412	-13.5	8.0	Pass		
31	2437	-7.8	8.0	Pass		
26.5	2462	-11.5	8.0	Pass		
802.11n 20l	MHz Mode, Chain B				' -	
25	2412	-11.8	8.0	Pass		
29.5	2437	-9.0	8.0	Pass		
25	2462	-11.2	8.0	Pass		
	MHz Mode, Chain A				•	
22.5	2422	-16.0	8.0	Pass		
31	2437	-10.7	8.0	Pass		
22.5	2452	-16.2	8.0	Pass		
	MHz Mode, Chain B				_	
21	2422	-17.3	8.0	Pass		
29	2437	-11.0	8.0	Pass		
21.5	2452	-16.2	8.0	Pass		

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

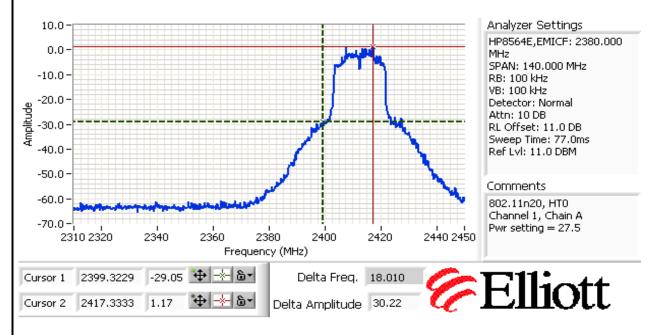


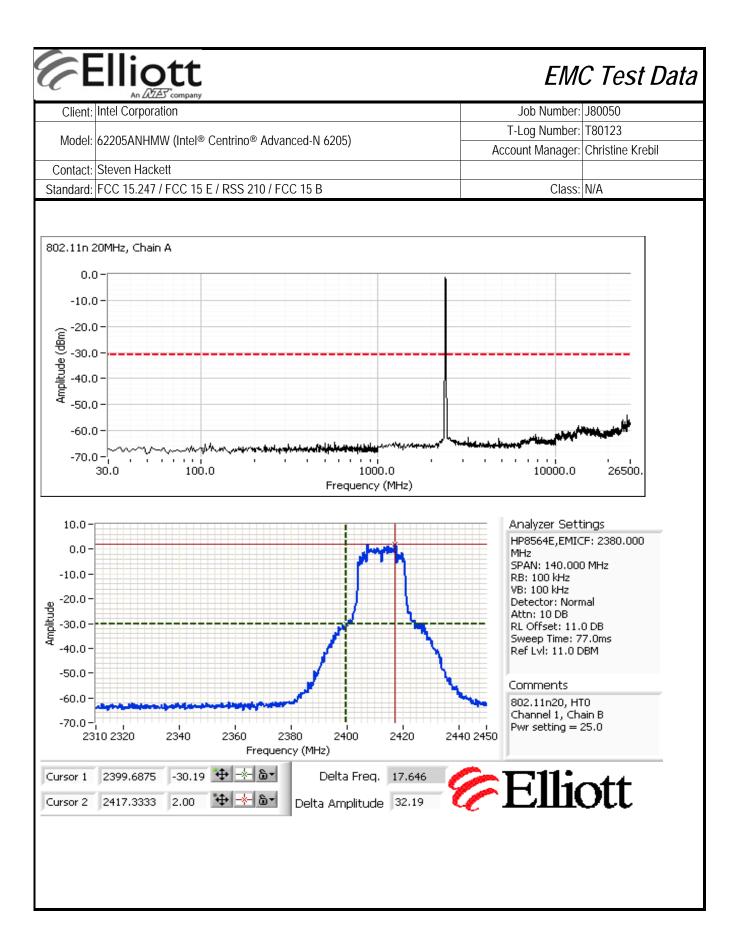
Client:	Intel Corporation	Job Number:	J80050	
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:		
	02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil	
Contact:	Steven Hackett			
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A	

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	r requericy (iviriz)	Bandwidth	6dB	99%
802.11n 20l	MHz Mode			
31	2437, Chain A	100kHz	15.2	18.3
29.5	2437, Chain B	100kHz	15.3	18.4
27.5	2412, Chain A	100kHz	15.1	18.1
26.5	2462, Chain A	100kHz	15.3	18.1
802.11n 40l	MHz Mode			
31	2437, Chain A	100kHz	35.3	36.9
29	2437, Chain B	100kHz	35.5	36.9
22.5	2422, Chain A	100kHz	35.7	36.6
22.5	2452, Chain A	100kHz	36	36.8

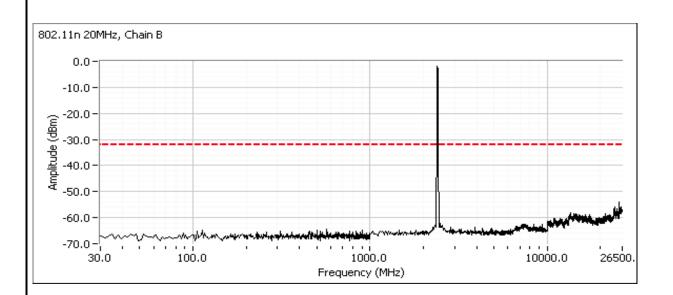
	Note 1:	99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB (taken from power
		measurement plots)
		6dB bandwidth measured on the center channel for each chain and then on the top and bottom channels for the chain with
	Note 2:	the narrowest 6dB bandwidth.


Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliiio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A


Run #4: Out of Band Spurious Emissions

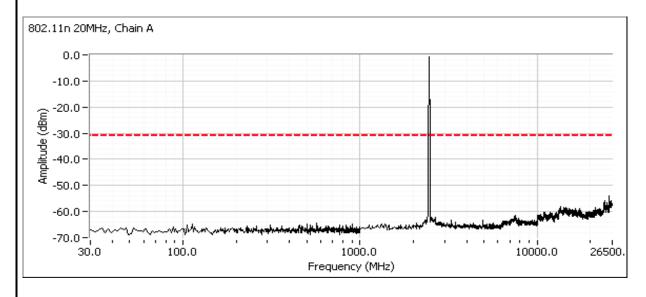
Mode	Chain	Frequency (MHz)	Limit	Result
		2412	-30dBc	Pass
	Α	2437	-30dBc	Pass
802.11n		2462	-30dBc	Pass
20MHz		2412	-30dBc	Pass
	В	2437	-30dBc	Pass
		2462	-30dBc	Pass
		2422	-30dBc	Pass
	Α	2437	-30dBc	Pass
802.11n		2452	-30dBc	Pass
40MHz	Z	2422	-30dBc	Pass
	В	2437	-30dBc	Pass
		2452	-30dBc	Pass

Note: Used -30dBc as limit for spurious. As powers were measured using a peak power meter the limit actually required is -20dBc. The peak power was measured to remain consistent with the legacy mode power measurements where the device did not meet the -30dBc

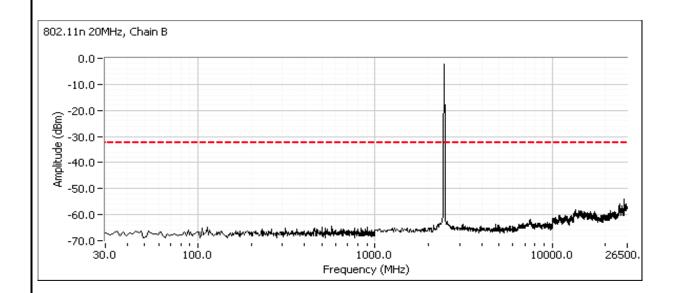

Plots for low channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 27.5/25.0

- 1		···· y		
	Client:	Intel Corporation	Job Number:	J80050
Mode	Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	Model.		Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

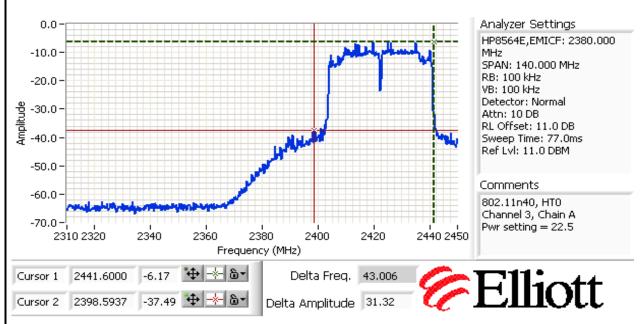
Plots for center channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 31/29.5

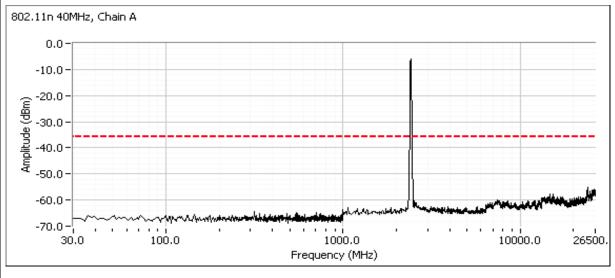


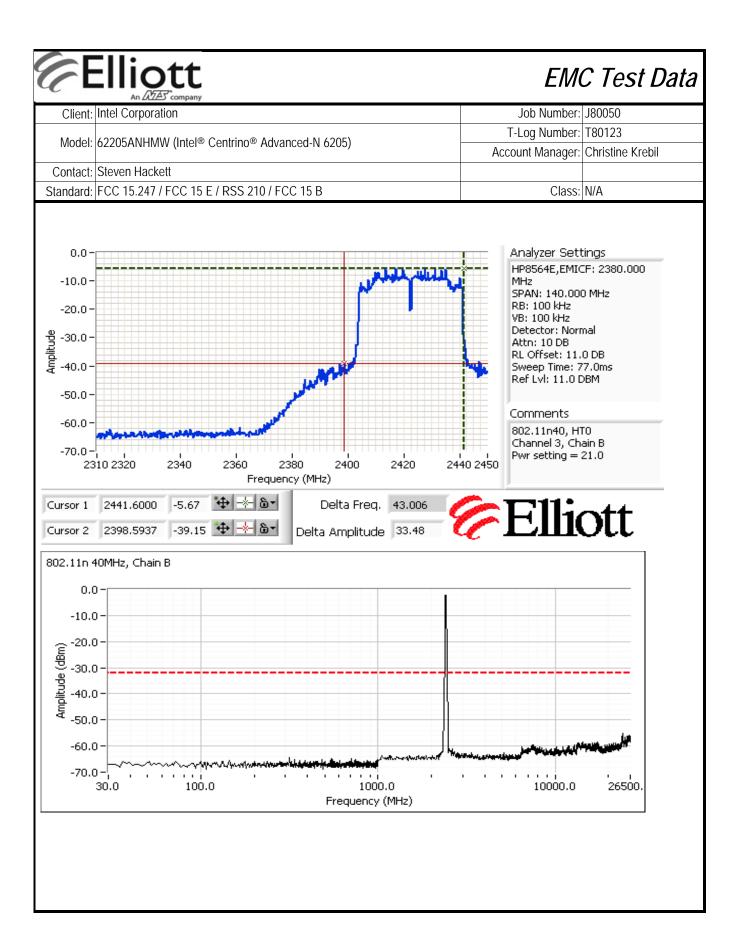
	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliiii0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



Plots for high channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 26.5/25.0

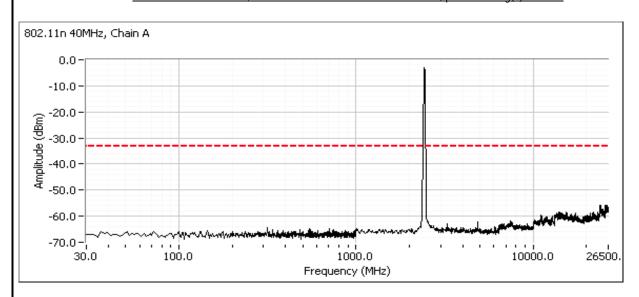

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliiio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

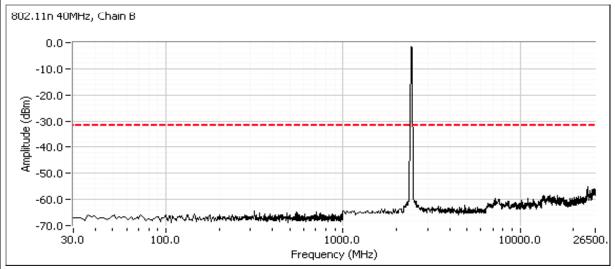




Client:	Intel Corporation	Job Number:	J80050
Madal	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliiii0® Auvanceu-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

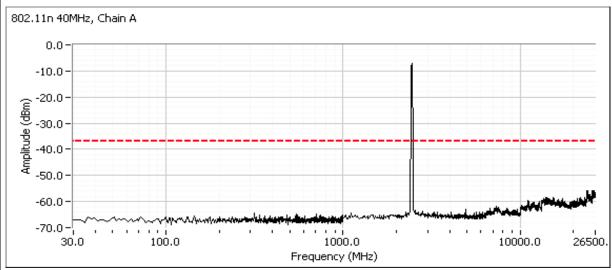
Plots for low channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 22.5/21.0

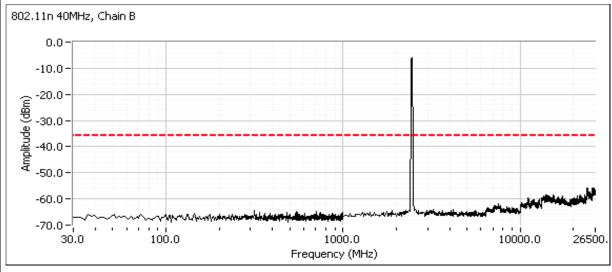




Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
		Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for center channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 31/29





	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliiii0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for high channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 22.5/21.5

	All Details Company		
Client: Intel Corporation		Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems (2400-2483.5MHz) Power, PSD - 802.11n MIMO Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/12/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: none
Test Location: FT Chamber #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on each chain individually. All measurements have been corrected to allow for the external attenuators used.

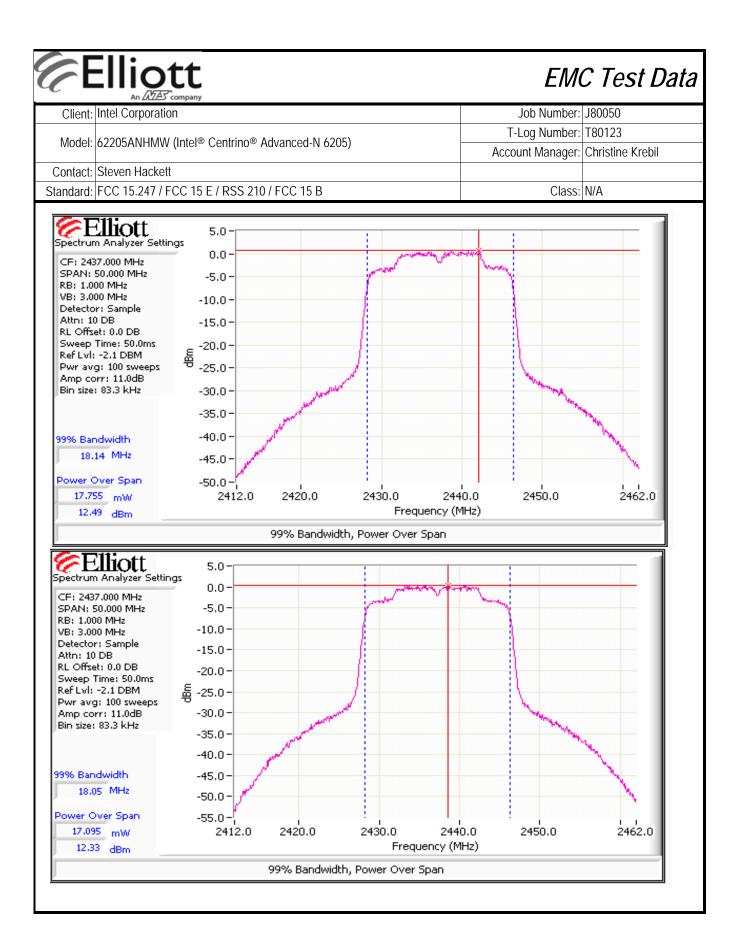
Ambient Conditions:

Temperature: 21.8 °C Rel. Humidity: 38 %

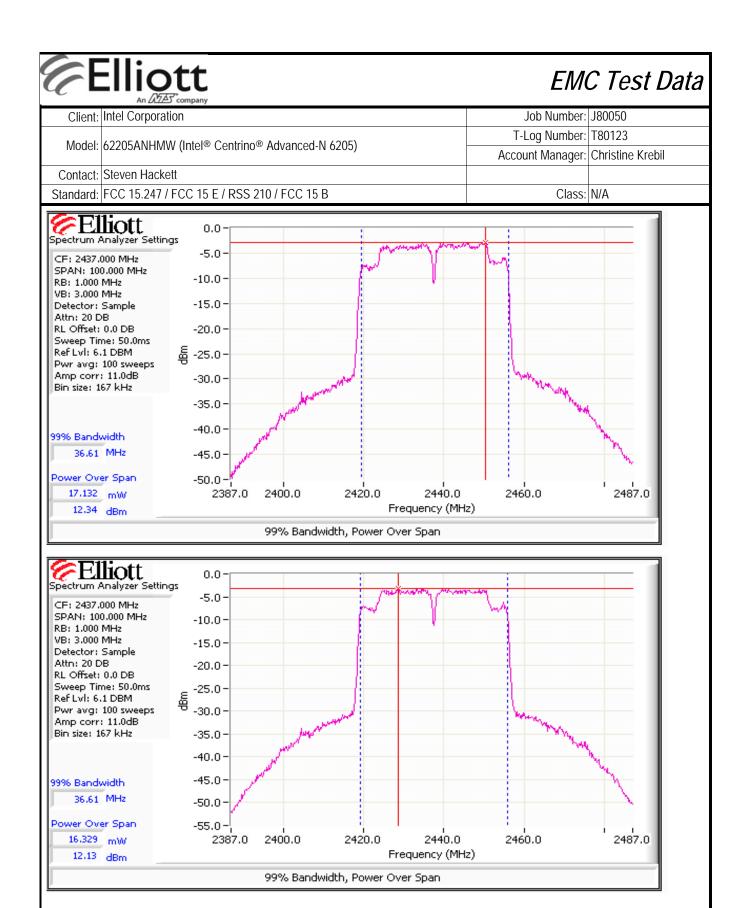
Summary of Results

MAC Address: 001500633B14 DRTU Tool Version 1.1.3 Driver version 13.0.0.238 Sample: 1340

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin	
802.11n 20l	802.11n 20MHz						
1	-	16.7	Output Power	15.247(b)	Pass	15.4 dBm	
1	-	16.8	Power spectral Density (PSD)	15.247(d)	Pass	-7.5 dBm/3kHz	
802.11n 40l	MHz						
1	-	16.7	Output Power	15.247(b)	Pass	15.2 dBm	
1	-	16.7	Power spectral Density (PSD)	15.247(d)	Pass	-10.2 dBm/3kHz	
-	-	-	Minimum 6dB Bandwidth n20	15.247(a)	Pass	Covered by single chain	
-	-	-	99% Bandwidth n20	RSS GEN	Pass	measurements	
-	-	-	Spurious emissions n20 and n40	15.247(b)	Pass	(SISO mode)	


Modifications Made During Testing

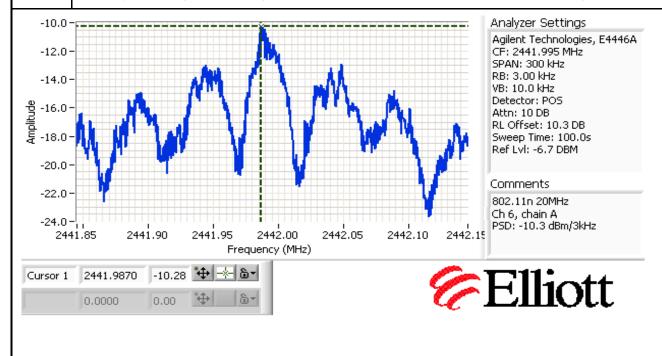
No modifications were made to the EUT during testing

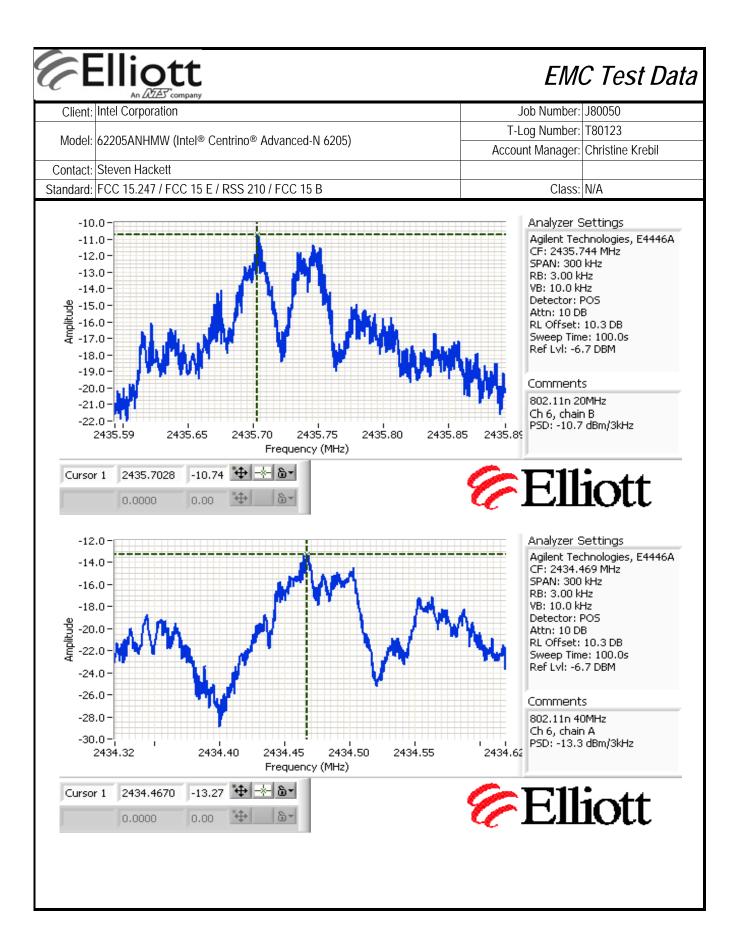

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Intel Corporation					J	ob Number:	J80050	
·					T-Log Number: T80123			
Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205)							Christine Kre	ebil
Contact: Steven Hackett								
Standard: FCC 15.247 / FCC 15	E / RSS 210 /	FCC 15 B				Class:	N/A	
Run #1: Output Power O Transmitted signal on chai	perating Mode: n is coherent?		0MHz					
2412 MHz	Chain A	Chain B	Chain 3	Chain 4			Lin	oit
Power Setting ^{Note 3}	28.5	26.5			Total Across	s All Chains	Lin	ıııt
Average Power ^{Note 4}	11.6	11.6						
Output Power (dBm) Note 1	10.2	10.1			13.2 dBm	0.021 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi	Pa	22
eirp (dBm) Note 2	13.4	13.3			16.4 dBm	0.043 W	ı u	
2437 MHz	Chain A	Chain B	Chain 3	Chain 4			Lin	nit
Power Setting ^{Note 3}	29.5	28.0			Total Across	s All Chains		
Average Power ^{Note 4}	13.7	13.7						
Output Power (dBm) Note 1	12.5	12.3			15.4 dBm	0.035 W	30.0 dBm	1.000 W
Antenna Gain (dBi) Note 2	3.2	3.2			10 (10	3.2 dBi	Pa	SS
eirp (dBm) ^{Note 2}	15.7	15.5			18.6 dBm	0.073 W		
2462 MHz	Chain A	Chain B	Chain 3	Chain 4				
Power Setting ^{Note 3}	28.0	26.5			Total Across	s All Chains	Lin	nit
Average Power ^{Note 4}	11.9	11.7						
Output Power (dBm) Note 1	10.4	10.6			13.5 dBm	0.022 W	30.0 dBm	1.000 V
Antenna Gain (dBi) Note 2	3.2	3.2				3.2 dBi	Pa	cc
eirp (dBm) Note 2	13.6	13.8			16.7 dBm	0.047 W	Ра	55
Note 1: Output power measur averaging on (transmi 558074, equivalent to Spurious limit is -30dE Note 2: As there is no coherer the eirp divide by the state of the eirp divide by the state of the eirp divide and the eirp divide by the state of the eirp	tted signal was method 1 of D/ 3c. ncy between ch sum of the pow ility setting, for	continuous) A-02-2138A ains the tota er on each c	and power in 1 for U-NII dev Il EIRP is the s chain.	tegration over vices). sum of the in	er 50 MHz foi	r n20 (option	#2, method	1 in KDE

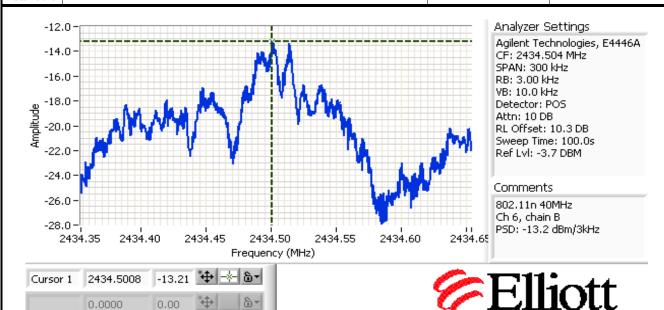
O! .	Elliott An AZE *company						ob Niverla	100050		
Client:	Intel Corporation						ob Number:			
Model:	62205ANHMW (Intel® (Centrino® Adv	anced-N 62	05)		T-Log Number: T80123			1. 9	
Contact: Steven Hackett					ACCOU	nt Manager:	Christine Kre	PDII		
		/ DCC 210 / I	TOO 15 D				Class	NI/A		
Standard:	FCC 15.247 / FCC 15 E	/ RSS 210 / 1	FCC 13 B				Class:	IW/A		
	One	erating Mode:	802 11n. 40)MHz						
	2422 MHz	Chain A	Chain B	Chain 3	Chain 4					
ower Setti	ng ^{Note 3}	23.5	22.0			Total Across	s All Chains	Lin	imit	
verage Po	ower ^{Note 4}	8.0	8.0							
utput Pow	ver (dBm) Note 1	6.1	6.3			9.2 dBm	0.008 W	30.0 dBm	1.000 W	
Intenna Ga	ain (dBi) ^{Note 2}	3.2	3.2				3.2 dBi	Day	cc	
irp (dBm) ^r	Note 2	9.3	9.5			12.4 dBm	0.017 W	Pas	აა	
			1			1		•		
	2437 MHz	Chain A	Chain B	Chain 3	Chain 4			Lin	nit	
ower Setti	ng ^{Note 3}	29.5	28.0			Total Across	s All Chains			
verage Po	ower ^{note 4}	13.7	13.7							
utput Pow	ver (dBm) Note 1	12.3	12.1			15.2 dBm	0.033 W	30.0 dBm	1.000 V	
Output Pow Intenna Ga	ain (dBi) ^{Note 2}	3.2	3.2				3.2 dBi	30.0 dBm Pa		
Output Pow Intenna Ga	ain (dBi) ^{Note 2}					15.2 dBm 18.4 dBm		1	1.000 W ss	
output Pow Intenna Ga	ain (dBi) ^{Note 2} Note 2	3.2 15.5	3.2 15.3	Sthain 3	Chain 4		3.2 dBi	1		
Output Pow Intenna Ga Irp (dBm) ¹	ain (dBi) Note 2 Note 2 2452 MHz	3.2 15.5 Chain A	3.2 15.3 Chain B	Chain	Chain 4	18.4 dBm	3.2 dBi 0.069 W	1	SS	
Output Pow Intenna Ga Irp (dBm) I	ain (dBi) Note 2 Note 2 2452 MHz ng Note 3	3.2 15.5 Chain A 24.0	3.2 15.3 Chain B 22.5	Chain	Cham 4		3.2 dBi 0.069 W	Pa	SS	
Output Pow Intenna Ga irp (dBm) I Ower Setti Iverage Po	ain (dBi) Note 2 Note 2 2452 MHz ng Note 3 ower Note 4	3.2 15.5 Chain A 24.0 8.6	3.2 15.3 Chain B 22.5 8.6	Chain 3	Chain 4	18.4 dBm Total Across	3.2 dBi 0.069 W	Pa: Lin	ss	
Output Pow Intenna Ga irp (dBm) ¹ Power Setti Inverage Po Output Pow	ain (dBi) Note 2 Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1	3.2 15.5 Chain A 24.0 8.6 7.98	3.2 15.3 Chain B 22.5 8.6 7.7	Chain 3	Cham 4	18.4 dBm	3.2 dBi 0.069 W s All Chains 0.012 W	Lin	nit 1.000 W	
output Powntenna Gairp (dBm) ower Setti verage Pooutput Powntenna Ga	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2	3.2 15.5 Chain A 24.0 8.6 7.98 3.2	3.2 15.3 Chain B 22.5 8.6 7.7 3.2	Chair 3	Chain 4	Total Across 10.9 dBm	3.2 dBi 0.069 W s All Chains 0.012 W 3.2 dBi	Pa: Lin	nit 1.000 W	
output Pow ntenna Ga irp (dBm) fower Setti verage Poolutput Pow ntenna Ga	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2	3.2 15.5 Chain A 24.0 8.6 7.98	3.2 15.3 Chain B 22.5 8.6 7.7	Chain 3	Chain 4	18.4 dBm Total Across	3.2 dBi 0.069 W s All Chains 0.012 W	Lin	nit 1.000 W	
output Powntenna Gairp (dBm) ower Setti verage Poutput Powntenna Gairp (dBm)	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2	3.2 15.5 Chain A 24.0 8.6 7.98 3.2 11.18	3.2 15.3 Chain B 22.5 8.6 7.7 3.2 10.9	er (see plots	below) with	18.4 dBm Total Across 10.9 dBm 14.1 dBm RBW=1MHz,	3.2 dBi 0.069 W s All Chains 0.012 W 3.2 dBi 0.025 W VB=3 MHz,	Lin 30.0 dBm Pas	nit 1.000 V ss	
Output Pow Intenna Ga irp (dBm) ¹ Power Setti Inverage Po Output Pow	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2 Output power measured	3.2 15.5 Chain A 24.0 8.6 7.98 3.2 11.18 d using a speced signal was bethod 1 of DA	3.2 15.3 Chain B 22.5 8.6 7.7 3.2 10.9 ctrum analyz continuous)	er (see plots and power in	below) with	18.4 dBm Total Across 10.9 dBm 14.1 dBm RBW=1MHz,	3.2 dBi 0.069 W s All Chains 0.012 W 3.2 dBi 0.025 W VB=3 MHz,	Lin 30.0 dBm Pas	nit 1.000 W ss	
output Powntenna Gairp (dBm) ower Setti verage Pooutput Powntenna Gairp (dBm)	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2 Output power measured averaging on (transmitte 558074, equivalent to m Spurious limit is -30dBc As there is no coherence	3.2 15.5 Chain A 24.0 8.6 7.98 3.2 11.18 d using a speced signal was bethod 1 of DA	3.2 15.3 Chain B 22.5 8.6 7.7 3.2 10.9 ctrum analyz continuous) A-02-2138A1	er (see plots) and power in for U-NII dev	below) with stegration over vices).	18.4 dBm Total Across 10.9 dBm 14.1 dBm RBW=1MHz, er 100 MHz fo	3.2 dBi 0.069 W s All Chains 0.012 W 3.2 dBi 0.025 W VB=3 MHz, or n40 (optio	Lin 30.0 dBm Pa: sample detection #2, method	nit 1.000 V ss ctor, powe 1 in KDB	
output Powntenna Gairp (dBm) ower Setti verage Pooutput Powntenna Gairp (dBm) output Powntenna Gairp (dBm)	ain (dBi) Note 2 2452 MHz ng Note 3 ower Note 4 ver (dBm) Note 1 ain (dBi) Note 2 Note 2 Output power measured averaging on (transmitte 558074, equivalent to m Spurious limit is -30dBo	3.2 15.5 Chain A 24.0 8.6 7.98 3.2 11.18 I using a speced signal was bethod 1 of DA y between chem of the power	3.2 15.3 Chain B 22.5 8.6 7.7 3.2 10.9 Strum analyz continuous) A-02-2138A1 ains the total ar on each c	er (see plots and power in for U-NII devolution I EIRP is the shain.	below) with stegration over vices).	18.4 dBm Total Across 10.9 dBm 14.1 dBm RBW=1MHz, er 100 MHz fo	3.2 dBi 0.069 W s All Chains 0.012 W 3.2 dBi 0.025 W VB=3 MHz, or n40 (optio	Lin 30.0 dBm Pa: sample detection #2, method	nit 1.000 V ss ctor, powe 1 in KDB	

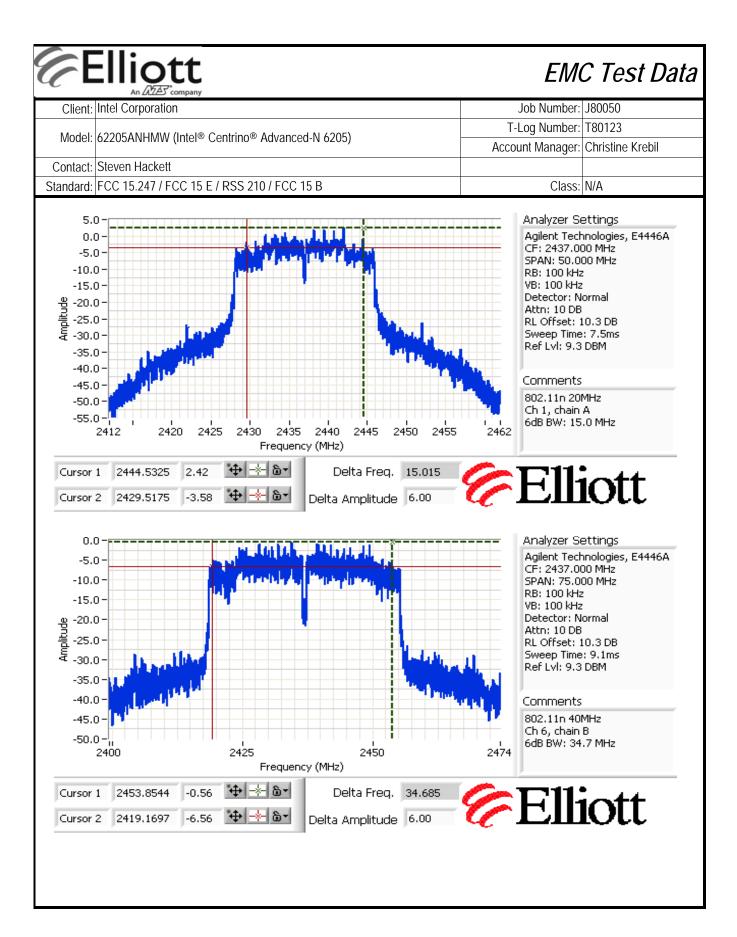

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodei.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A


Run #2: Power spectral Density

						.5.	
Power	Frequency (MHz)		PSI	O (dBm/3kHz) Note 1		Limit	Result
Setting	rrequeries (Wiriz)	Chain A	P CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				Nosan
802.11n 20N	ЛНz						
28.5/26.5	2412	-10.8	-11.4		-8.1	8.0	Pass
29.5/28	2437	-10.3	-10.7		-7.5	8.0	Pass
28/26.5	2462	-10.7	-11.0		-7.8	8.0	Pass
802.11n 40N	ЛНz						
23.5/22	2422	-18.5	-19.7		-16.0	8.0	Pass
29.5/28	2437	-13.3	-13.2		-10.2	8.0	Pass
24,22.5	2452	-19.3	-18.8		-16.0	8.0	Pass

Note 1:

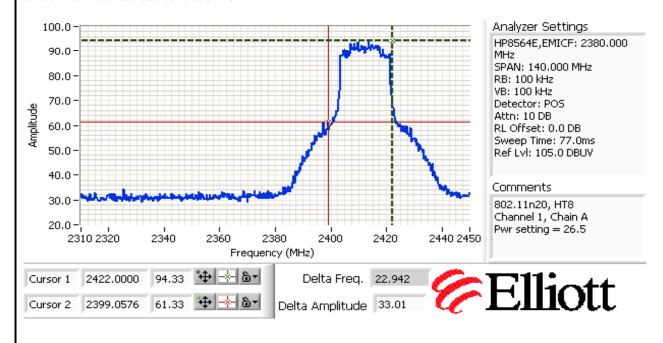

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

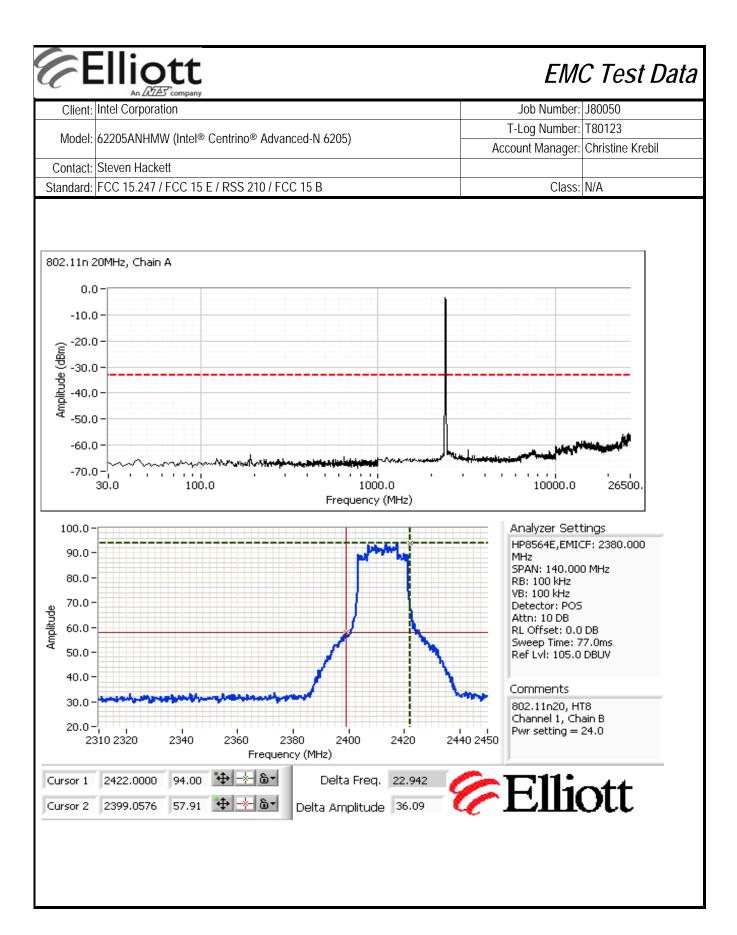

	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANHIVIV (IIILEI® CEITIIIII)® AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	Trequency (WITE)	Bandwidth	6dB	99%
26.5/24	2412	100kHz	17.5	18.1
29.5/28	2437	100kHz	15.0	18.1
25/24	2462	100kHz	16.3	18.1
22.5/20.5	2422	100kHz	35.1	36.6
29.5/28	2437	100kHz	34.7	36.6
22/21	2452	100kHz	35.1	36.4

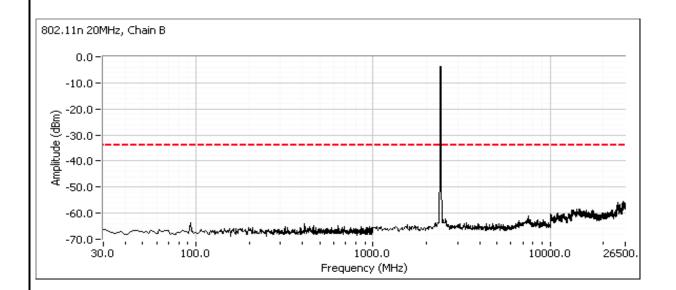
Note 1:	Measured on a single chain
Note 2:	99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

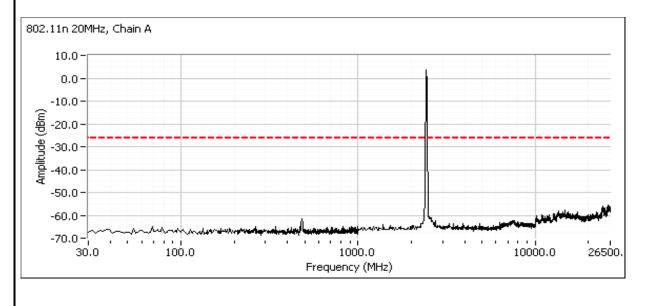

	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHINO® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A


Run #4: Out of Band Spurious Emissions

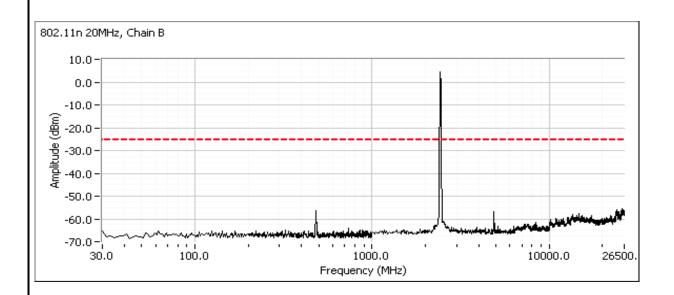
#1	Power Set #2	ting Per Chain	Frequency (MHz)	Limit	Result
26.5	24		2412	-30dBc	Pass
29.5	28		2437	-30dBc	Pass
25	24		2462	-30dBc	Pass
22.5	20.5		2422	-30dBc	Pass
29.5	28		2437	-30dBc	Pass
22	21		2452	-30dBc	Pass

Note 1: Measured on each chain individually

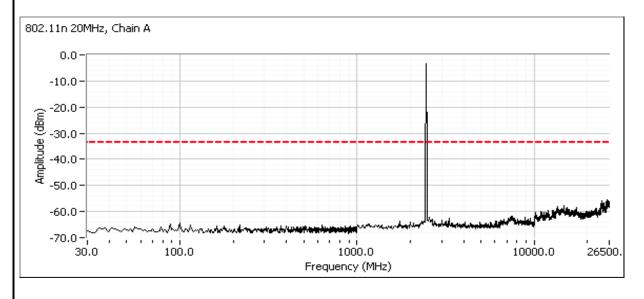

Plots for low channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 26.5/24.0



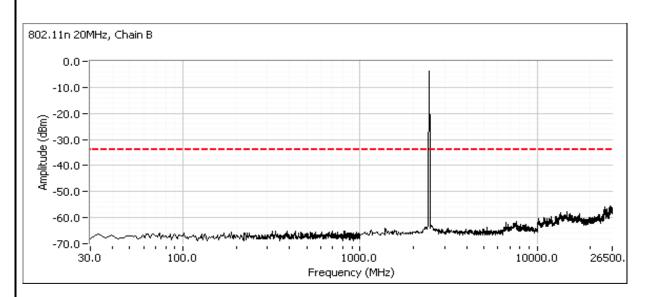
_	All Dell's Company		
Client:	Intel Corporation	Job Number:	J80050
Model	Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205)		T80123
woder:	02203ANHIVIV (IIILEI® CEITIIIII)® AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



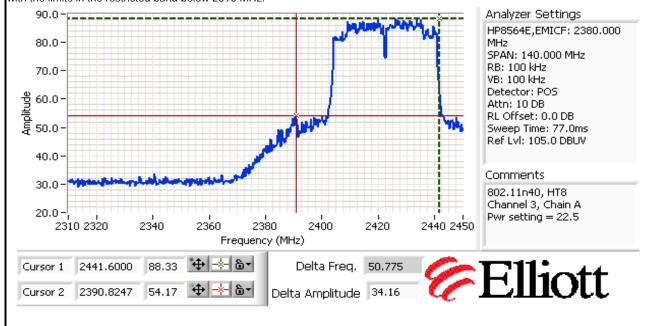
Plots for center channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 29.5/28

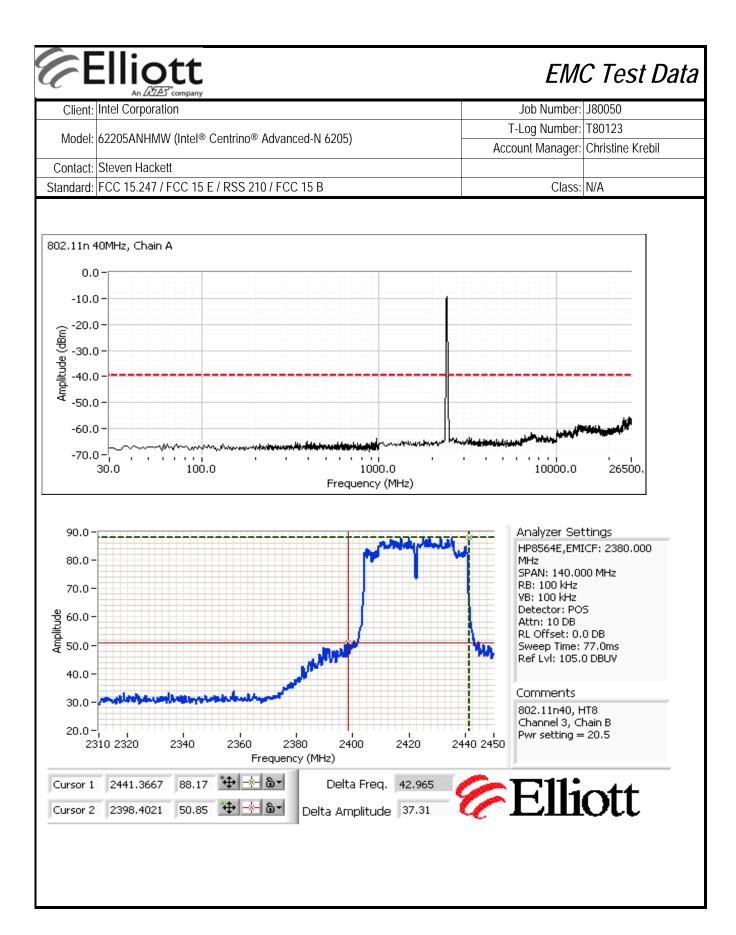


- 1		All Dall's Company		
	Client:	Intel Corporation	Job Number:	J80050
	Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205)		T-Log Number:	T80123
	woder:	02203ANTIMIW (IIIIei® Celiliilio® Auvanceu-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

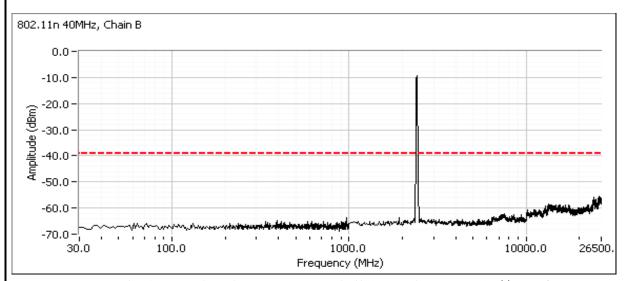


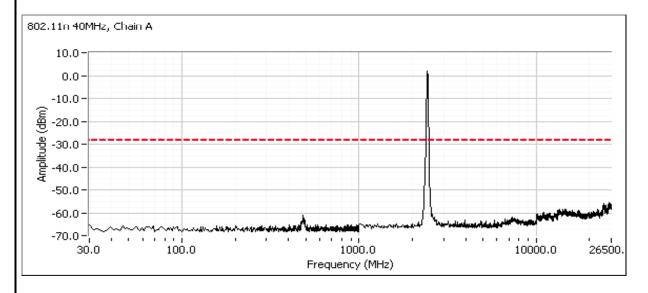
Plots for high channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 25.0/24.0




	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123 Christine Krebil
wodei.	02203ANTINIW (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for low channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 22.5/20.5

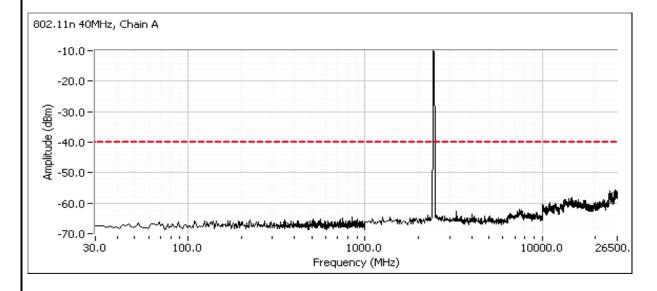

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

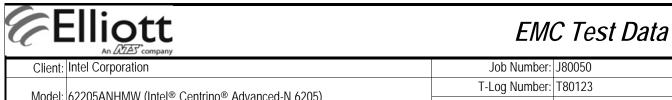


_	All Dell's Company		
Client:	Intel Corporation	Job Number:	J80050
Model	Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205)		T80123
woder:	02203ANHIVIW (IIILEI® CEITIIIIIO® AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

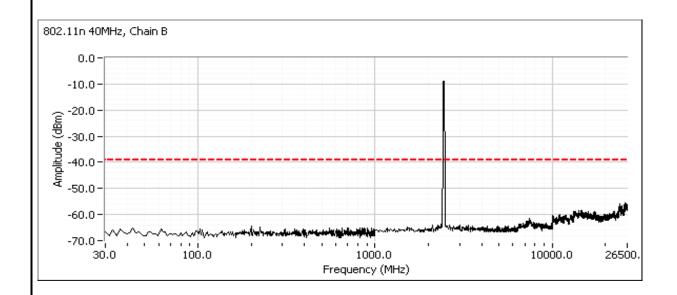


Plots for center channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 29.5/28





	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123 Christine Krebil
wiodei:	02203ANTINIW (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



Plots for high channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 22/21

	Client:	Intel Corporation	Job Number:	J80050
	Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
		02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

	Till Dall's Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123 Christine Krebil
wodei.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 8/16/2010 Test Engineer: John Caizzi/R. Varelas Config Change: None Test Location: FT EMC Lab #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 23 °C Rel. Humidity: 46 % Rel. Humidity:

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	28.5	16.6	802.11a Output Power	15.247(b)	Pass	15.6 dBm
2	28.5	16.6	802.11a Power spectral Density	15.247(d)	Pass	-9.3 dBm/3kHz
3	28.0	16.5	802.11a Minimum 6dB Bandwidth	15.247(a)	Pass	16.3 MHz
3	28.5	16.6	802.11a 99% Bandwidth	RSS GEN	-	18.8 MHz
4	-	-	802.11a Spurious emissions	15.247(b)	Pass	All emissions below -30dBc limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

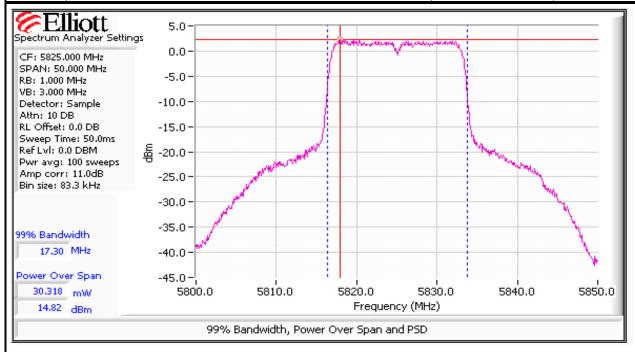
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123 Christine Krebil
wiodei:	02203ANTININ (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #1: Output Power

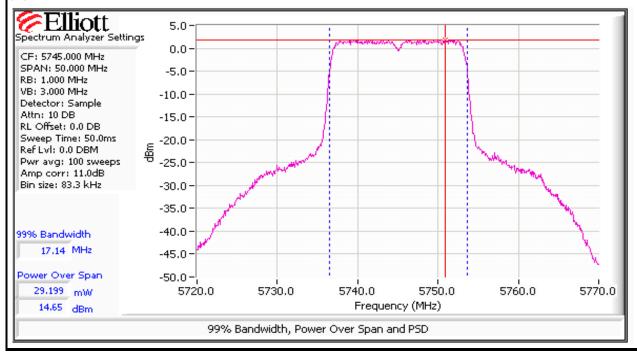
Power	Fraguanov (MIIz)	Output	Power	Antenna	Docult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
802.11a Mo	de, Chain A								
28.5	5745	15.6	36.2	5.0	Pass	20.6	0.115	16.6	45.7
28.0	5785	14.9	31.1	5.0	Pass	19.9	0.098	16.5	44.7
28.0	5825	14.8	30.3	5.0	Pass	19.8	0.096	16.5	44.7
802.11a Mo	de, Chain B								
26.0	5745	14.7	29.2	5.0	Pass	19.7	0.092	16.5	44.7
26.0	5785	14.3	26.9	5.0	Pass	19.3	0.085	16.5	44.7
26.0	5825	14.6	29.0	5.0	Pass	19.6	0.092	16.5	44.7
•									

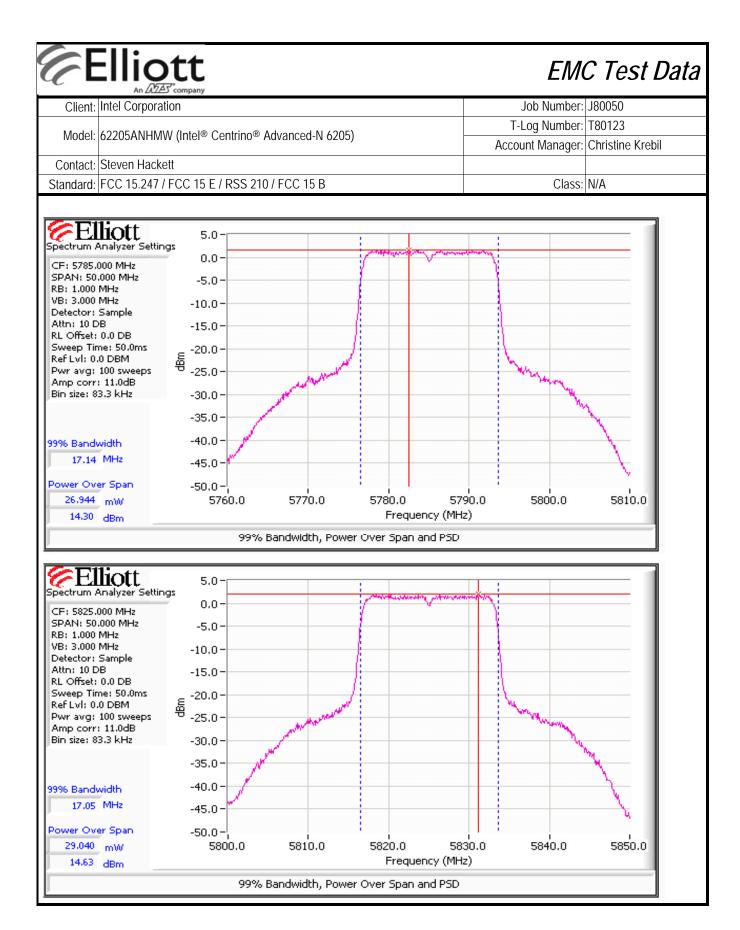
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **40 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.


Note 3: Power measured using average power meter and is included for reference only.

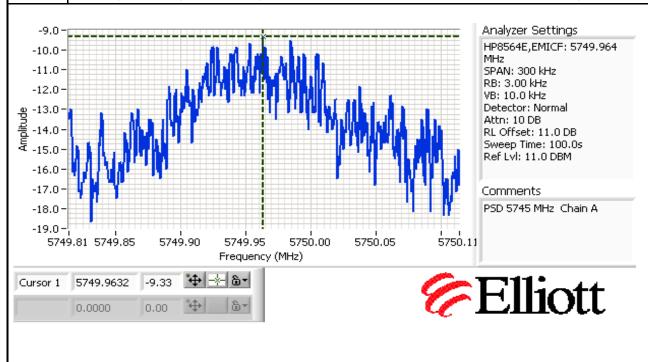
Elliott EMC Test Data Client: Intel Corporation Job Number: J80050 T-Log Number: T80123 Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205) Account Manager: Christine Krebil Contact: Steven Hackett Standard: FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Class: N/A Chain A **Elliott** 5.0 Spectrum Analyzer Settings 0.0 CF: 5745,000 MHz SPAN: 50,000 MHz RB: 1.000 MHz -5.0 VB: 3,000 MHz Detector: Sample -10.0 -Attn: 10 DB RL Offset: 0.0 DB -15.0 Sweep Time: 50.0ms Ref Lvl: 0.0 DBM Pwr avg: 100 sweeps -20.0 Amp corr: 11.0dB Bin size: 83.3 kHz -25.0 -30.0 99% Bandwidth 18.80 MHz -35.0 Power Over Span -40.0 -36,188 mW 5730.0 5740.0 5750.0 5760.0 5770.0 5720.0 Frequency (MHz) 15.59 dBm 99% Bandwidth, Power Over Span and PSD **Elliott** 5.0 Spectrum Analyzer Settings 0.0 CF: 5785,000 MHz SPAN: 50,000 MHz -5.0-RB: 1,000 MHz VB: 3,000 MHz -10.0 Detector: Sample Attn: 10 DB RL Offset: 0.0 DB -15.0 -Sweep Time: 50.0ms Ref Lvl: 0.0 DBM 튬 -20.0 Pwr avg: 100 sweeps Amp corr: 11.0dB -25.0 Bin size: 83.3 kHz -30.0 -35.0 99% Bandwidth 17,47 MHz -40.0 Power Over Span -45.0 -31.124 mW 5760.0 5770.0 5780.0 5790.0 5800.0 5810.0 14.93 dBm Frequency (MHz)


99% Bandwidth, Power Over Span and PSD



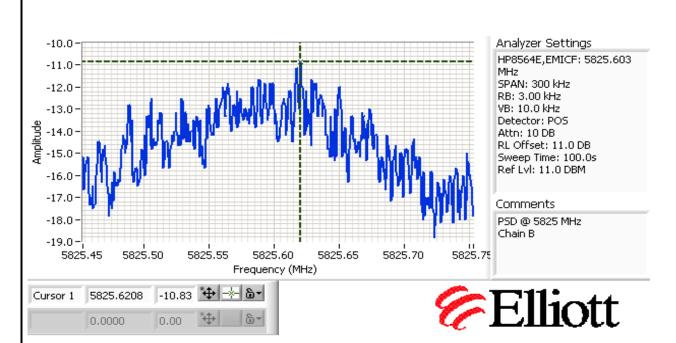
_	All Dell's Company		
Client:	Intel Corporation	Job Number:	J80050
Madali	Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205)		T80123
woder:	02203ANHIVIW (IIILEI® CEITIIIIIO® AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Chain B



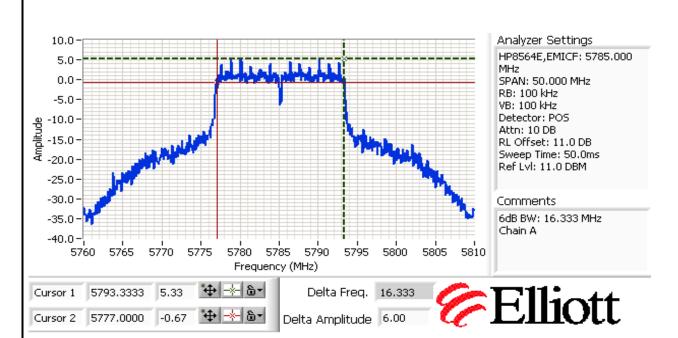
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	: T80123 : Christine Krebil
wiodei:	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #2: Power spectral Density


Power	Eroguanay (MHz)	PSD	Limit	Result	
Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz		
802.11a Mo	de, Chain A				
28.5	5745	-9.3	8.0	Pass	
28	5785	-10.2	8.0	Pass	
28	5825	-9.8	8.0	Pass	
802.11a Mo	802.11a Mode, Chain B				
26	5745	-11.2	8.0	Pass	
26	5785	-11.2	8.0	Pass	
26	5825	-10.8	8.0	Pass	

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

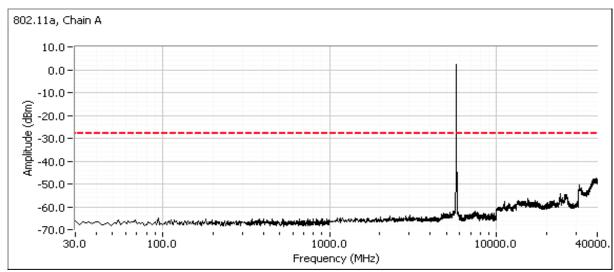
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

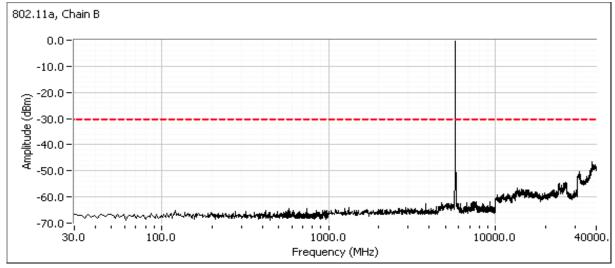

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwidth (MHz)	
Setting	r requericy (iviriz)	Bandwidth	6dB	99%
802.11a Mo	d e			
28.0	5785, Chain A	100 kHz	16.333	17.47
26.0	5785, Chain B	100 kHz	16.417	17.14
28.5	5745, Chain A	100 kHz	16.417	18.8
28.0	5825, Chain A	100 kHz	16.333	17.3

Note 1:	199% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB (taken from power
Note 1.	measurement plots)
Note 2:	6dB bandwidth measured on the center channel for each chain and then on the top and bottom channels for the chain with
NOIE Z.	the narrowest 6dB handwidth

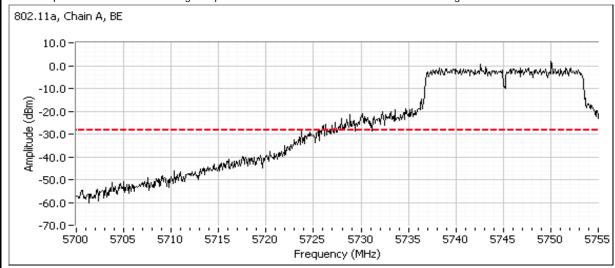
	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

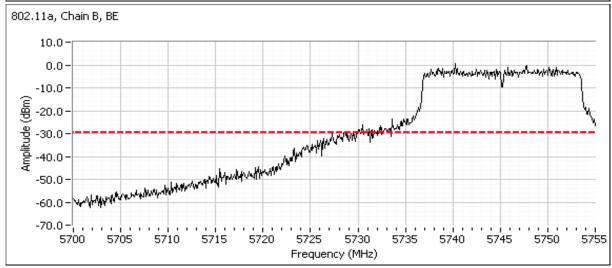

Run #4: Out of Band Spurious Emissions

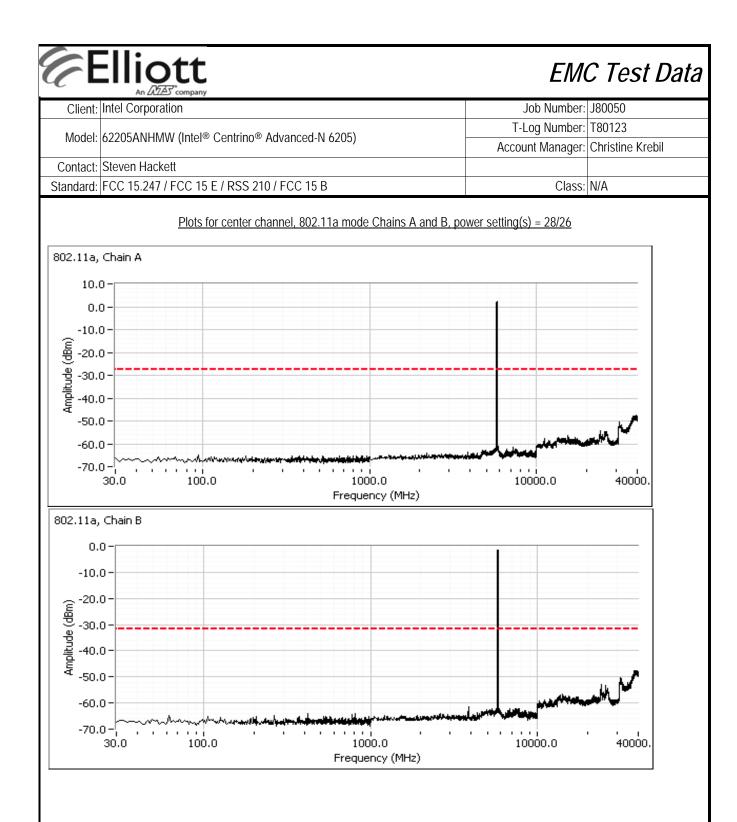

Mode	Chain	Frequency (MHz)	Limit	Result
	В	5745	-30dBc	Pass
		5785	-30dBc	Pass
802.11a —		5825	-30dBc	Pass
		5745	-30dBc	Pass
		5785	-30dBc	Pass
		5825	-30dBc	Pass

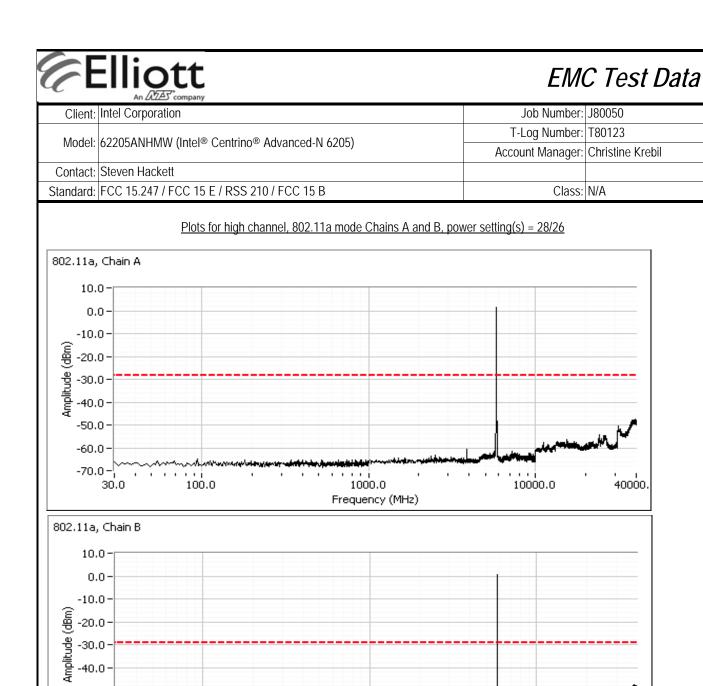
-	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for low channel, 802.11a mode Chains A and B, power setting(s) = 28.5/26.0








Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Additional plots for each chain showing compliance with -30dBc limit at the 5725MHz band edge.

100.0

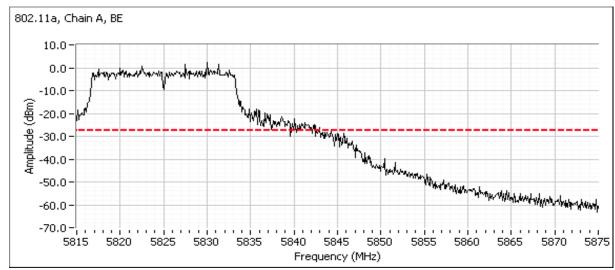
-50.0

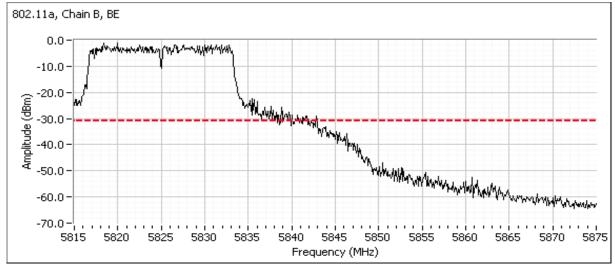
-70.0 -[

30.0

1000.0

Frequency (MHz)


40000.


10000.0

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Additional plots for each chain showing compliance with -30dBc limit at the 5850 MHz band edge.

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTININ (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 8/16/2010 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Lab #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 23 °C Rel. Humidity: 46 %

Summary of Results

Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	16.7	802.11n 20MHz Output Power	15.247(b)	Pass	15.6 dBm
1	-	16.5	802.11n 40MHz Output Power	15.247(b)	Pass	20.8 dBm
2	-	16.7	802.11n 20MHz Power spectral	15.247(d)	Pass	-8.5 dBm/3kHz
2	-	16.5	802.11n 40MHz Power spectral	15.247(d)	Pass	-9 dBm/3kHz
3	-	16.6	802.11n 20MHz Minimum 6dB	15.247(a)	Pass	17.5 MHz
3	-	16.7	802.11n 20MHz 99% Bandwidth	RSS GEN	-	18.6 MHz
3	-	16.7	802.11n 40MHz Minimum 6dB	15.247(a)	Pass	35.2 MHz
3	-	17	802.11n 40MHz 99% Bandwidth	RSS GEN	-	39.1 MHz
1			802.11n 20MHz Spurious emissions	15.247(b)	Pass	All emissions below
4		_	ooz. i iii zoivii iz opunous cinissions	13.247(0)	1 033	-30dBc limit
1			802.11n 40MHz Spurious emissions	15.247(b)	Pass	All emissions below
4	-	-	002.1 111 401/1112 Sparious etilissions	15.247(0)	F d S S	-20dBc limit

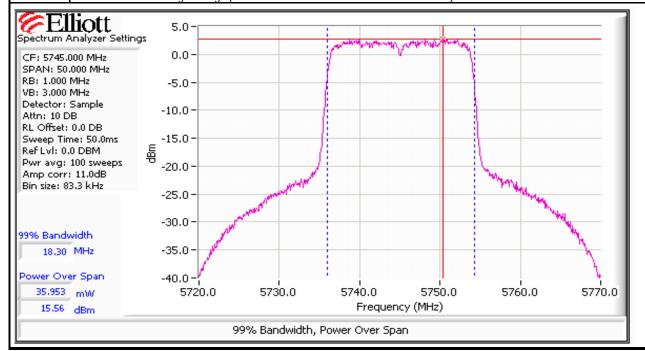
Modifications Made During Testing

No modifications were made to the EUT during testing

Client:	Intel Corporation	Job Number:	J80050
Model:	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Deviations From The Standard

No deviations were made from the requirements of the standard.


Run #1: Output Power - 802.11n20MHz

Power	Fraguanay (MIIz)	Output	Power	Antenna	Docult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) 3	mW
802.11n 20N	802.11n 20MHz Mode, Chain A								
28.5	5745	15.4	34.7	5.0	Pass	20.4	0.110	16.7	46.8
28.5	5785	15.4	34.7	5.0	Pass	20.4	0.110	16.7	46.8
28.5	5825	15.3	33.9	5.0	Pass	20.3	0.107	16.6	45.7
802.11n 20N	MHz Mode, Chain B								
27	5745	15.6	36.3	5.0	Pass	20.6	0.115	16.7	46.8
27	5785	15.2	33.1	5.0	Pass	20.2	0.105	16.6	45.7
27	5825	15.1	32.4	5.0	Pass	20.1	0.102	16.6	45.7

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc.

Note 2: Power setting - the software power setting used during testing, included for reference only.

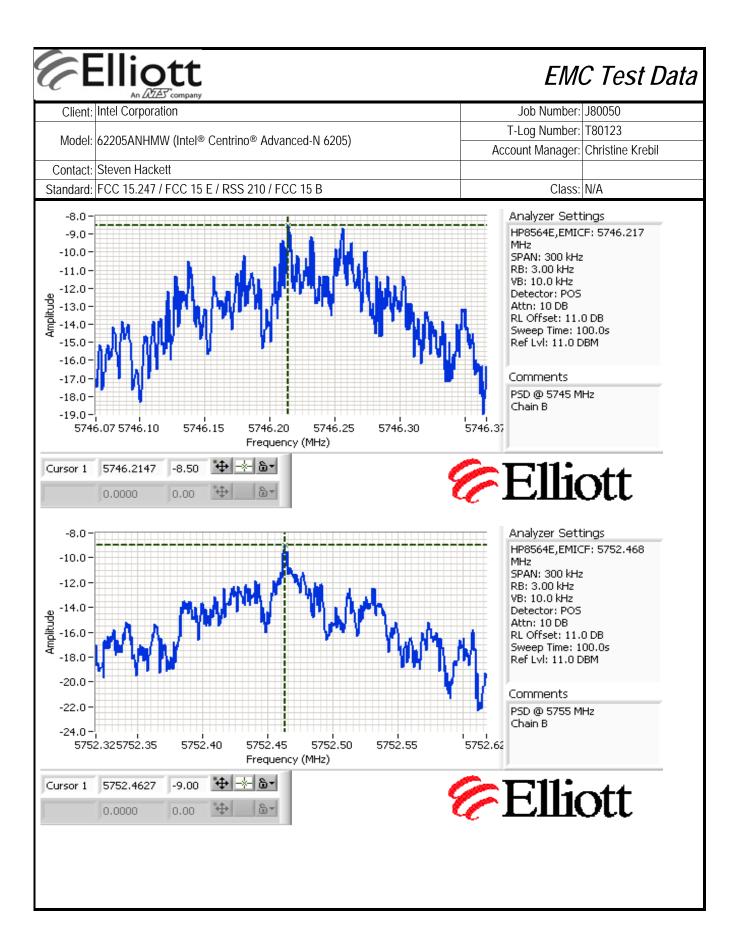
Note 3: Power measured using average power meter and is included for reference only.

		The state of the s		
Ī	Client:	Intel Corporation	Job Number:	J80050
	Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	wodei.	02203ANTININ (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #1: Output Power - 802.11n40MHz

Rull # 1. Oc	iii # 1. Output i owei - ooz. i iii-owiiiz								
Power	Fraguancy (MUz)	Output	Power	Antenna	Docult	EIRP	Note 2	Output I	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
802.11n 40N	802.11n 40MHz Mode, Chain A								
29.5	5755	20.2	104.7	5.0	Pass	25.2	0.331	16.7	46.8
29.5	5795	20.1	102.3	5.0	Pass	25.1	0.324	16.6	45.7
802.11n 40N	MHz Mode, Chain B								
28	5755	20.8	120.2	5.0	Pass	25.8	0.380	16.5	44.7
28	5795	20.7	117.5	5.0	Pass	25.7	0.372	16.6	45.7

Note 1:	Power measured using a peak power meter. Used for SISO n40 mode
Note 2:	Power setting - the software power setting used during testing, included for reference only.
Note 3:	Power measured using average power meter and is included for reference only.

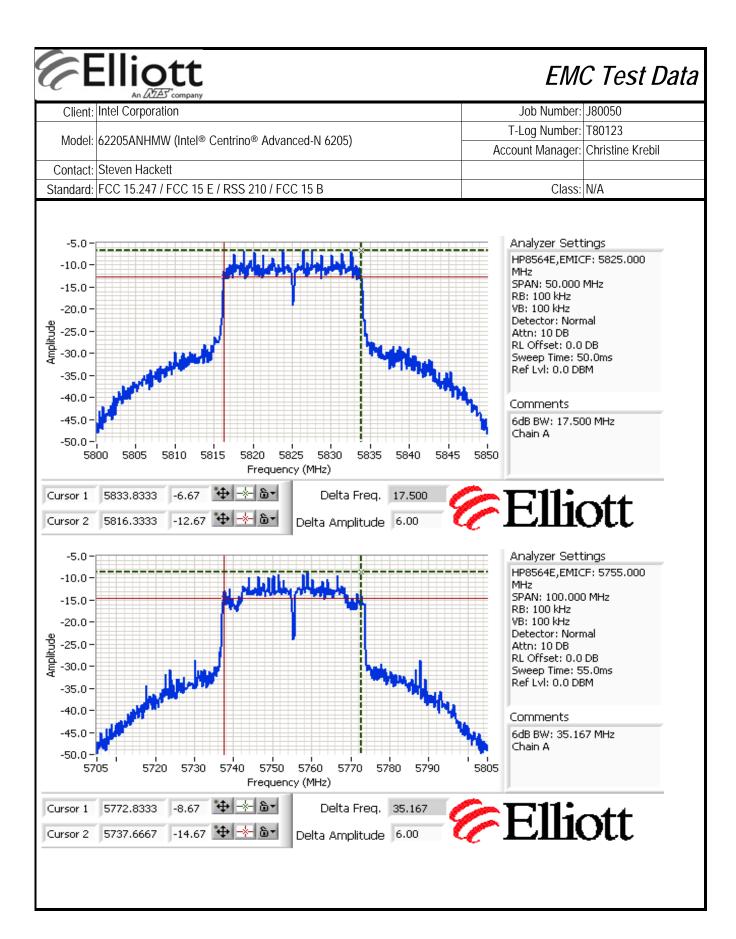

Note: Peak power measurements made for n40MHz mode because this mode does not meet the -30dBc requirement at the 5725MHz band edge when operating on the lowest channel.

Run #2: Power spectral Density

Power		PSD	Limit	Result			
Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz	rtosuit			
802.11n 20N	MHz Mode, Chain A	,	•				
28.5	5745	-9.0	8.0	Pass			
28.5	5785	-8.7	8.0	Pass			
28.5	5825	-8.7	8.0	Pass			
802.11n 20N	//Hz Mode, Chain B						
27	5745	-8.5	8.0	Pass			
27	5785	-9.5	8.0	Pass			
27	5825	-9.0	8.0	Pass			
802.11n 40N	MHz Mode, Chain A						
29.5	5755	-12.5	8.0	Pass			
29.5	5795	-13.0	8.0	Pass			
802.11n 40N	802.11n 40MHz Mode, Chain B						
28	5755	-9.0	8.0	Pass			
28	5795	-11.0	8.0	Pass			

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.



Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIV (IIILEI® CEITIIII0® AUVAITCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)			
Setting	riequency (Miriz)	Bandwidth	6dB	99%			
802.11n 20MHz Mode							
28.5	5785, Chain A	100kHz	17.6	18.6			
27	5785, Chain B	100kHz	17.6	18.3			
28.5	5745, Chain A	100kHz	17.6	18.6			
28.5	5825, Chain A	100kHz	17.5	18.5			
802.11n 40l	MHz Mode						
28	5755, Chain A	100kHz	35.2	39.1			
28	5755, Chain B	100kHz	35.2	37.1			
28	5795, Chain B	100kHz	35.2	37.1			

ı	Note 1:	99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB (taken from power
Note 1.	NOIC I.	measurement plots)
	Noto 2:	6dB bandwidth measured on the center channel for each chain and then on the top and bottom channels for the chain with
Note 2	NUIC Z.	the narrowest 6dB bandwidth.

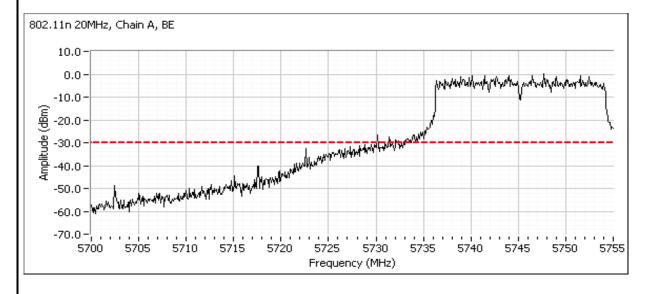
Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number: T80123	
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #4: Out of Band Spurious Emissions

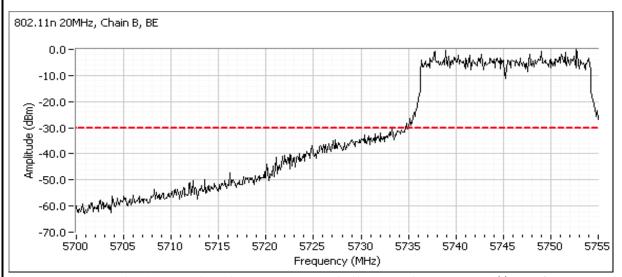
Mode	Chain	Frequency (MHz)	Limit	Result
		5745	-30dBc	Pass
	Α	5785	-30dBc	Pass
802.11n		5825	-30dBc	Pass
20MHz		5745	-30dBc	Pass
	В	5785	-30dBc	Pass
		5825	-30dBc	Pass
	А	5755	-20dBc	Pass
802.11n	A	5795	-20dBc	Pass
40MHz	В	5755	-20dBc	Pass
	D	5795	-20dBc	Pass


Note: -20dBc limit used for n40MHz mode because this mode does not meet the -30dBc requirement at the 5725MHz band edge when operating on the lowest channel. Power measurements made for n40MHz mode were made using a peak power meter.

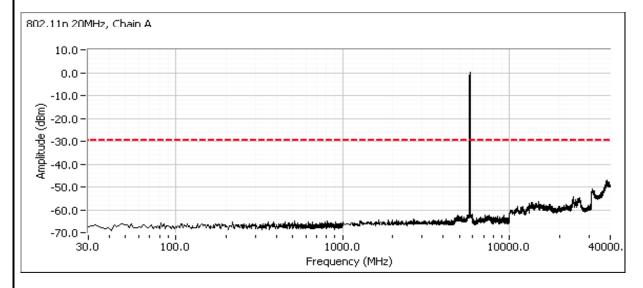
Plots for low channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 28.5/27



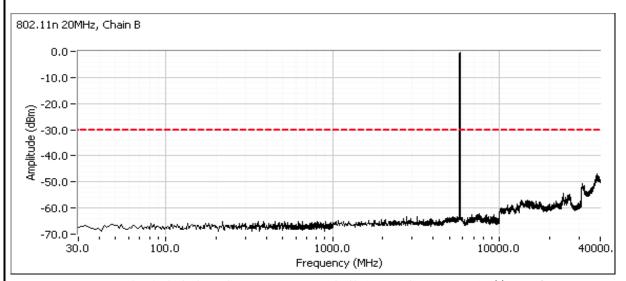
-	The Company					
Client:	Intel Corporation	Job Number:	J80050			
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number: T80123				
Model.	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil			
Contact:	Steven Hackett					
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A			



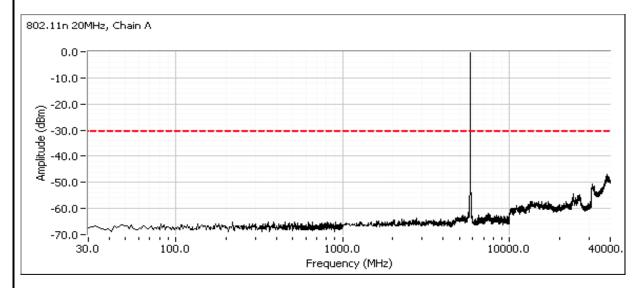
Additional plots for each chain showing compliance with -30dBc limit at the 5725MHz band edge.



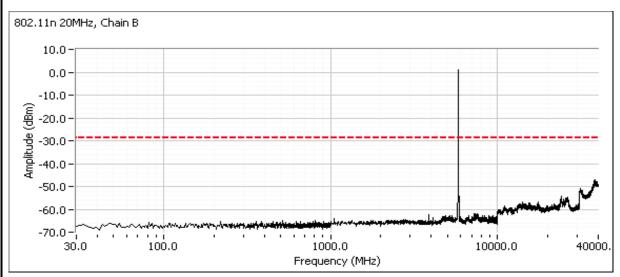
_		rangemy company		
ſ	Client:	Intel Corporation	Job Number:	J80050
	Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	wodei.	02203ANTIWW (IIIle1 Celllillo Advanced-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



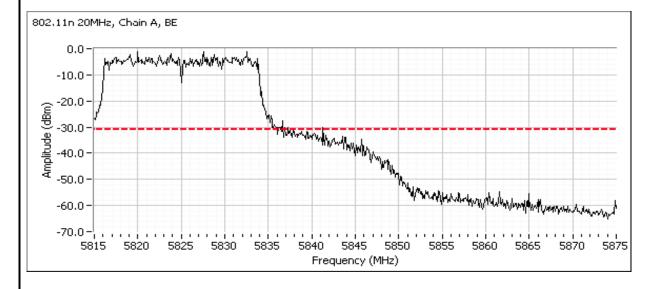
Plots for center channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 28.5/27



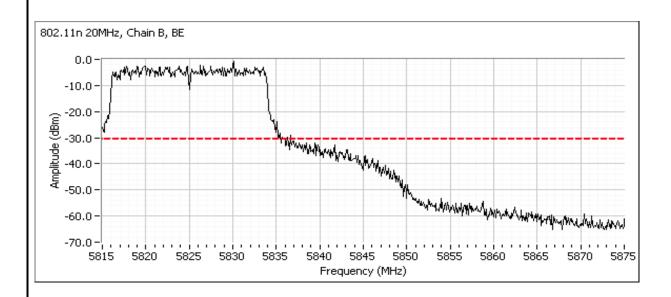
-		···· y		
	Client:	Intel Corporation	Job Number:	J80050
	Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
	woder:	02203ANTIWW (IIIle1 Celllillo Advanced-N 0203)	Account Manager:	Christine Krebil
	Contact:	Steven Hackett		
	Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



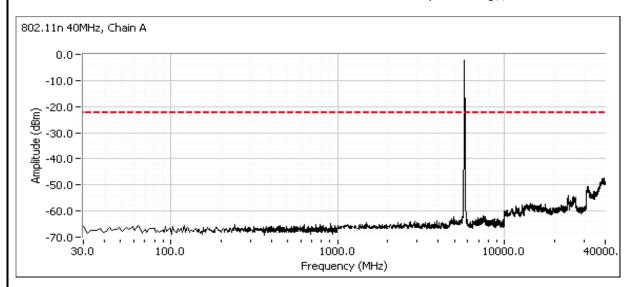
Plots for high channel, 802.11n 20MHz mode Chains A and B, power setting(s) = 28.5/27

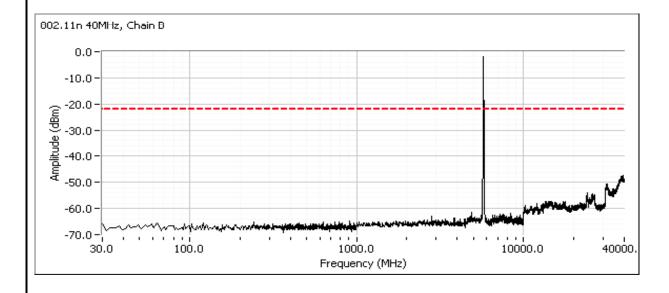


Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



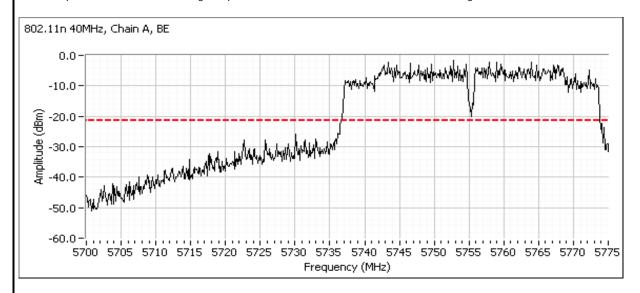
Additional plots for each chain showing compliance with -30dBc limit at the 5850 MHz band edge.

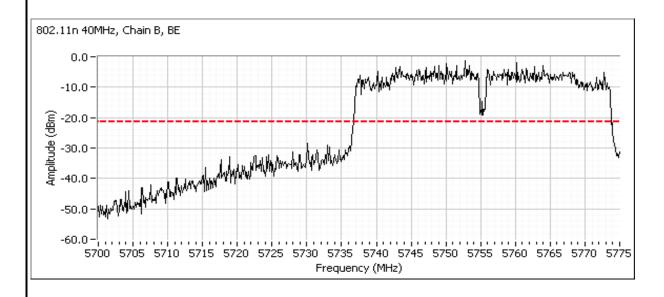

Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A



Client:	Intel Corporation	Job Number:	J80050
Madali	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTIMIW (IIIIei® Ceillillo® Auvaliceu-in 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

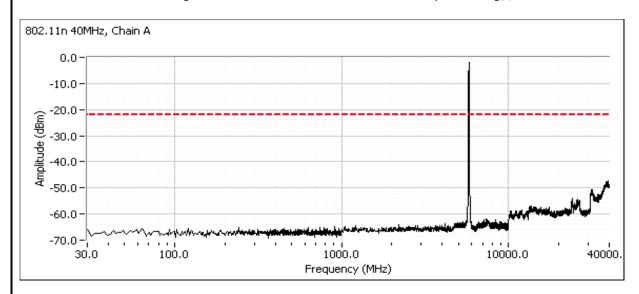
Plots for low channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 29.5/28

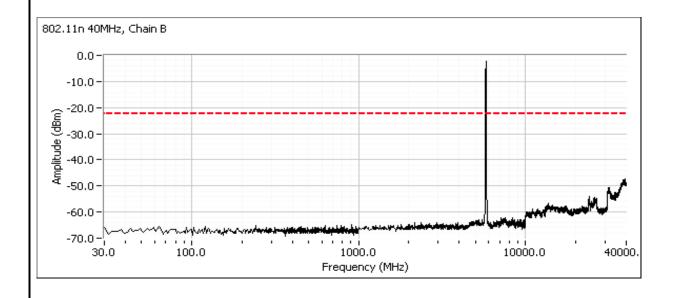




Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

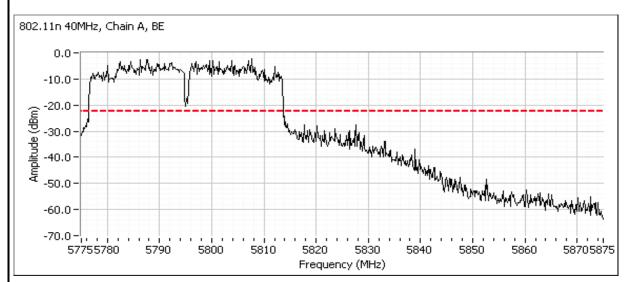
Additional plots for each chain showing compliance with -20dBc limit at the 5725MHz band edge.

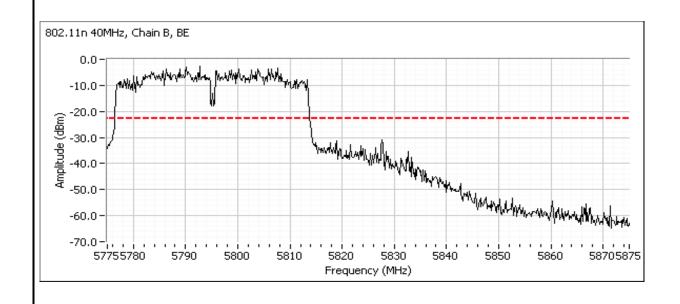




Client:	Intel Corporation	Job Number:	J80050
Madali	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTIMIW (IIIIei® Ceillillo® Auvaliceu-in 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Plots for high channel, 802.11n 40MHz mode Chains A and B, power setting(s) = 29.5/28





-	Tan Ball Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTINIW (IIILEI® CEITHIIIO® AUVAILCEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Additional plots for each chain showing compliance with -20dBc limit at the 5850 MHz band edge.

Client:	Intel Corporation	Job Number:	J80050
Madalı	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
wodel.	02203ANTIMIW (IIIIei® Celiliilio® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems (2400-2483.5MHz) Power, PSD - 802.11n MIMO Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/16/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Lab #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on each chain individually.

All measurements have been corrected to allow for the external attenuators used.

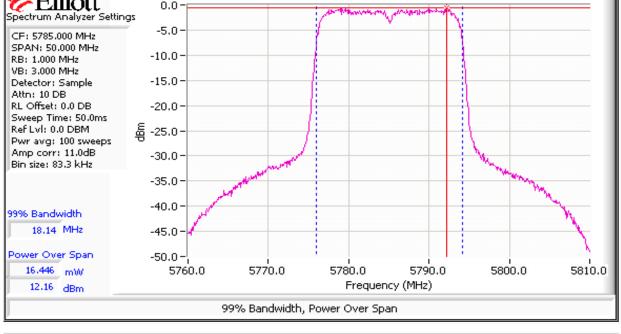
Ambient Conditions:

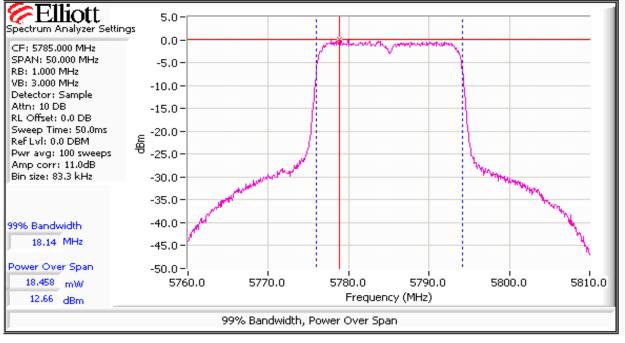
Temperature: 23 °C Rel. Humidity: 46 %

Summary of Results

Run #	Run # Pwr setting Avg Pwr		Test Performed	Limit	Pass / Fail	Result / Margin		
802.11n 20MHz								
1	-	16.7	Output Power	15.247(b)	Pass	15.5 dBm (NII avg)		
1	1 - 16.7 Power spectral Density (PSD)		15.247(d)	Pass	-8.1 dBm/3kHz			
802.11n 40l	MHz							
1	-	16.7	Output Power	15.247(b)	Pass	21.3 dBm (peak)		
1	-	16.6	Power spectral Density (PSD)	15.247(d)	Pass	-9.5 dBm/3kHz		
-	Mi		Minimum 6dB Bandwidth n20	n 6dB Bandwidth n20 15.247(a)		Covered by		
		99% Bandwidth n20	RSS GEN		SISO measurements			
-	-	-	Spurious emissions n20 and n40	15.247(b)		on each chain		

Modifications Made During Testing

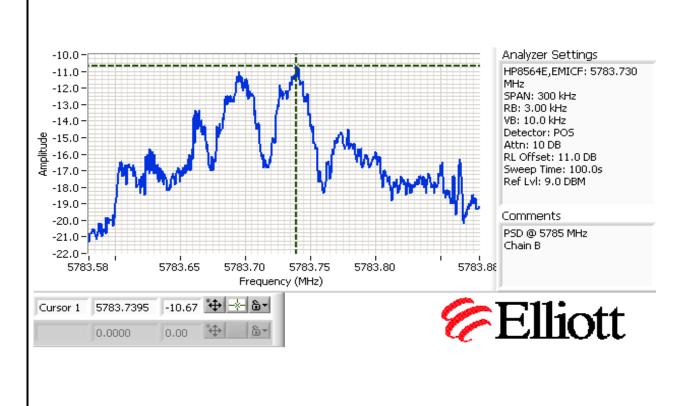

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Client	Elliott An AZES company Intel Corporation					J	ob Number:	J80050				
Madal	: 62205ANHMW (Intel®	Contring® Adv	rancod N 42	OE)		T-L	og Number:	T80123				
woder:	: 022USAINHIVIVV (IIILEI®	Centino Auv	ranceu-in oz	05)		Accou	nt Manager:	Christine Kre	ebil			
	: Steven Hackett											
Standard: FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B							Class:	N/A				
	utput Power O Insmitted signal on chai	perating Mode: n is coherent?		DMHz								
	5745 MHz	Chain A	Chain B	Chain 3	Chain 4	Limit		nit				
Power Setti	ing ^{Note 3}	27.5	27.5			Total Across	s All Chains	Limit				
verage Po	ower ^{Note 4}	13.6	13.7									
output Pow	ver (dBm) Note 1	12.4	12.4			15.4 dBm	0.035 W	30.0 dBm	1.000 \			
ntenna Ga	ain (dBi) Note 2	5.0	5.0				5.0 dBi	Pa	SS			
irp (dBm) ^r	Note 2	17.4	17.4			20.4 dBm	0.110 W	-				
	5785 MHz	Chain A	Chain B	Chain 3	Chain 4							
ower Setti		28.0	27.5		Gridani I	Total Across	s All Chains	Lir	nit			
verage Po	ower ^{Note 4}	13.7	13.7			Total Flores	oranio					
output Pow	ver (dBm) Note 1	12.7	12.2			15.5 dBm	0.035 W	30.0 dBm	1.000			
intenna Ga		5.0	5.0				5.0 dBi	<u>.</u>				
irp (dBm) ^r		17.7	17.2			20.5 dBm	0.111 W	Pa	SS			
				-				ı				
	5825 MHz	Chain A	Chain B	Chain 3	Chain 4	.		Lir	nit			
ower Setti	Note 4	28.0	27.5			Total Across	s All Chains					
verage Po	OWer Note 1	13.6	13.7			1F 1 dD	0.022.14/	20 0 dD	1 000 1			
	ver (dBm) Note 1	12.2 5.0	12			15.1 dBm	0.032 W	30.0 dBm	1.000			
Antenna Gain (dBi) Note 2		_	5.0			20.1 dPm	5.0 dBi	Pa	SS			
ntenna Ga	eirp (dBm) Note 2 17.2 17 20.1 dBm 0.103 W						U. 1U3 VV					
irp (dBm) ^l		. day also as a second	Lancia de la lancia		I X 211.	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc.						
irp (dBm) ^t	Output power measure averaging on (transmi	tted signal was	continuous)	and power in	tegration over	er 50 MHz (o _l	otion #2, me					
eirp (dBm) ^t	Output power measure averaging on (transmi	tted signal was 1 of DA-02-213	continuous) 8A1 for U-NI	and power in I devices). S	tegration ove purious limit	er 50 MHz (o _l becomes -30	otion #2, me dBc.					

Client: Intel Corporation						ı	ob Number:	180050	
							og Number:		
Model	: 62205ANHMW (Intel® C	entrino® Adv	anced-N 62	05)			•	Christine Krebil	
Contact: Steven Hackett							9-11	-	
Standard: FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B						Class:	N/A		
	Ope	erating Mode:	802.11n, 40						
	5755 MHz	Chain A	Chain B	Chain 3	Chain 4			Limit	
Power Setti	ing ^{Note 3}	28.5	28.5			Total Across	s All Chains	Liiiik	
Average Po	ower ^{Note 4}	13.6	13.7						
Dutput Pow	ver (dBm) Note 1	18.1	18.4			21.3 dBm	0.134 W	30.0 dBm 1.000 W	
Antenna Ga	ain (dBi) Note 2	5.0	5.0				5.0 dBi	Pass	
eirp (dBm)	Note 2	23.1	23.4			26.3 dBm	0.423 W	1 433	
	5795 MHz	Chain A	Chain B	NY haliala	Chain 4				
Power Setti		28.5	28.5	Queuro	Second	Total Across	s ΔII Chains	Limit	
Average Po	ower ^{Note 4}	13.5	13.7			Total Acros.	3 All Chairis		
Jutput Dou	ver (dBm) Note 1	17.5	18.2			20.9 dBm	0.122 W	30.0 dBm	
Antonna Ga	ain (dBi) Note 2	5.0	5.0			20.7 dDill	5.0 dBi	l.	
Antenna Gain (dBi) Note 2 eirp (dBm) Note 2		22.5	23.2			25.9 dBm	0.387 W	Pass	
Note 2:	As there is no coherency the eirp divide by the su	y between cha m of the powe	ains the tota er on each c	l EIRP is the hain.					
Note 3: Power setting - test utility setting, for reference only						ar rafaranaa a	بماري		
Note 4:	Average output power p								


	The state of the s		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
woden.	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD (dBm/3kHz) Note 1				Limit	Result
Setting	rrequeries (iviriz)	Chain A	Chain B	Chain 3 Chain 4	Total	dBm/3kHz	Nosuit
27.5/27.5	5745	-12.8	-11.2		-8.9	8.0	Pass
28/27.5	5785	-11.7	-10.7		-8.1	8.0	Pass
28/27.5	5825	-12.5	-11.8		-9.1	8.0	Pass
28.5/28.5	5755	-14.8	-15.0		-11.9	8.0	Pass
28.5/28.5	5795	-12.8	-12.3		-9.5	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

	All Dates Company		
Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI® CEITIIII0® Advanced-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В

Conducted Emissions - Wireless Module (DTS/NII/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 8/13/2010 Config. Used: Module Test Engineer: Mark Hill Config Change: None Test Location: FT #3 Host Unit Voltage 120V/60Hz

General Test Configuration

The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN which was used to connect to the AC input of the DC power supply connected to the test fixture. A second LISN was used for all remaining support equipment.

Temperature: 22 °C **Ambient Conditions:**

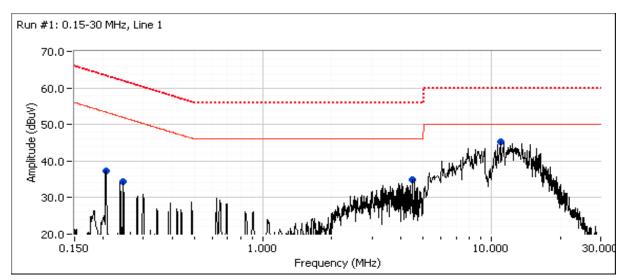
> Rel. Humidity: 37 %

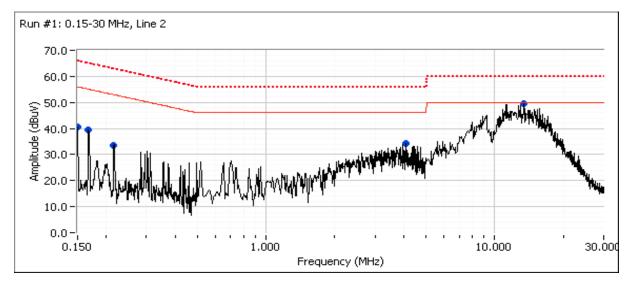
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	FCC 15.207/RSS GEN	Pass	33.2dBµV @ 13.426MHz (-16.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Client:	Intel Corporation	Job Number:	J80050
Model	62205ANHMW (Intel® Centrino® Advanced-N 6205)	T-Log Number:	T80123
Model.	02203ANTININ (IIILEI CEITIIII O AUVAILLEU-N 0203)	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Configured to TX at 16.5dBm on each chain (settings 33/31) on channel 6, HT8

	Intel Corpor	ation					Job Number:	J80050
Madal	/ 220F A NIL IA	ANA /Intal® C	ontrino® Adv	ranged N / M	\ r \		T-Log Number:	T80123
wodei:	62205ANHI	//w (intel® C	entrino® Adv	anced-iv 620	15)		Account Manager:	Christine Krebil
Contact:	Steven Hac	kett						
Standard:	FCC 15.247	/ FCC 15 E	/ RSS 210 / F	FCC 15 B			Class:	В
	1					s. average lim	it)	
requency		AC		7/RSS GEN	Detector	Comments		
MHz	dB _µ V	Line	Limit	Margin	QP/Ave			
13.426	49.5	Line 2	50.0	-0.5	Peak			
10.909	45.2	Line 1	50.0	-4.8	Peak			
4.488	35.0	Line 1	46.0	-11.0	Peak			
4.088	34.3	Line 2	46.0	-11.7	Peak			
0.150	40.7	Line 2	56.0	-15.3	Peak			
0.168	39.5	Line 2	55.1	-15.6	Peak			
0.205	37.4	Line 1	53.4	-16.0	Peak			
0.245	34.4	Line 1	51.9	-17.5	Peak			
0.217	33.5	Line 2	53.0	-19.5	Peak			
nal augsi	nook and a	vorago road	inac					
	-peak and a Level	AC	FCC 15.20	T/DCC CEN	Detector	Comments		
requency MHz		Line			QP/Ave	Comments		
	dΒμV		Limit	Margin	QP/Ave			
	າາາ	Line 2	L() ()	1/0	AVIC	AV/C (0.10c)		
13.426	33.2	Line 2	50.0	-16.8	AVG	AVG (0.10s)		
13.426 13.426	42.6	Line 2	60.0	-17.4	QP	QP (1.00s)		
13.426 13.426 10.909	42.6 39.1	Line 2 Line 1	60.0 60.0	-17.4 -20.9	QP QP	QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909	42.6 39.1 27.9	Line 2 Line 1 Line 1	60.0 60.0 50.0	-17.4 -20.9 -22.1	QP QP AVG	QP (1.00s) QP (1.00s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488	42.6 39.1 27.9 28.7	Line 2 Line 1 Line 1 Line 1	60.0 60.0 50.0 56.0	-17.4 -20.9 -22.1 -27.3	QP QP AVG QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088	42.6 39.1 27.9 28.7 28.2	Line 2 Line 1 Line 1 Line 1 Line 2	60.0 60.0 50.0 56.0 56.0	-17.4 -20.9 -22.1 -27.3 -27.8	QP QP AVG QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150	42.6 39.1 27.9 28.7 28.2 36.1	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2	60.0 60.0 50.0 56.0 56.0 66.0	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9	QP QP AVG QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168	42.6 39.1 27.9 28.7 28.2 36.1 35.0	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2	60.0 60.0 50.0 56.0 56.0 66.0 65.1	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1	QP QP AVG QP QP QP QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 2 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3	QP QP AVG QP QP QP QP AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 1 Line 2	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3	QP QP AVG QP QP QP QP AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 2 Line 1 Line 2 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0	QP QP AVG QP QP QP AVG AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 2 Line 1 Line 1 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2	QP QP AVG QP QP QP AVG AVG AVG QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245 0.217	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7 28.5	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 2 Line 1 Line 1 Line 1 Line 1 Line 2	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9 62.9	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2 -34.4	QP QP AVG QP QP QP AVG AVG AVG QP	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245 0.217 0.205	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7 28.5 14.8	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 2 Line 1 Line 2 Line 1 Line 2 Line 1 Line 1 Line 1 Line 2 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9 62.9 53.4	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2 -34.4 -38.6	QP QP AVG QP QP QP AVG AVG AVG QP QP AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245 0.217 0.205 0.245	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7 28.5 14.8 12.3	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 1 Line 2 Line 1 Line 2 Line 1 Line 1 Line 1 Line 1 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9 62.9 53.4 51.9	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2 -34.4 -38.6 -39.6	QP QP QP QP QP AVG AVG AVG QP QP AVG AVG AVG AVG AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245 0.217 0.205 0.245 0.217	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7 28.5 14.8 12.3 11.5	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 1 Line 1 Line 2 Line 1 Line 1 Line 1 Line 2 Line 1 Line 2 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9 62.9 53.4 51.9 52.9	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2 -34.4 -38.6 -39.6 -41.4	QP QP QP QP QP AVG AVG AVG QP QP AVG AVG AVG AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
13.426 13.426 10.909 10.909 4.488 4.088 0.150 0.168 4.488 4.088 0.205 0.245 0.217 0.205 0.245	42.6 39.1 27.9 28.7 28.2 36.1 35.0 15.7 14.7 30.4 28.7 28.5 14.8 12.3	Line 2 Line 1 Line 1 Line 1 Line 2 Line 2 Line 2 Line 1 Line 2 Line 1 Line 2 Line 1 Line 1 Line 1 Line 1 Line 1	60.0 60.0 50.0 56.0 56.0 66.0 65.1 46.0 46.0 63.4 61.9 62.9 53.4 51.9	-17.4 -20.9 -22.1 -27.3 -27.8 -29.9 -30.1 -30.3 -31.3 -33.0 -33.2 -34.4 -38.6 -39.6	QP QP QP QP QP AVG AVG AVG QP QP AVG AVG AVG AVG AVG AVG	QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		