

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538

EMC Test Report

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Intel[®] Centrino[®] Advanced-N 6205 with WNC 81XCAA15.G03 Dipole Antenna

IC CERTIFICATION #: 1000M-62205ANHU, 1000M-62205ANH FCC ID: PD962205ANHU, PD962205ANH APPLICANT: Intel Corporation 100 Center Point Circle Suite 200 Columbia, SC 29210 TEST SITE(S): National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435

2845B-3; 2845B-4, 2845B-5

- IC SITE REGISTRATION #:
 - REPORT DATE: April 2, 2013
 - FINAL TEST DATES: June 13, 14, 15, 2011 and March 11, 18, 2013

TOTAL NUMBER OF PAGES: 68

PROGRAM MGR / TECHNICAL REVIEWER:

Ray

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	04-02-2013	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	1
OBJECTIVE	5
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM)
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	L
GENERAL INFORMATION 11	1
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	l
INSTRUMENT CONTROL COMPUTER	2
FILTERS/ATTENUATORS	
ANTENNAS	-)
INSTRUMENT CALIBRATION	2
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	3
RADIATED EMISSIONS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS18	
SAMPLE CALCULATIONS - RADIATED EMISSIONS18	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	2
END OF REPORT	3

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation Intel® Centrino® Advanced-N 6205 with WNC 81XCAA15.G03 Dipole Antenna, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure, KDB 558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Intel Corporation Intel® Centrino® Advanced-N 6205 with WNC 81XCAA15.G03 Dipole Antenna complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation Intel® Centrino® Advanced-N 6205 with WNC 81XCAA15.G03 Dipole Antenna and therefore apply only to the tested samples. The samples were selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation			
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth			
15.247 (b)	RSS 210	Output Power	Not evaluated. The pro	posed changes (addition	of new
(3)	A8.2 (4)	(multipoint systems)	certification numbers) d	lo not affect the values p	reviously
15.247(d)	RSS 210	Power Spectral	reported.		
13.247(u)	A8.2 (2)	Density			
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz			
15.247(c) / 15.209	Radiated Spurious		Emissions 2390 OMHz bands, all others		Complies (-0.6dB)
Note 1: The previously reported worst case value for radiated spurious emissions was 53.3dBµV/m @ 2389.9MHz					
(0.7dB below the limit) using the original PIFA antenna.					
Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power					
averaged over	a transmission	burst).			

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.247(a)	RSS 210 A8.2	Digital Modulation				
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth				
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	Not evaluated. The proposed changes (addition of new certification numbers) do not affect the values previously reported.			
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density				
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz				
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	42.9dBµV/m@ 11649.7MHz	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies	
Note 1: The previously reported worst case value for radiated spurious emissions was $47.1dB\mu V/m$ @ $11649.9MHz$ (6.9dB below the limit) using the original PIFA antenna. Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).						

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Not evaluated. The pro	posed changes (addition	n of new
15.207	RSS GEN Table 2	AC Conducted Emissions	certification numbers) or reported.	do not affect the values p	previously
	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	Not evaluated. No	longer required per RSS	S-GEN
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Not evaluated. The add does not affect the MPI	ition of new certification E values.	n numbers
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth		posed changes (addition do not affect the values p	
	Note 1: The previously reported worst case value for radiated spurious emissions was 34.9dBµV/m @ 199.83MHz (8.6dB below the limit) using the original PIFA antenna.				

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation Intel® Centrino® Advanced-N 6205 with WNC 81XCAA15.G03 Dipole Antenna is a PCIe Half Mini Card form factor IEEE 802.11a/b/g/n wireless network adapter that operates in both the 2.4 GHz and 5.0 GHz spectra. The card supports 2x2 MIMO for 802.11n modes in both 20MHz and 40MHz channels. In legacy modes 1x2 operation is supported.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card.

The card has been certified with limited modular approval. The limited modular version is intended to allow the OEM to permit user installation when the host system is provided with a bios locking feature that prevents unauthorized installation (FCC ID: PD962205ANHU; IC:1000M-62205ANHU) The U.S./FCC approved version is approved under Intel model 62205ANHW and for Canada/IC as model 62205ANHU.

The scope of this report has been changed to add the full modular approval for model 62205ANHMW (FCC ID: PD962205ANH; IC:1000M-62205ANH). The full modular version is intended for factory installation only by the OEM. Limited radiated emissions testing was performed as the original tests were performed more than 1 year ago.

Samples were received on June 13, 2011 and March 11, 2013 and tested on June 13, 14, 15, 2011 and March 11, 18, 2013. The EUT tested are as follows:

Company	Model	Description	Serial Number	FCC ID IC CN
Intel Corporation	62205ANHMW	PCIe Half Mini Card 802.11a/b/g/n wireless network	MAC address 001500634F48 (2011 tests)	PD962205ANH PD962205ANHU 1000M-62205ANH
Corporation	62205ANHU	adapter	A088B449143C (2013 tests)	1000M- 62205ANHU

ANTENNA SYSTEM

The antenna originally approved with the system was a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. and dipole antenna, part number WNC P/N 81XCAA15.G03. In all bands the dipole antenna has lower gain than the PIFA antenna.

Band	Antenna Gain		
	Original	New Dipole	
	PIFA		
200-2483.5 MHz	3.2 dBi	Tx/Rx1: -0.45 dBi	
200-2485.5 WITE	5.2 UDI	Tx/Rx2: 1.26 dBi	
5150-5350 MHz	3.7 dBi	Tx/Rx1: -0.36 dBi	
5150-5550 WIIIZ	5.7 ubi	Tx/Rx2: 1.58 dBi	
5470-5725 MHz	4.8 dBi	Tx/Rx1: -0.07 dBi	
5470-5725 WIIIZ	4.0 UDI	Tx/Rx2: 1.01 dBi	
5725-5850 MHz	5 dBi	Tx/Rx1: 0.83 dBi	
5725-3830 WIHZ	JUDI	Tx/Rx2: 1.09 dBi	

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel	Shiloh	MINI PCI test fixture	2009-1543	-
Dell	Prototype	Laptop PC	-	-
Agilent	-	DC bench supply	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Polt	То	Description	Shielded or Unshielded	Length(m)
test fixture DC In	DC Supply out	2-wire	Unshielded	2
test fixture PCIe	Laptop PCIe	Ribbon	Unshielded	1

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmitter or continuously receive on the channel specified in the test data.

For transmit mode measurements the system was configured to operate in one or more of the available operating modes -802.11b, 802.11g, 802.11a, 802.11n20 and 802.11n40. The output power for all measurements was set to be within 0.5dB of the output power measured during the original testing.

The data rates used for all tests were the lowest data rates for each mode -1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n20, and 13 Mb/s for 802.11n40. The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements during the original device certification tests).

The scope of testing was to update the report with new data from 2013. The actual modes evaluated were based on the worst case mode or modes observed during the original tests.

Compliance with radiated spurious emissions requirements in the restricted bands adjacent to the 2400-2483.5 MHz allocated band was evaluated in the worst case 20-MHz mode which was (802.11n20) and also in the 802.11n40 mode.

Compliance with radiated spurious emissions requirements away from the allocated band edges were performed in the worst case OFDM mode and, for operation in the 2.4GHz band, the DSSS (802.11b) mode. The worst-case OFDM modes were 802.11g in the 2.4GHz band and 802.11n 20MHz in the 5.8GHz DTS band.

The PC was using the Intel test utility DRTU Version 1.1.3 and the device driver was version 13.0.0.238 for testing performed in 2011. DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51 were used for testing performed in 2013.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Registration Numbers	
Sile	FCC	Canada	Location
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont,
Chamber 5	211948	2845B-5	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

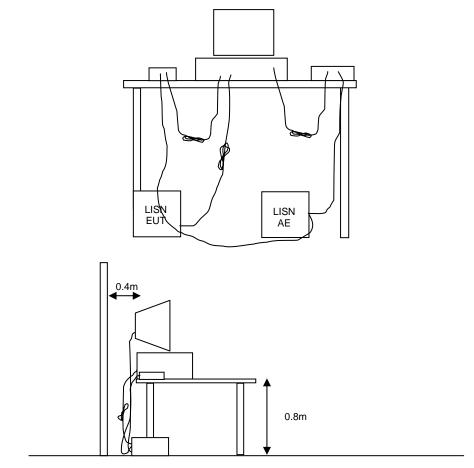
A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

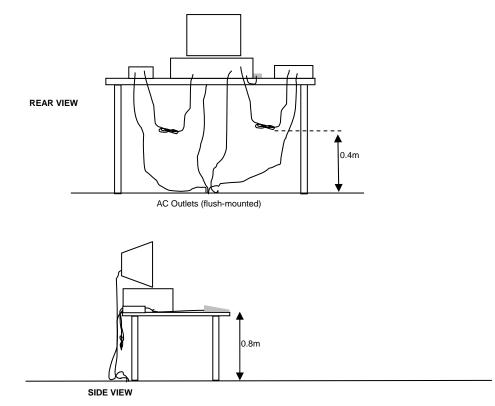
INSTRUMENT CALIBRATION

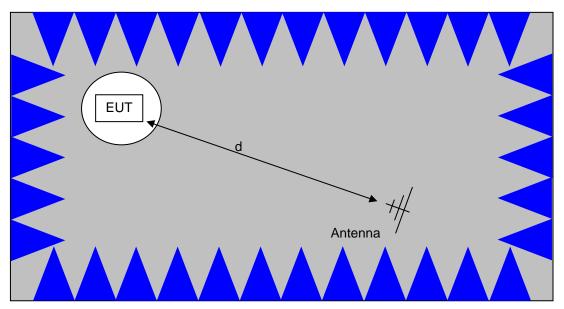

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

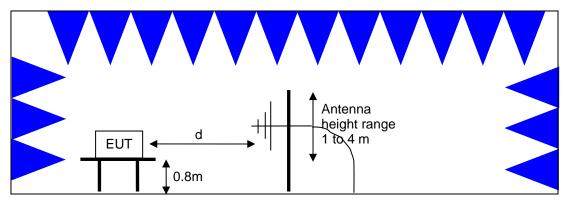
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.


RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows.

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 $\begin{array}{lll} F_d &=& \text{Distance Factor in dB} \\ D_m &=& \text{Measurement Distance in meters} \\ D_S &=& \text{Specification Distance in meters} \end{array}$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_{S} = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Radiated Emissions,	, 30 - 40,000 MHz,13 & 14-Jun-11
Manufacturor	Description

	, 30 - 40,000 MHz,13 & 14-Jun-11			
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 785	<u>Cal Due</u> 5/18/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	6/14/2011
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	12/1/2011
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/9/2012
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
Rohde & Schwarz	Attenuator, 20 dB, 10W, DC-18 GHz	20dB, 10W, Type N	1795	5/25/2012
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1796	5/25/2012
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/23/2012
DTS Spurs , 15-Jun-	11			
Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Radiated Spurious E <u>Manufacturer</u> EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Emissions, 1000 - 2,500 MHz, 11-Ma <u>Description</u> Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40	Model 3115 NRV-Z51 NRVD ESIB40	<u>Asset #</u> 487 1070 1071 2493	<u>Cal Due</u> 7/19/2014 6/1/2013 6/1/2013 1/18/2014
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms Power Meter, Dual Channel	<u>Model</u> 3115 NRV-Z51 NRVD	487 1070 1071	7/19/2014 6/1/2013 6/1/2013
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz	Model 3115 NRV-Z51 NRVD ESIB40	487 1070 1071	7/19/2014 6/1/2013 6/1/2013
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13	<u>Model</u> 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40)	487 1070 1071 2493	7/19/2014 6/1/2013 6/1/2013 1/18/2014
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz	Model 3115 NRV-Z51 NRVD ESIB40	487 1070 1071	7/19/2014 6/1/2013 6/1/2013
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions Manufacturer	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1-	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115	487 1070 1071 2493 <u>Asset #</u>	7/19/2014 6/1/2013 6/1/2013 1/18/2014 <u>Cal Due</u>
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions Manufacturer Hewlett Packard EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115 8564E (84125C)	487 1070 1071 2493 <u>Asset #</u> 785 1142 1148	7/19/2014 6/1/2013 6/1/2013 1/18/2014 <u>Cal Due</u> 11/9/2013 8/23/2014 9/14/2013
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions Manufacturer Hewlett Packard EMCO	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115	487 1070 1071 2493 <u>Asset #</u> 785 1142	7/19/2014 6/1/2013 6/1/2013 1/18/2014 <u>Cal Due</u> 11/9/2013 8/23/2014
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions Manufacturer Hewlett Packard EMCO Hewlett Packard Micro-Tronics Manufacturer	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red Band Reject Filter, 2400-2500 MHz Description	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115 8564E (84125C) BRM50702-02 Model	487 1070 1071 2493 <u>Asset #</u> 785 1142 1148	7/19/2014 6/1/2013 6/1/2013 1/18/2014 <u>Cal Due</u> 11/9/2013 8/23/2014 9/14/2013
Manufacturer EMCO Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions Manufacturer Hewlett Packard EMCO Hewlett Packard Micro-Tronics Manufacturer	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red Band Reject Filter, 2400-2500 MHz	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115 8564E (84125C) BRM50702-02 Model	487 1070 1071 2493 <u>Asset #</u> 785 1142 1148 1683	7/19/2014 6/1/2013 6/1/2013 1/18/2014 Cal Due 11/9/2013 8/23/2014 9/14/2013 8/2/2013
ManufacturerEMCORohde & SchwarzRohde & SchwarzRohde & SchwarzRadiated EmissionsManufacturerHewlett PackardEMCOHewlett PackardMicro-TronicsManufacturerRadiated Spurious E	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red Band Reject Filter, 2400-2500 MHz Description Emissions, 1000 - 40,000 MHz, 11-M Microwave Preamplifier, 1- 26.5GHz	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115 8564E (84125C) BRM50702-02 Model lar-13	487 1070 1071 2493 <u>Asset #</u> 785 1142 1148 1683 <u>Asset #</u>	7/19/2014 6/1/2013 6/1/2013 1/18/2014 Cal Due 11/9/2013 8/23/2014 9/14/2013 8/2/2013 Cal Due 11/9/2013
ManufacturerEMCORohde & SchwarzRohde & SchwarzRohde & SchwarzRadiated EmissionsManufacturerHewlett PackardEMCOHewlett PackardMicro-TronicsManufacturerRadiated Spurious EHewlett Packard	Description Antenna, Horn, 1-18 GHz Power Sensor, 1 uW-100 mW, DC-18 GHz, 500hms Power Meter, Dual Channel EMI Test Receiver, 20 Hz-40 GHz , 1000 - 26,500 MHz, 11-Mar-13 Description Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red Band Reject Filter, 2400-2500 MHz Description Emissions, 1000 - 40,000 MHz, 11-M Microwave Preamplifier, 1-	Model 3115 NRV-Z51 NRVD ESIB40 (1088.7490.40) Model 8449B 3115 8564E (84125C) BRM50702-02 Model Iar-13 8449B	487 1070 1071 2493 Asset # 785 1142 1148 1683 Asset # 785	7/19/2014 6/1/2013 6/1/2013 1/18/2014 Cal Due 11/9/2013 8/23/2014 9/14/2013 8/2/2013 Cal Due 11/9/2013

Test Report Report Date: April 2, 2013

		Re	eport Date: A	April 2, 2013
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2013
EMCO	Àntenna, Horn, 1-18 GHz	3115	1561	7/12/2014
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/20/2013
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	2240	10/4/2013
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/11/2013
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	1/18/2014
Radiated Emissions,	1000 - 40000MHz, 18-Mar-13			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	11/9/2013
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/23/2014
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	7/5/2013
Hewlett Packard Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red SpecAn 30 Hz -40 GHz, SV (SA40) Red	84125C 8564E (84125C)	1145 1148	7/5/2013 9/14/2013

Appendix B Test Data

T83587 Pages 23 - 54 T91093 Pages 55 - 67

EMC Test Data

Client:	Intel Corporation	Job Number:	J83582
Model:	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205)	T-Log Number:	T83587
	with WNC 81XCAA15.G03 Dipole	Account Manager:	Christine Krebil
Contact:	Steven Hackett		-
Emissions Standard(s):	FCC 15.247 / FCC 15 E / RSS 210	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Model

62205ANHMW (Intel® Centrino® Advanced-N 6205) with WNC 81XCAA15.G03 Dipole

Date of Last Test: 6/20/2011

EMC Test Data

41	VE ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J83582
Madal	62205ANHMW (Intel® Centrino® Advanced-N 6205) with WNC	T-Log Number:	T83587
would.	81XCAA15.G03 Dipole	Account Manager:	Christine Krebil
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

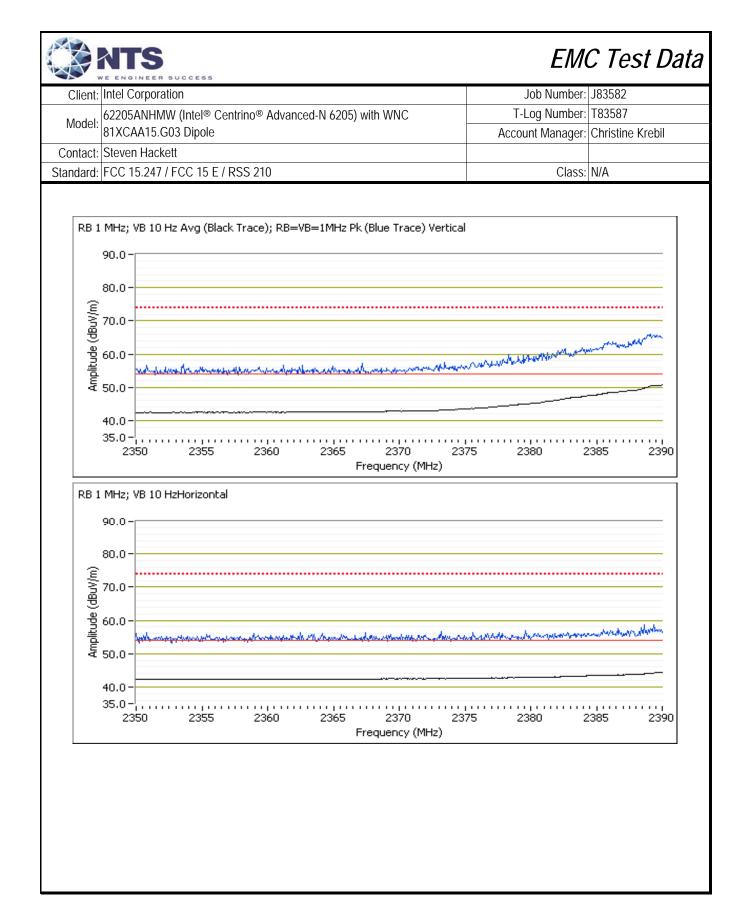
MAC Address: 001500634F48 DRTU Tool Version 1.1.3 Driver version 13.0.0.238

Band edge measurements - the modes tested (n20 and n40) were the worst case 20- and 40-MHz modes based on measurements made in the original filing.

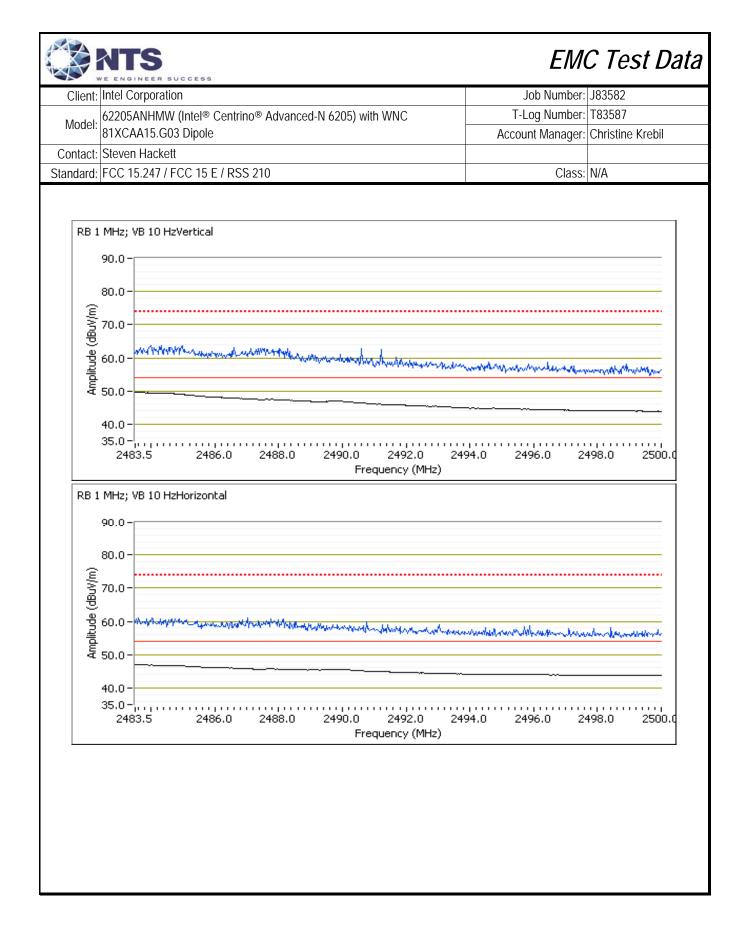
in the origin	ar mirig.						
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
	802.11n40	#3 2422MHz	9.1dBm	9.2	Restricted Band Edge at 2390 MHz	15.209	53.0dBµV/m @ 2389.9MHz (-1.0dB)
Run # 1	Chain A	#9 2452MHz	9.6dBm	9.6	Restricted Band Edge at 2483.5 MHz	15.209	51.9dBµV/m @ 2483.5MHz (-2.1dB)
Kull# I	802.11n40	#3 2422MHz	9.5dBm	9.7	Restricted Band Edge at 2390 MHz	15.209	53.0dBµV/m @ 2389.4MHz (-1.0dB)
	Chain B	#9 2452MHz	10.0dBm	10.2	Restricted Band Edge at 2483.5 MHz	15.209	52.0dBµV/m @ 2483.5MHz (-2.0dB)
	802.11n20	#1 2412MHz	13.1dBm	13.0	Restricted Band Edge at 2390 MHz	15.209	53.4dBµV/m @ 2390.0MHz (-0.6dB)
Run # 2	Chain A	#11 2462MHz	12.4dBm	12.4	Restricted Band Edge at 2483.5 MHz	15.209	51.1dBµV/m @ 2483.6MHz (-2.9dB)
Ruii#Z	802.11n20	#1 2412MHz	12.9dBm	12.8	Restricted Band Edge at 2390 MHz	15.209	50.6dBµV/m @ 2389.9MHz (-3.4dB)
	Chain B	#11 2462MHz	12.8dBm	12.9	Restricted Band Edge at 2483.5 MHz	15.209	50.4dBµV/m @ 2483.6MHz (-3.6dB)
	diated emissi each band fo				de (based on the orignal i	measurements made on t	he device with a PIFA
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
	802.11g Chain A	#6	16.5dBm	16.7			34.5dBµV/m @ 1597.6MHz (-19.5dB)
Run # 3	802.11g Chain B	2437MHz	16.5dBm	16.8	Radiated Emissions,	FCC 15.209 / 15.247	39.2dBµV/m @ 4874.1MHz (-14.8dB)
itun π 3	802.11g	#1 2412MHz	16.5dBm	16.6	1 - 26 GHz	1 00 13.2077 13.247	37.2dBµV/m @ 1598.2MHz (-16.8dB)
	Chain B	#11 2462MHz	16.5dBm	16.8			39.4dBµV/m @ 1593.9MHz (-14.6dB)

		SUCCESS				EMO	C Test Data
Client:	Intel Corpora	ation				Job Number:	J83582
	62205ANHN	/W (Intel® C	entrino® Adv	anced-N 620)5) with WNC	T-Log Number:	T83587
Model:	81XCAA15.0					Account Manager:	Christine Krebil
Contact:	Steven Hack	kett					
	FCC 15.247		/ RSS 210			Class:	N/A
	nissions away			ontinued			
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
	802.11b Chain A	#6	15.5dBm	15.5			46.4dBµV/m @ 4873.9MHz (-7.6dB)
Run # 4	802.11b Chain B	2437MHz	15.5dBm	15.6	Radiated Emissions,	FCC 15.209 / 15.247	42.8dBµV/m @ 4873.9MHz (-11.2dB)
Ruii # 4	802.11b	#1 2412MHz	15.5dBm	15.5	1 - 26 GHz	FGG 15.2097 15.247	43.9dBµV/m @ 4824.0MHz (-10.1dB)
	Chain A	#11 2462MHz	15.5dBm	15.6			32.8dBµV/m @ 1600.3MHz (-21.2dB)
		#149 5745MHz	A:16.5 B:16.5	A:16.7 B:16.8			41.2dBµV/m @ 11489.8MHz (-12.8dB)
Run # 5	802.11n20 Chain A+B	#157 5785MHz	A:16.5 B:16.5	A:16.6 B:16.7	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15.247	40.8dBµV/m @ 11569.9MHz (-13.2dB)
		#165 5825MHz	A:16.5 B:16.5	A:16.5 B:16.6			42.9dBµV/m@11649.7 MHz (-11.1dB)
	Receiver Chain A	#6 2437MHz	-	-	Radiated Emissions, 1 - 7.5 GHz		46.8dBµV/m @ 3000.4MHz (-7.2dB)
Run # 6	Receiver Chain B	#6 2437MHz	-	-	Radiated Emissions, 1 - 7.5 GHz	RSS GEN	47.2dBµV/m @ 3000.3MHz (-6.8dB)
	Receiver Chain A+B	#157 5785MHz	-	-	Radiated Emissions, 1 - 18 GHz		46.4dBµV/m @ 3000.3MHz (-7.6dB)

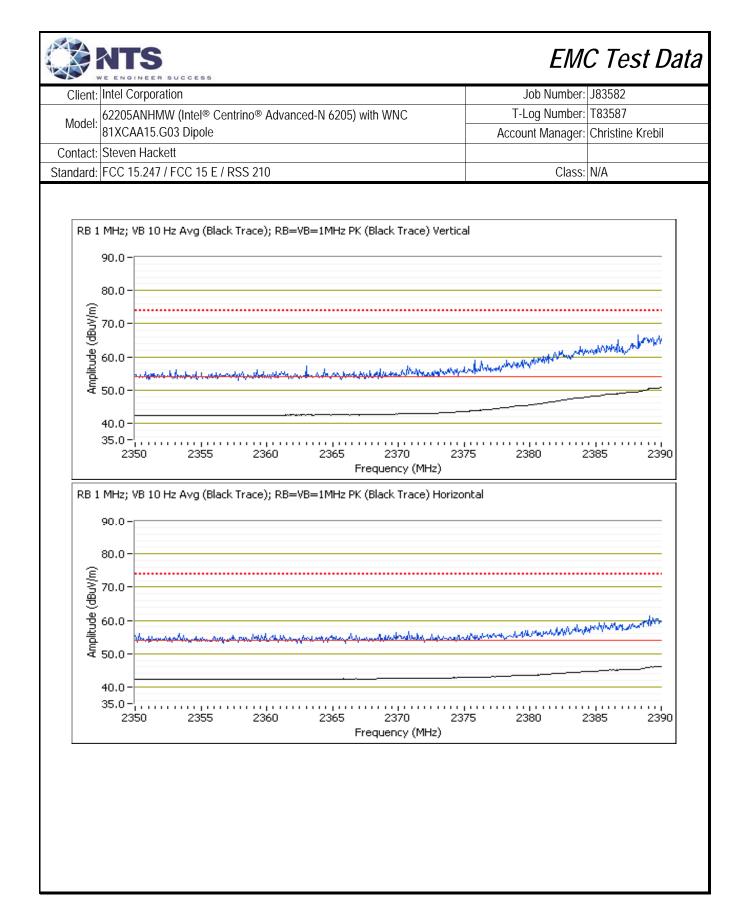
General Test Configuration

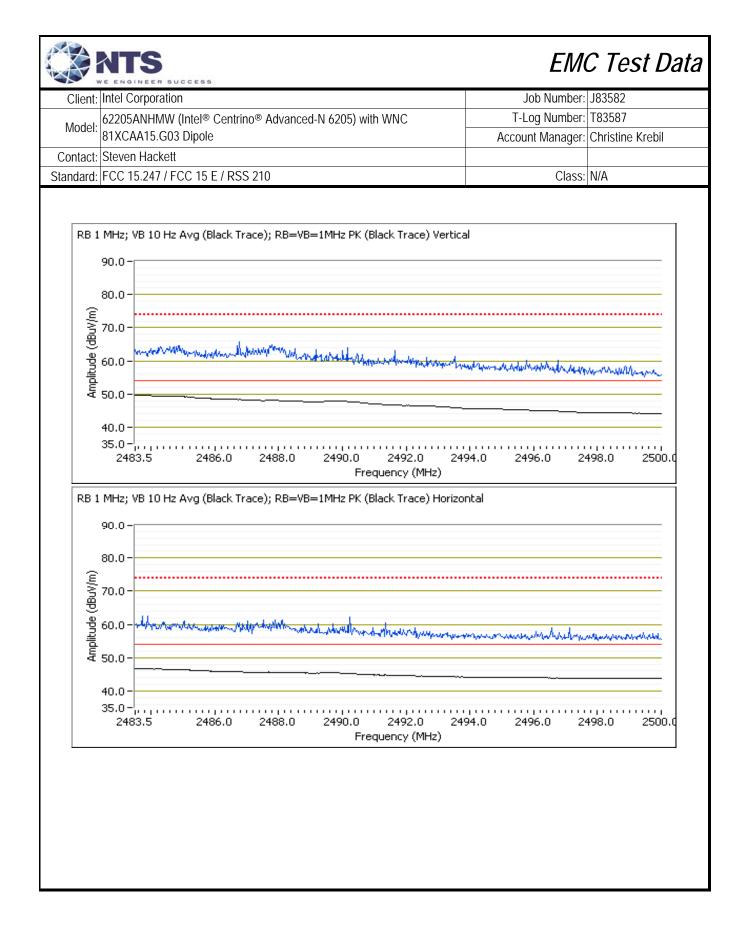

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

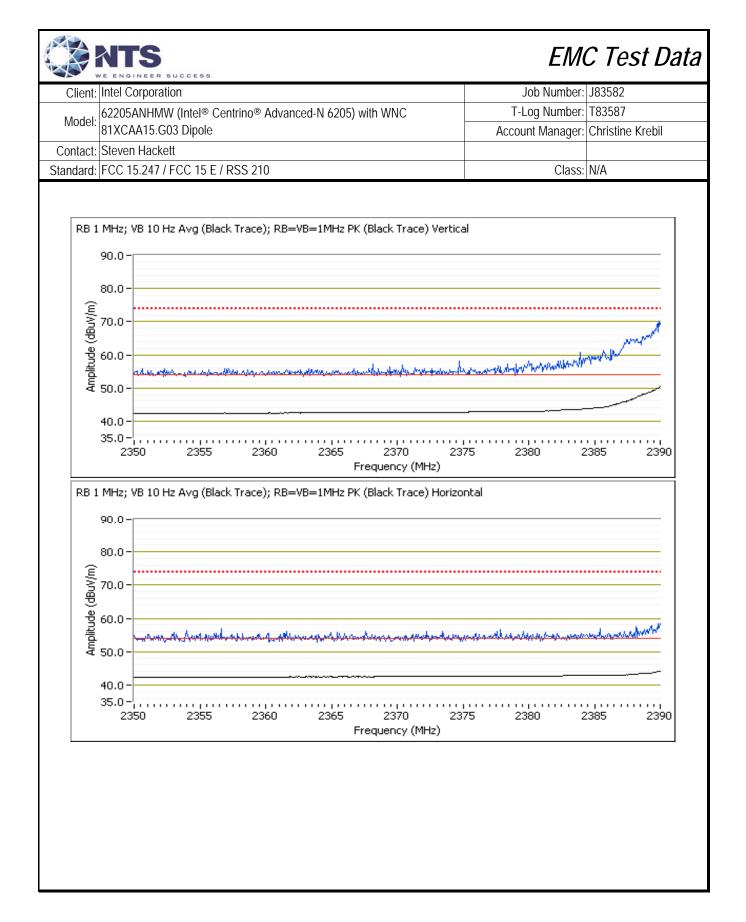
Ambient Conditions:	Temperature:	15-25 °C
	Rel. Humidity:	30-80 %

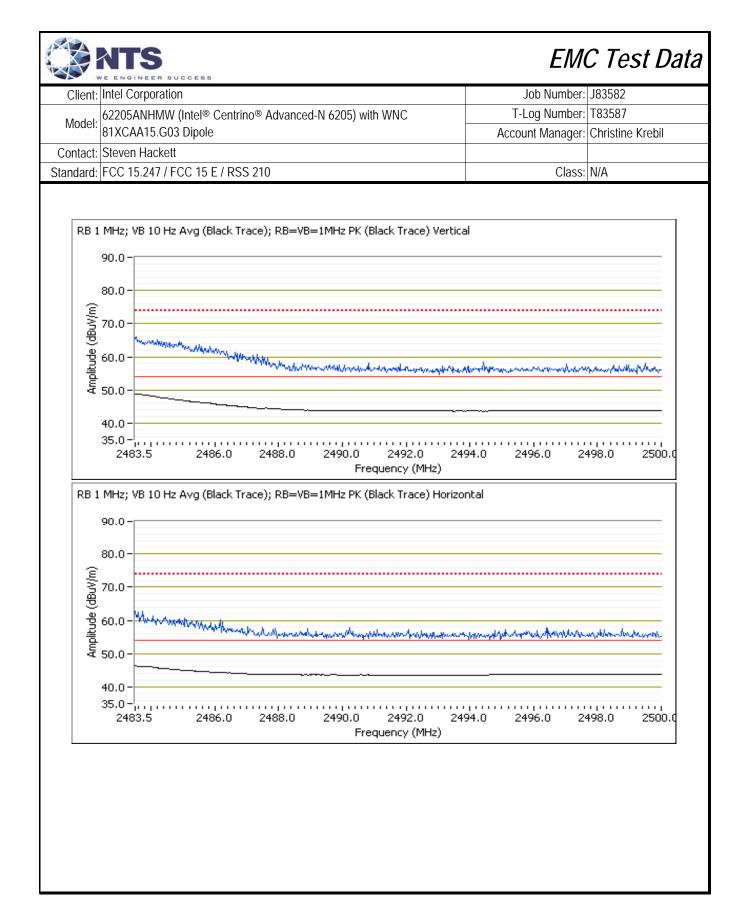

Modifications Made During Testing

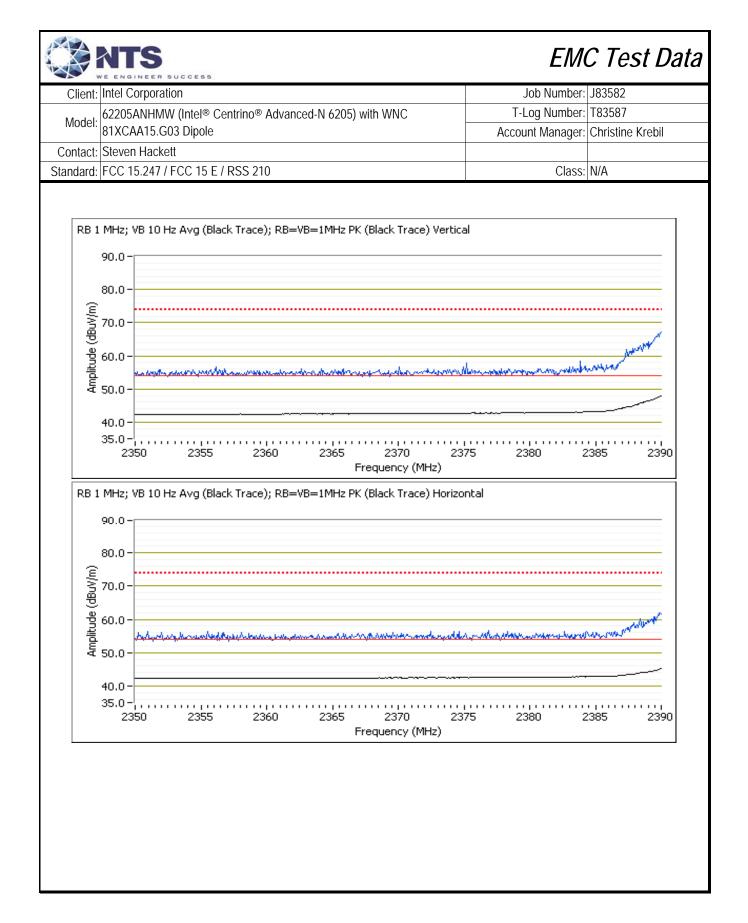
No modifications were made to the EUT during testing

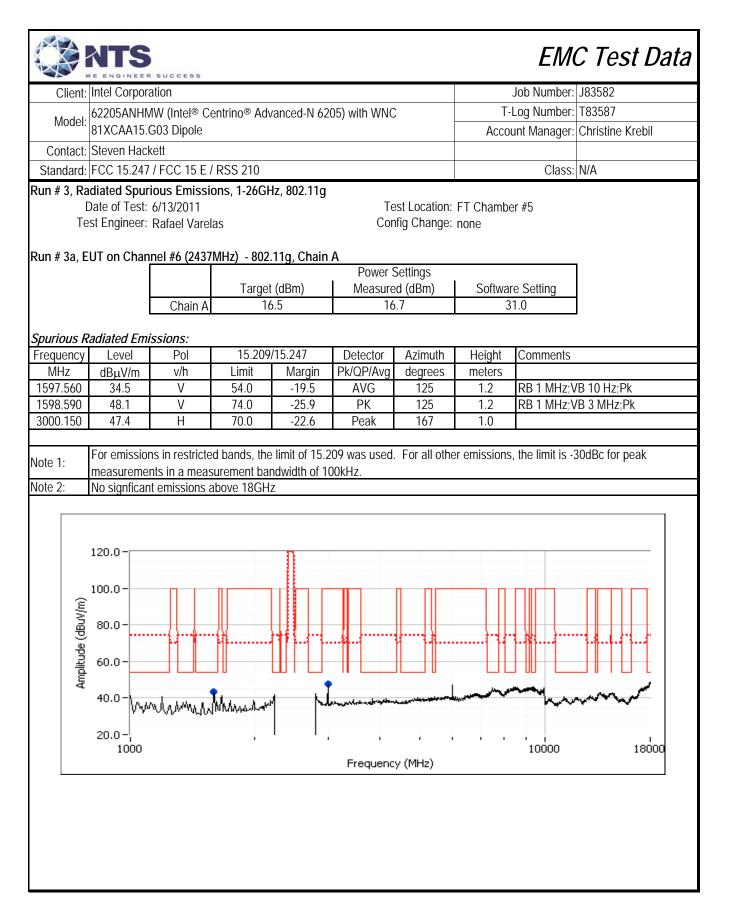

Client:	Intel Corpora	ation						Job Number:	J83582
Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205) with WNC							T-	Log Number:	T83587
8 I X CAA I 5. GU3 Dipole								unt Manager:	Christine Krebil
Contact:	Steven Hack	kett							
Standard:	FCC 15.247	/ FCC 15 E /	RSS 210					Class:	N/A
un # 1, Ba	and Edge Fie	d Strength	· 802.11n40						
	01500634F48				-				
	Date of Test:					st Location:		er #5	
	est Engineer: EUT on Chan			1n40 Chain		fig Change:	none		
			002.1						
					Power S				
	Target (dBm) Measured (dBm)				1 1		re Setting		
		Chain A	9	.1	23	.0	9.1		
Fundamen	tal Signal Fie	eld Strenath							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2425.200	90.2	V	-	-	AVG	302	1.0	RB 1 MHz;V	
2425.800	98.1	V	-	-	PK	302	1.0	RB 1 MHz;V	
2427.270	90.9 84.1	V H	-	-	PK AVG	304 357	1.0		;VB 100 kHz;Pk
2425.200 2429.130	92.6	H	-	-	PK	357	1.1 1.1	RB 1 MHz;V RB 1 MHz;V	
2127.100	72.0					007	1.1		D 0 MITZ/T K
irect mea	surement of	field strengl							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
	dBμV/m 53.0	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
MHz	530	V	54.0	-1.0 -8.0	AVG PK	305 305	1.0 1.0	RB 1 MHz;V RB 1 MHz;V	,
2389.910		V	14.0		ΓN	305	1.0		D J WITZ, FK
MHZ 2389.910 2389.630 2389.730	66.0 46.4	V H	74.0 54.0	-7.6	AVG	194	1.3	RB 1 MHz;V	′B 10 Hz·Pk


Client		success							C Test Data
Client:			ntrino® Adv	ancod N 42	05) with WNC		Job Number: J83582 T-Log Number: T83587		
Model:	81XCAA15.0							0	Christine Krebil
Contact [,]	Steven Hack						71000	ant managon	
		/ FCC 15 E /	RSS 210					Class:	N/Δ
		nel #3 2452		In/O Chain	٨			01033.	
KUII # 10, E		11EI #3 Z43ZI	VITIZ - 0UZ. I	III40, Chail	Power S	Settinas]
			Target	(dBm)	Measure		Softwar	e Setting	
		Chain A	9		9.			3.0	
	I	ondinin		-					1
Fundament	tal Signal Fie	eld Strength							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2460.470	91.2	V	-	-	AVG	299	1.0	RB 1 MHz;V	
2464.800	99.3	V	-	-	PK	299	1.0		/B 3 MHz;Pk
2460.070	92.1	V	-	-	PK	299	1.0		;VB 100 kHz;Pk
2464.730	83.8	Н	-	-	AVG	318	1.0	RB 1 MHz;V	
2464.800	92.0	Н	-	-	PK	318	1.0	RB 1 MHz;V	/B 3 MHz;Pk
Direct meas	surement of	field strengl	nt at the 248	3.5 MHz ba	ndedge				
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.530	51.9	V	54.0	-2.1	AVG	296	1.0	RB 1 MHz;V	/B 10 Hz;Pk
2484.550	64.0	V	74.0	-10.0	PK	296	1.0		/B 3 MHz;Pk
2483.500	49.1	Н	54.0	-4.9	AVG	340	1.0	RB 1 MHz;V	
2485.170	61.0	Н	74.0	-13.0	PK	340	1.0	RB 1 MHz;V	/B 3 MHz;Pk

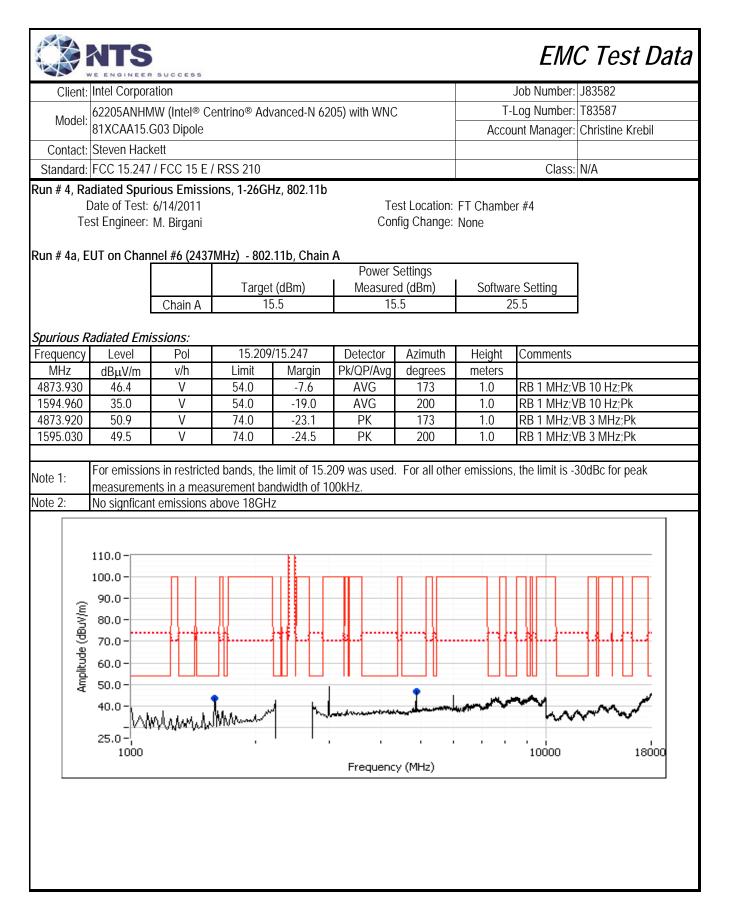

Contact: Ste Standard: FC Run # 1c, EUT	XCAA15.G even Hacke CC 15.247 /	03 Dipole ett FCC 15 E /	RSS 210		05) with WNC			Log Number: T83587 unt Manager: Christine Kreb Class: N/A
Contact: Ste Standard: FC Run # 1c, EUT	XCAA15.G even Hacke CC 15.247 /	03 Dipole ett FCC 15 E /	RSS 210		·		Ассо	
Standard: FC Run # 1c, EUT	CC 15.247 /	FCC 15 E /		In40, Chain	В			Class: N/A
Run # 1c, EUT				In40, Chain	В			Class: N/A
	on Chann	iel #3 2422N	IHz - 802.11	In40, Chain	В			
Fundamental	F							
Fundamental	-							
Fundamental	_		Targot	(dDm)	Power S	· ·	Softwa	ro Sotting
Fundamental		Chain B		(dBm) .5	Measure 9.	1 1		re Setting 2.0
- Fundamental			7	.0	7.	1	Z	2.0
unuumentui e	Signal Fiel	ld Strength						
	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2425.400	91.0	V	-	-	AVG	349	1.1	RB 1 MHz;VB 10 Hz;Pk
2429.730 2419.730	99.1 91.6	V V	-	-	PK PK	349 349	1.1 1.1	RB 1 MHz;VB 3 MHz;Pk RB 100 kHz;VB 100 kHz;Pl
2419.730 2430.270	91.0 85.3	H	-	-	AVG	288	1.1	RB 1 MHz;VB 10 Hz;Pk
2430.270	93.6	H	-	-	PK	288	1.0	RB 1 MHz;VB 3 MHz;Pk
2127.000	70.0					200	1.0	
Direct measure	ement of f	ield strengh			dedge			
	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.430	53.0	V	54.0	-1.0	AVG	22	1.1	RB 1 MHz;VB 10 Hz;Pk
2389.790 2389.230	66.0	V H	74.0 54.0	-8.0 -5.7	PK AVG	22 287	1.1 1.0	RB 1 MHz;VB 3 MHz;Pk
2389.350	48.3 61.7	H	74.0	-3.7	PK	287	1.0	RB 1 MHz;VB 10 Hz;Pk RB 1 MHz;VB 3 MHz;Pk
2309.300	01.7	Π	74.0	-12.3	PN	207	1.0	


		SUCCESS							C Test Data	
Client:	Intel Corpora							Job Number:		
Model:	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205) with WNC 81XCAA15.G03 Dipole							T-Log Number: T83587 Account Manager: Christine Kre		
Contact:	Steven Hackett									
Standard: FCC 15.247 / FCC 15 E / RSS 210 Class: N									N/A	
Run # 1d, EUT on Channel #3 2452MHz - 802.11n40, Chain B										
			Target		Power Settings Measured (dBm)		Software Setting			
		Chain B	Ű,).0	10	.2		2.5		
Fundamental Signal Field Strength										
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2439.530	90.7	V	-	-	AVG	45	1.1	RB 1 MHz;V	/B 10 Hz;Pk	
2440.600	98.7	V	-	-	PK	45	1.1	RB 1 MHz;V	/B 3 MHz;Pk	
2440.870	91.0	V	-	-	PK	45	1.1	RB 100 kHz	;VB 100 kHz;Pk	
2464.670	84.8	Н	-	-	AVG	285	1.0	RB 1 MHz;V		
2462.800	93.0	Н	-	-	PK	285	1.0	RB 1 MHz;V	'B 3 MHz;Pk	
Direct measurement of field strength at the 2483.5 MHz bandedge										
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.540	52.0	V	54.0	-2.0	AVG	360	1.0	RB 1 MHz;V		
2484.930	64.8	V	74.0	-9.2	PK	360	1.0	RB 1 MHz;VB 3 MHz;Pk		
2483.500	48.7	Н	54.0	-5.3	AVG	290	1.0	RB 1 MHz;VB 10 Hz;Pk		
2483.600	61.8	Н	74.0	-12.2	PK	290	1.0	RB 1 MHz;V	/B 3 MHz;Pk	


I	Intel Corporation							Job Number: J83582		
NA I. I	62205ANHMW (Intel® Centring® Advanced N 6205) with WNC							Log Number: T83587		
	81XCAA15.0		Account Manager: Christine Krebi							
Contact:	Steven Hack	cett								
tandard: FCC 15.247 / FCC 15 E / RSS 210								Class: N/A		
n # 2, Ba [,]	nd Edae Fie	ld Strength	- 802.11n20							
	Date of Test:				Te	est Location:	FT Chambe	er #5		
Tes	st Engineer:	Rafael Varel	as		Cor	fig Change:	none			
					_					
# 2a, El	UT on Chani	nel #1 2412	<u>/Hz - 802.11</u>	In20, Chain		Cottingo				
			Target	(dBm)	Power S Measure		Software Setting			
		Chain A	13		13			27.5		
	L						2	····-		
ndament.	al Signal Fie	eld Strength								
equency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
407.770	97.0	V	-	-	AVG	299	1.0	RB 1 MHz;VB 10 Hz;Pk		
407.200	105.3	V	-	-	PK	299	1.0	RB 1 MHz;VB 3 MHz;Pk		
13.430	97.4	V	-	-	PK	299	1.0	RB 100 kHz;VB 100 kHz;P		
415.270	90.2	Н	-	-	AVG	358	1.1	RB 1 MHz;VB 10 Hz;Pk		
15.470	98.2	Н	-	-	PK	358	1.1	RB 1 MHz;VB 3 MHz;Pk		
oct maas	urament of	field strengl	ht at the 23(0 MHz han	anhah					
equency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
389.980	53.4	V	54.0	-0.6	AVG	233	1.0	RB 1 MHz;VB 10 Hz;Pk		
389.950	70.2	V	74.0	-3.8	PK	233	1.0	RB 1 MHz;VB 3 MHz;Pk		
389.740	46.1	Н	54.0	-7.9	AVG	128	1.1	RB 1 MHz;VB 10 Hz;Pk		
89.930	59.1	Н	74.0	-14.9	PK	128	1.1	RB 1 MHz;VB 3 MHz;Pk		


		SUCCESS							C Test Data	
Client:	nt: Intel Corporation 62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205) with WNC 81XCAA15.G03 Dipole						Job Number:			
Model:							T-Log Number: T83587 Account Manager: Christine Kreb			
Contact	Steven Hack									
	FCC 15.247			Class:	N/A					
Run # 2b, EUT on Channel #11 2462MHz - 802.11n20, Chain A										
Power Settings										
			Target	(dBm)	Measure		Softwar	e Setting		
		Chain A	12		12	.4		6.0		
Fundamental Signal Field Strength										
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Sommenus		
2460.700	96.1	V	-	-	AVG	301	1.2	RB 1 MHz;V	/B 10 Hz;Pk	
2460.870	104.2	V	-	-	PK	301	1.2		/B 3 MHz;Pk	
2460.900	94.8	V	-	-	PK	301	1.2		;VB 100 kHz;Pk	
2465.000	90.6	Н	-	-	AVG	336	1.0	RB 1 MHz;V	/B 10 Hz;Pk	
2463.930	98.9	Н	-	-	PK	336	1.0	RB 1 MHz;V	/B 3 MHz;Pk	
Direct mea	surement of	field streng	ht at the 248	3.5 MHz ba	ndedge					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.560	51.1	V	54.0	-2.9	AVG	277	1.0	RB 1 MHz;V	/B 10 Hz;Pk	
2483.590	65.1	V	74.0	-8.9	PK	277	1.0	RB 1 MHz;VB 3 MHz;Pk		
2483.510	48.3	Н	54.0	-5.7	AVG	336	1.0	RB 1 MHz;VB 10 Hz;Pk		
2483.700	62.3	Н	74.0	-11.7	PK	336	1.0	RB 1 MHz;V	/B 3 MHz;Pk	

	AITS							FМ	C Test Data
	WE ENGINEER	SUCCESS							
Client:	Intel Corpora	ation						Job Number:	J83582
Model:	62205ANHN	/W (Intel® Ce	entrino® Adv	anced-N 62	05) with WNC	,	T-	Log Number:	T83587
would	81XCAA15.	G03 Dipole					Acco	unt Manager:	Christine Krebil
Contact:	Steven Hacl	kett							
		/ FCC 15 E /	RSS 210					Class	N/A
		nel #1 2412N		n20 Chain	D			01000	
KUII # 20, E		1101 #1 24120	/ITZ - 002.11	IIZU, CIIdili	Power S	Sattinas			1
			Target	(dBm)	Measure		Softwar	e Setting	
		Chain B		2.9	12	, ,		5.5	-
			12	/	12	.0	2	0.0	1
Fundamen	tal Signal Fi	eld Strenath							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2415.030	95.8	V	-	-	AVG	21	1.0	RB 1 MHz:	/B 10 Hz;Pk
2416.370	103.9	V	-	-	PK	21	1.0		/B 3 MHz;Pk
2414.700	96.0	V	-	-	PK	21	1.0		z;VB 100 kHz;Pk
2414.970	90.1	H	-	-	AVG	287	1.0		/B 10 Hz;Pk
2414.030	98.4	Н	-	-	PK	287	1.0		/B 3 MHz;Pk
		I			1	-	-	,	- 1
Direct mea	surement of	field strengl	nt at the 239	0 MHz ban	dedge				
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2389.920	50.6	V	54.0	-3.4	AVG	20	1.0	RB 1 MHz;\	/B 10 Hz;Pk
2389.780	67.1	V	74.0	-6.9	PK	20	1.0	RB 1 MHz;\	/B 3 MHz;Pk
2389.950	47.4	Н	54.0	-6.6	AVG	287	1.0	RB 1 MHz;\	/B 10 Hz;Pk
2389.820	62.8	Н	74.0	-11.2	PK	287	1.0	RB 1 MHz;\	/B 3 MHz;Pk

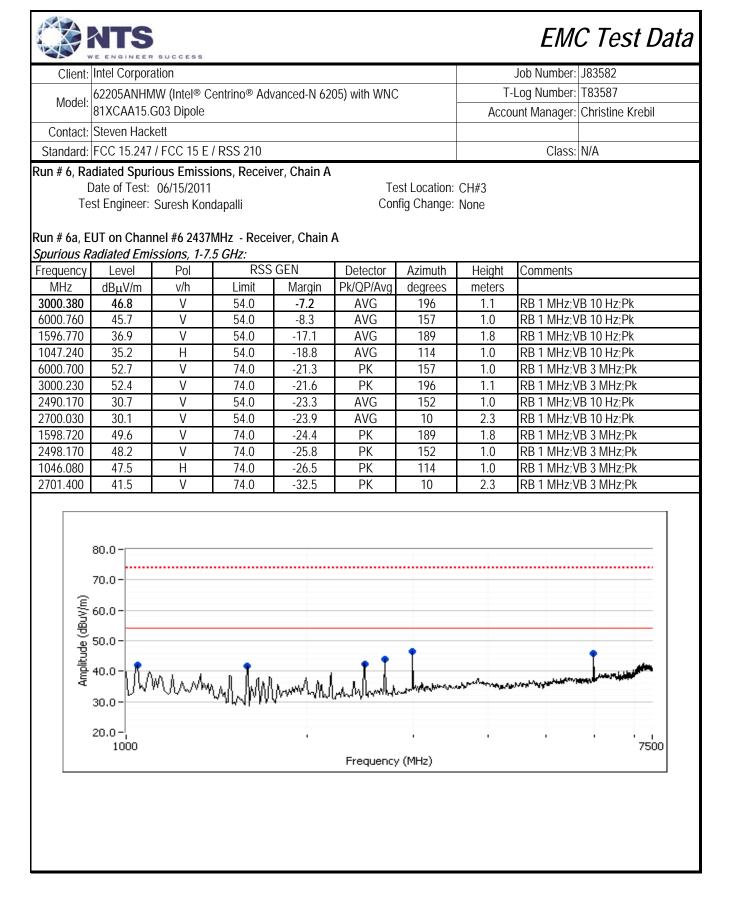

Client:	Intel Corpora	ation						Job Number:	J83582
	62205ANHM		entrino® Adv	anced-N 62	05) with WNC		T-	Log Number:	T83587
Model:	81XCAA15.0	•			- /				Christine Krebil
Contact:	Steven Hack	ætt							
Standard:	FCC 15.247	/ FCC 15 E	/ RSS 210					Class:	N/A
un # 2d, E	UT on Chan	nel #11 246	2MHz - 802.´	1n20, Chai	n B				I
					Power S				
			Target		Measure	1		re Setting	
		Chain B	12	2.8	12	.9	2	5.5	J
undamen	tal Signal Fie	old Strenath	,						
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2459.570	95.8	V	-	-	AVG	12	1.1	RB 1 MHz;\	/B 10 Hz;Pk
2461.270	103.9	V	-	-	PK	12	1.1		/B 3 MHz;Pk
2457.070	97.2	V	-	-	PK	12	1.1		;;VB 100 kHz;Pk
2464.900	90.6	Н	-	-	AVG	287	1.0	RB 1 MHz;\	
2464.030	98.8	Н	-	-	PK	287	1.0	RB 1 MHz;\	/B 3 MHz;Pk
iroct moa	surement of	field strong	ht at the 249	22 5 MUz ba	ndodao				
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
2483.560	50.4	V	54.0	-3.6	AVG	350	1.0	RB 1 MHz;V	/B 10 Hz;Pk
2483.530	65.2	V	74.0	-8.8	PK	350	1.0		/B 3 MHz;Pk
2483.680	47.0	Н	54.0	-7.0	AVG	114	1.0	RB 1 MHz;\	
2483.650	60.0	Н	74.0	-14.0	PK	114	1.0	RB 1 MHz;\	/B 3 MHz;Pk
	90.0 - 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 35.0 -	vulum sumption		Murun		bonomgendettere			
	2483.5	2486	.0 2488	0 249	0.0 249 Frequency		94.0 24	496.0 24	498.0 2500.0

	NTS	SUCCESS						EMO	C Test Data
Client:	Intel Corpora	ation						Job Number:	J83582
-	62205ANHN		ontrino® Adv	vanced-N 62	05) with WNC			Log Number:	
Model:	81XCAA15.0							0	Christine Krebil
Contact	Steven Hack						1.000	antinanagon	
	FCC 15.247		'RSS 210					Class:	N/A
	UT on Chan			11a. Chain	В				
			11112) 002	. rig, onum	Power S	Settings			
				(dBm)	Measure	d (dBm)	Softwar	re Setting	
		Chain B	16	6.5	16	.8	2	9.5	
	Radiated Emi		15 200	115 017	Datastas	A'	11.2.1.1		
Frequency MHz	Level	Pol v/h		/15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
4874.050	dBµV/m 39.2	V/n V	Limit 54.0	Margin -14.8	AVG	degrees 44	meters 1.0	RB 1 MHz;V	R 1∩ Hz·Pk
4874.030	51.2	V	74.0	-14.8	PK	44	1.0	RB 1 MHZ;V	
1031.760	31.0	V	54.0	-23.0	AVG	141	1.0	RB 1 MHz;V	
1040.430	43.3	V	74.0	-30.7	PK	141	1.1	RB 1 MHz;V	
2999.610	46.8	V	70.0	-23.2	Peak	130	1.3		
Amplitude (dBuV/m)	120.0 - 100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000	nhimin						10000	18000
					Frequenc	y (MHz)			1000

Model: 6205ANHMW (Intel® Centrino® Advanced-N 6205) with WNC B1XCAA15.G03 Dipole T-Log Number: T83587 Contact: Steven Hackett Class: N/A Standard: FCC 15.247 / FCC 15 E / RSS 210 Class: N/A un # 3c: , EUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings power Settings Target (dBm) Measured (dBm) Software Setting chain B 16.5 16.6 29.5 purious Radiated Emissions: requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 1598.150 37.2 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk 8821.640 45.9 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 3 MHz;Pk 3000.250 47.6 H 70.0 -22.4 Peak 152 1.3 eta	Client	: Intel Corpora	tion						Job Number:	J83582
B1XCAA1.5.G03 Dipole Account Manager: Christine Kre Contact: Steven Hackett Class: N/A In # 3c: FCC 15.247 / FCC 15 E / RSS 210 Class: N/A In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Class: N/A In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings In # 3c: FUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings In # 2012 Pol 15.209/15.247 Detector Azimuth In # 2012 Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 598.140 31.2 V 54.0 -16.8 AVG 117 10.0 RB	Madal			entrino® Adv	/anced-N 62	05) with WNC	:		0	
Standard: FCC 15.247 / FCC 15 E / RSS 210 Class: IV/A In # 3c: , EUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings Chain B 12412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings Chain B 16.5 16.6 29.5 wrious Radiated Emissions: equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin PK/QP/Avg degrees meters 598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz:VB 10 Hz;Pk 828.4040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz:VB 3 MHz;Pk 821.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz:VB 3 MHz;Pk 000.250 47.6 H 70.0 -22.4 Peak 152 1.3 100.0	Model	. 81XCAA15.G	603 Dipole					Ассо	unt Manager:	Christine Krebil
n # 3c: , EUT on Channel #1 2412MHz - 802.11g, Chain B (worst case from run #3a and run #3b) Power Settings Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.6 29.5 urious Radiated Emissions: requency Level Poi 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 988.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz:VB 10 Hz:Pk 1098.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz:VB 30 HHz:Pk 121.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz:VB 30 HHz:Pk 120.60 45.9 V 74.0 -22.4 Peak 152 1.3 ie 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. ie 2: No significant emissions above 18GHz	Contact	: Steven Hacke	ett							
Power Settings Target (dBm) Software Setting Otain B urious Radiated Emissions: equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/QP/Avg degrees meters 598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz;VB 10 Hz;Pk 24.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 30 HJz;Pk 221.640 45.9 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 30 HJz;Pk 20.0250 47.6 H 70.0 -22.4 Peak 152 1.3	Standard	: FCC 15.247 /	/ FCC 15 E /	RSS 210					Class:	N/A
Target (dBm) Measured (dBm) Software Setting Chain B 16.5 16.6 29.5 <i>urious Radiated Emissions:</i> equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz;VB 10 Hz;Pk 598.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 10 Hz;Pk 321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 300.250 47.6 H 70.0 -22.4 Peak 152 1.3 te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. te 2: No significant emissions above 18GHz 100.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 0	n # 3c:	, EUT on Cha <u>r</u>	nnel #1 2412	2MHz - 802. ⁻	11g, Chain			3a and run	#3b)	7
Chain B16.516.629.5purious Radiated Emissions:equencyLevelPol15.209/15.247DetectorAzimuthHeight CommentsMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters598.15037.2V54.0-16.8AVG1171.0RB 1 MHz;VB 10 Hz;Pk598.34051.7V74.0-22.3PK1171.0RB 1 MHz;VB 3 MHz;Pk824.04034.3V54.0-19.7AVG2311.0RB 1 MHz;VB 10 Hz;Pk821.64045.9V74.0-28.1PK2311.0RB 1 MHz;VB 3 MHz;Pk000.25047.6H70.0-22.4Peak1521.3te 1:For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peameasurements in a measurement bandwidth of 100kHz.te 2:No significant emissions above 18GHzfigure geo geo geo geo geo geo geo geo geo ge				Tanad				Caffrida		
Durious Radiated Emissions: requency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/OP/Avg degrees meters 598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz;VB 10 Hz;Pk 598.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 3 MHz;Pk 824.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk 821.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 000.250 47.6 H 70.0 -22.4 Peak 152 1.3 ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. Image: the second		-	Chain P				1		0	-
equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz;VB 10 Hz;Pk 598.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 3 MHz;Pk 324.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk 321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 000.250 47.6 H 70.0 -22.4 Peak 152 1.3 te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. Image: Comparison of the second comparison		L		10	0.0	10	.0	Ζ	9.0	1
equency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters	urious I	Radiated Emis	ssions:							
598.150 37.2 V 54.0 -16.8 AVG 117 1.0 RB 1 MHz;VB 10 Hz;Pk 598.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 3 MHz;Pk 824.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk 821.640 45.9 V 74.0 -22.3 PK 231 1.0 RB 1 MHz;VB 10 Hz;Pk 821.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 821.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 000.250 47.6 H 70.0 -22.4 Peak 152 1.3 Tere missions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100KHz. 1.0 RB 1 MHz;VB 3 MLz;Pk 100.0 .0 .0 .0 .0 .0 .0 99 .0 .0 .0 .0 .0 .0<		· · · · · ·	1	15.209	/15.247	Detector	Azimuth	Height	Comments	
598.340 51.7 V 74.0 -22.3 PK 117 1.0 RB 1 MHz;VB 3 MHz;PK 324.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 3 MHz;PK 321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;PK 321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;PK 300.250 47.6 H 70.0 -22.4 Peak 152 1.3 te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. te 2: No signficant emissions above 18GHz 100.0 -						0				
324.040 34.3 V 54.0 -19.7 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk 321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 300.250 47.6 H 70.0 -22.4 Peak 152 1.3 te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. te 2: No signficant emissions above 18GHz 120.0 -										
321.640 45.9 V 74.0 -28.1 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk 000.250 47.6 H 70.0 -22.4 Peak 152 1.3 The second of the										
DOD.250 47.6 H 70.0 -22.4 Peak 152 1.3 te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. te 2: No significant emissions above 18GHz										
te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for pea measurements in a measurement bandwidth of 100kHz. te 2: No significant emissions above 18GHz 120.0- 100.0- 100.0- 80.0- 60.0- 10									KR I MHZ;/	IB 3 MHZ;PK
te 1: measurements in a measurement bandwidth of 100kHz. te 2: No significant emissions above 18GHz	JUU.230	47.0	П	70.0	-22.4	Peak	TJZ	1.3		
White both the Mederal and Annual and the second an	te 2:	No signficant			ndwidth of 1					
20.0 - 100000 10000 10000 1000000		No signficant			ndwidth of 1					

Client:	Intel Corpora	ation						Job Number:	J83582
Madal	62205ANHN	1W (Intel® C	entrino® Adv	vanced-N 62	05) with WNC	,	T-	Log Number:	T83587
Model:	81XCAA15.0	G03 Dipole					Accou	unt Manager:	Christine Krebil
Contact:	Steven Hack	kett							
Standard:	FCC 15.247	/ FCC 15 E	/ RSS 210					Class:	N/A
n # 3d: ,	EUT on Cha	nnel #11 24	62MHz - 802	2.11g, Chair	n B (worst cas	se from run	#3a and ru	n #3b)	
					Power S	Settings			
				t (dBm)	Measure			re Setting	
		Chain B	10	6.5	16	.8	2	9.5	l
urious E	Padiated Emi	ccione							
equency		Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	2 2	
593.870	39.4	V	54.0	-14.6	AVG	197	1.0	RB 1 MHz;V	
593.960	54.2	V	74.0	-19.8	PK	197	1.0	RB 1 MHz;V	/B 3 MHz;Pk
000.250	48.6	Н	70.0	-21.4	Peak	210	1.0		
	measuremen No signfican 120.0 -	nts in a meas	surement ba	ndwidth of 1		For all othe	r emissions	, the limit is -	30dBc for peak
te 1: te 2: (m/\ngp) aphilitude	measuremen No signfican	nts in a meas	surement ba	ndwidth of 1		For all othe		, the limit is -	30dBc for peak

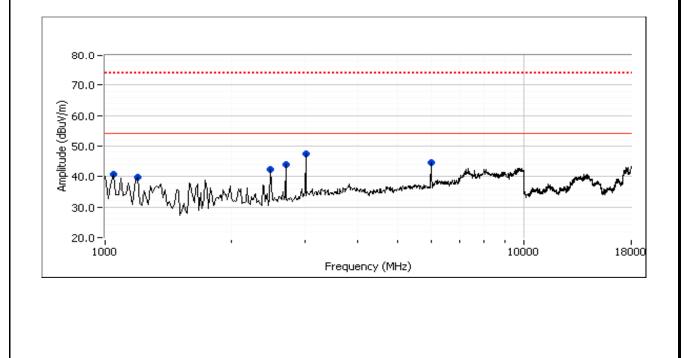
	Intel Corpora	tion						Job Number:	J83582
Model			entrino® Adv	vanced-N 62	05) with WNC			Log Number:	
	81XCAA15.0						Ассо	unt Manager:	Christine Krebil
	Steven Hack								
Standard	FCC 15.247	/ FCC 15 E /	/ RSS 210					Class:	N/A
n # 4b, I	EUT on Chan	nel #6 (2437	/MHz) - 802	.11b, Chain					
			Tanaa		Power S		Ceffred		
		Choin D		t (dBm) 5.5	Measure 15			re Setting 4.0	
	L	Chain B	R	5.5	10	.0	Z	.4.0	l
urious F	Radiated Emi	ssions:							
equency	1 1	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
73.940	42.8	V	54.0	-11.2	AVG	55	1.3	RB 1 MHz;V	
594.220 596.920	37.2	V V	54.0	-16.8	AVG	203	1.0	RB 1 MHz;V	
596.920 873.940	51.6 48.3	V	74.0 74.0	-22.4 -25.7	PK PK	203 55	1.0 1.3		/B 3 MHz;Pk /B 3 MHz;Pk
	measuremer No signfican	nts in a meas	surement ba	ndwidth of 1		For all othe	r emissions	s, the limit is -3	30dBc for peak
te 2:	measuremer No signfican 110.0 - 100.0 -	nts in a meas	surement ba	ndwidth of 1		For all othe	r emissions	s, the limit is -	BodBc for peak
	measuremer No signfican	its in a meas temissions a	surement ba	ndwidth of 1		For all othe	r emissions	s, the limit is -	30dBc for peak
te 2:	measuremer No signfican	nts in a meas	surement ba	ndwidth of 1		For all othe		s, the limit is -	BodBc for peak
ote 1: te 2: (W/Angp) apriliume	measuremer No signfican	its in a meas temissions a	surement ba	ndwidth of 1		For all othe	r emissions	s, the limit is -3	30dBc for peak


	Intel Corpora	ation						Job Number:	J83582
M I - I	62205ANHN	IW (Intel® Ce	entrino® Adv	vanced-N 62	05) with WNC		T-	Log Number:	T83587
Model:	81XCAA15.0						Acco	unt Manager:	Christine Krebil
Contact:	Steven Hack	ætt						-	
Standard:	FCC 15.247	/ FCC 15 E /	RSS 210					Class:	N/A
un # 4c: ,	EUT on Cha	nnel #1 2412	2MHz - 802.	11b, Chain .	A (worst case	e from run #	4a and run	#4b)	
	·				Power S				
		<u>.</u>		t (dBm)	Measure			re Setting	
	l	Chain A	R	5.5	15	.5	2	5.5	J
nurious P	adiated Emi	ccinnc·							
requency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4823.980	43.9	V	54.0	-10.1	AVG	175	1.1	RB 1 MHz;\	
1600.140	32.7	V	54.0	-21.3	AVG	216	1.0	RB 1 MHz;\	
4823.910	48.8	V	74.0	-25.2	PK	175	1.1		/B 3 MHz;Pk
1594.390	46.6	V	74.0	-27.4	PK	216	1.0	KR I MHZ;\	/B 3 MHz;Pk
ote 2:	No signfican			ndwidth of 1 z	UUKHZ.				
ote 2: Whitude (dBuV/m)	No signfican								
	No signfican 110.0 - 100.0 - 90.0 - 80.0 - 70.0 - 60.0 -								
	No signfican								
lote 2: (w/\ngp) aphilitume	No signfican 110.0 - 100.0 - 90.0 - 80.0 - 70.0 - 60.0 - 50.0 -								

Client: Inte	tel Corporati	ion						Job Number: J83582
			entrino® Adv	anced-N 62	05) with WNC			Log Number: T83587
81.	XCAA15.G						Acco	unt Manager: Christine Krebi
Contact: Ste								
Standard: FC								Class: N/A
un # 4d: , EU	IT on Chan	nel #11 24	62MHz - 802	2.11b, Chain	A (worst cas		#4a and ru	n #4b)
			Torgot	(dDm)	Power S		Coffwor	ro Cotting
		Chain A		: (dBm) 5.5	Measure 15	, ,		re Setting 5.5
				0.0	13	.0	Z	5.5
ourious Radi	liated Emiss	sions:						
requency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
923.920	42.6	V	54.0	-11.4	AVG	182	1.2	RB 1 MHz;VB 10 Hz;Pk
600.250 923.850	32.8 48.4	V V	54.0 74.0	-21.2 -25.6	AVG PK	219 182	1.0 1.2	RB 1 MHz;VB 10 Hz;Pk RB 1 MHz;VB 3 MHz;Pk
593.650	40.4	V	74.0	-23.0	PK	219	1.2	RB 1 MHz;VB 3 MHz;Pk
99 11 plitude (dBuV/m) 12 bit	00.0 - 00.0 - 30.0 - 70.0 - 50.0 - 50.0 -							
	0.0-	الم ال مع ا	Millindon	1 [4]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ward and the second	and the second s	"mm
	ሆለል	ער איז איז און און און און און						
40	25.0- 1000	ነት የትላት እንግ		· · ·				10000 180

	WE ENGINEER	SUCCESS							
Client:	Intel Corpora	ation						Job Number:	J83582
	62205ANHM	1W (Intel® C	entrino® Adv	/anced-N 62	05) with WNC		T-	Log Number:	T83587
Model:	81XCAA15.0					-		-	Christine Krebil
Contact:	Steven Hack	kett							
Standard:	FCC 15.247	/ FCC 15 E	/ RSS 210					Class:	N/A
l	adiated Spur Date of Test: est Engineer:	6/15/2011		Ιz, 802.11n2		3 st Location: fig Change:		er #4	
Run # 5a, E	UT on Chan	nel #149 57	45MHz - 802	2.11n20, Ch		S - 11 ¹			
		Torgot	(dDm)		Power S	•	d (dDm)		
	^		(dBm)	Total	Δ.	Measure	, ,	Total	Software Setting
Chain	A 16.5	B 16.5	С	Total 19.5	A 16.7	В 16.8	С	Total 19.8	34.0/33.0
	10.0	10.0		17.0	10.7	10.0		17.0	34.0/33.0
Spurious R	Radiated Emi	issions:							
requency	1	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11489.800		V	54.0	-12.8	AVG	25	1.8	RB 1 MHz;V	
11496.670		V	74.0	-22.1	PK	25	1.8		/B 3 MHz;Pk
2490.180	34.4	Н	54.0	-19.6	AVG	221	1.0	RB 1 MHz;V	
2490.260	55.8	Н	74.0	-18.2	PK	221	1.0	RB 1 MHz;V	/B 3 MHz;Pk
3001.260	47.1	Н	70.0	-22.9	Peak	223	1.0		
lote 1: lote 2: (m/\ngp) aprilidmy	measuremen No signfican 120.0 - 100.0 -	nts in a meas	surement ba	ndwidth of 1					30dBc for peak
					Frequency	y (MHz)			10000

Client	Intel Corpora	ation						Job Number:	J83582
	62205ANHM		entrino® Δdv	/anced-N 62	05) with WNC		T.	Log Number:	
Model:	81XCAA15.0			and u-N UZ				0	Christine Krebil
Contact:	Steven Hack	ett							
Standard:	FCC 15.247	/ FC <u>C 1</u> 5 E	/ RSS 210					Class:	N/A
un # 5b: ,	EUT on Chai	nnel #157 5	785MHz - 80)2.11n20, Cł					
		Tanad			Power S		al (alDass)		
	A	l arget B	(dBm) C	Total	A	Measure B	ea (abm) C	Total	Software Setting
Chain	16.5	Б 16.5	U	19.5	A 16.6	16.7	C	10tal	34.0/33.0
	10.0	10.0		17.0	10.0	10.7		.,,,	
	Radiated Emis							•	
Frequency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11569.930		V	54.0	-13.2	AVG	32	1.6	RB 1 MHz;V	
11570.230	53.0	V H	74.0	-21.0 -19.9	PK AVG	32 218	1.6 1.0		/B 3 MHz;Pk
2490.040 2491.340	34.1 55.2	H H	54.0 74.0	-19.9 -18.8	PK	218	1.0	RB 1 MHz;V	/B TO HZ;PK /B 3 MHz;Pk
1595.840	37.3	н V	54.0	-18.8 -16.7	AVG	199	1.0	RB 1 MHZ;V	
1595.840	51.6	V	74.0	-22.4	PK	199	1.0		/B 3 MHz;Pk
1077.010	01.0	v	7 4.0	22.7		1//	1.0	ע, צרווער סאין	
lote 1:	47.8 For emission measuremer No signficant	nts in a meas	surement ba	ndwidth of 1		191 For all othe	1.0 er emissions	, the limit is -3	30dBc for peak
3000.070 Note 1: Note 2:	For emission measuremer No signficant 120.0 -	is in restricte its in a meas	ed bands, the surement ba	e limit of 15.2 ndwidth of 10	209 was used.			s, the limit is -:	
Note 1:	For emission measuremer No signficant 120.0 -	is in restricte its in a meas	ed bands, the surement ba	e limit of 15.2 ndwidth of 10	209 was used.	For all othe		s, the limit is -:	


Client	Intel Corpora	tion						Job Number:	J83582
	62205ANHM		entrino® Adv	/anced-N 62	05) with WNC	:	T.	Log Number:	
Model	81XCAA15.0		sittino nui					0	Christine Krebil
Contact	Steven Hack	ett						-	
Standard	FCC 15.247	/ FCC 15 E /	/ RSS 210					Class:	N/A
Run # 5c: ,	EUT on Char	nnel #165 5	825MHz - 80)2.11n20, Cł					
		Targot	(dPm)		Power S	Settings Measure	d (dPm)		Coffwore Cotting
	A	Target B	С	Total	A	B	с (ирпп)	Total	Software Setting
Chain	16.5	16.5	Ű	19.5	16.5	16.6	0	19.6	34.0/33.0
	Radiated Emis		15 000	15 017	Detector	٨ ١١-	الماجاتا	Correct	
Frequency MHz		Pol v/h	Limit	/15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	
11649.650	dBµV/m 42.9	V/fi V	54.0	Margin -11.1	AVG	degrees 37	meters 1.4	RB 1 MHz;V	/R 10 Hz·Dk
11649.000		V	74.0	-11.1	PK	37	1.4		/B 3 MHz;Pk
1593.780	35.5	V	54.0	-17.4	AVG	196	1.4	RB 1 MHz;V	
1593.760	50.2	V	74.0	-23.8	PK	196	1.0		/B 3 MHz;Pk
2490.390	33.9	H	54.0	-20.1	AVG	218	1.0	RB 1 MHz;V	
2497.440	55.4	H	74.0	-18.6	PK	218	1.0		/B 3 MHz;Pk
2998.330	49.4	H	70.0	-20.6	Peak	185	1.0		
	For emission measuremer No signficant	nts in a meas	surement ba	ndwidth of 1		For all othe	er emissions	s, the limit is -3	30dBc for peak
Note 2:	measuremer No signficant 120.0 - 100.0 -	nts in a meas	surement ba	ndwidth of 1		For all othe	er emissions	s, the limit is -	30dBc for peak
Note 1: Note 2: (m/\ngp) apnilidme	measuremer No signficant 120.0 - 100.0 -	nts in a meas	surement ba	ndwidth of 1			er emissions	s, the limit is -3	30dBc for peak

Client:	Intel Corporat	lion						Job Number:	J83582
Model:			entrino® Adv	anced-N 62	205) with WNC	,	T-	Log Number:	T83587
mouci.	81XCAA15.G	03 Dipole					Acco	unt Manager:	Christine Krebil
Contact:	Steven Hacke	ett							
Standard:	FCC 15.247 /	FCC 15 E	RSS 210					Class:	N/A
1 # 6b, E	EUT on Chann	el #6 2437	MHz - Rece	iver, Chain	В				
	Radiated Emis			051				1-	
equency	1	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz	dBμV/m 47.2	v/h V	Limit	Margin	Pk/QP/Avg	degrees 197	meters		/D 10 Uz Dk
000.340	47.2	V	54.0 54.0	-6.8 -7.7	AVG AVG	197 157	<u>1.4</u> 1.0		/B 10 Hz;Pk /B 10 Hz;Pk
/00.100	40.3	V	54.0	-7.7	AVG	25	2.4		/B 10 Hz;Pk
596.900	36.8	V	54.0	-17.2	AVG	195	1.8		/B 10 Hz;Pk
047.870	35.8	Ĥ	54.0	-18.2	AVG	110	1.0		/B 10 Hz;Pk
196.270	35.3	V	54.0	-18.7	AVG	262	1.0		/B 10 Hz;Pk
997.400	34.7	V	54.0	-19.3	AVG	0	1.1	RB 1 MHz;\	/B 10 Hz;Pk
000.470	52.0	V	74.0	-22.0	PK	157	1.0		/B 3 MHz;Pk
000.100	51.9	V	74.0	-22.1	PK	197	1.4		/B 3 MHz;Pk
598.370	48.9	V	74.0	-25.1	PK	195	1.8		/B 3 MHz;Pk
92.870	48.9	V	74.0	-25.1	PK	0	1.1		/B 3 MHz;Pk
483.030	28.5	V	54.0	-25.5	AVG	156	2.5		/B 10 Hz;Pk
198.830 700.130	48.1 47.4	V V	74.0 74.0	-25.9 -26.6	PK PK	262 25	1.0 2.4		/B 3 MHz;Pk /B 3 MHz;Pk
)45.770	47.4	H	74.0	-20.0	PK PK	110	1.1		/B 3 MHz;Pk
481.830	39.7	V	74.0	-34.3	PK	156	2.5		/B 3 MHz;Pk
							-	,	- /
	80.0-								
	70.0-								
14	60.0-								
l B	,								
de j	50.0-								
Amplitude (dBuV/m)	40.0-		• •	Ţ				I	June
Am A	Will	1 March	والدالل ولا		monner	muham	hannel bandle	number	waterst
	30.0-	of Manuer	.Mwadimasi						
	20.0-								
	1000 1	500 200	0 2500	3000 350	O 4000 · Frequency	4500 5000	0 5500	6000 650	0 7000 750
					mequency	r (Pir12)			

NTS	
WE ENGINEER	sı

AND A	E ENGINEER	SUCCESS							
Client:	Intel Corporation							Job Number:	J83582
Madal	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205) with WNC						T-	Log Number:	T83587
	81XCAA15.G03 Dipole							unt Manager:	Christine Krebil
Contact:	Steven Hack	kett							
Standard:	FCC 15.247	/ FCC 15 E	/ RSS 210					Class:	N/A
		nnel #157 5 <i>issions, 1-18</i>		eceiver, Cha	in A and Ch	ain B			
Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3000.300	46.4	V	54.0	-7.6	AVG	196	1.5	RB 1 MHz;V	'B 10 Hz;Pk
6000.830	43.6	V	54.0	-10.4	AVG	218	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1195.800	35.4	V	54.0	-18.6	AVG	263	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1047.450	34.1	Н	54.0	-19.9	AVG	150	1.0	RB 1 MHz;V	'B 10 Hz;Pk
2490.370	33.4	Н	54.0	-20.6	AVG	131	1.1	RB 1 MHz;V	'B 10 Hz;Pk
2700.130	32.5	Н	54.0	-21.5	AVG	88	2.5	RB 1 MHz;V	'B 10 Hz;Pk
2499.630	52.2	Н	74.0	-21.8	PK	131	1.1	RB 1 MHz;V	'B 3 MHz;Pk
3000.070	51.5	V	74.0	-22.5	PK	196	1.5	RB 1 MHz;V	'B 3 MHz;Pk
6000.430	48.5	V	74.0	-25.5	PK	218	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1194.970	47.7	V	74.0	-26.3	PK	263	1.0	RB 1 MHz;V	'B 3 MHz;Pk
1049.950	45.3	Н	74.0	-28.7	PK	150	1.0	RB 1 MHz;V	'B 3 MHz;Pk
2700.430	41.2	Н	74.0	-32.8	PK	88	2.5	RB 1 MHz;V	'B 3 MHz;Pk

Client:	Intel Corporation	Job Number:	J90958
Product	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205)	T-Log Number:	T91093
		Account Manager:	Christine Krebill
Contact:	Steven Hackett		-
Emissions Standard(s):	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Product

62205ANHMW (Intel® Centrino® Advanced-N 6205)

Date of Last Test: 3/26/2013

Client:	Intel Corporation	Job Number:	J90958
Model	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205)	T-Log Number:	T91093
Model: 02		Account Manager:	Christine Krebill
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:	20 °C
Rel. Humidity:	34 %

Summary of Results

MAC Address: A088B449143C DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Band edge i	measuremen	ts on the the	worst case r	modes (n20 a	and n40) based on measu	irements made in the orig	inal filings.
		#1	23.5	13.3	Restricted Band Edge		50.8 dBµV/m @ 2390.0
Run #1	802.11n20	2412MHz	23.0	13.3	at 2390 MHz		MHz (-3.2 dB)
Null #1	Chain A	#11	23.0	12.5	Restricted Band Edge		48.3 dBµV/m @ 2483.5
		2462MHz	23.0	12.0	at 2483.5 MHz	15.209	MHz (-5.7 dB)
		#3	20.0	9.7	Restricted Band Edge	10.209	47.9 dBµV/m @ 2390.0
Run #2	802.11n40	2422MHz	20.0	9.7	at 2390 MHz		MHz (-6.1 dB)
Rull#Z	Chain B	#9	20.5	9.9	Restricted Band Edge		48.6 dBµV/m @ 2483.5
		2452MHz	20.5	9.9	at 2483.5 MHz		MHz (-5.4 dB)
Spurious rad	diated emissi	ons on the w	orst-case mo	ode (b) based	d on the measurements m	hade in the original filings.	
Run # 3	802.11b	#6	21.5	15.5	Radiated Emissions,	FCC 15.209 / 15.247	38.8 dBµV/m @ 4874.0
Rull# 3	Chain A	2437MHz	Z1.0	15.5	1 - 26 GHz	1 CC 15.2077 15.247	MHz (-15.2 dB)
Spurious rad	diated emissi	ons on the w	orst-case mo	odes (g and r	n20 MIMO) based on the	measurements made in tl	ne original filings.
Run # 4	802.11n20	#6	A:29.0	A:16.4	Radiated Emissions,	FCC 15.209 / 15.247	33.1 dBµV/m @ 4877.3
Null # 4	Chain A+B	2437MHz	B:29.0	B:16.7	1 - 26 GHz	1 CC 13.2077 13.247	MHz (-20.9 dB)
Run #5	802.11g	#11	29.0	16.6	Radiated Emissions,	FCC 15.209 / 15.247	39.6 dB μ V/m @ 4923.7
Tun #J	Chain B	2462MHz	27.0	10.0	1 - 26 GHz	100 10.2077 10.247	MHz (-14.4 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

	E ENGINEER SUCCESS		
Client:	Intel Corporation	Job Number:	J90958
Model	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205)	T-Log Number:	T91093
MOUEI.		Account Manager:	Christine Krebill
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

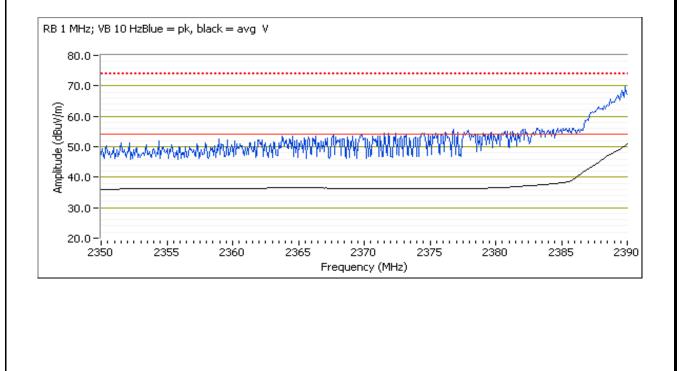
Deviations From The Standard

No deviations were made from the requirements of the standard.

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Client:	Intel Corporation	Job Number:	J90958
Madal	62205ANHMW (Intel [®] Centrino [®] Advanced-N 6205)	T-Log Number:	T91093
		Account Manager:	Christine Krebill
Contact:	Steven Hackett		
Standard:	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B	Class:	N/A

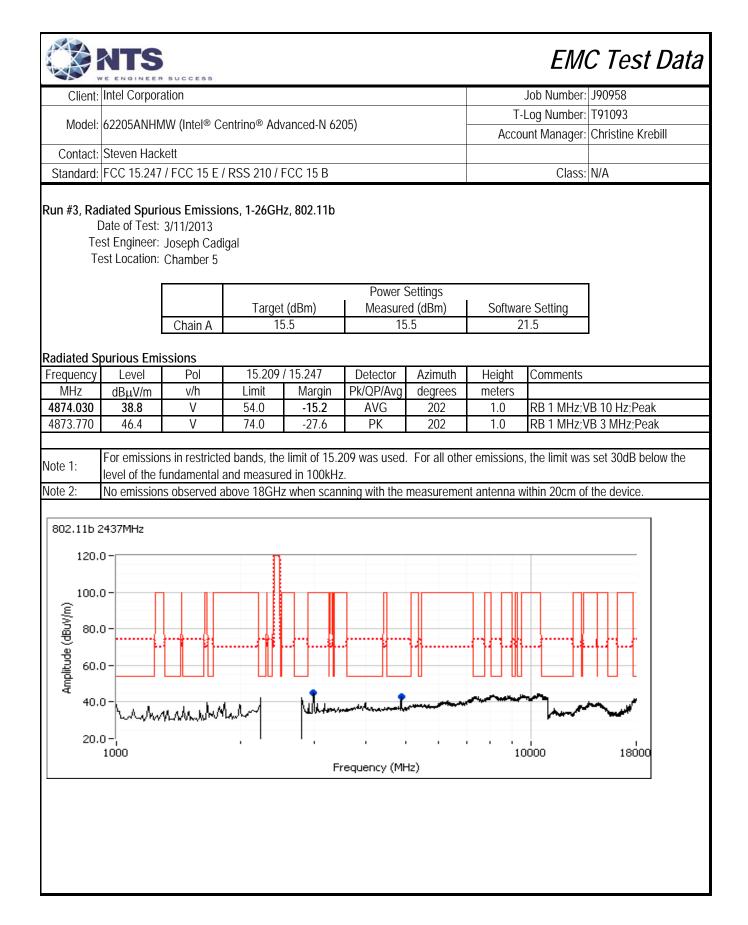
Run #1: Radiated Spurious Emissions, Band Edge. Operating Mode: 802.11n20

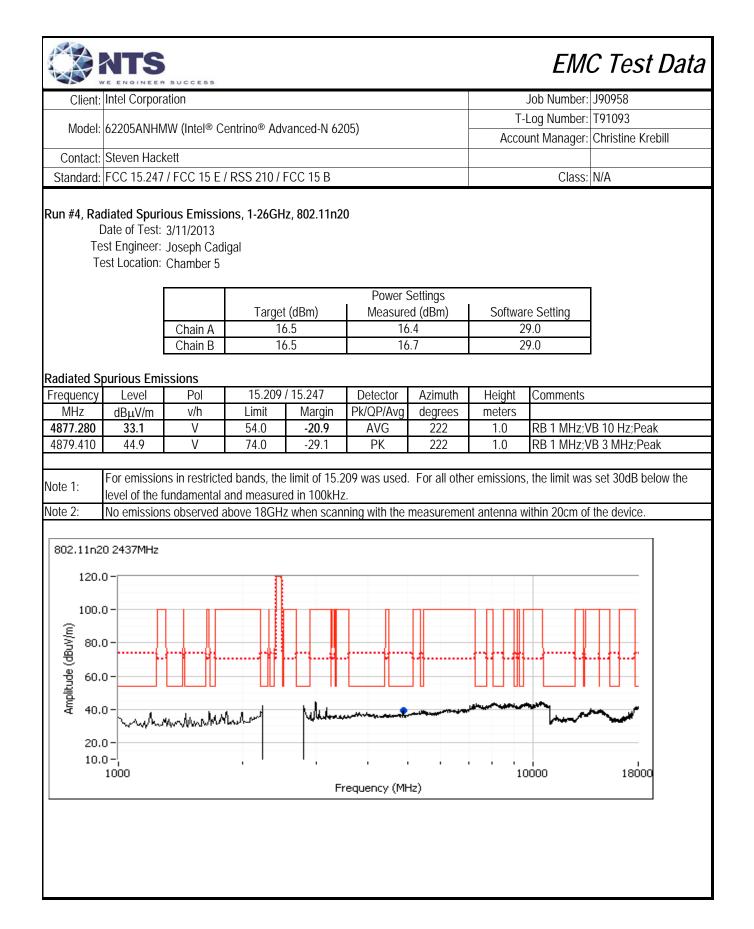

Date of Test: 3/11/2013 Test Engineer: John Caizzi Test Location: Chamber 5

Run #1a, EUT on Channel #1 2412MHz - Chain A

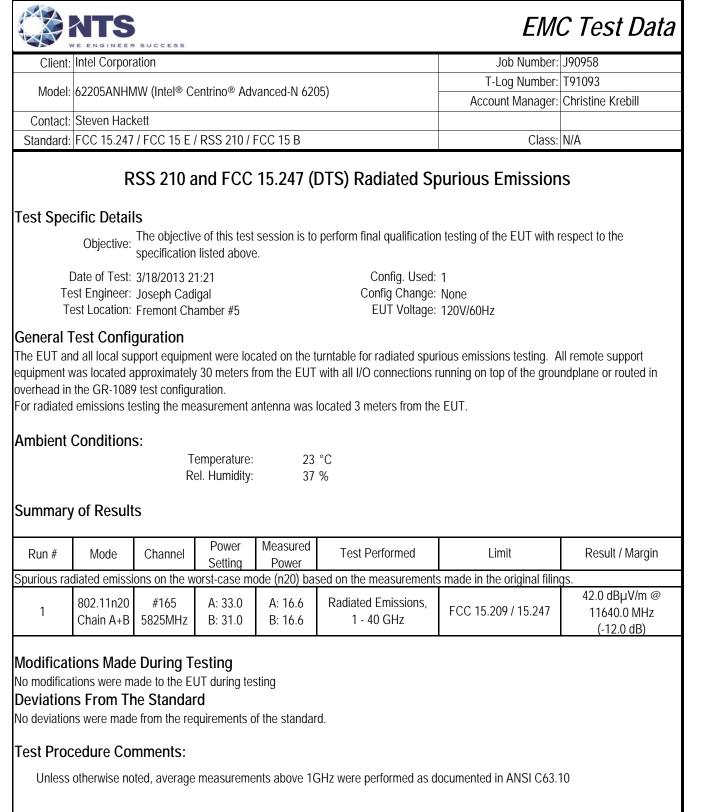
		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	13.1	13.3	23.5

Band Edge Signal Field Strength - Direct measurement of field strength

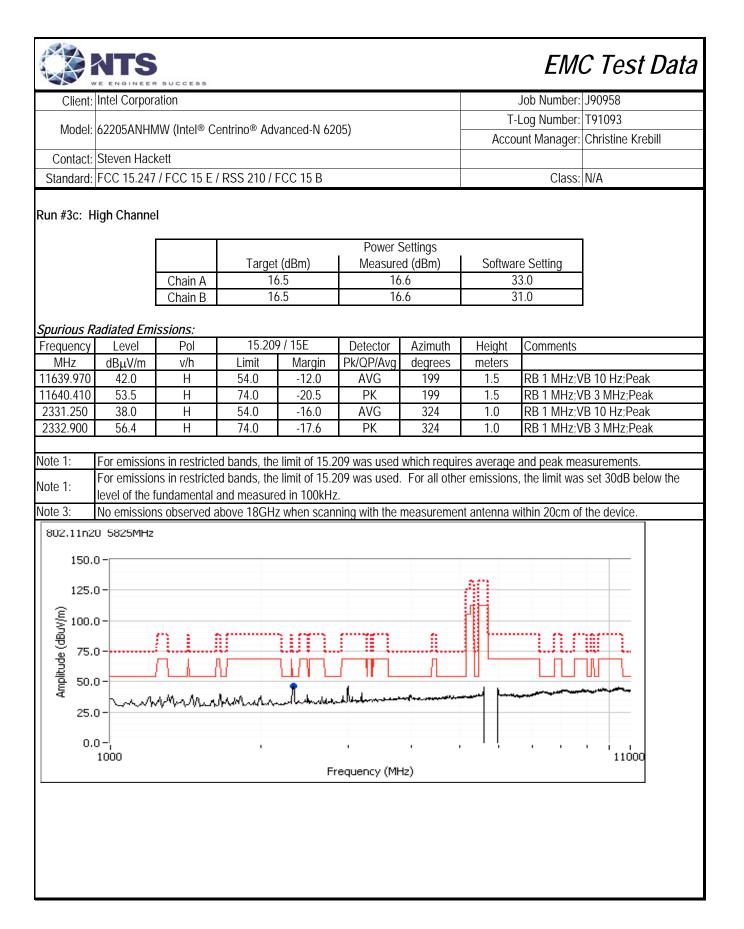

		J			J			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	50.8	V	54.0	-3.2	AVG	222	1.00	
2389.040	69.9	V	74.0	-4.1	PK	222	1.00	
2390.000	39.1	Н	54.0	-14.9	AVG	0	1.00	
2389.280	55.7	Н	74.0	-18.3	PK	0	1.00	

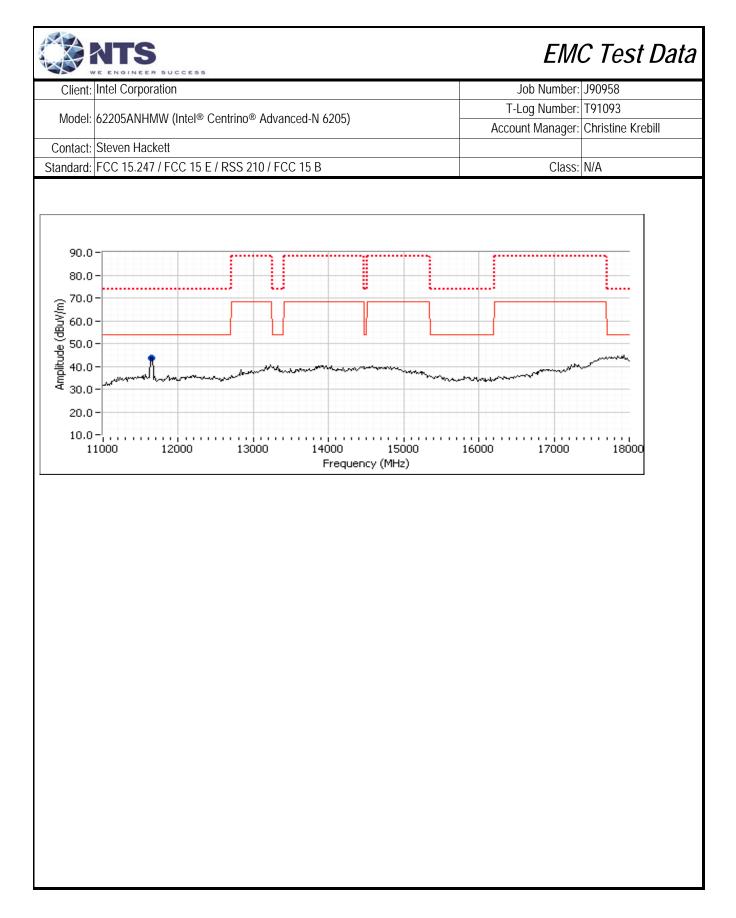


	Intel Corpo	oration			Job Number:				
/lodel:	62205ANF	HMW (Intel® C	entrino® Adv		Log Number:				
	Steven Ha			Acco	unt Manager:	Christine Krebill			
		17 / FCC 15 E /	/ DSS 210 / I	ECC 15 B				Class:	NI/A
iuaiu.	100 15.24		13321071	CC 15 D				01033.	IN/A
1b, El	JT on Cha	nnel #11 2462	MHz - Chair	n A					
					Power S	Settinas]
				(dBm)	Measure	d (dBm)		re Setting	
		Chain A	12	2.4	12	.5	2	3.0	
Edae	Signal Fie	Id Strength -	Direct meas	urement of	field strengt	h			
iency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
Hz	dBµV/m		Limit	Margin	Pk/QP/Avg	degrees	meters		
.500 .860	48.3 63.9	V	54.0 74.0	- 5.7 -10.1	AVG PK	219 219	1.20 1.20		
		.0 HzBlue = pk							
itude (dBu)	60.0 50.0 40.0 -			uthywyfr) Anwywyky (r	Mandaha	VMUUMM	UNIXA WILAYA	VMMMM
	30.0-								
	20.0- , , , 2483.5	2486	.0 2488	3.0 249	90.0 249 Frequency	2.0 249	94.0 2	496.0 24	1 98.0 2500.0


en Hacke 15.247 / ed Spurio n Channe	/ (Intel® Ce tt FCC 15 E / us Emissio	RSS 210 /	Edge. Opera	05) ating Mode: 8	02.11n40		Log Number: unt Manager: Class:	Christine Krebill
en Hacke 15.247 / ed Spurio n Channe	tt FCC 15 E / us Emissio I #3 2422M	RSS 210 / I ons, Band I IHz - Chain	FCC 15 B E dge. Oper a	· · · · · · · · · · · · · · · · · · ·	02.11n40	Acco		
al Field S	FCC 15 E / us Emissio I #3 2422M	ons, Band I IHz - Chain	Edge. Opera	ating Mode: 8	02.11n40		Class:	N/A
ed Spurio n Channe	us Emissio I #3 2422M	ons, Band I IHz - Chain	Edge. Opera	ating Mode: 8	02.11n40		Class:	N/A
n Channe	I #3 2422M	Hz - Chain	0 1	ating Mode: 8	02.11n40			
	Chain B	Target						-
	Chain B	rarge		Power S		Cofficient	o Cotting	
	Chain D	9	.5	Measure 9.			e Setting	-
		,		7.		L	0.0	J
		Direct meas	urement of	field strengt		11.1.1.1.1	0	
μV/m	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
47.9	V	54.0	-6.1	AVG	58	1.16		
51.9	V	74.0	-12.1	PK	58	1.16		
- - -	ntownativ	www.woharry	and and the second	mandard	Antor and the	mu dudom	horsen my Min	Jut and a start of the start of
) - - 2350	2355	2360	236	5 2370) 237		380 2	2385 2390

Model: 62205ANHMW (Intel® Centrino® Advanced-N 6205) T-Log Number: T91093 Account Manager: Christine Krebil Indard: Indar: Indard: Indard:	Client:	Intel Corpo	oration						Job Number:	J90958
Account Manager: Christine Krebit Indard: FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Class: N/A #2b, EUT on Channel #9 2452MHz - Chain B	Model	62205ANH	IMW (Intel® C	entrino® Adv	anced-N 62	05)				
Indard FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Class: N/A #2b, EUT on Channel #9 2452MHz - Chain B						.00)		Accou	unt Manager:	Christine Krebill
#2b, EUT on Channel #9 2452MHz - Chain B #2b, EUT on Channel #9 2452MHz - Chain B Target (dBm) Measured (dBm) Software Setting Chain B 10.0 9.9 20.5 IEdge Signal Field Strength - Direct measurement of field strength uency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.500 48.6 V 54.0 -5.4 AVG 253 1.12 4.130 61.8 V 74.0 -12.2 PK 253 1.12 RB 1 MHz; VB 10 HzBlue = pk, black = avg V 80.0 										
Power Settings Target (dBm)Software SettingChain B10.09.920.5I Edge Signal Field Strength - Direct measurement of field strength uencyLevelPol15.209 / 15.247DetectorAzimuth MarginHeight CommentsHzdBµV/mv/hLimit LimitMargin MarginPk/QP/Avg degreesdegrees3.50048.6V54.0-5.4AVG2531.124.13061.8V74.0-12.2PK2531.12RB 1 MHz; VB 10 HzBlue = pk, black = avg V60.0	ndard:	FCC 15.24	4//FCC 15 E	/ RSS 210 / F	-CC 15 B				Class:	N/A
Target (dBm)Measured (dBm)Software Setting 20.5I Edge Signal Field Strength - Direct measurement of field strength uencyLevelPol15.209/15.247DetectorAzimuthHeightCommentsHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters3.50048.6V54.0-5.4AVG2531.124.13061.8V74.0-12.2PK2531.12-RB 1 MHz; VB 10 HzBlue = pk, black = avg V80.040.09940.030.0	#2b, El	JT on Cha	nnel #9 24521	MHz - Chain	В					
Chain B 10.0 9.9 20.5 I Edge Signal Field Strength - Direct measurement of field strength uency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.500 48.6 V 54.0 -5.4 AVG 253 1.12 4.130 61.8 V 74.0 -12.2 PK 253 1.12						Power	Settings]
Edge Signal Field Strength - Direct measurement of field strength uency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.500 48.6 V 54.0 -5.4 AVG 253 1.12 4.130 61.8 V 74.0 -12.2 PK 253 1.12										
uency Level Poi 15.209 / 15.247 Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.500 48.6 V 54.0 -5.4 AVG 253 1.12 4.130 61.8 V 74.0 -12.2 PK 253 1.12			Chain B	10	0.0	9	.9	2	0.5	J
uency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Hz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3.500 48.6 V 54.0 -5.4 AVG 253 1.12 4.130 61.8 V 74.0 -12.2 PK 253 1.12	Edae	Signal Fie	ld Strenath -	Direct meas	urement of	field strengt	h			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								Height	Comments	
4.130 61.8 V 74.0 -12.2 PK 253 1.12 RB 1 MHz; VB 10 HzBlue = pk, black = avg V 80.0 -<	Hz					ŭ	u u	meters		
RB 1 MHz; VB 10 HzBlue = pk, black = avg V 80.0- 70.0- (a) 60.0- 50.0- 900 901 40.0- 30.0-										
80.0 - 70.0 - 70.0 - () 0 -	4.130	61.8	V	/4.0	-12.2	PK	253	1.12	L	
20.0	-	40.0-								
20.0- ¹ ,		20.0-,,, 2483.5	2486	.0 2488	8.0 249	90.0 249	2.0 249	94.0 24	196.0 24	498.0 2500.(





Intel Corporation					,	Job Number:	J90958
					T-L	og Number:	T91093
ozzusannivivv (intel® C	entrino [®] Adv	anced-N 620	JD)				
Steven Hackett							
FCC 15.247 / FCC 15 E	/ RSS 210 / F	CC 15 B				Class:	N/A
Date of Test: 3/18/2013							
missions							
						Comments	
			¥	¥		RR 1 MH7·\/	B 10 Hz·Paak
0-	Π						
				1			
0-	nder			3.3 			
0- 	Man	Mailm					18000
	Steven Hackett FCC 15.247 / FCC 15 E h Channel @ 2462 MHz Date of Test: 3/18/2013 st Engineer: Joseph Cad est Location: Chamber 5 missions Level Pol dBµV/m v/h 39.6 H 51.4 H For emissions in restricted level of the fundamental Signal is not in a restricted No emissions observed a 2462MHz	Steven HackettFCC 15.247 / FCC 15 E / RSS 210 / FPCC 15 E / RSS 210 / FIn Colspan="2">In Colspan="2">In Colspan="2">In Colspan="2">In Colspan="2">In Colspan="2">In Colspan="2"Date of Test: $3/18/2013$ St Engineer: Joseph CadigalDate of Test: $3/18/2013$ Date of Test: $3/18/2014$ Date of Test: $3/18/2014$ For emissions in restricted bands, theLevel of the fundamental and measureSignal is not in a restricted band but theNo emissions observed above 18GHz2462MHz	Steven Hackett FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B h Channel @ 2462 MHz Date of Test: 3/18/2013 st Engineer: Joseph Cadigal est Location: Chamber 5 missions Level Pol 15.209 / 15.247 dBµV/m v/h Limit Margin 39.6 H 54.0 For emissions in restricted bands, the limit of 15.2 level of the fundamental and measured in 100kHz Signal is not in a restricted band but the more strir No emissions observed above 18GHz when scame	FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B ch Channel @ 2462 MHz Date of Test: 3/18/2013 st Engineer: Joseph Cadigal ext Location: Chamber 5 missions Level Pol 15.209 / 15.247 Detector dBµV/m v/h Limit Margin Pk/QP/Avg 39.6 H 51.4 H 74.0 -22.6 For emissions in restricted bands, the limit of 15.209 was used level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted No emissions observed above 18GHz when scanning with the	Steven Hackett FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B A Channel @ 2462 MHz Date of Test: 3/18/2013 st Engineer: Joseph Cadigal Steven Pol Steven Hackett Date of Test: 3/18/2013 st Engineer: Joseph Cadigal Steven Chamber 5 missions Level Pol 15.209 / 15.247 Detector Azimuth dBµV/m v/h Limit Margin Pk/QP/Avg degrees 39.6 H 54.0 -14.4 AVG 139 For emissions in restricted bands, the limit of 15.209 was used. For all othe level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit No emissions observed above 18GHz when scanning with the measuremer 2462MHz	62205ANHMW (Intel® Centrino® Advanced-N 6205) Accou Steven Hackett FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Accou Accou Accou FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Accou Accou </td <td>62205ANHMWW (Intel® Centrino® Advanced-N 6205) Account Manager: Steven Hackett FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Class: h Channel @ 2462 MHz Date of Test: 3/18/2013 Class: b Channel @ 2462 MHz Date of Test: 3/18/2013 Stengineer: Joseph Cadigal set Location: Chamber 5 missions Evel Pol 15.209 / 15.247 Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.6 H 54.0 -14.4 AVG 139 1.0 RB 1 MHz;V 51.4 H 74.0 -22.6 PK 139 1.0 RB 1 MHz;V For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit was used. No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of 2462MHz</td>	62205ANHMWW (Intel® Centrino® Advanced-N 6205) Account Manager: Steven Hackett FCC 15.247 / FCC 15 E / RSS 210 / FCC 15 B Class: h Channel @ 2462 MHz Date of Test: 3/18/2013 Class: b Channel @ 2462 MHz Date of Test: 3/18/2013 Stengineer: Joseph Cadigal set Location: Chamber 5 missions Evel Pol 15.209 / 15.247 Detector Azimuth Height Comments dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 39.6 H 54.0 -14.4 AVG 139 1.0 RB 1 MHz;V 51.4 H 74.0 -22.6 PK 139 1.0 RB 1 MHz;V For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was level of the fundamental and measured in 100kHz. Signal is not in a restricted band but the more stringent restricted band limit was used. No emissions observed above 18GHz when scanning with the measurement antenna within 20cm of 2462MHz

Antenna: Antenna Connected Duty Cycle: 99%

End of Report

This page is intentionally blank and marks the last page of this test report.