

Radio Test Report

FCC Part 27 (2495 – 2690 MHz)

Model: Intel Centrino Wireless-N + WiMAX 6150, Model: 612BNXHMW

FCC ID:	PD9612BNXH and PD9612BNXHU

COMPANY: Intel Corporation 100 Center Point Circle Suite 200 Columbia, SC 29210

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

REPORT DATE: September 21, 2010

FINAL TEST DATES: August 17, 19, 20 and 23, 2010

AUTHORIZED SIGNATORY:

Mark Briggs

Mark Briggs Staff Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	09-21-2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 27 (2496 – 2690 MHZ MOBILE DIGITAL STATIONS)	6
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	.11
CONDUCTED SPURIOUS EMISSIONS	
TRANSMITTER MASK MEASUREMENTS FREQUENCY STABILITY	
RADIATED EMISSIONS MEASUREMENTS.	
INSTRUMENTATION FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	

SCOPE

Tests have been performed on the Intel Corporation model Intel Centrino Wireless-N + WiMAX 6150, Model: 612BNXHMW, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 27

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model Intel Centrino Wireless-N + WiMAX 6150, Model: 612BNXHMW and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel Centrino Wireless-N + WiMAX 6150, Model: 612BNXHMW complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC	Description	Measured	Limit	Result
Transmitter Modula	ation, output power and ot			
\$2.1033 (c) (5) \$27.5 (i) (2)	Frequency range(s)	10MHz Channel: 2501-2685 MHz 5MHz Channel: 2498.5-2687.5 MHz	2496 – 2690 MHz	Pass
§2.1033 (c) (6) §2.1033 (c) (7)	RF power output at the antenna terminals	10MHz: 23.6 dBm 5MHz: 24.2 dBm	2 Watts 33 dBm	Pass
\$2.1046 \$27.50	EIRP (Note 4)	10MHz: 27.1 dBm 5MHz: 27.7 dBm	2 Watts 33 dBm	Pass
§2.1033 (c) (4)	Emission types	QPSK, 16QAM, 64QAM (OFDM)	-	-
§2.1035 (c) (1) §2.1047 §27.53(l)(4) (6)	Emission mask Note 3	10MHz: 0.1dB margin 5MHz: 0.01dB margin	43 + 10 log (P) dB at channel edge 55 + 10 log (P) dB 5.5 MHz from edge	Pass
	99% Bandwidth	10MHz: 9.4MHz 5MHz: 4.5MHz		-
§2.1049 §27.53	Occupied Bandwidth	10MHz: 9.4MHz 5MHz: 4.5MHz		-
Transmitter spuriou	is emissions			
§2.1051, §2.1053 §2.1057,	At the antenna terminals	< -35 dBm	-25 dBm	Pass
§27.53(m)(4) (6)	Field strength	-35.2dBm eirp	-25 dBm eirp	Pass
Receiver spurious en				
15.109	Receiver spurious emissions	Note 2	N/A	N/A
Other details				
§2.1055, §27.54	Frequency stability	0.0 ppm	2.5 ppm (Note 1)	Pass
§2.1093	RF Exposure	Refer to MPE calculation	Complies with rf exposure MPE	Pass
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	Refer to operational description, pages 17 - 19	-	-
-	Antenna Gain	3.47 dBi (Note 4)	-	-

Notes

Note 1 - The requirement for frequency stability is that the signal remains within the allocated band. A limit of 2.5ppm is being used to ensure the signal remains within the allocated band as defined by the spurious limits at the channel edges.

Note 2 - As the frequency of operation is above 960 MHz there are no technical requirements for spurious emissions from the receiver.

Note 3 – The measurement at the channel edge is made in a reference bandwidth of at least 1% the emission bandwidth is used. For measurements more than 1MHz from the edge of the channel the measurement bandwidth is 1MHz. The adjacent channel power feature of the spectrum analyzer is used to integrate the power over the required measurement bandwidth(s).

Note 4 – EIRP calculated using maximum gain antenna of 3.47dBi (refer to the antenna specification sheet)

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value. The extremes of temperature were -30° C to $+50^{\circ}$ C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel Centrino Wireless-N + WiMAX 6150, Model: 612BNXHMW is an IEEE 802.16e and 802.11b/g/n wireless multi-band network adapter. This module, available in the PCIe Half MiniCard form factor, delivers up to 20 Mbps+ downlink, up to 6 Mbps+ uplink performance over WiMAX, and up to 300 Mbps Tx/Rx1 over Wi-Fi. Both WiFi and WiMax support MISO 1x2 with either or both ports active in receive mode. WiMax operation supports antenna diversity to allow transmission on either of the two antenna ports but WiFi operation only supports transmission on antenna port 1 (Port A).

The device is sold under two different FCC IDs. FCC ID PD9612BNXH is a module intended for installation by the host system manufacturer only. FCC ID PD9612BNXHU is a module intended for installation by the host integrator and also by the end user. As the module has transmitter capabilities under Part 15 of the FCC rules user-installed versions require the use of a BiOS Lock mechanism to ensure the module is only installed into the appropriate host devices.

The sample was received on August 15, 2010 and tested on August 17, 19, 20 and 23, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Intel Corporation			MAC address:	
		WiMax half-mini	4025C20027AC	PD9612BNXHU
		PCIe card		

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel	-	Antenna test fixture	2010-1434	-
Intel	PCB00153	USB/SDIO-MC/HMC Adapter (module test fixture)	2010-1520	-
Dell	-	Laptop	Prototype	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Folt	То	Description	Shielded or Unshielded	Length(m)
Test fixture USB	Laptop USB		Shielded	
Test Fixture PCIe	Laptop PCIe	Ribbon	-	1
Test fixture DC power	DC supply	2-wire	Unshielded	0.5

EUT OPERATION

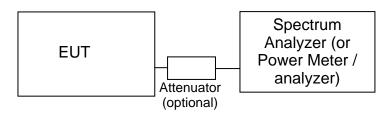
During testing, the EUT was configured to operate using an Agilent PSG to play back a test vector waveform. The Intel VaTU tool was running on the laptop PC. The combination of test utility (VaTU) and test waveform controlled the EUT to respond with the appropriate modulation (64QAM, 16QAM or QPSK) and channel bandwidth (5MHz or 10MHz) on the top, bottom or center channel. The VaTU tool also set the output power of the module. The power was adjusted to the highest value that complied with the mask for the output power and mask measurements and those measurements were made on the top, bottom and center channel for all three modulations rates in both 10 MHz and 5MHz modes at the antenna port with the highest power.

For all other measurements the output power was set to a higher value to ensure margins relative to the limits. The actual product, hen installed, will use integrated EEPROM settings to establish the output power at levels no higher than those used for the mask and output power measurements.

TESTING

GENERAL INFORMATION

Antenna port measurements were taken at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.


Radiated spurious emissions measurements were taken at the Elliott Laboratories Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.

Site	Registration Numbers		Logation	
Sile	FCC	Canada	Location	
Chamber 3	769238	IC 2845B-3	41039 Boyce Road	
Chamber 4	211948	IC 2845B-4	Fremont,	
Chamber 5	211948	IC 2845B-5	CA 94538-2435	

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the markerfrequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

 $R_r - S = M$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is sued when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

Fd = 40*LOG10 (Dm/Ds)

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 P G}}{d}$$

where:

- E = Field Strength in V/m
- P = Power in Watts
- G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S} - (E_S - E_{EUT})$$

$$P_s = G + P_{in}$$

where:

- P_{S} = effective isotropic radiated power of the substitution antenna (dBm)
- P_{in} = power input to the substitution antenna (dBm)
- G = gain of the substitution antenna (dBi)
- E_{S} = field strength the substitution antenna (dBm) at eirp P_{S}
- E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

Appendix A Test Equipment Calibration Data

Radio Antenna Port (Power and Spurious Emissions), Aug 17 thru 19, 2010					
Manufacturer	Description	Model	Asset #	Cal Due	
Agilent	PSA, Spectrum Analyzer,	E4446A	2139	1/6/2011	
	(installed options, 111, 115, 123,				
	1DS, B7J, HYX,				
Agilent	PSG, Performance Signal	E8267C	2200	2/5/2011	
	Generator, (installed options,				
	HEH, HEC, 602, 420)				
Radiated Emissions.	30 - 26,500 MHz, Aug 19 thru 20, 2	010			
Manufacturer	Description	Model	Asset #	Cal Due	
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010	
	26.5GHz				
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011	
	(SA40) Blue				
Fraguanay Stability 2	2 Aug 10				
Frequency Stability, 2 Manufacturer	-	Madal	Accet #		
Agilent	Description PSA, Spectrum Analyzer,	<u>Model</u> E4446A	<u>Asset #</u> 2139	<u>Cal Due</u> 1/6/2011	
Agliefit	(installed options, 111, 115, 123,	E4440A	2139	1/0/2011	
	1DS, B7J, HYX,				
Thermotron	Temp Chamber (w/ F4 Watlow	S1.2	2170	7/1/2011	
mernotion	Controller)	01.2	2170	77172011	
Agilent	PSG, Performance Signal	E8267C	2200	2/5/2011	
5	Generator, (installed options,				
	HEH, HEC, 602, 420)				

Appendix B Test Data

T80291 24 Pages

©Elliott

EMC Test Data

An DUCE	D company		
Client:	Intel Corporation	Job Number:	J80165
Model:	Intel Centrino Wireless-N + WiMAX 6150,	T-Log Number:	T80291
	612BNXHMW	Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Intel Corporation

Model

Intel Centrino Wireless-N + WiMAX 6150, 612BNXHMW

Date of Last Test: 9/16/2010

Radio Test Data

	An Durb company		
Client:	Intel Corporation	Job Number:	J80165
Model	Intel Centrino Wireless-N + WiMAX 6150, 612BNXHMW	T-Log Number:	T80291
MOUEI.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC	Class:	N/A

FCC Part 27

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

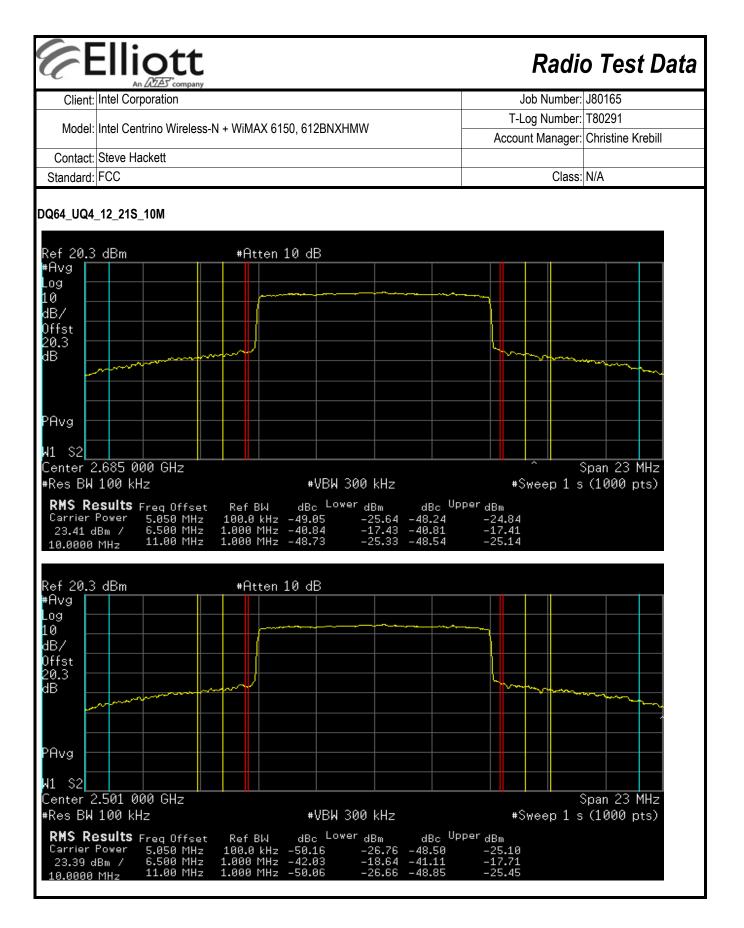
Summary of Results

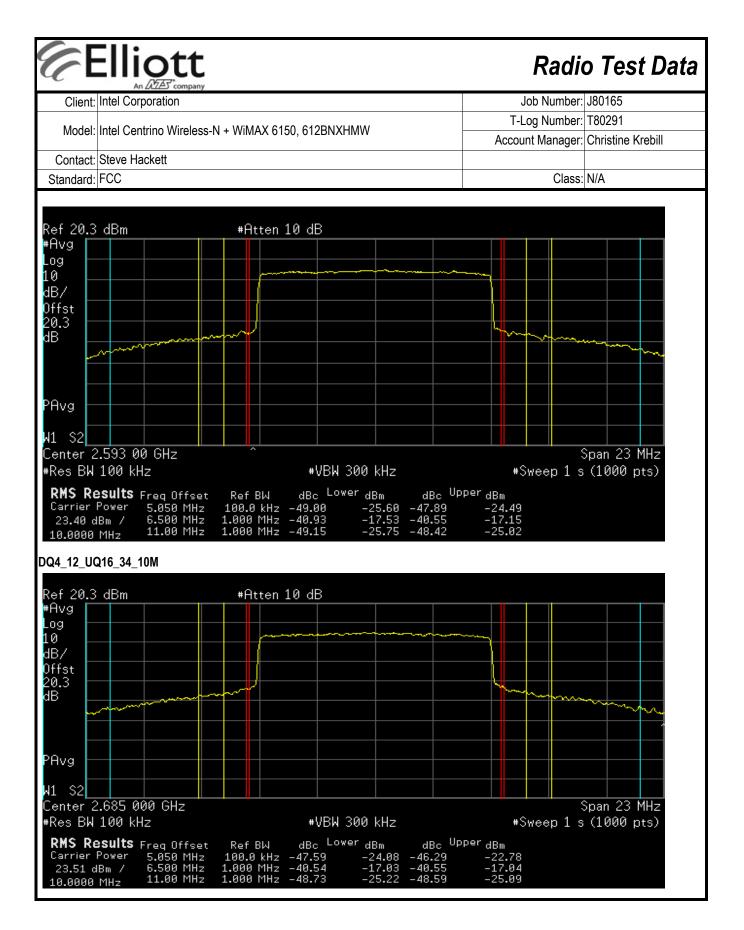
MAC A	Address:	4025C20027AC,	VATU Tool	Version 5	.30.110202

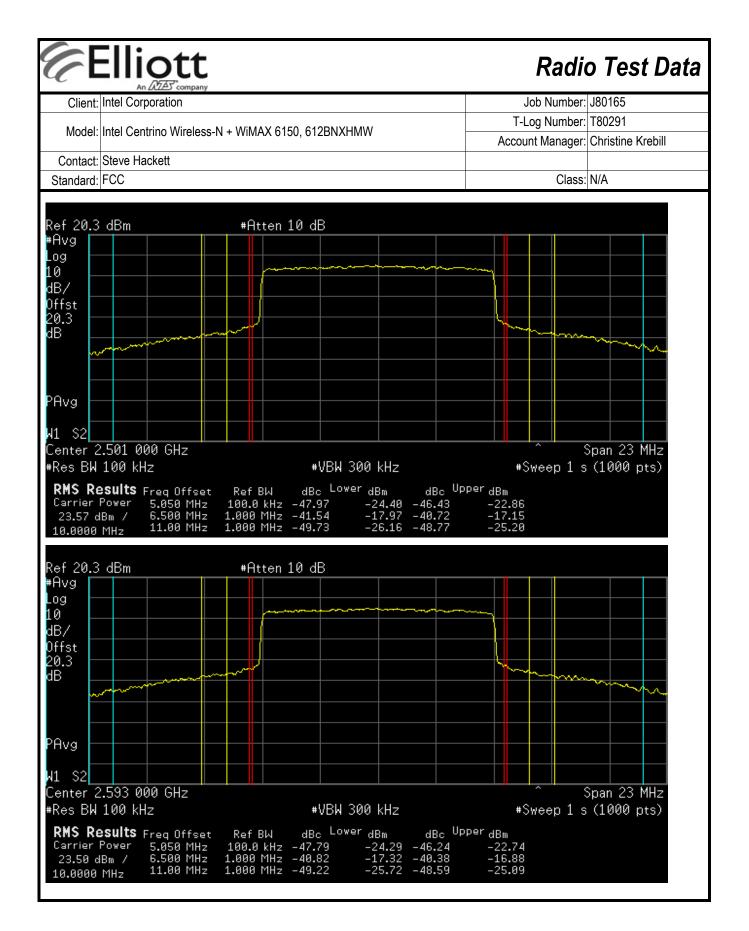
Run #	BW	Data Rate	Test Performed	Limit	Result (Margin)	Measurement
1	10M	Q4	Output Power	-	Pass	23.6 dBm
1	5M	Q4	Output Power	-	Pass	24.2 dBm
2	10M	Q64	Spectral Mask	5.05MHz from Fc= -13.0 6.5MHz from Fc= -13.0 11.0MHz from Fc= -25.0	Pass (0.02dB)	-24.5 dBm -17.2 dBm -25.02 dBm
2	5M	Q64	Spectral Mask	2.525MHz from Fc= -13.0 3.5MHz from Fc= -13.0 8.5MHz from Fc= -25.0	Pass (0.01dB)	-19.3 dBm -13.01 dBm -32.9 dBm
3	10M	Q4	00% Occupied Bandwidth	Information only	NI/A	4.5 MHz
3	5M	Q4	99% Occupied Bandwidth	Information only	N/A	9.2 MHz
Λ	10M	-	Courieus Emissions (conducted)	FCC Part 27.53	Pass	> 20dB below the limit
4	5M	-	Spurious Emissions (conducted)	(-25dBm)	Pass	> 20dB below the limit
5	10M	-	Spurious emissions (radiated)	FCC Part 27.53	Pass	-37.4 dBm (erp) @
5	5M	-		(-25dBm)	(-12.4dB)	6528.12MHz
6	-	-	Frequency Stability	2.5ppm	Pass	0.0 ppm

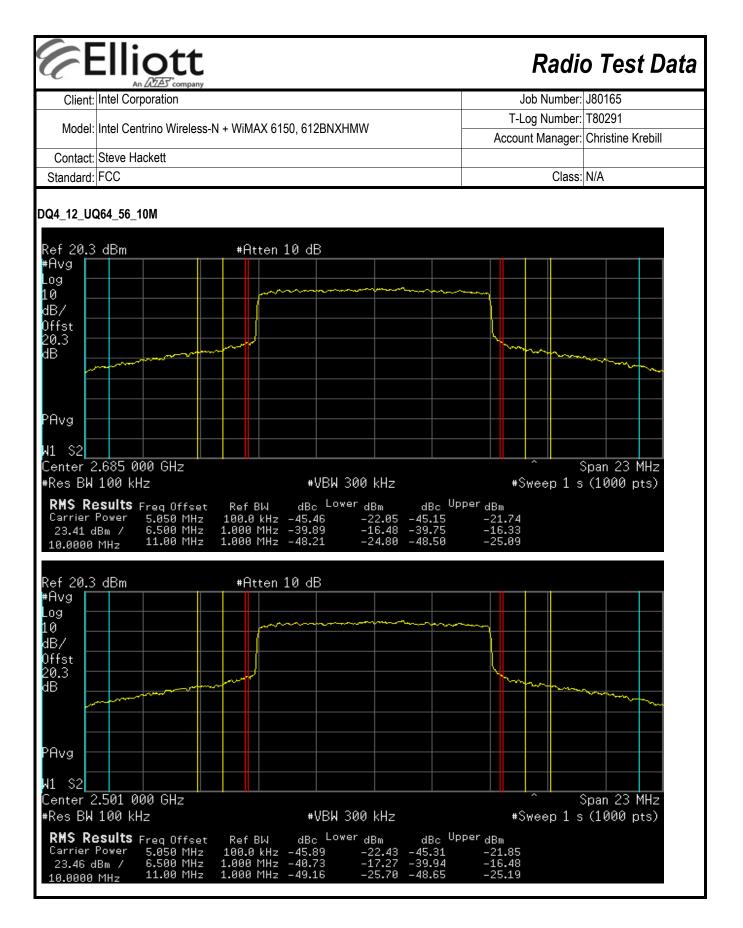
General Test Configuration

With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

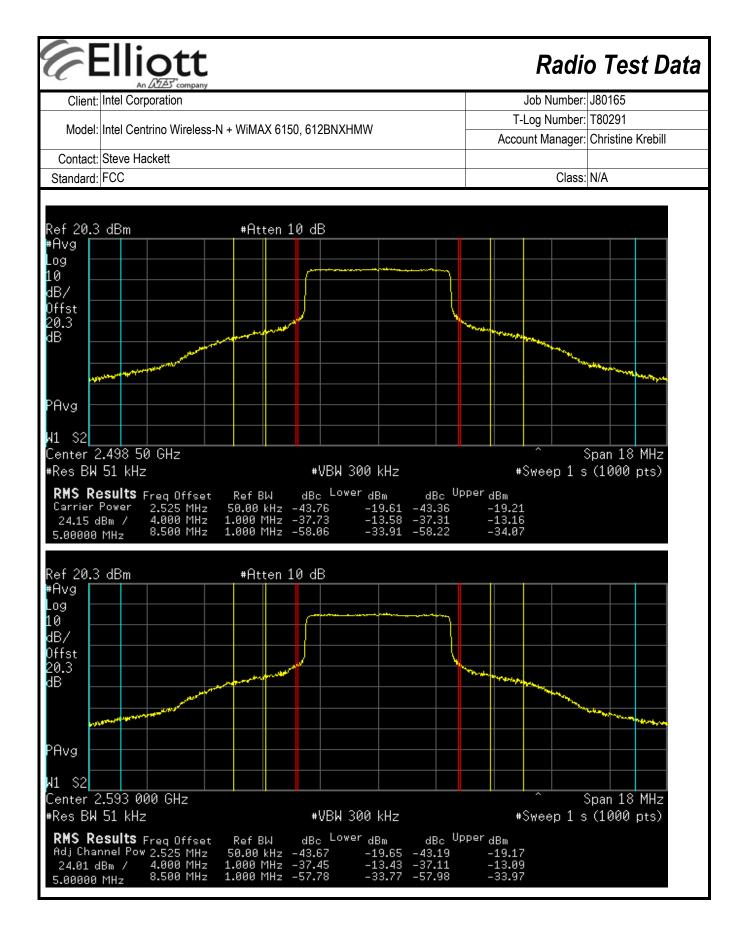

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

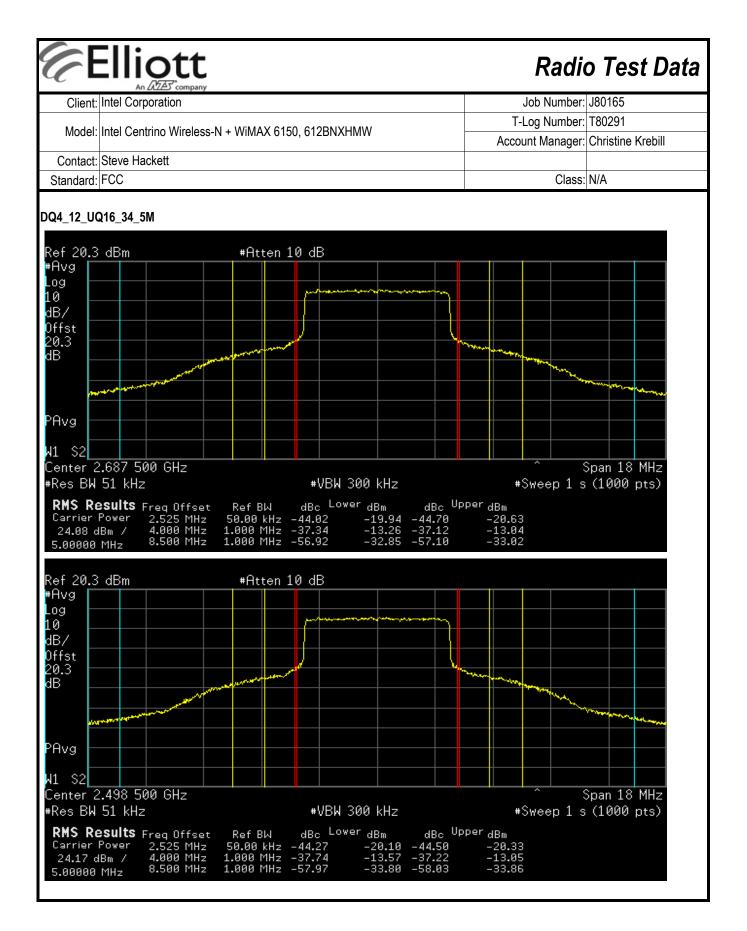

Ambient Conditions:

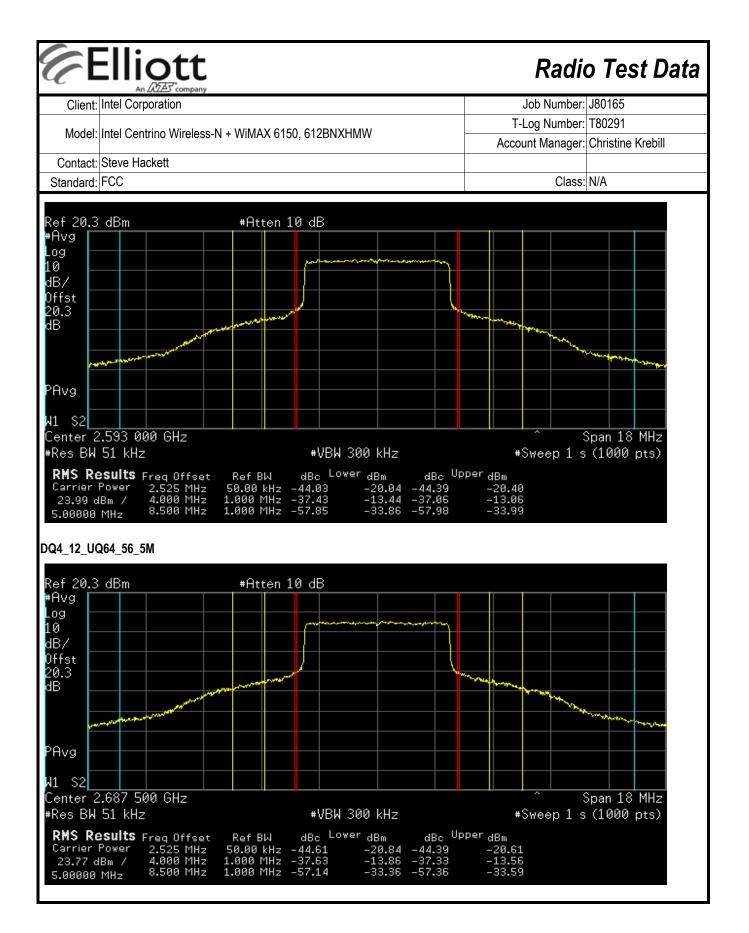

Temperature:	20-25 °C
Rel. Humidity:	30-45 %

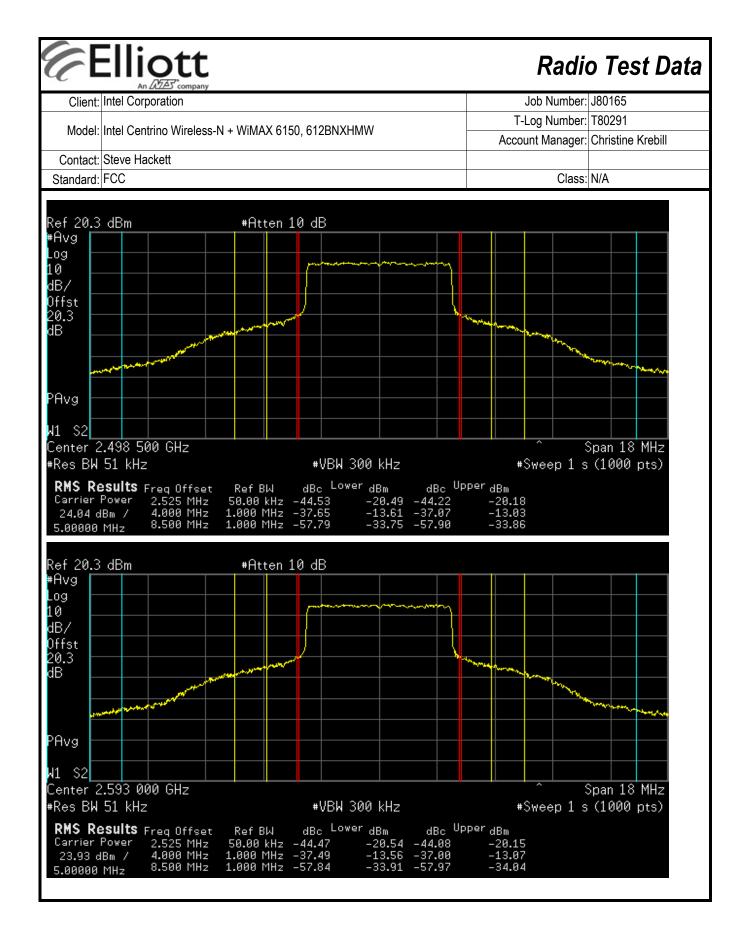

Client:	Intel Corporation		Job Number: J80165						
Madal	Intel Centrine Wireless		T-I	Log Number:	T80291				
woder.	Intel Centrino Wireless-I	N + WIWAX C	Αςςοι	unt Manager:	Christine Kr	ebill			
Contact:	Steve Hackett								
Standard:	FCC						Class	N/A	
Modificat	ions Made During 1	Festing							
No modifi	cations were made to the	e EUT during	testing						
Doviation	s From The Standa	rd							
	ions were made from the	-	s of the stand	lard					
		requirement							
	Itput Power and Mask 8/17/2010	Engineer:	Mehran Birg	iani	Location:	l ah #/			
Dale.	0/17/2010	Engineer.	Merilari Dirg	Jan	Location.	Lau #4			
	Cable Loss: 0.5 dB			Attenuator:	19.8 dB		Total Loss:	20.3 dB	
	Cable ID(s): EL539		Att	enuator IDs:					
·			T						
Sidnai bani	dwidth: 10	<u>MHz</u>		er = >24 dB				() 15	
		Outpu	it Power		Mask (An	nolifude and	limit at each	step) dBm	
Attenuation		Outpu	t Power	Ref BW :	Mask (An = 100 kHz	plitude and Ref BW		/	= 1 MHz
	Frequency (MHz)		t Power mW	-		Ref BW	limit at each = 1 MHz : from Fc	Ref BW	
Attenuation Setting ²		(dBm) ¹	mW	5.05MH	= 100 kHz z from Fc	Ref BW 6.5MHz	= 1 MHz from Fc	Ref BW 11MHz	from Fc
Attenuation Setting ² PSG Wave	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi	(dBm) ¹ 2_21S_10M -	mW • Preliminary	5.05MH measureme ed use of bot	= 100 kHz z from Fc ents to deter	Ref BW 6.5MHz mine rf port rts. The AT	= 1 MHz from Fc with highes	Ref BW 11MHz st output pov	from Fc ver
Attenuation Setting ² PSG Wavef The TPC m 20.50	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc)	(dBm) ¹ 2_21S_10M - al test as this 20.6	mW Preliminary mode allowe 114.8	5.05MH measureme ed use of bot -33.3	= 100 kHz z from Fc ents to deter h antenna po -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0	= 1 MHz from Fc with highes mode only -13.0	Ref BW 11MHz st output pov used Port 1. -39.2	from Fc ver -25.(
Attenuation Setting ² PSG Wavef	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi	(dBm) ¹ 2_21S_10M - al test as this	mW • Preliminary	5.05MH measureme ed use of bot	= 100 kHz z from Fc ents to deter h antenna po	Ref BW 6.5MHz mine rf port rts. The AT	= 1 MHz from Fc with highes mode only	Ref BW 11MHz st output pov used Port 1.	from Fc ver -25.(
Attenuation Setting ² PSG Wavef The TPC mo 20.50 20.50	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc)	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3	mW Preliminary mode allowe 114.8 107.2	5.05MH measureme ed use of bot -33.3 -33.7	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8	= 1 MHz from Fc with highes mode only -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6	from Fc ver -25.(-25.(
Attenuation Setting ² PSG Wavef The TPC mo 20.50 20.50 All final mea	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3	mW Preliminary mode allowe 114.8 107.2	5.05MH measureme ed use of bot -33.3 -33.7	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8	= 1 MHz from Fc with highes mode only -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6	from Fc ver -25.(-25.(
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 All final mea DQ64_UQ4	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc)	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1.	mW Preliminary mode allowe 114.8 107.2 Measureme	5.05MH measureme ed use of bot -33.3 -33.7 nts above we	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8 etermine the	= 1 MHz from Fc with highes mode only -13.0 -13.0 rf path with	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual	from Fc ver -25.(-25.(ion.
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 All final mea	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3	mW Preliminary mode allowe 114.8 107.2	5.05MH measureme ed use of bot -33.3 -33.7	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8	= 1 MHz from Fc with highes mode only -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6	from Fc ver -25.0 -25.0
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 All final mea DQ64_UQ4 18.00	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante _12_21S_10M 2501.0	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8 etermine the -17.7	= 1 MHz from Fc with highes mode only -13.0 -13.0 rf path with -13.0	Ref BW 11MHz at output pov used Port 1. -39.2 -39.6 least attenuat	from Fc ver -25.0 -25.0 ion.
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 20.50 All final mea DQ64_UQ4 18.00 16.75 15.00	Frequency (MHz) form file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port -32.0 -32.8 etermine the -17.7 -17.2	= 1 MHz from Fc with highes mode only -13.0 -13.0 rf path with -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02	from Fc ver -25.0 -25.0 ion. -25.1 -25.1
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 All final mea DQ64_UQ4 18.00 16.75 15.00 DQ4_12_U0 19.00	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2501.0	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.8 218.8	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.8 -22.9	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2	= 1 MHz from Fc with highes mode only -13.0 -13.0 rf path with -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02 -25.1 -25.2	from Fc ver -25.0 -25.0 ion. -25.1 -25.1 -25.1
Attenuation Setting ² PSG Wavef The TPC m 20.50 20.50 20.50 All final mea DQ64_UQ4 18.00 16.75 15.00 DQ4_12_U0 19.00 17.75	Frequency (MHz) form file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2501.0 2593.0	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4 23.6 23.5	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.3 218.3	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.8 -22.9 -22.7	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine ff port -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2 -16.9	= 1 MHz from Fc with highes mode only -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenuat -25.5 -25.02 -25.1 -25.2 -25.1	from Fc ver -25.0 -25.0 ion. -25.0 -25.0 -25.0 -25.0 -25.0
Attenuation Setting ² PSG Wavef The TPC m 20.50	Frequency (MHz) form file: DQ64_UQ4_12 adde was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2593.0 2685.0	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.8 218.8	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.8 -22.9	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port rts. The AT -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2	= 1 MHz from Fc with highes mode only -13.0 -13.0 rf path with -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02 -25.1 -25.2	from Fc ver -25.0 -25.0 ion. -25.0 -25.0 -25.0 -25.0 -25.0
Attenuation Setting ² PSG Wavef The TPC m 20.50	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2593.0 2685.0 2685.0 264_56_10M	(dBm) ¹ 2-21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4 23.4 23.5 23.5	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.8 218.9 229.1 223.9	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.5 -24.8 -22.9 -22.7 -22.8	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2 -17.4 -17.2 -16.9 -17.0	= 1 MHz from Fc with highes mode only -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02 -25.02 -25.1 -25.1 -25.1 -25.1	from Fc ver -25.0 -25.0 ion. -25.0 -25.0 -25.0 -25.0 -25.0 -25.0
Attenuation Setting ² PSG Wavef The TPC m 20.50	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) usurements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2501.0 2685.0	(dBm) ¹ 2_21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4 23.4 23.5 23.5 23.5	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.8 229.1 223.9 223.9 223.9	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.5 -24.8 -22.9 -22.7 -22.8 -21.9	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2 -16.9 -17.0 -16.5	= 1 MHz from Fc with highes mode only -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02 -25.02 -25.1 -25.1 -25.1 -25.1 -25.2	from Fc ver -25.0 -25.0 ion. -25.1 -25.1 -25.1 -25.1 -25.1 -25.1 -25.1
Attenuation Setting ² PSG Wavef The TPC m 20.50	Frequency (MHz) orm file: DQ64_UQ4_12 ode was used for the initi 2593 Port 1 (Tpc) 2593 Port 2 (Tpc) surements made on ante 12_21S_10M 2501.0 2593 Port 1 2685.0 216_34_10M 2593.0 2685.0 2685.0 264_56_10M	(dBm) ¹ 2-21S_10M - al test as this 20.6 20.3 enna port #1. 23.4 23.4 23.4 23.4 23.4 23.5 23.5	mW Preliminary mode allowe 114.8 107.2 Measureme 218.3 218.8 218.8 218.8 218.9 229.1 223.9	5.05MH measureme ed use of bot -33.3 -33.7 nts above we -25.1 -24.5 -24.5 -24.8 -22.9 -22.7 -22.8	= 100 kHz z from Fc ents to deter h antenna po -13.0 -13.0 ere used to d -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 6.5MHz mine rf port -32.0 -32.8 etermine the -17.7 -17.2 -17.4 -17.2 -17.4 -17.2 -16.9 -17.0	= 1 MHz from Fc with highes mode only -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	Ref BW 11MHz st output pov used Port 1. -39.2 -39.6 least attenual -25.5 -25.02 -25.02 -25.1 -25.1 -25.1 -25.1	from Fc ver -25.0 -25.0 ion. -25.0 -25.0

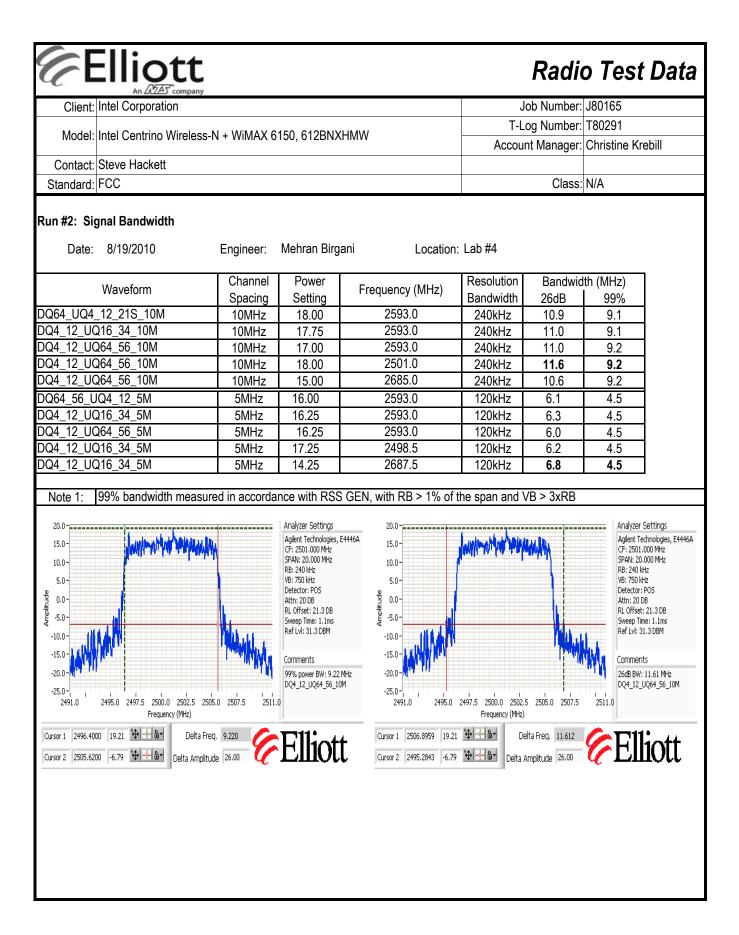
Client:	Intel Corporation			Job Number:	J80165				
			T-Log Number: T80291						
Model:	Intel Centrino Wireless-N	I + Wimax 6		-	Christine Kr	ebill			
Contact:	Steve Hackett								
Standard:	FCC						Class:	N/A	
Signal band		MHz		er = >24 dB				ata a) alDaa	
Attenuation		Outpu	t Power		•	nplitude and			- 4 MI I-
Setting ²	Frequency (MHz)	1			= 50 kHz		= 1 MHz		= 1 MHz
		(dBm) ¹	mW	2.525MH	z from Fc	4MHz	from Fc	8.5MHz	from Fc
	Q4_12_5M	04.0	062.0	10.0	12.0	12.0	12.0	22.0	25.0
17.50 16.00	2498.5 2593.0	24.2 24.0	263.0 251.2	-19.2 -19.2	-13.0 -13.0	-13.2 -13.1	-13.0 -13.0	-33.9 -34.0	-25.0 -25.0
14.00	2687.5	24.0	251.2	-19.2	-13.0	-13.1 -13.01	-13.0 -13.0	-34.0	-25.0
	Q16 34 5M	24.0	232.3	-19.5	-13.0	-13.01	-13.0	-32.9	-23.0
17.25	2498.5	24.2	261.2	-20.1	-13.0	-13.1	-13.0	-33.8	-25.0
16.25	2593.0	24.0	250.6	-20.0	-13.0	-13.1	-13.0	-33.9	-25.0
14.25	2687.5	24.1	255.9	-19.9	-13.0	-13.04	-13.0	-33.0	-25.0
DQ4_12_U	Q64_56_5M								
17.25	2498.5	24.0	253.5	-20.2	-13.0	-13.03	-13.0	-33.8	-25.0
16.25	2593.0	23.9	247.2	-20.2	-13.0	-13.1	-13.0	-33.9	-25.0
14.25	2687.5	23.8	239.9	-20.6	-13.0	-13.6	-13.0	-33.4	-25.0
Note 2:	Output power measured least 3xRB (for 5Mhz cha Average detector was us measurement and mask Power setting - the softw Mask measurements are	annels RB=5 ed. The ana measureme are power se	1kHz, VB = 3 alyzer was ga nts are not in etting used du	300kHz and f ited to ensure cluding perio uring testing,	or 10MHz ch e it only swep d where the included for	nannels RB=1 ot when the E EUT is not tr reference on	00kHz, VB≕ EUT was tran ansmitting at Iy.	300kHz). A F smitting to er full power.	RMS nsure the
Note 3:	+ 5.5 MHz). The analyze from the transition point a power across the referen	r is configure and integrate ice bandwidt	ed to make th the power a h immediatel	e measurem cross the ref y adjacent to	ents at a free erence ban the transitio	quency offsel dwidth arour n point is me	t by 1/2 of the nd that freque asured)	e reference b ency (so that	andwidth
	The limit is taken from F(than 43 + 10 log (P) dB a bandwidth required is 1M measurement bandwidth resolution bandwidth pro 1 percent of emission ba	at the channe 1Hz, except f shall be at le vided the me	el edge and 5 for the 1 MHz east one perce easured powe	5 + 10 log (F bands imme cent of the er) dB at 5.5 M diately outsi nission band	/Hz from the de and adjac lwidth. The r	channel edg ent to the fre ule part also	es. The mea quency block allows for a r	k where th narrower

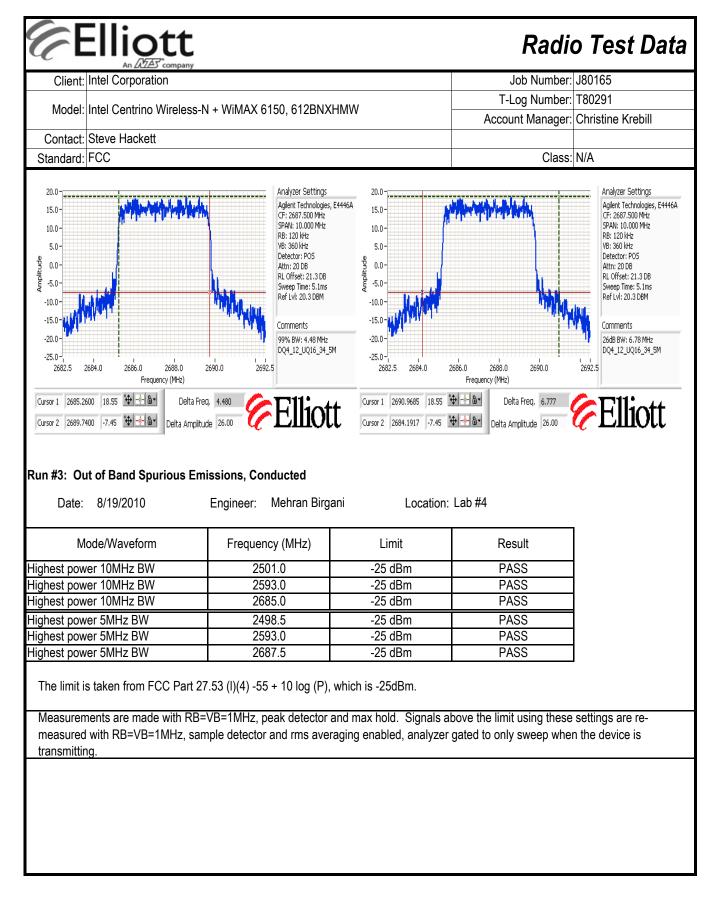


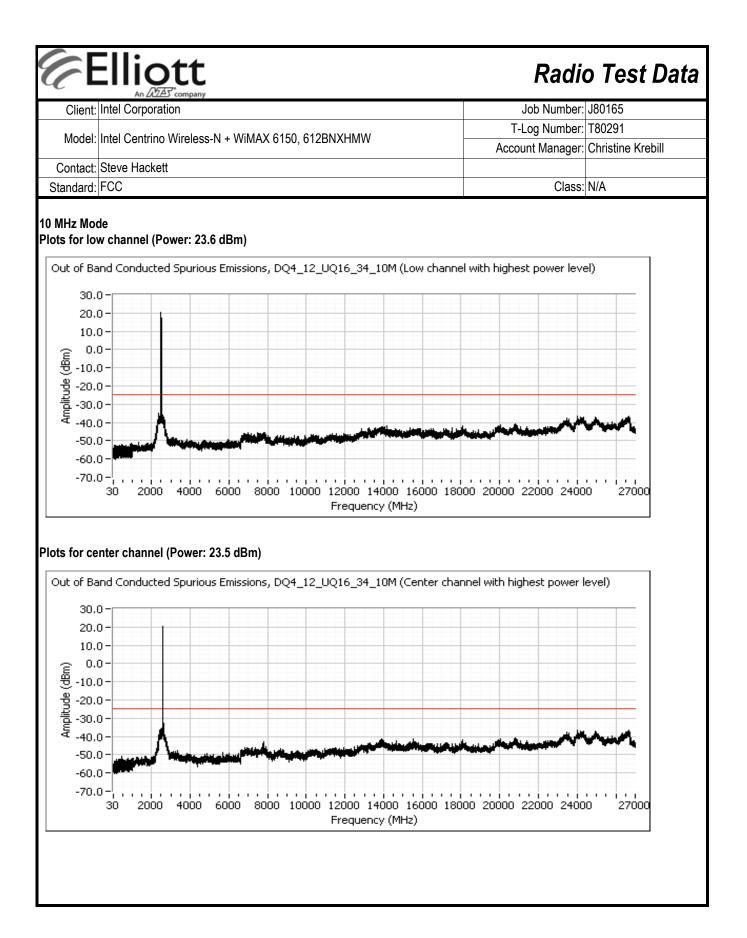


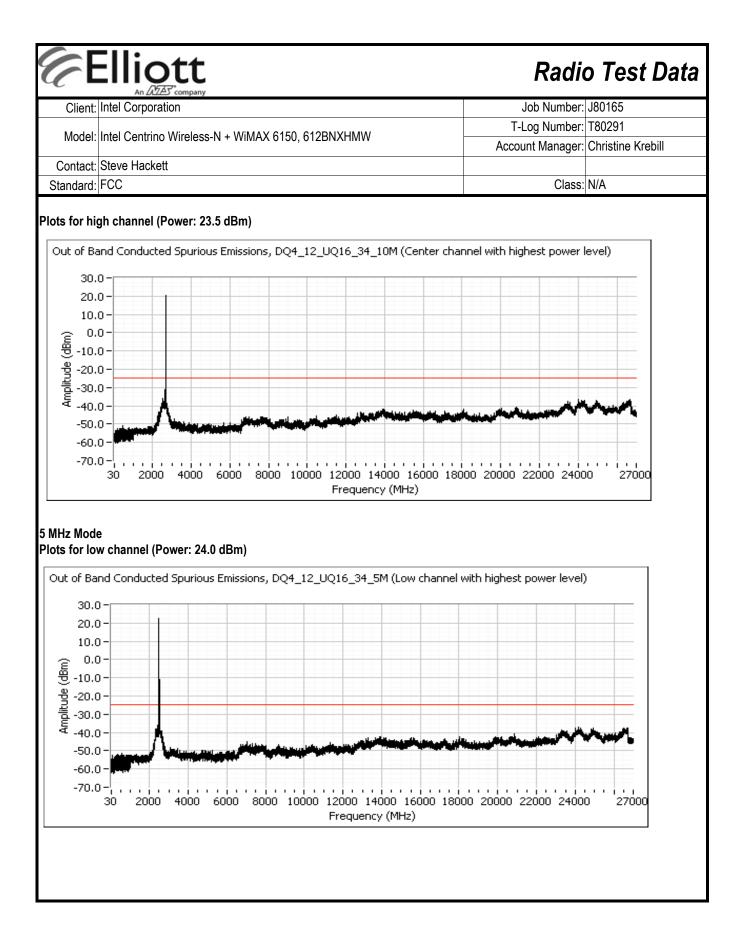


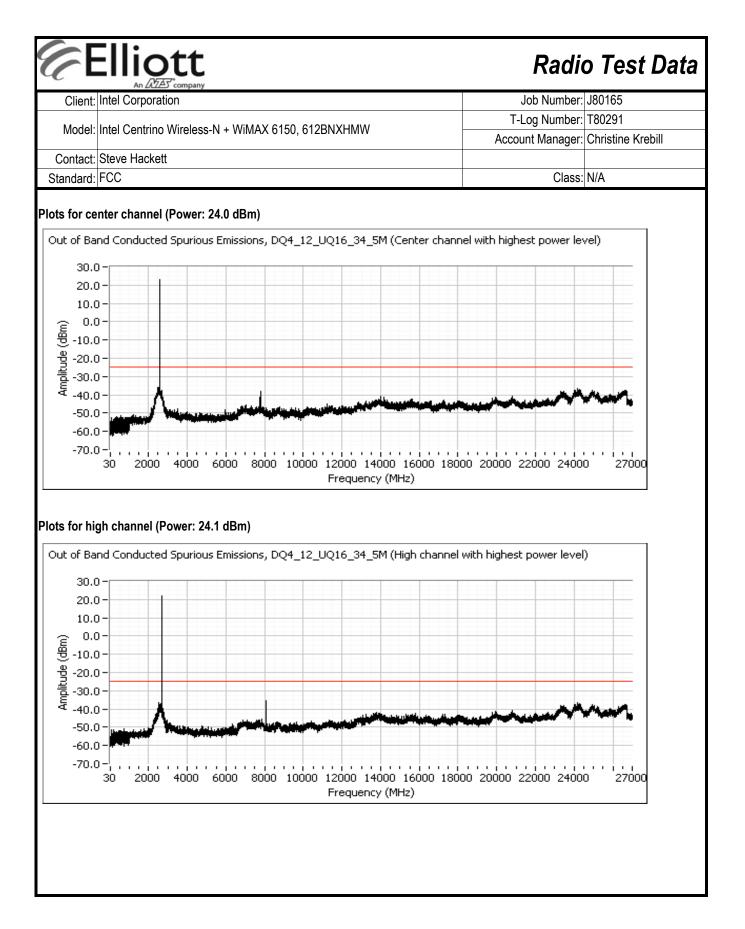


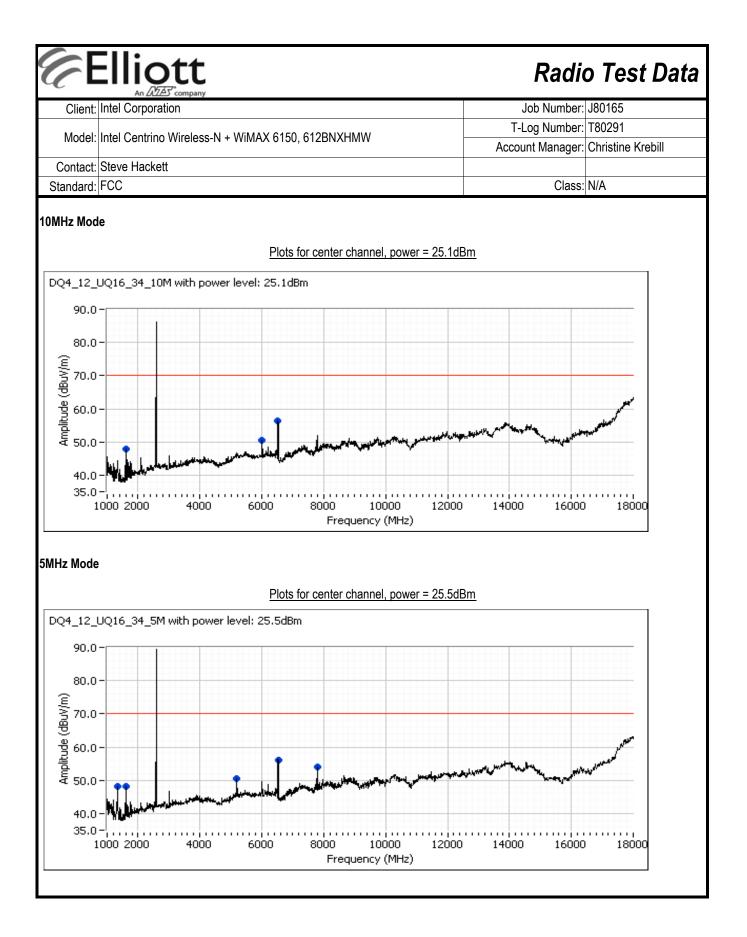


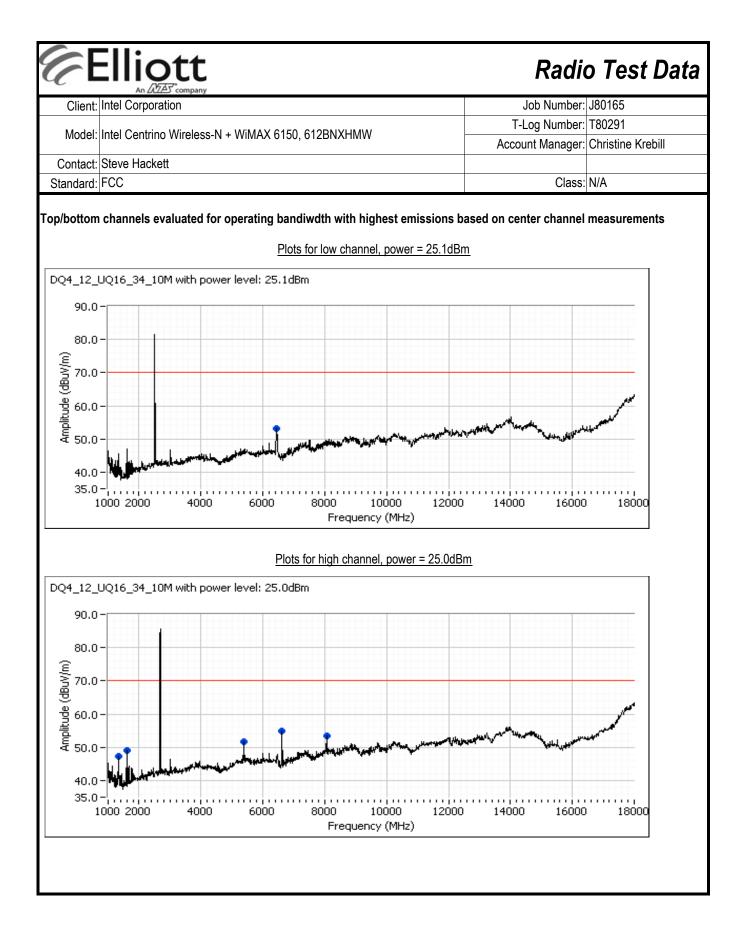


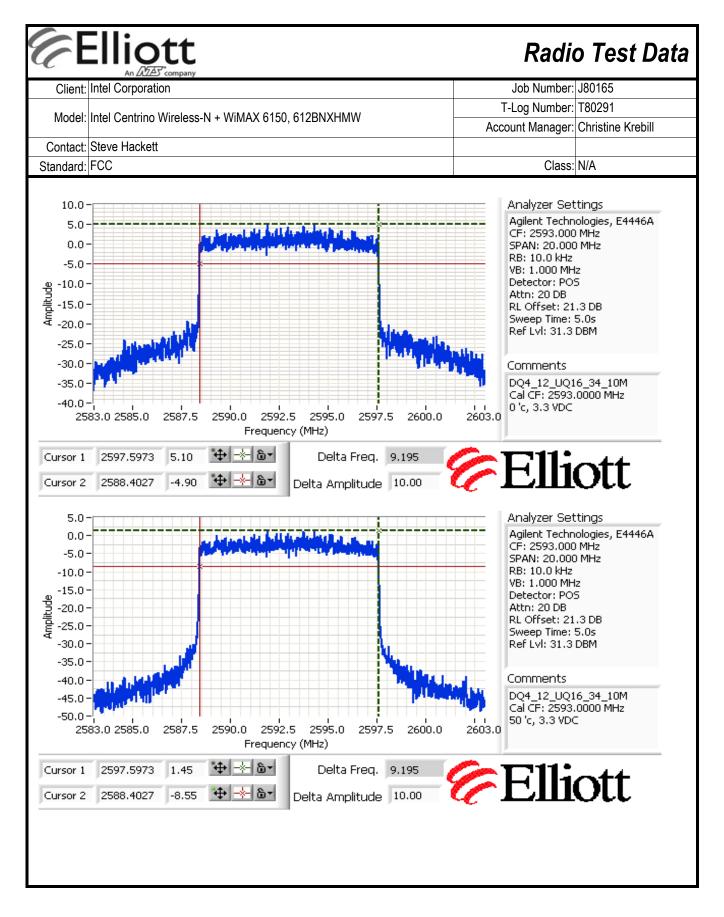











Contact: Si Standard: F	teve Hacke CC		I + WiMAX 6	150, 612BN)			T-I	Log Number:	T80291					
Contact: Si Standard: Fi In #4: Out o	teve Hacke CC		I + WiMAX 6	150, 612BN)		Client: Intel Corporation								
Standard: Fo	CC	tt		Model: Intel Centrino Wireless-N + WiMAX 6150, 612BNXHMW										
Standard: Fo	CC		Contact: Steve Hackett											
ın #4: Out								Class:	N/A					
								010.001						
The limit is t	of Band Sp	ourious Emi	issions, Rad	liated										
i ne limit is t	(-00 0-4 07		. 10 La a. (D)		-10 (70.0.10), .) <i>(</i> /)							
	taken from F	-CC Part 2/	.53 (1)(4) -55	+ 10 log (P)	, which is -25	aBm (70.3dE	suv/m)							
		Conducted	l limit (dBm):	-25										
Ap	proximate fi		ı limit @ 3m:	70.3	dBuV/m									
		-	-											
ın #4a - Pre	eliminary m	easuremen	its - chambe	r scans										
Data	7/40/0040		F	Mahaan Dia		1	Ohambar #	7						
Date:	7/19/2010		Engineer:	Mehran Birg	jani	Location:	Chamber #7							
requency	Level	Pol	FCC 27.	53 (I) (4)	Detector	Azimuth	Height	Comments	Mode	Chann				
	dBmV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	WOOL	Onann				
339.170	48.3	V	70.2	-21.9	Peak	178	1.0		5M	Cente				
595.830	48.3	V	70.2	-21.9	Peak	231	1.0		5M	Cente				
198.330	50.5	V	70.2	-19.7	Peak	280	1.3		5M	Cente				
789.170	53.9	V	70.2	-16.3	Peak	208	1.0		5M	Cente				
529.170	56.1	V	70.2	-14.1	Peak	156	1.0		5M	Cente				
014.170	50.4	V	70.2	-19.8	Peak	258	1.0		10M	Cente				
595.830	47.8	V	70.2	-22.4	Peak	277	1.0		10M	Cente				
505.830	56.3	V	70.2	-13.9	Peak	151	1.0		10M	Cente				
435.830	53.2	V	70.2	-17.0	Peak	117	1.0		10M	Low				
339.170	47.2	V	70.2	-23.0	Peak	174	1.0		10M	High				
595.830	49.1	V	70.2	-21.1	Peak	236	1.0		10M	High				
381.670	51.6	V	70.2	-18.6	Peak	52	1.3		10M	High				
063.330	53.5	V	70.2	-16.7	Peak	245	1.3		10M	High				
610.830	55.0	V	70.2	-15.2	Peak	119	1.0		10M	High				
ITI	he field stre	nath limit in	the tables at	nove was cal	culated from	he ern/eirn l	imit detailed	in the standa	ard using the	free sna				
n					conservative -									
					n included. Tl									
					ng substitutio					i inai giri				
					a port termina									
М	leasuremen	its are made	with RB=VE	s=1MHz, pea	k detector an	d max hold.	Signals abo	ve the limit u	sing these s	ettings ar				
Note 3: re	e-measured	with RB=VE	B=1MHz, san	nple detector	r and rms ave	raging enabl	ed, analyzer	gated to only	y sweep whe	en the				
de	evice is tran	smitting.												

								Radi	o Test	Data
Client	Intel Corpora	ation			Job Number:	J80165				
				T-I	og Number:	T80291				
Model:	Intel Centrin	o Wireless-N	I + WiMAX 6	T-Log Number: T80291 Account Manager: Christine Krebill			ahill			
Contact	Steve Hacke	ott					Accor	int Managor.		COM
Standard		511						Class:	N/A	
	J	ield Strengt	h Magguron	nonto and S	ubstitution N	lagouromon	to	01000.		
(uii #40	UATS EUT P	Telu Strelly		lients and S		leasurenien	115			
Date:	8/20/2010		Engineer:	Mehran Birg	gani	Location:	Chamber #5	5		
UT Field S	Strength									
requency	Level	Pol		CC	Detector	Azimuth	Height	Comments	Mode	Channe
MHz	dBmV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
6528.120	62.8	V	70.2	-7.4	PK	136	1.1		10M	Center
6604.760	59.7	V	70.2	-10.5	PK	98	1.0		10M	High
6433.130	59.1	V	70.2	-11.1	PK	141	1.0		10M	Low
8050.260	58.4	V	70.2	-11.8	PK	192	1.3		10M	High
5374.800	56.6	V	70.2	-13.6	PK	47	1.6		10M	High
6000.920	54.4	V	70.2	-15.8	PK	259	1.4		10M	Cente
1594.570	49.1	V	70.2	-21.1	PK	206	1.2		10M	High
1649.280	46.4	V	70.2	-23.8	DIZ	104	10		10M	0 1
1040.200					PK	124	1.0		TUIVI	Cente
	46.0	V	70.2	-24.2	PK	70	1.0		10M	High
1340.310	46.0 The field stropropagation for erp limits	V ength limit in equation: E s, the dipole g	70.2 the tables al =√(30PG)/d. gain (2.2dBi)	-24.2 bove was cal This limit is c has not beer		70 the erp/eirp I · it does not o he erp or eirp	1.0 imit detailed consider the p for all signa	presence of	10M ard using the the ground pl	High free spac ane and,
1340.310 lote 1:	46.0 The field stropropagation for erp limits relative to th	V ength limit in equation: E s, the dipole g is field stren	70.2 the tables al ∈√(30PG)/d. gain (2.2dBi) gth limit is de	-24.2 bove was cal This limit is c has not beer	PK culated from conservative - n included. T ing substitutio	70 the erp/eirp I · it does not o he erp or eirp	1.0 imit detailed consider the p for all signa	presence of	10M ard using the the ground pl	free spac ane and,
lote 1: lote 2: ubstitutio 'ertical	46.0 The field stropropagation for erp limits relative to th Measurement	V ength limit in equation: E: s, the dipole g is field stren nts are made	70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de with the ant	-24.2 bove was cal This limit is o has not beer etermined usi tenna port ter	PK culated from conservative - n included. T ing substitutio rminated.	70 the erp/eirp I it does not o he erp or eirp n measurem	1.0 imit detailed consider the p for all signa nents.	presence of t	10M ard using the the ground pl han 20dB of	High free spac ane and, margin
1340.310 lote 1: lote 2: ubstitutio /ertical	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substit	V ength limit in equation: E: s, the dipole g is field stren nts are made nents	70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de with the ant e with the ant	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site	PK culated from conservative - n included. T ng substitutio rminated.	70 the erp/eirp I it does not o he erp or eirp n measurem	1.0 imit detailed consider the p for all signa ients.	presence of tals with less t	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹	V ength limit in equation: E: s, the dipole (nis field stren nts are made nents nents ution measur Gain ²	70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de with the ant rements FS ³	-24.2 bove was cal This limit is o has not beer etermined usi tenna port ter Site Site Factor ⁴	PK culated from conservative - n included. T ing substitutio rminated. EUT FS ⁵	70 the erp/eirp I it does not o he erp or eirp n measurem f measureme eirp (dBm)	1.0 imit detailed consider the p for all signa ients. ents erp (dBm)	presence of t als with less t eirp Limit dBm	10M ard using the the ground pl han 20dB of	High free spac ane and, margin Margir dB
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹ -10.0	V ength limit in equation: E: s, the dipole g is field stren nts are made nents ution measur Gain ² 11.2	70.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2	-24.2 bove was cal This limit is o has not beer etermined usi tenna port ter Site Factor ⁴ 98.0	PK culated from conservative - n included. T ing substitutio rminated. EUT FS ⁵ 62.8	70 the erp/eirp I it does not o he erp or eirp n measurem n measurem eirp (dBm) -35.2	1.0 imit detailed consider the p for all signa ents. erps erps (dBm) -37.4	eirp Limit dBm -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120 6604.760	46.0 The field strupropagation for erp limits relative to th Measureme n measureme Substitu Pin ¹ -10.0 -10.0	V ength limit in equation: E: s, the dipole g is field stren nts are made nents ution measur Gain ² 11.2 11.1	T0.2 the tables al =√(30PG)/d. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site Factor ⁴ 98.0 100.1	PK culated from conservative - n included. T ing substitutio rminated. EUT FS ⁵ 62.8 59.7	70 the erp/eirp I it does not of the erp or eirp on measurem n measurem eirp (dBm) -35.2 -40.4	1.0 imit detailed consider the p for all signa itents. ents erp (dBm) -37.4 -42.6	eirp Limit dBm -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120 6604.760 6433.130	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹ -10.0 -10.0 -10.0	V ength limit in equation: E: s, the dipole g is field stren nts are made nents ution measur Gain ² 11.2 11.1 11.0	T0.2 the tables al = $\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2 97.5	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site Factor ⁴ 98.0 100.1 96.5	PK culated from conservative - n included. T ng substitutio rminated. EUT FS ⁵ 62.8 59.7 59.1	70 the erp/eirp I i does not o he erp or eirp on measurem T measureme eirp (dBm) -35.2 -40.4 -37.4	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6	eirp Limit dBm -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120 6604.760 6433.130 8050.260	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹ -10.0 -10.0 -10.0 -10.0	V ength limit in equation: E: s, the dipole g is field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9	To.2 the tables al = $\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant FS ³ 99.2 101.2 97.5 98.6	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site Factor ⁴ 98.0 100.1 96.5 97.7	PK culated from conservative - n included. T ng substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4	70 the erp/eirp I it does not o he erp or eirp in measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5	eirp Limit dBm -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -12.4 -14.3
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 5528.120 6604.760 6433.130 8050.260 5374.800	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0	V ength limit in equation: E: s, the dipole (iis field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0	The tables al $=\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant FS ³ 99.2 101.2 97.5 98.6 98.2	-24.2 bove was cal This limit is of has not been etermined usi tenna port ten Factor ⁴ 98.0 100.1 96.5 97.7 98.2	PK culated from conservative - n included. T ing substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6	70 the erp/eirp I it does not o he erp or eirp n measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 ote 1: ote 2: ubstitutio ertical frequency MHz 5528.120 5604.760 5433.130 3050.260 5374.800	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitu Pin ¹ -10.0 -10.0 -10.0 -10.0	V ength limit in equation: E: s, the dipole g is field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9	To.2 the tables al = $\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant FS ³ 99.2 101.2 97.5 98.6	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site Factor ⁴ 98.0 100.1 96.5 97.7	PK culated from conservative - n included. T ng substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4	70 the erp/eirp I it does not o he erp or eirp in measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5	eirp Limit dBm -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 5528.120 6604.760 6433.130 8050.260 5374.800 6000.920	46.0 The field stru- propagation for erp limits relative to th Measureme n measureme Substitu Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0 -10.0	V ength limit in equation: E s, the dipole g is field stren nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0 10.4	The tables al $=\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2 97.5 98.6 98.2 99.1	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Factor ⁴ 98.0 100.1 96.5 97.7 98.2 98.7	PK culated from conservative - n included. T ing substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6 54.4	70 the erp/eirp I it does not o he erp or eirp n measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120 6604.760 6433.130 8050.260 5374.800 6000.920 ote 1:	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitume Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0 Pin is the ing	V ength limit in equation: E: s, the dipole g is field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0 10.4 put power (d	To.2 the tables al = $\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant FS ³ 99.2 101.2 97.5 98.6 98.2 99.1 Bm) to the su	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Site Factor ⁴ 98.0 100.1 96.5 97.7 98.2 98.7 ubstitution an	PK culated from conservative - n included. T ing substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6 54.4	70 the erp/eirp I it does not o he erp or eirp n measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 ote 1: ote 2: ubstitutio ertical requency MHz 6528.120 6604.760 6433.130 8050.260 5374.800 6000.920 ote 1: ote 2:	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitume Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0 Pin is the inp Gain is the g	V ength limit in equation: E: s, the dipole (is field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0 10.4 put power (di gain (dBi) for	The tables al $=\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2 97.5 98.6 98.2 99.1 Bm) to the substitut	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Factor ⁴ 98.0 100.1 96.5 97.7 98.2 98.7 ubstitution an ion antenna.	PK culated from conservative - n included. T ng substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6 54.4 tenna	70 the erp/eirp I it does not o he erp or eirp on measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6 -44.3	1.0 imit detailed consider the p for all signa ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 lote 1: ubstitutio requency MHz 6528.120 6604.760 6433.130 8050.260 5374.800 6000.920 lote 1: lote 2: lote 3:	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitume Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 Pin is the inp Gain is the ging FS is the fiel	V ength limit in equation: E: s, the dipole (iis field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0 10.4 put power (d gain (dBi) for Id strength (d	The tables al $=\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2 97.5 98.6 98.2 99.1 Bm) to the substitut the substitut BuV/m) mea	-24.2 bove was cal This limit is of has not beer etermined usi tenna port ter Factor ⁴ 98.0 100.1 96.5 97.7 98.2 98.7 ubstitution an tion antenna. asured from t	PK culated from conservative - n included. T ing substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6 54.4 tenna he substitutio	70 the erp/eirp I it does not of he erp or eirp n measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6 -44.3 n antenna.	1.0 imit detailed consider the p for all signa- ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8 -46.5	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir dB -10.2 -15.4 -12.4 -14.3 -16.6
1340.310 lote 1: lote 2: Substitutio /ertical Frequency	46.0 The field strupropagation for erp limits relative to the Measureme n measureme Substitume Pin ¹ -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 Pin is the inp Gain is the constant of the structure Site Factor -	V ength limit in equation: E: s, the dipole (iis field strem nts are made nents ution measur Gain ² 11.2 11.1 11.0 10.9 10.0 10.4 put power (d gain (dBi) for Id strength (d	The tables al $=\sqrt{(30PG)/d}$. gain (2.2dBi) gth limit is de with the ant rements FS ³ 99.2 101.2 97.5 98.6 98.2 99.1 Bm) to the su the substitut BUV/m) mea te factor to c	-24.2 bove was cal This limit is of has not been etermined usi tenna port ten Site Factor ⁴ 98.0 100.1 96.5 97.7 98.2 98.7 98.7 ubstitution an tion antenna. asured from t onvert from a	PK culated from conservative - n included. T ng substitutio rminated. FS ⁵ 62.8 59.7 59.1 58.4 56.6 54.4 tenna	70 the erp/eirp I it does not of he erp or eirp n measureme eirp (dBm) -35.2 -40.4 -37.4 -39.3 -41.6 -44.3 n antenna.	1.0 imit detailed consider the p for all signa- ients. erp (dBm) -37.4 -42.6 -39.6 -41.5 -43.8 -46.5	eirp Limit dBm -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0	10M ard using the the ground pl than 20dB of erp Limit	High free spac ane and, margin Margir

Æ	Ellic							Radi	o Test Data
Client:	Intel Corpora	ation						Job Number:	J80165
							Т	-Log Number:	T80291
Model:	Intel Centrin	o Wireless-N	+ WiMAX 6	5150, 612BNX	HMW			-	Christine Krebill
Contact:	Steve Hacke	ətt							
Standard:					Class:	N/A			
	<u></u>								
Run #5: Fre	• •								
Date:	8/23/2010		Engineer:	Mehran Birga	,ani	Locatio	on: Lab #4		
	Nominal	I Frequency:	2593.000	MHz					
The EUT v chamber h Frequency	was soaked a had stabilized y error was m	d at that temp neasured on t	erature for a perature. the modulate		he operating	g frequency	-		ensure the EUT and I the sum of the
Temperature	Eraquancy	Measured		n	rift		7		
(Celsius)		Hz)	()	Hz)	1	ppm)			
-30		00000		0		0.0			
-30		000000		0		0.0			
-20		000000		0		0.0			
0		000000		0		0.0			
10		000000		0		0.0			
20		000000		0		0.0			
30		000000		0		0.0			
40		000000		0		0.0			
40 50		000000		0		0.0			
50		Norst case:		0		0.0			
	'	NOISL LASE.		J	L	0.0			
Nominal	Stability Ove Voltage is 3. tage	er Input Volt .3Vdc. Frequency		T		Drift		7	
%	Actual			<u></u> (н			(ppm)	-	
85%	2.81			'	0.0	-			
115%	3.80	2593.0			0	+	0.0	-	
11070	0.00		Norst case:		0		0.0	-	
								-	

