

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 2

SAR EVALUATION REPORT
(WNC ANTENNA)
FOR

INTEL WI-FI LINK 5300 SERIES

FCC MODEL: 533AN_MMW

IC MODEL: 533ANMU

FCC ID: PD9533ANMU

IC: 1000M-533ANMU

REPORT NUMBER: 09U12473-1 ISSUE DATE: April 14 2009

Prepared for

INTEL CORPORATION
2111 N.E. 25TH AVENUE
HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	April 14, 2009	Initial Issue	

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
4.	1. MEASURING INSTRUMENT CALIBRATION	5
4.	2. MEASUREMENT UNCERTAINTY	6
5.	EQUIPMENT UNDER TEST	8
6.	SYSTEM SPECIFICATIONS	9
7.	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8.	LIQUID PARAMETERS CHECK	11
8.	1. LIQUID CHECK RESULTS FOR M2450	12
8.	2. LIQUID CHECK RESULTS FOR M5800	13
9.	SYSTEM PERFORMANCE	14
9.	1. SYSTEM PERFORMANCE CHECK RESULTS	15
10.	OUTPUT POWER VERIFICATION	16
11.	SUMMARY OF TEST RESULTS	17
11	1.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND	17
	11.1.1. LAPHELD POSITION	17
11	1.2. SAR TEST RESULT FOR THE 5 GHZ BANDS	17
	11.2.1. LAPHELD POSITION	17
12.	SAR TEST PLOTS	18
13.	ATTACHMENTS	23
11	TEST SETUD DHOTO	24

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: INTEL CORPORATION

2111 N.E. 25TH AVENUE

HILLSBORO, OR 97124, USA

EUT DESCRIPTION: Intel Wi-Fi Link 5300 Series

MODEL NUMBER: FCC: 533AN MMW; IC: 533ANMU

DEVICE CATEGORY: Portable

EXPOSURE CATEGORY: General Population/Uncontrolled Exposure

DATE TESTED: April 7 - 10, 2009

MAX SAR VALUE:

FCC / IC Rule Parts			Limit (mW/g)
15.247 / RSS-102	2400 – 2483.5	0.032	
10.247 / 100-102	5725 – 5850	0.683	
	5150 – 5250	0.436	1.6
15.407 / RSS-102	5250 – 5350	0.405	
	5470 – 5725	0.715	

APPLICABLE STANDARDS:

STANDARD	TEST RESULTS
FCC OET BULLETIN 65 SUPPLEMENT C	Pass
RSS-102 ISSUE 2	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

SUNNY SHIH

ENGINEERING SUPERVISOR

Sunay Shih

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters, KDB 447498_RF Exposure Requirements and Procedures for mobile and portable devices and IC RSS 102 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/Standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial Number	мм		Oue date Year
Robot - Six Axes	Stäubli	RX90BL	N/A	101101		N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535		Ī	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041		ı	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261		ı	N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185		ı	N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050		I	N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003		ı	N/A
Electronic Probe kit	HP	85070C	N/A		ı	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	20	2010
E-Field Probe	SPEAG	EX3DV3	3531	4	23	2009
Thermometer	ERTCO	639-1S	1718	5	28	2009
Data Acquisition Electronics	SPEAG	DAE3 V1	427	10	20	2009
System Validation Dipole	SPEAG	D2450V2	748	4	14	2009
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
Signal Generator	R&S	SMP 04	DE34210	2	16	2009
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A
Simulating Liquid	CCS	M2450	N/A	Withi	n 24 hr	s of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Withi	n 24 hr	s of first test

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Ur	nc.(±%)
Oncertainty component	101. (± /0)	T TODE DIST.	Div.	Or (1g)	Of (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98

Notesfor table

^{1.} Tol. - tolerance in influence quaitity

^{2.} N - Nomal

^{3.} R - Rectangular

^{4.} Div. - Divisor used to obtain standard uncertainty

^{5.} Ci - is te sensitivity coefficient

Measurement uncertainty for 3 GHz - 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	Ci (10g)	Std. Un	c.(±%)
Oncortainty component	101. (= 70)	Dist.	5.1.	0. (19)	or (rog)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms							
for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty	RSS					11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46

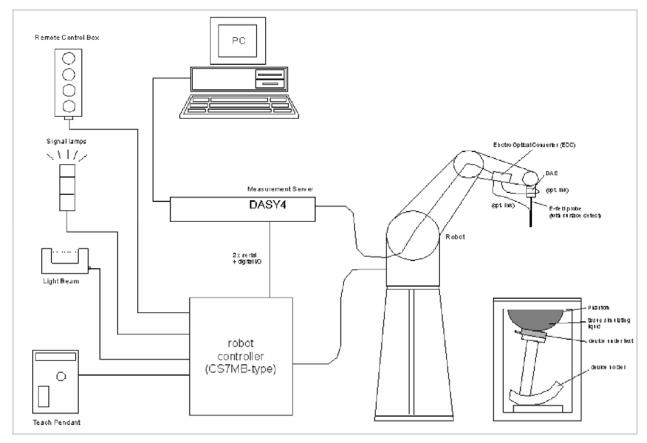
Notesfor table

- 1. Tol. tolerance in influence quaitity
- 2. N Nomal
- 3. R Rectangular
- 4. Div. Divisor used to obtain standard uncertainty
- 5. Ci is te sensitivity coefficient

5. EQUIPMENT UNDER TEST

Intel Wi-Fi Link 5100 Series (Tested inside of LENOVO ideapad Y650)

Normal operation: Laptop Mode


Note: SAR test with display open at 90° to the keyboard

Antenna tested: <u>Manufactured</u> <u>Model Number</u> <u>Antenna ID</u>

WNC 81.EJS15.004 TX3

Power supply: Power supplied through laptop computer (host device)

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)											
(% by weight)	450		83	835		915		00	2450			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head a nd body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Вс	ody
ranget Frequency (Miriz)	ϵ_{r}	σ (S/m)	ε_{r}	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800 – 2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5800	35.3	5.27	48.2	6

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. LIQUID CHECK RESULTS FOR M2450

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Sunny Shih

f (MHz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
2450	e'	52.19	Relative Permittivity (ε_r) :	52.191	52.7	-0.97	± 5
2430	e"	14.30	Conductivity (σ):	1.949	1.95	-0.06	± 5

Liquid Temperature: 23 deg. C April 07, 2009 03:00 PM

April 07, 2009 03.00	J PIVI	
Frequency	e'	e"
2400000000.	52.3817	14.0274
2405000000.	52.3471	14.0507
2410000000.	52.3237	14.0676
2415000000.	52.2948	14.1066
2420000000.	52.2643	14.1292
2425000000.	52.2503	14.1762
2430000000.	52.2246	14.1930
2435000000.	52.2121	14.2198
2440000000.	52.1937	14.2504
2445000000.	52.1792	14.2838
2450000000.	52.1909	14.2989
2455000000.	52.1837	14.3195
2460000000.	52.1846	14.3373
2465000000.	52.1911	14.3708
2470000000.	52.1945	14.3781
2475000000.	52.1969	14.4019
2480000000.	52.1986	14.4306
2485000000.	52.1952	14.4317
2490000000.	52.1808	14.4475
2495000000.	52.1660	14.4714
2500000000.	52.1562	14.4929

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

8.2. LIQUID CHECK RESULTS FOR M5800

Simulating Liquid Dielectric Parameters for Muscle 5800 MHz

Room Ambient Temperature = 25°C; Relative humidity = 40% Measured by: Sunny Shih

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
5200	e'	47.9387	Relative Permittivity (ε_r):	47.9387	49.0	-2.17	± 10
5200	e"	18.8604	Conductivity (σ):	5.45599	5.30	2.94	± 5
5500	e'	47.9185	Relative Permittivity (ε_r):	47.9185	48.6	-1.40	± 10
5500	e"	18.8792	Conductivity (σ):	5.77651	5.65	2.24	± 5
5800	e'	47.0252	Relative Permittivity (ε_r):	47.0252	48.2	-2.44	± 10
3000	e"	19.4786	Conductivity (σ):	6.28499	6.00	4.75	± 5

Liquid temperature: 24 deg. C
April 10, 2009 09:37 AM

April 10, 2009 09:3	7 AM	
Frequency	e'	e"
4600000000.	49.5241	17.8475
4650000000.	49.7026	18.3044
4700000000.	49.4115	17.8277
4750000000.	49.1578	18.4561
4800000000.	49.4528	18.1525
4850000000.	48.8329	18.3039
4900000000.	49.0936	18.4102
4950000000.	48.6882	18.2505
5000000000.	48.5480	18.6460
5050000000.	48.4976	18.3941
5100000000.	48.0877	18.8023
5150000000.	48.4305	18.5876
5200000000.	47.9387	18.8604
5250000000.	48.3256	18.8131
5300000000.	48.0174	18.9066
5350000000.	48.1870	19.0516
5400000000.	48.0132	18.8667
5450000000.	47.7508	19.0678
5500000000.	47.9185	18.8792
5550000000.	47.6782	19.3121
5600000000.	47.5320	19.2002
5650000000.	47.1721	19.3057
5700000000.	47.5098	19.3172
5750000000.	47.2310	19.3210
5800000000.	47.0252	19.4786
5850000000.	46.8089	19.4801
5900000000.	46.7896	19.4632
5950000000.	46.2520	19.3624
6000000000.	46.8478	19.9898

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $\mathbf{f} = target f * 10^6$

$$\varepsilon_0 = 8.854 * 10^{-12}$$

9. SYSTEM PERFORMANCE

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.

450 to 2450 MHz Reference SAR Values for Body-tissue (From SPEAG)

Dinala Tura	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Dipole Type	(mm)	(MHz)	[W/kg]	[W/kg]	[W/kg]
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D5GHzV2-1003_Nov07

f (MHz)	Head	Tissue	Body Tissue	
1 (1011 12)	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
5200	78.6	22.1	74.7	21.1
5500	80.4	22.7	80.1	22.5
5800	79.9	22.4	70.8	19.8

9.1. SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 748

Date: April 7, 2009

Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Sunny Shih

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Body	2450	250	1g SAR:	47.2	51.2	-7.81	±10
body 2	2430	2430 250		22.0	23.7	-7.17	110

System Validation Dipole: D5GHzV2 SN 1003

Date: April 10, 2009

Ambient Temperature = 25°C; Relative humidity = 40% Measured by: Sunny Shih

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)	
Muscle	5200	250	1g SAR:	77.0	74.7	3.08	±10	
iviuscie	5200	250	10g SAR:	22.1	21.1	4.64	±10	
Mussla	Muscle 5500	5500 250	1g SAR:	77.8	80.1	-2.87	±10	
Muscle 5500		250	10g SAR:	21.8	22.5	-3.11	±10	
Mussla	5000	250	1g SAR:	73.5	70.8	3.81	±10	
Muscle	5800	5800	200	10g SAR:	20.7	19.8	4.55	±10

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The following procedures have been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU v5.0.69.0, which enables a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement.

Results:

802.11gn mode (2.4 GHz band)

Mada	01	£ (B.41.1—)	Antenna			Duty cycle	Gain power	
Mode	Channel f (MHz)		A (TX1)	B (TX2)	C (TX3)	(%)	setting	
802.11b	6	2437			16.78	100	23	
802.11n 40 MHz	6	2437	16.55		16.81	97	26 / 26	

Note: A, B and C denote TX1, TX2 and TX3 Antenna

802.11an mode (5 GHz band)

Mada	Ob		Antenna			Duty cycle	Gain power	
Mode	Channel	f (MHz)	A (TX1)	B (TX2)	C (TX3)	(%)	setting	
5.2 GHz Band								
802.11a	40	5200			16.6	99	26	
802.11n 20 MHz	40	5200	16.7		16.7	98	28/28	
5.3 GHz Band								
802.11a	56	5280			16.7	99	25.5	
802.11n 20 MHz	56	5280	16.7		16.7	98	26/26	
5.5 GHz Band								
802.11a	120	5600			16.8	99	24	
802.11n 20 MHz	120	5600	16.7		16.7	98	25/25	
5.8 GHz Band								
802.11a	157	5785			16.8	99	25	
802.11n 40 MHz	159	5795	16.7		16.7	97	26/26	

11. SUMMARY OF TEST RESULTS

If the SAR measured at the middle channel for each test configuration is at least 3.0 dB (0.8 mW/g) lower than the SAR limit (1.6 mW/g), testing at the high and low channels is optional for such test configuration(s).

The modes with highest output power channel were chosen for the testing.

11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND

11.1.1. LAPHELD POSITION

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit (mW/g)
802.11b	6	2437	TX3	0.032	1.6
802.11n 40 MHz	6	2437	TX1+TX3	0.023	1.0

11.2. SAR TEST RESULT FOR THE 5 GHZ BANDS

11.2.1. LAPHELD POSITION

Band	Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit (mW/g)
5.2 GHz	802.11a	40	5200	TX3	0.388	1.6
5.2 GHZ	802.11n 20 MHz	40	5200	TX1+TX3	0.436	1.0
E 2 CU→	802.11a	56	5280	TX3	0.405	1.6
5.3 GHz	802.11n 20 MHz	56	5280	TX1+TX3	0.330	1.0
5.5 GHz	802.11a	120	5600	TX3	0.715	1.6
5.5 GHZ	802.11n 20 MHz	120	5600	TX1+TX3	0.714	1.0
5.8 GHz	802.11a	157	5785	TX3	0.683	1.6
5.6 GHZ	802.11n 40 MHz	159	5795	TX1+TX3	0.610	1.0

12. SAR TEST PLOTS

Worst-case SAR Plots for 2.4 GHz band

Date/Time: 4/7/2009 7:31:39 PM

Test Laboratory: Compliance Certification Services

2.4 GHz Band

DUT: Lenovo; Type: Y650; Serial: n/a

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.93 \text{ mho/m}$; $\epsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.91, 7.91, 7.91); Calibrated: 4/23/2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

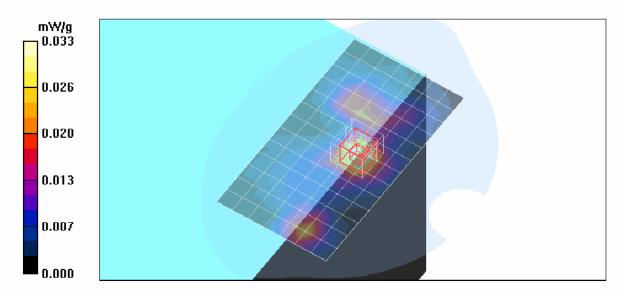
802.11b M-ch C (TX3) Ant/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.033 mW/g

802.11b M-ch C (TX3) Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=3mm


Reference Value = 4.67 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.054 W/kg

SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.017 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.038 mW/g

Worst-case SAR Plots for 5.2 GHz band

Date/Time: 4/10/2009 4:34:43 PM

Test Laboratory: Compliance Certification Services

5.2 GHz Band

DUT: Lenovo; Type: Y650; Serial: n/a

Communication System: 802.11abgn; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.46 mho/m; $\epsilon_{\rm r}$ = 47.9; ρ = 1000 kg/m³

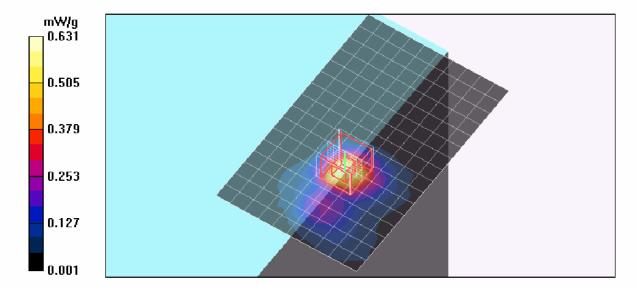
Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(4.21, 4.21, 4.21); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11n/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.631 mW/g

802.11n/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 7.86 V/m; Power Drift = -0.485 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.690 mW/g

Worst-case SAR Plots for 5.3 GHz band

Date/Time: 4/10/2009 5:35:58 PM

Test Laboratory: Compliance Certification Services

5.3 GHz Band

DUT: Lenovo; Type: Y650; Serial: n/a

Communication System: 802.11abgn; Frequency: 5280 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5280 MHz; σ = 5.54 mho/m; ε_e = 48.1; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

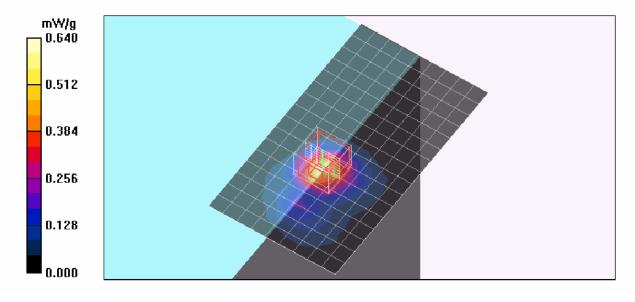
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.92, 3.92, 3.92); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.640 mW/g

802.11a/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm


Reference Value = 9.12 V/m; Power Drift = -0.155 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.405 mW/g; SAR(10 g) = 0.153 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.642 mW/g

Worst-case SAR Plots for 5.5 GHz band

Date/Time: 4/10/2009 7:23:16 PM

Test Laboratory: Compliance Certification Services

5.5 GHz Band

DUT: Lenovo; Type: Y650; Serial: n/a

Communication System: 802.11abgn; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.98 mho/m; $\epsilon_{\rm r}$ = 47.5; ρ = 1000 kg/m³

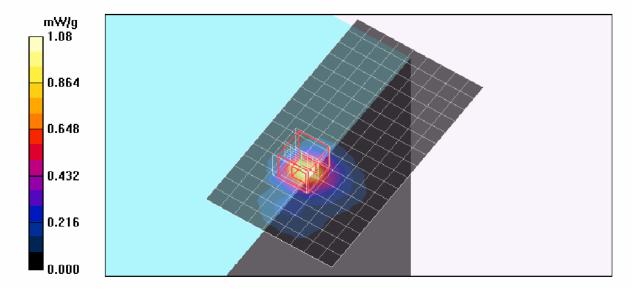
Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.5, 3.5, 3.5); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 1.08 mW/g

802.11a/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 9.45 V/m; Power Drift = 0.276 dB

Peak SAR (extrapolated) = 2.52 W/kg

SAR(1 g) = 0.715 mW/g; SAR(10 g) = 0.249 mW/gMaximum value of SAR (measured) = 1.17 mW/g

Worst-case SAR Plots for 5.8 GHz band

Date/Time: 4/10/2009 8:34:45 PM

Test Laboratory: Compliance Certification Services

5.8 GHz Band

DUT: Lenovo; Type: Y650; Serial: n/a

Communication System: 802.11abgn; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 6.25 \text{ mho/m}$; $\epsilon_r = 47.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

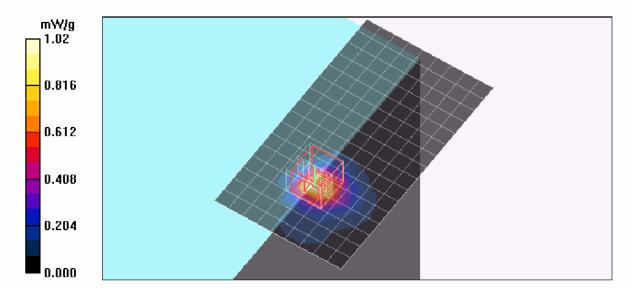
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.7, 3.7, 3.7); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a/Area Scan (10x17x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 mW/g

802.11a/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm


Reference Value = 5.33 V/m; Power Drift = -1.14 dB

Peak SAR (extrapolated) = 2.46 W/kg

SAR(1 g) = 0.683 mW/g; SAR(10 g) = 0.232 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.13 mW/g

13. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	9
2-1	SAR Test Plots for 2.4 GHz	3
2-2	SAR Test Plots for 5 GHz	9
3	Certificate of E-Field Probe - EX3DV3SN3531	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	15