

# FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 2

# **SAR EVALUATION REPORT**

**FOR** 

**INTEL WI-FI LINK 5300 SERIES** 

FCC MODEL: 533AN\_MMW IC MODEL: 533ANMU

FCC ID: PD9533ANMU IC: 1000M-533ANMU

REPORT NUMBER: 09U12413-1A

**ISSUE DATE: MARCH 9, 2009** 

Prepared for

INTEL CORPORATION 2111 N.E. 25<sup>TH</sup> AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA



DATE: March 9, 2009 REPORT NO: 09U12413-1A FCC ID: PD9533ANMU

# **Revision History**

| Rev. | Issued date       | Revisions                       | Revised By |
|------|-------------------|---------------------------------|------------|
|      | February 27, 2009 | Initial issue                   |            |
| A    | March 9, 2009     | Removed WNC antenna information | Sunny Shih |

# **TABLE OF CONTENTS**

| 1  | AH   | ESTATION OF TEST RESULTS                                 |    |
|----|------|----------------------------------------------------------|----|
| 2  | TES  | T METHODOLOGY                                            | 5  |
| 3  | FAC  | CILITIES AND ACCREDITATION                               | 5  |
| 4  | CAL  | IBRATION AND UNCERTAINTY                                 | 5  |
|    | 4.1  | MEASURING INSTRUMENT CALIBRATION                         | 5  |
| 5  | MEA  | ASUREMENT UNCERTAINTY                                    | 5  |
| 6  | TES  | T EQUIPMENT LIST                                         | 7  |
| 7  | DEV  | /ICE UNDER TEST (DUT) DESCRIPTION                        | 7  |
| 8  | SYS  | STEM DESCRIPTION                                         | 8  |
|    | 8.1  | COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS | 9  |
| 9  | SIM  | ULATING LIQUID PARAMETERS CHECK                          | 10 |
|    | 9.1  | 2.4 GHZ LIQUID PARAMETER CHECK RESULT                    | 11 |
|    | 9.2  | 5 GHZ LIQUID PARAMETER CHECK RESULT                      | 12 |
| 10 | SYS  | STEM PERFORMANCE CHECK                                   | 13 |
|    | 10.1 |                                                          |    |
|    |      | 5 GHZ SYSTEM PERFORMANCE CHECK RESULT                    |    |
| 11 |      | TPUT POWER VERIFICATION                                  |    |
| 12 | SAF  | R TEST RESULTS                                           | 16 |
|    |      | SAR TEST RESULT FOR THE 2.4 GHZ BAND                     |    |
|    |      | SAR TEST RESULT FOR 5 GHZ BANDS                          |    |
| 13 | ATT  | ACHMENTS                                                 | 23 |
| 14 | SET  | UP PHOTOS                                                | 24 |

#### 1 ATTESTATION OF TEST RESULTS

| COMPANY NAME:           | INTEL CORPORATION                        |                                     |                 |  |  |  |  |
|-------------------------|------------------------------------------|-------------------------------------|-----------------|--|--|--|--|
|                         | 2111 N.E. 25 <sup>TH</sup> AVENUE        |                                     |                 |  |  |  |  |
|                         | HILLSBORO, OR 97124, US                  | SA                                  |                 |  |  |  |  |
| EUT DESCRIPTION:        | Intel Wi-Fi Link 5300 Series             |                                     |                 |  |  |  |  |
| FCC ID:                 | PD9533ANMU                               |                                     |                 |  |  |  |  |
| FCC MODEL:              | 533AN_MMW                                |                                     |                 |  |  |  |  |
| IC #:                   | 1000M-533ANMU                            |                                     |                 |  |  |  |  |
| IC MODEL:               | 533ANMU                                  |                                     |                 |  |  |  |  |
| DEVICE CATEGORY:        | Portable                                 |                                     |                 |  |  |  |  |
| EXPOSURE CATEGORY:      | General Population/Uncontrolled Exposure |                                     |                 |  |  |  |  |
| DATE TESTED:            | February 25 – 27, 2009                   |                                     |                 |  |  |  |  |
| THE HIGHEST SAR VALUES: | See Table below                          |                                     |                 |  |  |  |  |
| FCC / IC<br>Rule Parts  | Frequency Range<br>[MHz]                 | The Highest<br>SAR Values (1g_mW/g) | Limit<br>(mW/g) |  |  |  |  |
| 15.247 / RSS-102        | 2400 – 2483.5 0.023 1.6                  |                                     |                 |  |  |  |  |
|                         | 5725 – 5850 0.161                        |                                     |                 |  |  |  |  |
| 15.407 / RSS-102        | 5150 – 5250 0.160 1.6                    |                                     |                 |  |  |  |  |
|                         | 5250 – 5350                              | 0.166                               |                 |  |  |  |  |
|                         | 5470 – 5725                              | 0.183                               |                 |  |  |  |  |

| APPLICABLE STANDARDS             |              |  |  |  |  |  |  |
|----------------------------------|--------------|--|--|--|--|--|--|
| STANDARD                         | TEST RESULTS |  |  |  |  |  |  |
| FCC OET BULLETIN 65 SUPPLEMENT C | Pass         |  |  |  |  |  |  |
| RSS-102 ISSUE 2                  | Pass         |  |  |  |  |  |  |

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

SUNNY SHIH

**EMC SUPERVISOR** 

COMPLIANCE CERTIFICATION SERVICES

### 2 TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters, KDB 447498\_RF Exposure Requirements and Procedures for mobile and portable devices and IC RSS 102 Issue 2.

#### 3 FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/Standards/scopes/2000650.htm.

#### 4 CALIBRATION AND UNCERTAINTY

### 4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 5 MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

| Uncertainty component                                        | Tol. (?)   | Probe | I Div I | Ci (1g) | Ci (10g) | Std. Ur | ıc.(? ) |
|--------------------------------------------------------------|------------|-------|---------|---------|----------|---------|---------|
| Oncertainty component                                        | 101. ( ? ) | Dist. |         |         | Ci (lug) | Ui (1g) | Ui(10g) |
| Measurement System                                           |            |       |         |         |          |         |         |
| Probe Calibration                                            | 4.80       | N     | 1       | 1       | 1        | 4.80    | 4.80    |
| Axial Isotropy                                               | 4.70       | R     | 1.732   | 0.707   | 0.707    | 1.92    | 1.92    |
| Hemispherical Isotropy                                       | 9.60       | R     | 1.732   | 0.707   | 0.707    | 3.92    | 3.92    |
| Boundary Effects                                             | 1.00       | R     | 1.732   | 1       | 1        | 0.58    | 0.58    |
| Linearity                                                    | 4.70       | R     | 1.732   | 1       | 1        | 2.71    | 2.71    |
| System Detection Limits                                      | 1.00       | R     | 1.732   | 1       | 1        | 0.58    | 0.58    |
| Readout Electronics                                          | 1.00       | N     | 1       | 1       | 1        | 1.00    | 1.00    |
| Response Time                                                | 0.80       | R     | 1.732   | 1       | 1        | 0.46    | 0.46    |
| Integration Time                                             | 2.60       | R     | 1.732   | 1       | 1        | 1.50    | 1.50    |
| RF Ambient Conditions - Noise                                | 1.59       | R     | 1.732   | 1       | 1        | 0.92    | 0.92    |
| RF Ambient Conditions - Reflections                          | 0.00       | R     | 1.732   | 1       | 1        | 0.00    | 0.00    |
| Probe Positioner Mechnical Tolerance                         | 0.40       | R     | 1.732   | 1       | 1        | 0.23    | 0.23    |
| Probe Positioning With Respect to Phantom Shell              | 2.90       | R     | 1.732   | 1       | 1        | 1.67    | 1.67    |
| Extrapolation, interpolation, and integration algorithms for |            |       |         |         |          |         |         |
| max. SAR evaluation                                          | 3.90       | R     | 1.732   | 1       | 1        | 2.25    | 2.25    |
| Test sample Related                                          |            |       |         |         |          |         |         |
| Test Sample Positioning                                      | 1.10       | Ν     | 1       | 1       | 1        | 1.10    | 1.10    |
| Device Holder Uncertainty                                    | 3.60       | Ν     | 1       | 1       | 1        | 3.60    | 3.60    |
| Power and SAR Drift Measurement                              | 5.00       | R     | 1.732   | 1       | 1        | 2.89    | 2.89    |
| Phantom and Tissue Parameters                                |            |       |         |         |          |         |         |
| Phantom Uncertainty                                          | 4.00       | R     | 1.732   | 1       | 1        | 2.31    | 2.31    |
| Liquid Conductivity - Target                                 | 5.00       | R     | 1.732   | 0.64    | 0.43     | 1.85    | 1.24    |
| Liquid Conductivity - Meas.                                  | 8.60       | N     | 1       | 0.64    | 0.43     | 5.50    | 3.70    |
| Liquid Permittivity - Target                                 | 5.00       | R     | 1.732   | 0.6     | 0.49     | 1.73    | 1.41    |
| Liquid Permittivity - Meas.                                  | 3.30       | N     | 1       | 0.6     | 0.49     | 1.98    | 1.62    |
| Combined Standard Uncertainty                                |            |       | RSS     |         |          | 11.44   | 10.49   |
| Expanded Uncertainty (95% Confidence Interval)               |            |       | K=2     |         |          | 22.87   | 20.98   |

Notesfor table

1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

# Measurement uncertainty for 3 GHz - 6 GHz

| Uncertainty component                                        | Tol. (?)  | Probe | Div.  | Ci (1g) | Ci (10g) | Std. Un | ıc.(? ) |
|--------------------------------------------------------------|-----------|-------|-------|---------|----------|---------|---------|
| Oncertainty component                                        | 101. (? ) | Dist. |       |         | Ci (10g) | Ui (1g) | Ui(10g) |
| Measurement System                                           |           |       |       |         |          |         |         |
| Probe Calibration                                            | 4.80      | N     | 1     | 1       | 1        | 4.80    | 4.80    |
| Axial Isotropy                                               | 4.70      | R     | 1.732 | 0.707   | 0.707    | 1.92    | 1.92    |
| Hemispherical Isotropy                                       | 9.60      | R     | 1.732 | 0.707   | 0.707    | 3.92    | 3.92    |
| Boundary Effects                                             | 1.00      | R     | 1.732 | 1       | 1        | 0.58    | 0.58    |
| Linearity                                                    | 4.70      | R     | 1.732 | 1       | 1        | 2.71    | 2.71    |
| System Detection Limits                                      | 1.00      | R     | 1.732 | 1       | 1        | 0.58    | 0.58    |
| Readout Electronics                                          | 1.00      | N     | 1     | 1       | 1        | 1.00    | 1.00    |
| Response Time                                                | 0.80      | R     | 1.732 | 1       | 1        | 0.46    | 0.46    |
| Integration Time                                             | 2.60      | R     | 1.732 | 1       | 1        | 1.50    | 1.50    |
| RF Ambient Conditions - Noise                                | 3.00      | R     | 1.732 | 1       | 1        | 1.73    | 1.73    |
| RF Ambient Conditions - Reflections                          | 3.00      | R     | 1.732 | 1       | 1        | 1.73    | 1.73    |
| Probe Positioner Mechnical Tolerance                         | 0.40      | R     | 1.732 | 1       | 1        | 0.23    | 0.23    |
| Probe Positioning With Respect to Phantom Shell              | 2.90      | R     | 1.732 | 1       | 1        | 1.67    | 1.67    |
| Extrapolation, interpolation, and integration algorithms for |           |       |       |         |          |         |         |
| max. SAR evaluation                                          | 3.90      | R     | 1.732 | 1       | 1        | 2.25    | 2.25    |
| Test sample Related                                          |           |       |       |         |          |         |         |
| Test Sample Positioning                                      | 1.10      | Ν     | 1     | 1       | 1        | 1.10    | 1.10    |
| Device Holder Uncertainty                                    | 3.60      | Ν     | 1     | 1       | 1        | 3.60    | 3.60    |
| Power and SAR Drift Measurement                              | 5.00      | R     | 1.732 | 1       | 1        | 2.89    | 2.89    |
| Phantom and Tissue Parameters                                |           |       |       |         |          |         |         |
| Phantom Uncertainty                                          | 4.00      | R     | 1.732 | 1       | 1        | 2.31    | 2.31    |
| Liquid Conductivity - Target                                 | 5.00      | R     | 1.732 | 0.64    | 0.43     | 1.85    | 1.24    |
| Liquid Conductivity - Meas.                                  | 8.60      | N     | 1     | 0.64    | 0.43     | 5.50    | 3.70    |
| Liquid Permittivity - Target                                 | 5.00      | R     | 1.732 | 0.6     | 0.49     | 1.73    | 1.41    |
| Liquid Permittivity - Meas.                                  | 3.30      | N     | 1     | 0.6     | 0.49     | 1.98    | 1.62    |
| Combined Standard Uncertainty                                |           |       | RSS   |         |          | 11.66   | 10.73   |
| Expanded Uncertainty (95% Confidence Interval)               |           |       | K=2   |         |          | 23.32   | 21.46   |

Notesfor table

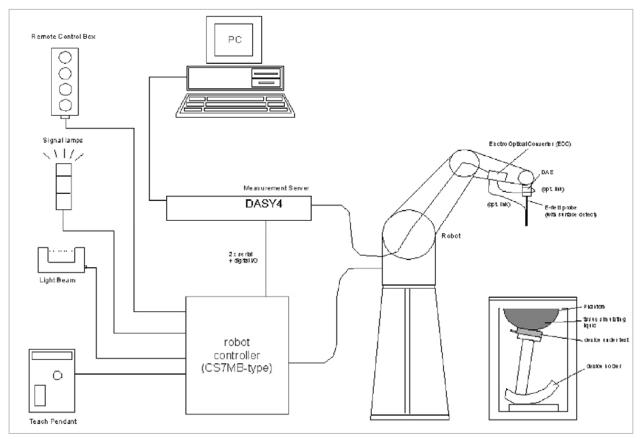
1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient


# **TEST EQUIPMENT LIST**

| Name of Equipment            | Manufacturer  | Type/Model  | Serial Number | MM     |         | Oue date<br>Year |
|------------------------------|---------------|-------------|---------------|--------|---------|------------------|
| Robot - Six Axes             | Stäubli       | RX90BL      | N/A           |        | -       | N/A              |
| Robot Remote Control         | Stäubli       | CS7MB       | 3403-91535    |        |         | N/A              |
| DASY4 Measurement Server     | SPEAG         | SEUMS001BA  | 1041          |        | ı       | N/A              |
| Probe Alignment Unit         | SPEAG         | LB (V2)     | 261           |        |         | N/A              |
| SAM Phantom (SAM1)           | SPEAG         | QD000P40CA  | 1185          |        | ı       | N/A              |
| SAM Phantom (SAM2)           | SPEAG         | QD000P40CA  | 1050          |        |         | N/A              |
| Oval Flat Phantom (ELI 4.0)  | SPEAG         | QD OVA001 B | 1003          |        | ı       | N/A              |
| Electronic Probe kit         | HP            | 85070C      | N/A           |        |         | N/A              |
| S-Parameter Network Analyzer | Agilent       | 8753ES-6    | MY40001647    | 11     | 20      | 2010             |
| E-Field Probe                | SPEAG         | EX3DV3      | 3531          | 4      | 23      | 2009             |
| Thermometer                  | ERTCO         | 639-1S      | 1718          | 5      | 28      | 2009             |
| Data Acquisition Electronics | SPEAG         | DAE3 V1     | 427           | 10     | 20      | 2009             |
| System Validation Dipole     | SPEAG         | D2450V2     | 748           | 4      | 14      | 2009             |
| System Validation Dipole     | SPEAG         | D5GHzV2     | 1003          | 11     | 21      | 2009             |
| Signal Generator             | R&S           | SMP 04      | DE34210       | 2      | 16      | 2009             |
| Power Meter                  | Giga-tronics  | 8651A       | 8651404       | 1      | 11      | 2010             |
| Power Sensor                 | Giga-tronics  | 80701A      | 1834588       | 1      | 11      | 2010             |
| Amplifier                    | Mini-Circuits | ZVE-8G      | 90606         |        | ı       | N/A              |
| Amplifier                    | Mini-Circuits | ZHL-42W     | D072701-5     |        |         | N/A              |
| Simulating Liquid            | ccs           | M2450       | N/A           | Withir | n 24 hr | rs of first test |
| Simulating Liquid            | SPEAG         | M5200-5800  | N/A           | Withir | n 24 hr | rs of first test |

# **DEVICE UNDER TEST (DUT) DESCRIPTION**

| Intel Wi-Fi Link 5100 Series (Tested inside of LENOVO ideapad Y550) |           |                                                      |         |                   |  |  |  |  |
|---------------------------------------------------------------------|-----------|------------------------------------------------------|---------|-------------------|--|--|--|--|
| Normal operation:                                                   | Laptop N  | Laptop Mode                                          |         |                   |  |  |  |  |
| Antenna Tested:                                                     | The radio | The radio has been tested with the highest antenna.  |         |                   |  |  |  |  |
|                                                                     | No        | Vender                                               | Antenna | Part number       |  |  |  |  |
|                                                                     | 1         | Yageo                                                | TX3     | CAN4313813012501B |  |  |  |  |
|                                                                     |           |                                                      |         | ·                 |  |  |  |  |
| Power supply:                                                       | Power s   | Power supplied through laptop computer (host device) |         |                   |  |  |  |  |

### 8 SYSTEM DESCRIPTION

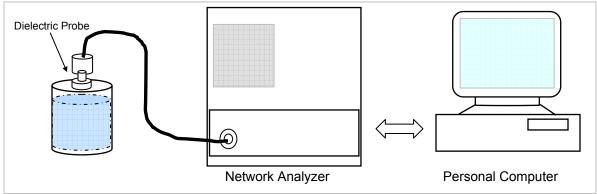


# The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

# 8.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.


| Ingredients         |       | Frequency (MHz) |       |      |       |       |       |      |      |      |  |  |
|---------------------|-------|-----------------|-------|------|-------|-------|-------|------|------|------|--|--|
| (% by weight)       | 45    | 50              | 83    | 35   | 91    | 15    | 19    | 00   | 24   | 50   |  |  |
| Tissue Type         | Head  | Body            | Head  | Body | Head  | Body  | Head  | Body | Head | Body |  |  |
| Water               | 38.56 | 51.16           | 41.45 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2 |  |  |
| Salt (NaCl)         | 3.95  | 1.49            | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04 |  |  |
| Sugar               | 56.32 | 46.78           | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0  |  |  |
| HEC                 | 0.98  | 0.52            | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0  |  |  |
| Bactericide         | 0.19  | 0.05            | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0  |  |  |
| Triton X-100        | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0  |  |  |
| DGBE                | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7 |  |  |
| Dielectric Constant | 43.42 | 58.0            | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5 |  |  |
| Conductivity (S/m)  | 0.85  | 0.83            | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78 |  |  |

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M $\Omega$ + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

# 9 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within  $\pm$  5% of the values given in the table below.



Set-up for liquid parameters check

# Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

| Target Frequency (MHz)       | He             | ad      | Body           |         |  |
|------------------------------|----------------|---------|----------------|---------|--|
| ranger i requericy (ivii iz) | $\epsilon_{r}$ | σ (S/m) | $\epsilon_{r}$ | σ (S/m) |  |
| 150                          | 52.3           | 0.76    | 61.9           | 0.80    |  |
| 300                          | 45.3           | 0.87    | 58.2           | 0.92    |  |
| 450                          | 43.5           | 0.87    | 56.7           | 0.94    |  |
| 835                          | 41.5           | 0.90    | 55.2           | 0.97    |  |
| 900                          | 41.5           | 0.97    | 55.0           | 1.05    |  |
| 915                          | 41.5           | 0.98    | 55.0           | 1.06    |  |
| 1450                         | 40.5           | 1.20    | 54.0           | 1.30    |  |
| 1610                         | 40.3           | 1.29    | 53.8           | 1.40    |  |
| 1800 – 2000                  | 40.0           | 1.40    | 53.3           | 1.52    |  |
| 2450                         | 39.2           | 1.80    | 52.7           | 1.95    |  |
| 3000                         | 38.5           | 2.40    | 52.0           | 2.73    |  |
| 5800                         | 35.3           | 5.27    | 48.2           | 6.00    |  |

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$ 

# 9.1 2.4 GHZ LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 25°C; Relative humidity = 35%

Measured by: Sunny Shih

| Simulating Liquid |            |    |         | Parameters                                 | Measured   | Target | Deviation (%)  | Limit (%) |
|-------------------|------------|----|---------|--------------------------------------------|------------|--------|----------------|-----------|
| f (MHz)           | Depth (cm) |    |         | i didirictors                              | ivicasurca | raiget | Deviation (70) |           |
| 2450              | 15         | e' | 54.2381 | Relative Permittivity ( $\varepsilon_r$ ): | 54.2381    | 52.7   | 2.92           | ? 5       |
| 2430              |            | e" | 14.7290 | Conductivity (σ):                          | 2.00751    | 1.95   | 2.95           | ? 5       |

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C

February 25, 2009 10:46 AM

| Frequency   | e'      | e"      |
|-------------|---------|---------|
| 2400000000. | 54.3095 | 14.7523 |
| 2405000000. | 54.4389 | 14.7173 |
| 2410000000. | 54.2876 | 14.6576 |
| 2415000000. | 54.3543 | 14.6616 |
| 2420000000. | 54.2538 | 14.6545 |
| 2425000000. | 54.1894 | 14.6350 |
| 2430000000. | 54.2686 | 14.6744 |
| 2435000000. | 54.1786 | 14.6863 |
| 2440000000. | 54.2121 | 14.7917 |
| 2445000000. | 54.1380 | 14.7704 |
| 2450000000. | 54.2381 | 14.7290 |
| 2455000000. | 54.1164 | 14.8785 |
| 2460000000. | 54.2176 | 14.9079 |
| 2465000000. | 54.0782 | 14.8969 |
| 2470000000. | 54.1434 | 14.9841 |
| 2475000000. | 54.1244 | 15.1071 |
| 2480000000. | 54.0519 | 15.0206 |
| 2485000000. | 54.0743 | 15.0870 |
| 2490000000. | 54.0770 | 15.0955 |
| 2495000000. | 53.9794 | 15.0897 |
| 2500000000. | 54.0952 | 15.1522 |
|             |         |         |

The conductivity ( $\sigma$ ) can be given as:

$$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi f \varepsilon_{\theta} e''$$

where 
$$f = target f * 10^6$$
  
 $\varepsilon_0 = 8.854 * 10^{-12}$ 

# **5 GHZ LIQUID PARAMETER CHECK RESULT**

Simulating Liquid Parameter Check Result @ Muscle 5GHz

Room Ambient Temperature = 25°C; Relative humidity = 40% Measured by: Sunny Shih

| Simulating Liquid f (MHz) | - Parameters |         |                                            | Measured | Target | Deviation (%) | Limit (%) |
|---------------------------|--------------|---------|--------------------------------------------|----------|--------|---------------|-----------|
| 5200                      | e'           | 45.9531 | Relative Permittivity ( $\varepsilon_r$ ): | 45.9531  | 49.0   | -6.22         | ? 10      |
| 3200                      | e"           | 18.7744 | Conductivity (σ):                          | 5.43111  | 5.30   | 2.47          | ? 5       |
| 5500                      | e'           | 45.9075 | Relative Permittivity ( $\varepsilon_r$ ): | 45.9075  | 48.6   | -5.54         | ? 10      |
| 5500                      | e"           | 19.2372 | Conductivity (σ):                          | 5.88604  | 5.65   | 4.18          | ? 5       |
| 5800                      | e'           | 44.8682 | Relative Permittivity ( $\varepsilon_r$ ): | 44.8682  | 48.2   | -6.91         | ? 10      |
| 3300                      | e"           | 19.3522 | Conductivity (σ):                          | 6.24421  | 6.00   | 4.07          | ? 5       |

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C

February 26, 2009 11:53 AM

| 1 Columny 20, 2003 | 1 1.33 AW |         |
|--------------------|-----------|---------|
| Frequency          | e'        | e"      |
| 4600000000.        | 47.3698   | 18.0796 |
| 4650000000.        | 47.4214   | 18.3541 |
| 4700000000.        | 47.2560   | 18.1485 |
| 4750000000.        | 47.0309   | 18.5116 |
| 4800000000.        | 47.2818   | 18.3957 |
| 4850000000.        | 46.8107   | 18.4570 |
| 4900000000.        | 47.0234   | 18.7142 |
| 4950000000.        | 46.6454   | 18.5399 |
| 5000000000.        | 46.4623   | 18.8402 |
| 5050000000.        | 46.4207   | 18.6982 |
| 5100000000.        | 45.9658   | 18.8463 |
| 5150000000.        | 46.2093   | 18.6849 |
| 5200000000.        | 45.9531   | 18.7744 |
| 5250000000.        | 46.1288   | 18.9155 |
| 5300000000.        | 45.8743   | 18.9980 |
| 5350000000.        | 45.8649   | 19.2256 |
| 5400000000.        | 45.8335   | 19.1085 |
| 5450000000.        | 45.6241   | 19.3642 |
| 5500000000.        | 45.9075   | 19.2372 |
| 5550000000.        | 45.6703   | 19.5036 |
| 5600000000.        | 45.7957   | 19.4670 |
| 5650000000.        | 45.4488   | 19.3978 |
| 5700000000.        | 45.4902   | 19.4529 |
| 5750000000.        | 45.3694   | 19.3632 |
| 5800000000.        | 44.8682   | 19.3522 |
| 5850000000.        | 44.6816   | 19.4135 |
| 5900000000.        | 44.5117   | 19.3722 |
| 5950000000.        | 44.0389   | 19.2774 |
| 6000000000.        | 44.0761   | 19.6161 |
|                    |           |         |

The conductivity ( $\sigma$ ) can be given as:

$$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi f \varepsilon_{\theta} e''$$
where  $f = target f * 10^{6}$ 

$$\varepsilon_{\theta} = 8.854 * 10^{-12}$$

### 10 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of  $\pm 10\%$ .

### **System Performance Check Measurement Conditions**

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
  center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
  long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
  15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.

  For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
   For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

# 450 to 2450 MHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

| Dipole Type | Distance<br>(mm) | Frequency<br>(MHz) | SAR (1g)<br>[W/kg] | SAR (10g)<br>[W/kg] | SAR (peak)<br>[W/kg] |
|-------------|------------------|--------------------|--------------------|---------------------|----------------------|
| D450V2      | 15               | 450                | 5.01               | 3.36                | 7.22                 |
| D835V2      | 15               | 835                | 9.71               | 6.38                | 14.1                 |
| D900V2      | 15               | 900                | 11.1               | 7.17                | 16.3                 |
| D1450V2     | 10               | 1450               | 29.6               | 16.6                | 49.8                 |
| D1800V2     | 10               | 1800               | 38.5               | 20.3                | 67.5                 |
| D1900V2     | 10               | 1900               | 39.8               | 20.8                | 69.6                 |
| D2000V2     | 10               | 2000               | 40.9               | 21.2                | 71.5                 |
| D2450V2     | 10               | 2450               | 51.2               | 23.7                | 97.6                 |

Note: All SAR values normalized to 1 W forward power.

# 5 GHz Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

| f (MHz)     | Head <sup>-</sup> | Tissue             | Body Tissue       |         |                     |  |
|-------------|-------------------|--------------------|-------------------|---------|---------------------|--|
| 1 (1411.12) | SAR <sub>1g</sub> | SAR <sub>10g</sub> | SAR <sub>1g</sub> | SAR 10g | SAR <sub>Peak</sub> |  |
| 5000        | 72.9              | 20.7               | 68.1              | 19.2    | 260.3               |  |
| 5100        | 74.6              | 21.1               | 78.8              | 19.6    | 272.3               |  |
| 5200        | 76.5              | 21.6               | 71.8              | 20.1    | 284.7               |  |
| 5500        | 83.3              | 23.4               | 79.1              | 22.0    | 326.3               |  |
| 5800        | 78.0              | 21.9               | 74.1              | 20.5    | 324.7               |  |

Note: All SAR values normalized to 1 W forward power.

# 10.1 2.4 GHZ SYSTEM PERFORMANCE CHECK RESULT

System Validation Dipole: D2450V2 SN: 748

The dipole input power (forward power): 250 mW

**Results** 

Date: February 25, 2009

Ambient Temperature = 25°C; Relative humidity = 40%

Measured by: Sunny Shih

| Body Simulating Liquid |           | Nori       | Normalized |      | Deviation | Lim it |      |
|------------------------|-----------|------------|------------|------|-----------|--------|------|
| f (MHz)                | Temp. (蚓) | Depth (cm) | to 1 W     |      | Target    | (%)    | (%)  |
| 2450                   | 24        | 15         | 1 g        | 49.8 | 51.2      | -2.73  | ? 10 |
| 2450                   | 24        | 15         | 10g        | 23.1 | 23.7      | -2.53  | ? 10 |

# 10.2 5 GHZ SYSTEM PERFORMANCE CHECK RESULT

System Validation Dipole: D5GHzV2 SN 1003

Date: February 26, 2009

Ambient Temperature = 25 °C; Relative humidity = 40%

| Measured | hv. | Sunny | / Shih |
|----------|-----|-------|--------|
| Measurea | υν. | Julii | , Оппп |

| Body Simulating Liquid |           | Normalized |        | Target | Deviation | Lim it |      |
|------------------------|-----------|------------|--------|--------|-----------|--------|------|
| f (MHz)                | Temp. (蚓) | Depth (cm) | to 1 W |        | Target    | (%)    | (%)  |
| 5200                   | 24        | 15         | 1 g    | 79.7   | 74.7      | 6.69   | ? 10 |
| 3200                   | 24        | 13         | 10g    | 22.7   | 21.1      | 7.58   | ? 10 |
| 5500                   | 24        | 15         | 1 g    | 80.3   | 80.1      | 0.25   | ? 10 |
| 3300                   | 24        | 15         | 10g    | 22.4   | 22.5      | -0.44  | ? 10 |
| 5800                   | 24 1      | 15         | 1 g    | 75.2   | 70.8      | 6.21   | ? 10 |
| 3000                   | 2 7       | 13         | 10g    | 21.2   | 19.8      | 7.07   | ? 10 |

# 11 OUTPUT POWER VERIFICATION

The following procedures have been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU v5.0.69.0, which enables a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement.

### **Results:**

802.11gn mode (2.4 GHz band)

|                |         | C (A 41.1) |         | Antenna |         | Duty cycle | Gain power |
|----------------|---------|------------|---------|---------|---------|------------|------------|
| Mode           | Channel | f (MHz)    | A (TX1) | B (TX2) | C (TX3) | (%)        | setting    |
| 802.11b        | 6       | 2437       |         |         | 16.78   | 100        | 22         |
| 802.11n 40 MHz | 6       | 2437       | 16.55   |         | 16.81   | 97         | 26.5 / 26  |

Note: A, B and C denote TX1, TX2 and TX3 Antenna

802.11an mode (5 GHz band)

| NAI -          | 01      | £ (\$ 41.1-) |         | Antenna |         | Duty cycle | Gain power |  |
|----------------|---------|--------------|---------|---------|---------|------------|------------|--|
| Mode           | Channel | f (MHz)      | A (TX1) | B (TX2) | C (TX3) | (%)        | setting    |  |
| 5.2 GHz Band   |         |              |         |         |         |            |            |  |
| 802.11a        | 40      | 5200         |         |         | 16.6    | 99         | 27         |  |
| 802.11n 20 MHz | 40      | 5200         | 16.7    |         | 16.7    | 98         | 29.5/28    |  |
| 5.3 GHz Band   |         |              |         |         |         |            |            |  |
| 802.11a        | 56      | 5280         |         |         | 16.7    | 99         | 26         |  |
| 802.11n 20 MHz | 56      | 5280         | 16.7    |         | 16.7    | 98         | 26.5/26.5  |  |
| 5.5 GHz Band   |         |              |         |         |         |            |            |  |
| 802.11a        | 120     | 5600         |         |         | 16.8    | 99         | 23.5       |  |
| 802.11n 20 MHz | 120     | 5600         | 16.7    |         | 16.7    | 98         | 25/24.5    |  |
| 5.8 GHz Band   |         |              |         |         |         |            |            |  |
| 802.11a        | 157     | 5785         |         |         | 16.8    | 99         | 25         |  |
| 802.11n 40 MHz | 159     | 5795         | 16.7    |         | 16.7    | 97         | 25/25      |  |

# 12 SAR TEST RESULTS

### 12.1 SAR TEST RESULT FOR THE 2.4 GHZ BAND

Laptop Mode: Lap-held with the display open at 90° to the keyboard.

|                |         |         |           | Measured SAR |       |
|----------------|---------|---------|-----------|--------------|-------|
| Mode           | Channel | f (MHz) | Antenna   | 1g (mW/g)    | Limit |
| 802.11b        | 6       | 2437    | TX3       | 0.023        | 1.6   |
| 802.11n 40 MHz | 6       | 2437    | TX1 + TX3 | 0.019        | 1.6   |

### Notes:

- a. The modes with highest output power channel were chosen for the testing.
- b. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

# The Highest SAR Plot & Data for 2.4 GHz Band

Date/Time: 2/25/2009 2:41:32 PM

Test Laboratory: Compliance Certification Services

# 2.4 GHz Band

DUT: Lenovo; Type: Y550; Serial: NKIWB10064

Communication System: 802.11bg; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 2 \text{ mho/m}$ ;  $\epsilon_r = 54.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

#### DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.91, 7.91, 7.91); Calibrated: 4/23/2008
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

# 802.11b M-ch C (TX3) Ant/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.028 mW/g

# 802.11b M-ch C (TX3) Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

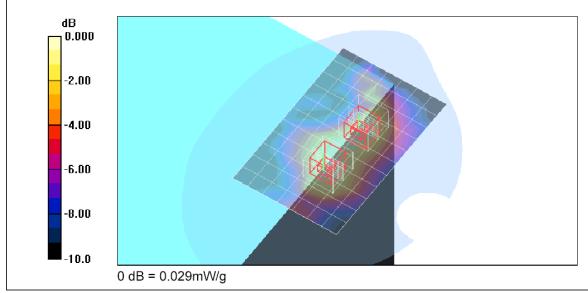
Reference Value = 3.85 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.042 W/kg

SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.013 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

# 802.11b M-ch C (TX3) Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 3.85 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.042 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.013 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.029 mW/g



# 12.2 SAR TEST RESULT FOR 5 GHZ BANDS

Laptop Mode: Lap-held with the display open at 90° to the keyboard.

| Mode           | Channel | f (MHz) | Antenna   | Measured SAR<br>1g (mW/g) | Limit |
|----------------|---------|---------|-----------|---------------------------|-------|
| 5.2 GHz Band   |         | ,       |           | 3 ( 3/ 1                  | -     |
| 802.11a        | 40      | 5200    | TX3       | 0.129                     | 1.6   |
| 802.11n 20 MHz | 40      | 5200    | TX1 + TX3 | 0.160                     | 1.6   |
| 5.3 GHz Band   |         |         |           |                           |       |
| 802.11a        | 56      | 5280    | TX3       | 0.166                     | 1.6   |
| 802.11n 20 MHz | 56      | 5280    | TX1 + TX3 | 0.108                     | 1.6   |
| 5.5 GHz Band   |         |         |           |                           |       |
| 802.11a        | 120     | 5600    | TX3       | 0.183                     | 1.6   |
| 802.11n 20 MHz | 120     | 5600    | TX1 + TX3 | 0.158                     | 1.6   |
| 5.8 GHz Band   |         |         |           |                           |       |
| 802.11a        | 157     | 5785    | TX3       | 0.161                     | 1.6   |
| 802.11n 40 MHz | 159     | 5795    | TX1 + TX3 | 0.125                     | 1.6   |

### Notes:

- a. The modes with highest output power channel were chosen for the testing.
- b. The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

# The Highest SAR Plot & Data for 5.2 GHz Band

Date/Time: 2/26/2009 4:16:20 PM

Test Laboratory: Compliance Certification Services

## 5.2 GHz Band

DUT: Lenovo; Type: Y550; Serial: NKIWB10064

Communication System: 802.11abgn; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz;  $\sigma$  = 5.43 mho/m;  $\varepsilon_r$  = 46;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

#### DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(4.21, 4.21, 4.21); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

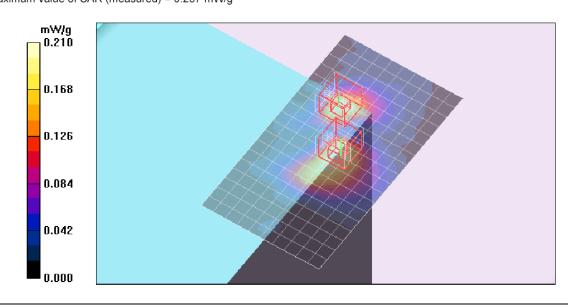
# 802.11n 20 MHz, CH 40/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.210 mW/g

### 802.11n 20 MHz, CH 40/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 1.66 V/m; Power Drift = 0.847 dB

Peak SAR (extrapolated) = 0.482 W/kg


SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.064 mW/g Maximum value of SAR (measured) = 0.245 mW/g

# 802.11n 20 MHz, CH 40/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 1.66 V/m; Power Drift = 0.847 dB

Peak SAR (extrapolated) = 0.464 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.060 mW/g Maximum value of SAR (measured) = 0.237 mW/g



### The Highest SAR Plot & Data for 5.3 GHz Band

Date/Time: 2/26/2009 5:57:19 PM

Test Laboratory: Compliance Certification Services

# 5.3 GHz Band

DUT: Lenovo; Type: Y550; Serial: NKIWB10064

Communication System: 802.11abgn; Frequency: 5280 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5280 MHz;  $\sigma = 5.57 \text{ mho/m}$ ;  $\epsilon_r = 46$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

#### DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.92, 3.92, 3.92); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

### **802.11a, CH 56/Area Scan (11x19x1):** Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.247 mW/g

# 802.11a, CH 56/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 2.05 V/m; Power Drift = -0.703 dB

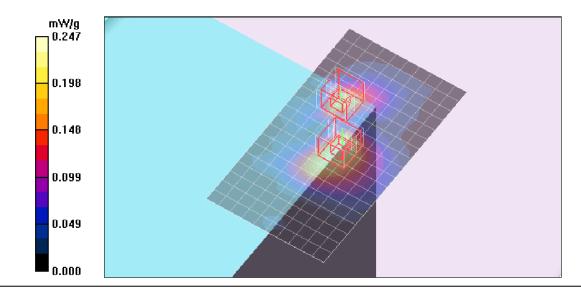
Peak SAR (extrapolated) = 0.511 W/kg

SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.071 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.253 mW/g

### 802.11a, CH 56/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm


Reference Value = 2.05 V/m; Power Drift = -0.703 dB

Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.054 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.213 mW/g



Date/Time: 2/26/2009 8:47:18 PM

# The Highest SAR Plot & Data for 5.5 GHz Band

Test Laboratory: Compliance Certification Services

#### 5.5 GHz Band

DUT: Lenovo; Type: Y550; Serial: NKIWB10064

Communication System: 802.11abgn; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz;  $\sigma$  = 6.06 mho/m;  $\epsilon_r$  = 45.8;  $\rho$  = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

### DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.5, 3.5, 3.5); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

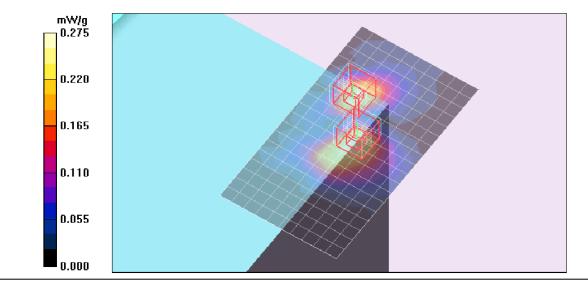
# 802.11a, CH 120/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.275 mW/g

# 802.11a, CH 120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 1.71 V/m; Power Drift = 1.14 dB

Peak SAR (extrapolated) = 0.640 W/kg


SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.074 mW/g Maximum value of SAR (measured) = 0.293 mW/g

### 802.11a, CH 120/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 1.71 V/m; Power Drift = 1.14 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.276 mW/g



### The Highest SAR Plot & Data for 5.8 GHz Band

Date/Time: 2/27/2009 09:00:08 AM

Test Laboratory: Compliance Certification Services

### 5.8 GHz Band

DUT: Lenovo; Type: Y550; Serial: NKIWB10064

Communication System: 802.11abgn; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz;  $\sigma = 6.23 \text{ mho/m}$ ;  $\epsilon_r = 45$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

#### DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(3.7, 3.7, 3.7); Calibrated: 4/23/2008
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

### 802.11a, CH 157/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.245 mW/g

### 802.11a, CH 157/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 2.24 V/m; Power Drift = -1.99 dB

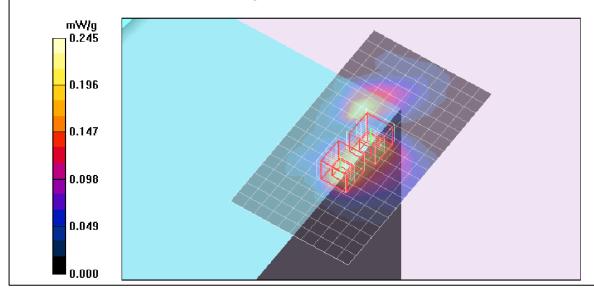
Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.161 mW/g; SAR(10 g) = 0.061 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.265 mW/g

### 802.11a, CH 157/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

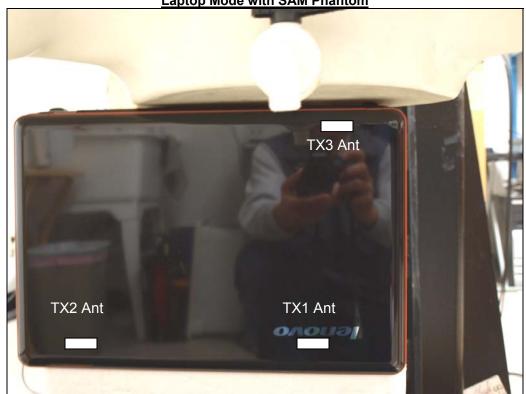

Reference Value = 2.24 V/m; Power Drift = -1.99 dB

Peak SAR (extrapolated) = 0.518 W/kg

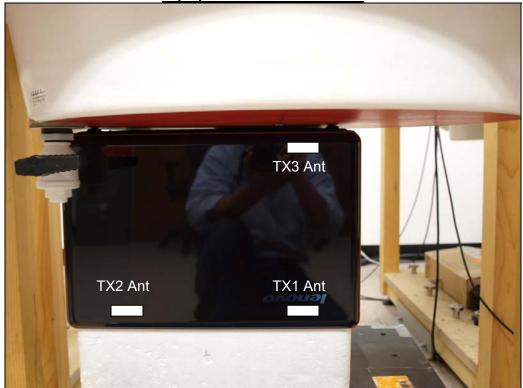
SAR(1 g) = 0.144 mW/g; SAR(10 g) = 0.058 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.236 mW/g




# 13 ATTACHMENTS


| No. | Contents                                                  | No. Of Pages |
|-----|-----------------------------------------------------------|--------------|
| 1-1 | System Performance Check Plots for 2.4 GHz                | 2            |
| 1-2 | System Performance Check Plots for 5 GHz                  | 6            |
| 2-1 | 2.4 GHz Test Plots                                        | 3            |
| 2-2 | 5 GHz Test Plots                                          | 9            |
| 3   | Certificate of E-Field Probe - EX3DV3SN3531               | 10           |
| 4   | Certificate of System Validation Dipole - D2450V2 SN:748  | 6            |
| 5   | Certificate of System Validation Dipole - D5GHzV2 SN:1003 | 15           |

# 14 SETUP PHOTOS

**Laptop Mode with SAM Phantom** 







**END OF REPORT**