

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization Class II Permissive Change pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Intel Corporation Transmitter Model: 533AN_MMW (Canada model number 533ANMU)

> UPN: 1000M-533ANMU FCC ID: PD9533ANMU GRANTEE: Intel Corporation 2111 N.E. 25th Ave. Hillsboro, OR 97124-5961 TEST SITE: Elliott Laboratories 684 W. Maude Ave Sunnyvale, CA 94086 REPORT DATE: September 8, 2008

REISSUE DATE: September 19, 2008

FINAL TEST DATE: August 25 - September 3, 2008

Mark Briggs

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R72961 Rev 2 Page 1 of 24

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	9/11/08	First Release	-
2	9/19/08	Corrected the model name in the GENERAL subsection of PROPOSED MODIFICATION DETAILS on page 12. Modified the text describing the MIMO modes of operation with the specific antenna set being evaluated in the ANTENNA section of PROPOSED MODIFICATION DETAILS on page 12.	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	9
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	
GENERAL	
ANTENNA	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	14
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	15
INSTRUMENT CALIBRATION	15
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER AND SPURIOUS LIMITS –LE-LAN DEVICES	
OUTPUT POWER AND SPURIOUS LIMITS – UNII DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	23
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	24

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	L
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model 533AN_MMW pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model 533AN_MMW and therefore apply only to the tested sample. The sample was selected and prepared by Robert Paxman of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model 533AN_MMW complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC	RSS	Description	Measured Value /	Limit /	Result
Rule Part	Rule Par	t ⁻	Comments	Requirement	icesuit
15.407(e)		Indoor operation only	The proposed changes do not affect the		
15.407(a) (1)	26dB Bandwidth	values for power, ban		N/A
15.407 (a) (1			operation previously		11/7
15.407 (a) (1	1)	Power Spectral	operation previously	reported.	
	A9.5 (2)	-			
Operation in	the 5.25 – 5.35	GHz Band			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Limit / Comments Requirement		Result (margin)
15.407(a) (2)		26dB Bandwidth		· · ·	
15.407(a) (2)	A9.2(2)	Output Power	The proposed chang		
15.407(a) (2))		Power Spectral Density	wer Spectral Density values for power, bandwidth and i operation previously reported.		N/A
	A9.2(2) / A9.5 (2)	Power Spectral Density			
	A9.5 (2)	Peak Spectral Density			
Operation in	the 5.47 – 5.725	GHz Band			
FCC	RSS	Description	Measured Value /	Limit /	Result
Rule Part	Rule Part	Description	Comments	Requirement	(margin)
15.407(a) (2)		26dB Bandwidth			
15.407(a) (2) A9.2(2)		Output Power	The proposed changes do not affect the values for power, bandwidth and indoor		
15.407(a) (2))		Power Spectral Density	operation previously		N/A
	A9.2(2) / A9.5 (2)	Power Spectral Density	-		
N/A	??	Non-operation in 5600 - 5650 MHz sub band	The proposed changes do not affect the devices operation in this sub-band		

General requir	ements for all	bands			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a RSP 100	Modulation 99% bandwidth	The proposed change values for modulation	N/A	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	previously reported See r	note 1	N/A
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	n40MHz Mode: 53.2dBµV/m @ 5350.1MHz	15.209 in restricted bands, -27dBm eirp all others	Complies (- 0.8 dB)
15.407(a)(6)	The proposed changes do not affect the				N/A
	A9.5 (3) Channel Selection		Device was tested on the top, bottom	Spurious emissions tested at outermost channels	Complies
15			and center channels in each band	Measurements on three channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit			
15.407 (g)	A9.5 (5)	Frequency Stability			
15.407 (h1)	A9.4	Transmit Power Control	The proposed change information previous		N/A
15.407 (h2)	A9.4	Dynamic frequency Selection			
	A9.9g	User Manual information			
the test fixture highest emissi	. Test were no	blow 1GHz were independent t performed below 1GHz a eported during the original nit.	s the proposed changes	are only to the antenna	a The

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)		
15.203		RF Connector	Connector remains unchanged from original filing	Connector remains unchanged from original Unique			
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions (note 1)	48.3dBµV/m @ 7466.7MHz	RSS GEN	Complies (- 5.7 dB)		
15.207	RSS GEN Table 2	AC Conducted Emissions	The new antenna would not affect AC conducted emissions level.				
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	The new antenna gain is lower than the previously evaluated antennas, therefore the rf exposure calculations and forms previously uploaded remain unchanged.		N/A		
	RSP 100 RSS GEN 7.1.5	User Manual	The addition of the new antenna does not				
	RSP 100 RSS GEN 7.1.5	User Manual	- affect the content required in the User N/A Manual.				
Note 1: Spurious emissions below 1GHz were independent of operating mode and dominated by emissions from the test fixture. Tests were not performed below 1GHz as the proposed changes are only to the antenna. The highest emission in receive mode from the original testing was 53.3 dB μ V/m @ 6933.3MHz (Ethertronics Antenna), 0.7dB below the limit.							

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model 533AN_MMW is a 802.11abgn Radio that is designed to be installed in laptops for wireless transmission/reception. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 Volts DC, 0.5 Amps.

The sample was received on June 9, 2008 and tested on August 25, August 26, August 27, August 28, August 29, August 30 and September 3, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	533AN-	802.11abgn		PD9533ANMU
Corporation	MMW(MMC)	Radio		

ANTENNA SYSTEM

Refer to the PROPOSED MODIFICATION DETAILS section of this report.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Prototype	Laptop PC	Prototype	-

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)					
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)			
PC	Board	PCI-Express	-	0.2			
		extender					
Antennas	Antenna main	Coax (2)	Shielded	0.3			
Port 1& 2	and aux						
(A&B)							
DC Power	Board	3.3V dc	Unshielded	0.3			

EUT OPERATION

During testing the EUT was transmitting at the stated power level at a data rate of 1Mb/s for 802.11b mode and 6Mb/s for 802.11g and n20 modes and 12Mb/s for 802.11n 40MHz mode. The following modes were selected as the worst case mode(s) for each of the transmitter-related measurements:

Band Edge, 2.4GHz Band: 802.11g, 802.11n 20MHz and 802.11n 40MHz modes Band Edge, 5150MHz, 5350MHz, 5470MHz: 802.11n 20MHz and 40MHz modes, single- and dual-chains active Spurious emissions, 2.4GHz Band: 802.11b, 802.11n 20MHz dual chain and n40MHz dual chain modes Spurious emissions, 5150-5250MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5250-5350MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5470-5725MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5470-5725MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5470-5725MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level and individual; chains active. Spurious emissions, 5725-5850MHz Band: 802.11n20 MHz mode - Dual chains active at the higher single chain power level and individual; chains active.

Receiver-related measurements were made with the device operating on each chain alone and on both chains simultaneously ion the DTS bands. In the NII band measurements were made with just the single chains active as previous testing identified this mode as the worst case.

During emissions testing the EUT was continuously transmitting.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Intel Corporation model 533AN_MMW (MMC) being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

ANTENNA

The original certification included a Universe PIFA antenna and so covered all PIFA antennas of lower gain. The proposed change is to add a PIFA-based antenna designed for use with the module. Selection of operating modes for each series of tests (band-edge spurious emissions, radiated spurious emissions) is based on previous results with the universe PIFA antenna.

Antenna Name and model	Tumo	Antenna Gain			Commonte	
Antenna Name and model	Туре	2.4GHz	5.2GHz	5.5GHz	5.7GHz	Comments
Universe	PIFA	3.24	3.73	4.77	4.97	Original Antenna tested
Amphenol WLAN Main:	PIFA					
14G152168231LV:	C	-0.59	1.36	2.18	1.64	Proposed new antenna
WLAN Aux: 14G152168131LV:	Carrier	-1.00	0.01	2.19	2.76	

The Intel Model 533AN_MMW is a 3x3 transceiver with antenna connect detection. As the antenna set being evaluated has only 2 antenna elements the device operated as a 2x2 transceiver during the evaluation. The module still remains a 3x3 transceiver and the associated grant notes should indicate this to be the case.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on August 25, August 26, August 27, August 28, August 29, August 30 and September 3, 2008 at the Elliott Laboratories semi anechoic chambers located at 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

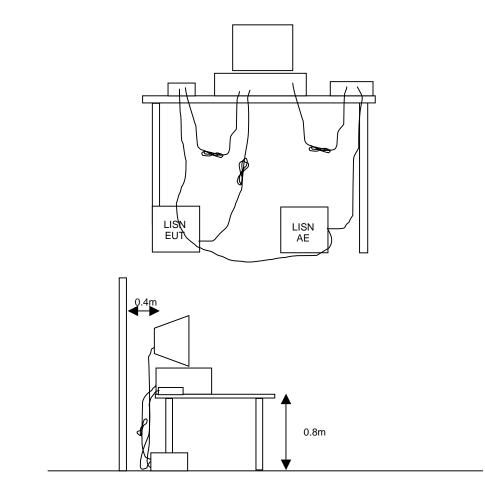
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

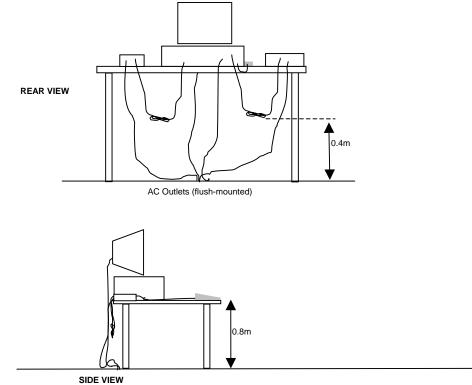

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

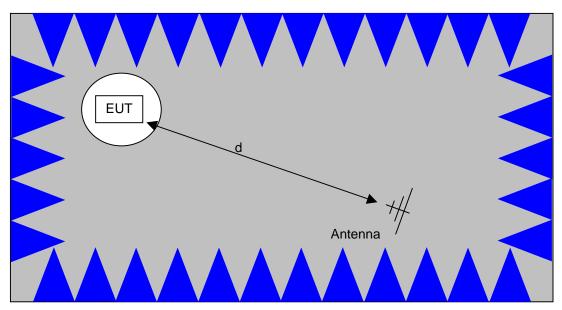
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

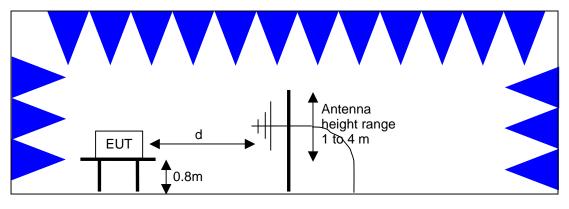

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

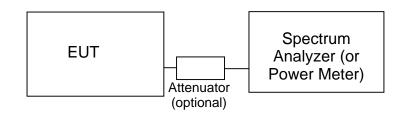

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


SIDE VIEW

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER AND SPURIOUS LIMITS -LE-LAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	$\frac{250 \text{ mW} (24 \text{ dBm})^{\text{I}}}{1 \text{W} (30 \text{dBm}) \text{ eirp}}$	11 dBm/MHz
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density, determined by dividing the output power by 10log(99% bandwidth), by more than 3dB.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS -UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 $\begin{array}{lll} F_d &=& \text{Distance Factor in } dB \\ D_m &=& \text{Measurement Distance in meters} \\ D_s &=& \text{Specification Distance in meters} \end{array}$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

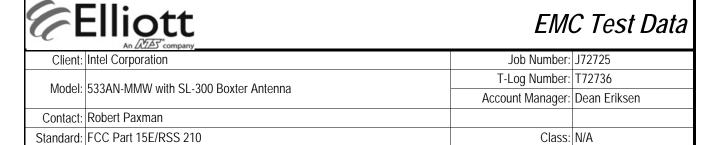
Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

3

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data


1 Page

26-Aug-08 Engineer: Ben Jing				
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	<u>Model #</u> 8564E (84125C)	<u>Asset #</u> 1393	<u>Cal Due</u> 15-Jan-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	04-Dec-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Purple)	3115	1779	19-Mar-10
27-Aug-08 Engineer: Ben Jing				
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	29-Aug-08
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
Radiated Emissions, 5 Engineer: Ben Jing	GHz UNII Band-edge, 28-Aug-08			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	29-Aug-08
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
	UNII 5 GHz 802.11n-40 Band-edge, 29-Aug-08			
Engineer: bjing Manufacturer	Description	Model #	Assot #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	05-Mar-09
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
	000 - 18,000 MHz, 30-Aug-08			
Engineer: bjing		N		0.1 0
<u>Manufacturer</u> EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz	<u>Model #</u> 3115	<u>Asset #</u> 786	<u>Cal Due</u> 07-Dec-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Miteq	Preamplifier, 1-18 GHz	AFS44	1540	12-Nov-08
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	17-Oct-08
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	17-Oct-08
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
	000 - 18,000 MHz, 03-Sep-08			
Engineer: Ben Jing Manufacturer	Description	Model #	Ascat #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Miteq	Preamplifier, 1-18 GHz	AFS44	1540	12-Nov-08
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
, 03-Sep-08				
Engineer: skhushzad	Description	Madal #	Accet #	
<u>Manufacturer</u> EMCO	Description Antenna, Horn, 1-18GHz	<u>Model #</u> 3115	<u>Asset #</u> 868	<u>Cal Due</u> 10-Jun-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E	Rental	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
		-		

EXHIBIT 2: Test Measurement Data

64 Pages

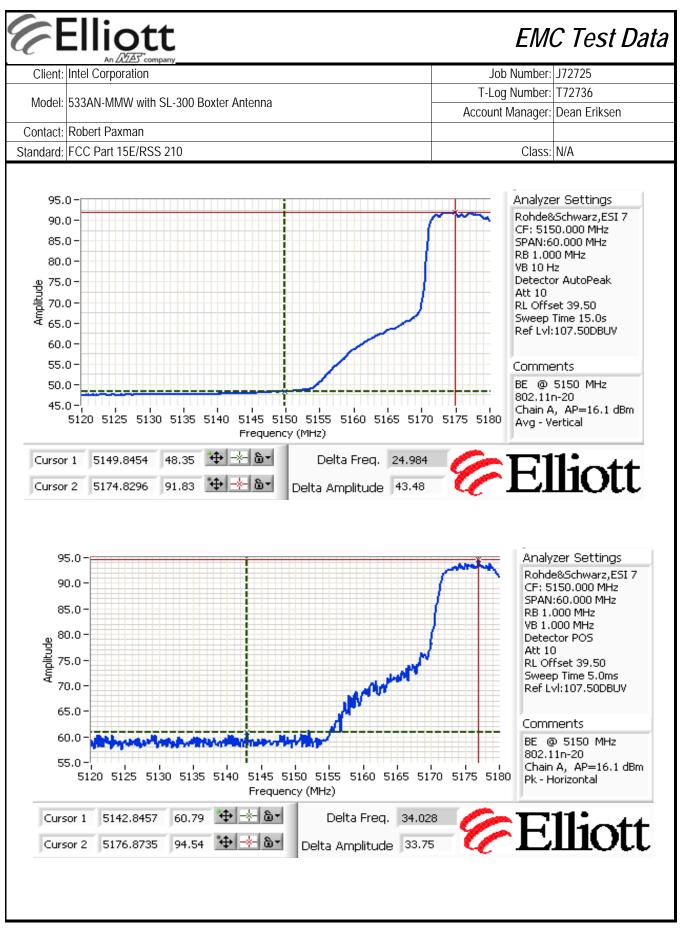
Elliott	El	MC Test Da
Client: Intel Corporation	Job Number:	J72725
Model: 533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	
	Account Manager:	
Contact: Robert Paxman		-
missions Standard(s): FCC Part 15E/RSS 210	Class:	
mmunity Standard(s):	Environment:	-
EMC Test Da		
UNII Radiated Measurements w	ith Universe	Antenna
For The		
Intel Corpora	tion	
Model		
533AN-MMW with SL-300 Box	ter Antenna	
Date of Last Test: 9/8/20	208	

RSS 210 and FCC 15.E (U-NII, 5150- 550/5250-5350/5460-5725MHz) Band Edge Field Strength 802.11n20 SL-300 Antenna

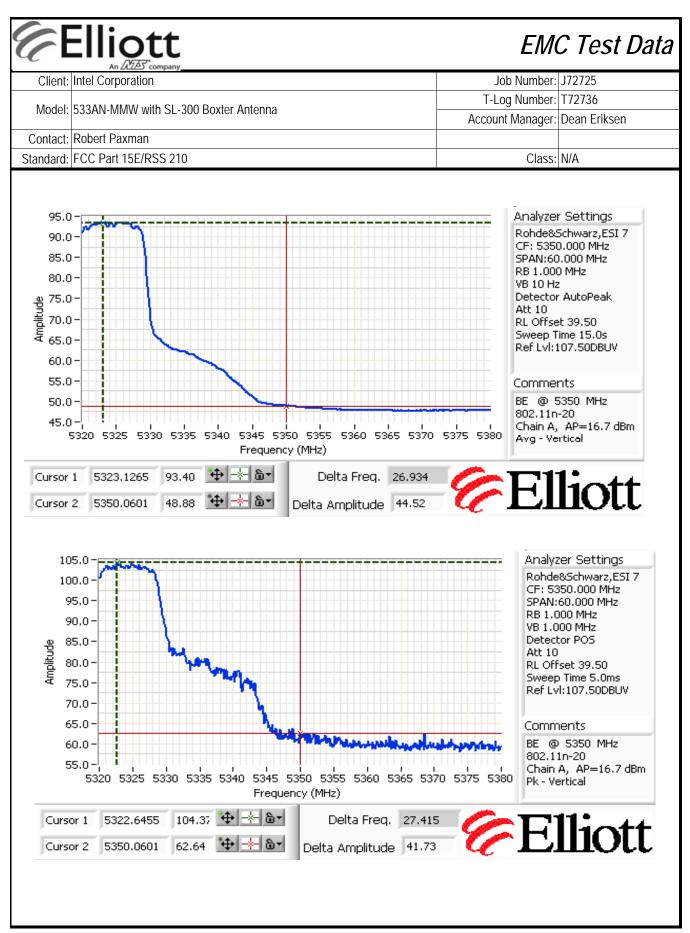
Test Specific Details

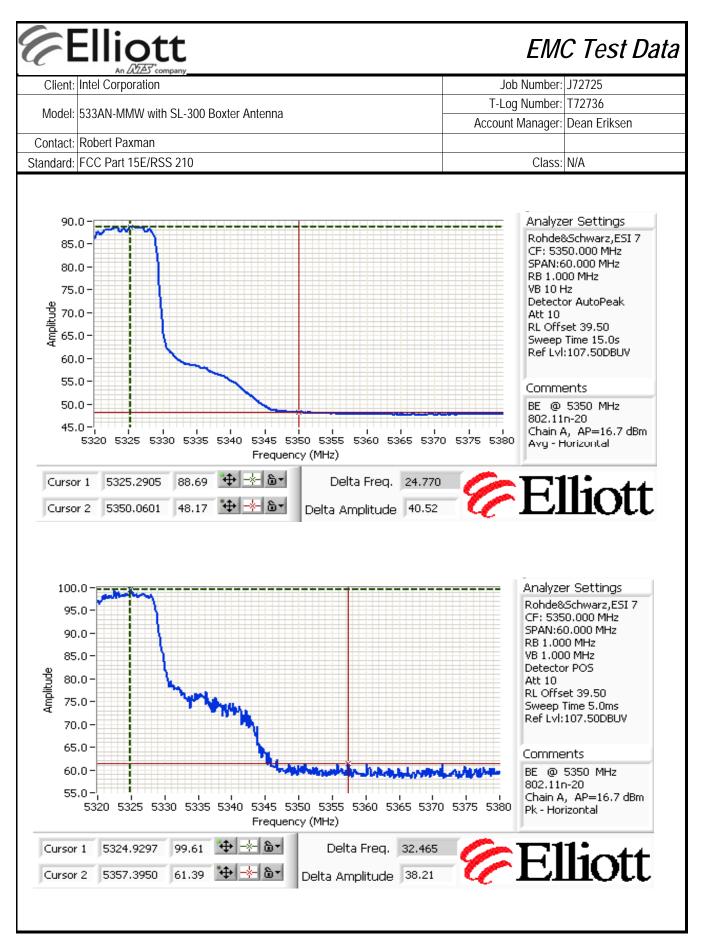
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

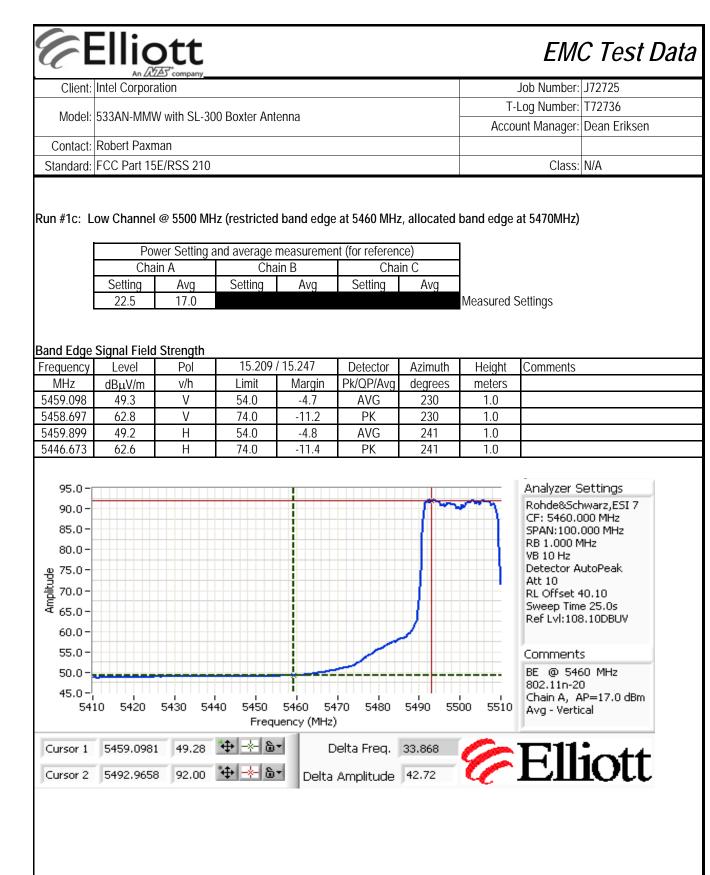
General Test Configuration

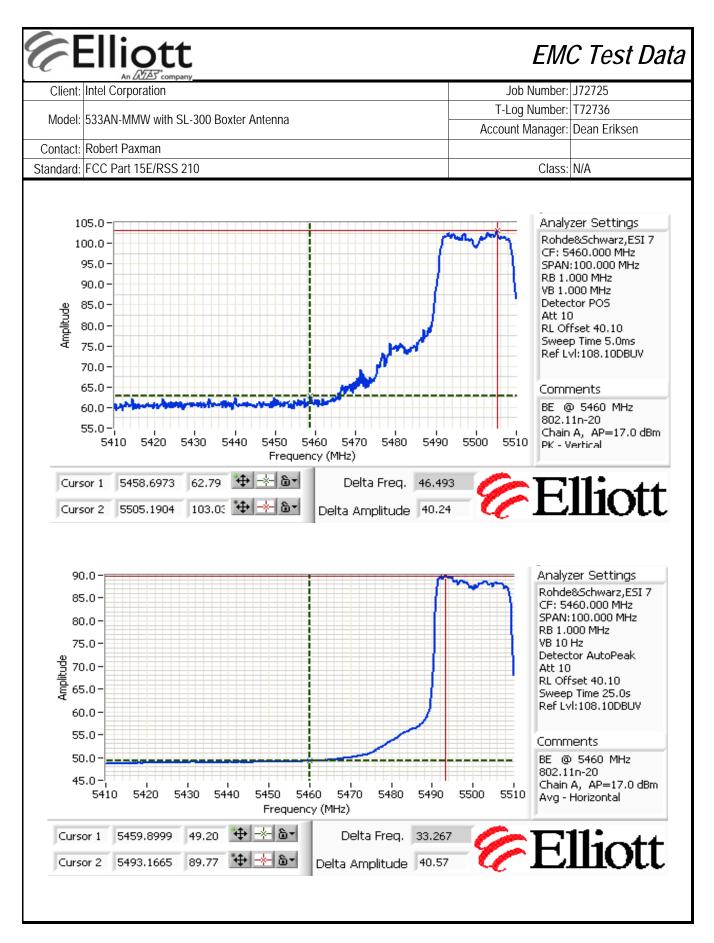

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

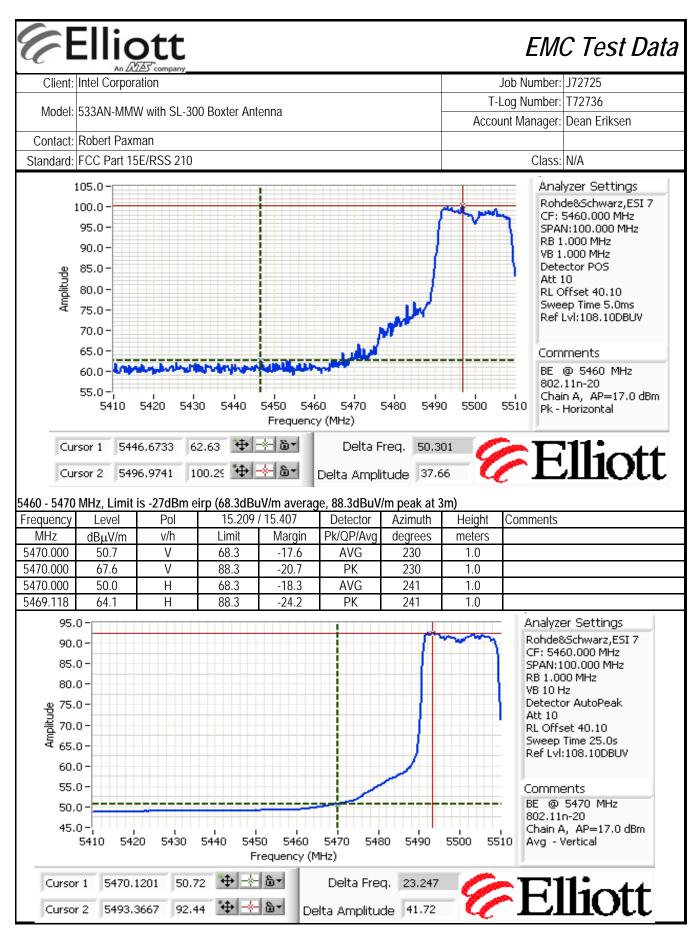
Ambient Conditions:	Temperature:	15-25 °C
	Rel. Humidity:	35-55 %

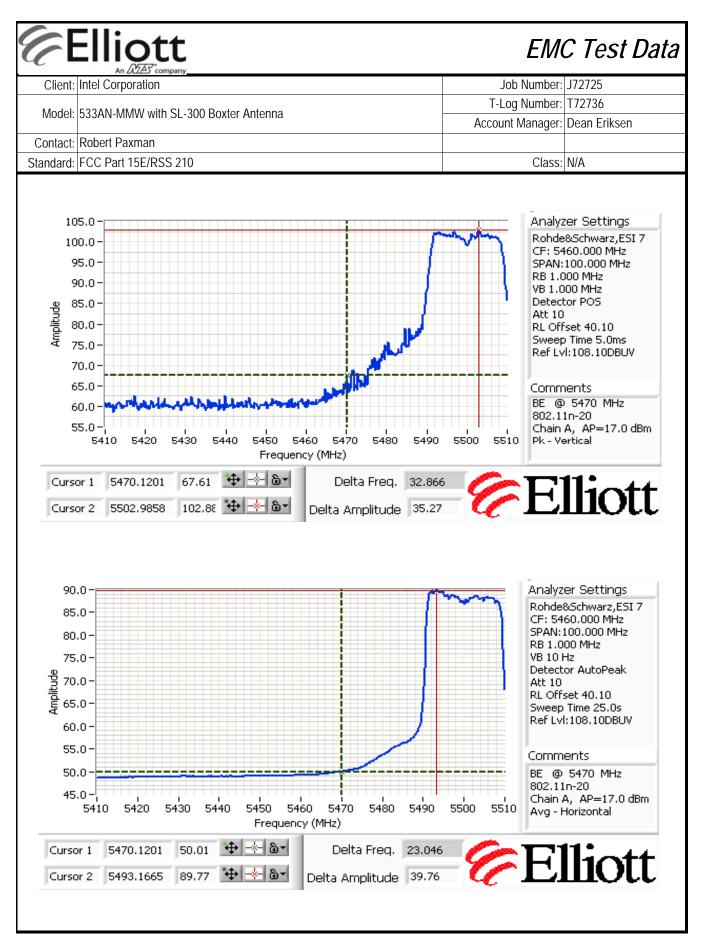

Summary of Results

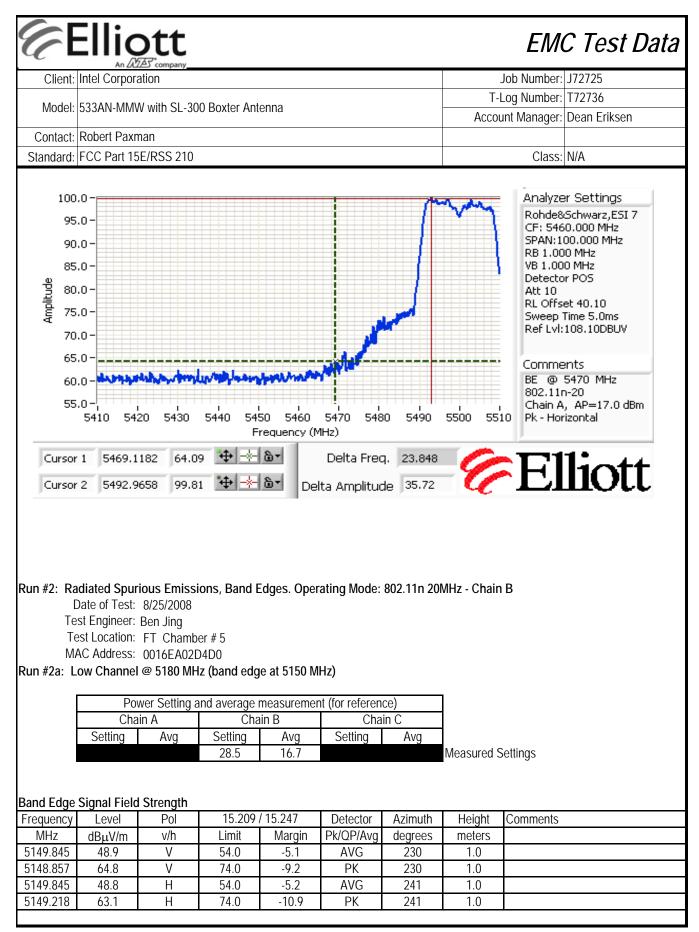

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	802.11n20 Chain A	5180MHz	28.0	16.1	Band Edge radiated field strength	FCC Part 15.209	48.4dBµV/m @ 5149.8MHz (-5.6dB)
1	802.11n20 Chain A	5320MHz	24.0	16.7	Band Edge radiated field strength	FCC Part 15.209	48.9dBµV/m @ 5350.1MHz (-5.1dB)
I	802.11n20	5500MHz	22.5	17.0	Band Edge - 5460- 5470MHz	FCC Part 15E	50.7dBµV/m @ 5470.0MHz (-17.6dB)
	Chain A	5500IVII 12	22.5	17.0	Band Edge field strength - 5460MHz	FCC Part 15.209	49.3dBµV/m @ 5459.1MHz (-4.7dB)
	802.11n20 Chain B	5180MHz	28.5	16.7	Band Edge radiated field strength	FCC Part 15.209	48.9dBµV/m @ 5149.8MHz (-5.1dB)
2	802.11n20 Chain B	5320MHz	25.5	16.6	Band Edge radiated field strength	FCC Part 15.209	49.3dBµV/m @ 5350.2MHz (-4.7dB)
Z	802.11n20	5500MHz	24.5	16.6	Band Edge - 5460- 5470MHz	FCC Part 15E	49.8dBµV/m @ 5469.8MHz (-18.5dB)
	Chain B	3300IVINZ	24.0	10.0	Band Edge field strength - 5460MHz	FCC Part 15.209	49.5dBµV/m @ 5459.9MHz (-4.5dB)
	802.11n20 Chain A+B	5180MHz	26.5 26.5	13.5 13.7	Band Edge radiated field strength	FCC Part 15.209	48.5dBµV/m @ 5149.8MHz (-5.5dB)
3	802.11n20 Chain A+B	5320MHz	23.0 23.5	13.5 13.5	Band Edge radiated field strength	FCC Part 15.209	48.9dBµV/m @ 5367.6MHz (-5.1dB)
3	802.11n20	5500MHz	20.5	13.6	Band Edge - 5460- 5470MHz	FCC Part 15E	49.5dBµV/m @ 5469.0MHz (-18.8dB)
	Chain A+B	JJUUIVIAZ	23.0	13.5	Band Edge field strength - 5460MHz	FCC Part 15.209	49.4dBµV/m @ 5459.7MHz (-4.6dB)

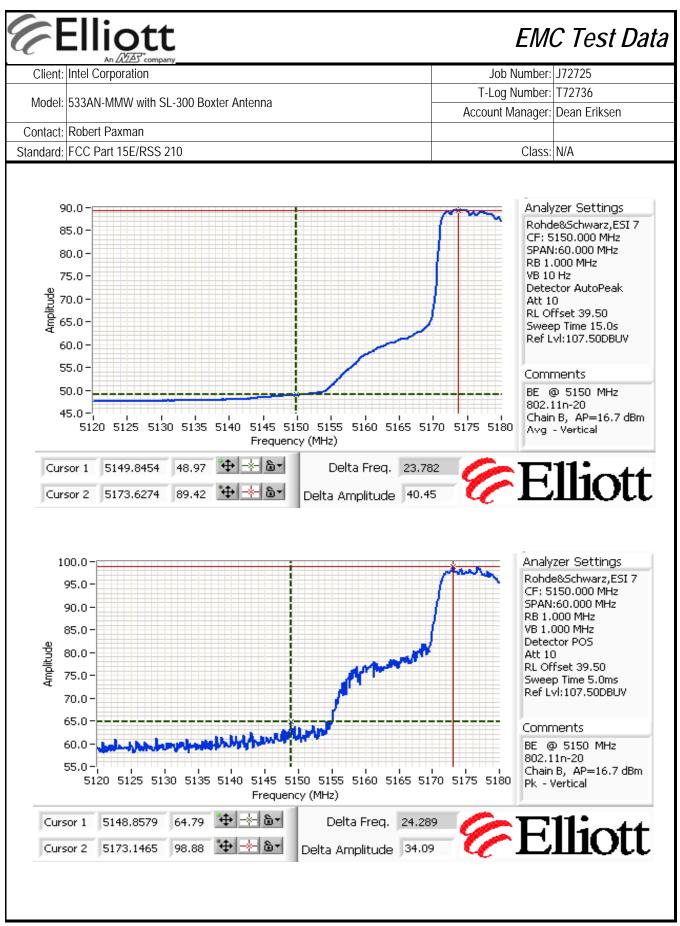

6	Ellic	ott						EM	C Test Dat
Client:	Intel Corpora	ation					J	ob Number:	J72725
Model		N with CL 20	10 Doutor Ant	onna			T-L	og Number:	T72736
iviodel:	533AIN-IVIIVIV	w with SL-30	0 Boxter Ant				Accou	nt Manager:	Dean Eriksen
	Robert Paxn								
Standard:	FCC Part 15	E/RSS 210						Class:	N/A
o modificat		ade to the E	UT during tes	sting					
	s From Th								
o deviatior	is were made	e from the re	quirements o	f the standa	rd.				
L Te Te M/	Date of Test: st Engineer: est Location: AC Address: ow Channel	8/25/2008 Ben Jing FT Chamb 0016EA02I @ 5180 MH	er # 5 04D0 Iz (band edg	e at 5150 M			MHz - Chain	A	
		Ŭ,			nt (for referen				
	Cha		Cha		Cha				
	Setting 28.0	Avg 16.1	Setting	Avg	Setting	Avg	Measured S		
and Edge requency MHz	Signal Field Level dBµV/m	Strength Pol v/h	15.209 / Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
5149.845	48.4	V	54.0	-5.6	AVG	230	1.0		
149.939	61.7	V	74.0	-12.3	PK	230	1.0		
149.819	45.1	H	54.0	-8.9	AVG	241	1.0		
142.845	60.8	H	74.0	-13.2	PK	241	1.0		
105. 100. 95. 90. 85. 80. 80. 75. 70. 65. 65.		5130 513		45 5150	5155 5160 1	5165 5170		CF: 5156 SPAN:60 RB 1.000 VB 1.000 Detector Att 10 RL Offse Sweep T Ref Lvl:1 Comme BE @ 5 802.11n Chain A,	5chwarz,ESI 7 0.000 MHz 0.000 MHz 0 MHz 0 MHz POS 0 39.50 ime 5.0ms 07.50DBUV hts 150 MHz -20 AP=16.1 dBm
Cursor	_		Fre	equency (M			5175 5100	Pk - Vert	liott

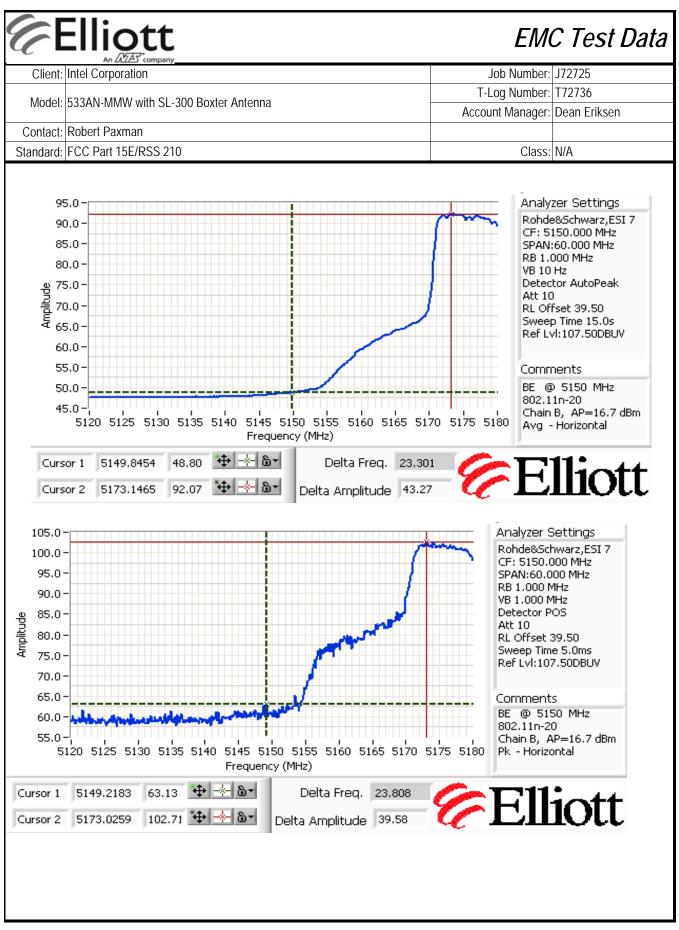



	Ellig	ノしし							
	An R	ZAS company						Job Number:	J72725
	· · ·							Log Number:	
Model:	533AN-MM\	/v with SL-30	U Boxter Ant	enna				0	Dean Eriksen
Contact:	Robert Paxr	man						<u> </u>	
andard:	FCC Part 15	5E/RSS 210						Class:	N/A
	85.0-							Ana	lyzer Settings
	80.0-						(marked		de&Schwarz,ESI 7 5150.000 MHz
	75.0-							SPA	N:60.000 MHz
	70.0-								500 kHz 10 Hz
								Dete	ector AutoPeak
plitu	65.0 - 60.0 -							Att RL C	10 Offset 39.50
Amj	60.0-						/	Swe	ep Time 30.0s Lvl:107.50DBUV
	55.0-							Rer	LAI: 107.20DBOA
	50.0-				/			Corr	nments
	45.0-							BE	@ 5150 MHz
	40.0-							802	.11n-20 in A, AP=16.1 dBm
	5120 5	125 5130	5135 5140			60 5165 5	170 5175	5180 Avg	- Horizontal
	5120 5	125 5130	5135 5140	Frequency	y (MHz)				- Horizontal
	irsor 1 514	49.8198 4	5135 5140		y (MHz)	req. 27.1			
Cu	irsor 1 514	49.8198 4 76.9941 8	5.09 🕁	Frequenc	y (MHz) Delta Ampl	req. 27.1			- Horizontal
Cu	irsor 1 514 irsor 2 517	49.8198 4 76.9941 8	5135 5140 5.09 🔶	Frequenc 	y (MHz) Delta F Delta Ampl	itude 36.			- Horizontal
Cu	irsor 1 514 Irsor 2 517 ligh Channel Po Cha	49.8198 4 76.9941 8	5135 5140 5.09 🕂	Frequence 	v (MHz) Delta F Delta Ampl IHz) nt (for referen Cha	req. 27.1 itude 36. ce) in C			- Horizontal
Cu	irsor 1 514 Irsor 2 517 ligh Channel Por Cha Setting	49.8198 4 76.9941 8 I @ 5320 MH wer Setting a ain A Avg	5135 5140 5.09 🔶	Frequenc 	y (MHz) Delta Ampl Delta Ampl IHz) nt (for referen	Freq. 27.1 itude 36.	174	Ē	- Horizontal
Cu	irsor 1 514 Irsor 2 517 ligh Channel Po Cha	19.8198 4 76.9941 8 I @ 5320 MH wer Setting a in A	5135 5140 5.09 🕂	Frequence 	v (MHz) Delta F Delta Ampl IHz) nt (for referen Cha	req. 27.1 itude 36. ce) in C		Ē	- Horizontal
Cu	irsor 1 514 Irsor 2 517 ligh Channel Po Cha Setting 24.0	19.8198 4 76.9941 8 1 @ 5320 MH wer Setting a sin A Avg 16.7	5135 5140 5.09 🕂	Frequence 	v (MHz) Delta F Delta Ampl IHz) nt (for referen Cha	req. 27.1 itude 36. ce) in C	174	Ē	- Horizontal
Cu n #1b: H	irsor 1 514 Irsor 2 517 ligh Channel Por Cha Setting	19.8198 4 76.9941 8 1 @ 5320 MH wer Setting a sin A Avg 16.7	5135 5140 5.09 🔶 1.57 �	Frequence 	v (MHz) Delta F Delta Ampl IHz) nt (for referen Cha Setting	req. 27.1 itude 36. ce) in C	174	Ē	- Horizontal
cu at #1b: H ad Edge quency MHz	igh Channel Por Cha Setting 24.0 Signal Field Level dBµV/m	19.8198 4 76.9941 8 76.9941 8 1 @ 5320 MH wer Setting a ain A Avg 16.7 16.7 1 Strength Pol v/h	5135 5140 5.09 🕂 1.57 🕂 1.57 🔶 1.57 🕀 1.57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Frequence 	v (MHz) Delta Ampl Delta Ampl IHz) nt (for referen Cha Setting Detector Pk/QP/Avg	ce) in C Azimuth degrees	Measured S	Settings	- Horizontal
cu a #1b: H d Edge quency MHz 50.060	igh Channel Po Cha Setting 24.0 Signal Field Level dBµV/m 48.9	19.8198 4 76.9941 8 76.9941 8 1 @ 5320 MH wer Setting a ain A Avg 16.7 1 Strength Pol V/h V	5135 5140 5.09 ↔ 1.57 ↔ 1.57 ↔ 2 (band edg ind average Cha Setting 15.209 ↓ Limit 54.0	Frequence 	v (MHz) Delta Ampl Delta Ampl IHz) nt (for referen Cha Setting Detector Pk/QP/Avg AVG	ce) in C Azimuth degrees 230	Measured S Height meters 1.0	Settings	- Horizontal
cu at #1b: H ad Edge quency MHz	igh Channel Por Cha Setting 24.0 Signal Field Level dBµV/m	19.8198 4 76.9941 8 1 @ 5320 MH wer Setting a ain A Avg 16.7 1 Strength Pol v/h	5135 5140 5.09 🕂 1.57 🕂 1.57 🔶 1.57 🕀 1.57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Frequence 	v (MHz) Delta Ampl Delta Ampl IHz) nt (for referen Cha Setting Detector Pk/QP/Avg	ce) in C Azimuth degrees	Measured S	Settings	- Horizontal





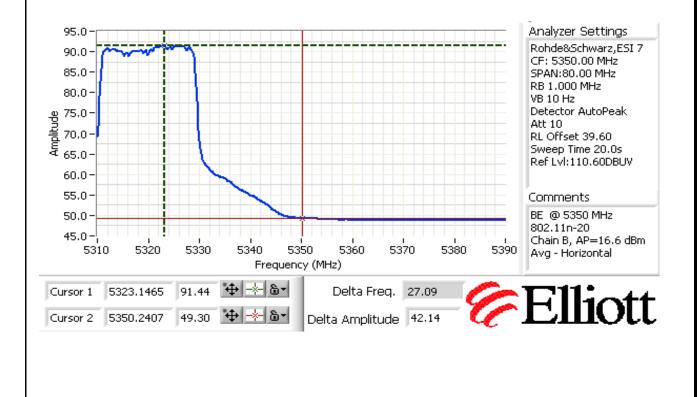


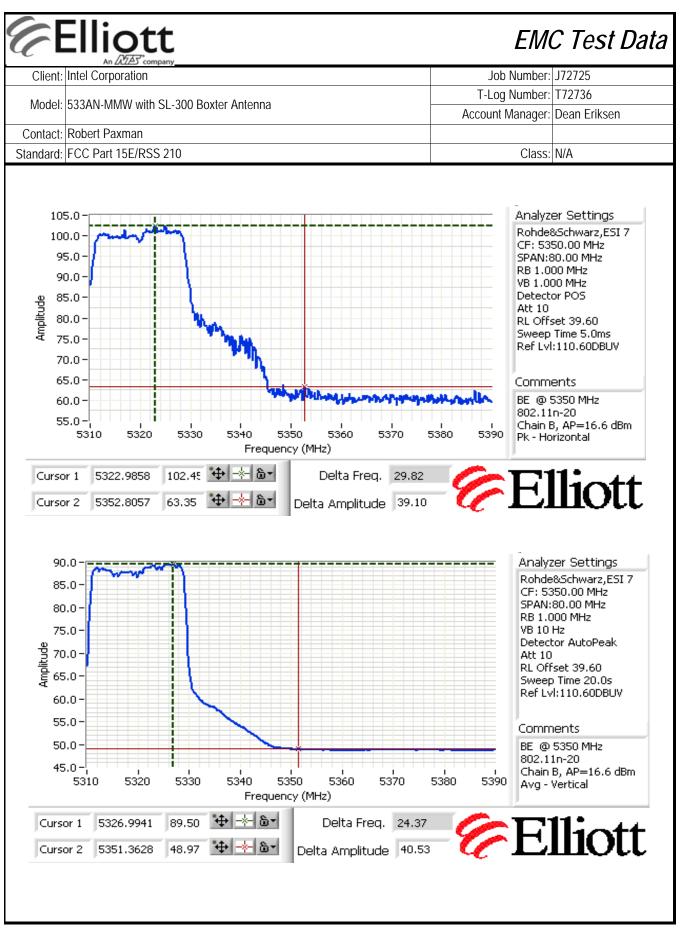


Elliott

EMC Test Data

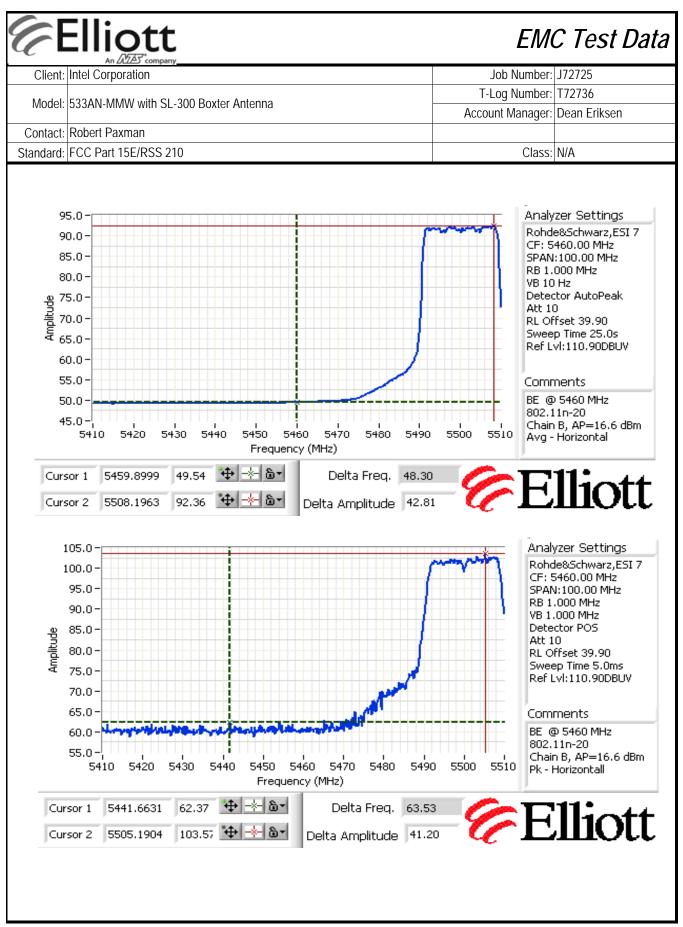
	An ZAZZAD company		
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
MOUEI.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	N/A

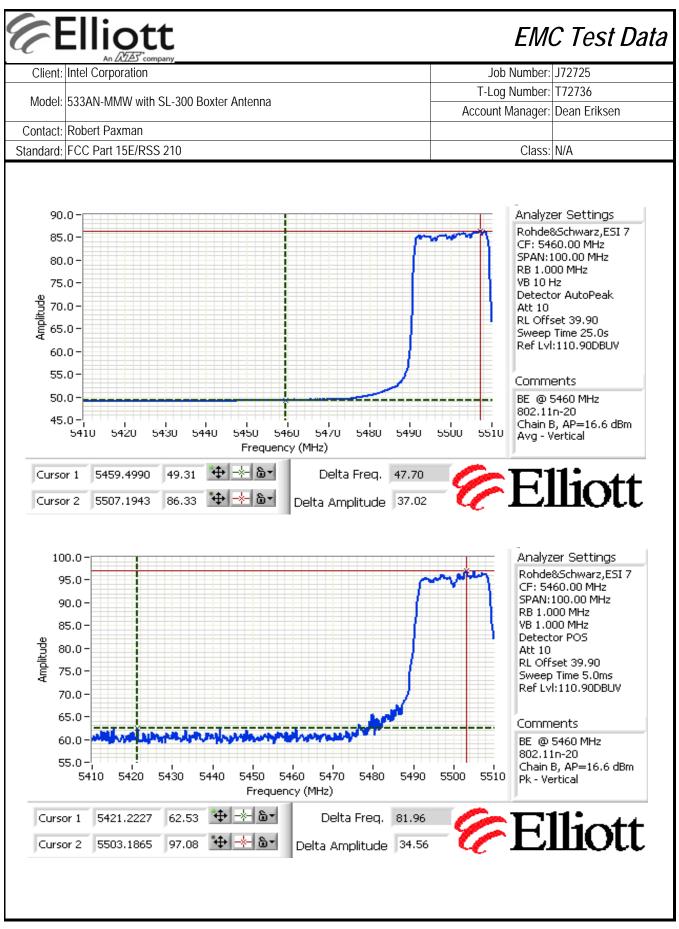

Date of Test: 8/26/2008 Test Engineer: Ben Jing Test Location: FT Chamber # 4 MAC Address: 0016EA02D4D0

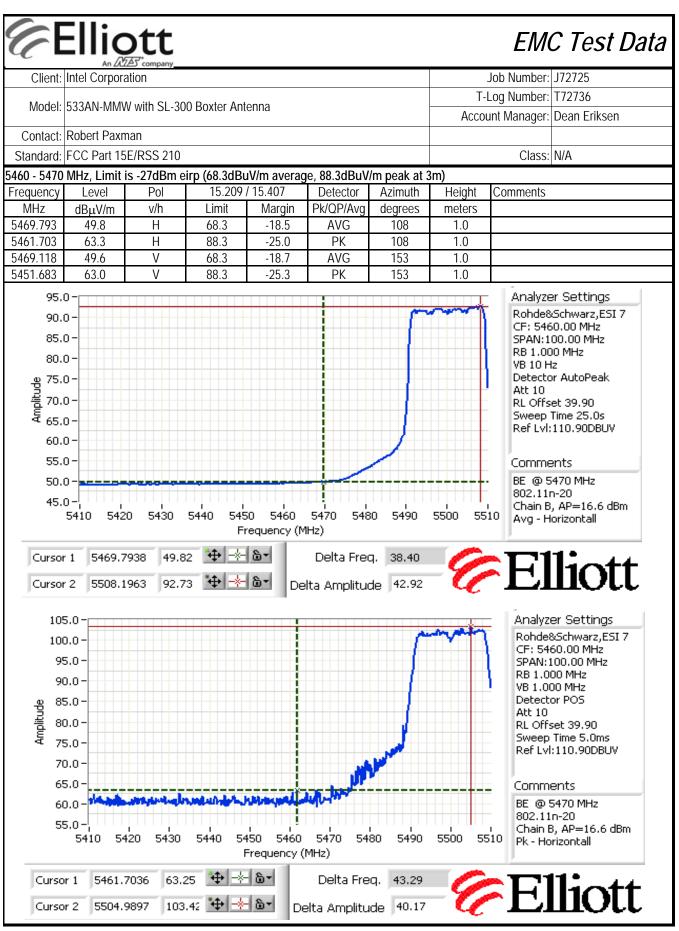

Run #2b: High Channel @ 5320 MHz (band edge at 5350 MHz)

Po	Power Setting and average measurement (for reference)									
Cha	ain A	Cha	nin B	Cha	in C					
Setting	Avg	Setting	Avg	Setting	Avg					
		25.5	16.6							

Band Edge Signal Field Strength

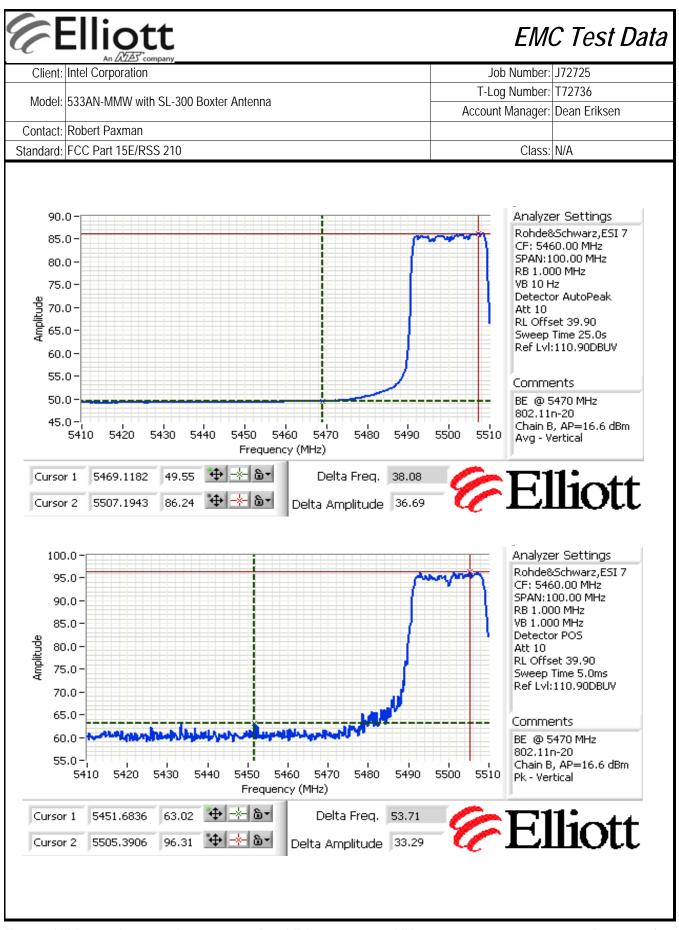

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.241	49.3	Н	54.0	-4.7	AVG	205	1.0	
5352.805	63.4	Н	74.0	-10.6	PK	205	1.0	
5351.362	49.0	V	54.0	-5.0	AVG	127	1.0	
5352.965	62.0	V	74.0	-12.0	PK	127	1.0	





	Ellig	DTT MAS [*] company					EMC Test Da			
Client:	Intel Corpo							Job Number:	J72725	
Model		IW with SL-30	0 Poytor Ant	onno			T-	Log Number:	T72736	
wouer.	2224IA-IAIIA		U DUXIELATI	enna			Acco	unt Manager:	Dean Eriksen	
Contact: Robert Paxman										
Standard: FCC Part 15E/RSS 210								Class: N/A		
1 Amplitude	105.0 - 95.0 - 90.0 - 85.0 - 80.0 - 75.0 - 70.0 - 65.0 - 55.0 - 5310	5320	53'30 53	40 535		53 70		Rohd CF: 5 SPAN RB 1. VB 1. Dete: Att 1 RL OI Sweet Ref L Comr BE @ 802.1 L Chair	/zer Settings le&Schwarz,ESI 7 i350.00 MHz i360.00 MHz 000 MHz ctor POS 0 ffset 39.60 p Time 5.0ms vl:110.60DBUV ments 0 5350 MHz 11n-20 n B, AP=16.6 dBm /ertical	
Cur	sor 2 53	52.9658 62 el @ 5500 MH	z (restricted ind average Cha Setting	k B I k B	Delta Amplit Delta Amplit e at 5460 MHz nt (for referen Cha Setting	z, allocated l	4	-	lliot	
Cur	sor 2 53	52.9658 62 el @ 5500 MH <u>ower Setting a</u> ain A	z (restricted nd average Cha	A band edge measureme ain B	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha	z, allocated in C	4	-	lliot	
un #2c: L	ow Channe Proceeding Signal Fiel	el @ 5500 MH ower Setting a ain A Avg	z (restricted and average Cha Setting 24.5	Avg 16.6	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha Setting	z, allocated l ce) in C Avg	4 V	at 5470MHz)	lliot	
un #2c: L and Edge requency	ow Channe Ch Setting Signal Fiel Level	el @ 5500 MH ower Setting a ain A Avg d Strength Pol	z (restricted ind average Cha Setting 24.5	Avg 16.6	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha Setting Detector	z, allocated (ce) in C Avg Azimuth	4 Contract of the second secon	-	lliot	
un #2c: L and Edge requency MHz	sor 2 53 ow Channe Ch Setting Signal Fiel Level dBµV/m	el @ 5500 MH ower Setting a ain A Avg d Strength Pol v/h	z (restricted ind average Cha Setting 24.5 15.209 Limit	Avg 16.6	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha Setting Detector Pk/QP/Avg	z, allocated ce) in C Avg Azimuth degrees	4 Contraction of the second se	at 5470MHz)	lliot	
un #2c: L and Edge requency MHz 5459.899	sor 2 53 ow Channe Ch Setting Signal Fiel dBµV/m 49.5	el @ 5500 MH ower Setting a ain A Avg d Strength Pol v/h H	z (restricted and average Cha Setting 24.5 15.209 Limit 54.0	Avg 16.6 / 15.247 Margin -4.5	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha Setting Detector Pk/QP/Avg AVG	z, allocated l ce) in C Avg Azimuth degrees 108	Height meters 1.0	at 5470MHz)		
un #2c: L and Edge requency MHz	sor 2 53 ow Channe Ch Setting Signal Fiel Level dBµV/m	el @ 5500 MH ower Setting a ain A Avg d Strength Pol v/h	z (restricted ind average Cha Setting 24.5 15.209 Limit	Avg 16.6	Delta Fr Delta Amplit e at 5460 MHz nt (for referen Cha Setting Detector Pk/QP/Avg	z, allocated ce) in C Avg Azimuth degrees	4 Contraction of the second se	at 5470MHz)		

T72736 NII Boxter Antenna.xls



T72736 NII Boxter Antenna.xls

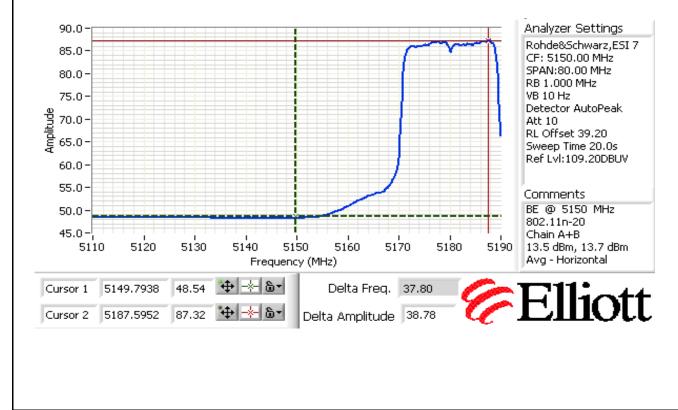
Band Edge 802.11n 20MHz

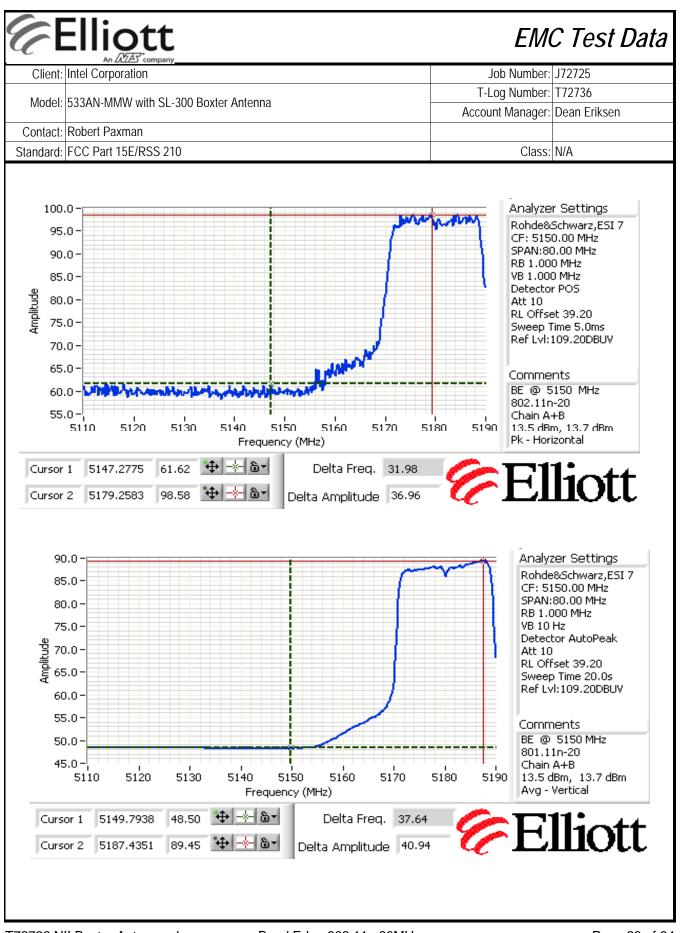
Elliott

EMC Test Data

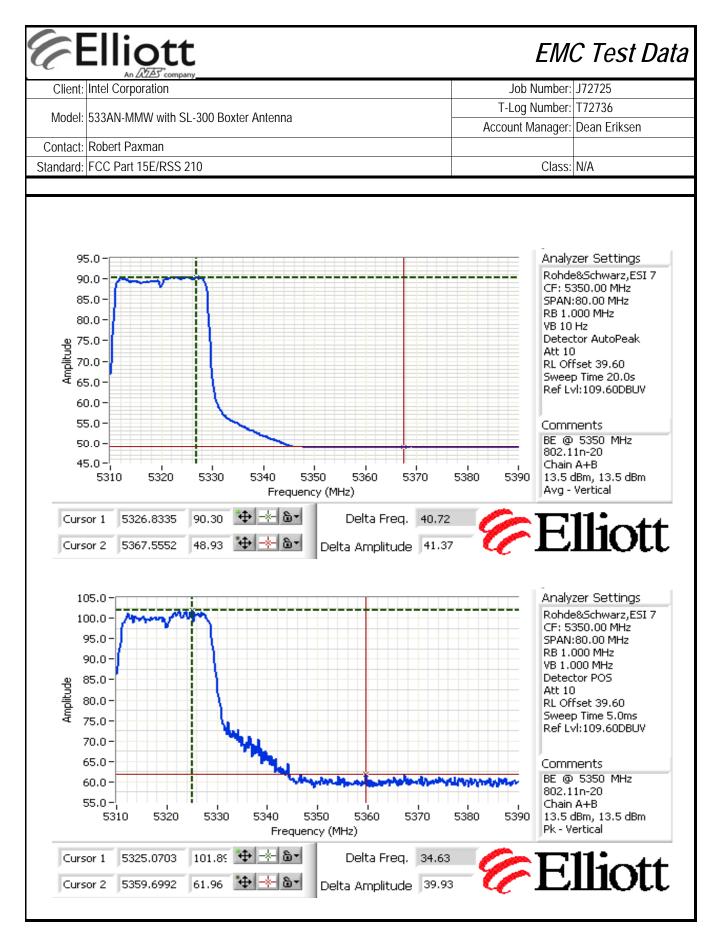
	An ZALZED company		
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
MOUEI.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	N/A

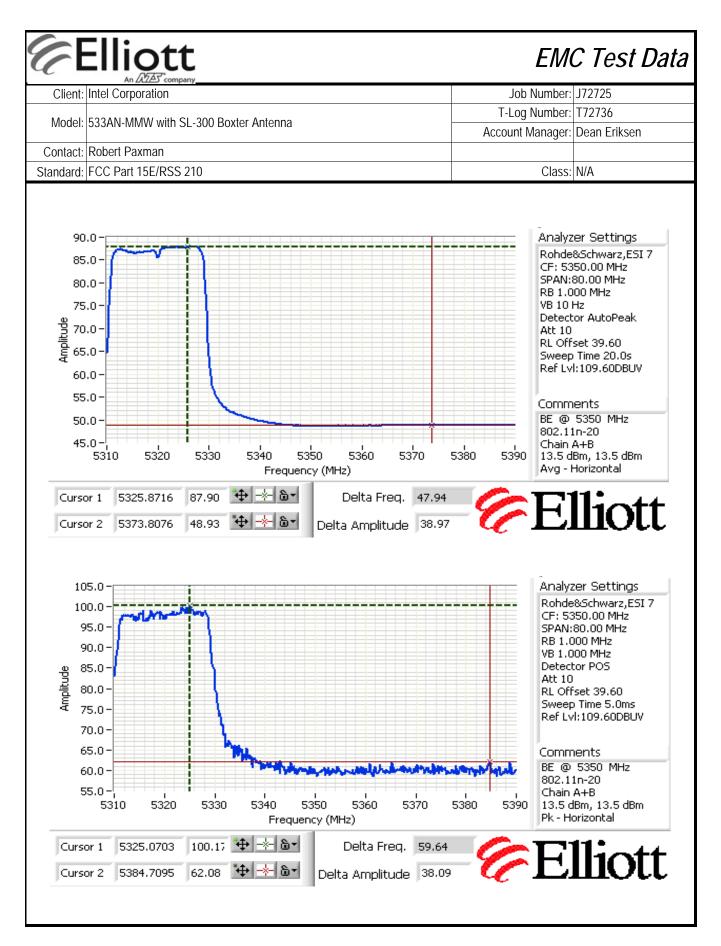
Run #3: Radiated Spurious Emissions, Band Edges. Operating Mode: 802.11n 20MHz - Chain A+B

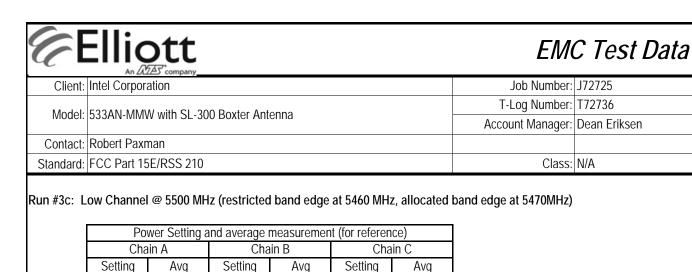

Date of Test: 8/27/2008 Test Engineer: Ben Jing Test Location: FT Chamber # 4 MAC Address: 0016EA02D4D0


Run #3a: Low Channel @ 5180 MHz (band edge at 5150 MHz)

Power Setting and average measurement (for reference)									
Cha	iin A	Cha	iin B	Cha	in C				
Setting	Avg	Setting	Avg	Setting	Avg				
26.5	13.5	26.5	13.7						

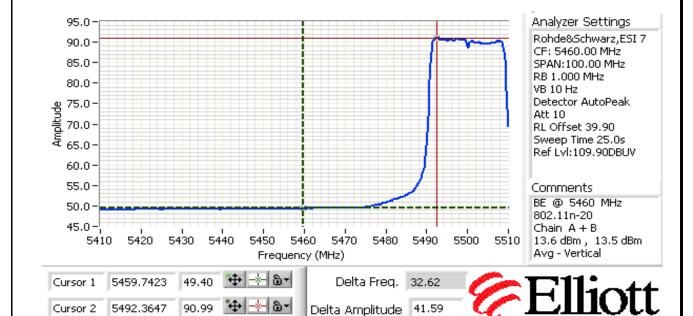

Band Edge Signal Field Strength

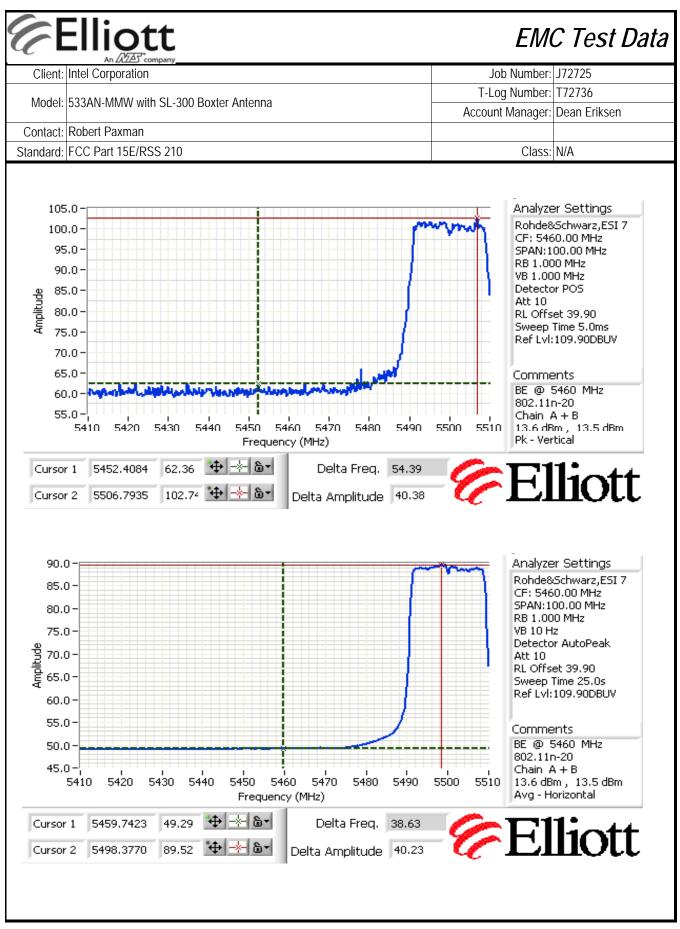

Dania Eage								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.793	48.5	Н	54.0	-5.5	AVG	111	1.0	
5147.277	61.6	Н	74.0	-12.4	PK	111	1.0	
5149.793	48.5	V	54.0	-5.5	AVG	152	1.0	
5129.719	62.9	V	74.0	-11.1	PK	152	1.0	

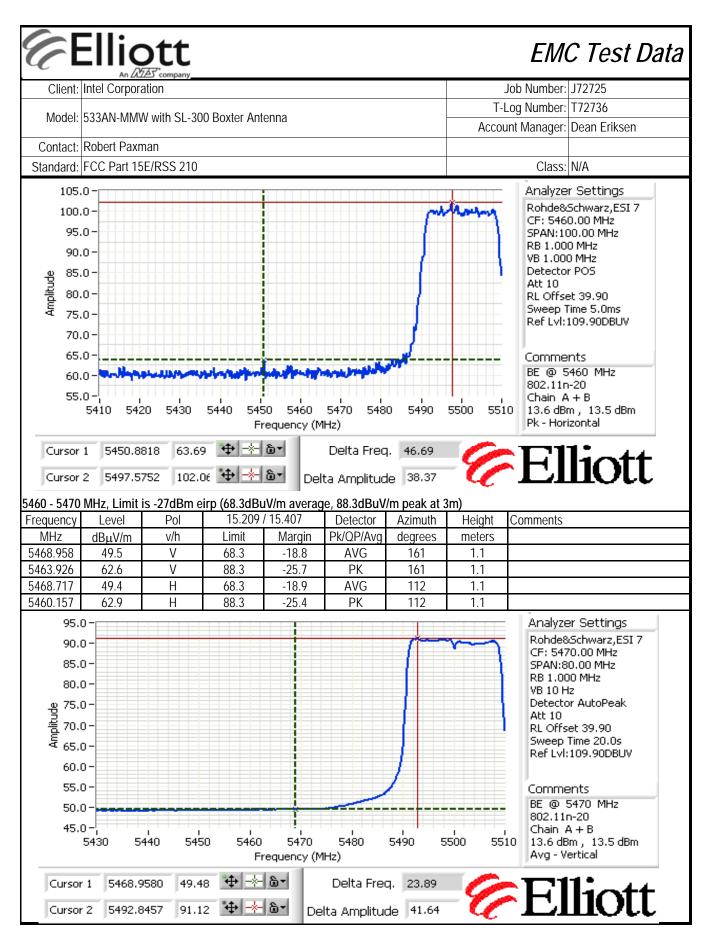


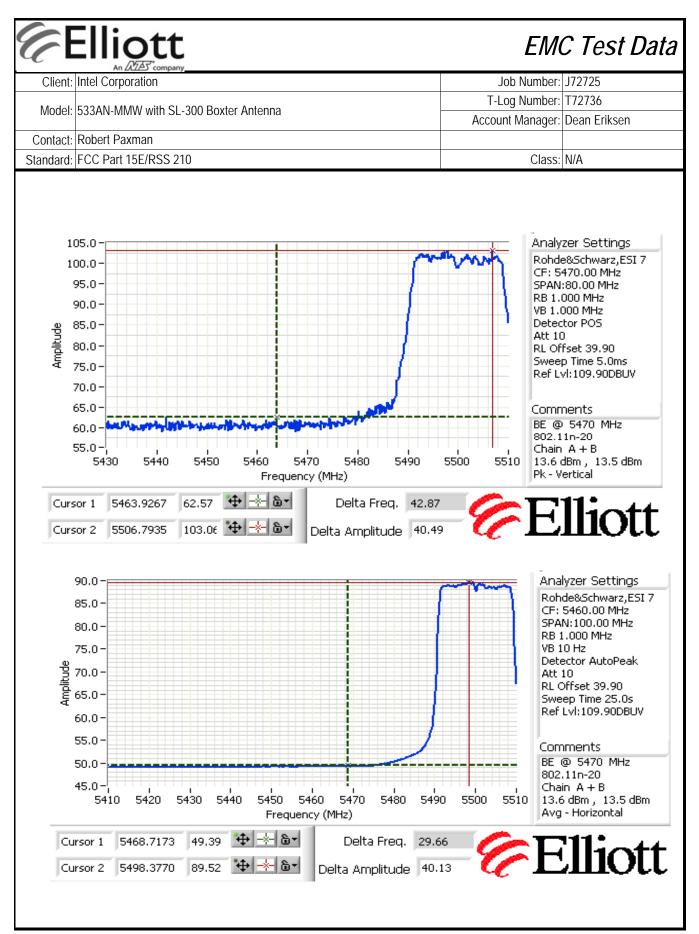
		ATAS comp	any					
Client:	Intel Corp	oration						Job Number: J72725
Model [.]	533AN-MI	MW with S	SL-300 Boxter	Antenna				Log Number: T72736
	Robert Paxman							unt Manager: Dean Eriksen
tandard:	FCC Part	15E/RSS	210					Class: N/A
105								Analyzer Settings
100							A	Rohde&Schwarz,ESI 7
						me	v ~ 1	CF: 5150.00 MHz
	5.0-							SPAN:80.00 MHz RB 1.000 MHz
).0-							VB 1.000 MHz
- 월 85	5.0-							Detector POS Att 10
Amplitude 68).0-							RL Offset 39.20
₹ 75	5.0-					1		Sweep Time 5.0ms Ref Lyl:109.20DBUV
70).0-							
65	5.0-				and the second s			Comments
60).0	المواحريين	Production of	alph water				BE @ 5150 MHz
55	5.0-							801.11n-20 Chain A+B
	5110	5120	5130 5	140 5150	5160	5170 5	5180 51	90 13.5 dBm, 13.7 dBm
				Frequency (MHz)			Pk - Vertical
Cursor	r 1 5129	9.7192	62.96 💠	-*- & -	Delta Fre	q. 57.07		
Cursor	r 2 5186	2005	8. 4 . (1.1.2.1				
100,000		5.7935	102.65 🕁		elta Amplitu:	de 39.69	-U	Elliott
,	igh Chanr	nel @ 532 Power Set hain A	0 MHz (band	edge at 5350 M ge measureme Chain B	IHz) nt (for referen Chain C	ce)		EIIIOU
,	igh Chanr F C Setting	nel @ 532 Power Set hain A Av	0 MHz (band ting and avera g Setting	edge at 5350 M ge measureme Chain B g Avg	1Hz) nt (for referen			EIIIOU
7	igh Chanr	nel @ 532 Power Set hain A	0 MHz (band ting and avera g Setting	edge at 5350 M ge measureme Chain B	IHz) nt (for referen Chain C	ce)		- EIIIOU
n #3b: Hi	igh Chanr F C Setting 23. 0	nel @ 532 Power Set hain A Avy 13.	0 MHz (band ting and avera g Setting 5 23.5	edge at 5350 M ge measureme Chain B g Avg	IHz) nt (for referen Chain C	ce)		LIIIOU
n #3b: Hi nd Edge	igh Chanr F C Setting	nel @ 532 Power Set hain A Avy 13.	0 MHz (band ting and avera g Setting 5 23.5 gth	edge at 5350 M ge measureme Chain B g Avg	IHz) nt (for referen Chain C	ce)	Height	Comments
n #3b: Hi nd Edge equency MHz	igh Chanr F C Setting 23. 0 Signal Fie	nel @ 532 Power Set hain A Av 13. eld Streng	0 MHz (band of ting and avera g Setting 5 23.5 gth 1 15.2 h Limit	edge at 5350 M ge measureme Chain B J Avg 13.5	IHz) nt (for referen Chain C Setting	ce) Avg		
ın #3b: Hi nd Edge equency MHz 367.555	igh Chanr F C Setting 23. 0 Signal Fie Level dBμV/m 48.9	nel @ 532 Power Set hain A Avi 13. eld Streng Po V/t V	0 MHz (band ting and avera g Setting 5 23.5 gth I 15.2 n Limit 54.0	edge at 5350 M ge measureme Chain B g Avg 13.5 09 / 15.247 Margin -5.1	IHz) nt (for referen Chain C Setting Detector Pk/QP/Avg AVG	ce) Avg Azimuth degrees 159	Height meters 1.0	
n #3b: Hi nd Edge equency MHz 367.555 359.699	igh Chanr F C Setting 23. 0 Signal Fie dBµV/m 48.9 61.9	nel @ 532 Power Set hain A 13. eld Strenç Po v/r V	0 MHz (band ting and avera g Setting 5 23.5 gth 1 15.2 n Limit 54.0 74.0	edge at 5350 M ge measureme Chain B J Avg 13.5 09 / 15.247 09 / 15.247 Margin -5.1 -12.1	IHz) nt (for referen Chain C Setting Detector Pk/QP/Avg AVG PK	ce) Avg Azimuth degrees 159 159	Height meters 1.0 1.0	
n #3b: Hi nd Edge equency MHz 367.555	igh Chanr F C Setting 23. 0 Signal Fie Level dBμV/m 48.9	nel @ 532 Power Set hain A Avi 13. eld Streng Po V/t V	0 MHz (band ting and avera g Setting 5 23.5 gth 1 15.2 h Limit 54.0 74.0 54.0	edge at 5350 M ge measureme Chain B g Avg 13.5 09 / 15.247 Margin -5.1	IHz) nt (for referen Chain C Setting Detector Pk/QP/Avg AVG	ce) Avg Azimuth degrees 159	Height meters 1.0	

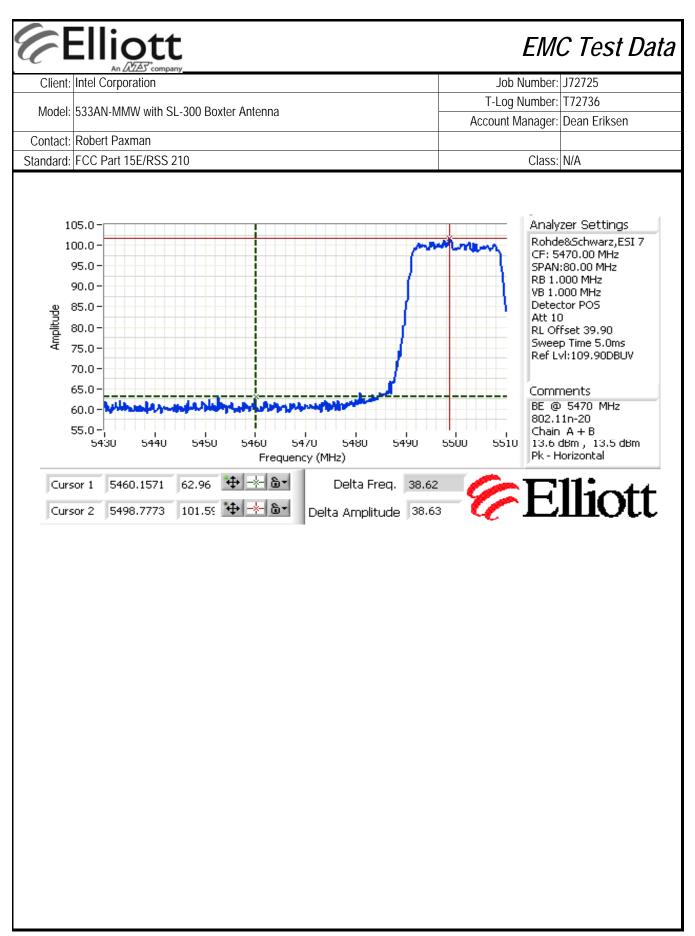
13.5


Band Edge Signal Field Strength


20.5

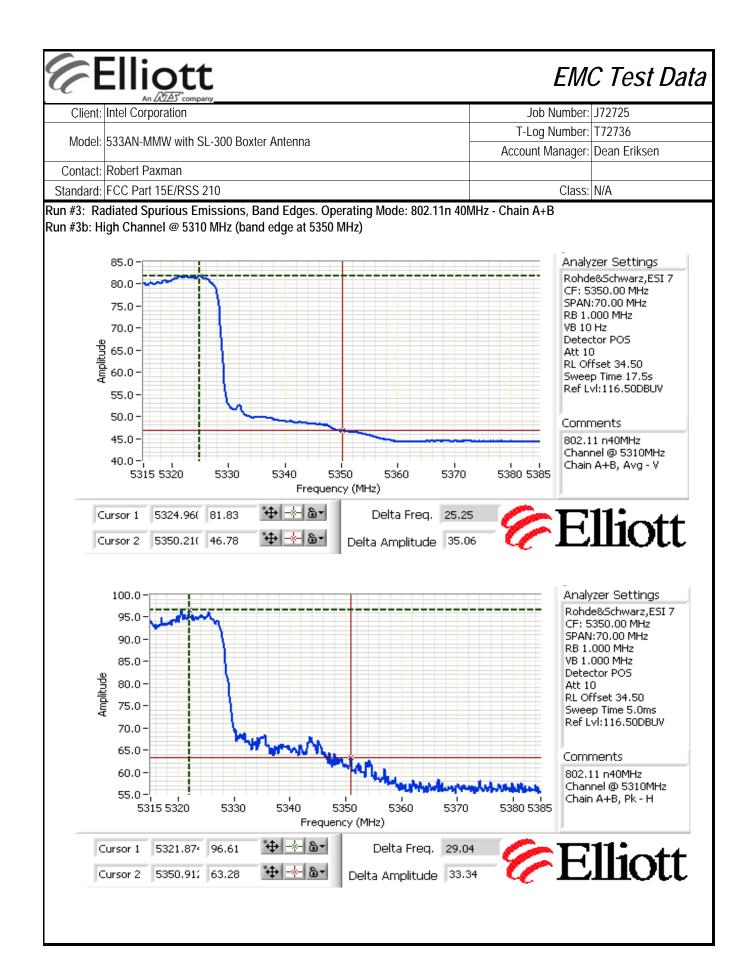

13.6

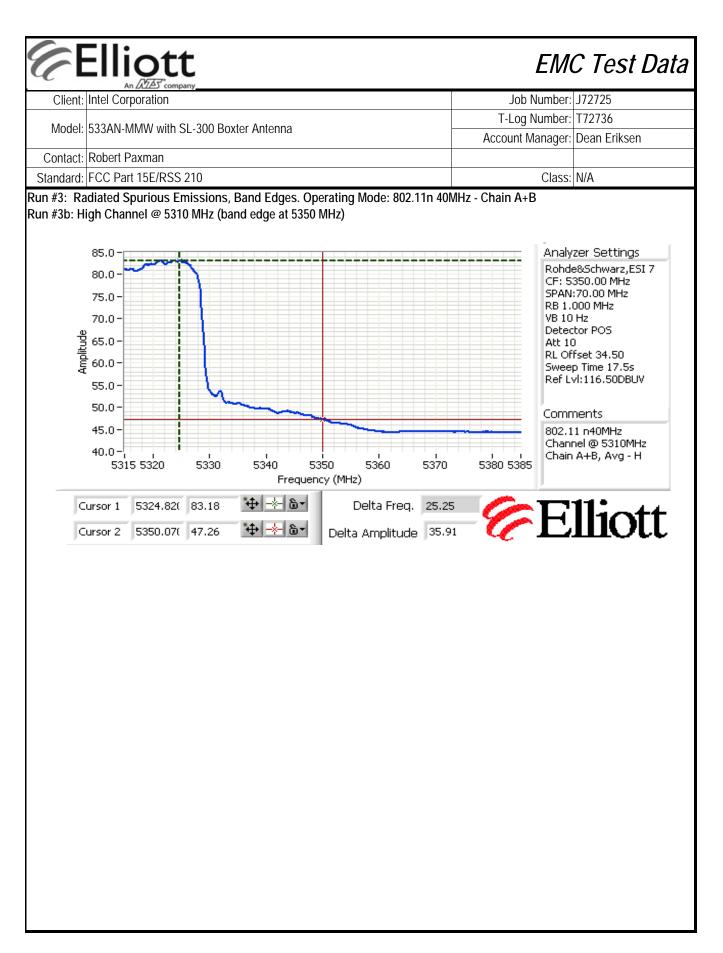

23.0

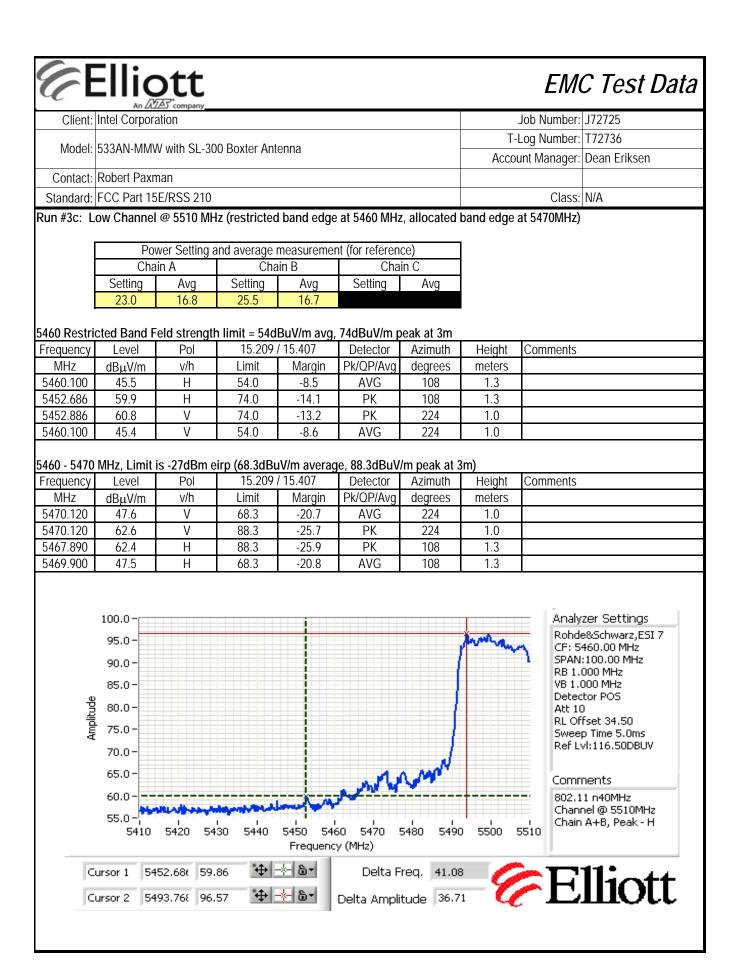

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.742	49.4	V	54.0	-4.6	AVG	161	1.1	
5452.408	62.4	V	74.0	-11.6	PK	161	1.1	
5459.742	49.3	Н	54.0	-4.7	AVG	112	1.1	
5450.881	63.7	Н	74.0	-10.3	PK	112	1.1	

6		ott				EM	C Test Data
Client:	Intel Corpora	ation				Job Number:	J72725
Madalı	533AN-MM	N with CL 20	0 Poytor Ant	0000		T-Log Number:	T72736
Model:	533AIN-IVIIVIV	W WILLI SL-30	IU BUXIEI AIII	еппа		Account Manager:	Dean Eriksen
	Robert Paxr						
Standard:	FCC Part 15	E/RSS 210				Class:	N/A
	cific Detail	Band E	Edge Fie	eld Stren	5150- 550/525 gth 802.11n40 S	L-300 Antenna	
For radiated Ambient	Test Config I emissions te Conditions	guration esting the me s:	easurement a T				respect to the
Summary	/ of Result	S	Power	Measured			
Run #	Mode	Channel	Setting	Power	Test Performed	Limit	Result / Margin
1a	802.11n40 Chain A	5190MHz	25.5	14.5	Band Edge radiated field strength	FCC Part 15.209	51.7dBµV/m @ 5149.8MHz (-2.3dB)
1b	802.11n40 Chain A	5310MHz	22.0	15.0	Band Edge radiated field strength	FCC Part 15.209	53.2dBµV/m @ 5350.1MHz (-0.8dB)
1c	802.11n40	5510MHz	22.5	17.2	Band Edge - 5460- 5470MHz	FCC Part 15E	51.5dBµV/m @ 5469.8MHz (-16.8dB)
	Chain A				Band Edge radiated field strength	FCC Part 15.209	46.7dBµV/m @ 5459.7MHz (-7.3dB)
2a	802.11n40 Chain B	5190MHz	25.5	14.3	Band Edge radiated field strength	FCC Part 15.209	47.4dBµV/m @ 5149.7MHz (-6.6dB)
2b	802.11n40 Chain B	5310MHz	22.5	14.2	Band Edge radiated field strength	FCC Part 15.209	45.2dBµV/m @ 5350.1MHz (-8.8dB)
2c	802.11n40	5510MHz	23.0	15.4	Band Edge - 5460- 5470MHz	FCC Part 15E	46.6dBµV/m @ 5469.8MHz (-21.7dB)
	Chain B				Band Edge radiated field strength	FCC Part 15.209	45.2dBµV/m @ 5459.7MHz (-8.8dB)
	802.11n40 Chain A+B	5190MHz	26.0, 26.5	14.0, 14.5	Band Edge radiated field strength	FCC Part 15.209	47.8dBµV/m @ 5149.7MHz (-6.2dB)
3	802.11n40 Chain A+B	5310MHz	23, 25	15.1, 15.7	Band Edge radiated field strength	FCC Part 15.209	47.3dBµV/m @ 5350.1MHz (-6.7dB)
÷	802.11n40	5510MHz	23, 25.5	16.8, 16.7	Band Edge - 5460- 5470MHz	FCC Part 15E	45.5dBµV/m @ 5460.1MHz (-8.5dB)
	Chain A+B	331010112	20/20.0	10.0, 10.7	Band Edge radiated		47.6dBµV/m @

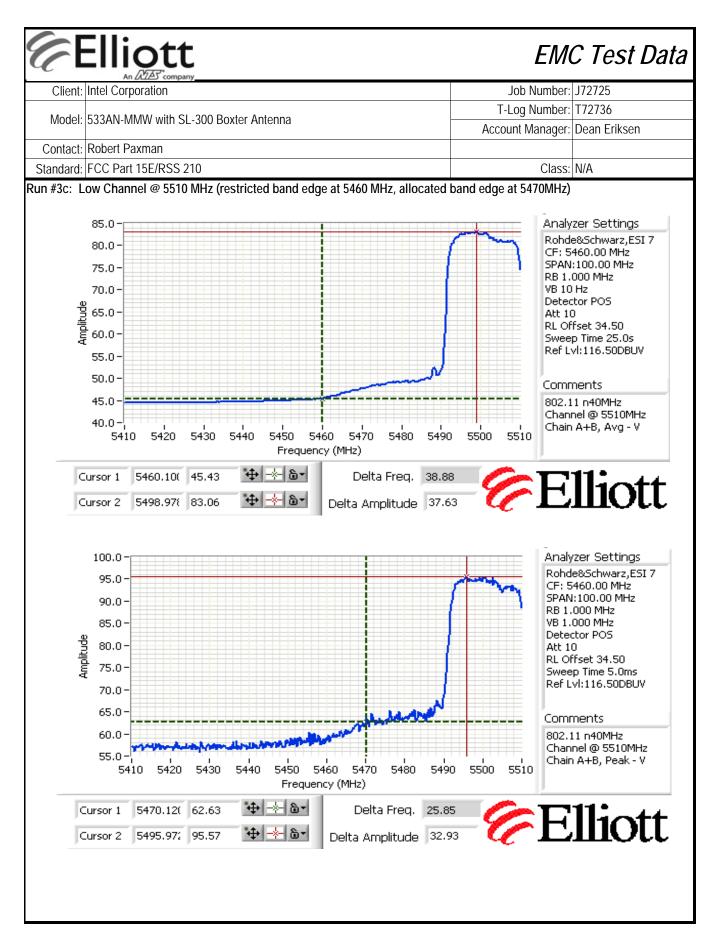
Modifications Made During Testing No modifications were made to the EUT during testing

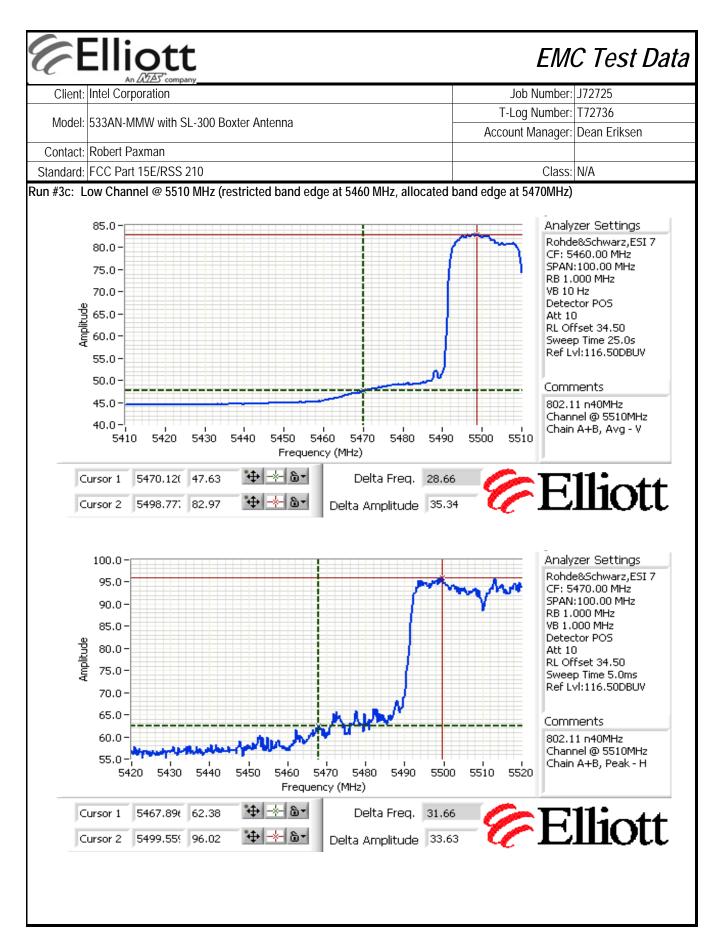

Deviations From The Standard

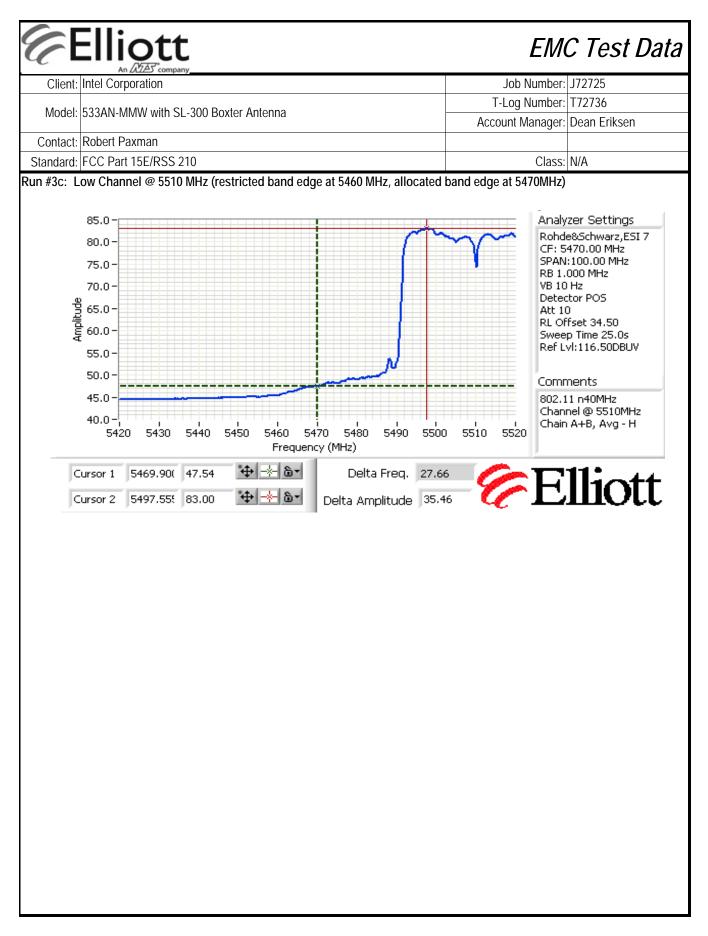

No deviations were made from the requirements of the standard.


Elliott

EMC Test Data


	Intel Corpora	ation						Job Number:	J/Z/Z0
								Log Number:	
Model:	533AN-MM\	N with SL-30	0 Boxter Ant	enna				0	Dean Eriksen
Contact:	Robert Paxr	nan							
Standard:	FCC Part 15	E/RSS 210						Class:	N/A
un #3: Ra	adiated Spur	ious Emissi	ons, Band I	Edges. Oper	rating Mode:	802.11n 40N	/IHz - Chair	ו A+B	
C	Date of Test:	8/29/2008							
	est Engineer:		shzad						
Te	est Location:	Chamber # 3	3						
un #3h∙ Hi	igh Channel	@ 5310 MH	lz (band edo	ie at 5350 M	IH7)				
un #55. m	ign onamic			c at 5550 M					
					nt (for referen				
		in A		in B	Cha				
	Setting	Avg	Setting	Avg	Setting	Avg			
	23.0	15.1	25.0	15.8					
Sand Edge	Signal Field	Strength							
Frequency	Level	Pol	15.209 /	RSS 210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
101112			E4.0	-6.7	AVG	117	1.5		
5350.070	47.3	Н	54.0						
5350.070 5350.912	47.3 63.3	Н	74.0	-10.7	PK	117	1.5		
5350.070 5350.912 5350.630	47.3						1.5 1.0 1.0		
	47.3 63.3 63.3 46.8 95.0- 90.0- 85.0- 80.0-		74.0 74.0 54.0	-10.7 -10.7 -7.2	PK PK AVG	117 169 169	1.0	Rohd CF: 5 SPAN RB 1. VB 1. Detec Att 1(RL Of Swee Ref L Swee Ref L 802.1	zer Settings e&Schwarz,ESI 7 350.00 MHz :70.00 MHz 000 MHz 000 MHz ctor POS 0 fiset 34.50 p Time 5.0ms vl:116.50DBUV nents 1 n40MHz nel @ 5310MHz 0 A+B, Peak - V
5350.070 5350.912 5350.630 5350.210	47.3 63.3 63.3 46.8 95.0 - 90.0 - 85.0 - 85.0 - 75.0 - 75.0 - 65.0 - 65.0 - 55.0 - 5315 5		74.0 74.0 54.0	-10.7 -10.7 -7.2	PK PK AVG	117 169 169	1.0 1.0	Rohd CF: 5 SPAN RB 1. VB 1.1 Detec Att 1(RL Of Swee Ref L Swee Ref L 602.1 Chain 5385	e&Schwarz,ESI 7 350.00 MHz :70.00 MHz 000 MHz tor POS fiset 34.50 p Time 5.0ms vl:116.50DBUV ments 1 n40MHz nel @ 5310MHz o A+B, Peak - V
5350.070 5350.912 5350.630 5350.210	47.3 63.3 63.3 46.8 95.0 - 90.0 - 85.0 - 85.0 - 75.0 - 75.0 - 75.0 - 60.0 - 55.0 - 53.15 5 Sursor 1 53	H V V	74.0 74.0 54.0	-10.7 -10.7 -7.2	PK PK AVG	117 169 169 169	1.0 1.0	Rohd CF: 5 SPAN RB 1. VB 1.1 Detec Att 1(RL Of Swee Ref L Swee Ref L 602.1 Chain 5385	e&Schwarz,ESI 7 350.00 MHz :70.00 MHz 000 MHz 000 MHz tor POS 0 fset 34.50 p Time 5.0ms vl:116.50DBUV nents 1 n40MHz nel @ 5310MHz





EMC Test Data

	An <u>UZE</u>) company	Lab Number	170705
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
wouer.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	N/A

RSS 210 and FCC 15.E (U-NII, 5150- 550/5250-5350/5460-5725MHz) Radiated Spurious Emissions 802.11n 20MHz SL-300 Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	40 %

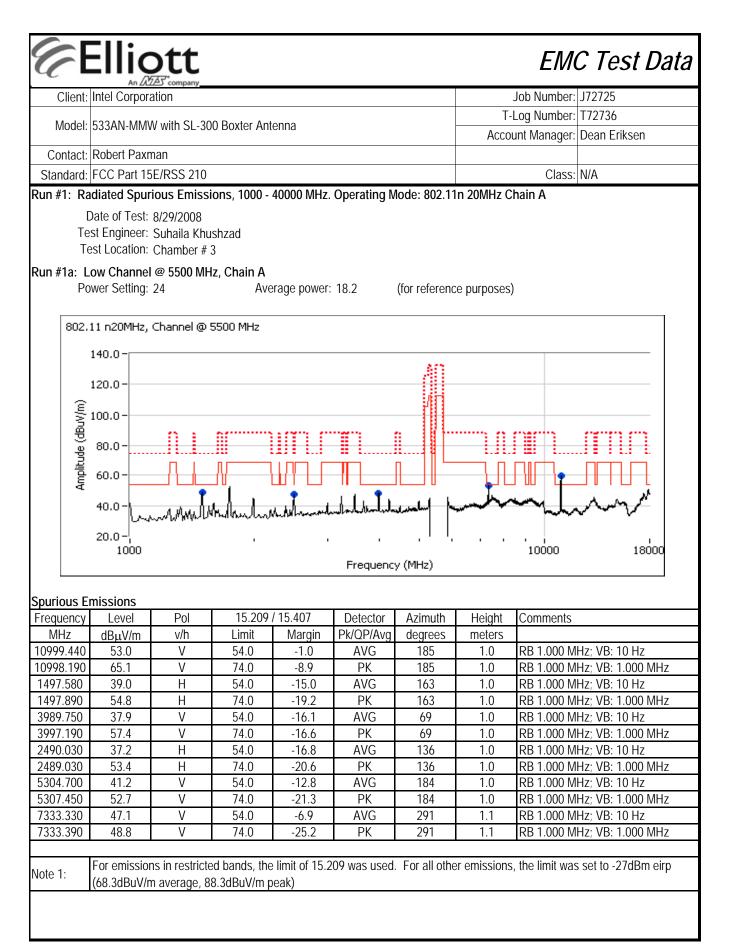
Modifications Made During Testing

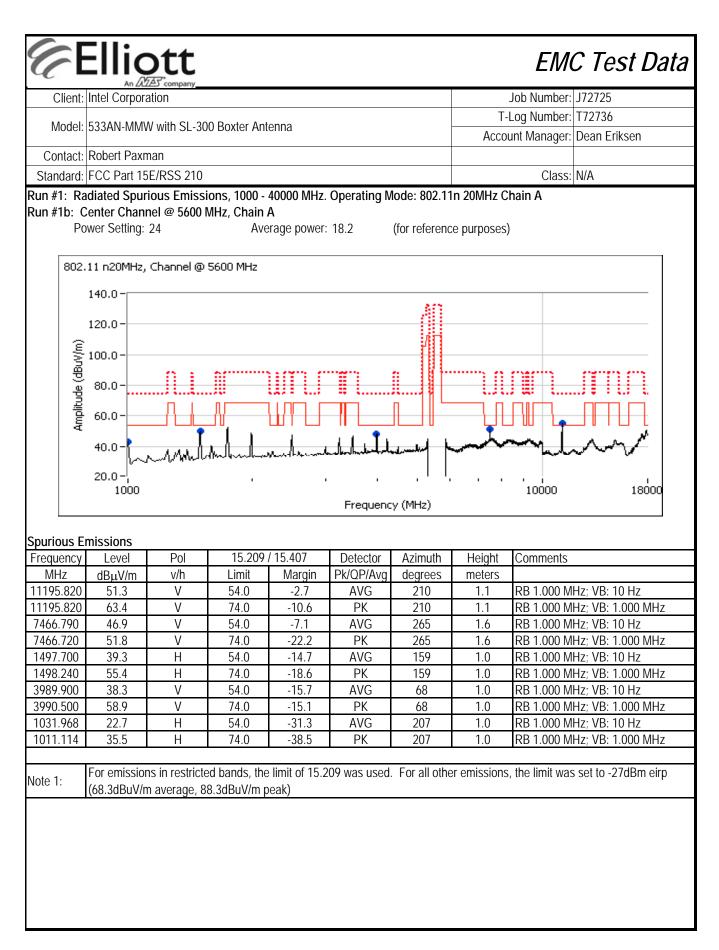
No modifications were made to the EUT during testing

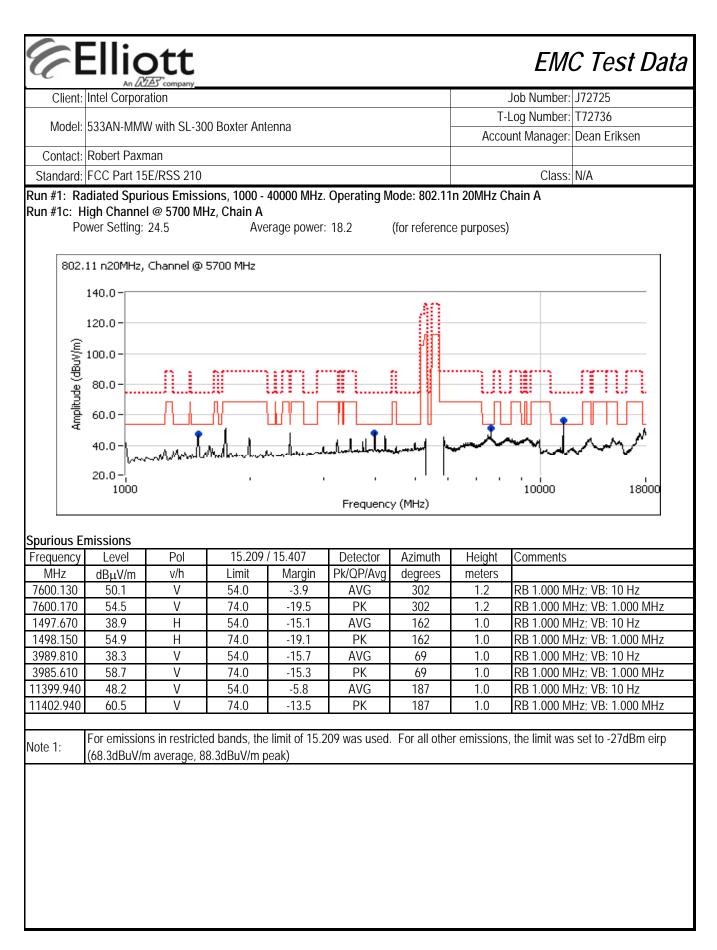
Deviations From The Standard

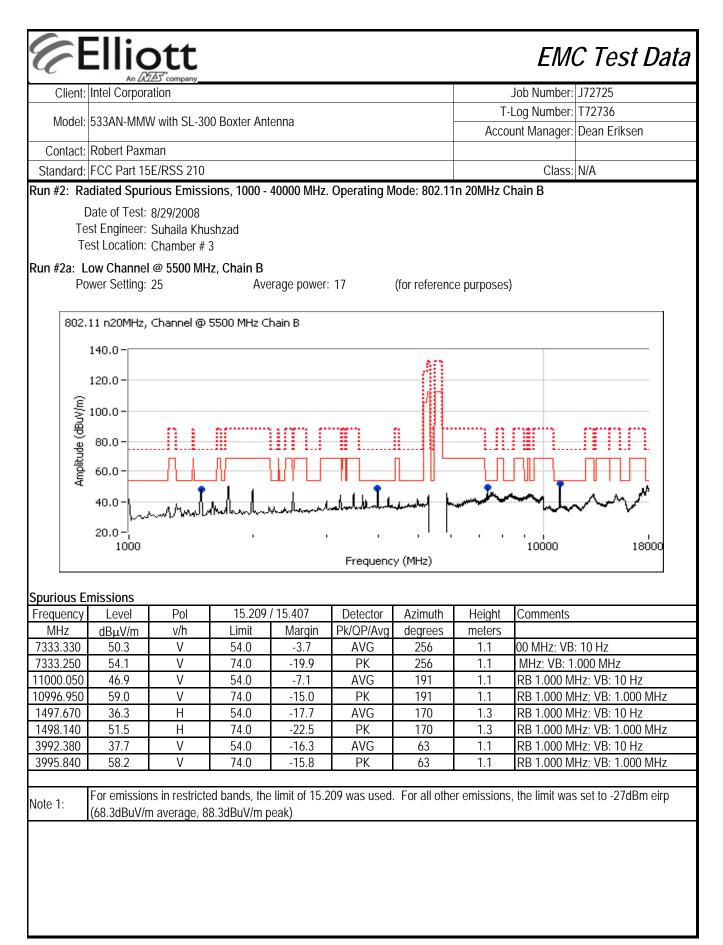
No deviations were made from the requirements of the standard.

E	liott
C	An ATAT company

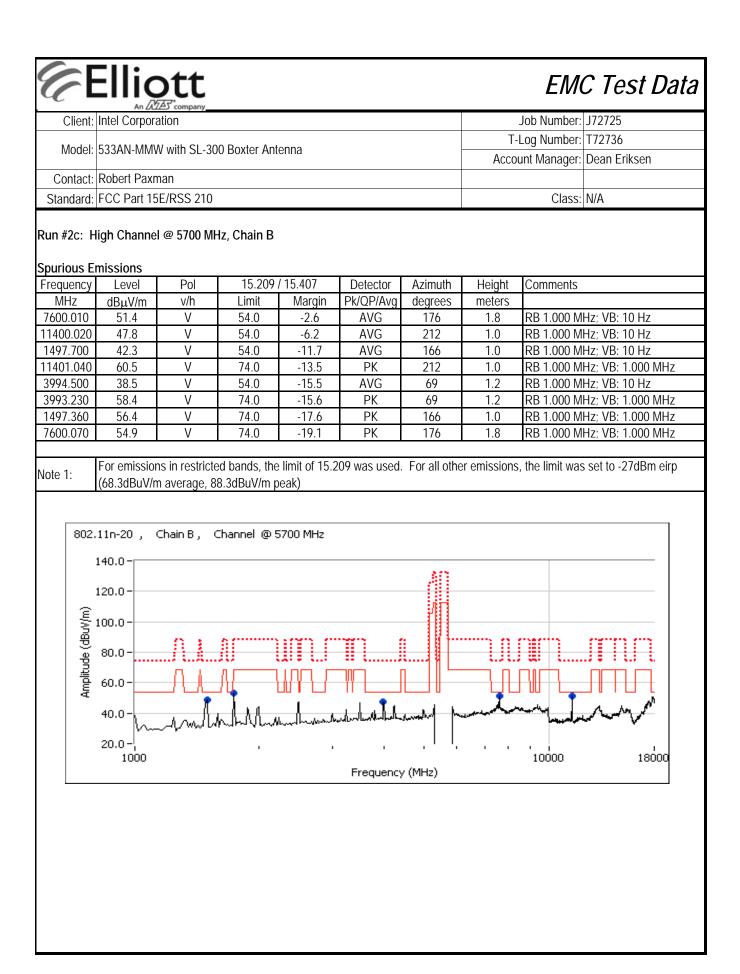

EMC Test Data


	An 2(22) company		
Client:	Intel Corporation	Job Number:	J72725
Model:	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	N/A


Summary of Results


Note -Note - Previous testing demonstrated that, for the 5150 - 5350MHz range, the single-chain emissions were lower than multi-chain emissions, therefore single chain emissions were only evaluated in the upper 5GHz band. Dual chain operation was evaluated with both chains set to the maximum (single-chain) power level in the 5150-5350Mhz band to cover single- and dual-chain operation.

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11n20 Chain A	5500	24.0	18.2	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	53.0dBµV/m @ 10999.4MHz (-1.0dB
1b	802.11n20 Chain A	5600	24.0	18.2	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	51.3dBµV/m @ 11195.8MHz (-2.7dE
1c	802.11n20 Chain A	5700	24.5	18.2	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	50.1dBµV/m @ 7600.1MHz (-3.9dB
2a	802.11n20 Chain B	5500	25.0	17.0	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	50.3dBµV/m @ 7333.3MHz (-3.7dB
2b	802.11n20 Chain B	5600	24.5	16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	51.5dBµV/m @ 7466.7MHz (-2.5dB
2c	802.11n20 Chain B	5700	25.0	16.7	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	51.4dBµV/m @ 7600.0MHz (-2.6dB
		5180	A: 29.5 B: 29.5	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	55.8dBµV/m @ 6906.7MHz (-12.5dE
	802.11n20 Chain A+B	5200	A: 29.0 B: 29.0	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.408	56.8dBµV/m @ 6933.3MHz (-11.5dE
			5240	A: 28.0 B: 28.0	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.409
/	802.11n20 Chain A+B 52i	5260	A: 27.0 B: 27.5	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	57.3dBµV/m @ 7013.3MHz (-11.0dE
		5280	A: 26.0 B: 27.0	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.408	59.0dBµV/m @ 3995.0MHz (-15.0dE
			5320	A: 25.5 B: 26.5	A: 16.5 B: 16.5	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.409
5	802.11n20 Chain A+B	5500	A: 23.0 B: 24.0	A: 15.5 B: 13.8	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.407	49.2dBµV/m @ 10999.9MHz (-4.8dE
		5600	A: 24.5 B: 26.0	A: 16.4 B: 15.8	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.408	49.2dBµV/m @ 11199.7MHz (-4.8dE
		5700	A: 23.5 B: 26.5	A: 15.2 B: 16.0	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.409	51.7dBµV/m @ 11399.8MHz (-2.3dE



Elliott FMC Test Data Client: Intel Corporation Job Number: J72725 T-Log Number: T72736 Model: 533AN-MMW with SL-300 Boxter Antenna Account Manager: Dean Eriksen Contact: Robert Paxman Standard: FCC Part 15E/RSS 210 Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 40000 MHz. Operating Mode: 802.11n 20MHz Chain B Date of Test: 8/29/2008 Test Engineer: Ben Jing Test Location: Chamber # 3 Run #2b: Center Channel @ 5600 MHz, Chain B Spurious Emissions 15.209 / 15.407 Frequency Level Pol Detector Azimuth Height Comments MHz dB_µV/m v/h Limit Margin Pk/QP/Avg degrees meters 7466.660 51.5 V 54.0 -2.5 AVG 255 1.0 RB 1.000 MHz; VB: 10 Hz 11200.070 49.4 V 54.0 -4.6 AVG 202 1.0 RB 1.000 MHz; VB: 10 Hz 11202.930 V ΡK RB 1.000 MHz; VB; 1.000 MHz 62.0 74.0 -12.0 202 1.0 1499.980 V AVG RB 1.000 MHz; VB: 10 Hz 37.9 54.0 -16.1 185 1.0 RB 1.000 MHz; VB: 1.000 MHz 3986.650 57.6 V 74.0 -16.4 РΚ 69 1.3 V AVG RB 1.000 MHz; VB: 10 Hz 3987.870 37.4 54.0 -16.6 69 1.3 7466.720 55.5 V 74.0 -18.5 ΡK 255 1.0 RB 1.000 MHz; VB: 1.000 MHz 1499.970 51.4 V 74.0 -22.6 ΡK 185 1.0 RB 1.000 MHz; VB: 1.000 MHz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm eirp Note 1: (68.3dBuV/m average, 88.3dBuV/m peak) 802.11n-20 , Chain B, Channel @ 5600 MHz 140.0-120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0-1000 10000 18000 Frequency (MHz)

Elliott

FIAC Toot Data

\mathcal{C}		DLL A company						EIVIO	J Test Dat
Client:	Intel Corpor	ation						Job Number:	J72725
							T-l	_og Number:	T72736
Model:	533AN-MM	with SL-30	0 Boxter Ant	enna			Accou	Int Manager:	Dean Eriksen
Contact:	Robert Paxr	nan							
	FCC Part 15							Class:	N/A
Stanuaru.		12/1133 210						01033.	
Output pow	•	n set at, or a 8/29/2008			. Operating N mode output				
	est Location:		2						
			3						
Run #3a· T	ow Channel	@ 5180 MH	7						
			L						
	Po	wer Setting a	ind average i	measuremer	nt (for referen	ce)			
		in A	Cha		Cha				
l	Setting	Avg	Setting	Avg	Setting	Avg			
l	29.5	16.5	29.5	16.5		5			
Spurious E	missions								
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6906.670	55.8	V	68.3	-12.5	AVG	238	1.6	RB 1.000 M	Hz; VB: 10 Hz
3997.970	58.6	V	74.0	-15.4	PK	66	1.3		Hz; VB: 1.000 MHz
3992.570	38.5	V	54.0	-15.5	AVG	66	1.3		Hz; VB: 10 Hz
1499.970	37.9	V	54.0	-16.1	AVG	185	1.0		Hz; VB: 10 Hz
1499.960	51.1	V	74.0	-22.9	PK	185	1.0		Hz; VB: 1.000 MHz
10360.020	42.5	V	68.3	-25.8	AVG	222	1.0		Hz; VB: 10 Hz
6906.630	57.7	V	88.3	-30.6	PK	238	1.6		Hz; VB: 1.000 MHz
10360.060	54.0	V	88.3	-34.3	PK	222	1.0	RB 1.000 M	Hz; VB: 1.000 MHz
Note 1:			ed bands, the 8.3dBuV/m p		:09 was used.	For all othe	r emissions,	, the limit was	s set to -27dBm eirp
802	.11n-20 ,	Chain A + B), Channel	@ 5180 M	Hz				
	140.0-					AN			
2	120.0-					ЛП			
Amplitude (dBuV/m)	100.0-	0.3	s:	ante e		. .	n	merin	centra cha
tude (80.0-	/ ii	. <u>/!!</u>			╏╌╌┦║└			
Ampli	60.0-						┍└╵└		
	40.0-W	www.	Mulu	mulliment	redeathrotenteele	mark have	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	20.0 - 1000					ļ I ,		10000	18000
					Frequenc	y (MHz)			

6	Ellic	ott						EM	C Test Data
Client:	Intel Corpora	<u>∕icompany</u> ition						Job Number:	J72725
Model	533AN-MMW	with CL 20	0 Povtor Ant	0000			T-	Log Number:	T72736
wouer.	000AIN-IVIIVIV			еппа			Acco	unt Manager:	Dean Eriksen
Contact:	Robert Paxm	nan							
Standard:	FCC Part 15	E/RSS 210						Class:	N/A
Run #3b: C	Center Chann	nel @ 5200	MHz						
	Pov	ver Setting a	and average	measuremer	nt (for referen	ce)	1		
	Chai		Cha		Cha				
	Setting	Avg	Setting	Avg	Setting	Avg			
	29.0	16.5	29.0	16.5					
purious E	missions								
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6933.330	56.8	V	68.3	-11.5	AVG	194	1.9	RB 1.000 M	Hz; VB: 10 Hz
3990.450	60.7	V	74.0	-13.3	PK	64	1.1	RB 1.000 M	Hz; VB: 1.000 MHz
3990.050	39.9	V	54.0	-14.1	AVG	64	1.1	RB 1.000 M	Hz; VB: 10 Hz
497.670	37.6	V	54.0	-16.4	AVG	215	1.5	RB 1.000 M	Hz; VB: 10 Hz
0400.090	43.8	V	68.3	-24.5	AVG	259	1.0	RB 1.000 M	Hz; VB: 10 Hz
497.560	48.5	V	74.0	-25.5	PK	215	1.5		Hz; VB: 1.000 MHz
747.900	40.0	V	68.3	-28.3	AVG	44	1.6		Hz; VB: 10 Hz
933.290	58.4	V	88.3	-29.9	PK	194	1.9		Hz; VB: 1.000 MHz
748.500	58.2	V	88.3	-30.1	PK	44	1.6		Hz; VB: 1.000 MHz
0399.970	57.6	V	88.3	-30.7	PK	259	1.0	RB 1.000 M	Hz; VB: 1.000 MHz
1 1 1 1 1	11n-20 , Cl 40.0 - 20.0 - 80.0 - 60.0 - 40.0 -	n average, 8	8.3dBuV/m p	eak)					s set to -27dBm eirp
	20.0-							10000	18000

Client:	Intel Corpora	ation						Job Number:	J72725
Model	533AN-MMV	W with SL 20	N Rovtor Ant	onna			T	-Log Number:	T72736
MOUEI.	055AN-IVIIVIV	V WIT SL-SU		енна			Acco	ount Manager:	Dean Eriksen
Contact:	Robert Paxm	nan							
Standard:	FCC Part 15	E/RSS 210						Class:	N/A
	1								
un #3c: H	ligh Channel	@ 5240 MH	lz						
		0.11			- /5 - 5	<u>, </u>			
		Ŭ	· · · · · · ·		nt (for referend Chai				
	Cha Setting	Avg	Setting	iin B Avg	Setting	Avg			
	28.0	16.5	28.0	16.5	Setting	Avy			
	20.0	10.5	20.0	10.5					
ourious E	missions								
requency	1 1	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6986.660	54.7	V	68.3	-13.6	AVG	261	1.0		Hz; VB: 10 Hz
3985.180	59.4	V	74.0	-14.6	PK	67	1.3		Hz; VB: 1.000 MH
1497.640	39.1	Н	54.0	-14.9	AVG	206	1.0		Hz; VB: 10 Hz
3984.880	38.7	V	54.0	-15.3	AVG	67	1.3		Hz; VB: 10 Hz
1493.600	55.9	Н	74.0	-18.1	PK	206	1.0		Hz; VB: 1.000 MH
0479.750							1.0		Hz; VB: 10 Hz
0479.750 0479.940	60.4	V	88.3	-27.9	PK	252	1.0	RB 1.000 M	Hz; VB: 1.000 MH
0479.750 0479.940 6986.750	60.4 56.3 For emission	V V ns in restricte	88.3 88.3 ed bands, the	-27.9 -32.0 e limit of 15.2	PK PK	252 261	1.0 1.0	RB 1.000 M RB 1.000 M	
10479.750 10479.940 6986.750 Jote 1: 802.1 1 1 802.1	60.4 56.3 For emission	V V ns in restricto n average, 8	88.3 88.3 ed bands, the 8.3dBuV/m p	-27.9 -32.0 e limit of 15.2 beak)	PK PK 209 was used.	252 261	1.0 1.0	RB 1.000 M RB 1.000 M	Hz; VB: 1.000 MH; Hz; VB: 1.000 MH;

Elliott

FIAC Test Data

)しし A [*] company						EIVIO	, Test Data
Client:	Intel Corpora							Job Number:	J72725
							T-I	Log Number:	T72736
Model:	533AN-MMV	v with SL-30	00 Boxter Ant	enna		0	Dean Eriksen		
Contact:	Robert Paxm	nan							
	FCC Part 15							Class:	N/A
e tandul di								510551	···-
Output pow [Te Te	ver per chain Date of Test: est Engineer: est Location:	set at, or a 8/29/2008 Ben Jing Chamber #	ibove, the si 3		. Operating N mode output				
rkuli #48: L	ow Channel	ଞ	IZ						
					nt (for referen				
	Cha			in B	Cha				
	Setting	Avg	Setting	Avg	Setting	Avg			
	27.0	16.6	27.5	16.5					
Spurious E	missions								
Frequency		Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7013.330	57.3	V	68.3	-11.0	AVG	215	1.1	RB 1.000 M	Hz; VB: 10 Hz
3985.710	60.0	V	74.0	-14.0	PK	64	1.2		Hz; VB: 1.000 MHz
3990.350	39.4	V	54.0	-14.6	AVG	64	1.2		Hz; VB: 10 Hz
1499.970	36.7	V	54.0	-17.3	AVG	189	1.4		Hz; VB: 10 Hz
1499.090	51.0	V	74.0	-23.0	PK	189	1.4		Hz; VB: 1.000 MHz
10519.900	43.6	V	68.3	-24.7	AVG	235	1.0		Hz; VB: 10 Hz
10520.000	59.5	V V	88.3	-28.8	PK PK	235	1.0		Hz; VB: 1.000 MHz
7013.300	58.7	V	88.3	-29.6	РК	215	1.1	КБ 1.000 M	Hz; VB: 1.000 MHz
Note 1:	For emissior (68.3dBuV/m				209 was used.	For all othe	er emissions	, the limit was	s set to -27dBm eirp
002	11n-20 , C				17				
		.nain A + D	, channer	@ 3200 MF	12				
	140.0-					675			
	120.0-								
Ê						11			
	100.0-								
	80.0-	11	1	im c					
Amplitude (dBuV/m)	60.0-		A I						
4	40.0-	umli	Mulu		. hh.	m h			~~~~
	20.0-					ļ ļ			.
	1000				Frequency	(MHz)		10000	18000
1									

	Intel Corpora	区 [*] company ation						Job Number:	J72725
Madalı	533AN-MMW		O Doutor Ant				T۰	Log Number:	T72736
woder:	233AIN-IVIIVIV	V WILLI SL-3U	U BUXIELAITI	enna			Ассо	unt Manager:	Dean Eriksen
Contact:	Robert Paxm	nan							
Standard:	FCC Part 15	E/RSS 210						Class:	N/A
	1						1		I
un #4b: C	enter Chann	nel @ 5280	MHz						
r			-						
					nt (for referen				
	Chai		Cha		Cha				
	Setting 26.0	Avg 16.5	Setting 27.0	Avg 16.5	Setting	Avg			
ļ	20.0	10.0	27.0	10.0					
purious Er	missions								
requency	Level	Pol	15.209	15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3994.990	59.0	V	74.0	-15.0	PK	67	1.3		Hz; VB: 1.000 MHz
3990.960	38.3	V	54.0	-15.7	AVG	67	1.3		Hz; VB: 10 Hz
1497.670	37.7	V	54.0	-16.3	AVG	186	1.0		Hz; VB: 10 Hz
7040.000	51.8	V	68.3	-16.5	AVG	207	1.3		Hz; VB: 10 Hz
1499.170	52.6	V	74.0	-21.4	PK	186	1.0	RB 1.000 M	Hz; VB: 1.000 MHz
0550.150	37.8	V	68.3	-30.5	AVG	224	1.0	RB 1.000 M	Hz; VB: 10 Hz
7040.090	54.3	V	88.3	-34.0	PK	207	1.3		Hz; VB: 1.000 MHz
0551 040	49.5	V	00 2						
		_	88.3 ed bands, the	-38.8 limit of 15.2	PK 209 was used.	224 For all othe	1.0 er emissions		Hz; VB: 1.000 MHz s set to -27dBm eirp
10551.040 Jote 1: 802 (W/\ngp) ennildwy	For emission (68.3dBuV/m 2.11n-20 , 140.0 - 120.0 -	chain A +	ed bands, the 8.3dBuV/m p	limit of 15.2 eak)	209 was used.				

	Intel Corpora	ation						Job Number: J72725
Model:	533AN-MMV	V with SL-30	0 Boxter Ant	enna				Log Number: T72736
Quality	Dahart Davr						Acco	unt Manager: Dean Eriksen
	Robert Paxm							
Standard:	FCC Part 15	E/RSS 210						Class: N/A
un #4c: H	igh Channel	@ 5320 MH	z					
	Pov	wer Setting a	and average i	measuremer	nt (for referen	ce)		
	Cha	in A	Cha	in C				
	Setting	Avg	Setting	Avg	Setting	Avg		
	25.5	16.5	26.5	16.5				
urious F	missions							
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
0639.800	42.8	V	54.0	-11.2	AVG	257	1.0	RB 1.000 MHz; VB: 10 Hz
7093.340	55.7	V	68.3	-12.6	AVG	203	1.0	RB 1.000 MHz; VB: 10 Hz
3985.830	59.5	V	74.0	-14.5	PK	66	1.3	RB 1.000 MHz; VB: 1.000 MHz
3983.560	39.0	V	54.0	-15.0	AVG	66	1.3	RB 1.000 MHz; VB: 10 Hz
493.650	38.4	Н	54.0	-15.6	AVG	163	1.2	RB 1.000 MHz; VB: 10 Hz
0640.070	57.7	V	74.0	-16.3	PK	257	1.0	RB 1.000 MHz; VB: 1.000 MHz
1497.600	53.2	H	74.0	-20.8	PK PK	163 203	1.2 1.0	RB 1.000 MHz; VB: 1.000 MHz
093.340	57.4	V	88.3	-30.9	PK	203	10	RB 1.000 MHz; VB: 1.000 MHz
ote 1:	For emission	is in restricte	vd hands the					, the limit was set to -27dBm eirp

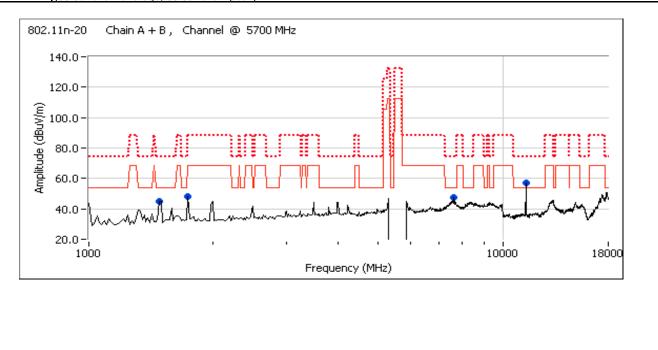
Model: Contact: Standard: Run # 5: Ra Dutput pow C Te:	Intel Corpora 533AN-MMW Robert Paxm FCC Part 15 adiated Spur ver per chain Date of Test: 0 st Engineer: 1	/ with SL-30 an E/RSS 210 ious Emiss set at, or a 9/2/2008	ions, 1000 -	40000 MHz			T-I	Job Number: Log Number: unt Manager:	
Contact: Standard: un # 5: Ra utput pow Te: Te	Robert Paxm FCC Part 15 adiated Spur ver per chain Date of Test: o st Engineer:	an E/RSS 210 ious Emiss set at, or a 9/2/2008	ions, 1000 -	40000 MHz					
Contact: Standard: un # 5: Ra utput pow D Te: Te	Robert Paxm FCC Part 15 adiated Spur ver per chain Date of Test: o st Engineer:	an E/RSS 210 ious Emiss set at, or a 9/2/2008	ions, 1000 -	40000 MHz					
Standard: un # 5: Ra utput pow C Te: Te	FCC Part 15 adiated Spur ver per chain Date of Test: 0 st Engineer: 1	E/RSS 210 ious Emiss set at, or a 9/2/2008							
un # 5: Ra utput pow D Te: Te	adiated Spur ver per chain Date of Test: o st Engineer: 1	ious Emiss set at, or a 9/2/2008							
Putput pow D Te: Te	ver per chain Date of Test: (st Engineer:)	set at, or a			Onerall			Class:	N/A
Те					. Operating N ode output p				
'un #5a: Lo		Chamber # 4							
Γ.				2000	nt /for rof				
ŀ	Pow Chai	×	nd average i Cha		nt (for referend Chai				
ŀ	Setting	Avg	Setting	Avg	Setting	Avg			
ŀ	23.0	Avg 15.7	24.0	13.8	Jetting	Avy			
L	_0.0								
purious Er	missions					-			
requency	Level	Pol	15.209	1	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
0999.850	49.2	V	54.0	-4.8	AVG	180	1.0		Hz; VB: 10 Hz
/333.320	47.8	V	54.0	-6.2	AVG	212	1.6		Hz; VB: 1.000 MHz
0999.930	61.8	V V	74.0	-12.2	PK	180	1.0		Hz; VB: 1.000 MHz
1499.960 3982.750	35.0 34.6	V	54.0 54.0	-19.0 -19.4	AVG AVG	75 213	1.0 1.2		Hz; VB: 10 Hz Hz; VB: 10 Hz
7333.350	53.2	V	74.0	-19.4	PK	213	1.2		Hz; VB: 1.000 MHz
1499.950	51.9	V	74.0	-20.0	PK	75	1.0		Hz; VB: 10 Hz
3982.280	51.9	V	74.0	-22.1	PK	213	1.2		Hz; VB: 1.000 MHz
1745.180	35.4	V	68.3	-32.9	AVG	207	1.0		Hz; VB: 1.000 MHz
1747.170	52.4	V	88.3	-35.9	PK	207	1.0	1	Hz; VB: 10 Hz
!	<u>4</u>				• •	<u> </u>		<u>.</u>	
	(68.3dBuV/m	average, 88	8.3dBuV/m p	eak)		For all othe	r emissions	, the limit was	s set to -27dBm eirp
802.1	l1n-20 Ch	ain A + B ,	Channel @	> 5500 MHz	:				
1	40.0-								
	20.0-								
\\\{\bar{2}{2}} 1'	00.0-								
(9		0.1		im r	m a		n		nnn 🗌
litud	80.0-	Π.	€2 E. ¶/────]		₽₽ €₽ ₩┐		 	₩ 	
-	40.0-	n Awith	Julia	mhannt	Jenter June		~~~~		~~~~~
:	20.0 - <mark> </mark> 1000				' Frequency	, , (1),		10000	18000

Client:	Intel Corpora	ition						Job Number:	
Model:	533AN-MMW	/ with SL-30	0 Boxter Ant	enna				Log Number:	
	Debert Deve						Acco	unt Manager:	Dean Eriksen
	Robert Paxm FCC Part 15							Class:	N1/A
indard:	FUC Part 15	E/RSS 210						Class:	IN/A
#5b: Ce	enter Chann	nel @ 5600 l	MHz						
F		0			. /6		1		
┝	Pov Chai	Ű	U U	measureme ain B	nt (for referen Cha				
ŀ	Setting	Avg	Setting	Avg	Setting	Avg			
F	24.5	16.4	26.0	15.8	ootting	7109			
-									
	nissions	D-1	15 000	115 107	Detector	۸ <u>–</u> ایر بار	11	Company	
uency 1Hz	Level	Pol		/ 15.407	Detector	Azimuth	Height	Comments	
99.720	dBµV/m 49.2	v/h V	Limit 54.0	Margin -4.8	Pk/QP/Avg AVG	degrees 242	meters 1.0	RB 1 000 M	Hz; VB: 10 Hz
6.660	49.2	V	54.0	-4.0	AVG	242	1.0		Hz; VB: 1.000 MHz
0.000	46.3 61.2	V V	74.0	-12.8	PK	212	1.3		Hz; VB: 1.000 MHz
7.540	37.1	V	54.0	-12.0	AVG	69	1.0		Hz; VB: 10 Hz
6.140	35.1	V V	54.0	-10.9	AVG	219	1.3		Hz; VB: 10 Hz
6.690	53.9	V	74.0	-10.9	PK	217	1.3		Hz; VB: 1.000 MHz
4.860	53.4	V	74.0	-20.1	PK	212	1.3		Hz; VB: 1.000 MHz
7.580	53.0	V	74.0	-21.0	PK	69	1.3		Hz; VB: 10 Hz
7.160	37.4	V	68.3	-30.9	AVG	188	1.0		Hz; VB: 1.000 MHz
5.690	53.9	V	88.3	-34.4	PK	188	1.0		Hz; VB: 10 Hz
5.070	55.7	v	00.0	34.4	ΤK	100	1.0	ND 1.000 M	
	For emission	s in restricte	ed bands, the	e limit of 15.2	209 was used.	For all othe	er emissions	s, the limit was	s set to -27dBm eirp
1.			8.3dBuV/m p						· · · · · · · ·
	• • • • • •		•						
000.11	- 00 - Ch		channel a						
802.11	IN-20 Ch	апд+в,	Channel @	5600 MHZ					
14	i0.0-								
						- 40			
12	20.0-								
Ê.,						- 141			
<u>5</u> 10	0.0-								
Amplitude (dBuV/m) 9 & 01	:0.0-	01		m r	11 î				n n n
- de		لساليه ل	u - U		=			æ	
문 6	0.0-				Π			╢┌─┐╻	
An o			U U			U			
4	10.0-	. An I h	Thank .	- Januar	million have			may have	~~~~~ [_
2	:0.0-¦~~~	· · · · · · · · · · · · · · · · · · ·	^ d diret he						
<u>د</u>	1000		'	'	'			10000	18000
					Frequency				1

Elliott	
---------	--

EMC Test Data

	An ZAZZED company		
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
Mouel.	222411-MIMIM MILLI 21-200 DOVIEL ALIGHTIN	Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	N/A


Run #5c: High Channel @ 5700 MHz

Po	Power Setting and average measurement (for reference)								
Cha	ain A	Cha	ain B	Cha	iin C				
Setting	Avg	Setting	Avg	Setting	Avg				
23.5	15.2	26.5	16.0						

Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11399.790	51.7	V	54.0	-2.3	AVG	198	1.0	RB 1.000 MHz; VB: 10 Hz
7600.000	48.8	V	54.0	-5.2	AVG	216	1.1	RB 1.000 MHz; VB: 10 Hz
11400.000	64.4	V	74.0	-9.6	PK	198	1.0	RB 1.000 MHz; VB: 10 Hz
1497.550	38.2	Н	54.0	-15.8	AVG	130	1.0	RB 1.000 MHz; VB: 10 Hz
7600.020	54.3	V	74.0	-19.7	PK	216	1.1	RB 1.000 MHz; VB: 10 Hz
1497.540	52.9	Н	74.0	-21.1	PK	130	1.0	RB 1.000 MHz; VB: 10 Hz
1747.170	37.5	V	68.3	-30.8	AVG	168	1.6	RB 1.000 MHz; VB: 10 Hz
1747.160	55.3	V	88.3	-33.0	PK	168	1.6	RB 1.000 MHz; VB: 10 Hz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to -27dBm eirp (68.3dBuV/m average, 88.3dBuV/m peak)

	Elliott	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
wouer.	SSSAN-IVIVIVIV WITH SL-SOU DUXTER AITERINA	Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	NII
	Radiated Emissions - Receiver Spuriou	us, SL-300 Ant	tenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 30 meters from the test area with all I/O connections running on top of the groundplane.

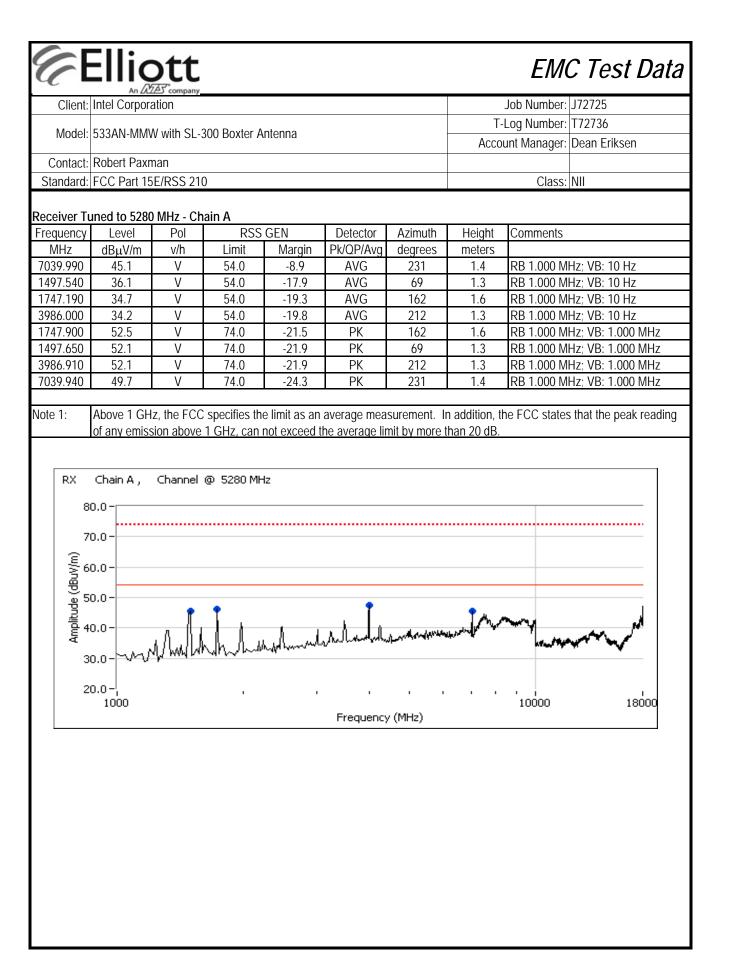
The test distance and extrapolation factor (if applicable) are detailed under each run description.

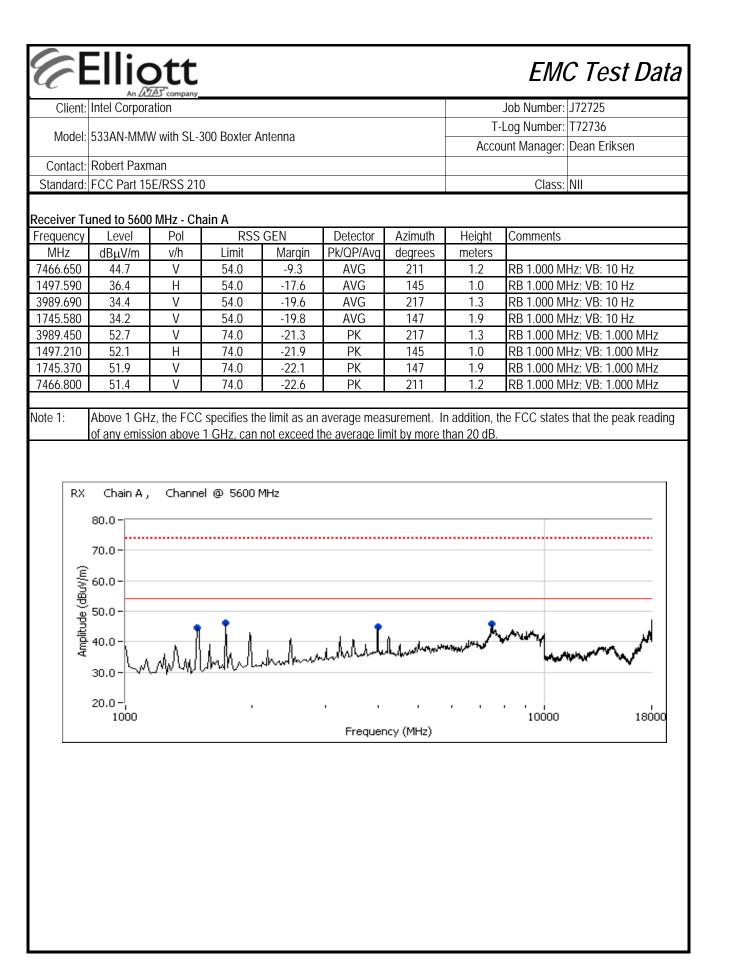
Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	23 °C
	Rel. Humidity:	34 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1 - Receive Chain A	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	47.3dBµV/m @
	Emissions	N35 OLN	F 835	6933.3MHz (-6.7dB)
2 - Receive Chain B	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	48.3dBµV/m @
	Emissions	N35 OLN	газэ	7466.7MHz (-5.7dB)
All Receiver chains	Emissions were significantly high	ner with only a single rece	eive chain ac	tive than with multiple
	chains active. \	Norst case mode is the si	ngle-chain m	node.


Modifications Made During Testing


No modifications were made to the EUT during testing

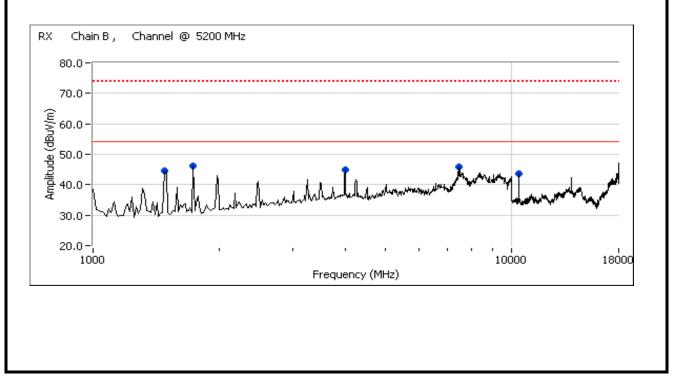
Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Client: Intel Corporation Job Number: J72725 T-Log Number: T72736 Model: 533AN-MMW with SL-300 Boxter Antenna Account Manager: Dean Eriksen Contact: Robert Paxman Standard: FCC Part 15E/RSS 210 Class: NII Run #1: Maximized readings, 1000 - 18000 MHz, Receive Chain A Date of Test: 9/2/2008 Test Engineer: Ben Jing Test Location: Chamber # 4 **Frequency Range** Test Distance Limit Distance **Extrapolation Factor** 1000 - 10000 MHz 0.0 3 3 10000 - 18000 MHz 1 3 -9.5 Receiver Tuned to 5200 MHz - Chain A Frequency Level Pol RSS GEN Detector Azimuth Heiaht Comments MHz dBuV/m Pk/QP/Avg v/h Limit Margin degrees meters 6933.340 47.3 V 54.0 -6.7 AVG 227 1.6 RB 1.000 MHz; VB: 10 Hz 1497.640 37.4 Н 54.0 -16.6 AVG 125 1.0 RB 1.000 MHz; VB: 10 Hz 1747.770 36.6 V -17.4 AVG RB 1.000 MHz; VB: 10 Hz 54.0 85 1.0 V -18.9 RB 1.000 MHz; VB: 10 Hz 3991.680 35.1 54.0 AVG 219 1.3 V 1747.050 54.9 74.0 -19.1 PΚ 85 1.0 RB 1.000 MHz; VB: 1.000 MHz 3991.780 53.8 V 74.0 -20.2 РΚ 219 1.3 RB 1.000 MHz; VB: 1.000 MHz 1497.740 52.0 Н 74.0 -22.0 ΡK 125 1.0 RB 1.000 MHz; VB: 1.000 MHz 6933.340 51.2 V 74.0 -22.8 ΡK 227 1.6 RB 1.000 MHz; VB: 1.000 MHz Note 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB. RX Chain A , Channel @ 5200 MHz 80.0 70.0 Amplitude (dBuV/m) 60.0 50.0 which punde book a lot a way 40.0 30.0 20.0-1000 10000 18000 Frequency (MHz)

EMC Test Data

	An Z(ZZ) company		
Client:	Intel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Boxter Antenna	T-Log Number:	T72736
MOUEI.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15E/RSS 210	Class:	NII


Run #2: Maximized readings, 1000 - 18000 MHz, Receive Chain B

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 12000 MHz	3	3	0.0
12000 - 18000 MHz	1	3	-9.5

Receiver Tuned to 5200 MHz - Chain B

Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
6933.320	48.7	V	54.0	-5.3	AVG	236	1.6	RB 1.000 MHz; VB: 10 Hz
10399.980	41.9	V	54.0	-12.1	AVG	239	1.0	RB 1.000 MHz; VB: 10 Hz
1747.770	36.5	V	54.0	-17.5	AVG	85	1.1	RB 1.000 MHz; VB: 10 Hz
3986.230	35.4	V	54.0	-18.6	AVG	216	1.0	RB 1.000 MHz; VB: 10 Hz
1499.990	35.0	V	54.0	-19.0	AVG	84	1.0	RB 1.000 MHz; VB: 10 Hz
1748.320	54.9	V	74.0	-19.1	PK	85	1.1	RB 1.000 MHz; VB: 1.000 MHz
3988.940	54.4	V	74.0	-19.6	PK	216	1.0	RB 1.000 MHz; VB: 1.000 MHz
6933.120	52.4	V	74.0	-21.6	PK	236	1.6	RB 1.000 MHz; VB: 1.000 MHz
1499.450	51.8	V	74.0	-22.2	PK	84	1.0	RB 1.000 MHz; VB: 1.000 MHz
10400.110	46.5	V	74.0	-27.5	PK	239	1.0	RB 1.000 MHz; VB: 1.000 MHz

Note 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Client:	Intel Corpora	么"company_ atiON						Job Number:	J72725
Madalı	533AN-MMV		200 Devitor A	ntonno			T-	Log Number:	T72736
woder:	533AIN-IVIIVIV	V WILLI SL	300 Boxler A	ntenna			Acco	unt Manager:	Dean Eriksen
Contact:	Robert Paxm	nan							
	FCC Part 15							Class:	NII
	aximized rea	•	00 - 18000 N	IHz, Receive	e Chain B				
	Date of Test:								
	est Engineer: est Location:								
10									
		quency Ra 0 - 12000 I			vistance 3		istance 3		tion Factor 0.0
		0 - 18000			3 1		3		9.5
	inel @ 5280 N								
-	70.0-								
Amplituce (dBuV/m)	70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000	wh	J. J. Malin Inv	und Iwww.	ay low to a start	ndyi ildi anjan mu		· 10000	1800
Amplituce (dBuY/m)	60.0 - 50.0 - 40.0 - 30.0	wAn []	Hallan Ind	und Invend	, Frequence	w dy:Md-anternan ' :y (MHz)		10000	18000
Amplituce (dBuV/m)	60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 uned to 5280	WW W		uddwriwd ,	Frequence				18000
ecceiver Tu Prequency	60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 uned to 5280	Pol	RSS	Mule ward	Detector	Azimuth	Height	'10000	18000
(w/\ngp) www Receiver Tu Frequency MHz	60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 uned to 5280 Level dBμV/m	Pol v/h	RSS Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
(w/\ngp) annilidwe Receiver Ti Frequency MHz 7040.130	60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 uned to 5280 Level dBµV/m 47.6	Pol v/h V	RSS Limit 54.0	Margin -6.4	Detector Pk/QP/Avg AVG	Azimuth degrees 203	meters 1.3	Comments RB 1.000 M	Hz; VB: 10 Hz
(w/\ngp) aphilitrice Receiver Tu Frequency MHz	60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 1000 uned to 5280 Level dBμV/m	Pol v/h	RSS Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments RB 1.000 M RB 1.000 M	

Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7040.130	47.6	V	54.0	-6.4	AVG	203	1.3	RB 1.000 MHz; VB: 10 Hz
7040.130	51.1	V	74.0	-22.9	PK	203	1.3	RB 1.000 MHz; VB: 1.000 MHz
1497.660	36.5	V	54.0	-17.5	AVG	61	1.0	RB 1.000 MHz; VB: 10 Hz
1495.900	51.3	V	74.0	-22.7	PK	61	1.0	RB 1.000 MHz; VB: 1.000 MHz
1747.330	41.8	V	54.0	-12.2	AVG	77	1.1	RB 1.000 MHz; VB: 10 Hz
1748.980	57.5	V	74.0	-16.5	PK	77	1.1	RB 1.000 MHz; VB: 1.000 MHz
998.500	26.8	Н	54.0	-27.2	AVG	47	1.0	RB 100 kHz; VB: 10 Hz
999.350	37.6	Н	74.0	-36.4	PK	47	1.0	RB 100 kHz; VB: 100 kHz
1992.330	38.9	V	54.0	-15.1	AVG	71	1.0	RB 1.000 MHz; VB: 10 Hz
1996.770	53.1	V	74.0	-20.9	PK	71	1.0	RB 1.000 MHz; VB: 1.000 MHz
2497.210	35.4	V	54.0	-18.6	AVG	74	1.7	RB 1.000 MHz; VB: 10 Hz
2497.930	49.2	V	74.0	-24.8	PK	74	1.7	RB 1.000 MHz; VB: 1.000 MHz
3520.070	41.7	V	54.0	-12.3	AVG	189	1.2	RB 1.000 MHz; VB: 10 Hz
3520.250	46.9	V	74.0	-27.1	PK	189	1.2	RB 1.000 MHz; VB: 1.000 MHz
3989.510	38.1	V	54.0	-15.9	AVG	86	1.3	RB 1.000 MHz; VB: 10 Hz
3984.530	56.7	V	74.0	-17.3	PK	86	1.3	RB 1.000 MHz; VB: 1.000 MHz
4231.990	35.7	V	54.0	-18.3	AVG	86	1.6	RB 1.000 MHz; VB: 10 Hz
4231.250	51.1	V	74.0	-22.9	PK	86	1.6	RB 1.000 MHz; VB: 1.000 MHz

~		Company							C Test Da
Client:	Intel Corpora	ation						Job Number:	
Model:	533AN-MMV	W with SL-3	300 Boxter A	Intenna				Log Number:	
							Acco	unt Manager:	Dean Eriksen
	Robert Paxn								
	FCC Part 15							Class:	NII
n #2: Ma	aximized rea	dings, 10	00 - 18000 N	IHz, Receive	e Chain B				
	Free	quency Ra	nae	Test D	Distance	Limit D	istance	Extranola	tion Factor
		0 - 12000			3		3		.0
		00 - 18000			1		3		9.5
Implitude (dE	50.0- 40.0-	. [ŢŢ	1				,	-
Amplitud		dhlml	Ay branding	and for and	Frequence	, 		***** ~,~~ `10000	18000
	40.0 - 30.0 - 20.0 -	MMml	hain B	wedder and	Frequence	' 		, , , , , , , , , , , , , , , , , , , 	18000
eiver Tu quency	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level	Pol	RSS	iw di la rend	Detector	Azimuth	Height	10000	18000
eiver Tu quency MHz	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m	Pol v/h	RSS Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
eiver Tu quency MHz 56.670	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3	Pol v/h V	RSS Limit 54.0	Margin -5.7	Detector Pk/QP/Avg AVG	Azimuth degrees 209	meters 1.3	Comments RB 1.000 M	Hz; VB: 10 Hz
eiver Tu quency MHz 56.670 56.760	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3 54.5	Pol v/h V V	RSS Limit 54.0 74.0	Margin -5.7 -19.5	Detector Pk/QP/Avg AVG PK	Azimuth degrees 209 209	meters 1.3 1.3	Comments RB 1.000 M RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz
eiver Tu quency MHz 56.670 56.760 8.546	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3 54.5 22.0	Pol v/h V V V	RSS Limit 54.0 74.0 54.0	Margin -5.7 -19.5 -32.0	Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 209 209 13	meters 1.3 1.3 1.1	Comments RB 1.000 M RB 1.000 M RB 1.000 Hz	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz
eiver Tu quency MHz 56.670 56.760 8.546 9.281	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3 54.5 22.0 36.5	Pol v/h V V V V	RSS Limit 54.0 74.0 54.0 74.0	Margin -5.7 -19.5 -32.0 -37.5	Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 209 209 13 13	meters 1.3 1.3 1.1 1.1	Comments RB 1.000 M RB 1.000 M RB 1.000 kHz RB 100 kHz RB 100 kHz	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz ; VB: 100 KHz
eiver Tu quency MHz 56.670 56.760 8.546 9.281 97.560	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3 54.5 22.0	Pol v/h V V V	RSS Limit 54.0 74.0 54.0	Margin -5.7 -19.5 -32.0	Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 209 209 13	meters 1.3 1.3 1.1	Comments RB 1.000 M RB 1.000 M RB 100 kHz RB 100 kHz RB 100 kHz RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz
eiver Tu quency MHz 56.670 56.760 8.546 9.281 97.560 99.320 47.580	40.0 - 30.0 - 20.0 - 1000 uned to 5600 Level dBμV/m 48.3 54.5 22.0 36.5 38.6 52.9 41.1	Pol v/h V V V V V V V V V V	RSS Limit 54.0 74.0 54.0 74.0 54.0	Margin -5.7 -19.5 -32.0 -37.5 -15.4	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	Azimuth degrees 209 209 13 13 13 59 59 59 76	meters 1.3 1.3 1.1 1.1 1.1 1.0	Comments RB 1.000 M RB 1.000 M RB 100 kHz RB 100 kHz RB 1.000 M RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz ; VB: 100 kHz Hz; VB: 10 Hz
eeiver Tu quency MHz 66.670 66.760 28.546 29.281 97.560 99.320 47.580 42.170	40.0 - 1000 30.0 - 1000 20.0 - 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 1000000000000000000000000000000000000	Pol v/h V V V V V V V V V V	RSS Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -5.7 -19.5 -32.0 -37.5 -15.4 -21.1 -12.9 -17.9	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 209 209 13 13 13 59 59 59 76 76 76	meters 1.3 1.3 1.1 1.1 1.1 1.1 1.0 1.0	Comments RB 1.000 M RB 1.000 M RB 100 kHz RB 100 kHz RB 1.000 M RB 1.000 M RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz ; VB: 100 kHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz
eeiver Tu quency MHz 66.670 66.760 98.546 99.320 97.560 99.320 47.580 42.170 92.520	40.0 - 1000 30.0 - 1000 20.0 - 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 1000000000000000000000000000000000000	Pol v/h V V V V V V V V V V V V	RSS Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	Margin -5.7 -19.5 -32.0 -37.5 -15.4 -21.1 -12.9 -17.9 -15.2	Detector Pk/QP/Avg PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 209 209 13 13 13 59 59 59 76 76 76 74	meters 1.3 1.1 1.1 1.1 1.0 1.0 1.1 1.0 1.1	Comments RB 1.000 M RB 1.000 M RB 100 kHz RB 100 kHz RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz ; VB: 100 kHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz
eiver Tu quency MHz 66.670 66.760 78.546 99.281 97.560 99.320 47.580 42.170	40.0 - 1000 30.0 - 1000 20.0 - 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 1000000000000000000000000000000000000	Pol v/h V V V V V V V V V V	RSS Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	Margin -5.7 -19.5 -32.0 -37.5 -15.4 -21.1 -12.9 -17.9	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 209 209 13 13 13 59 59 59 76 76 76	meters 1.3 1.3 1.1 1.1 1.0 1.0 1.1 1.1	Comments RB 1.000 M RB 1.000 M RB 100 kHz RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M	Hz; VB: 10 Hz Hz; VB: 1.000 MHz ; VB: 10 Hz ; VB: 100 kHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz

51.2

33.3

48.8

38.3

55.5

35.8

51.1

V

V

٧

V

V

V

V

74.0

54.0

74.0

54.0

74.0

54.0

74.0

-22.8

-20.7

-25.2

-15.7

-18.5

-18.2

-22.9

2499.090

3497.190

3486.740

3989.770

3995.820

4232.440

4233.550

РΚ

AVG

РΚ

AVG

РΚ

AVG

РΚ

78

243

243

85

85

86

86

1.5

1.9

1.9

1.0

1.0

1.6

1.6

RB 1.000 MHz; VB: 1.000 MHz

RB 1.000 MHz; VB: 10 Hz

RB 1.000 MHz; VB: 10 Hz

RB 1.000 MHz; VB: 10 Hz

EXHIBIT 3: Photographs of Test Configurations