

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization Class II Permissive Change pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C on the Intel Corporation Transmitter Model: 533AN_MMW (Canada model number 533ANMU)

> UPN: 1000M-533ANMU FCC ID: PD9533ANMU

GRANTEE: Intel Corporation 2111 N.E. 25th Ave. Hillsboro, OR 97124-5961

TEST SITE: Elliott Laboratories 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: September 8, 2008

REISSUE DATE:

FINAL TEST DATE:

August 18 - August 25, 2008

September 19, 2008

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R72962 Rev 1 Page 1 of 22

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	9/11/08	First Release	-
2	9/19/08	Corrected the model name in the GENERAL subsection of PROPOSED MODIFICATION DETAILS on page 11. Modified the text describing the MIMO modes of operation with the specific antenna set being evaluated in the ANTENNA section of PROPOSED MODIFICATION DETAILS on page 11.	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	11
GENERAL	
ANTENNA	11
TEST SITE	12
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	12
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	13
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Measurement Data	.2
EXHIBIT 3: Photographs of Test Configurations	.3

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model 533AN_MMW pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model 533AN_MMW and therefore apply only to the tested sample. The sample was selected and prepared by Robert Paxman of Intel Corporation

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model 533AN_MMW complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	No tests performed, th power spectral density		
	RSP100	99% Bandwidth	emissions and minimu		
15.247 (b)	RSS 210	Output Power	remain unchanged from	n the values originally	N/A
(3)	A8.2 (4)	(multipoint systems)	reported. The propose	d addition of antenna	
15.247(d)	RSS 210	Power Spectral	does not affect the ope		
13.247(d)	A8.2 (2)	Density	it relates to these requi	rements.	
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	802.11n 40MHz 53.8dBµV/m @ 2484.8MHz	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies (-0.2dB)

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

Note 1: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

Note 2: Spurious emissions below 1GHz were independent of operating channel and operating mode (transmit versus receive). Measurements were limited to above 1GHz are therefore reported for receive mode only. Note 3: The original test report worst case emissions were 53.1 dBuV/m @ 2483.6 MHz (802.11n40 2x2 mode, Universe antenna) which was 0.9dB below the limit.

DIGITAL TRANSMISSION SYSTEMS (5725 - 5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments Limit / Requirement		Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques		Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	No tests performed, th power spectral density		
	RSP100	99% Bandwidth	emissions and minimu		
15.247 (b)	RSS 210	Output Power	remain unchanged from	N/A	
13.247 (0)	A8.2 (4)	(multipoint systems)	reported. The propose		
15 247(d)	RSS 210	Power Spectral	does not affect the operation of the device as		
15.247(d)	A8.2 (2)	Density	it relates to these requirements.		
15 247(a) /	RSS 210	Radiated Spurious	53.1dBµV/m @	15.207 in restricted	Complias
15.247(c) / 15.209	A8.5	Emissions	17979.1MHz	bands, all others	Complies (-0.9dB)
13.209	Table 2, 3	30MHz – 40 GHz	1/9/9.1IVINZ	<-30dBc ^{Note 2}	(-0.90B)

Note 1: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

Note 2: Spurious emissions below 1GHz were independent of operating channel and operating mode (transmit versus receive). Measurements were limited to above 1GHz are therefore reported for receive mode only. Note 3: The original test report worst case emissions were 52.7dBµV/m @ 11649.1MHz (802.11n20 3x3Ethertronics Antenna), 1.3dB below the limit.

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Connector remains unchanged from original filing	Unique connector	Complies
-	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	48.3dBµV/m @ 3000.41MHz RSS GE		Complies (- 5.7 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	The new antenna would no conducted emissions level.		
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	The new antenna gain is lower than the previously evaluated antennas, therefore the rf exposure calculations and forms previously uploaded remain unchanged.		N/A
	RSP 100 RSS GEN 7.1.5	User Manual	The addition of the new antenna does not		
	RSP 100 RSS GEN 7.1.5	User Manual	affect the content required in the User Manual.		
the test fixture.	Test were not n above 1GHz	performed below 1GHz in receive mode from the	lent of operating mode and de as the proposed changes are original testing was 50.1dBp	only to the antenna.	The

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$\pm 2.4 \\ \pm 3.0 \\ \pm 3.6 \\ \pm 6.0$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model 533AN_MMW is a 802.11abgn Radio that is designed to be installed in laptops for wireless transmission/reception. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3 Volts DC, 0.5 Amps.

The sample was received on August 19, August 20, August 21, August 22, August 23 and August 25, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Intel	533AN-	802.11abgn		PD9533ANMU
Corporation	MMW(MMC)	Radio		

ANTENNA SYSTEM

Refer to the PROPOSED MODIFICATION DETAILS section of this report.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Prototype	Laptop PC	Prototype	-

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To		Cable(s)				
Fon	Connected 10	Description	Shielded or Unshielded	Length(m)			
PC	Board	PCI-Express	-	0.2			
		extender					
Antennas	Antenna main	Coax (2)	Shielded	0.3			
Port 1& 2	and aux						
(A&B)							
DC Power	Board	3.3V dc	Unshielded	0.3			

EUT OPERATION

During testing the EUT was transmitting at the stated power level at a data rate of 1Mb/s for 802.11b mode and 6Mb/s for 802.11g and n20 modes and 12Mb/s for 802.11n 40MHz mode. The following modes were selected as the worst case mode(s) for each of the transmitter-related measurements:

Band Edge, 2.4GHz Band: 802.11g, 802.11n 20MHz and 802.11n 40MHz modes Band Edge, 5150MHz, 5350MHz, 5470MHz: 802.11n 20MHz and 40MHz modes, single- and dual-chains active Spurious emissions, 2.4GHz Band: 802.11b, 802.11n 20MHz dual chain and n40MHz dual chain modes Spurious emissions, 5150-5250MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5250-5350MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5470-5725MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5470-5725MHz Band: 802.11n 20MHz mode - Dual chains active at the higher single chain power level Spurious emissions, 5725-5850MHz Band: 802.11n20 MHz mode - Dual chains active at the higher single chain power level

Receiver-related measurements were made with the device operating on each chain alone and on both chains simultaneously.

During emissions testing the EUT was continuously transmitting.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Intel Corporation model 533AN_MMW (MMC) being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

ANTENNA

The original certification included a Universe PIFA antenna and so covered all PIFA antennas of lower gain. The proposed change is to add a PIFA-based antenna designed for use with the module. Selection of operating modes for each series of tests (band-edge spurious emissions, radiated spurious emissions) is based on previous results with the universe PIFA antenna.

Antenna Name and model	Tumo	Antenna Gain				Comments
Antenna Name and moder	Туре	2.4GHz	5.2GHz	5.5GHz	5.7GHz	Comments
Universe	PIFA	3.24	3.73	4.77	4.97	Original Antenna tested
Amphenol WLAN Main:						
14G152168231LV:	PIFA	-0.59	1.36	2.18	1.64	Proposed new antenna
WLAN Aux: 14G152168131LV:	Carrier	-1.00	0.01	2.19	2.76	

The Intel Model 533AN_MMW is a 3x3 transceiver with antenna connect detection. As the antenna set being evaluated has only 2 antenna elements the device operated as a 2x2 transceiver during the evaluation. The module still remains a 3x3 transceiver and the associated grant notes should indicate this to be the case.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 9, June 11, June 13, June 14, June 16, June 18, June 20, August 19, August 20, August 21, August 22, August 23 and August 25, 2008 at the Elliott Laboratories semi anechoic chambers located at 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

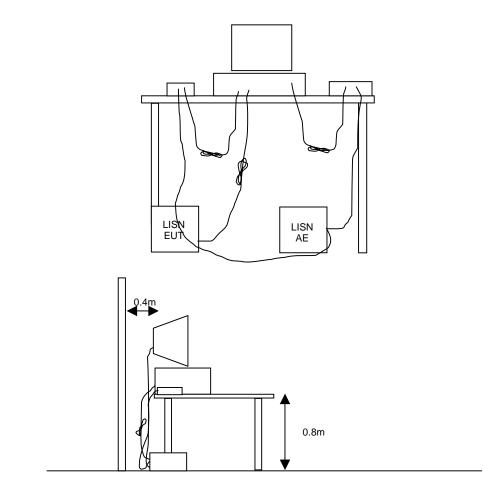
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

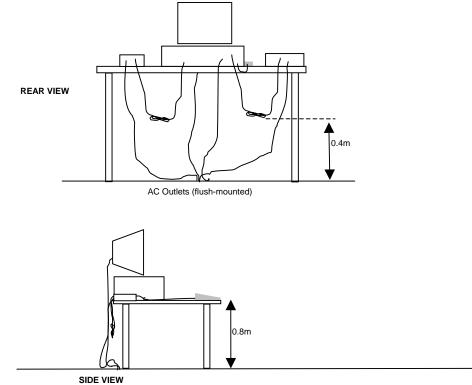

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

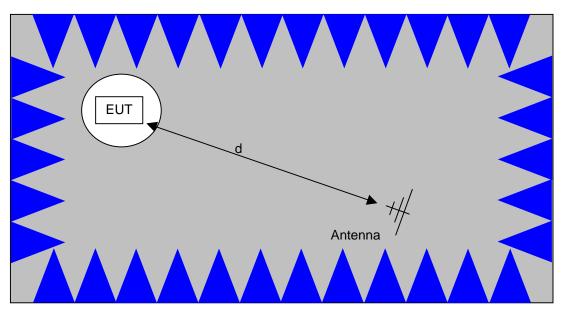
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

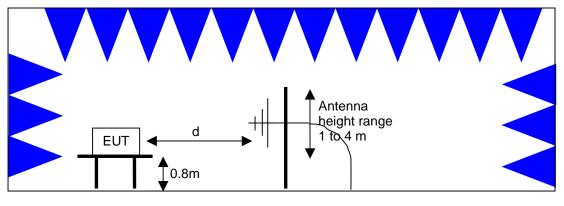

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


SIDE VIEW

Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

3

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Radiated Emissions, 30 - 6,500) MHz, 09-Jun-08			
Engineer: jcaizzi	Description	Madal #	A	
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1-26.5GHz	<u>Model #</u> 8449B	263	<u>Cal Due</u> 28-May-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jul-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	17-Dec-08
DTS 802.11n-40 Band-edge te	est, 11-Jun-08			
Engineer: Ben Jing Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	21-Jun-08
EMCO	Antenna, Horn, 1-18 GHz	3115	1242	N/A
Radiated Emissions, 30 - 6,500) MHz, 13-Jun-08			
Engineer: jcaizzi	Description	Madal #	A + #	
<u>Manufacturer</u> EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model #</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 07-Jul-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Radiated Emissions, 802.11 b	/g Band-edge test, 14-Jun-08			
Engineer: Ben Jing				
<u>Manufacturer</u> EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model #</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 07-Jul-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	05-Mar-09
Radio Spurious Emissions, 16	6-Jun-08			
Engineer: Suhaila Khushzad	Description	N 1 - 1 - 4		0.1 0
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> Test Sys (SA40, 9kHz - 40GHz) Purple	<u>Model #</u> 84125C	<u>Asset #</u> 1770	<u>Cal Due</u> 06-Nov-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Purple)	3115	1779	19-Mar-10
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	21-Jun-08
Radiated Emissions, 1000 - 26	500 MHz, 18-Jun-08			
Engineer: Ben Jing Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	12-Jul-08
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	17-Dec-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
Radio Spurious Emissions, 18 Engineer: skhushzad	-Jun-08			
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	28-May-09
Hewlett Packard	SpecAn 9 KHz-26.5 GHz, Non-Program	8563E	284	21-Jun-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Purple)	3115	1779	19-Mar-10
Radiated Emissions, 30 - 18,00 Engineer: Joseph Cadigal	0 MHz, 20-Jun-08			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jul-08
Hewlett Packard Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple Microwave Preamplifier, 1-26.5GHz	8564E (84125C) 8449B	1771 1780	17-Dec-08 06-Nov-08
Radiated Emissions, 2 GHz ba	nd-edge test, 19-Aug-08			
Engineer: Ben Jing		•• • • •		• • -
Manufacturer	Description	Model #	Asset #	
Hewlett Packard Miteg	SpecAn 9 KHz-26.5 GHz, Non-Program Preamplifier, 1-18 GHz	8563E AFS44	284 1346	21-Aug-08 13-Nov-08
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	17-Oct-08
	· ·	-	-	

EMCO Rohde & Schwarz	Antenna, Horn, 1-18 GHz (SA40-Purple) Power Meter, Dual Channel	3115 NRVD	1779 1786	19-Mar-10 07-Jan-09
Radiated Emissions, 2.4 GHz	band-edge test, 20-Aug-08			<u> </u>
Engineer: bjing				
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	05-Mar-09
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	15-Jan-09
Fischer Custom Comm.	150-50 ohm adapter, 1/2, 0.15 to 80 MHz	FCC-801-150-50	1573	06-Jun-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	22-Feb-09
Radiated Emissions, 2.4 GHz	DTS Band-edge, 21-Aug-08			
Engineer: Ben Jing				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	07-Dec-08
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	04-Dec-08
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
Radiated Emissions, 1000 - 18	3,000 MHz, 22-Aug-08			
Engineer: Ben Jing				
<u>Manufacturer</u>	Description	Model #	Asset #	
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Miteq	Preamplifier, 1-18 GHz	AFS44	1346	13-Nov-08
Hewlett Packard	SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	25-Aug-08
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	17-Oct-08
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
Radiated Emissions, 30 - 26,5	00 MHz, 22-Aug-08			
Engineer: jcaizzi		•• • • •		
Manage of a strength				
Manufacturer	Description	Model #	Asset #	
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
EMCO Miteq	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz	3115 AFS44	868 1346	10-Jun-10 13-Nov-08
EMCO Miteq Hewlett Packard	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 AFS44 8564E (84125C)	868 1346 1393	10-Jun-10 13-Nov-08 15-Jan-09
EMCO Miteq	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz	3115 AFS44	868 1346	10-Jun-10 13-Nov-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz	3115 AFS44 8564E (84125C)	868 1346 1393	10-Jun-10 13-Nov-08 15-Jan-09
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u>	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u>	868 1346 1393 1731 <u>Asset #</u>	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u> EMCO	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 <u>Description</u> Antenna, Horn, 1-18GHz	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115	868 1346 1393 1731 <u>Asset #</u> 868	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 <u>Cal Due</u> 10-Jun-10
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u> EMCO Miteq	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 <u>Description</u> Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44	868 1346 1393 1731 Asset # 868 1346	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 <u>Cal Due</u> 10-Jun-10 13-Nov-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u> EMCO Miteq Hewlett Packard	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44 8564E (84125C)	868 1346 1393 1731 Asset # 868 1346 1393	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 Cal Due 10-Jun-10 13-Nov-08 15-Jan-09
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u> EMCO Miteq Hewlett Packard Rohde & Schwarz	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44 8564E (84125C) NRVS	868 1346 1393 1731 Asset # 868 1346 1393 1534	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 Cal Due 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz Band Reject Filter, 2400-2500 MHz Band Reject Filter, 2400-2500 MHz Band Reject Filter, 5725-5875 MHz	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44 8564E (84125C) NRVS BRC50705-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 Cal Due 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing <u>Manufacturer</u> EMCO Miteq Hewlett Packard Rohde & Schwarz	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44 8564E (84125C) NRVS	868 1346 1393 1731 Asset # 868 1346 1393 1534	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 Cal Due 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz Band Reject Filter, 2400-2500 MHz Band Reject Filter, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz	3115 AFS44 8564E (84125C) BRM50702-02 <u>Model #</u> 3115 AFS44 8564E (84125C) NRVS BRC50705-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 Cal Due 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz 3,000 MHz, 25-Aug-08	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728 1731	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz 3,000 MHz, 25-Aug-08 Description	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728 1731 Asset #	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08 17-Oct-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz 3,000 MHz, 25-Aug-08 Description Antenna, Horn, 1-18 GHz	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728 1731 Asset # 786	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08 17-Oct-08 17-Oct-08 05-Mar-09 07-Dect-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz 3,000 MHz, 25-Aug-08 Description Antenna, Horn, 1-18 GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728 1731 Asset # 786 1148	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08 17-Oct-08 17-Oct-08 05-Mar-09 07-Dec-08 24-Sep-08
EMCO Miteq Hewlett Packard Micro-Tronics Radiated Emissions, 1000 - 18 Engineer: Ben Jing Manufacturer EMCO Miteq Hewlett Packard Rohde & Schwarz Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics Micro-Tronics	Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Band Reject Filter, 2400-2500 MHz 3,000 MHz, 23-Aug-08 Description Antenna, Horn, 1-18GHz Preamplifier, 1-18 GHz SpectAn 9 kHz - 40 GHz, FT (SA40) Blue Power Meter, Single Channel Band Reject Filter, 5725-5875 MHz Band Reject Filter, 2400-2500 MHz 3,000 MHz, 25-Aug-08 Description Antenna, Horn, 1-18 GHz	3115 AFS44 8564E (84125C) BRM50702-02	868 1346 1393 1731 Asset # 868 1346 1393 1534 1728 1731 Asset # 786	10-Jun-10 13-Nov-08 15-Jan-09 17-Oct-08 10-Jun-10 13-Nov-08 15-Jan-09 05-Mar-09 17-Oct-08 17-Oct-08 17-Oct-08 05-Mar-09 07-Dect-08

EXHIBIT 2: Test Measurement Data

79 Pages

Elliot		EMC Tool Data
An <u>AZAS</u> compa Client: Intel (ny	EMC Test DataJob Number:J72725T-Log Number:T72735Account Manager:Dean Eriksen
sions Standard(s): FCC		Class: DTS Environment: -
	EMC Tes	
DTS F		
	_	
	533AN-MMW with SI	
	Date of Last Test:	:: 8/27/2008
DTS F	Radiated Emissio For Th Intel Corp Mode 533AN-MMW with SI	ons, SL-300 Antenna he ooration el L-300 Antenna

Ć	Elliott An MAS [*] company	EM	C Test Data			
Client:	Intel Corporation	Job Number:	J72725			
Madal	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735			
wouer.		Account Manager:	Dean Eriksen			
Contact:	Robert Paxman					
Standard:	FCC Part 15.247/RSS 210	Class:	N/A			
RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Band Edge Field Strength 802.11g SL-300 Antenna						
Test Specific Details						
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.						

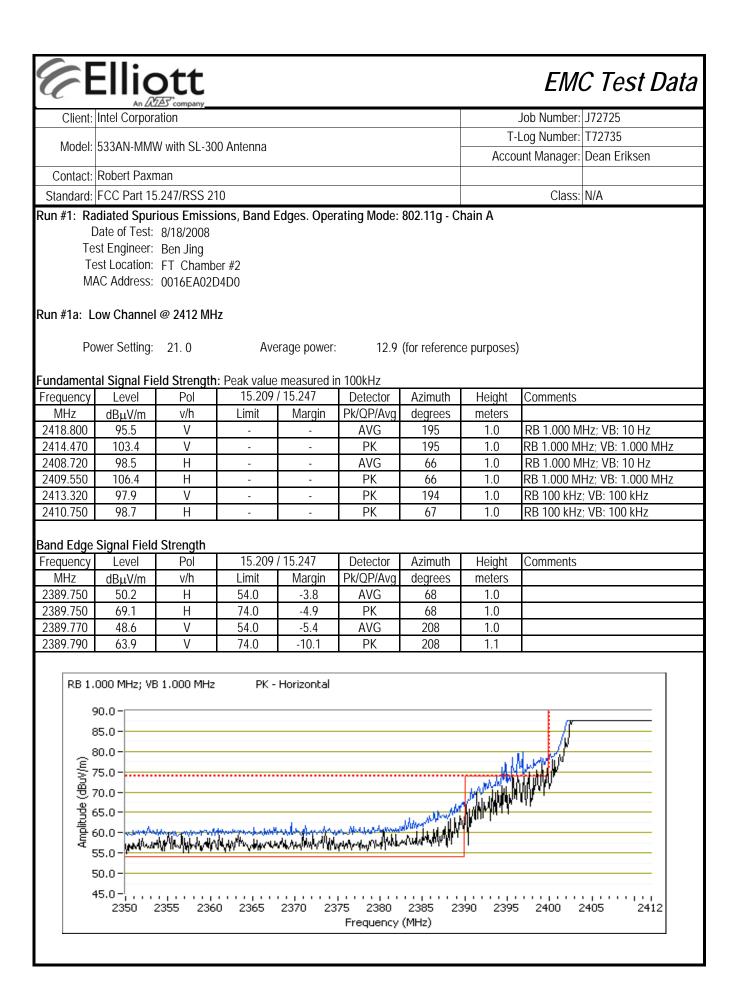
General Test Configuration

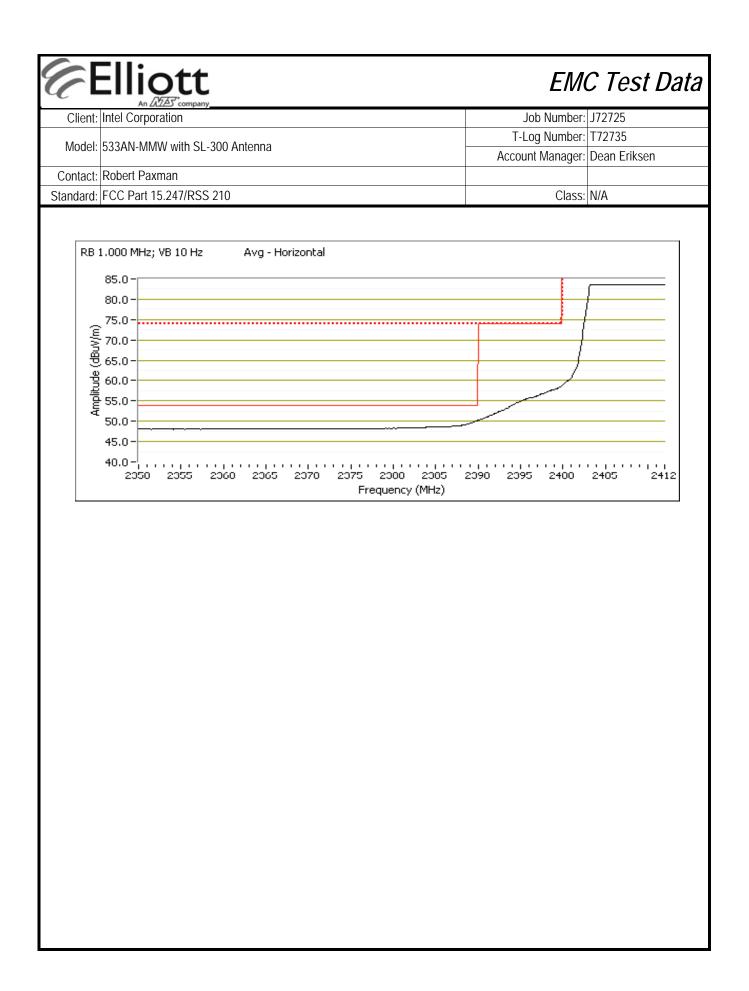
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

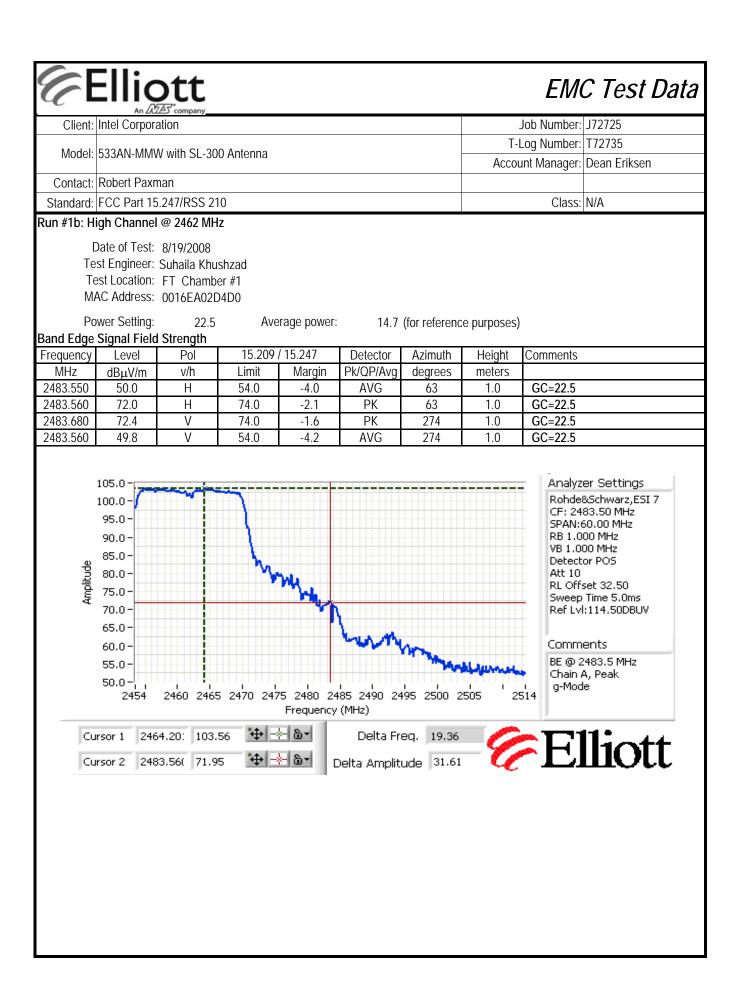
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

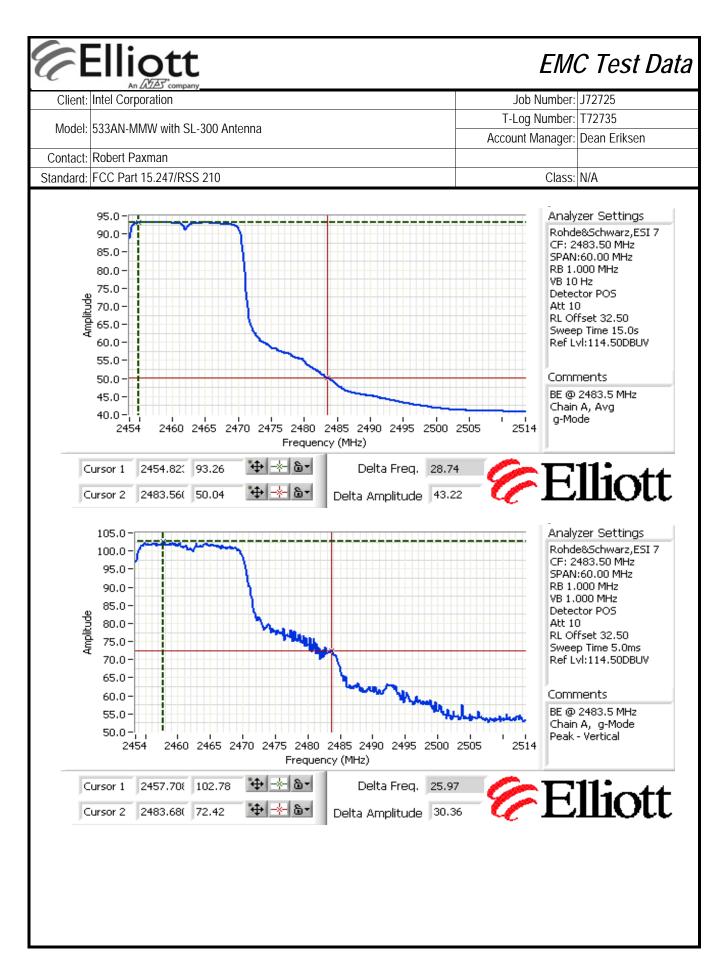
Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	48 %

Summary of Results

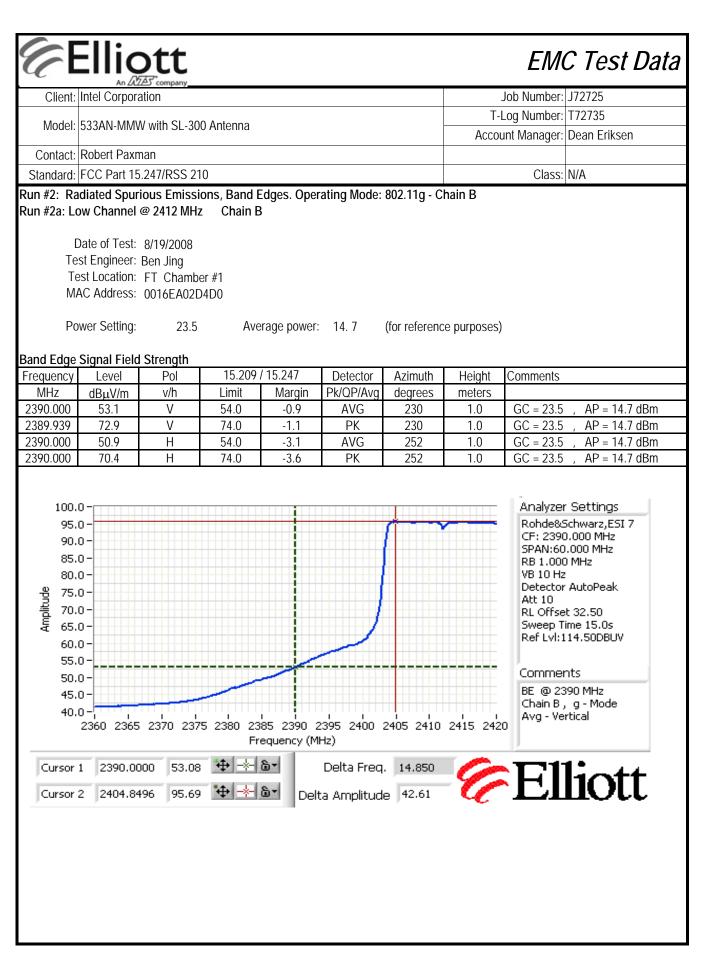

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11g	1	21.0	12.9	Band Edge radiated	FCC Part 15.209 /	50.2dBµV/m @
	Chain A	2412MHz			field strength	15.247(c)	2389.8MHz (-3.8dB)
1b	802.11g	1	22.5	14.7	Band Edge radiated	FCC Part 15.209 /	72.4dBµV/m @
ID.	Chain A	2462MHz	22.5	14.7	field strength	15.247(c)	2483.7MHz (-1.6dB)
2a	802.11g	1	23. 5	14.7	Band Edge radiated	FCC Part 15.209 /	53.1 dBuV/m @
Zđ	Chain B	2412MHz	23. 3	14.7	field strength	15.247(c)	2390 MHz (-0.9dB)
2b	802.11g Chain B	11 2462MHz	24. 5	14.6	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	72.2 dBuV/m @ 2483.6 MHz (-1.8dB)

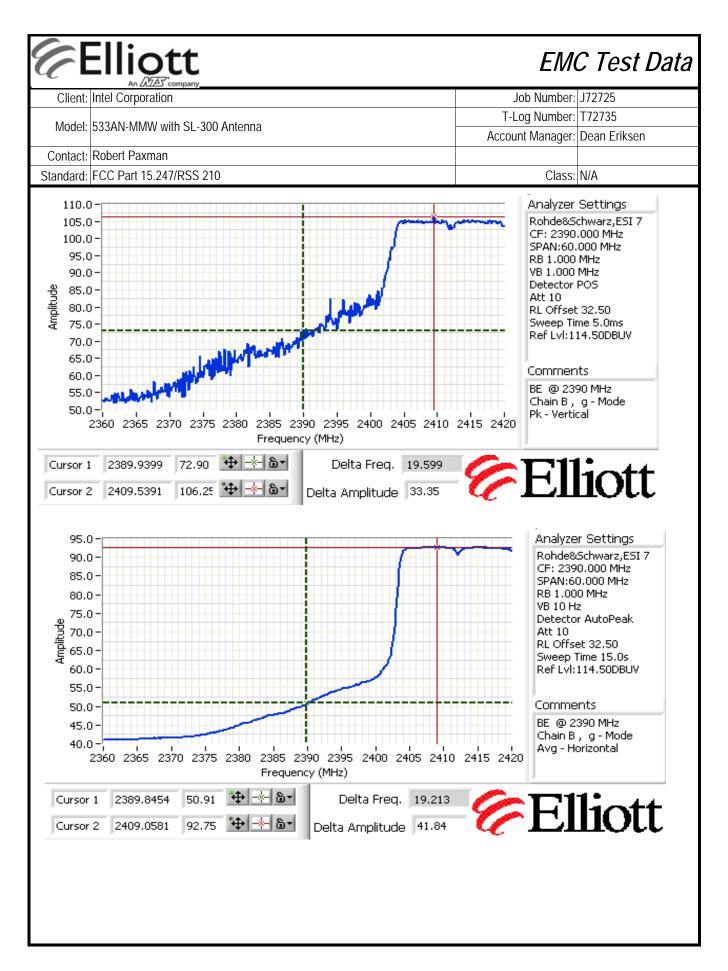

Modifications Made During Testing


No modifications were made to the EUT during testing

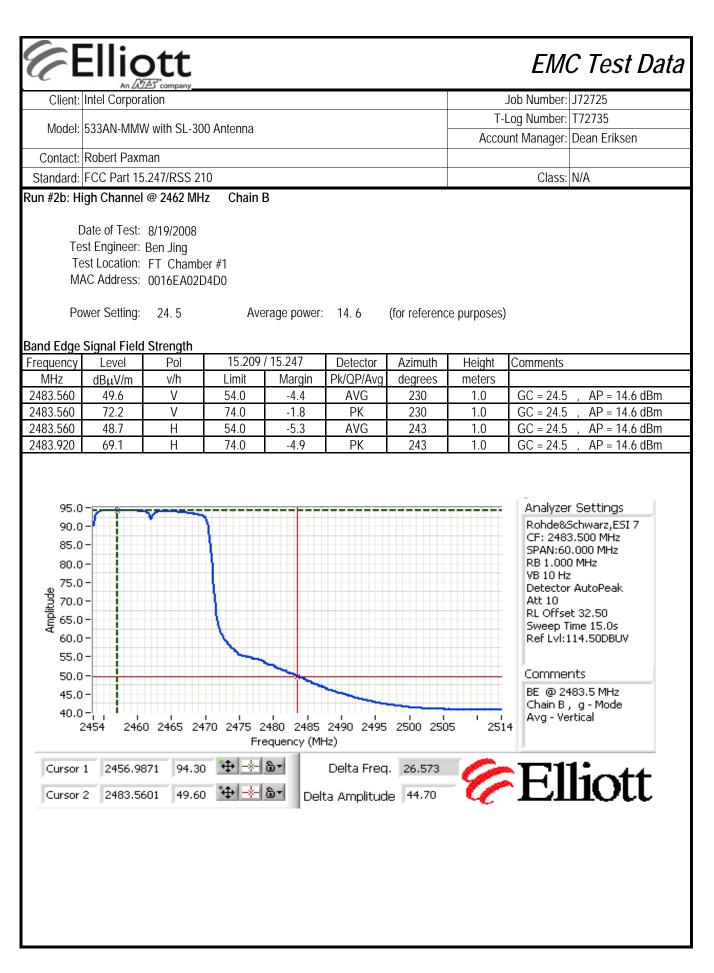

Deviations From The Standard

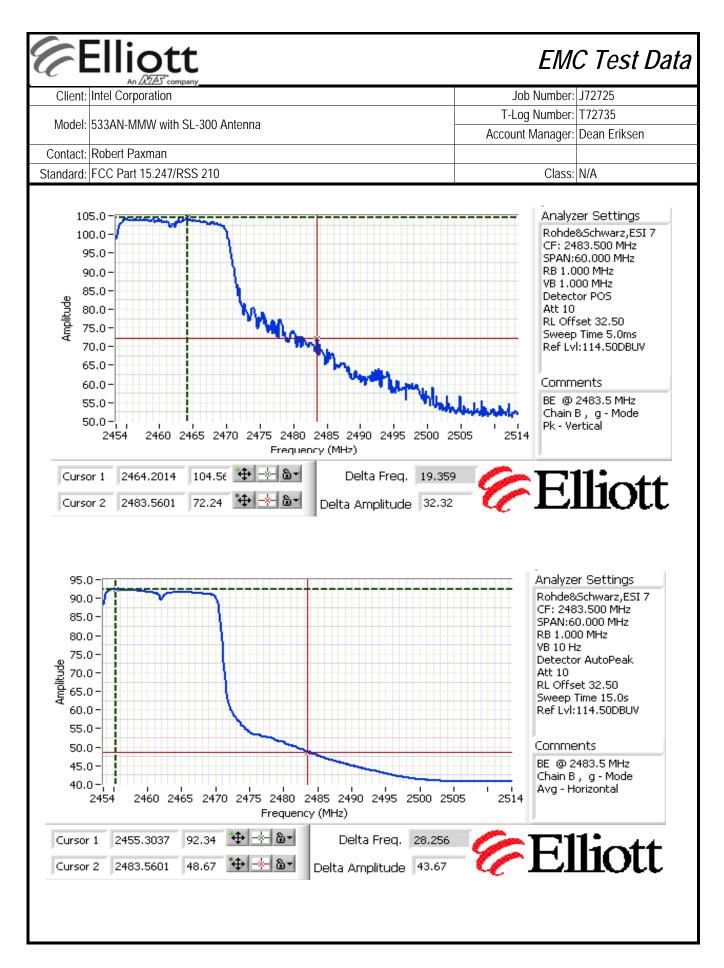
No deviations were made from the requirements of the standard.

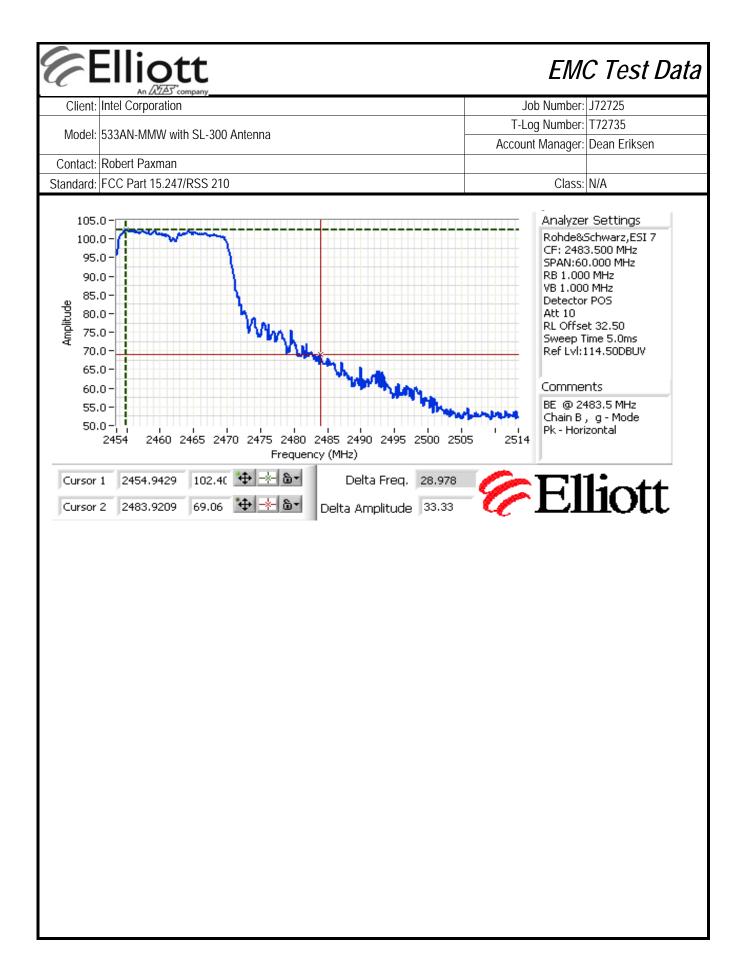












EMC Test Data

Client:	Intel Corporation	Job Number:	J72725
Model:	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Band Edge Field Strength 802.11n20MHz SL-300 Antenna

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

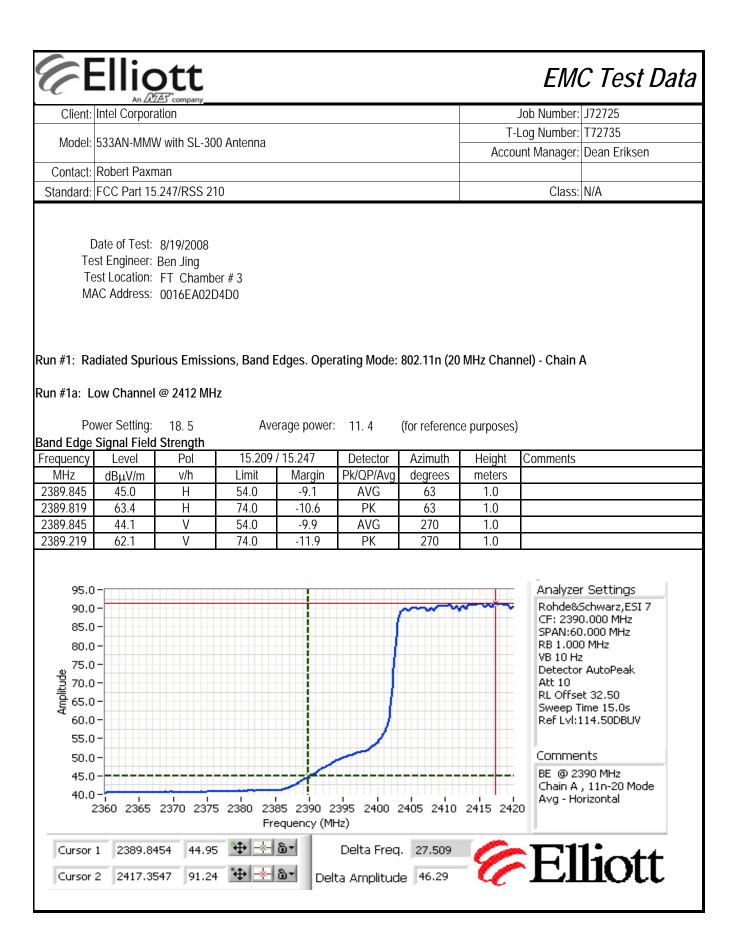
General Test Configuration

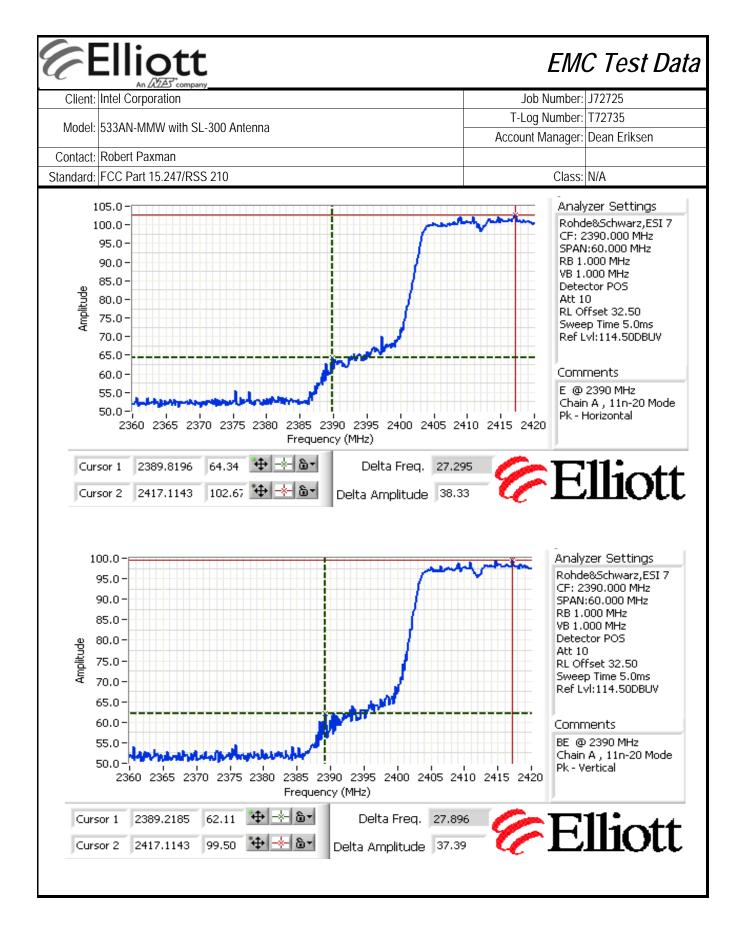
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

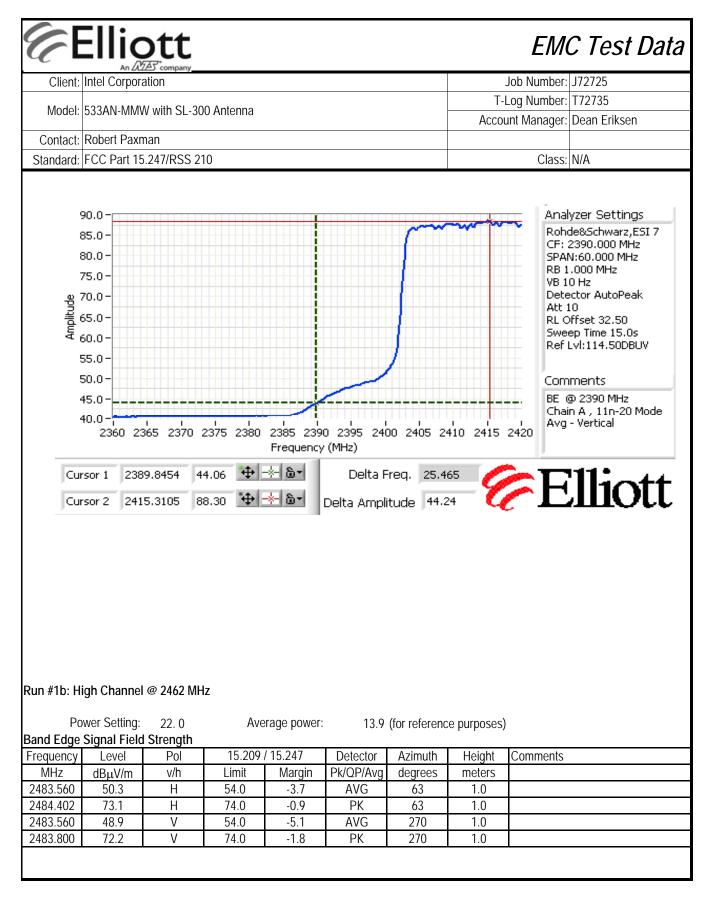
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

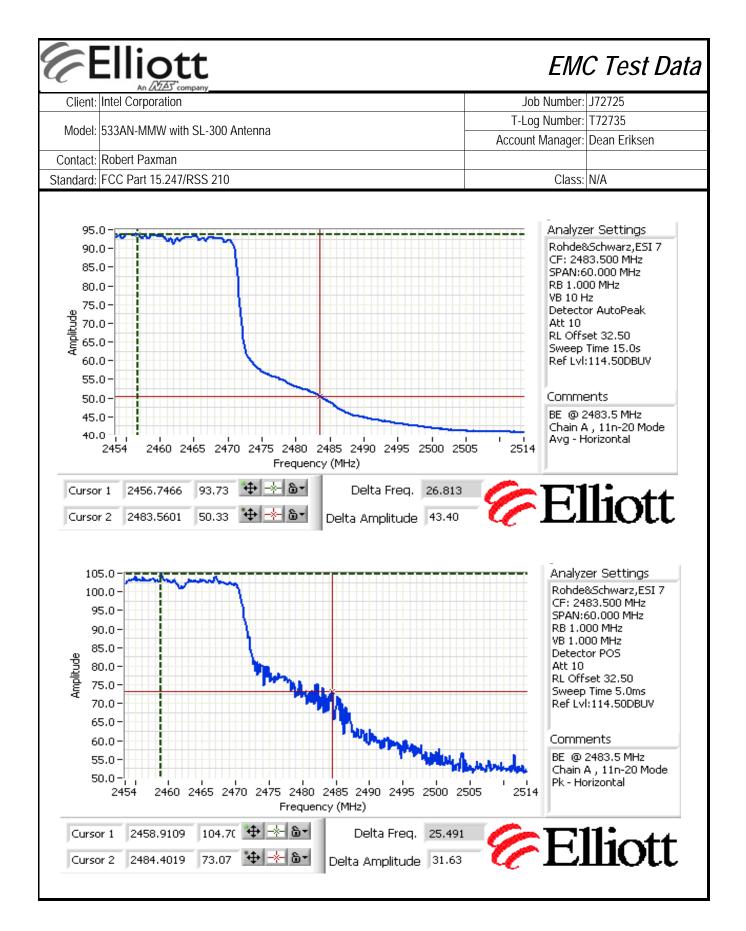
Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	36 %

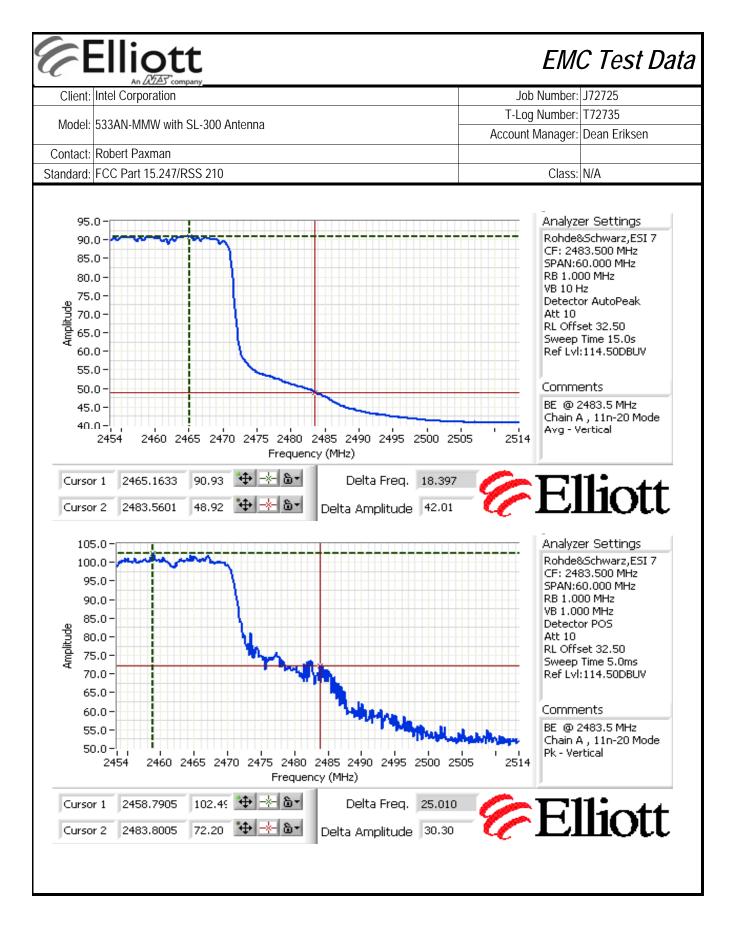
Summary of Results

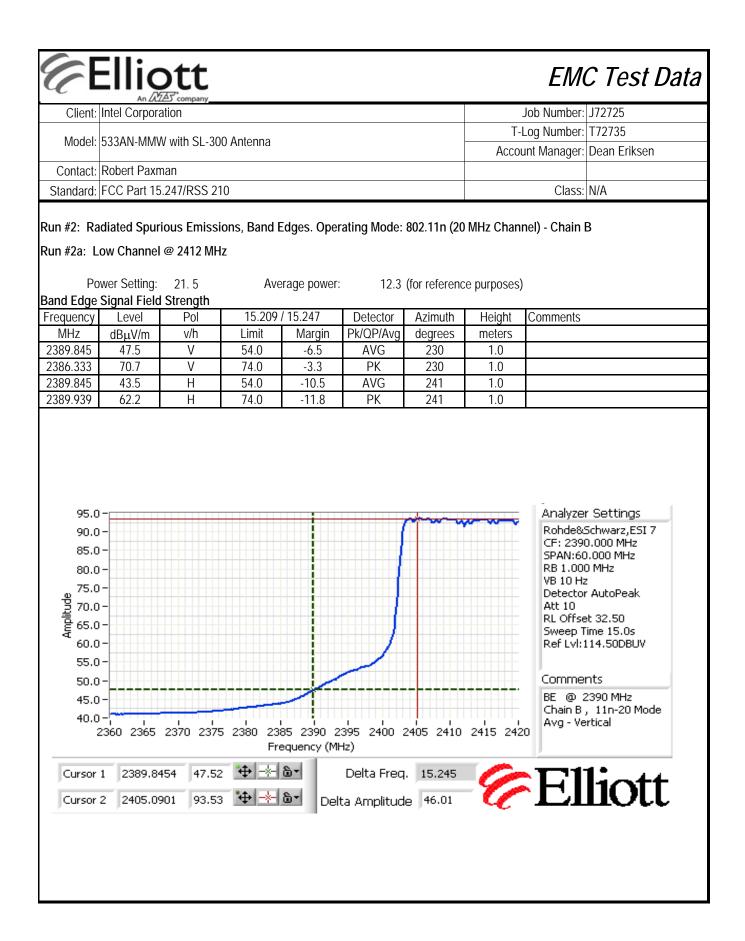

	· j · · · · · ·						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11n20	1	18.5	11.4	Band Edge radiated	FCC Part 15.209 /	45.0dBµV/m @
Id	Chain A	2412MHz	10.0	11.4	field strength	15.247(c)	2389.8MHz (-9.1dB)
1b	802.11n20	11	22.0	13.9	Band Edge radiated	FCC Part 15.209 /	73.1 dBuV/m @
IJ	Chain A	2462MHz	22.0	13.9	field strength	15.247(c)	2484.4 MHz (-0.9dB)
2a	802.11n20	1	21.5	12.3	Band Edge radiated	FCC Part 15.209 /	70.7 dBuV/m @ 2386.3
Zđ	Chain B	2412MHz	Z1.0		field strength	15.247(c)	MHz (-3.3dB)
2b	802.11n20	11	23.5	14.0	Band Edge radiated	FCC Part 15.209 /	70.6 dBuV/m @ 2483.8
20	Chain B	2462MHz	23.0	14.0	field strength	15.247(c)	MHz (-3.4dB)
3a	802.11n20	1	22.0, 22.5	13.0, 12.4	Band Edge radiated	FCC Part 15.209 /	66.4 dBuV/m @ 2388.6
Jd	Chain A+B	2412MHz	22.0, 22.3	13.0, 12.4	field strength	15.247(c)	MHz (-7.6dB)
3b	802.11n20	11	22.0, 24.0	13.3, 13.6	Band Edge radiated	FCC Part 15.209 /	47.2dBµV/m @
30	Chain A+B	2462MHz	22.0, 24.0	13.3, 13.0	field strength	15.247(c)	2483.6MHz (-6.8dB)

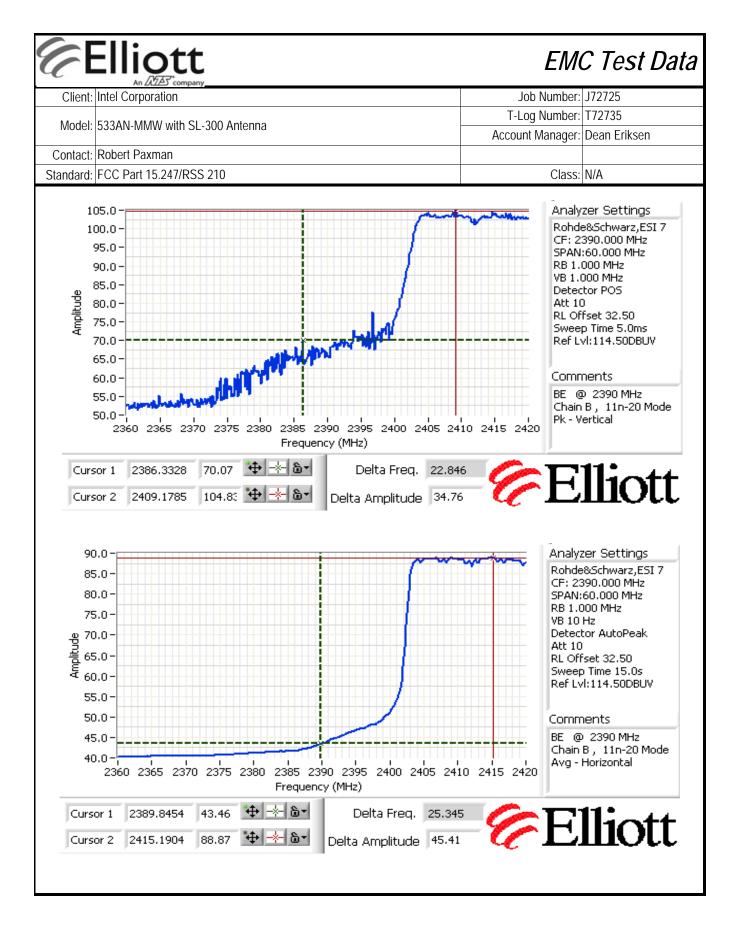

Modifications Made During Testing

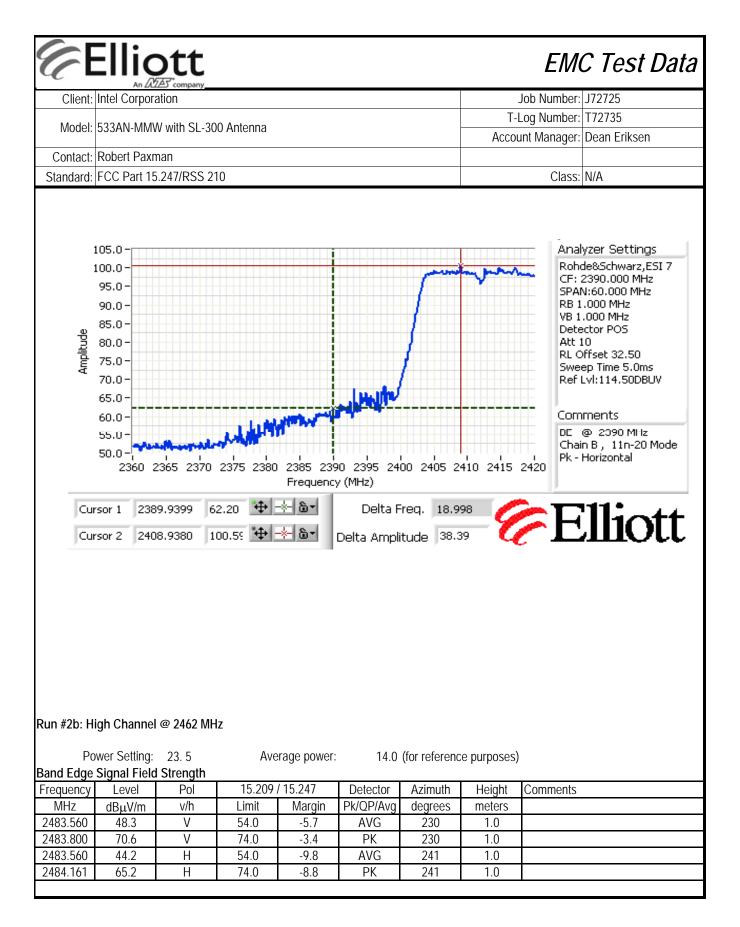

No modifications were made to the EUT during testing

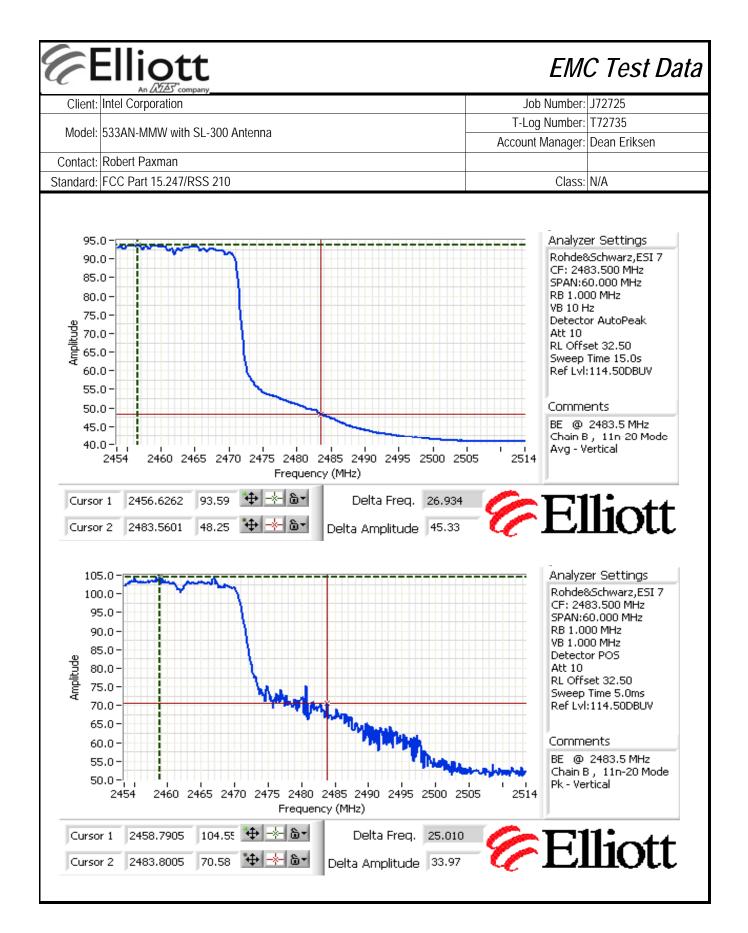

Deviations From The Standard

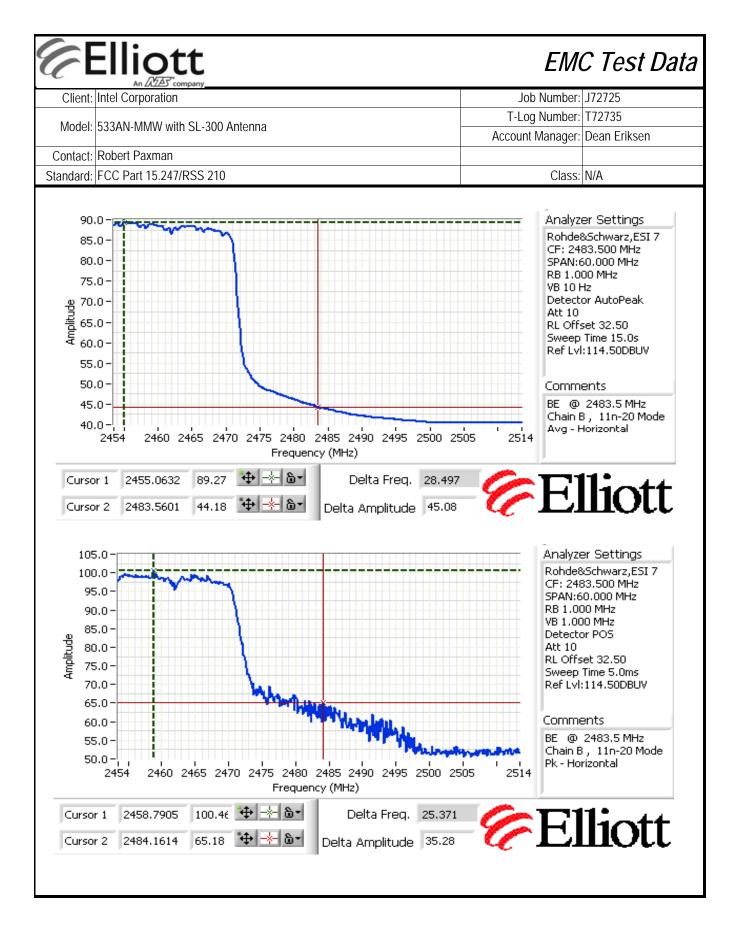

No deviations were made from the requirements of the standard.

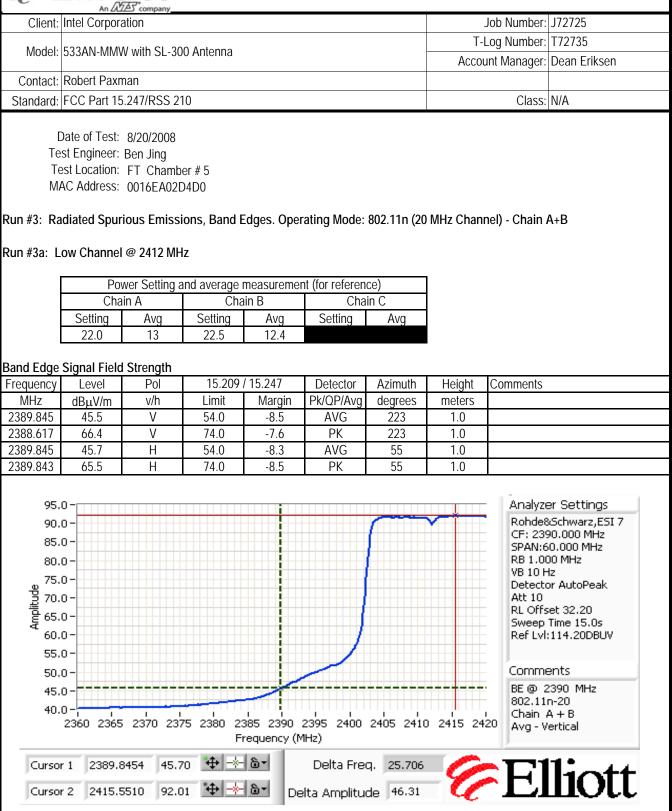


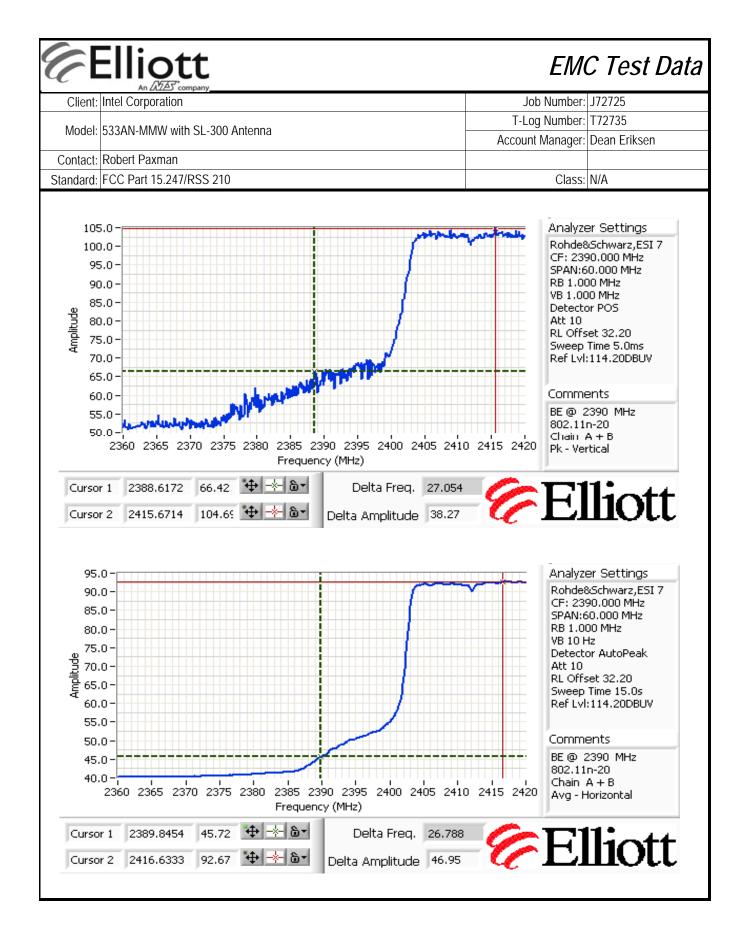


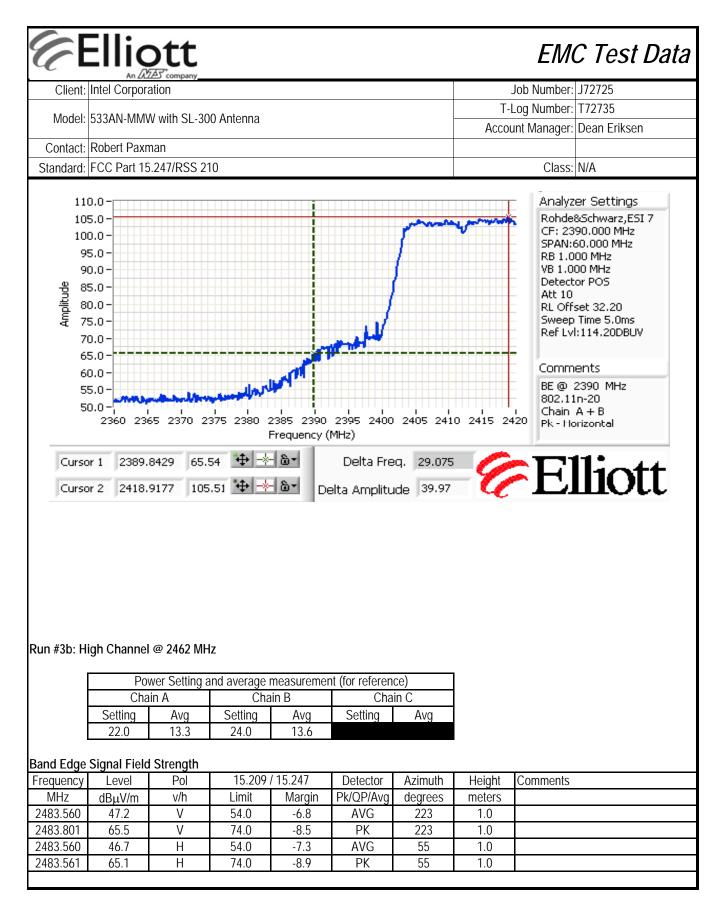


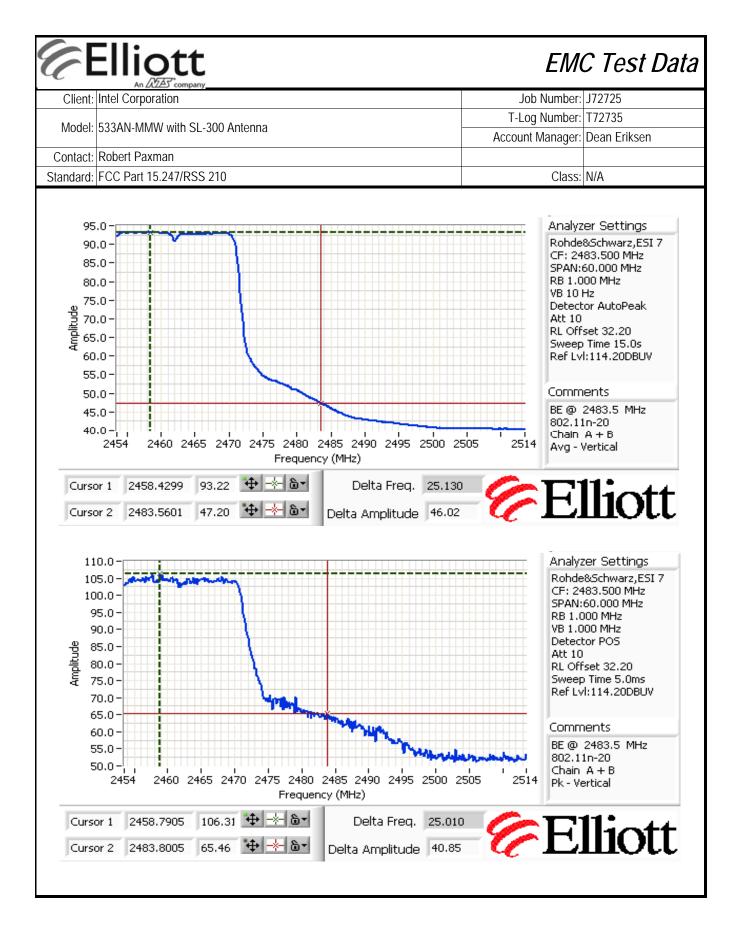


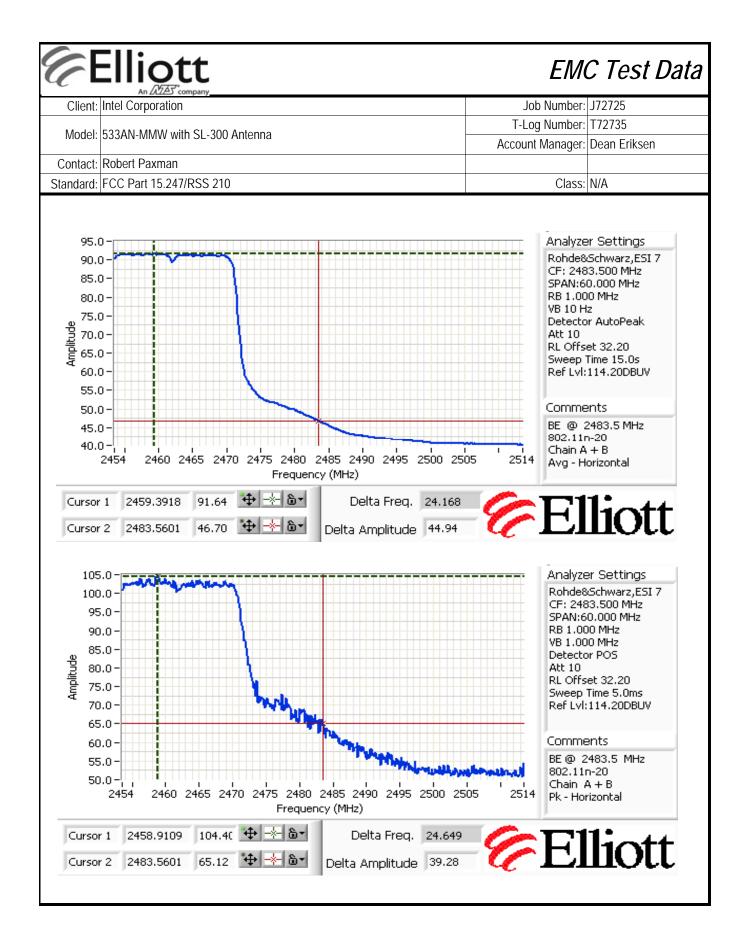









Elliott


EMC Test Data

EMC Test Data

Client:	Intel Corporation	Job Number:	J72725
Madalı	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
wouer.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Band Edge Field Strength 802.11n40MHz SL-300 Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

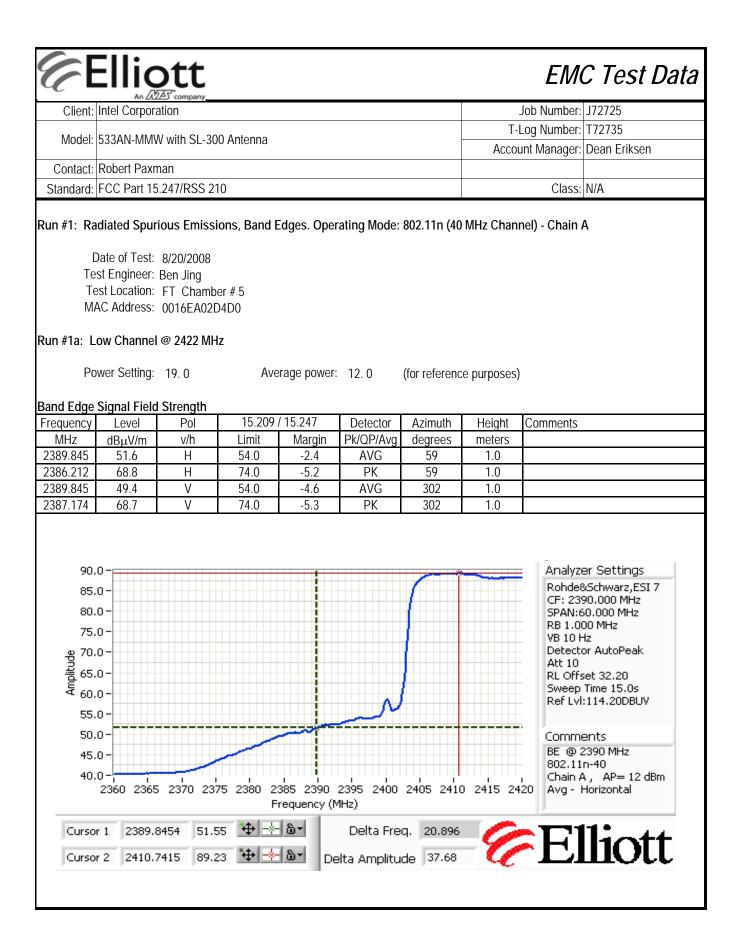
Elliott

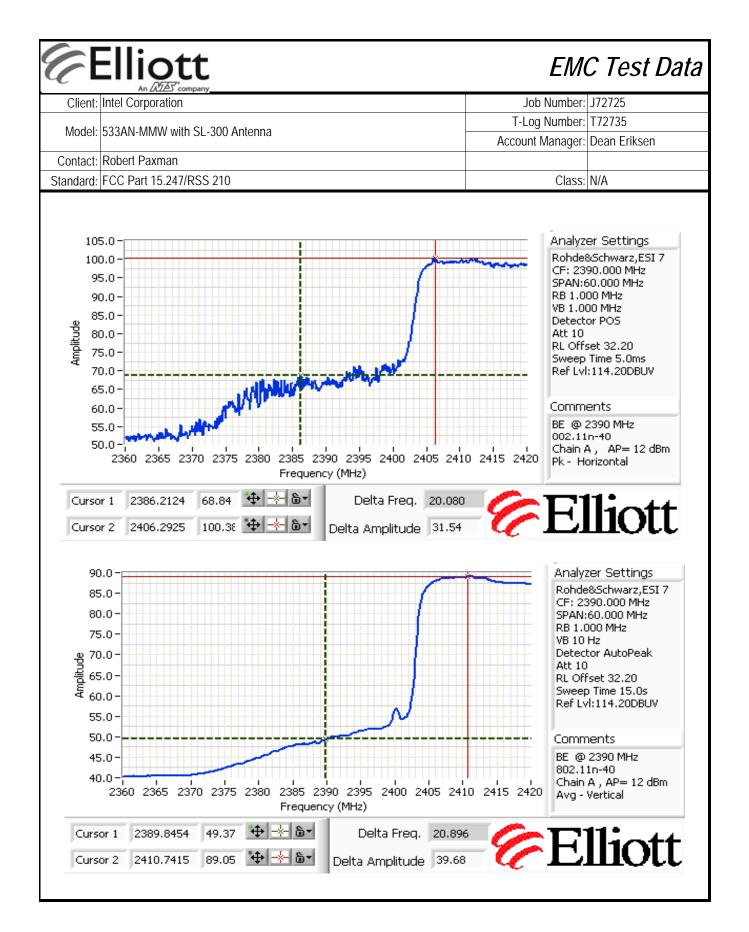
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

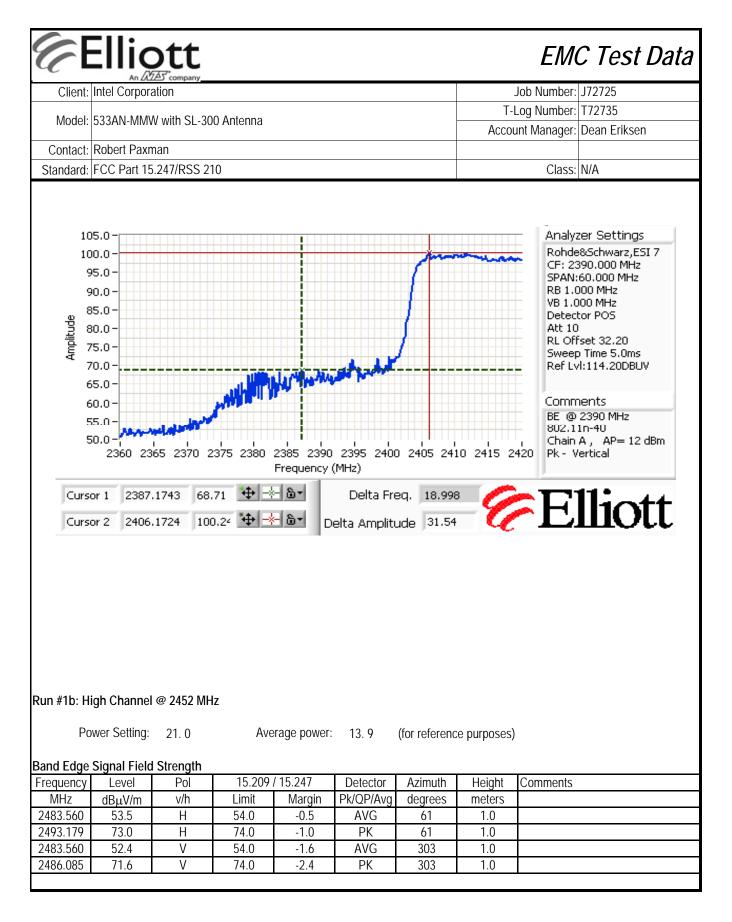
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

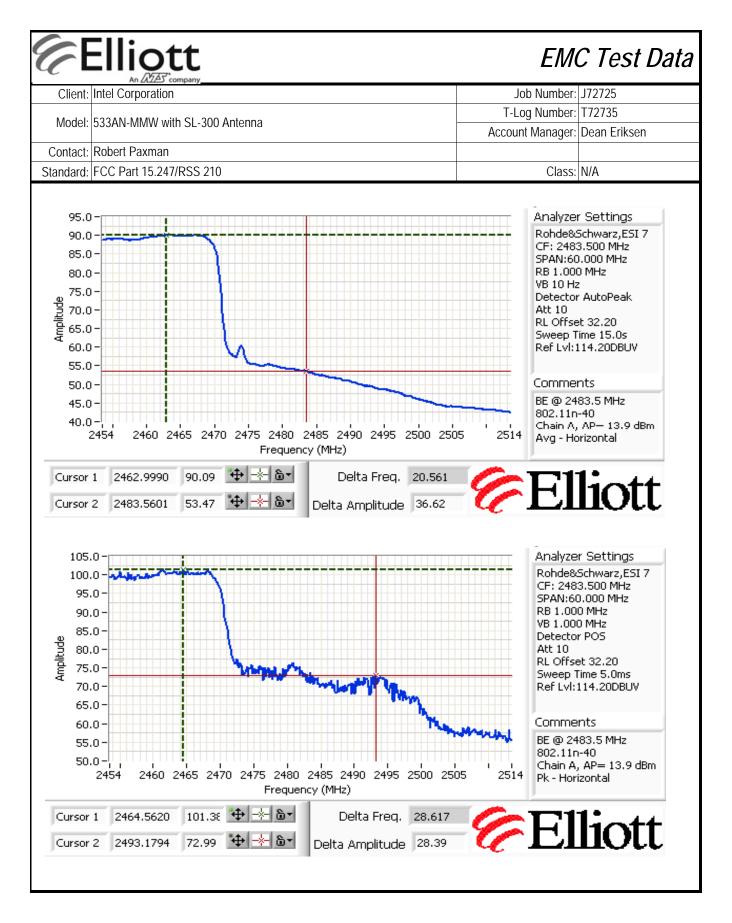
Ambient Conditions:	Temperature:	14 - 25 °C
	Rel. Humidity:	25 - 55 %

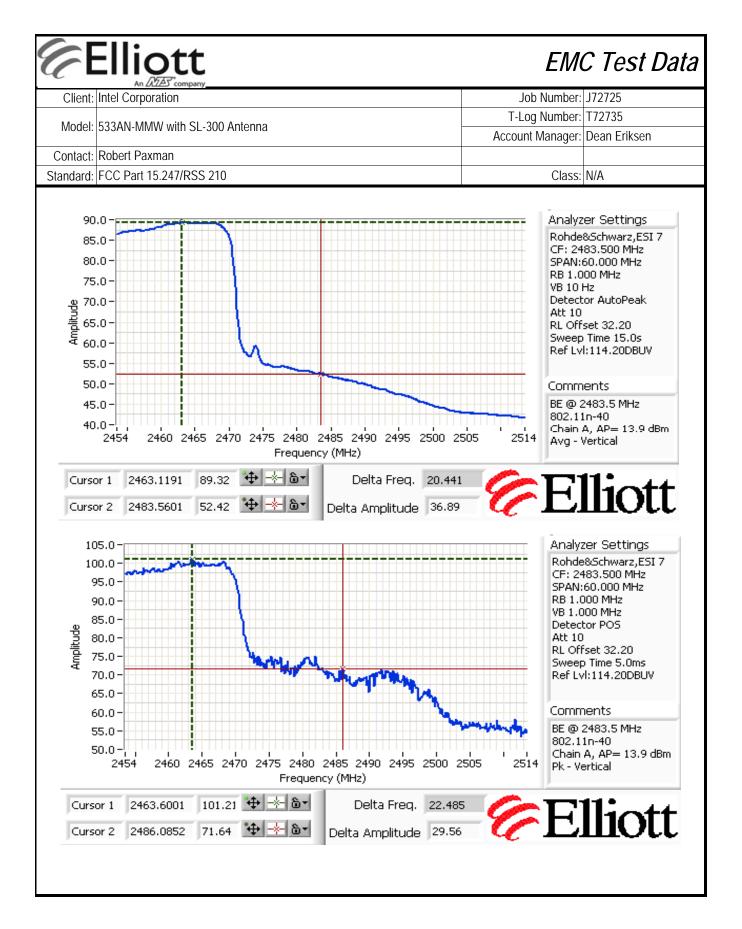
Modifications Made During Testing

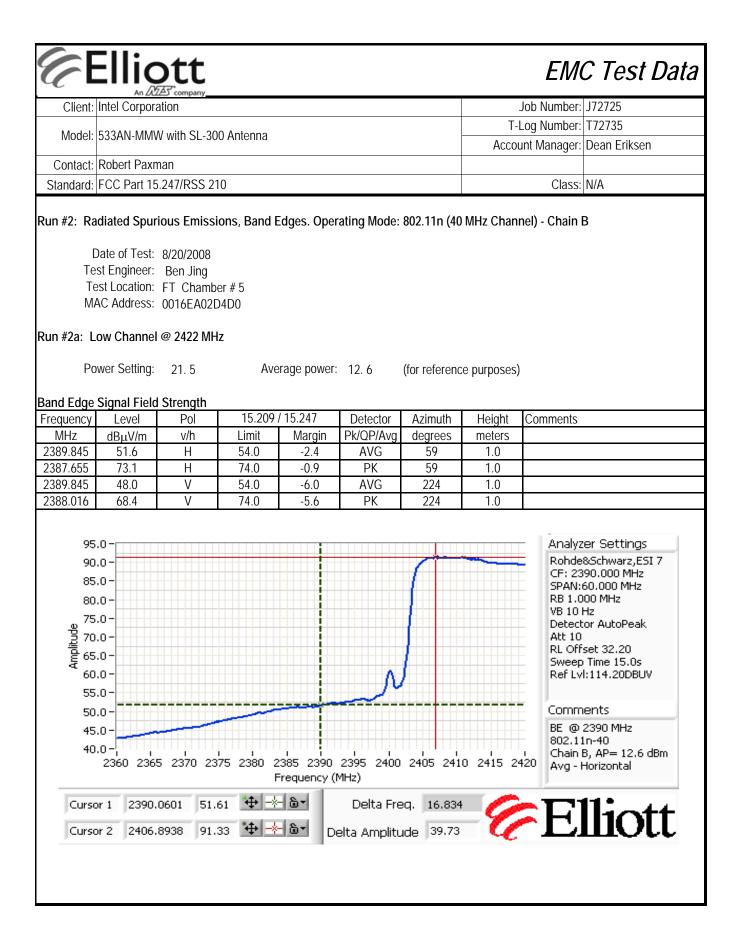

No modifications were made to the EUT during testing

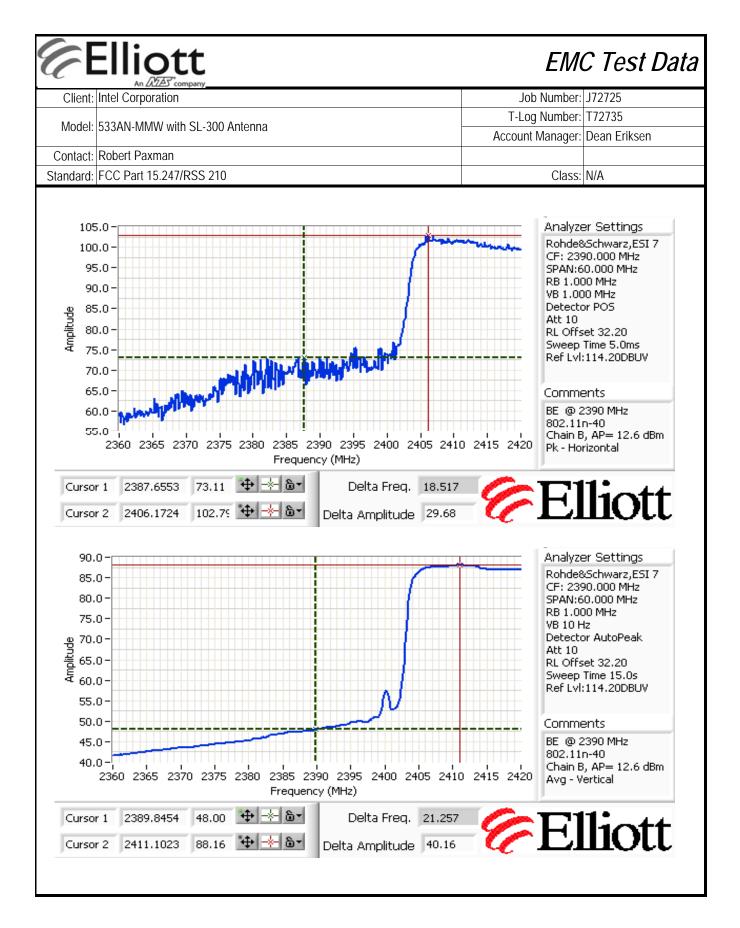

Deviations From The Standard

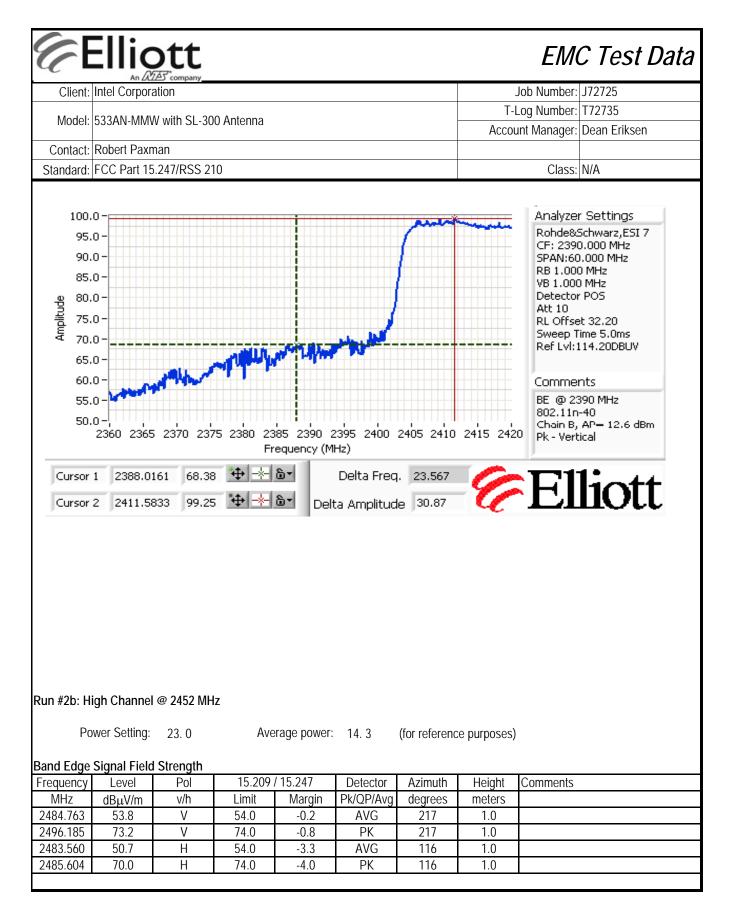

No deviations were made from the requirements of the standard.

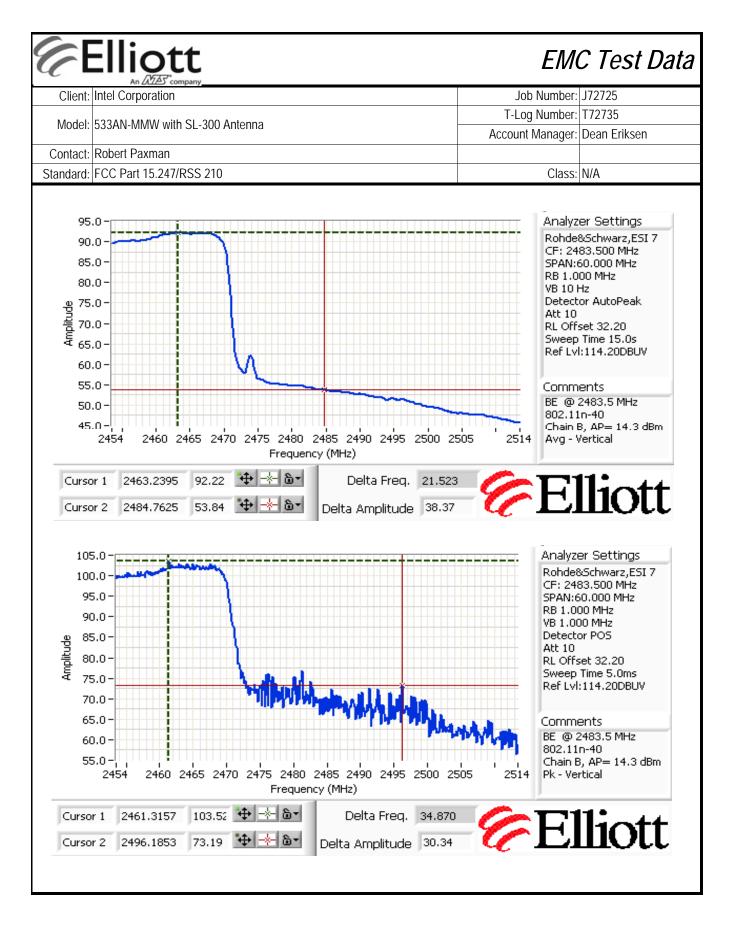

Summary of Results

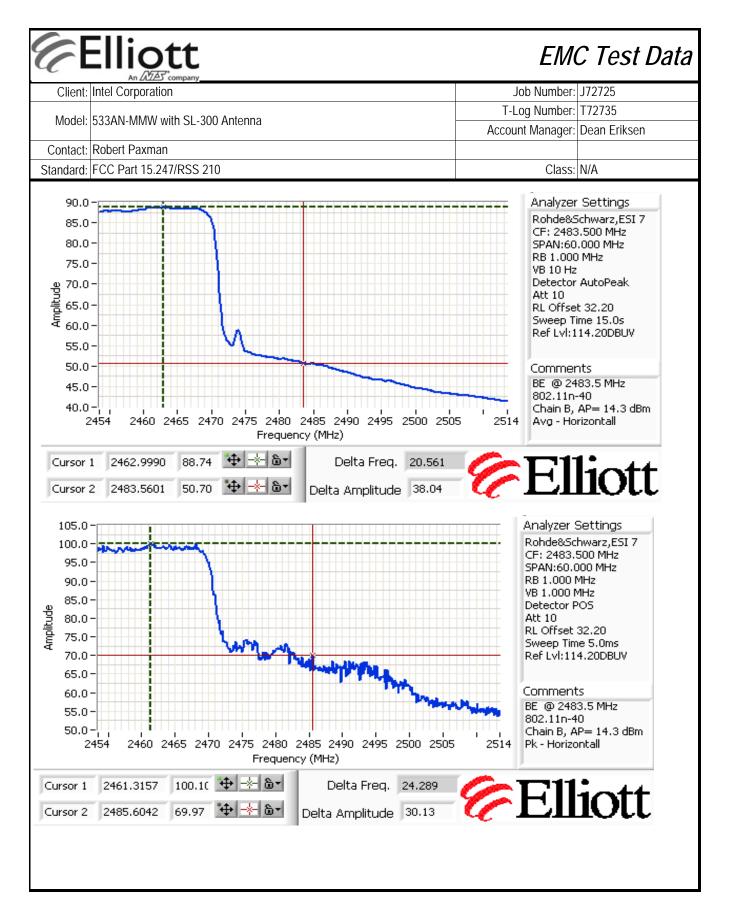

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11n40		19.0	12.0	Band Edge radiated	FCC Part 15.209 /	51.6dBµV/m @
Ta	Chain A	2422MHz	17.0	12.0	field strength	15.247(c)	2389.8MHz (-2.4dB)
1b	802.11n40	11	21.0	13.9	Band Edge radiated	FCC Part 15.209 /	53.5dBµV/m @
ID	Chain A	2452MHz	21.0	13.9	field strength	15.247(c)	2483.6MHz (-0.5dB)
2a	802.11n40	1	21.5	12.6	Band Edge radiated	FCC Part 15.209 /	73.1 dBuV/m @ 2387.7
Zđ	Chain B	2422MHz	Z1.0	12.0	field strength	15.247(c)	MHz (-0.9dB)
2b	802.11n40	11	23.0	14.3	Band Edge radiated	FCC Part 15.209 /	53.8dBµV/m @
20	Chain B	2452MHz	23.0	14.5	field strength	15.247(c)	2484.8MHz (-0.2dB)
3a	802.11n40	3	A : 22.5	A : 11.3	Band Edge radiated	FCC Part 15.209 /	49.6dBµV/m @
Ja	Chain A+B	2422MHz	B : 23.5	B : 11.4	field strength	15.247(c)	2389.6MHz (-4.4dB)
3b	802.11n40	9	A : 25.5	A : 13.8	Band Edge radiated	FCC Part 15.209 /	52.9dBµV/m@
30	Chain A+B	2452MHz	B : 26.5	B : 14.1	field strength	15.247(c)	2483.6MHz (-1.1dB)

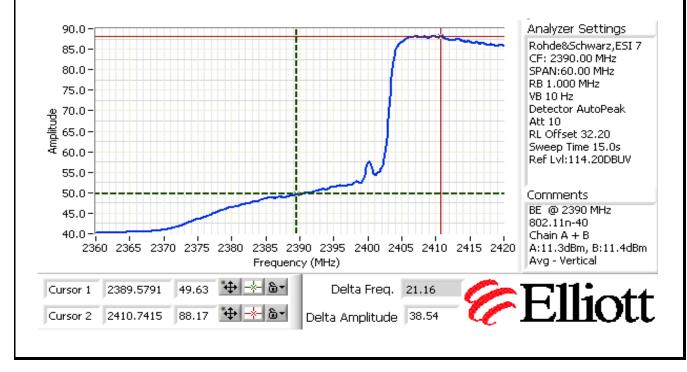


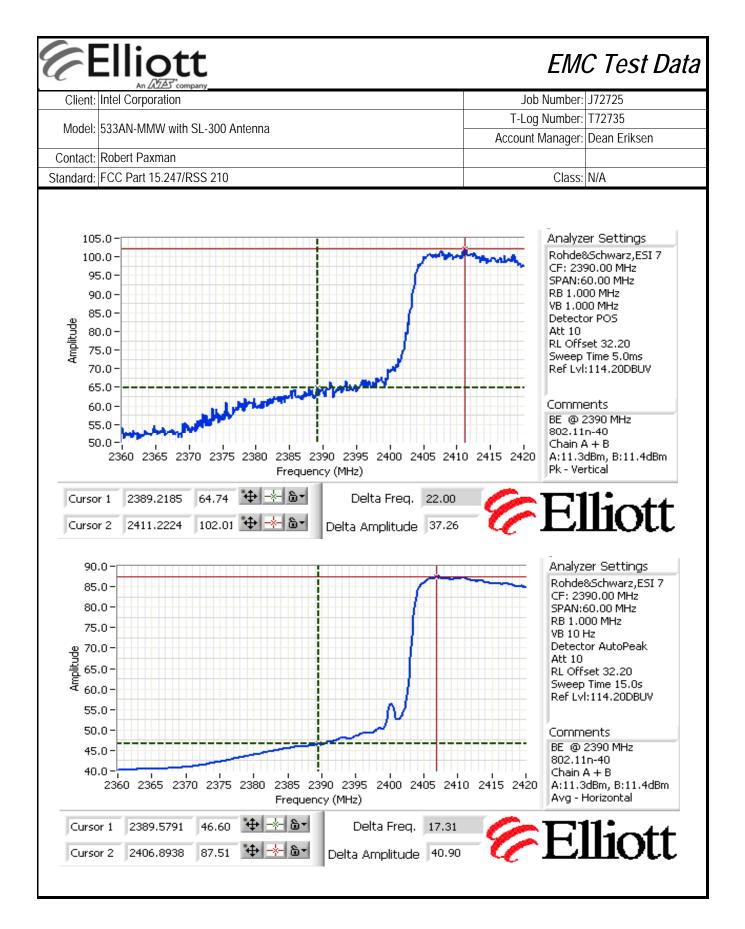


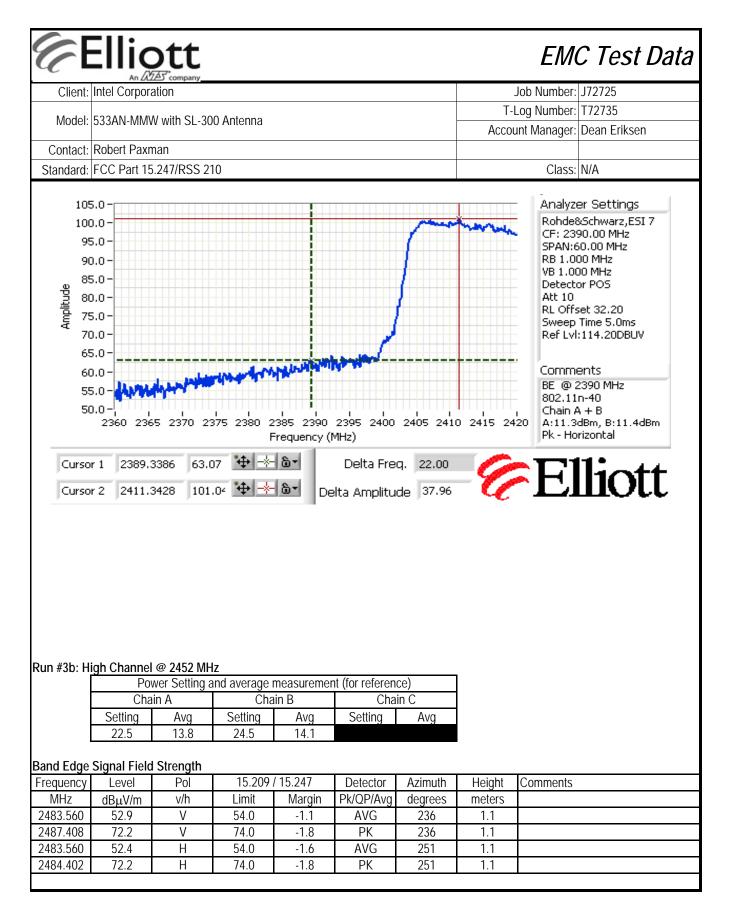


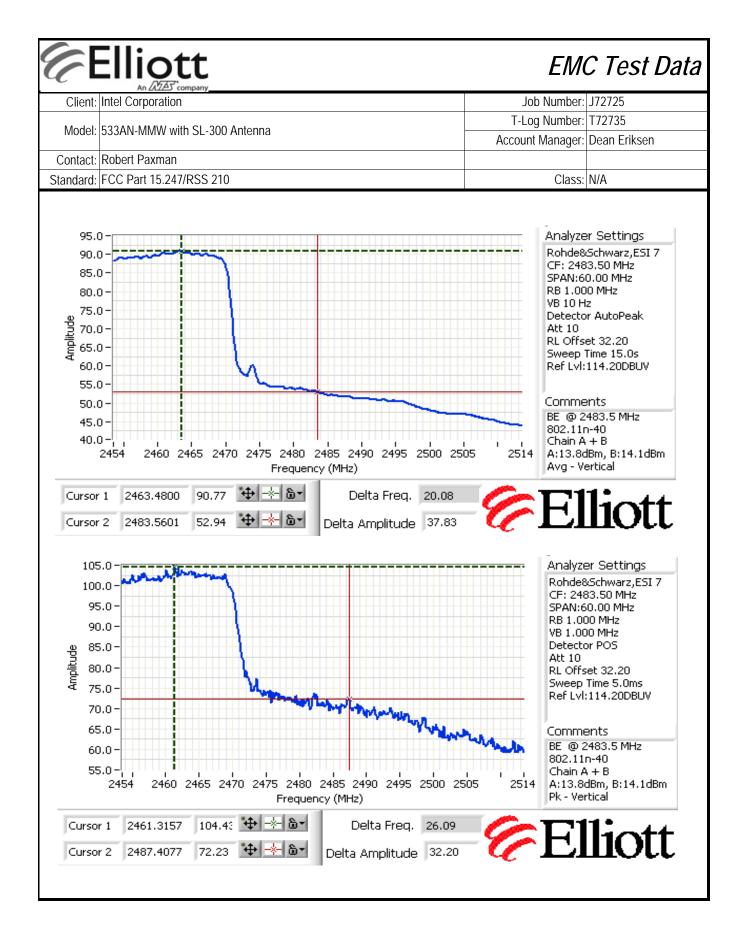


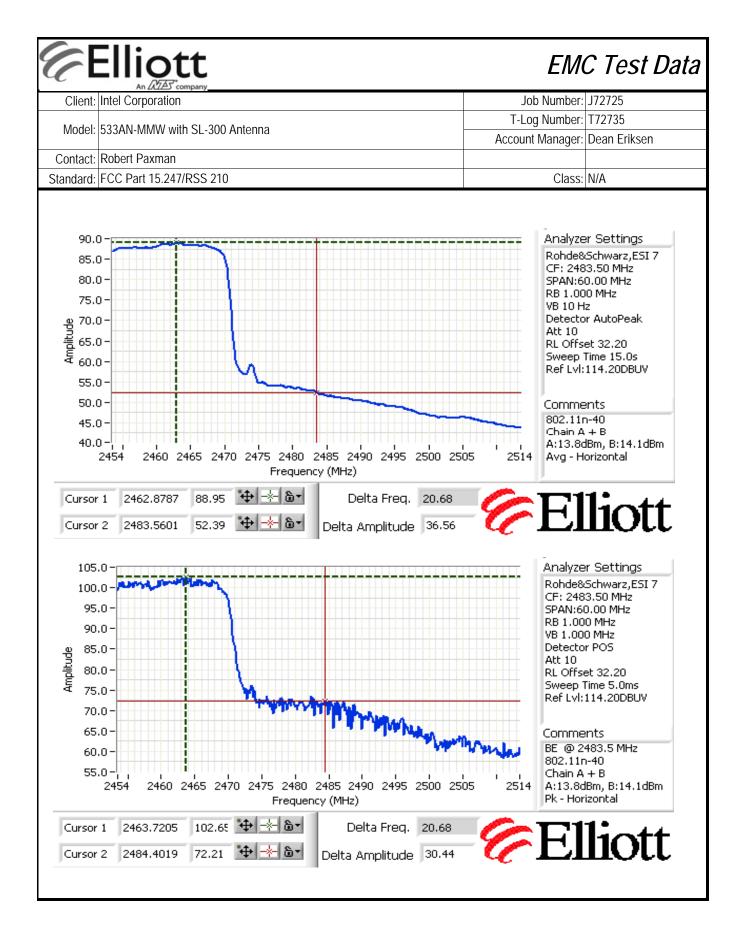



Client Intel Corporation Job Number: J72725 Model: 533AN-MMW with SL-300 Antenna T-Log Number: T72735 Model: 533AN-MMW with SL-300 Antenna Account Manager: Dean Eriksen Contact: Robert Paxman Contact: Robert Paxman Cliass: N/A Standard: FCC Part 15.247/RSS 210 Class: N/A Radiated Spurious Emissions, Band Edges. Operating Mode: 802.11n (40 MHz Channel) - Chain A+B Date of Test: 8/21/2008 Test Engineer: Ben Jing Test Location: FT Chamber # 4 MAC Address: 0016EA02D4D0


Run #3a: Low Channel @ 2422 MHz


Power Setting and average measurement (for reference)								
Cha	iin A	Cha	Chain B Chain C					
Setting	Avg	Setting	Avg	Setting	Avg			
19.0	11.3	21.0	11.4					


Band Edge Signal Field Strength


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.579	49.6	V	54.0	-4.4	AVG	177	1.1	
2389.219	64.7	V	74.0	-9.3	PK	177	1.1	
2389.579	46.6	Н	54.0	-7.4	AVG	254	1.1	
2389.338	63.1	Н	74.0	-10.9	PK	254	1.1	

EMC Test Data

Client:	Intel Corporation	Job Number:	J72725
Model:	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions 802.11b SL-300 Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

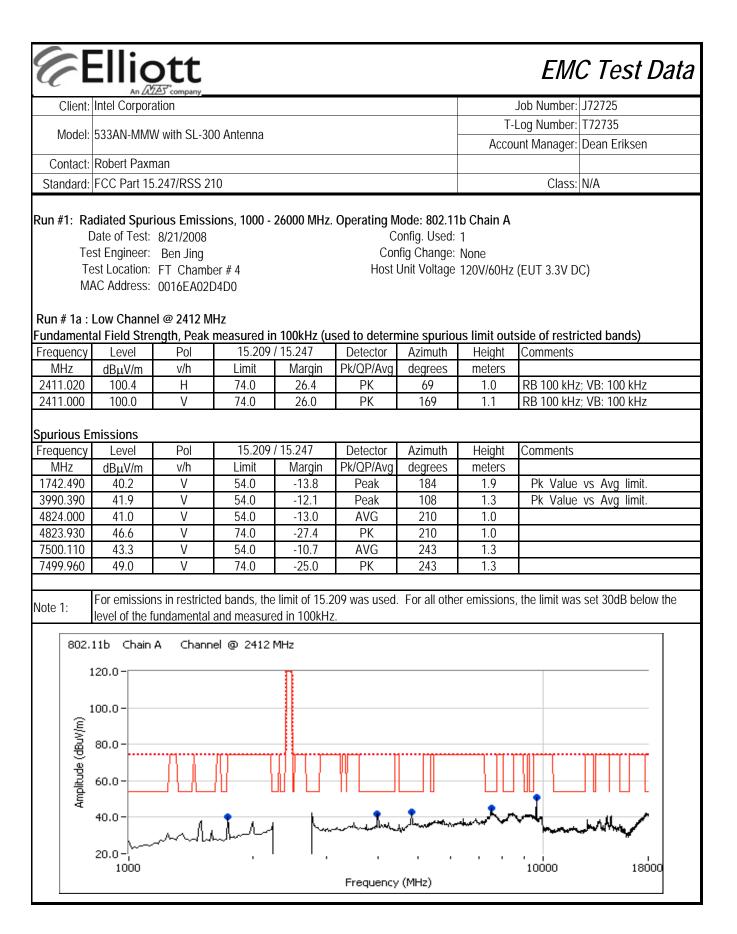
Elliott

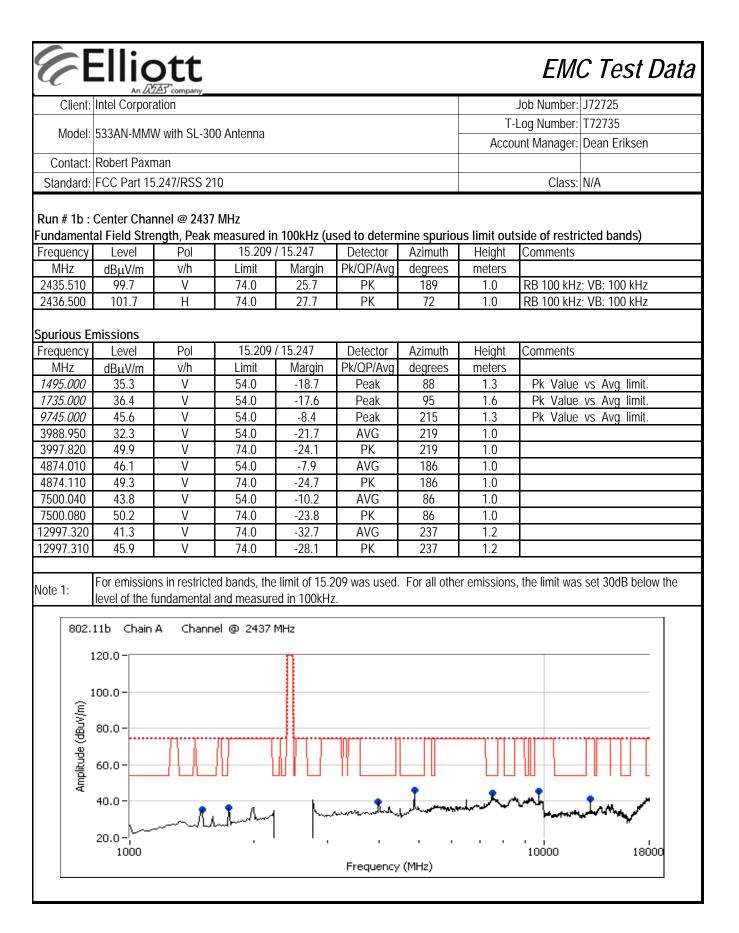
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

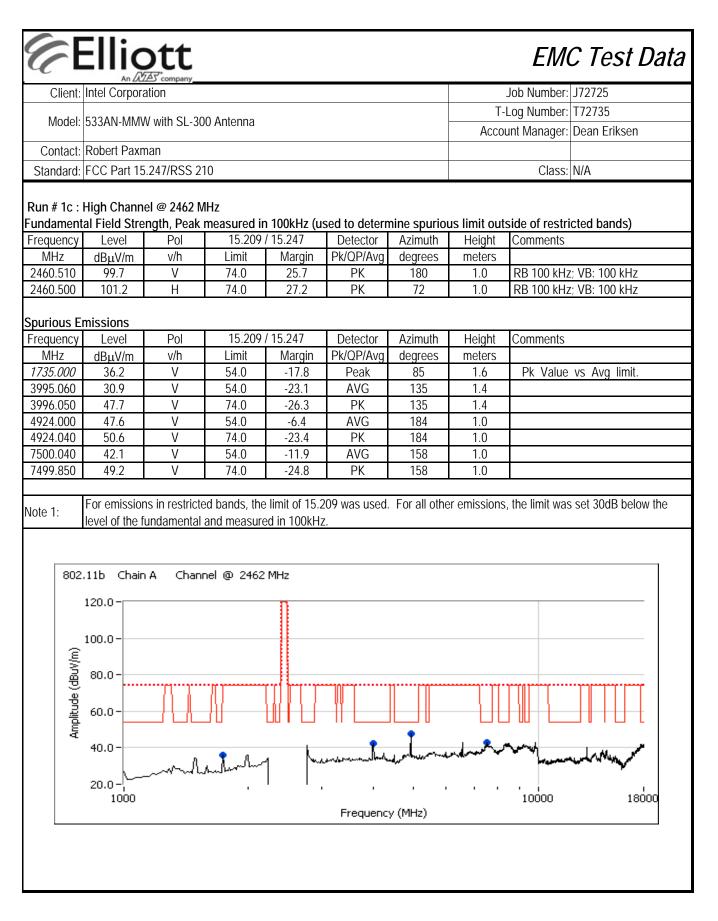
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	34 %

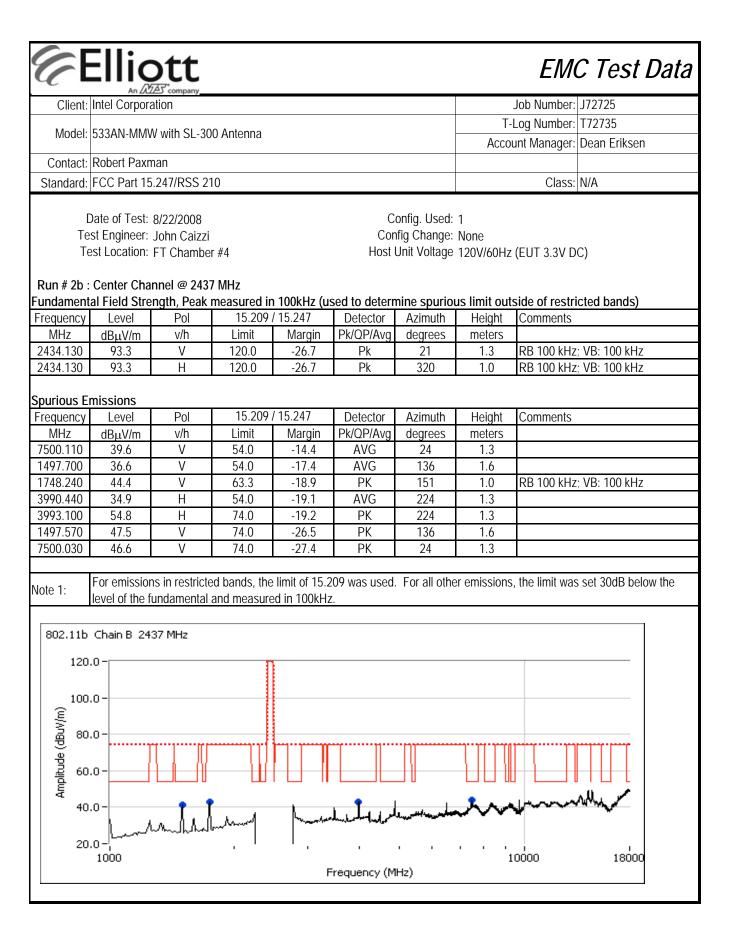
Modifications Made During Testing

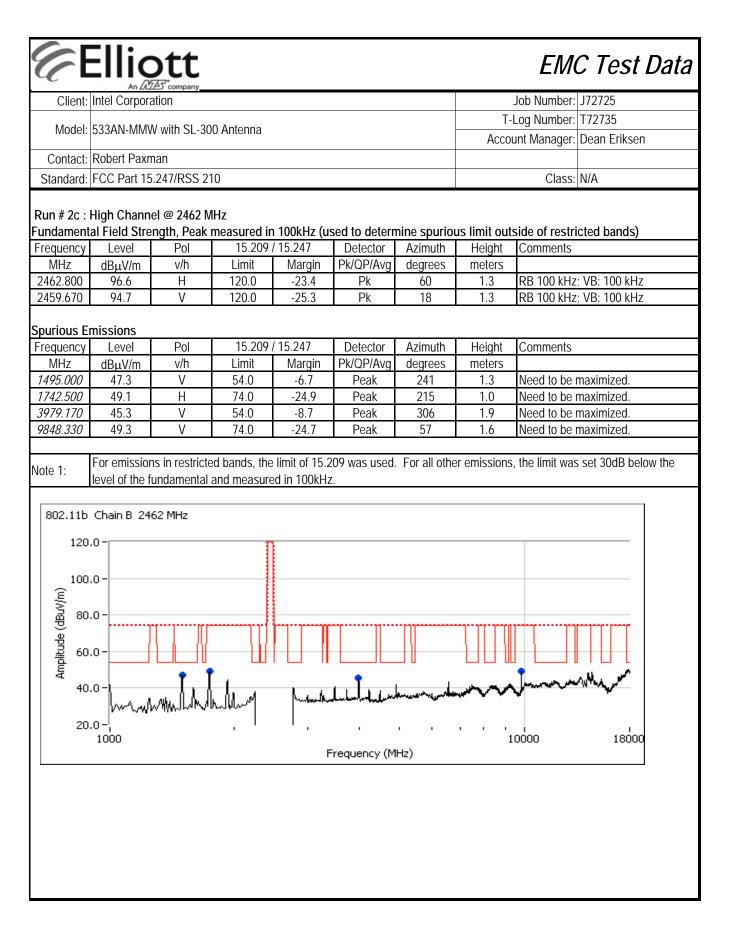

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Summary of Results


Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11b Chain A	1 (2412)	20.5	16.7	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	43.3 dBuV/m @ 7500.1 MHz (-10.7dB)
1b	802.11b Chain A	6 (2437)	20.5	16.6	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	46.1 dBuV/m @ 4874.0 MHz (-7.9dB)
1c	802.11b Chain A	11 (2462)	20.5	16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	47.6 dBuV/m @ 4924.0 MHz (-6.4dB)
2a	802.11b Chain B	1 (2412)	22.0	16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	42.6 dBuV/m @ 7500.0 MHz (-11.4dB)
2b	802.11b Chain B	6 (2437)	21.5	16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	39.6dBµV/m @ 7500.1MHz (-14.4dB)
2c	802.11b Chain B	11 (2462)	22.0	16.7	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	47.3dBµV/m @ 1495.0MHz (-6.7dB)



Client: Intel Corporation Job Number: J72725 Model: 533AN-MMW with SL-300 Antenna T-Log Number: T72735 Model: 533AN-MMW with SL-300 Antenna T-Log Number: T72735 Contact: Robert Paxman Account Manager: Dean Eri Standard: FCC Part 15.247/RSS 210 Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Radiated Spurious Emissions Emeters Emeters Yell Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ/Vm Vh Limit Margin Pk/QP/Avg degrees meters MHz <th></th>								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	st Data							
Model: 533AN-MMW with SL-300 Antenna Account Manager: Dean Eri Contact: Robert Paxman Class: N/A Standard: FCC Part 15.247/RSS 210 Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Low Channel @ 2412 MHz Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 <td></td>								
Model: 533AN-MMW with SL-300 Antenna Account Manager: Dean Eri Contact: Robert Paxman Class: N/A Standard: FCC Part 15.247/RSS 210 Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run #2: Low Channel @ 2412 MHz Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 <td></td>								
Contact: Robert Paxman Class: N/A Standard: FCC Part 15.247/RSS 210 Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Class: N/A Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Emissions Emissions Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB _μ V/m v/h Limit Margin Pk/OP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Erequency Level Pol 15.209 / 15.247 Detector Azimuth	iksen							
Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run # 2a : Low Channel @ 2412 MHz Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H								
Run #2: Radiated Spurious Emissions, 1000 - 18000 MHz. Operating Mode: 802.11b Chain B Run # 2a : Low Channel @ 2412 MHz Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H								
Run # 2a : Low Channel @ 2412 MHz Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Evel Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Erequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1497.610								
Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions								
Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted ban Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions								
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 100 MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1.0 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1.0 1497.61	ids)							
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Emissions Emissions Emission Emission Pk/QP/Avg degrees meters Comments MHz dBμV/m V/h Limit Margin Pk/QP/Avg degrees meters Comments Spurious Emissions Evel Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1.0 1497.610 43.2 H 74.0 -30.8 PK 172 1.0 1.0 3987.750								
2410.500 100.4 V 74.0 26.4 PK 234 1.1 RB 100 kHz; VB: 100 2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1497.610 43.2 H 74.0 -30.8 PK 172 1.0 3987.750 30.5 V 54.0 -23.5 AVG 229 1.3 3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK								
2413.020 98.8 H 74.0 24.8 PK 278 1.0 RB 100 kHz; VB: 100 Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1497.610 43.2 H 74.0 -30.8 PK 172 1.0 3987.750 30.5 V 54.0 -23.5 AVG 229 1.3 3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK 254 1.0) kHz							
FrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mv/hLimitMarginPk/QP/Avgdegreesmeters1497.47028.5H54.0-25.5AVG1721.01497.61043.2H74.0-30.8PK1721.03987.75030.5V54.0-23.5AVG2291.33989.41046.9V74.0-27.1PK2291.34824.00039.7H54.0-14.3AVG2541.04824.09045.7H74.0-28.3PK2541.0								
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1497.610 43.2 H 74.0 -30.8 PK 172 1.0 3987.750 30.5 V 54.0 -23.5 AVG 229 1.3 3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK 254 1.0								
1497.470 28.5 H 54.0 -25.5 AVG 172 1.0 1497.610 43.2 H 74.0 -30.8 PK 172 1.0 3987.750 30.5 V 54.0 -23.5 AVG 229 1.3 3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK 254 1.0								
1497.61043.2H74.0-30.8PK1721.03987.75030.5V54.0-23.5AVG2291.33989.41046.9V74.0-27.1PK2291.34824.00039.7H54.0-14.3AVG2541.04824.09045.7H74.0-28.3PK2541.0								
3987.750 30.5 V 54.0 -23.5 AVG 229 1.3 3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK 254 1.0								
3989.410 46.9 V 74.0 -27.1 PK 229 1.3 4824.000 39.7 H 54.0 -14.3 AVG 254 1.0 4824.090 45.7 H 74.0 -28.3 PK 254 1.0								
4824.00039.7H54.0-14.3AVG2541.04824.09045.7H74.0-28.3PK2541.0								
4824.090 45.7 H 74.0 -28.3 PK 254 1.0								
7500.020 42.6 V 54.0 -11.4 AVG 243 1.3								
7500.040 49.0 V 74.0 -25.0 PK 243 1.3								
9647.990 54.3 V 74.0 -19.7 AVG 213 1.6								
9648.030 56.5 V 74.0 -17.5 PK 213 1.6								
12055.250 41.9 V 74.0 -32.1 PK 150 1.2								
12055.340 33.0 V 54.0 -21.0 AVG 150 1.2								
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dE	3 below the							
level of the fundamental and measured in 100kHz.								
802.11b Chain B Channel @ 2412 MHz								
120.0-								
120.0								
100.0 -								
80.0-	§ 80.0-							
60.0								
40.0- all handly have have have have have have have have	PR							
20.0-								
1000 10000	18000							
Frequency (MHz)								

Job Number: J72725

Model: 533AN-MMW with SL-300 Antenna

T-Log Number: T72735 Account Manager: Dean Eriksen Class: N/A

Standard: FCC Part 15.247/RSS 210

Elliott

Client: Intel Corporation

Contact: Robert Paxman

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions 802.11n 20MHz SL-300 Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:8/22/2008Test Engineer:Ben JingTest Location:FT Chamber # 5MAC Address:0016EA02D4D0

Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	36 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results

Note - no emissions observed from 18-26GHz

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	Chain A Chain B Chain C	6 (2437)	28.0 27.5 26.5	16.5 dBm	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	Covered by 802.11b mode as worst case in single chain mode
2a,b,c	802.11n20 Chains A+B	2412 MHz	A: 26.0 B: 26.5	A: 16.5 B: 16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	42.8 dBuV/m @ 7500.1 MHz (-11.2dB)
		2437 MHz	A: 26.0 B: 27.0	A: 16.5 B: 16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	45.8 dBuV/m @ 7305.7 MHz (-8.2dB)
		2462 MHz	A: 26.5 B: 27.0	A: 16.5 B: 16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	43.1 dBuV/m @ 7390.3 MHz (-10.9dB)
				-			

	An LATES company		
Client: II	ntel Corporation	Job Number:	J72725
Model	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
would be		Account Manager:	Dean Eriksen
Contact: F	Robert Paxman		
Standard: F	FCC Part 15.247/RSS 210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11n 20MHz, Single Chain

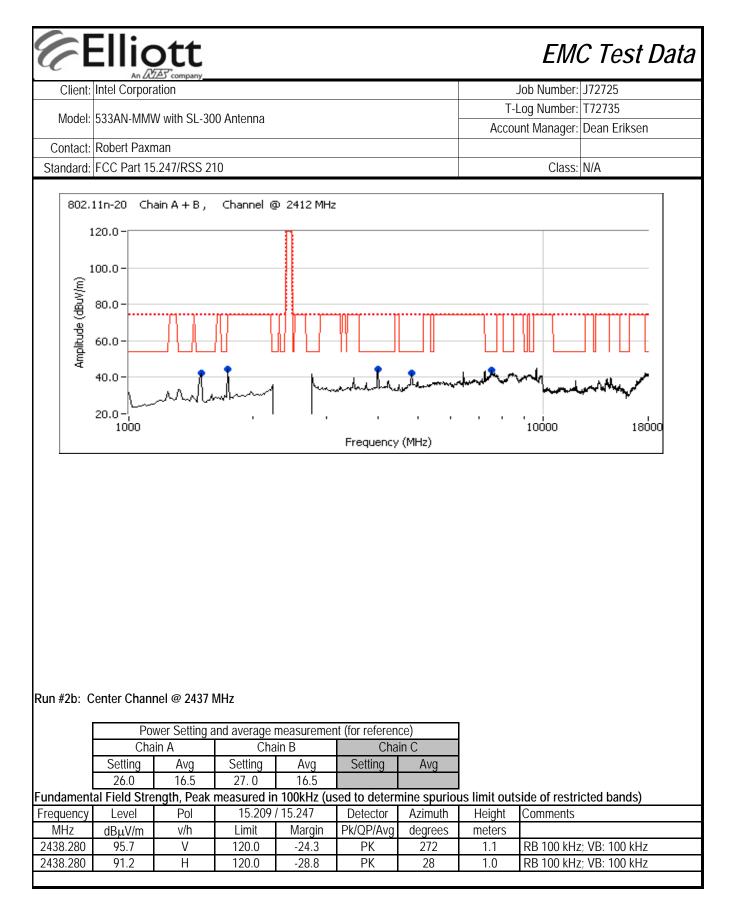
Covered by measurements on 802.11b mode which represents the worst-case mode

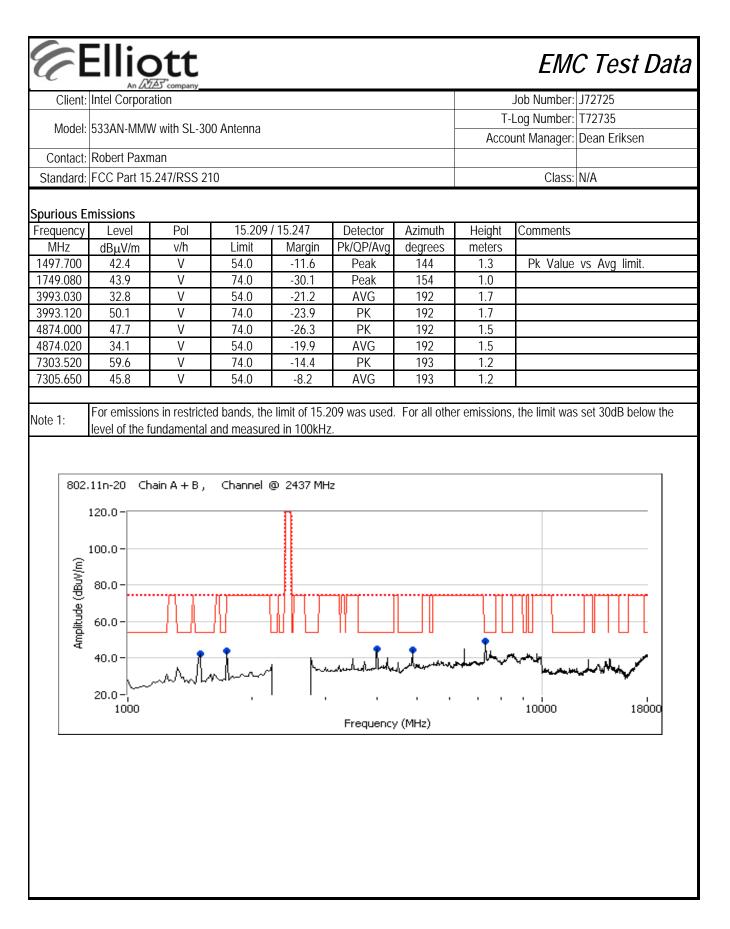
Also covered by tests on duak-chain with both chains operating at the higher single-chain power setting.

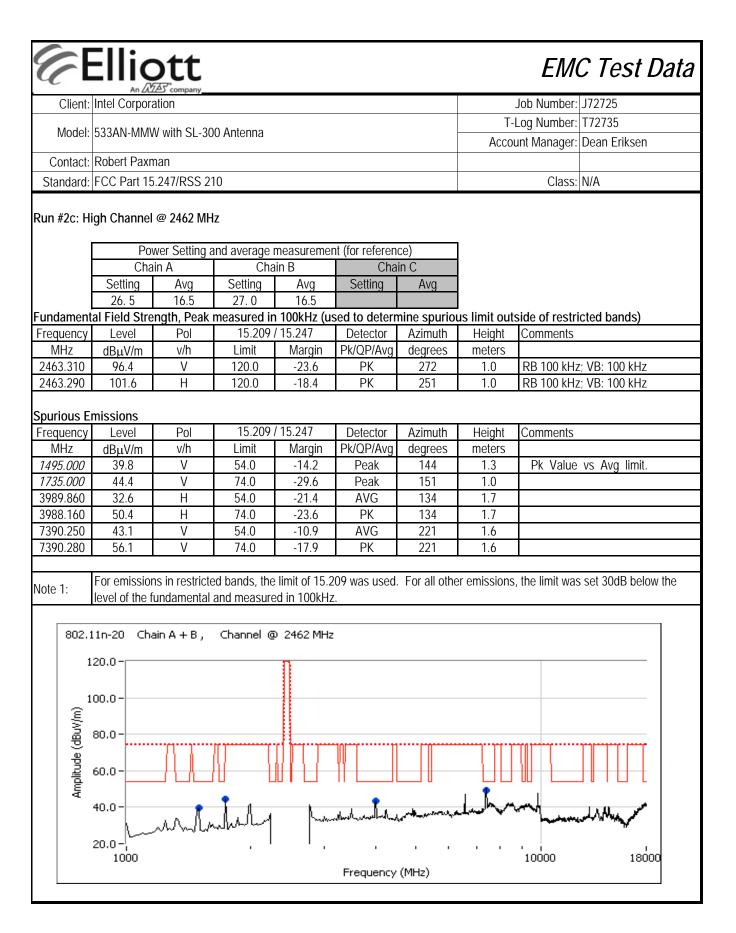
Run #2: Radiated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11n 20MHz Chains A+B These tests run at a power setting equal to the highest single-chain settings to cover all possible dual- and triple-chain operating modes.

Run #2a: Low Channel @ 2412 MHz

Elliott


Power Setting and average measurement (for reference)						
Chain A		Cha	nin B	Cha	in C	
Setting	Avg	Setting	Avg	Setting	Avg	
26. 0	16.5	26. 5	16.5			


Fundamental Field Strength, Peak measured in 100kHz (used to determine spurious limit outside of restricted bands)


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2411.380	96.5	V	120.0	-23.5	PK	274	1.1	RB 100 kHz; VB: 100 kHz
2413.290	98.5	Н	120.0	-21.5	PK	66	1.0	RB 100 kHz; VB: 100 kHz

Spurious Emissions

Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
47.1	V	74.0	-26.9	PK	175	1.3		
33.4	V	54.0	-20.6	AVG	175	1.3		
52.0	V	74.0	-22.0	PK	146	1.0		
34.1	V	74.0	-39.9	AVG	146	1.0		
49.6	V	74.0	-24.4	PK	180	1.3		
32.5	V	54.0	-21.5	AVG	180	1.3		
33.8	V	54.0	-20.2	AVG	190	1.0		
49.0	V	74.0	-25.0	PK	190	1.0		
42.8	V	54.0	-11.2	AVG	78	1.1		
49.4	V	74.0	-24.6	PK	78	1.1		
			-				•	
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the evel of the fundamental and measured in 100kHz.								
	Level dBµV/m 47.1 33.4 52.0 34.1 49.6 32.5 33.8 49.0 42.8 49.0 42.8 49.4	dBµV/m v/h 47.1 V 33.4 V 52.0 V 34.1 V 49.6 V 32.5 V 33.8 V 49.0 V 42.8 V 49.4 V	Level Pol 15.209 dBμV/m v/h Limit 47.1 V 74.0 33.4 V 54.0 52.0 V 74.0 34.1 V 74.0 32.5 V 54.0 33.8 V 54.0 49.0 V 74.0 49.4 V 54.0 49.4 V 74.0	Level Pol 15.209 / 15.247 dBμV/m v/h Limit Margin 47.1 V 74.0 -26.9 33.4 V 54.0 -20.6 52.0 V 74.0 -22.0 34.1 V 74.0 -39.9 49.6 V 74.0 -21.5 33.8 V 54.0 -21.5 33.8 V 54.0 -20.2 49.0 V 74.0 -25.0 42.8 V 54.0 -11.2 49.4 V 74.0 -24.6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LevelPol15.209 / 15.247DetectorAzimuthdBμV/mv/hLimitMarginPk/QP/Avgdegrees47.1V74.0-26.9PK17533.4V54.0-20.6AVG17552.0V74.0-22.0PK14634.1V74.0-39.9AVG14649.6V74.0-24.4PK18032.5V54.0-21.5AVG18033.8V54.0-20.2AVG19049.0V74.0-25.0PK19042.8V54.0-11.2AVG78For emissions in restricted bands, the limit of 15.209 was used. For all other	LevelPol15.209 / 15.247DetectorAzimuthHeightdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters47.1V74.0-26.9PK1751.333.4V54.0-20.6AVG1751.352.0V74.0-22.0PK1461.034.1V74.0-39.9AVG1461.049.6V74.0-24.4PK1801.332.5V54.0-21.5AVG1801.333.8V54.0-20.2AVG1901.049.0V74.0-25.0PK1901.049.4V74.0-24.6PK781.1For emissions in restricted bands, the limit of 15.209 was used. For all other emissions	

Client:	Intel Corporation	Job Number:	J72725
Model:	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
	355AIN-IVIIMIVV WILLI SL-500 ALITELIILA	Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions 802.11n 40MHz Universe Antenna

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Sample tested: 0016EA02D660 Date of Test: 8/22/2008 Test Engineer: Ben Jing Test Location: Chamber # 4

Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

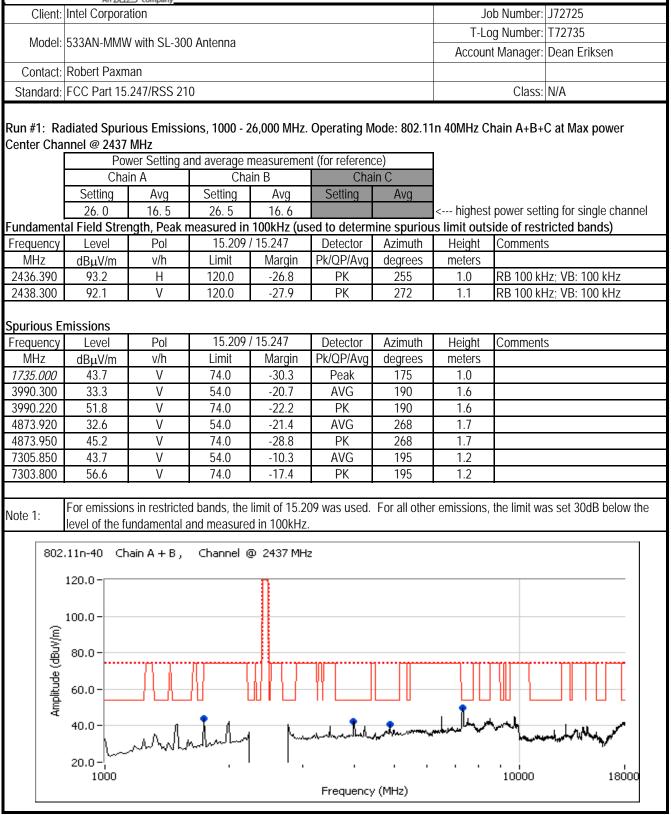
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	36 %

Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11n40 Chains A+B	2/27 MHz		A: 16.5 B: 16.5	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	43.7 dBuV/m @ 7305.9 MHz (-10.3dB)

Measurements made to demonstrate that 802.11n 40-MHz mode emissions are not signifcantly different from 802.11n 20MHz mode.


Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Elliott

EMC Test Data

	An Deed Company		
Client:	Intel Corporation	Job Number:	J72725
Model:	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 5725 - 5850 MHz) Radiated Spurious Emissions 802.11a Universe Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

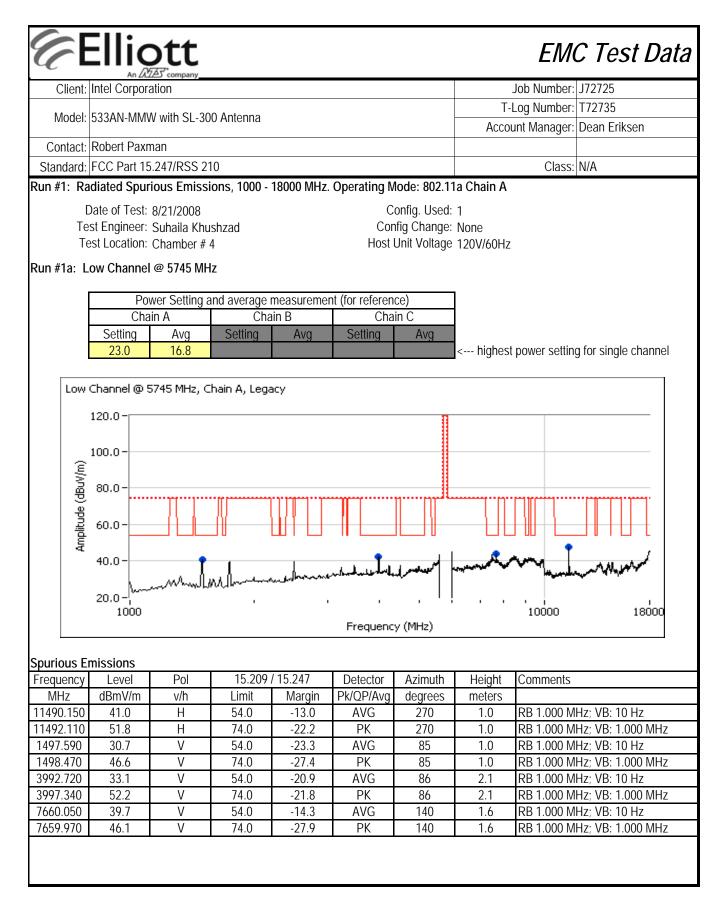
General Test Configuration

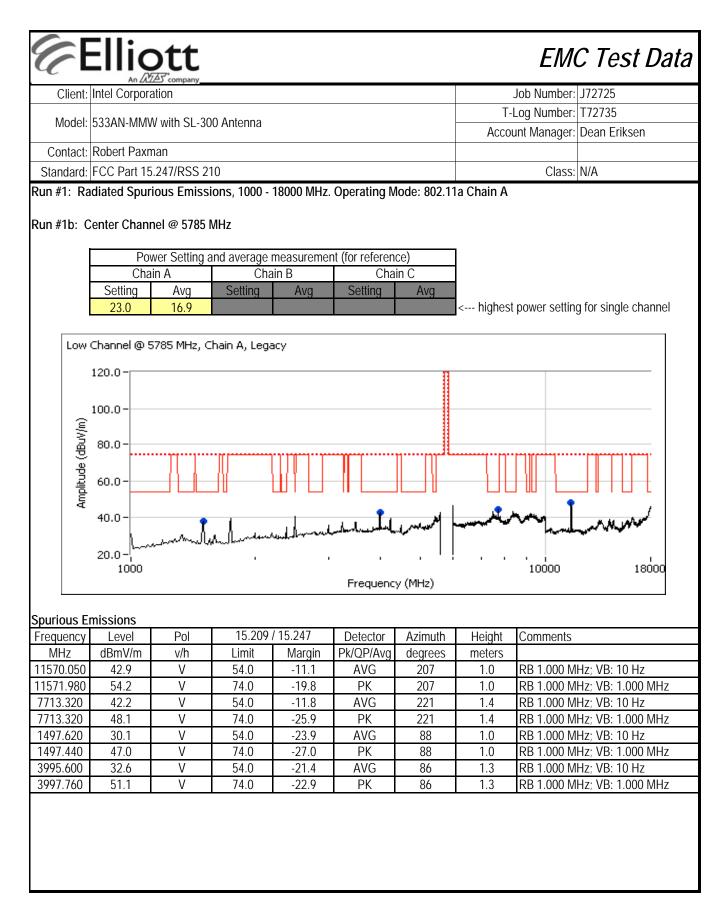
Elliott

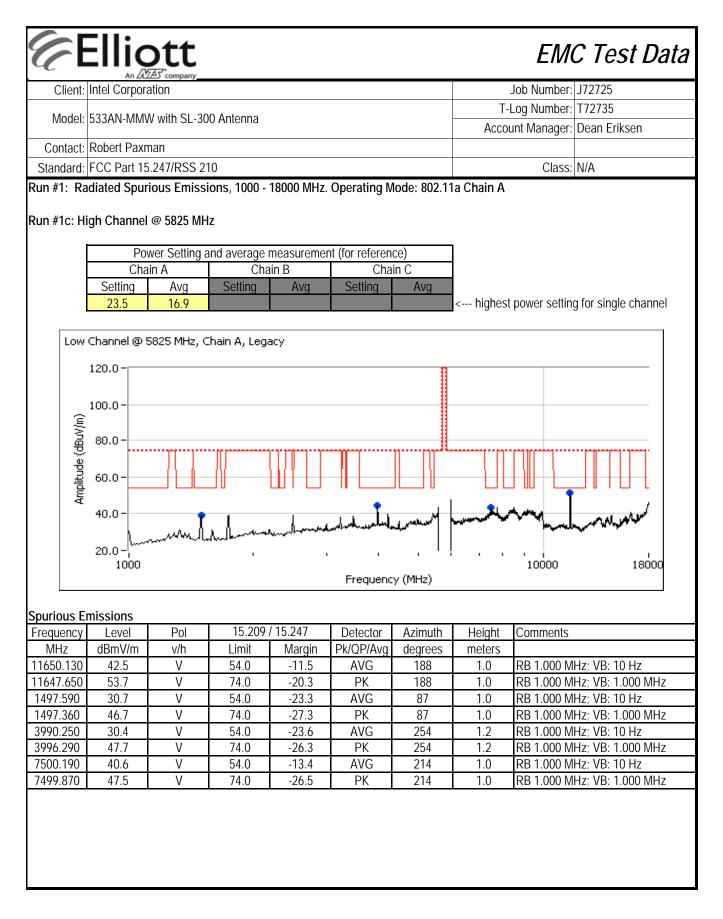
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	33 %


Summary of Results


Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11a Chain A	5745 MHz 5785 MHz 5825 MHz	23	16.8 16.9 16.9	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	42.9dBµV/m @ 11570.1MHz (-11.1dB)
2	802.11a Chain B	5745 MHz 5785 MHz 5825 MHz	25.0 25.5 26.0	16.6 16.6 16.7	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	46.4 dBuV/m @ 7660.0 MHz (-7.6dB)


Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

C I		D tt						EM	C Test Data
Client:	Intel Corpora	ation						Job Number:	J72725
Madal			Antonno				T-l	_og Number:	T72735
wodel:	533AN-MMV	V WIIN SL-3U	iu Antenna				Αссоι	Int Manager:	Dean Eriksen
Contact:	Robert Paxm	nan							
Standard:	FCC Part 15	.247/RSS 2	10					Class:	N/A
l Te Ti	adiated Spuri Date of Test: est Engineer: est Location: _ow Channel	8/22/2008 Ben Jing Chamber #	4	18000 MHz.	Con	onfig. Used: fig Change:	1		
				measuremei	nt (for referen	ce)			
	Cha			ain B	Cha		1		
	Setting	Avg	Setting	Avg	Setting	Avg			
			25.0	16.7			< highest	power setting	g for single channel
Spurious E Frequency	Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBmV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENTS	
1472.250	25.6	V	54.0	-28.4	AVG	158	1.3		
1472.230	34.1	V	74.0	-39.9	PK	158	1.3		
1746.160	29.5	V	74.0	-44.5	AVG	147	1.0		
1747.090	47.0	V	74.0	-27.0	PK	147	1.0		
3984.040	29.8	V	54.0	-24.2	AVG	205	1.3		
3993.420	45.8	V	74.0	-28.2	PK	205	1.3		
7659.980	46.4	V	54.0	-7.6	AVG	177	1.7		
7659.980	51.1	V	74.0	-22.9	PK	177	1.7		
11490.090	42.5	V	54.0	-11.5	AVG	221	1.1		
11488.980	53.8	V	74.0	-20.2	PK	221	1.1		
101 (m/\nge 61 41 41	a DTS C 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 1000	hain B,	Channel @	Junnand	Frequency (N		· · · ·		18000

Model: 53 Contact: R Standard: F(Run #2b: Cer Spurious Emi Frequency	ntel Corpora 533AN-MMW Robert Paxm FCC Part 15. Enter Chann Pow Chain Setting Setting hissions Level dBmV/m 38.4	with SL-30 an 247/RSS 21 el @ 5785 N er Setting a	0 MHz nd average r Cha Setting 25.5		nt (for referen Cha Setting		T-	EMC Test Data Job Number: J72725 Log Number: T72735 unt Manager: Dean Eriksen Class: N/A
Model: 53 Contact: R Standard: F(Run #2b: Cer Run #2b: Cer Spurious Emi Frequency MHz 0 1735.000 2470.000 7713.330 7713.340 1497.680	533AN-MMW Robert Paxm FCC Part 15. enter Chann Pow Chain Setting hissions Level dBmV/m 38.4	with SL-30 an 247/RSS 21 el @ 5785 N er Setting a n A Avg Pol	0 MHz nd average r Cha Setting 25.5	in B Avg	Cha		T-	Log Number: T72735 unt Manager: Dean Eriksen
Contact: R Standard: F(Run #2b: Cer Run #2b: Cer Spurious Emi Frequency MHz 0 1735.000 2470.000 7713.330 7713.340 1497.680	Robert Paxm CC Part 15. enter Chann Pow Chain Setting hissions Level dBmV/m 38.4	an 247/RSS 21 el @ 5785 N er Setting a n A Avg Pol	0 MHz nd average r Cha Setting 25.5	in B Avg	Cha		Acco	
Standard: F(Run #2b: Cer Run #2b: Cer Spurious Emi Frequency MHz 0 1735.000 2470.000 7713.330 7713.340 1497.680	CC Part 15. enter Chann Pow Chair Setting hissions Level dBmV/m 38.4	247/RSS 21 el @ 5785 N er Setting a n A Avg Pol	//Hz nd average i Cha Setting 25.5	in B Avg	Cha			Class: N/A
Run #2b: Cer Spurious Emi Frequency MHz 1735.000 2470.000 7713.330 7713.340 1497.680	enter Chann Pow Chair Setting hissions Level dBmV/m 38.4	el @ 5785 N er Setting a n A Avg Pol	//Hz nd average i Cha Setting 25.5	in B Avg	Cha			Class: N/A
Spurious Emi Frequency MHz 1735.000 2470.000 7713.330 7713.340 1497.680	Pow Chair Setting hissions Level dBmV/m 38.4	er Setting a n A Avg Pol	nd average i Cha Setting 25.5	in B Avg	Cha			
Spurious Emi Frequency MHz 1735.000 2470.000 7713.330 7713.340 1497.680	Pow Chair Setting hissions Level dBmV/m 38.4	er Setting a n A Avg Pol	nd average i Cha Setting 25.5	in B Avg	Cha			
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	Chair Setting hissions Level dBmV/m 38.4	Avg Pol	Cha Setting 25.5	in B Avg	Cha			
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	Setting hissions Level dBmV/m 38.4	Avg Pol	Setting 25.5	Avg		in C		
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	hissions Level dBmV/m 38.4	Pol	25.5		Setting	Aug		
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	Level dBmV/m 38.4			10.7	j	Avg	∠ hiahost	power setting for single channel
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	Level dBmV/m 38.4						< nighest	power setting for single channel
Frequency MHz 1735.000 2470.000 1713.330 7713.340 1497.680	Level dBmV/m 38.4							
MHz Image: Market state 1735.000 2470.000 2470.330 7713.330 7713.340 1497.680	38.4	v/h	15.209	/ 15.247	Detector	Azimuth	Height	Comments
2470.000 7713.330 7713.340 1497.680			Limit	Margin	Pk/QP/Avg	degrees	meters	
7713.330 7713.340 1497.680	20.2	V	74.0	-35.6	Peak	174	1.3	
7713.340 1497.680	39.3	V	74.0	-34.7	Peak	158	1.3	
1497.680	45.7	V	54.0	-8.3	AVG	177	1.7	
	50.8	V	74.0	-23.2	PK	177	1.7	
1497 650	31.2	V	54.0	-22.8	AVG	174	1.2	
	44.0	V	74.0	-30.0	PK	174	1.2	
3984.740	30.5	V	54.0	-23.5	AVG	183	1.9	
3984.640	46.8	V	74.0	-27.2	PK	183	1.9	
11569.960	38.9	V	54.0	-15.1	AVG	256	1.2	
11569.920	48.2	V	74.0	-25.8	PK	256	1.2	
100 80 80 80 80 80 80 80 80 80	1a DTS 20.0 - 30.0 - 30.0 - 50.0 - 40.0 - 1000	Chain B ,	Channel (z	(MHz)		10000 18000

Client:		tion						Job Number:	J72725
Model:	533AN-MMV	V with SL-30	0 Antenna					Log Number:	
Contact [.]	Robert Paxn	nan					ALLU	unt manager:	Dean Eriksen
	FCC Part 15		10					Class:	N/A
	igh Channel							010351	
	•			measuremei	nt (for referen	ce)			
	Cha			iin B	Cha				
	Setting	Avg	Setting	Avg	Setting	Avg			
			26.0	16.7			< highest	power settin	g for single channel
purious E		Dal	15 000	15 017	Detector	ماند المراح ٨	Llaight	Commente	
requency MHz	Level dBmV/m	Pol v/h	Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth	Height meters	Comments	
1735.000	38.4	V/n	74.0	Margin -35.6	PR/QP/Avg Peak	degrees 154	1.0		
7765.000	<u> </u>	V	74.0	-35.0 -27.5	Peak	217	1.0		
1472.240	46.5 26.6	V	54.0	-27.5	AVG	162	1.0		
1472.240	35.0	V	74.0	-27.4	PK	162	1.4		
1650.120	45.7	V	54.0	-39.0	AVG	231	1.4		
1652.020	57.9	V	74.0	-16.1	PK	231	1.0		
Vertus alt	120.0 - 100.0			el @ 5825		icy (MHz)		 	18000

Client:	Intel Corporation	Job Number:	J72725
Madal	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
Mouel.		Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS, 5725 - 5850 MHz) Radiated Spurious Emissions 802.11n20MHz SL-300 Antenna

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

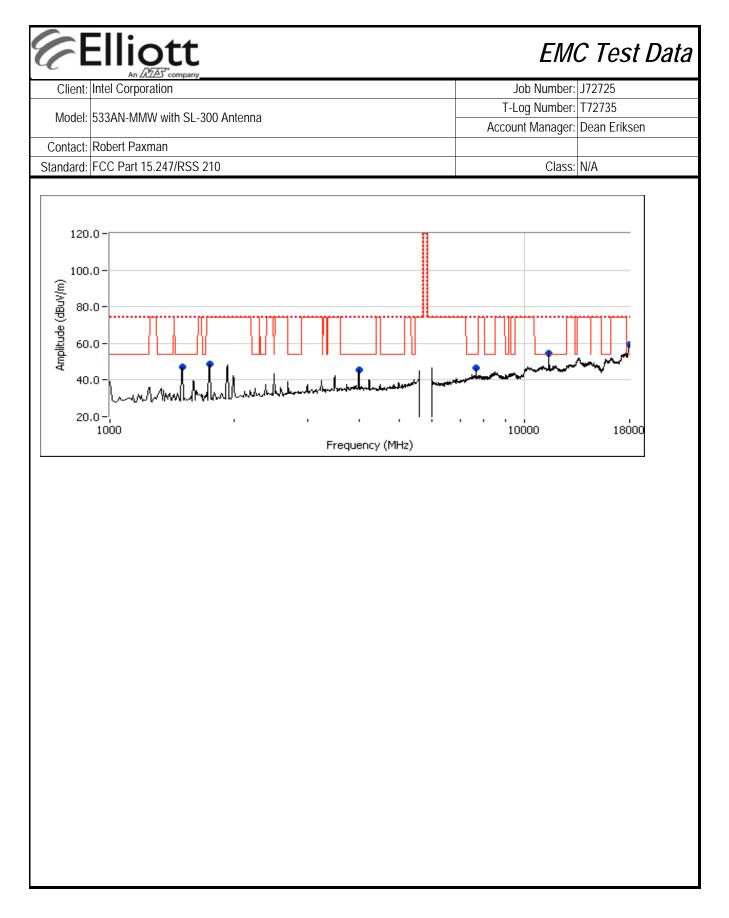
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	50 %

Summary of Results

Measurements with the Universe PIFA antenna demonstarted that the spurious emissions in n20 mode were higher than those in n40 mode, therefore n20 mode tests covers both of the n-modes. These tests run at a power setting equal to the highest single-chain settings to cover single- and dual-chain operating modes.


Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11n20	5745 MHz	A: 24.0	A: 16.5	Radiated Emissions,	FCC Part 15.209 /	53.1dBµV/m @
Id	Chain A+B	3743 IVINZ	B: 26.0	B: 16.5	1 - 40 GHz	15.247(c)	17979.1MHz (-0.9dB)
1b	802.11n20	5785 MHz	A: 24.5	A: 16.9	Radiated Emissions,	FCC Part 15.209 /	42.1dBµV/m @
u	Chain A+B		B: 26	B: 16.9	1 - 40 GHz	15.247(c)	11569.9MHz (-11.9dB)
1c	802.11n20	5825 MHz	A: 25	A: 16.8	Radiated Emissions,	FCC Part 15.209 /	47.3dBµV/m @
1C	Chain A+B		B: 26.5	B: 16.9	1 - 40 GHz	15.247(c)	11649.7MHz (-6.7dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Client:		ation						Job Number: J72725
							T-	Log Number: T72735
Model:	533AN-MMV	W with SL-30	0 Antenna				Ассо	unt Manager: Dean Erikse
Contact:	Robert Paxn	nan						-
Standard:	FCC Part 15	5.247/RSS 2	10					Class: N/A
							Į	
				18000 MHz.	Operating N	lode: 802.11	n 20MHz C	hains A+B
≀un #1a: L	ow Channel				- / ()	\ \	1	
					nt (for referen			
	Cotting			ain B	Cha			
	Setting 24.0	Avg 16.5	Setting 26.0	Avg 16.5	Setting	Avg		
	24.0	10.5	20.0	10.5				
Sa	mple tested:	MAC 0016F	٥٩١/٩٥					
	Date of Test:		1020400		С	onfig. Used:	1	
	est Engineer:					fig Change:		
	est Location:		amber #4			Unit Voltage		
							120 1100112	
undamen	tal Field Stre	ngth, Peak	measured ir	า 100kHz (นะ	sed to deterr	nine spurio	us limit out	side of restricted bands)
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
MHz		V	120.0	-20.8	Pk	339	1.0	RB 100 kHz; VB: 100 kHz
	99.2			-21.0		202	1.0	
5743.930 5743.930	99.2 99.0	Ĥ	120.0	-21.0	Pk	303	1.0	RB 100 kHz; VB: 100 kHz
5743.930 5743.930	99.0		120.0	-21.0	PK	303	1.0	RB 100 kHz; VB: 100 kH
5743.930 5743.930 Spurious E	99.0 missions	Н					-	
5743.930 5743.930 Spurious E Frequency	99.0 missions Level	H Pol	15.209	/ 15.247	Detector	Azimuth	Height	RB 100 kHz; VB: 100 kH
5743.930 5743.930 Spurious E Frequency MHz	99.0 missions Level dBµV/m	H Pol v/h	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	
5743.930 5743.930 Spurious E Frequency MHz 17979.060	99.0 missions Level dBµV/m 53.1	H Pol v/h V	15.209 Limit 54.0	/ 15.247 Margin -0.9	Detector Pk/QP/Avg AVG	Azimuth degrees 297	Height meters 1.0	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740	99.0 missions Level dBµV/m 53.1 48.8	H Pol v/h V V	15.209 Limit 54.0 54.0	/ 15.247 Margin -0.9 -5.2	Detector Pk/QP/Avg AVG AVG	Azimuth degrees 297 355	Height meters 1.0 1.3	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740 7660.070	99.0 missions Level dBµV/m 53.1 48.8 45.7	H Pol v/h V V V	15.209 Limit 54.0 54.0 54.0	/ 15.247 Margin -0.9 -5.2 -8.3	Detector Pk/QP/Avg AVG AVG AVG	Azimuth degrees 297 355 299	Height meters 1.0 1.3 1.6	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740 7660.070 17972.600	99.0 missions Level dBµV/m 53.1 48.8 45.7 64.5	H Pol V/h V V V V V	15.209 Limit 54.0 54.0 54.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5	Detector Pk/QP/Avg AVG AVG AVG PK	Azimuth degrees 297 355 299 297	Height meters 1.0 1.3 1.6 1.0	
5743.930 5743.930 5 purious E Frequency MHz 17979.060 11488.740 7660.070 17972.600 1497.730	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6	H Pol V/h V V V V V H	15.209 Limit 54.0 54.0 54.0 74.0 54.0 54.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4	Detector Pk/QP/Avg AVG AVG AVG PK AVG	Azimuth degrees 297 355 299 297 244	Height meters 1.0 1.3 1.6 1.0 1.0	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740 7660.070 17972.600 1497.730 11490.070	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6	H Pol v/h V V V V V H V	15.209 Limit 54.0 54.0 54.0 74.0 54.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4	Detector Pk/QP/Avg AVG AVG AVG PK AVG PK	Azimuth degrees 297 355 299 297 244 355	Height meters 1.0 1.3 1.6 1.0 1.0 1.3	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740 7660.070 1497.730 11490.070 3988.500	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8	H Pol V/h V V V V V H V V V V V	15.209 Limit 54.0 54.0 54.0 74.0 54.0 74.0 54.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2	Detector Pk/QP/Avg AVG AVG AVG PK AVG PK AVG	Azimuth degrees 297 355 299 297 244 355 166	Height meters 1.0 1.3 1.6 1.0 1.0 1.3 1.2	
5743.930 5743.930 Spurious E Frequency MHz 17979.060 11488.740 7660.070 17972.600 1497.730 11490.070 3988.500 1499.200	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8 54.9	H Pol V/h V V V V V H V V H	15.209 Limit 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2 -19.1	Detector Pk/QP/Avg AVG AVG PK AVG PK AVG PK	Azimuth degrees 297 355 299 297 244 355 166 244	Height meters 1.0 1.3 1.6 1.0 1.0 1.0 1.3 1.2 1.0	
5743.930 5743.930 5 purious E Frequency MHz 17979.060 11488.740 7660.070 1488.740 7660.070 1497.730 1497.730 11490.070 3988.500 1499.200 3992.830	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8 54.9 54.0	H Pol V/h V V V V V H V V H V	15.209 Limit 54.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2 -19.1 -20.0	Detector Pk/QP/Avg AVG AVG PK AVG PK AVG PK PK PK	Azimuth degrees 297 355 299 297 244 355 166 244 166	Height meters 1.0 1.3 1.6 1.0 1.0 1.3 1.2 1.0 1.2	
5743.930 5743.930 5purious E Frequency MHz 17979.060 11488.740 7660.070 17972.600 1497.730 11490.070 3988.500 1499.200 3992.830 7660.290	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8 54.9 51.7	H Pol V/h V V V V H V V H V V H V V	15.209 Limit 54.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2 -19.1 -20.0 -22.3	Detector Pk/QP/Avg AVG AVG PK AVG PK AVG PK PK PK PK	Azimuth degrees 297 355 299 297 244 355 166 244 166 299	Height meters 1.0 1.3 1.6 1.0 1.0 1.3 1.2 1.0 1.2 1.6	
5743.930 5743.930 5 purious E Frequency MHz 17979.060 11488.740 7660.070 1488.740 7660.070 1497.730 1497.730 11490.070 3988.500 1499.200 3992.830	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8 54.9 54.0	H Pol V/h V V V V V H V V H V	15.209 Limit 54.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2 -19.1 -20.0	Detector Pk/QP/Avg AVG AVG PK AVG PK AVG PK PK PK	Azimuth degrees 297 355 299 297 244 355 166 244 166	Height meters 1.0 1.3 1.6 1.0 1.0 1.3 1.2 1.0 1.2	
5743.930 5743.930 5purious E Frequency MHz 17979.060 11488.740 7660.070 1497.730 11490.070 3988.500 1499.200 3992.830 7660.290	99.0 missions Level dBμV/m 53.1 48.8 45.7 64.5 40.6 59.6 36.8 54.9 54.0 51.7 48.8	H Pol V/h V V V V H V V H V V H V V H	15.209 Limit 54.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0 74.0 74.0 69.2	/ 15.247 Margin -0.9 -5.2 -8.3 -9.5 -13.4 -14.4 -17.2 -19.1 -20.0 -22.3 -20.4	Detector Pk/QP/Avg AVG AVG PK AVG PK AVG PK PK PK PK PK PK Peak	Azimuth degrees 297 355 299 297 244 355 166 244 166 299 231	Height meters 1.0 1.3 1.6 1.0 1.0 1.3 1.2 1.0 1.2 1.6 1.9	

	Ellic	Dtt Art company						EMC Test Da
Client:	Intel Corpora							Job Number: J72725
Model:	533AN-MMV	V with SL-30	0 Antenna					Log Number: T72735 unt Manager: Dean Eriksen
Contact:	Robert Paxn	nan					7.0000	
Standard:	FCC Part 15	5.247/RSS 2	10					Class: N/A
Run #1: Ra	adiated Spur	ious Emissi	ons, 1000 -	18000 MHz.	Operating N	lode: 802.11	n 20MHz Cl	hains A+B
	Pov	wer Setting a	ind average i	measuremer	nt (for referen	ce)		
	Cha		Cha		Cha			
	Setting	Avg	Setting	Avg	Setting	Avg		
	24.5	16.9	26.0	16.9				
	mple tested:		A02D4D0					
	Date of Test:					onfig. Used:		
	est Engineer:					fig Change:		
10	est Location:	Chamber # 3	3		Host	Unit Voltage	120V/60Hz	
Run #1b: C	Center Chani	nel @ 5785 I	MHz					
Fundament	T							side of restricted bands)
Frequency	Ŷ	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5790.500 5787.670	98.2 100.8	H	-	-	PK PK	108 172	1.0 1.0	RB 100 kHz; VB: 100 kHz RB 100 kHz; VB: 100 kHz
					-			-
Char	nnel @ 5785	MHz, Chain	A+B, n20 M	Hz				
	120.0-					п		
	120.0-					1		
	100.0 -							
	100.0 -							
	100.0 -							
(dBuv/m)	100.0 -							
	100.0 - 80.0 - 60.0 -							
(dBuV/m)	100.0 -		1 Ahr	millinged				- Imm
(dBuV/m)	100.0 - 80.0 - 60.0 - 40.0 - 20.0 -	- I - I www.will	M. M. M. M.	pullined .				-
(dBuv/m)	100.0 - 80.0 - 60.0 - 40.0 -	n wy while	A.h.h.	mithered	Frequenc			

Client:	Intel Corpora	<u>Ar[*]company</u> tion						Job Number:	J72725
								Log Number:	
Model:	533AN-MMW	/ with SL-30	0 Antenna					•	Dean Eriksen
Contact:	Robert Paxm	ian						-	
Standard:	FCC Part 15.	.247/RSS 2	10					Class:	N/A
un #1b:(purious E	-	iel @ 5785 I	MHz						
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		Uz, \/D, 10 Uz
1569.940 1570.080		V V	54.0 74.0	-11.9 -18.0	AVG PK	182 182	1.0 1.0		Hz; VB: 10 Hz Hz; VB: 1.000 MHz
497.630	34.2	V V	74.0 54.0	-18.0 -19.8	AVG	225	1.0		Hz; VB: 1.000 MHZ Hz; VB: 10 Hz
497.660	45.7	V V	74.0	-19.8	PK	225	1.5		Hz; VB: 1.000 MHz
993.450	33.0	V	54.0	-20.3	AVG	181	1.0		Hz; VB: 10 Hz
3998.250	49.3	V	74.0	-24.7	PK	181	1.0		Hz; VB: 1.000 MHz
998.581	22.1	V	54.0	-31.9	AVG	45	1.3	RB 100 kHz	
999.321	35.3	V	74.0	-38.7	PK	45	1.3	RB 100 kHz	; VB: 100 kHz
		<u>indamentai</u>	and measure	ed in 100kHz	.				s set 30dB below the

Client:	Intel Corpora	ation						Job Number:	J72725
Madal			0 Antonno				T-	Log Number:	T72735
	533AN-MMV		U AIIterina				Αссоι	unt Manager:	Dean Eriksen
Contact:	Robert Paxn	nan							
Standard:	FCC Part 15	.247/RSS 21	10					Class:	N/A
	idiated Spur igh Channel			18000 MHz.	Operating N	lode: 802.11	n 20MHz C	hains A+B	
	Pov	wer Setting a	ind average i	measuremer	nt (for referen	ce)			
	Cha		Cha	in B	Cha				
	Setting	Avg	Setting	Avg	Setting	Avg			
<u>.</u>	25.0	16.8	26.5	16.9					
					sed to detern				icted bands)
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 5818.780	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	DD 100 kH-	; VB: 100 kHz
5818.780 5832.590	98.7 95.9	V H	-	-	PK PK	172 109	1.5 1.0		;; VB: 100 kHz ;; VB: 100 kHz
	120.0 -								
		ami	hullmulmu	L. Jund	Jului Jul				18000
Amplitude (dBuV/m)	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000	Pol			Frequenc	y (MHz)		10000	
Amplitude (dBuV/m)	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000	Pol		/ 15.247 Margin			Height meters	'10000	
Hz MHz	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3	v/h V	15.209	/ 15.247	Frequence Detector Pk/QP/Avg AVG	y (MHz) Azimuth	Height	10000 Comments	
Curious El requency MHz 1649.680 1652.120	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3 59.3	v/h V V	15.209 Limit 54.0 74.0	/ 15.247 Margin -6.7 -14.7	Frequence Detector Pk/QP/Avg AVG PK	y (MHz) Azimuth degrees 199 199	Height meters 1.0 1.0	10000 Comments RB 1.000 M RB 1.000 M	18000 Hz; VB: 10 Hz Hz; VB: 1.000 MHz
(///ngp) apni,ilduwy burrious Eff requency MHz 1649.680 1652.120 766.560	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3 59.3 48.1	v/h V V V	15.209 Limit 54.0 74.0 74.0	/ 15.247 Margin -6.7 -14.7 -25.9	Frequence Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 199 199 212	Height meters 1.0 1.0 1.3	10000 Comments RB 1.000 M RB 1.000 M RB 1.000 M	18000 Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 1.000 Hz
urious El equency MHz 1649.680 1652.120 766.560 766.560	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3 59.3 48.1 52.3	v/h V V V V	15.209 Limit 54.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -6.7 -14.7 -25.9 -21.7	Frequence Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 199 199 212 212	Height meters 1.0 1.0 1.3 1.3	10000 Comments RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M	18000 Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz
Curious E requency MHz 1649.680 1652.120 766.560 766.560 497.680	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3 59.3 48.1 52.3 34.0	V/h V V V V V	15.209 Limit 54.0 74.0 74.0 74.0 54.0	/ 15.247 Margin -6.7 -14.7 -25.9 -21.7 -20.0	Frequence Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 199 199 212 212 237	Height meters 1.0 1.0 1.3 1.3 1.5	10000 Comments RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M	18000 Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 1.000 MHz
Humplitude (dBuv/m)	100.0 - 80.0 - 60.0 - 40.0 - 20.0 - 1000 missions Level dBµV/m 47.3 59.3 48.1 52.3	v/h V V V V	15.209 Limit 54.0 74.0 74.0 74.0 74.0	/ 15.247 Margin -6.7 -14.7 -25.9 -21.7	Frequence Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 199 199 212 212	Height meters 1.0 1.0 1.3 1.3	10000 Comments RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M RB 1.000 M	18000 Hz; VB: 10 Hz Hz; VB: 1.000 MHz Hz; VB: 10 Hz Hz; VB: 1.000 MHz

Client:	Intel Corporation	Job Number:	J72725
Madal	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
wouer.	335AN-WIMW WITT SE-500 ATTENTIA	Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	15-25 °C
	Rel. Humidity:	35-55 %

Summary of Results

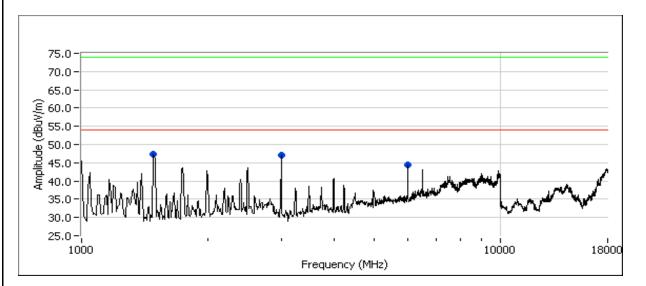
		-					
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	Chain A RX	2437 MHz	-	-	Radiated Emissions, 1 - 8GHz	RSS 210 / RSS GEN	47.2dBµV/m @ 3000.41MHz (-6.8dB)
1b	Chain A RX	5785 MHz	-	-	Radiated Emissions, 1 - 18GHz	RSS 210 / RSS GEN	47.8dBµV/m @ 3000.42MHz (-6.2dB)
2a	Chain B RX	2437 MHz	-	-	Radiated Emissions, 1 - 8GHz	RSS 210 / RSS GEN	47.8dBµV/m @ 3000.41MHz (-6.2dB)
2b	Chain B RX	5785 MHz	-	-	Radiated Emissions, 1 - 18GHz	RSS 210 / RSS GEN	48.1dBµV/m @ 3000.31MHz (-5.9dB)
3a	Chain A+B RX	2437 MHz	-	-	Radiated Emissions, 1 - 8GHz	RSS 210 / RSS GEN	48.3dBµV/m @ 3000.41MHz (-5.7dB)
3a	Chain A+B RX	5785 MHz	-	-	Radiated Emissions, 1 - 18GHz	RSS 210 / RSS GEN	48dBµV/m @ 3000.41MHz (-6.0dB)

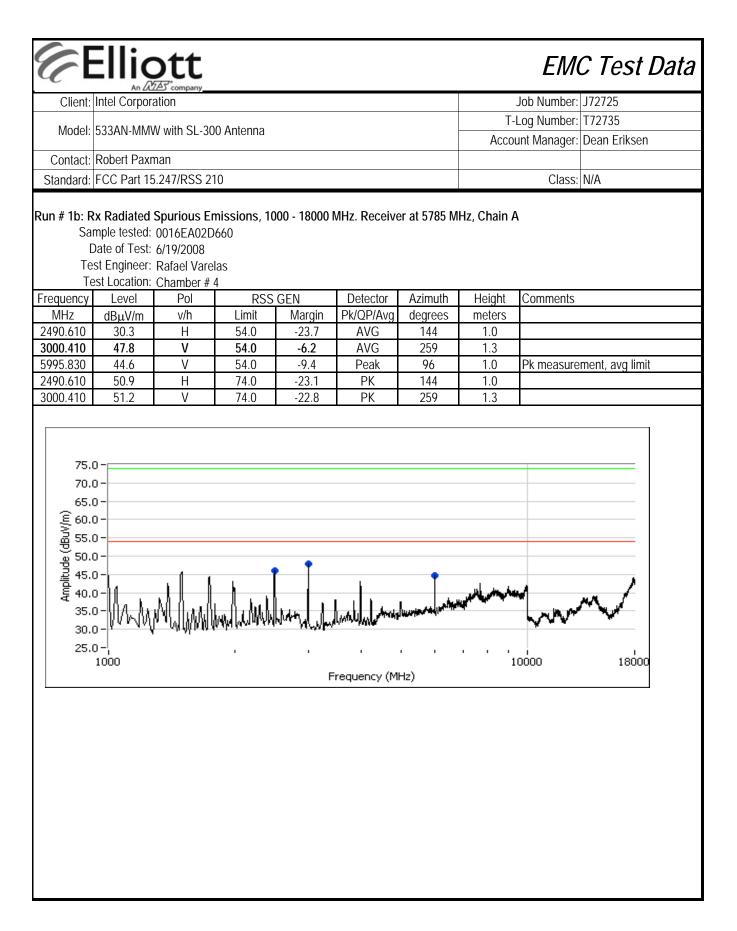
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

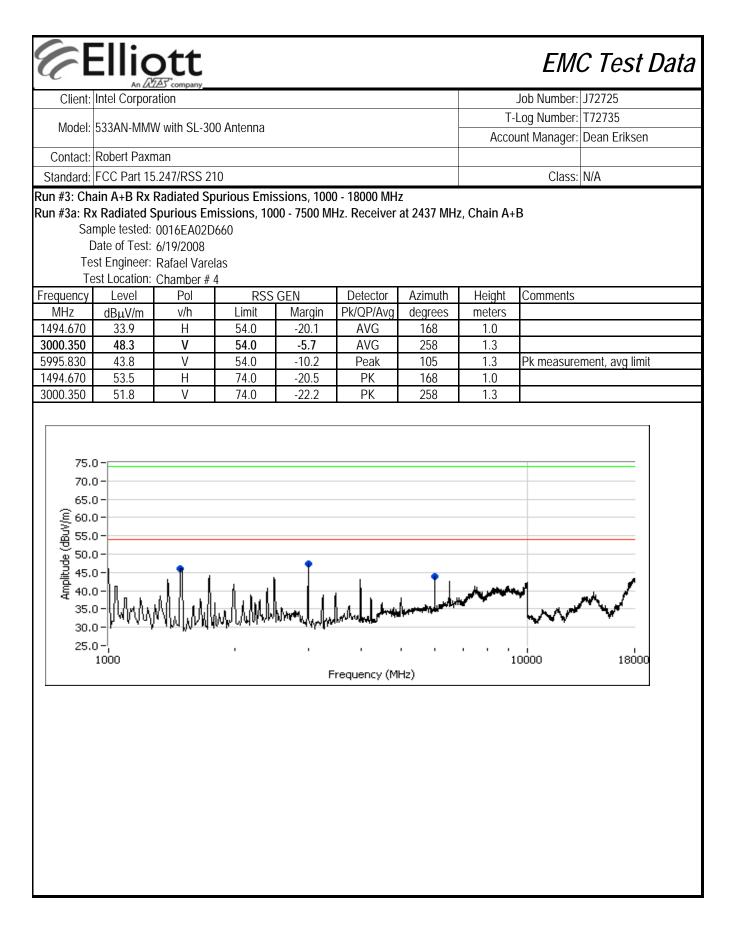
	An ZAZZED company		
Client:	Intel Corporation	Job Number:	J72725
Madal	533AN-MMW with SL-300 Antenna	T-Log Number:	T72735
wouer.	555AN-WIMW WITT SE-500 AITCHING	Account Manager:	Dean Eriksen
Contact:	Robert Paxman		
Standard:	FCC Part 15.247/RSS 210	Class:	N/A


Run # 1: Chain A Rx Radiated Spurious Emissions, 1000 - 18000 MHz


Run # 1a: Rx Radiated Spurious Emissions, 1000 - 7500 MHz. Receiver at 2437 MHz, Chain A

Sample tested: 0016EA02D660 Date of Test: 6/19/2008 Test Engineer: Rafael Varelas Test Location: Chamber # 4

Elliott


Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1494.750	32.6	V	54.0	-21.4	AVG	183	1.0	
3000.400	47.2	Н	54.0	-6.8	AVG	169	1.0	
5995.830	44.3	V	54.0	-9.7	Peak	273	2.0	Pk measurement, avg limit
1494.750	53.0	V	74.0	-21.0	PK	183	1.0	
3000.400	51.4	Н	74.0	-22.6	PK	169	1.0	

Client:		Dtt Articompany						EMC Test Data
	Intel Corpora	ation						Job Number: J72725
Model [.]	533AN-MM	V with SL-30	0 Antenna					Log Number: T72735
			o / intorintu				Acco	unt Manager: Dean Eriksen
	Robert Paxn		0					
Standard:	FUC Part 15	5.247/RSS 21	U					Class: N/A
tun #2a: Rx San D Tes	Radiated S mple tested: Date of Test: st Engineer:	0016EA02D	iissions, 10 660 as		18000 MHz Hz. Receiver	at 2437 MHz	z, Chain B	
Frequency	Level	Pol	+ RSS	GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1497.790	32.8	V	54.0	-21.2	AVG	252	1.3	
3000.400	47.8	V	54.0	-6.2	AVG	259	1.3	
3997.500	43.8	V	54.0	-10.2	Peak	128	1.0	Pk measurement, avg limit
5995.830	43.6	V	54.0	-10.4	Peak	98	1.0	Pk measurement, avg limit
1497.790 3000.400	49.6 51.1	V	74.0 74.0	-24.4 -22.9	PK PK	252 259	1.3 1.3	
75. 70. 65. (W/\\ngp) apn11dwy 40. 30. 25.	.0 - .0 - .0 - .0 - .0 - .0 - .0 - .0 -		had talkal		Julu Julu June , Frequency (N	<mark>بالمعقولية في المعالمة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعاملة المعام 11 Hz)</mark>		10000 18000

Client:	Intel Corpora	ation						Job Number:	
Model:	533AN-MMV	V with SL-30	0 Antenna					Log Number:	
	Robert Paxm						Acco	unt Manager:	Dean Eriksen
	FCC Part 15		10					Class:	N/A
				00 - 18000 N	/Hz. Receive	r at 5785 MF	Iz, Chain B		
	nple tested:						, •		
	ate of Test:								
	st Engineer:								
equency	st Location: Level	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENIS	
494.410	33.6	H	54.0	-20.4	AVG	163	1.0		
00.340	48.1	V	54.0	-5.9	AVG	262	1.3		
95.830	42.5	V	F10	44 5	Dool				
713.330			54.0	-11.5	Peak	263	1.3	Pk measure	
	44.4	V	54.0	-9.6	Peak	255	1.6		ment, avg limit ment, avg limit
94.410 00.340 75 70 65	53.6 51.6	V H V							
494.410 000.340 75 70 (W/\ngp) 9pn1ildwy 55 50 45 50 45	53.6 51.6 .0- .0- .0- .0- .0- .0- .0- .0-		54.0 74.0 74.0	-9.6 -20.4 -22.4	Peak PK	255 163	1.6 1.0		
494.410 000.340 75 70 (m/\mgp) aprilidium 45 50 50 50 30 30	53.6 51.6		54.0 74.0 74.0	-9.6 -20.4 -22.4	Peak PK	255 163	1.6 1.0		
494.410 000.340 75 70 (m/\ngp) apn1 45 50 45 50 45 30 30	53.6 51.6 .0- .0- .0- .0- .0- .0- .0- .0-		54.0 74.0 74.0	-9.6 -20.4 -22.4	Peak PK	255 163 262	1.6 1.0		

Client:	Intel Corpora	Ation						Job Number:	
Model	533AN-MMV	V with SI -30	0 Antenna					Log Number:	
							Acco	unt Manager:	Dean Eriksen
	Robert Paxm								
	FCC Part 15				/Hz. Receive			Class:	N/A
D Te:	mple tested: Date of Test: st Engineer: est Location:	6/19/2008 Rafael Vare	las						
equency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
8.200	33.1	H	54.0	-20.9	AVG	162	1.0		
0.370	48.0 44.8	V V	54.0 54.0	-6.0 -9.2	AVG Peak	257 95	1.3	Dk monouro	mont our limit
95.830 13.330	44.8	V	54.0 54.0	-9.2	Peak	95 252	1.0 1.6		ment, avg limit ment, avg limit
98.200	52.9	H	74.0	-21.1	PK	162	1.0	T K MCd3urc	ment, avy innit
0.370	51.4	V	74.0	-22.6	PK	257	1.3		
(m/vugb) ebuildmA 50 22 45 45 40 35	5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -	Muum	 !!!!!!!		, Indial .	alver-atta		······································	\sim

EXHIBIT 3: Photographs of Test Configurations