

TEST REPORT PERTAINING TO:

Equipment Under Test

Intel WiFi Link 5300

Model Number(s)
533AN_MMW

CONFIGURATION

IEEE 802.11a / 802.11b / 802.11g / 802.11n with a set of Ethertronics & Wistron Neweb Corp. Antennas

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING STANDARD (S)

Regulatory Standard(s)

FCC CFR 47, PART 15 SUBPART B CLASS B

Certificate Number: 1111.01

PREPARED FOR:

Intel Corporation 2111 NE 25th Avenue Hillsboro, Oregon 97124 Contact(s): Mr. Robert Paxman

PREPARED BY:

Aegis Labs, Inc. 8 Rancho Circle Lake Forest, CA 92630 Agent(s): Mr. Rick Candelas Mr. Johnny Candelas

Test Report #: II

INTEL-080620F

Test Report Revision: NONE

REPORT
BODYAPPENDICESTOTAL PAGESPAGES12651630

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc. The Intel Corporation logo is used for identification purposes only and is a registered trademark of Intel Corporation

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	REGULATORY COMPLIANCE GUIDELINES	03
1.1	Guidelines For Testing To Emissions Standards	03
2.0	SUMMARY OF REGULATORY LIMITS	04
3.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	05
4.0	DESCRIPTION OF EUT CONFIGURATION	06
4.1	Arrangement and Location of EUT and Host Equipment	06
4.2	EUT Description and Configuration	07
4.2.1	Product Description	07
4.2.2	EUT Configuration	07
4.3	List of EUT Sub-Assemblies and Host Equipment	08
4.4	Signal Line Cable Description And Connection Location	09
4.5	EMC Test Hardware and Software Measurement Equipment	10
5.0	CONDITIONS DURING EMISSIONS MEASUREMENTS	11
5.1	General	11
5.2	Conducted Emissions Test Setup	11
5.3	Radiated Emissions Test Setup	12

	APPENDICES		
Α	Test Data		
В	Photographs – Test Setups		
С	Modifications Required		
D	Accreditation Certificate		

1.0 **REGULATORY COMPLIANCE GUIDELINES**

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual. Testing and engineering functions provided by Aegis Labs were furnished by RF technicians and engineers with accredited qualifications and training credentials to carry out their duties.

The object of this report was to publish verifiable test results of an EUT subjected to the tests outlined in the standard listed on the cover page of this report.

1.1 Guidelines For Testing To Emissions Standards

These global standards for EMC emission requirements apply to electrical equipment for Information Technology Equipment (ITE). Compliance to these standards and in combination with the other standards listed in this test report can be used to demonstrate presumption of compliance with the protection requirements of the appropriate agency standard.

The purpose of these standards is to specify minimum requirements for emissions regarding electromagnetic compatibility (EMC) and protect the radio frequency spectrum 9 kHz. – 400 GHz. from unwanted interference generated from electrical/digital systems that intentionally or unintentionally generated RF energy. The emissions standards, normative documents and/or publications were used to conduct all tests performed on the equipment herein referred to as "Equipment Under Test".

2.0 SUMMARY OF TEST RESULTS

Emissions

Index	Standard		Results		
		A.C. Mains Port; Conducted Emissions; 0.150 MHz to 30 MHz			
	FCC PART 15	Frequency	Q-P Limit	AVG Limit	
		0.150 – 0.5 MHz	66 dBuV	56 dBuV	PASSED
		0.5 – 5	56 dBuV	46 dBuV	
1		5 - 30	60 dBuV	50 dBuV	
1					
		R.F. Electromagnetic Fields, 30 to 1000 MHz			
	ECC DADE 15	Frequency	Limit	Distance	DACCED
	FCC PART 15	30 – 230 MHz	30 dBuV/m	10m	PASSED
		230 – 1000 MHz	37 dBuV/m	10m	

ANALYSIS AND CONCLUSIONS

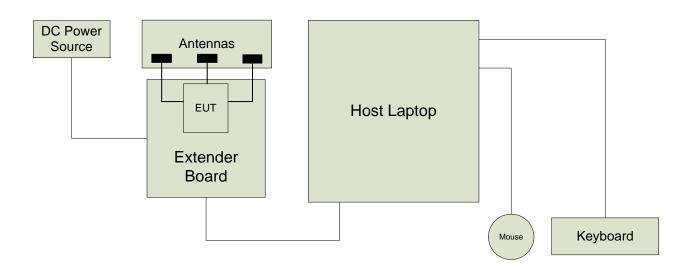
Based upon the measurement results we find that this equipment is within the limits of the global standards listed on the cover page of this test report. All results are based on a test of one sample. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

Approval Signatories **Test and Report Completed By:**

Johnny Candelas Test Technician Aegis Labs, Inc. 06/23/08 Date: **Report Approved By:**

lelas

Carrier 06/24/07Rick CandelasDate:Quality Assurance & EMC Lab ManagerAegis Labs, Inc.


3.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED:	ITE Type: Intel WiFi Link 5300 Model Number(s): 533AN_MMW Serial Number: 0016EA04037E
DATE EUT RECEIVED: TEST DATE(S):	June 18 th , 2008 June 23 rd – 24 th , 2008
ORIGIN OF TEST SAMPLE(S):	Production
EQUIPMENT CLASS:	EUT tested as CLASS B device
RESPONSIBLE PARTY:	Intel Corporation 2111 NE 25 th Avenue Hillsboro, Oregon 97124
CLIENT CONTACT:	Mr. Robert Paxman
MANUFACTURER:	Intel Corporation
TEST LOCATION:	Aegis Labs, Inc. 32231 Trabuco Creek Road Trabuco Canyon, CA 92678 Open Area Test Site #1 & #2
ACCREDITATION CERTIFICATE(s):	A2LA Certificate Number: 1111.01, Valid through February 28, 2010
PURPOSE OF TEST:	To demonstrate compliance with the standards as described in Sections 1.0 & 2.0 of this report.
UNCERTAINTY BUDGET:	Proficiency Testing and Uncertainty Calculations for all tests indicated in this report have been conducted in accordance with ISO 17025: 2005 requirements Section 5.4.6, and 5.9. Uncertainty Budgets and Proficiency Test results available upon request.
STATEMENT OF CALIBRATION:	All accredited equipment calibrations were performed by Liberty Labs, Inc. and World Cal. with typical calibration uncertainty estimates derived from ISO Guide to the determination of uncertainties with a Coverage Factor of $k=2$ for 95% level of confidence.

4.0 DESCRIPTION OF EUT CONFIGURATION

4.1 Arrangement and Location of EUT and Host Equipment

4.2 EUT Description and Configuration

Equipment Under Test (EUT): Intel WiFi Link 5300				
Test Routine Software Programs used during testing of EUT and Peripherals:	Intel Corporation Software (CRTU Ver. 5.0.51.0000)			
Number of External Test Ports Exercised:	3 Antenna Ports			
Power Supply Voltage applied to EUT during qualification measurements:	Conducted: 120VAC / 60Hz Radiated: 120 VAC / 60 Hz			
Clocks and/or Crystal Oscillator(s):	N/A			

4.2.1 Product Description

The Intel WiFi Link 5300 is an embedded IEEE 802.11a/b/g/n wireless network adapter that operates in the 2.4 GHz and 5.0 GHz spectrum. The adapter is capable of delivering up to 450 Mbps Tx/Rx.

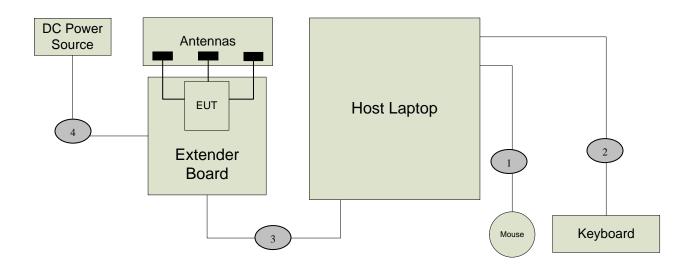
4.2.2 EUT Configuration

The EUT was tested installed in the Mini PCI-E slot of an extender board which is then connected to the host computer. The EUT was then connected to a set of antennas via its Chain A, B, & C antenna ports. Data for a set of Ethertronics & Wistron NeWeb Corp. Antennas can be found in Appendix A (Data Sheets)

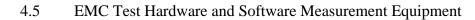
The low, middle, and high channels were tested in 802.11a, b, g, & n modes. Also, the EUT was tested once transmitting from each chain individually (Chain A, B, then C) and then tested with all chains transmitting simultaneously (Chain ABC). The EUT was placed in continuous transmit mode by a program provided by the manufacturer (*CRTU Version 5.0.51.0000*).

4.3 List of EUT, Sub-Assemblies and Host Equipment

Equipment Under Test				
Manufacturer	Serial Number			
Intel Corporation	Intel WiFi Link 5300	533AN_MMW	0016EA04037E	


EUT Sub-Assemblies				
Manufacturer	Equipment Name	Model or Part Number	Serial Number	
	Chain A Antenna	MPCI01001	N/A	
Ethertronics	Chain B Antenna	MPCI01001	N/A	
	Chain C Antenna	MPCI01001	N/A	
	Chain A Antenna	81.EBJ15.006	N/A	
Wistron Neweb Corp.	Chain B Antenna	81.EBJ15.006	N/A	
-	Chain C Antenna	81.EBJ15.006	N/A	

Remotely Located Support Equipment					
ManufacturerEquipment NameModel or Part NumberSerial Number					
Generic	Host Laptop	ENG001	None		
Protek	DC Power Source	3006B	AC2018		
Logitech	Keyboard	Y-BF37	MCT25200581		
Logitech	Mouse	M-BJ58	LNA22802012		


NOTE: All the power cords of the above support equipment are standard and non-shielded.

4.4 Signal Line Cable Description and Connection Location

	Signal Line Cable Description						
Cable	Length	Construction	Source Connector	Destination Connector	Bundled Length	Ferrite Attached	Note
1	1.5m	Round, Braid & Foil Shielded	Host Computer: USB Port	Keyboard: Hardwired	N/A	N/A	N/A
2	1.5m	Round, Braid & Foil Shielded	Host Computer: USB Port	Mouse: Hardwired	N/A	N/A	N/A
3	0.5m	Flat, Braid & Foil Shielded	Extender Board: Mini PCIe slot	Host Laptop: Mini PCIe slot	N/A	N/A	N/A
4	0.5m	Round Un- shielded	Extender Board: Power Input	DC Power Source: Power Output	N/A	N/A	N/A

É(G)

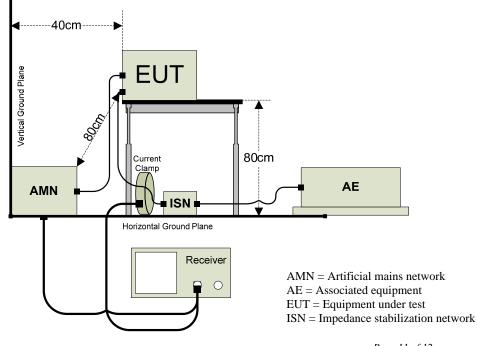
TEST EQUIPMENT LIST					
Equipment Name	Manufacturer	Model	Serial	Calibration	Maintenance
		Number	Number	Due Date	Calibration
					Cycle
EMI Receiver - RF Section	Hewlett Packard	8546A	3325A00137	04/26/09	1 Year
EMI Receiver - RF Filter Section	Hewlett Packard	85460A	3330A00138	04/26/09	1 Year
10 dB Attenuator	Pasternack	PE7014-10	N/A	09/05/08	1 Year
	Fisher Custom	FCC-LISN-	9931 03/30/09	03/30/09	1 Year
LISN (EUT)	Communications	50-25-2	9951	05/50/09	1 Tear
LISN (Access)	EMCO	3825/2	9108-1848	03/30/09	1 Year
Antenna - Biconical	EMCO	3110B	3383	03/20/09	1 Year
Antenna - Log Periodic	EMCO	3148	47943	03/20/09	1 Year

5.0 CONDITIONS DURING EMISSIONS MEASUREMENTS

5.1 General

All measurements were made according to the procedures defined in or referred to by the standard listed on the cover page of this report. The measurements were made in the operating mode producing the largest emissions consistent with normal operation and connected to the minimum configuration of auxiliary devices.

5.2 Conducted Emissions Test Setup


The following was the test configuration.

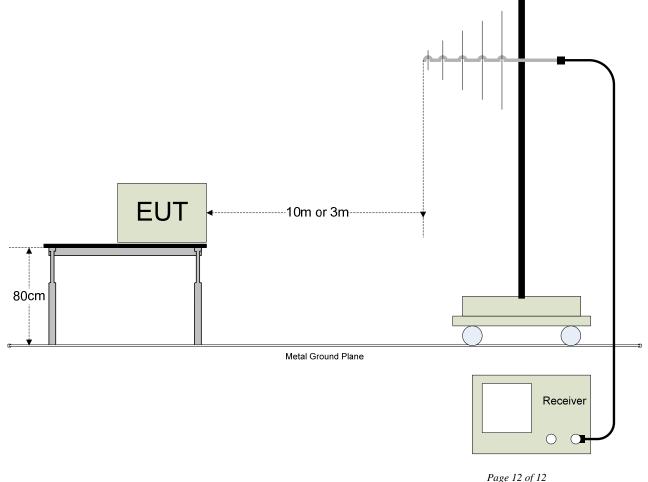
EUT signal cables that hung closer than 40 cm to the horizontal metal ground plane were folded back and forth forming a bundle 30 cm to 40 cm long. The power cord of the EUT was also bundled in the center and plugged into one of the artificial mains network (AMN). All peripheral equipment was powered from a second AMN via a multiple outlet strip placed at a distance on 10cm from each other. The AMN and ISN were positioned 80cm from the EUT. Signal cables that were not connected to an AE were terminated using the correct termination. If applicable, the current probe was placed at 0.1 m from the ISN.

Peak, quasi-peak and/or average detectors were used for testing performed between 150 kHz and 30 MHz. A swept frequency scan was performed for both Line 1 and Line 2. The six highest readings were compared against the limit and recorded in the data sheet along with a snapshot image of the sweep scan. The graphical scans in Appendix A only reflect peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak measurements.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 11 of 12 Report Number: INTEL-080620F Revision Number: NONE


5.3 Radiated Emissions Test Setup

The Open Area Test Site (OATS) was used for radiated emission testing. The receiving (Rx) antenna(s) was placed 10m from the nearest side of the EUT facing the Rx antenna. The EUT (if floor-standing) was placed directly on the flush-mounted 360 degree rotating turntable. The EUT (if table-top) was placed directly on an 80cm high non-metallic table, and the table was placed on the rotating turntable. During the initial EMI scan, all the suspect frequencies, i.e.; harmonics, broadband signals were checked with the Rx broadband antennas in both vertical and horizontal polarities. The biconical Rx, log periodic Rx, and horn Rx antennas were used from 30MHz - 300MHz - 1000MHz, and 1GHz - 18GHz respectively.

Upon completion of all harmonic and broadband measurements, the balance of any remaining frequencies was checked between 30MHz - 18GHz. Any signals appearing within 20 dB of the classification limit was measured. Each signal was maximized by first rotating the turntable at least 360 degrees and recording the azimuth in the data sheet. Lastly, the Rx antenna was raised and/or lowered to maximize the signal elevation. If the measured signal was obtained using the peak detector and that signal appeared within 3 dB of the regulatory limit line, then the same signal was re-measured using the quasi-peak detector on the EMI receiver. Both meter readings if necessary were recorded on the data sheet.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 12 of 12 Report Number: INTEL-080620F Revision Number: NONE

AegisLabsInc.com

APPENDIX A

TEST DATA

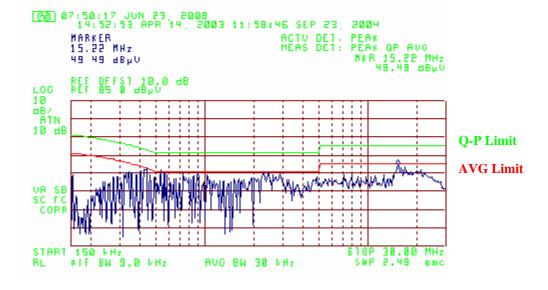
Page 1 of 6 (Appendix A) Report Number: INTEL-080620F Revision Number: NONE

AC POWER PORT - CONDUCTED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	06/23/08
EUT:	Intel WiFi Link 5300	PROJECT NUMBER:	INTEL-080618
MODEL NUMBER:	533AN_MMW	TEST ENGINEER:	JC
SERIAL NUMBER:	0016EA04037E	SITE #:	1
	Tested installed in an extender	TEMPERATURE:	27 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	38%
	laptop's mini PCI slot	TIME:	10:00 AM

Description:	Conducted Power RF Emissions (150 kHz – 30 MHz)
Results:	PASSED LINE 1 and LINE 2 Limits
Note:	Conducted Emissions Measurements were performed on the EUT with the power supply set at the following voltage and frequency. • 120VAC / 60 Hz

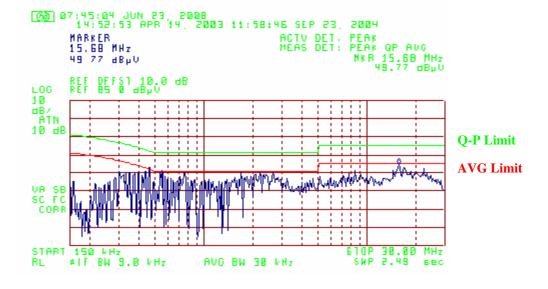
Conducted Limits				
Frequency (MHz)	Quasi-Peak Limit (dBuV)	Average Limit (dBuV)		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		


*Decreases with the logarithm of the frequency.

AC Power Port - Conducted Emissions Test Results (Continued)

	FCC CLASS B CONDUCTED EMISSIONS – LINE 1							
Freq. (MHz)	Meter Reading (dBuV)	Detector (PK/QP/AV)	Average Limit (dBuV)	Average Delta(dB)	Quasi-Peak Limit (dBuV)	Quasi-Peak Delta(dB)		
0.3400	45.68	PK	50.57	-4.89	60.57	-14.89		
0.4400	47.42	PK	47.71	-0.29	57.71	-10.29		
0.4400	28.67	AV	47.71	-19.04	57.71	-29.04		
0.5400	46.48	PK	46.00	0.48	56.00	-9.52		
0.5400	34.91	AV	46.00	-11.09	56.00	-21.09		
2.4600	45.11	PK	46.00	-0.89	56.00	-10.89		
2.4600	32.68	AV	46.00	-13.32	56.00	-23.32		
2.8800	45.20	PK	46.00	-0.80	56.00	-10.80		
2.8800	30.85	AV	46.00	-15.15	56.00	-25.15		
15.2200	49.49	PK	50.00	-0.51	60.00	-10.51		
15.2200	38.07	AV	50.00	-11.93	60.00	-21.93		

Continuously Transmitting @ 120VAC/60Hz (INTEL-080618-06)


Page 3 of 6 (Appendix A) Report Number: INTEL-080620F Revision Number: NONE

AC Power Port - Conducted Emissions Test Results (Continued)

	FCC CLASS B CONDUCTED EMISSIONS - LINE 2						
	FCC	CLASS B CO	NDUCTED EM	ISSIONS - LIP	NE 2		
Freq. (MHz)	Meter Reading (dBuV)	Detector (PK/QP/AV)	Average Limit (dBuV)	Average Delta(dB)	Quasi-Peak Limit (dBuV)	Quasi-Peak Delta(dB)	
0.4700	47.67	PK	46.85	0.82	56.85	-9.18	
0.4700	30.04	AV	46.85	-16.81	56.85	-26.81	
0.5500	46.11	РК	46.00	0.11	56.00	-9.89	
0.5500	29.73	AV	46.00	-16.27	56.00	-26.27	
1.6900	45.36	PK	46.00	-0.64	56.00	-10.64	
1.6900	35.79	AV	46.00	-10.21	56.00	-20.21	
2.6600	45.38	РК	46.00	-0.62	56.00	-10.62	
2.6600	29.42	AV	46.00	-16.58	56.00	-26.58	
8.4300	46.08	РК	50.00	-3.92	60.00	-13.92	
15.6800	49.77	РК	50.00	-0.23	60.00	-10.23	
15.6800	35.16	AV	50.00	-14.84	60.00	-24.84	

Continuously Transmitting @ 120VAC/60Hz (INTEL-080618-06)

Page 4 of 6 (Appendix A) Report Number: INTEL-080620F Revision Number: NONE

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	06/24/08
EUT:	Intel WiFi Link 5300	PROJECT NUMBER:	INTEL-080618
MODEL NUMBER:	533AN_MMW	TEST ENGINEER:	KN
SERIAL NUMBER:	0016EA04037E	SITE #:	1
	Tested installed in an extender	TEMPERATURE:	27 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	17%
	laptop's mini PCI slot	TIME:	2:00 PM

Description:	Radiated RF Emissions (30 MHz – 1000 MHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with the power supply
	set at the following voltage and frequency.
	• 120VAC / 60 Hz.

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F + C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Radiated Emissions Test Results (Continued)

É(G))\$

	Horizontal Open Field Maximized Data								
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)	Cable Factor (dB)	Antenna Factor (dB)	Corrected Reading (dBuV/m)	Limits (dBuV/m)	Diff(dB) +=FAIL
47.85	7.11	400	225		1.98	10.24	19.32	30.00	-10.68
65.70	7.05	400	135		2.10	9.60	18.75	30.00	-11.25
235.27	5.32	400	135		2.85	16.71	24.88	37.00	-12.12
256.87	3.95	400	180		2.94	17.90	24.79	37.00	-12.21
319.97	6.03	300	225		3.20	14.94	24.17	37.00	-12.83
450.20	5.42	300	225		3.71	16.81	25.94	37.00	-11.06
500.27	5.59	200	180		3.92	19.00	28.51	37.00	-8.49

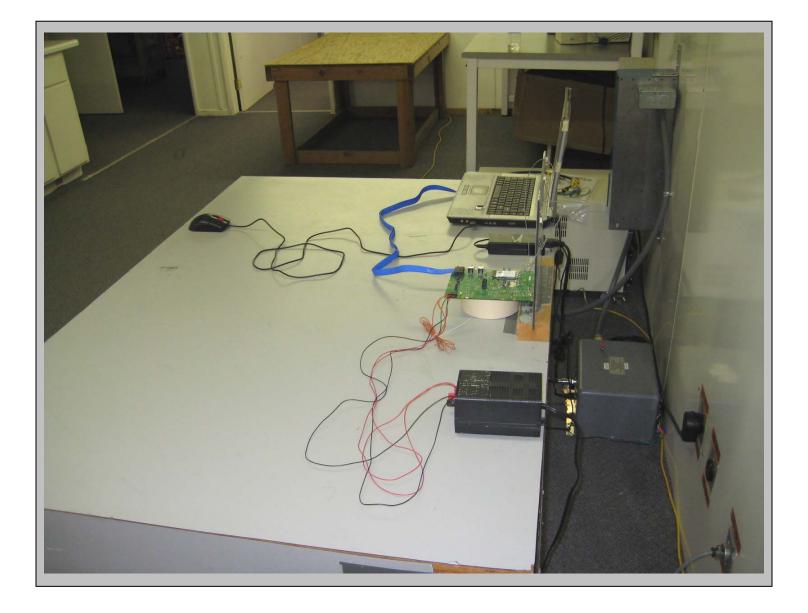
Continuously Transmitting @ 120VAC/60Hz (INTEL-080618-05)

Vertical Open Field Maximized Data										
	Meter	Antenna				Cable	Antenna	Corrected		
Freq.	Reading	Height	Azimuth	Quasi pk o	or	Factor	Factor	Reading	Limits	Diff(dB)
(MHz)	(dBuV)	(<i>cm</i>)	(degrees)	AVG (dBu)	V)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	+=FAIL
33.16	9.40	100	180			1.85	12.07	23.32	30.00	-6.68
64.48	7.10	100	180			2.09	9.09	18.28	30.00	-11.72
120.64	7.05	100	225			2.36	11.04	20.45	30.00	-9.55
471.46	3.68	100	180			3.80	17.99	25.47	37.00	-11.53
524.31	7.01	100	315			3.99	19.07	30.06	37.00	-6.94
723.22	6.09	100	180			4.66	22.09	32.84	37.00	-4.16

APPENDIX B

PHOTOGRAPHS – (TEST SETUPS)

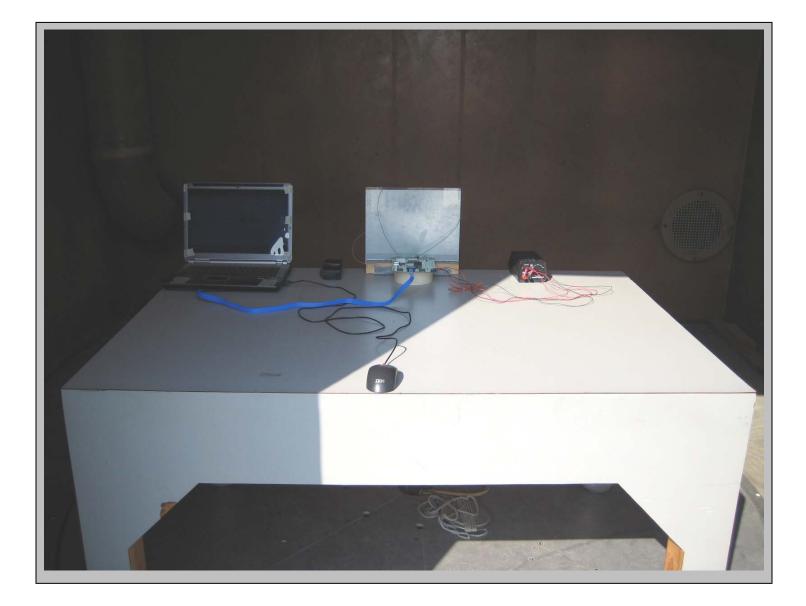
Page 1 of 5 (Appendix B) Report Number: INTEL-080620F Revision Number: NONE


CONDUCTED EMISSIONS – FRONT VIEW

FOR

EUT: Intel WiFi Link 5300 MODEL NUMBER: 533AN_MMW

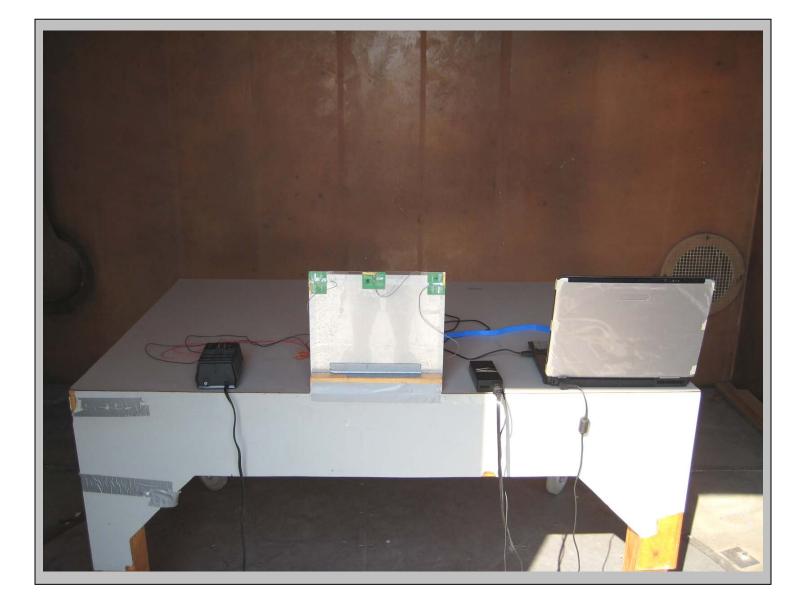
> Page 2 of 5 (Appendix B) Report Number: INTEL-080620F Revision Number: NONE


CONDUCTED EMISSIONS – SIDE VIEW

FOR

EUT: Intel WiFi Link 5300 MODEL NUMBER: 533AN_MMW

> *Page 3 of 5 (Appendix B)* Report Number: INTEL-080620F Revision Number: NONE


RADIATED EMISSIONS – FRONT VIEW

FOR

EUT: Intel WiFi Link 5300 MODEL NUMBER: 533AN_MMW

> *Page 4 of 5 (Appendix B)* Report Number: INTEL-080620F Revision Number: NONE

RADIATED EMISSIONS – REAR VIEW

FOR

EUT: Intel WiFi Link 5300 MODEL NUMBER: 533AN_MMW

> Page 5 of 5 (Appendix B) Report Number: INTEL-080620F Revision Number: NONE

APPENDIX C

MODIFICATIONS REQUIRED

1.0	NONE

Page 1 of 1 (Appendix C) Report Number: INTEL-080620F Revision Number: NONE

APPENDIX D

ACCREDITATION CERTIFICATE (S)

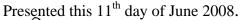
Page 1 of 6 (Appendix D) Report Number: INTEL-080620F Revision Number: N/A

THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION

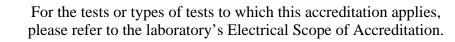
ACCREDITED LABORATORY

A2LA has accredited

AEGIS LABS, INC. Trabuco Canyon, CA


for technical competence in the field of

Electrical Testing


L'LLLL

NERICAN ASSOCIAL

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

President For the Accreditation Council Certificate Number 1111.01 Valid to February 28, 2010

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

AEGIS LABS, INC.¹ 32231 Trabuco Creek Road Trabuco Canyon, CA 92678 Rick Candelas Phone: 949-459-7886

ELECTRICAL (EMC)

Valid To: February 28, 2010

Certificate Number: 1111.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>electromagnetic compatibility tests</u>:

Test Method(s)

Emissions	
Radiated and Conducted	CFR 47, FCC Part 15 (ANSI C63.4:2003)
	CFR 47, FCC Part 18 (ANSI C63.4:2003)
	ICES-001
	ICES-003
	ICES-005
	VCCI V-3
	CNS13438: 2006
	EN 55011: 1998 + A1: 1999 + A2: 2002
	EN 55011: 2007 + A2: 2007
	EN 55014-1: 2000 + A1: 2001 + A2: 2002
	EN 55014-1: 2006
	EN 55014-2: 1997 + A1: 2001
	EN 55022: 1998 + A1: 2000 + A2: 2003
	EN 55022: 2006
	CISPR 11: 1997 + A1: 1999 + A2: 2002
	CISPR 11: 2003 + A1: 2004 + A2: 2006
	CISPR 13: 2001 + A1: 2003 + A2: 2006
	CISPR 14-1: 2000 + A1: 2001 + A2: 2002
	CISPR 14-1: 2005
	CISPR 14-2: 1997 + A1: 2001
	CISPR 22: 1997 + A1: 2000 + A2: 2003
	CISPR 22: 2005
	AS/NZS CISPR 11: 2004
	AS/NZS CISPR 14.1: 2005
	AS/NZS CISPR 14.2: 2003
	AS/NZS CISPR 22: 2006

¹ This accreditation covers testing performed at the main laboratory listed above, and the satellite laboratory indicated.

<u>Technology</u> Emissions (cont'd) Radiated and Conducted	Test Method(s) SABS CISPR 11 SABS CISPR 13 SANS 222: 2006/CISPR22: 2006 (SABS CISPR: 2006) SII 961-6-1: 2002 KN11 KN13 KN14 KN22 RRL Notice No. 2008-4 (February 11, 2008) RRL Notice No. 2008-5 (February 11, 2008) SS IEC CISPR22: IDA TS EMC
Product Family and	
Generic Standards	
	EN 61000-6-1: 2001, 2007
	EN 61000-6-2: 2001, 2005 EN 61000-6-3: 2001 + A11: 2004, 2007
	EN 61000-6-4: 2001, 2007 EN 61000-6-4: 2001, 2007
	EN 50130-4: 1995 + A1:998 + A2: 2003
	EN 55103-1: 1996
	EN 55103-2: 1996
	EN 60601-1-2: 2001
	EN 61326: 1997 + A1: 1998 + A2: 2001 + A3: 2003
	EN 61326-1: 2006
	EN 55020: 2002 +A1: 2003 + A2: 2005
	EN 55020: 2007
	IEC 61000-6-1: 1997, 2005
	IEC 61000-6-2: 1999, 2005
	IEC 61000-6-3: 1996, 2006
	IEC 61000-6-4: 1997, 2006
	IEC 60601-1-2: 2001
	IEC 61326: 1997 + A1: 1998 + A2: 2000 + A3: 2002
	IEC 61326-1: 2005 CISPR 20: 2002 +A1: 2002 + A2: 2005
	CISPR 20: 2002 + A1: 2002 + A2: 2003 CISPR 20: 2006
	KN 20
	AS/NZS 4251.1: 1999
	AS/NZS 4251.2: 1999
	AS/NZS 61000.6.1: 2006
	AS/NZS 61000.6.2: 2006

<u>Technology</u> Radio Communications	Test Method(s)
	CFR 47, FCC Part 27 (ANSI C63.4:2003)
	AS/NZS 4771: 2000 + A1: 2003
	AS/NZS 4268: 2003 + A1: 2005 + A2: 2006
	RSS-GEN
	RSS-210
	RSS-310
	IDA TS SRD
	EN 300 220-1, EN 300 220-2, EN 300 220-3
	EN 300 328-1, EN 300 328-2, EN 300 328
	EN 300 386
	EN 300 440-1, EN 300 440-2
	EN 301 489-1 (Excluding Section 9.6)
	EN 301 489-3
	EN 301 489-4
	EN 301 489-17
	EN 301 893 (Excluding DFS testing)
Harmonics	EN 61000-3-2: 2000 + A2: 2005
	EN 61000-3-2: 2006
	IEC 61000-3-2: 2000 + A1: 2001 + A2: 2004
	AS/NZS 61000.3.2
Flickers	EN 61000-3-3: 1995 + A1: 2001 + A2: 2005
	IEC 61000-3-3: 1994 + A1: 2001 + A2: 2005
	AS/NZS 61000.3.3

AEGIS LABS, Inc. 8 Rancho Circle Lake Forest, CA 92360 949 454 8295

<u>Technology</u> Immunity Test Method(s)

EN 55024: 1998 +A1: 2001 + A2: 2003 EN 61000-4-2 EN 61000-4-3 EN 61000-4-4 EN 61000-4-5, ITU-T K.20 EN 61000-4-6 EN 61000-4-8 EN 61000-4-11

$\begin{array}{llllllllllllllllllllllllllllllllllll$
IEC 61000-4-3 IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-8 IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-8 IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-8 IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
IEC 61000-4-6 IEC 61000-4-8 IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
IEC 61000-4-8 IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
IEC 61000-4-11 KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
KN 24 with RRL Notice No. 2007-99 (2007.12.26) & RRL Notice No. 2007-101 (2007.12.26)
2007-101 (2007.12.26)
KN 61000-4-2
111 01000 + 2
KN 61000-4-3
KN 61000-4-4
KN 61000-4-5
KN 61000-4-6
KN 61000-4-8
KN 61000-4-11
AS/NZS 61000.4.2
AS/NZS 61000.4.3
AS/NZS 61000.4.4
AS/NZS 61000.4.5
AS/NZS 61000.4.6
AS/NZS 61000.4.8
AS/NZS 61000.4.11
Avionics / Military
RTCA/DO-160 (Sections 15-22 & 25)
RTCA/DO-301 (Sections 2.3.13 – 2.3.19)
MIL-STD-461
MIL-STD-462
MIL-STD-704 (MIL-HDBK-704-1, MIL-HDBK-704-7, MIL-HDBK-
704-8)
BOEING D6-16050-4
BOEING D6-16050-5
BOEING 787B3-0147 (Section 3)
AIRBUS ABD0100.1.8 (Section 1.2, 1.3, 2)