

Elliott Laboratories Inc. www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518

408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Intel Corporation Model: 512BG_MW

- UPN: 1000M-512BGM
- FCC ID: PD9512BGM

GRANTEE: Intel Corporation 2111 N.E. 25th Ave. Hillsboro, OR 97124

- TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086
- REPORT DATE: June 11, 2008

TEST DATES:

March 14 – June 6, 2008

AUTHORIZED SIGNATORY:

Mark Briggs

Mark Briggs V Principal Engineer

Testing Cert #2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	June 11, 2008	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
ANTENNA SYSTEM ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	10
TEST SITE	11
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS ANTENNAS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION.	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONSMAY 28	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	19
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	22

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Measurement Data	.2

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model 512AN_MMW (MMC) pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Intel Corporation model 512AN_MMW (MMC) and therefore apply only to the tested sample. The sample was selected and prepared under the authority of Robert Paxman of Intel.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model 512AN_MMW (MMC) complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	b: 9.8 MHz g: 16.6 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	b: 13.8 MHz g: 17.1 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	b: 19.6 dBm (0.091 W) g: 17.0 dBm EIRP = 0.19 W ^{Note1}	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	b: -3.2dBm/3kHz g: -7.3dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < -30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 1000MHz – 25 GHz Note 3	53.0 dBuV/m @ 2483.6 MHz (802.11b Ethertronics Antenna)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies (-1.0dB)

Note 1: EIRP calculated using antenna gain of 3.2 dBi and is calculated for the highest power of all modes.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst) / RMS averaging over a time interval, as permitted under RSS 210 section A8.4(4).

Note 3: Spurious emissions below 1GHz were independent of operating channel and operating mode (transmit versus receive). Measurements for radiated emissions below 1GHz are therefore reported for receive mode only.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

ECO D 1	DCC			T • • •	D 1
FCC Rule	RSS	Description	Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
15 202		RF Connector	Module uses a unique	Unique	Constinu
15.203	-	KF Connector	connector	connector	Complies
	DOG OFN	Receiver spurious	43.4dBµV/m @	DOG OFNI	C 1
-	RSS GEN	emissions	108.287MHz	RSS GEN	Complies
	7.2.3	30MHz – 18 GHz	Note 1	Table 1	(-0.1dB)
15 207	RSS GEN	AC Conducted	21.4dBµV @	Refer to	Complies
15.207	Table 2	Emissions	24.000MHz	standard	(-28.6dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to separate MPE calculations, RSS 102 declaration and	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	User Manual statements Statements are included	Statement required regarding non- interference	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, module will be used in host systems that use integral, non-detachable antennas	Statement required regarding detachable antenna	N/A

Note 1: Spurious emissions below 1GHz were independent of operating mode and dominated by emissions from the test fixture. The highest emission above 1GHz in MISO receive mode was $50.5dB\mu V/m$ @ 3000.3MHz (3.5dB below the limit) and in SISO receive mode the worst case was $50.1dB\mu V/m$ @ 3000.3MHz (3.9dB below the limit).

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$ \pm 2.4 \pm 3.0 \pm 3.6 \pm 6.0 $

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model 512BG_MMW is a 1x1/2x1 SISO/MISO 802.11bg radio module that is designed to be installed in laptops. The module supports 802.11b and 802.11g protocols in the 2400 – 2483.5 MHz band with a single transmit chain and the hardware can support single- or dual-receive chains. The card is identical to the 512AN_MMW module that also supports 802.11n operation in the 2.4GHz band and 802.11a and 802.11n in the 5150 – 5250 MHz, 5250 – 5350 MHz, 5470 – 5725 MHz and 5725 – 5850 MHz bands. The only difference between the two cards is EEPROM programming and label markings/content.

The data in this test report was taken on a model 512AN_MMW module as representative of the rf characteristics for the feature-reduced 512BG_MW.

For testing purposes, and in accordance with requirements for evaluating a device for modular approvals, the EUT was installed onto an extender card that was connected into a PC. The EUT was outside of the PC's enclosure. The electrical rating of the EUT is 3.3 Volts DC, 0.5 Amps.

The sample was received on March 14, 2008, configured with the Ethertronics magnetic dipole antenna and tested on March 14, March 17, March 18, March 24, April 8, April 10, April 11, April 14, April 16 and April 21, 2008. Additional testing was performed on May 28, May 29, May 30 and June 6, 2008 with the device configured with the Universe PIFA antenna.

Manufacturer	Model	Description	Serial Number	FCC ID	
Intel	512AN_MMW	802.11abgn 1x2	-	PD9512ANH	
Corporation		MISO module			

The EUT consisted of the following component(s):

ANTENNA SYSTEM

The antenna connects to the EUT via a non-standard U.FL antenna connector, thereby meeting the requirements of FCC 15.203. The EUT was evaluated with each transceiver chain connected to the following antennas:

- Ethertronics MPCI-8 Module antenna which is based on a magnetic dipole design. The nominal antenna gain is 3dBi in the 2.4GHz band and 5dBi in the 5GHz bands
- Universe Technology antenna which is based on a PIFA design. The nominal antenna gain is 3.2 dBi in the 2.4GHz band, 3.6dBi in the 5150-5250 MHz band, 3.7dBi in 5250-5350MHz band, 4.8dBi in the 5470 5725 MHz band and 5dBi in the 5725 5850MHz band.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

I	Manufacturer	Model	Description	Serial Number	FCC ID
	Dell	-	Laptop PC	Prototype	-

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
Foit	Connected 10	Description	Shielded or Unshielded	Length(m)	
DC power port	DC power sourse	Multi connect	Unshielded	0.3	
PCI Extender	Laptop	Multi connect	Unshielded	0.3	
Antenna port 1	Antenna	u.FL	Shielded	0.2	
Antenna port 2	Antenna	u.FL	Shielded	0.2	

EUT OPERATION

During transmitter-related testing the EUT was configured to transmit continuously in each of the various modulation modes (802.11a, 802.11b, 802.11g and 802.11n). Preliminary testing determined the data rates with the highest power and power spectral density to be evaluated for the formal testing, as detailed in the table below.

Active Chains Mode	1 Chain	2 Chains
802.11b	1Mb/s	Not applicable,
802.11g	6 MBs	second chain is receive only

Spurious receiver emissions were measured with the device tuned to the center channel in each operating band. Measurements were made on both single chain modes (SISO modes with one, then the other chain active) and in MISO mode (with both chains active simultaneously).

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on March 14, March 17, March 18, March 24, April 8, April 10, April 11, April 14, April 16, April 21, May 28, May 29, May 30 and June 6, 2008 at the Elliott Laboratories semi anechoic chambers 3, 4 and 5 located at 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

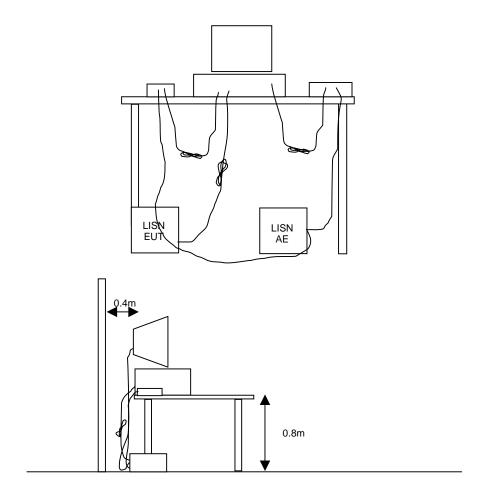
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

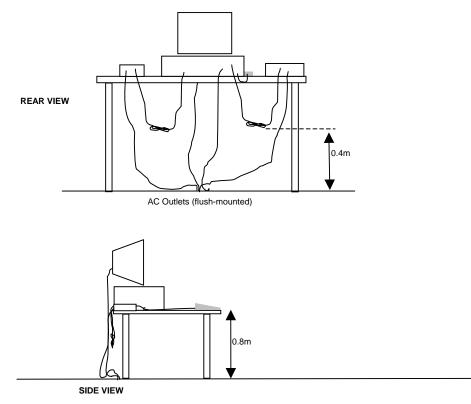

TEST PROCEDURES

EUT AND CABLE PLACEMENT

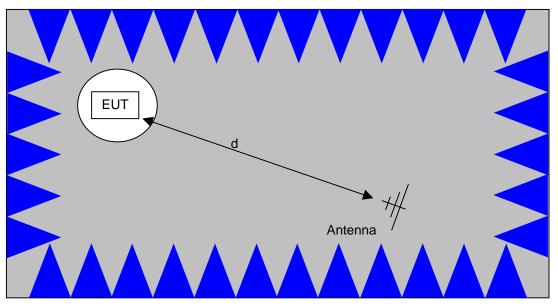
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

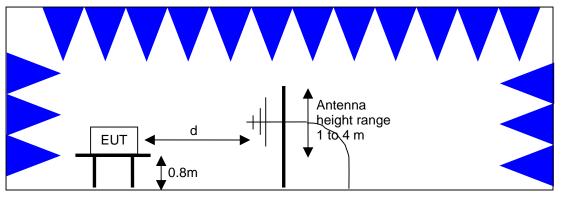

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONSMay 28

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

Radiated Emissions, 1000 - Engineer: Joseph Cadigal	18,000 MHz, 10-Apr-08			
Manufacturer Hewlett Packard EMCO	Description Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz	<u>Model #</u> 8449B 3115	<u>Asset #</u> 263 1561	<u>Cal Due</u> 16-Apr-08 10-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	17-Dec-08
Radiated Emissions, 30 - 26 Engineer: jcaizzi	,500 MHz, 16-Apr-08			
Manufacturer EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Blu)	<u>Model #</u> 3115	<u>Asset #</u> 1386	<u>Cal Due</u> 11-Jul-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
Radiated Emissions, 30 - 26 Engineer: bjing <u>Manufacturer</u> EMCO	5 ,500 MHz, 17-Apr-08 <u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Blu)	<u>Model #</u> 3115	<u>Asset #</u> 1386	<u>Cal Due</u> 11-Jul-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
Conducted Emissions - AC Engineer: Peter Sales	Power Ports, 21-Apr-08			
Manufacturer EMCO EMCO Rohde& Schwarz Rohde & Schwarz	Description LISN, 10 kHz-100 MHz LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	<u>Model #</u> 3825/2 3825/2 ESH3 Z2 ESIB7	<u>Asset #</u> 1292 1293 1593 1756	Cal Due 22-Feb-09 15-Feb-09 11-May-08 04-Dec-08
Radiated Emissions, 30 - 1,0 Engineer: Peter Sales				
<u>Manufacturer</u> Com-Power Corp. Sunol Sciences Rohde & Schwarz	Description Preamplifier, 30-1000 MHz Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-7 GHz	<u>Model #</u> PA-103 JB3 ESIB7	<u>Asset #</u> 1543 1549 1756	<u>Cal Due</u> 12-Nov-08 23-May-09 04-Dec-08

Radiated Emissions, 1000 - 18,000 MHz, 10-Apr-08

Engineer: Ben Jing	,500 MHz (Band-edge), 29-May-08			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz	3115 8449B	1561 1780	10-Jun-08 06-Nov-08
Radiated Emissions, 1000 Engineer: Ben Jing	- 26,500 MHz, 30-May-08			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO EMCO	Antenna, Horn, 1-18 GHz (SA40-Red) Antenna, Horn, 18-26.5 GHz (SA40-Blue)	3115 3160-09 (84125C)	1142 1387	07-Jun-08 18-Feb-09
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Hewlett Packard Micro-Tronics Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue Band Reject Filter, 2400-2500 MHz Microwave Preamplifier, 1-26.5GHz	84125C BRM50702-02 8449B	1620 1731 1780	22-Feb-09 17-Oct-08 06-Nov-08
Radiated Emissions, 30 - 2	6,500 MHz, 30-May-08			
Engineer: jcaizzi Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Micro-Tronics Hewlett Packard	Band Reject Filter, 5725-5875 MHz Microwave Preamplifier, 1-26.5GHz	BRC50705-02 8449B	1728 1780	17-Oct-08 06-Nov-08
, 31-May-08				
Engineer: Ben Jing Manufacturer EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model #</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 07-Jun-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Micro-Tronics Micro-Tronics	Band Reject Filter, 5725-5875 MHz Band Reject Filter, 5150-5350 MHz	BRC50705-02 BRC50703-02	1728 1729	17-Oct-08 17-Oct-08
, 31-May-08 Engineer: Ben Jing Manufacturer	Description	Model #	Asset #	Cal Due
Radiated Emissions, 30 - 1				
Engineer: Rafael Varelas	6,000 MHZ, 31-May-06			
<u>Manufacturer</u> EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model #</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 07-Jun-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Micro-Tronics Hewlett Packard	Band Reject Filter, 5725-5875 MHz Microwave Preamplifier, 1-26.5GHz	BRC50705-02 8449B	1728 1780	17-Oct-08 06-Nov-08
Radiated Emissions, 30 - 1	8,000 MHz, 31-May-08			
Engineer: bjing Manufacturer EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model #</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 07-Jun-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue		1393	15-Jan-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08
Radiated Emissions, 1000	- 18,000 MHz, 06-Jun-08			
Engineer: Ben Jing Manufacturer	Description	Model #	Asset #	<u>Cal Due</u>

Radio Antenna Port (Power and Spurious Emissions), 11-Apr-08Engineer: jcaizziManufacturerDescriptionModel #Asset #Cal DueRohde & SchwarzPower Meter, Single ChannelNRVS129012-Jul-08Hewlett PackardSpecAn 9 kHz - 40 GHz, (SA40) Purple8564E (84125C)177117-Dec-08Rohde & SchwarzPower Sensor, 1 uW-100 mW, DC-18 GHz, 500hmsNRV-Z51179721-Aug-08

Radio Antenna Port (Engineer: Suhaila Kł	(Power and Spurious Emissions), 14-Apr-08 hushzad			
Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	12-Jul-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	17-Dec-08

EXHIBIT 2: Test Measurement Data

T71036 (DTS rf port measurements)	20 Pages
T71040 (Radiated measurements with Ethertronics antenna, AC conducted emissions)	28 Pages
T71831 (Radiated measurements with Universe antenna)	13 Pages

Elliott EMC Test Data Job Number: J70979 Client: Intel Model: 512AN_MMW, 512BG_MMW T-Log Number: T71036 Account Manager: Dean Eriksen Contact: Robert Paxman Emissions Standard(s): FCC 15.247 / RSS -210 RF Port Class: DTS Immunity Standard(s): -Environment: -**EMC Test Data - RF Port DTS Measurements** For The Intel Model 512AN_MMW, 512BG_MMW Date of Last Test: 4/14/2008

EMC Test Data

Client: Intel

Job Number: J70979

Model: 512AN_MMW, 512BG_MMW

2437, Chain A

2462, Chain A

17.0

13.3

49.8

21.4

T-Log Number: T71036

Account Manager: Dean Eriksen

0.104

0.045

17.0

14.0

50.1

25.1

20.2

16.5

Pass

Pass

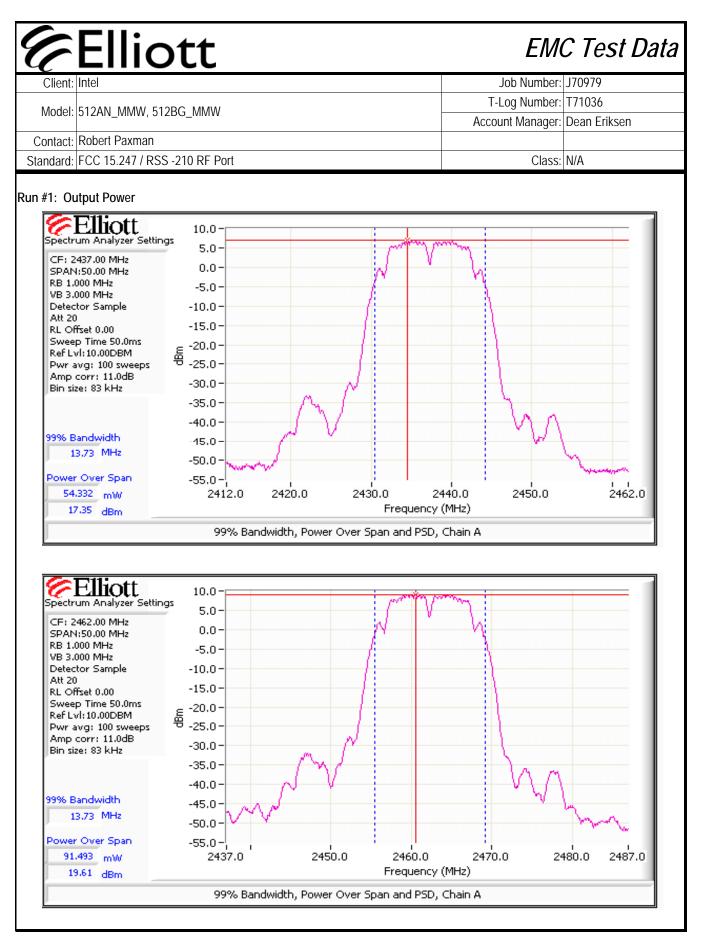
RSS 210 and FCC 15.247 Power Measurement Summary

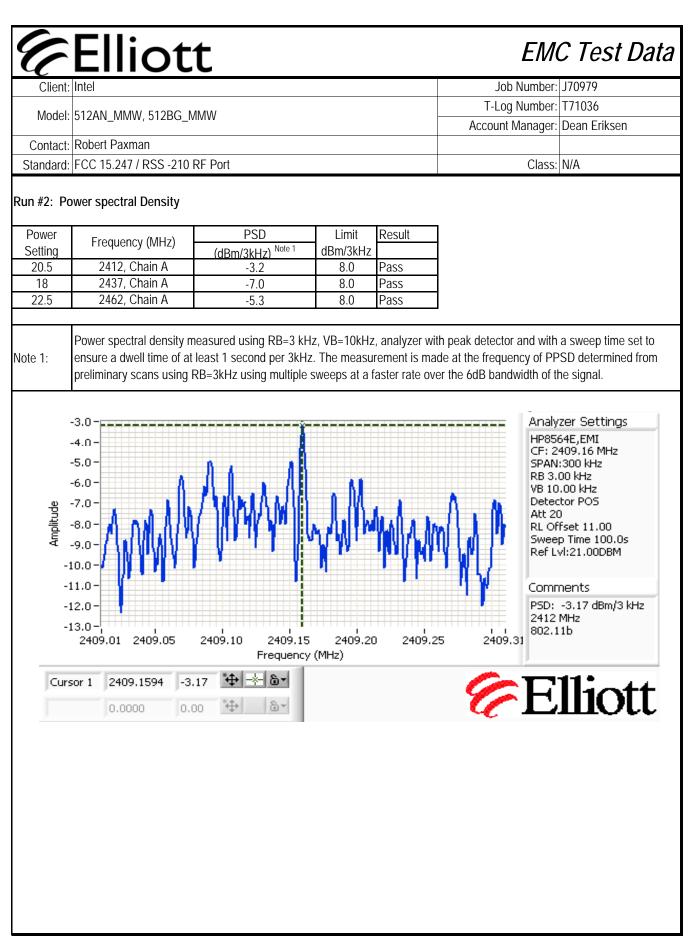
The table below compares the measured output power (measured using the UNII test method) with the power measured using an average power meter and is for reference purposes.

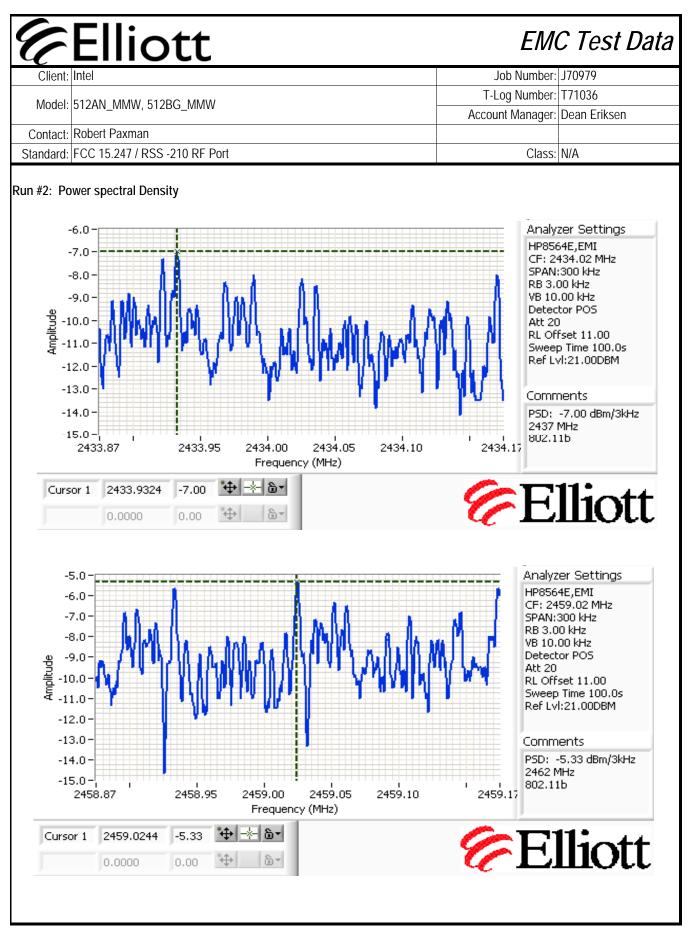
802.11b

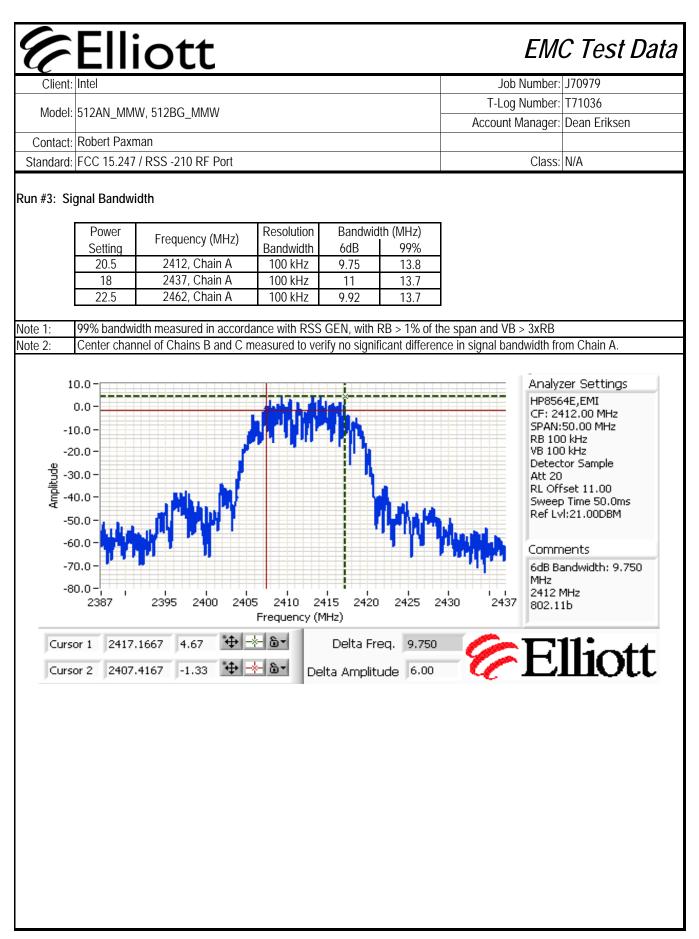
23

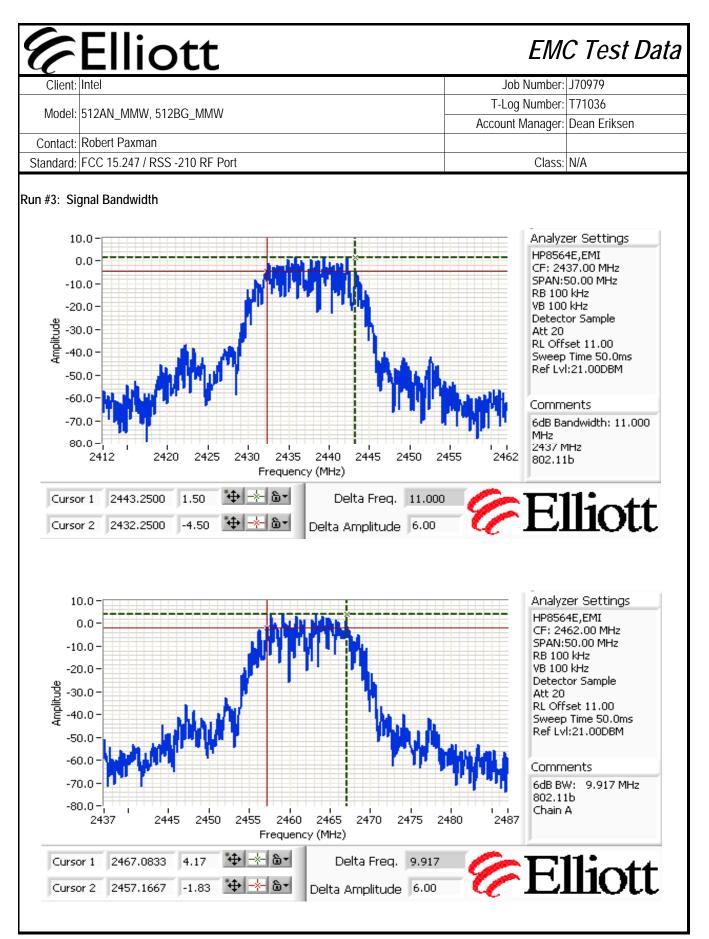
20.5

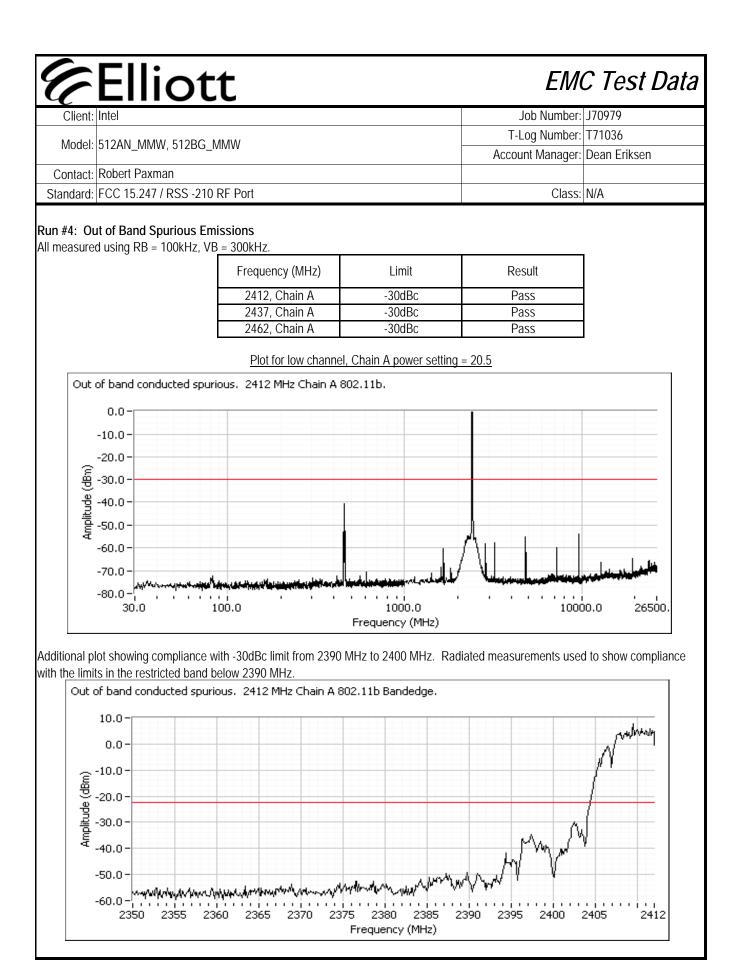

002.110									
Power	Frequency (MHz)	Output Power		Antenna Result	EIRP	Note 2	Average	e Power	
Setting ²	Frequency (MITZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20.5	2412, Chain A	19.6	91.2	3.2	Pass	22.8	0.191	19.1	81.3
18	2437, Chain A	17.4	55.0	3.2	Pass	20.6	0.115	16.8	47.9
22.5	2462, Chain A	19.6	91.2	3.2	Pass	22.8	0.191	19.5	89.1
802.11g									
Power		Output	Output Power		Antenna		Note 2	Average	e Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20	2412, Chain A	14.1	25.7	3.2	Pass	17.3	0.054	14.5	28.2

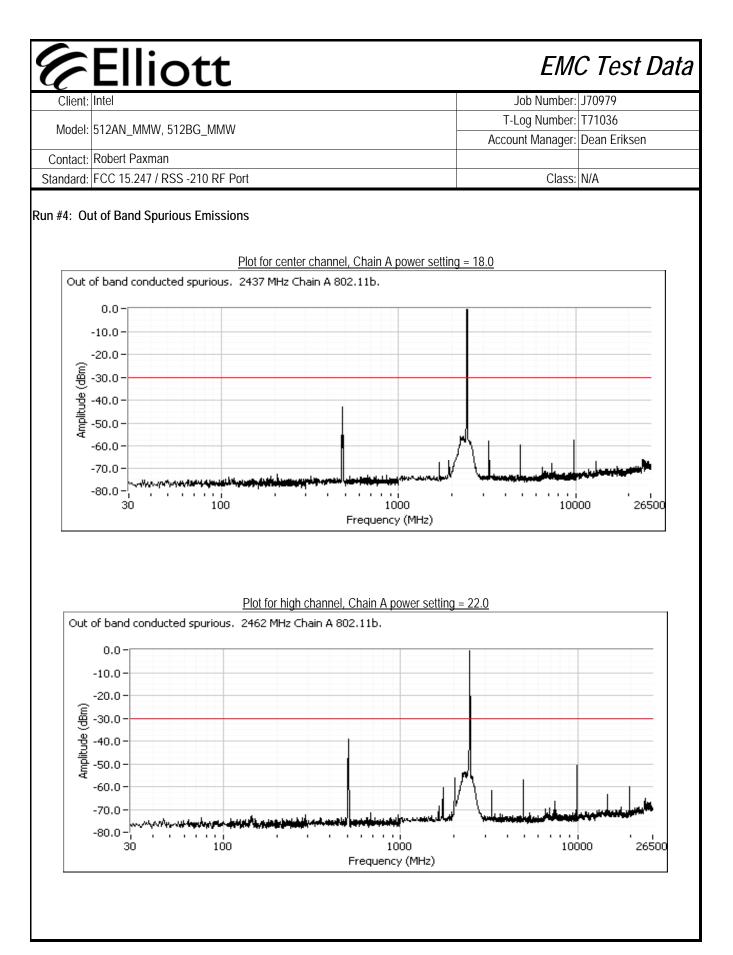

3.2

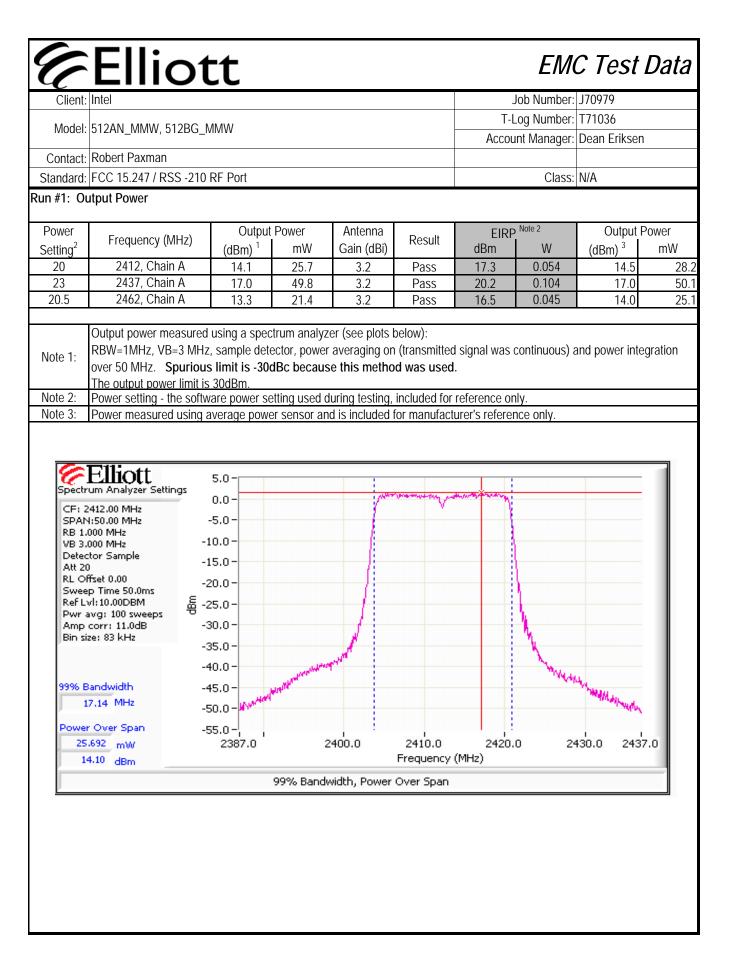

3.2

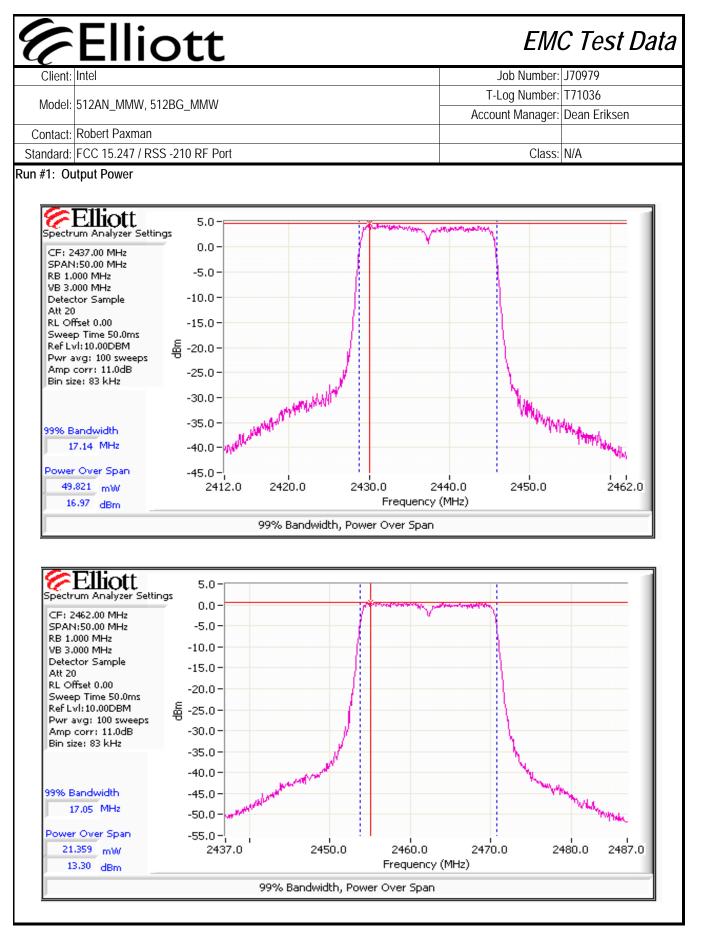

	ott			EMC T	est
Client: Intel			J	ob Number: J7097	9
Model: 512AN_MMW	/ 512BG_MMW		T-Lo	og Number: T7103	36
			Accour	nt Manager: Dean	Erikse
Contact: Robert Paxm					
Standard: FCC 15.247 /	RSS-210 RF Port			Class: N/A	
RSS 2 ²	IO and FCC 15.247 (DT Power, PSD, Bandwid				nts
Test Specific Details	5				
Objective: 1	The objective of this test session is to pe pecification listed above.	rform final qualifica	tion testing of the	e EUT with respect	i to the
Date of Test: 4	//11/2008	Config. Use			
Test Engineer: J	ohn Caizzi & Joseph Cadigal	Config Chan	5		
Test Engineer: J Test Location: F General Test Config	ohn Caizzi & Joseph Cadigal TEMC2 uration	EUT Volta	ge:		
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain.	ohn Caizzi & Joseph Cadigal TEMC2 uration o the spectrum analyzer or power meter	EUT Volta	ge:	urements were ma	ide or
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be	ohn Caizzi & Joseph Cadigal TEMC2 o the spectrum analyzer or power meter een corrected to allow for the external at	EUT Volta	ge:	urements were ma	ide on
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be	ohn Caizzi & Joseph Cadigal TEMC2 o the spectrum analyzer or power meter een corrected to allow for the external at Temperature:	EUT Voltage via a suitable attent tenuators used. 25 °C	ge:	urements were ma	ide on
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain.	ohn Caizzi & Joseph Cadigal TEMC2 o the spectrum analyzer or power meter een corrected to allow for the external at	EUT Volta	ge:	urements were ma	ıde on
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be Ambient Conditions	Iohn Caizzi & Joseph Cadigal TEMC2 uration o the spectrum analyzer or power meter een corrected to allow for the external at : Temperature: Rel. Humidity:	EUT Voltage via a suitable attent tenuators used. 25 °C	ge:	urements were ma	ıde on
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain.	Iohn Caizzi & Joseph Cadigal TEMC2 uration o the spectrum analyzer or power meter een corrected to allow for the external at : Temperature: Rel. Humidity:	EUT Voltage via a suitable attent tenuators used. 25 °C	ge:	urements were ma	
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be Ambient Conditions Summary of Results	ohn Caizzi & Joseph Cadigal TEMC2 uration o the spectrum analyzer or power meter een corrected to allow for the external at : Temperature: Rel. Humidity:	EUT Voltage via a suitable attent tenuators used. 25 °C 30 %	ge: nuator. All meas	Result / Margi 19.6 dBm	n
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be Ambient Conditions Summary of Results Run #	Test Performed	EUT Voltage via a suitable attent tenuators used. 25 °C 30 % Limit	ge: nuator. All meas Pass / Fail	Result / Margi 19.6 dBm -3.2 dBm/3kHz /	n
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be Ambient Conditions Summary of Results Run # 1	Test Performed Output Power	EUT Voltage via a suitable attent tenuators used. 25 °C 30 % Limit 15.247(b)	ge: nuator. All meas Pass / Fail Pass	Result / Margi 19.6 dBm	n
Test Engineer: J Test Location: F General Test Config The EUT was connected t chain. All measurements have be Ambient Conditions Summary of Results Run # 1 2	In the spectrum analyzer or power meter Image: Stress of the spectrum analyzer or power Image: Stre	EUT Voltage via a suitable attent tenuators used. 25 °C 30 % Limit 15.247(b) 15.247(d)	ge: nuator. All meas Pass / Fail Pass Pass	Result / Margi 19.6 dBm -3.2 dBm/3kHz / dB	n

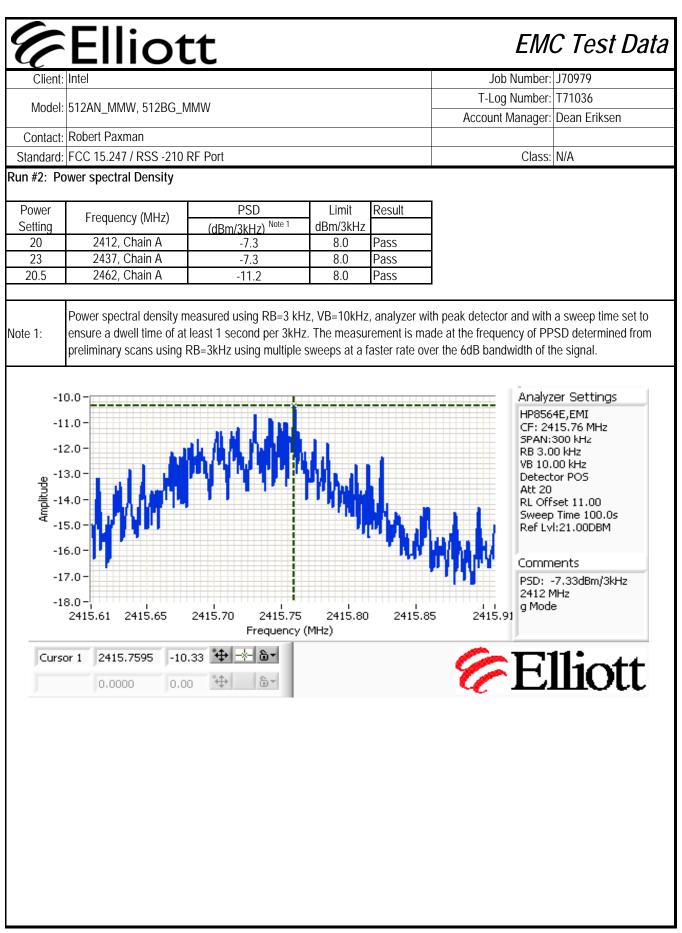

Client:	Ellic		· · · · · ·				J	ob Number:	J70979	
Model							T-L	og Number:	T71036	
	512AN_MMW, 512BG_MMW						Accou	nt Manager:	Dean Eriksen	
Contact:	Robert Paxman									
Standard:	FCC 15.247 / RSS	CC 15.247 / RSS -210 RF Port						Class:	N/A	
ւո #1։ Օւ	utput Power									
Power	Frequency (MF	(T	Jutput	Power	Antenna	Result	EIRP	Note 2	Output Po	ower
Setting ²		(dBn	n) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20.5	2412, Chain /		19.6	91.2	3.2	Pass	22.8	0.191	19.1	81
18 22 F	2437, Chain / 2462, Chain /		17.4	55.0	3.2	Pass	20.6	0.115	16.8	47
22.5		1	19.6	91.2	3.2	Pass	22.8	0.191	19.5	89
C	Power measured u	10.0-				and the owned	0 ⁷⁰⁰ 00-			
Spectr	rum Analyzer Setting	³⁵ 5.0-				(""I"V	""			
	2412.00 MHz 4:50.00 MHz	0.0-			1	V				
	000 MHz 000 MHz	-5.0-			- /					
	tor Sample	-10.0-								
RL O	ffset 0.00	-15.0-								
	:p Time 50.0ms vl: 10.00DBM	을 -20.0- 원 -25.0-					1			
	avg: 100 sweeps corr: 11.0dB	20.0			A					
	ze: 83 kHz	-30.0-		A	1"			η		
		-35.0-			٦/			MA		
99% F	Bandwidth	-40.0-		N	Y			5	1	
_	3andwidth 3.81 MHz	-40.0 - -45.0 -	w	\mathcal{A}	V			Ŵ	hy	
1	3.81 MHz	-40.0 - -45.0 - -50.0 -	m		Y			~	have	L
1 Power		-40.0 - -45.0 -	,.o '	2	400.0	2410.0	2420,1	0 2	430.0 2437.	.0
Power 90	3.81 MHz r Over Span	-40.0 - -45.0 - -50.0 - -55.0 -	~~ 7.0 '	2	400.0	2410.0 Frequency		₩ 0 2	430.0 2437	.0

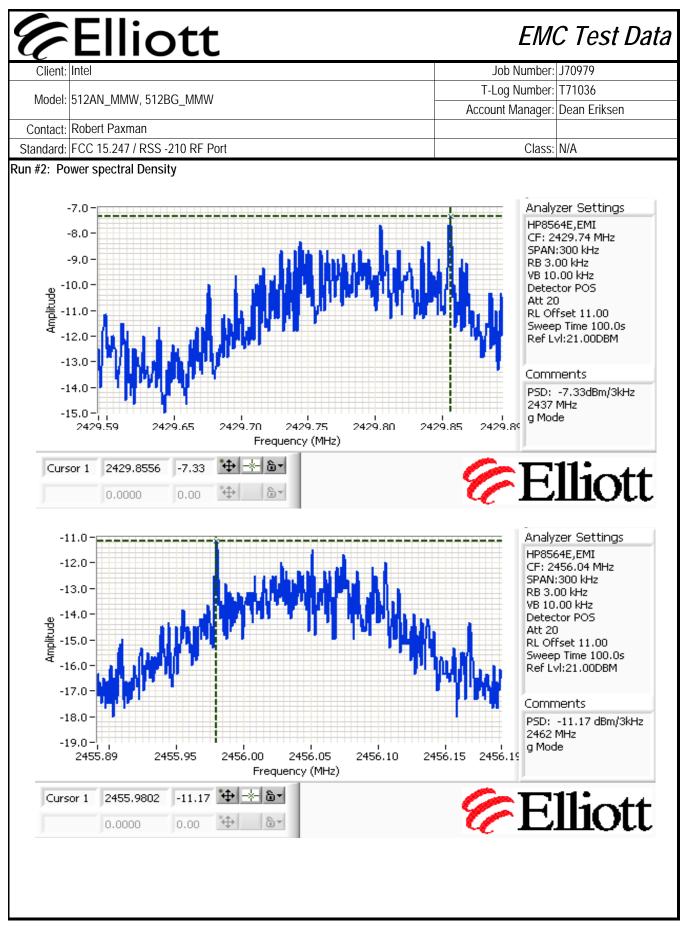


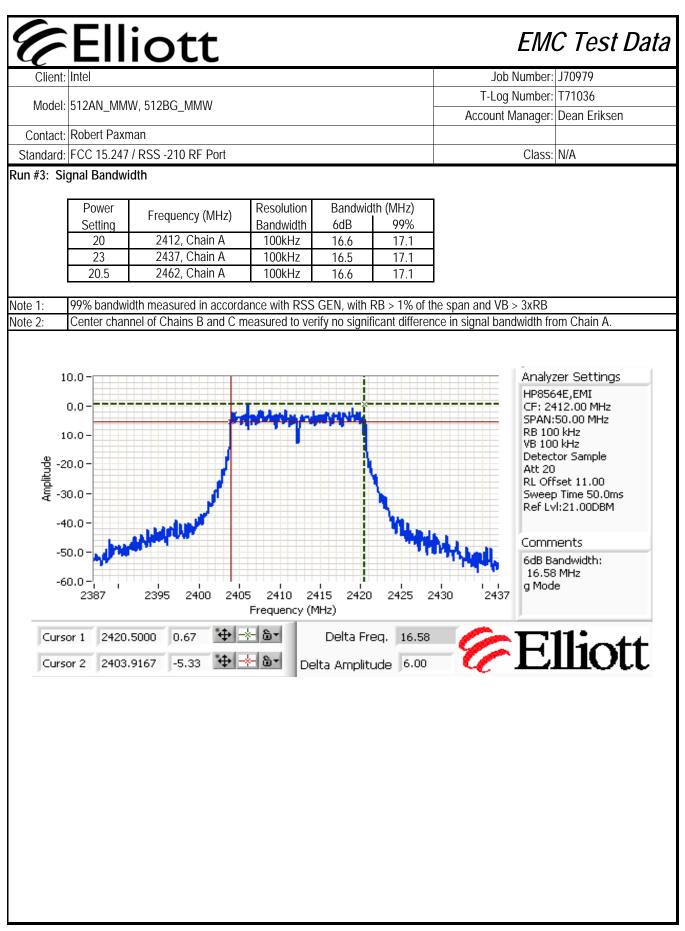


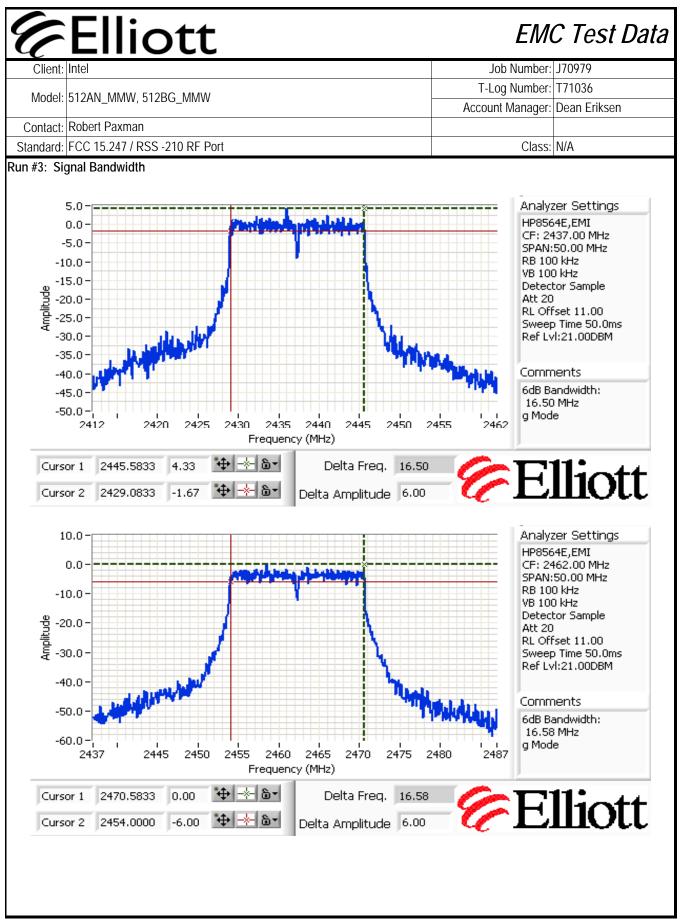


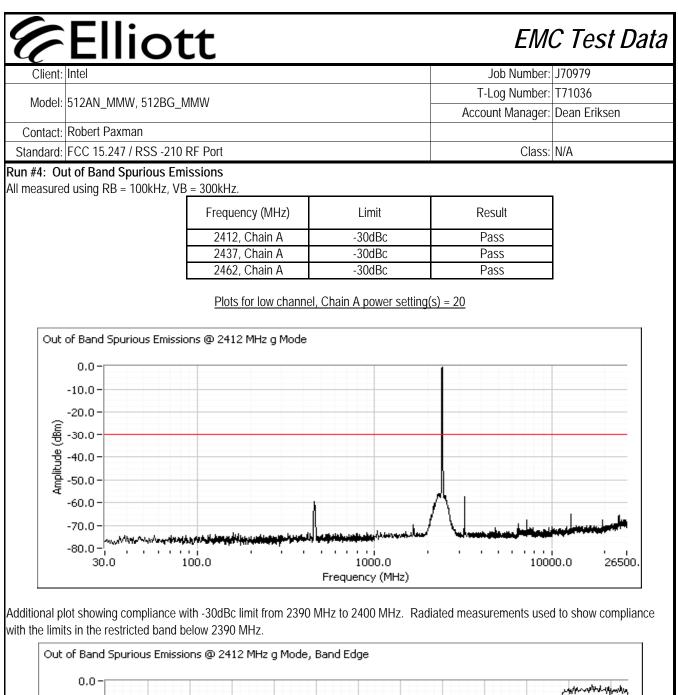


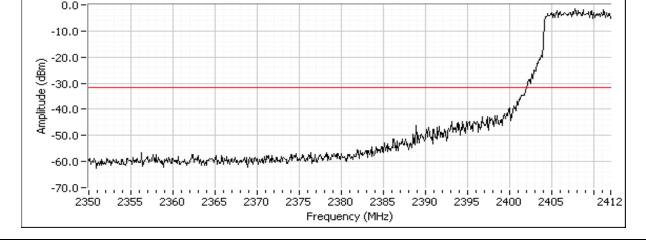


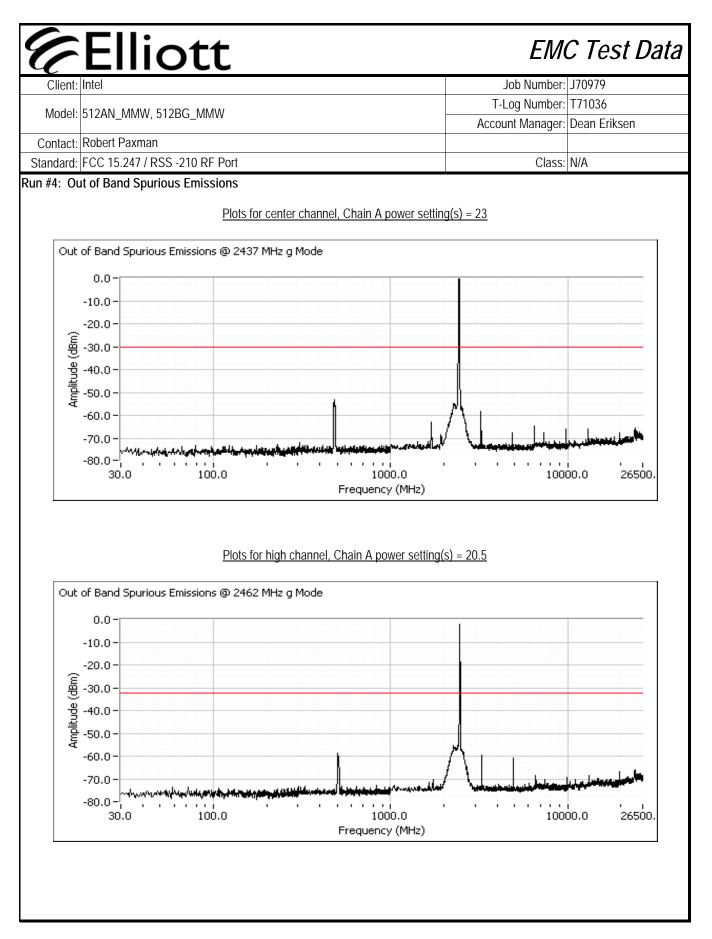


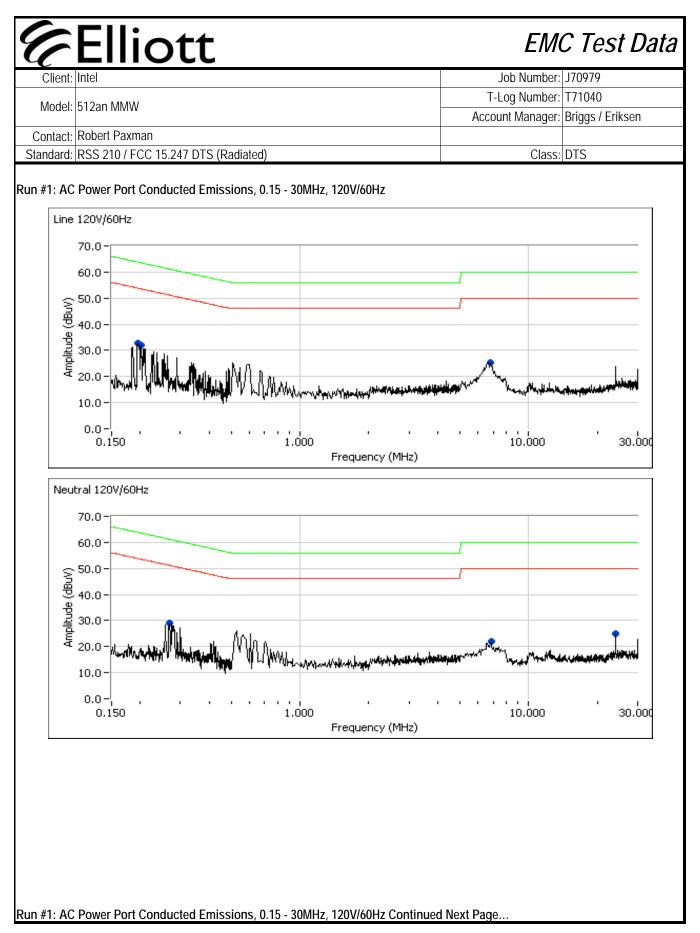

Client: Intel				Job Number:	J70979
				Log Number:	
Model: 512AN_MM	1W, 512BG_MMW			Int Manager:	
Contact: Robert Pax	man				
Standard: FCC 15.24	7 / RSS -210 RF Port			Class:	N/A
RSS 2	210 and FCC 15.247 (D	TS) Antenn	a Port M	easure	ments
	Power, PSD, Bandwid	Ith and Spur	ious - 802.	.11g	
Test Specific Detai	ils				
Objective	The objective of this test session is to per specification listed above.	erform final qualifica	ition testing of th	ne EUT with i	respect to th
Date of Test Test Engineer Test Location	Suhaila Khushzad & John Caizzi	Config. Us Config Chan EUT Volta		om Host Sys	tem
chain. All measurements have Ambient Condition	been corrected to allow for the external a IS: Temperature:	ttenuators used. 21 °C			
All measurements have					
All measurements have Ambient Condition	Temperature: Rel. Humidity:	21 °C			
All measurements have Ambient Condition	Temperature: Rel. Humidity:	21 °C	Pass / Fail	Result	/ Margin
All measurements have Ambient Condition Summary of Resul Run # 1	rs: Temperature: Rel. Humidity: ts Test Performed Output Power	21 °C 39 % Limit 15.247(b)	Pass / Fail Pass	17dBm(49.8mW)
All measurements have Ambient Condition Summary of Resul Run # 1 2	ts Temperature: Rel. Humidity: ts Test Performed Output Power Power spectral Density (PSD)	21 °C 39 % Limit 15.247(b) 15.247(d)	Pass Pass	17dBm(- -7.3 dB	49.8mW) m/3kHz
All measurements have Ambient Condition Summary of Resul Run # 1 2 3	ts Temperature: Rel. Humidity: ts Test Performed Output Power Power spectral Density (PSD) 6dB Bandwidth	21 °C 39 % Limit 15.247(b) 15.247(d) 15.247(a)	Pass	17dBm(~ -7.3 dB 16.6	49.8mW) m/3kHz MHz
All measurements have Ambient Condition Summary of Resul Run # 1 2	ts Temperature: Rel. Humidity: ts Test Performed Output Power Power spectral Density (PSD)	21 °C 39 % Limit 15.247(b) 15.247(d)	Pass Pass	17dBm(- -7.3 dB 16.6 17.1	49.8mW) m/3kHz











<i>C</i> Elliott	E	MC Test Data
Client: Intel	Job Number	
Model: 512an MMW	T-Log Number Account Manager	
Contact: Robert Paxman		-
Emissions Standard(s): RSS 210 / FCC 15.247 DTS (Radiated) Immunity Standard(s): -	Class Environment	
initianty standard(s).	Linnonnen	
EMC Test Data - DTS Radi		ons
and AC Conducted E	Emissions	
For The		
Intel		
Model		
512an MMW		
Date of Last Test: 4/21/2	008	

Job Number: J70979 T-Log Number: T71040 Account Manager: Briggs / Eri Class: DTS MISSIONS ity, Semi-Anechoic Chamber)
Account Manager: Briggs / Eri Class: DTS missions
Class: DTS
missions
•
inal qualification testing of the EUT with respect to th
Config. Used: 1 Config Change: None st Unit Voltage 120V/60Hz
20 °C 37 %
Limit Result Margin
5.109 / FCC Pass 21.4dBµV @ 9 / RSS 210 24.000MHz (-28.6dB)

			-			1	lob Number	170070
Client:	Intel						Job Number:	
Model.	512an MMV	V					T-Log Number:	
		•					Account Manager:	Briggs / Eriksen
Contact:	Robert Paxi	man						
Standard:	RSS 210 / F	- CC 15.247 E	TS (Radiate	ed)			Class:	DTS
Preliminary	/ peak readi	ngs capture	d during pre	e-scan (peak	readings v	s. average lim	it)	
Frequency	Level	AC	FCC 15.1	09/15.209	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.195	32.9	Line 1	53.8	-20.9	Peak			
0.201	31.9	Line 1	53.5	-21.6	Peak			
0.269	29.0	Neutral	51.2	-22.2	Peak			
6.801	25.5	Line 1	50.0	-24.5	Peak			
24.000	24.9	Neutral	50.0	-25.1	Peak			
6.826	21.9	Neutral	50.0	-28.1	Peak			
		verage read	<u> </u>			1.		
Frequency	Level	AC		09/15.209	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
24.000	21.4	Neutral	50.0	-28.6	AVG			
6.801	16.7	Line 1	50.0	-33.3	AVG			
24.000	23.4	Neutral	60.0	-36.6	QP			
0.195	26.0	Line 1	63.8	-37.8	QP			
6.801	22.2	Line 1	60.0	-37.8	QP			
0.201	25.4	Line 1	63.6	-38.2	QP			
6.826	10.5	Neutral	50.0	-39.5	AVG			
0.269	21.0	Neutral	61.1	-40.1	QP			
0.269	10.5	Neutral	51.1	-40.6	AVG			
0.195	10.9	Line 1	53.8	-42.9	AVG			
0.201	10.7	Line 1	53.6	-42.9	AVG			
6.826	15.4	Neutral	60.0	-44.6	QP			

EMC Test Data

Client:	Intel	Job Number:	J70979
Madal	512an MMW	T-Log Number:	T71040
MUUEI.		Account Manager:	Briggs / Eriksen
Contact:	Robert Paxman		
Standard:	RSS 210 / FCC 15.247 DTS (Radiated)	Class:	DTS

Transmitter/Receiver Radiated Spurious Emissions, 30 - 1000 MHz Receiver Spurious Emissions, 1 - 18 GHz

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 4/16/2008 Test Engineer: John Caizzi & Ben Jing Test Location: FT#3 Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

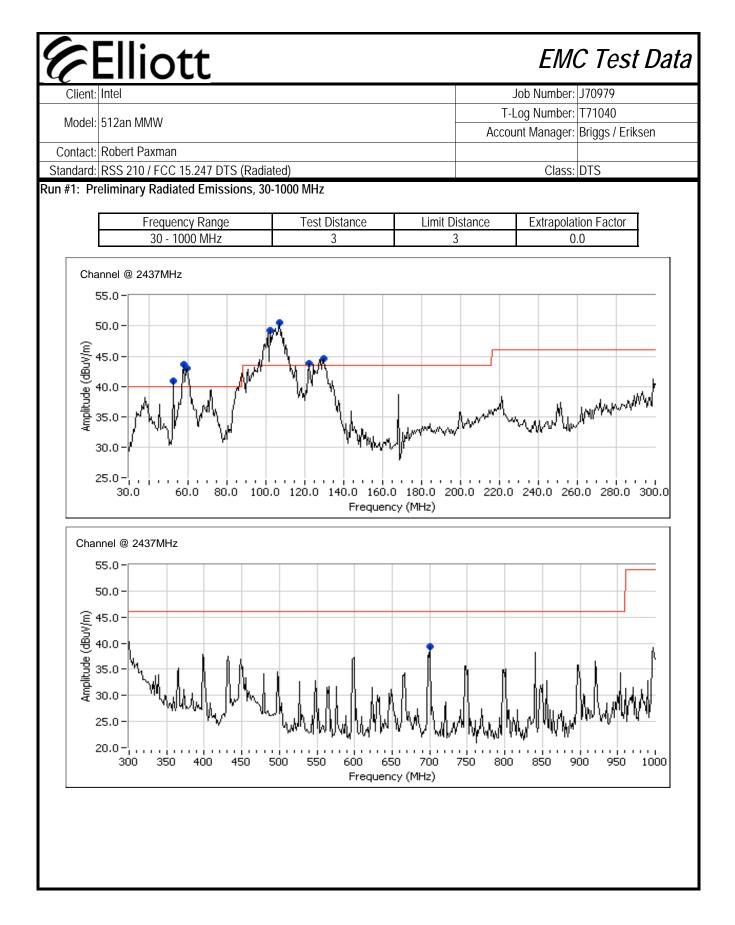
The EUT and all local support equipment were located on the turntable for radiated emissions testing.

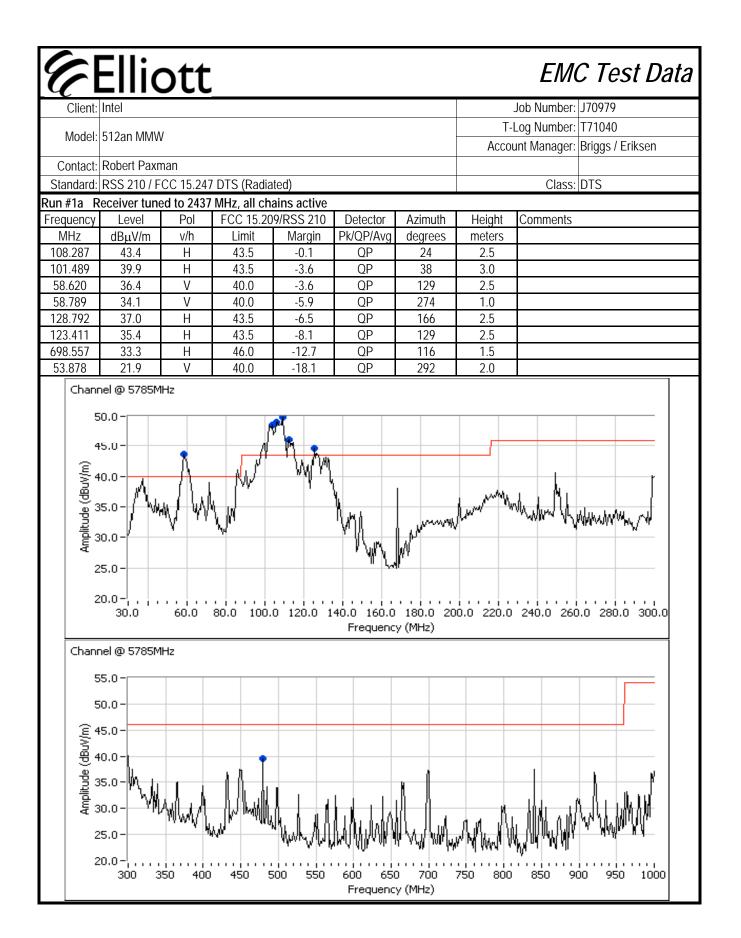
The test distance and extrapolation factor (if applicable) are detailed under each run description.

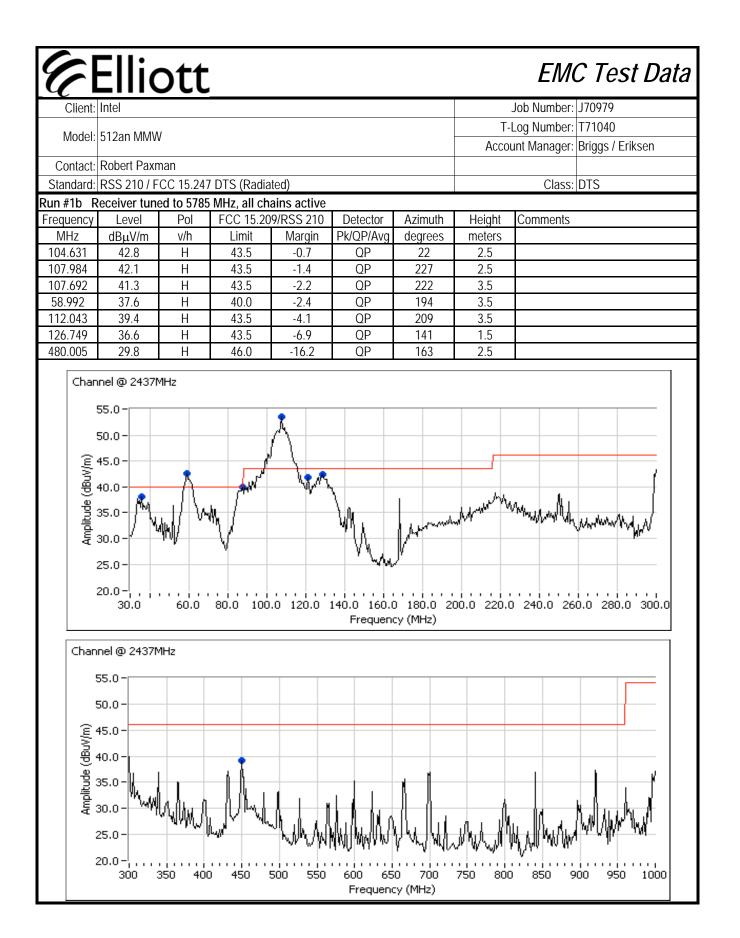
Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	37 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1 Receiver/Transmitter	30 - 1000MHz, Preliminary - Tx/Rx	PSS GEN / ECC 15 107	Pass	43.4dBµV/m @
	Modes	K33 GEN7T CC 13.107	F 833	108.287MHz (-0.1dB)
2	RE, 30 - 1000MHz, Maximized	RSS GEN / FCC 15.107	Pass	43.4dBµV/m @
Z	Emissions	100 GEN71 CC 13.107	r ass	108.287MHz (-0.1dB)
3 - Single Receiver	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	50.1dBµV/m @
chain	Emissions	N35 OEN	F 833	3000.3MHz (-3.9dB)
4 - All Receiver chains	RE, 1000 - 18000 MHz, Maximized	RSS GEN	Pass	50.5dBµV/m @
	Emissions	N35 OLN	га33	3000.3MHz (-3.5dB)


Modifications Made During Testing


No modifications were made to the EUT during testing

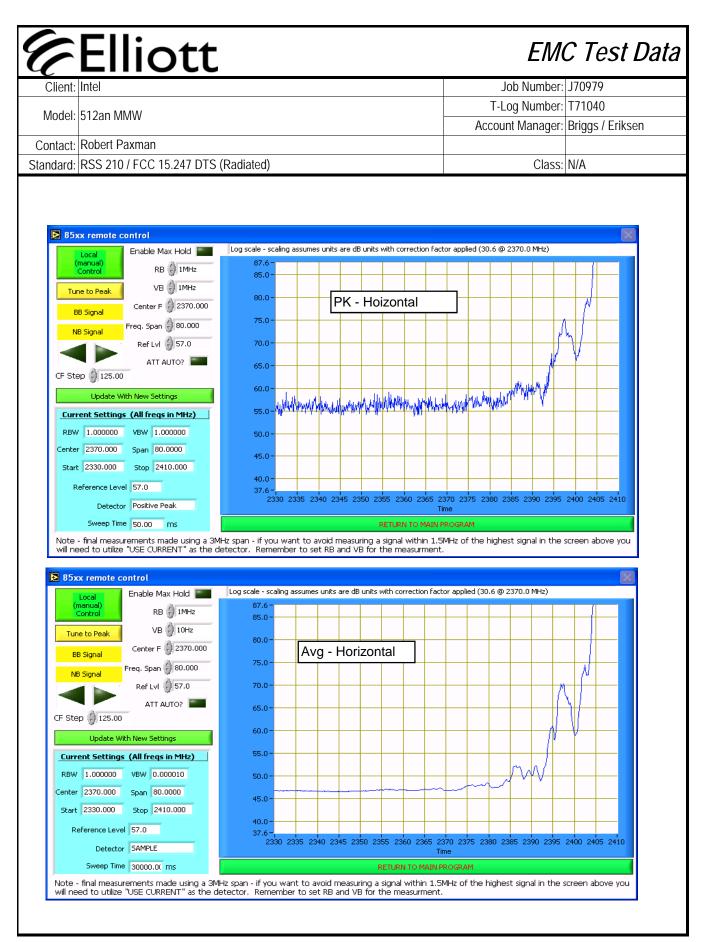
Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Intel								
Madal								Job Number:	J70979
		,					T-	Log Number:	T71040
wouel:	512an MMW	1					Acco	unt Manager:	Briggs / Eriksen
Contact:	Robert Paxr	nan							
			7 DTS (Radia	ted)				Class:	DTS
otandara	1100 21071	00 10.21		louj				010301	
Run #1c T	ransmitter t	uned to 24	437 MHz, 802						
Frequency	Level	Pol	FCC 15.20	9/RSS 210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
107.030	41.7	H	43.5	-1.8	QP	7	3.0		
59.474	31.8	Н	40.0	-8.2	QP	211	3.0		
130.034	35.2	V	43.5	-8.3	QP	120	1.5		
87.308	29.3	Н	40.0	-10.7	QP	16	2.5		
34.981	29.3	V	40.0	-10.7	QP	38	1.0		
449.923	33.2	Н	46.0	-12.8	QP	205	1.0		
122.018	29.3	V	43.5	-14.2	QP	268	1.0		
	modulation)			ons beow 1G	Hz independe	ent of the tra	nsmitter's o	perating frequ	iency and mode (tx, Rx
Note 1: Run #2: Ma	modulation) aximized Re Fre	adings Fro quency Ra	om Run #1 inge	Test D	istance	Limit D	istance	Extrapolat	ion Factor
	modulation) aximized Re Fre	adings Fr	om Run #1 inge	Test D		Limit D		Extrapolat	
Run #2: Ma	modulation) aximized Re Fre	adings Fro	om Run #1 Inge Hz	Test D	istance	Limit D	istance	Extrapolat	ion Factor
Run #2: Ma	modulation) aximized Re Fre 30	adings Fr quency Ra) - 1000 M	om Run #1 Inge Hz	Test D	istance	Limit D	istance	Extrapolat	ion Factor
Run #2: Ma Frequency	modulation) Eximized Re Fre 30 Level	adings Fra quency Ra) - 1000 M Pol	om Run #1 inge Hz FCC 15.20	Test D 9/RSS 210	istance 3 Detector	Limit D	istance 3 Height	Extrapolat	ion Factor
Run #2: Ma Frequency MHz 58.620 58.789	modulation) eximized Re Fre 30 Level dBµV/m 36.4 34.1	adings Fro quency Ra) - 1000 M Pol V/h V V	om Run #1 inge Hz FCC 15.20 Limit 40.0 40.0	Test D 9/RSS 210 Margin -3.6 -5.9	istance 3 Detector Pk/QP/Avg QP QP	Limit D Azimuth degrees 129 274	istance 3 Height meters 2.5 1.0	Extrapolat	ion Factor
Run #2: Ma Frequency MHz 58.620 58.789 101.489	modulation) eximized Rea Fre 30 Level dBµV/m 36.4 34.1 39.9	adings Fro quency Ra 0 - 1000 M Pol V/h V V V H	om Run #1 inge Hz FCC 15.20 Limit 40.0 40.0 43.5	Test D 9/RSS 210 Margin -3.6 -5.9 -3.6	istance 3 Detector Pk/QP/Avg QP QP QP	Limit D Azimuth degrees 129 274 38	Height Meters 2.5 1.0 3.0	Extrapolat	ion Factor
Run #2: Ma Frequency MHz 58.620 58.789 101.489 108.287	modulation) aximized Rea Fre 30 Level dBμV/m 36.4 34.1 39.9 43.4	adings Fro quency Ra) - 1000 M Pol V/h V V V H H H	om Run #1 ange Hz FCC 15.20 Limit 40.0 40.0 43.5 43.5	Test D 9/RSS 210 Margin -3.6 -5.9 -3.6 -0.1	istance 3 Detector Pk/QP/Avg QP QP QP QP QP	Limit D Azimuth degrees 129 274 38 24	Height Meters 2.5 1.0 3.0 2.5	Extrapolat	ion Factor
Run #2: Ma Frequency MHz 58.620 58.789 101.489	modulation) eximized Rea Fre 30 Level dBµV/m 36.4 34.1 39.9	adings Fro quency Ra 0 - 1000 M Pol V/h V V V H	om Run #1 inge Hz FCC 15.20 Limit 40.0 40.0 43.5	Test D 9/RSS 210 Margin -3.6 -5.9 -3.6	istance 3 Detector Pk/QP/Avg QP QP QP	Limit D Azimuth degrees 129 274 38	Height Meters 2.5 1.0 3.0	Extrapolat	ion Factor

Client:								Job Number: J70979	
Model	512an MMW							Log Number: T71040	
							Account Manager: Briggs / Eriksen		
	Robert Paxm								
	RSS 210 / F(<i>i</i>				Class: DTS	
					eceiver Activ	e			
requency	uned to 2437 Level	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
047.520	27.6	V	54.0	-26.4	AVG	205	1.3		
991.590	29.8	V	54.0	-24.2	AVG	212	1.3		
490.190	33.5	V	54.0	-20.5	AVG	179	1.0		
000.310	50.1	V	54.0	-3.9	AVG	202	1.0		
000.750	43.7	V	54.0	-10.3	AVG	246	1.6		
566.920	37.8	Н	54.0	-16.2	AVG	318	1.0		
047.520	44.6	V	74.0	-29.4	PK	205	1.3		
991.590	45.3	V	74.0	-28.7	PK	212	1.3		
490.190	50.3	V	74.0	-23.7	PK	179	1.0		
000.310	54.5	V	74.0	-19.5	PK	202	1.0		
000.750 566.920	49.6 49.2	V H	74.0 74.0	-24.4 -24.8	PK PK	246 318	1.6 1.0		
80.(70.((m/Ange epiting) 950.(40.() -) -) -) -	Juluil.	weekont	and for the second of	. In she prove that we had	Lamber	www.	m the showing of	
جة 30.(3000	4000	5000 6	000 7		8000 9000 10000	

Client:	Ellic							Job Number:	J70979
Model	512an MMW							Log Number:	
							Acco	unt Manager:	Briggs / Eriksen
	Robert Paxn							0	DTO
	RSS 210 / F			,	aluara Aatiua			Class:	DIS
	uned to 2437				eivers Active				
requency	Level	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
056.082	29.2	Н	54.0	-24.8	AVG	297	1.0		
000.330	50.5	V	54.0	-3.5	AVG	270	1.0		
873.980	44.1	V	54.0	-9.9	AVG	153	1.5		
000.700	48.6	V	54.0	-5.4	AVG	263	1.5		
498.670	45.8	V V	54.0	-8.2	AVG AVG	193 177	1.0		
2997.200	42.6 38.1	 H	54.0 74.0	-11.4 -35.9	PK	297	1.0 1.0		
056.082	53.8	V	74.0	-35.9	PK PK	297 270	1.0		
()()()		v	74.0	20.2					
			74.0	-26.2	PK	153	1.5		
3000.330 4873.980 5000.700	47.8 52.9	V V	74.0 74.0	-26.2 -21.1	PK PK	153 263	1.5 1.5		
1873.980 5000.700	47.8	V							
1873.980 5000.700 5498.670 2997.200	47.8 52.9 49.8 47.7	V V V V z, the limit	74.0 74.0 74.0 is for an av	-21.1 -24.2 -26.3 erage measu	PK PK PK	263 193 177	1.5 1.0 1.0	f any emissio	n above 1 GHz, can
4873.980 5000.700 5498.670 2997.200 ote 1: 80. 70. (III) 80. 70. 100 900 900 900 100 100 100 100	47.8 52.9 49.8 47.7 Above 1 GH exceed the <i>a</i>	V V V V z, the limit	74.0 74.0 74.0 is for an av	-21.1 -24.2 -26.3 erage measu	PK PK PK	263 193 177	1.5 1.0 1.0	of any emissio	n above 1 GHz, can


6			<u> </u>			_	C Test Data
C		iot	L			LIVI	
Client:						Job Number:	J70979
Model	512an MMW					T-Log Number:	T71040
						Account Manager:	Briggs / Eriksen
	Robert Paxn						
Standard:	RSS 210 / F	CC 15.247 D	OTS (Radiate	d)		Class:	N/A
Test Spec	F cific Detail	Radiated Is The objectiv	l Spuriou	us Emiss	247 (DTS, 2400 sions - Band Edg perform final qualification Config. Used: Config Change: Host Unit Voltage	ge 802.11b Mode the testing of the EUT with a 1 None	e
The EUT an equipment w	vas located a	ipport equipm approximately	y 30 meters fr	rom the EUT	urntable for radiated spuri with all I/O connections re located 3 meters from the	unning on top of the grou	
Ambient	Condition	S:	Т	emperature:	19 °C		
				el. Humidity:			
Summary	of Result	iS					
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11b Chain A	1 2412MHz	GC = 20.5	18.8 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	51.6 dBuV/m @ 2389.2 MHz (-2.4dB)
1b	802.11b Chain A	11 2462MHz	GC = 22.5	19.6 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	53.0 dBuV/m @ 2483.6 MHz (-1.0dB)
Modificat	ions Made	• Durina T	estina				

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Ľ		ΙΟι	L						
Client:								Job Number:	J70979
Madal		J					T-	Log Number:	T71040
Wodel:	512an MMW	V						•	Briggs / Eriksen
Contact:	Robert Paxr	nan							
Standard:	RSS 210 / F	CC 15.247 [DTS (Radiate	d)				Class:	N/A
un #1: Ra	diated Spur	ious Emissi	ons, Band E	dges. Oper	ating Mode:	802.11b - C	hain A		
	-			5 1	5				
	Pate of Test: est Engineer:								
	est Location:		or # 1						
			μπ 1						
un #1a: L	ow Channel	@ 2412 MH	z						
	ower Setting:			rage power:	18.8 dBm	(for referenc	e purposes)		
undament	al Signal Fie	eld Strength			es measured				in 100kHz
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2410.590	100.7	V	-	-	AVG	161	1.0	RB = 1MHz	
2410.590	103.7	V	-	-	PK	161	1.0	RB = VB =	
2411.490	109.8	Н	-	-	AVG	248	1.0	RB = 1MHz	
2411.490	112.8	Н	-	-	PK	248	1.0	$RB = VB = \hat{1}$	1MHz
	Signal Field		15 200	/ 15.247	Dotostor	Azipauth	l lo¦aht	Commont	
requency	Level	Pol		r	Detector	Azimuth	Height	Comments	
MHz 2389.450	dBµV/m 62.8	v/h H	Limit 74.0	Margin -11.2	Pk/QP/Avg PK	degrees 249	meters 1.0	GC = 20.5	, AP = 18.8
2389.430	51.6	H	54.0	-11.2	AVG	249	1.0	GC = 20.5 GC = 20.5	AP = 10.0
2307.220			reference or		AVG	247	1.0	GC - 20.3	, AF – 10.0
2389.450	60.5	H	74.0	-13.5	PK	247	1.0	GC = 17.5	, AP = 16.7
2389.750	48.0	H	54.0	-6.0	AVG	247	1.0	GC = 17.5	, AP = 16.7
2389.950	61.5	H	74.0	-12.5	PK	244	1.0	GC = 19.5	, AP = 18.3
2389.300	49.4	Н	54.0	-4.6	AVG	249	1.0	GC = 19.5	, AP = 18.3
2389.300	63.1	Н	74.0	-10.9	PK	249	1.0	GC = 21	, AP = 19.4
_007.000	00.1							00 - 21	I I I I I I I I I I

Power Setting: $GC = 22.5$ Average power: 19.6 dBm (for reference purposes) indamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = 1MHz, VB = 10Hz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = NB = 1MHz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz 463.530 63.4 H 74.0 - PK 213 1.0 RC = 22.5 AP = 19 MHz dBµV/m V/h Limit Margin Pk
Model: 512an MMW Account Manager: Briggs / Erikser Contact: Robert Paxman Class: N/A tandard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A n #1b: High Channel @ 2462 MHz Class: N/A Power Setting: GC = 22.5 Average power: 19.6 dBm (for reference purposes) ndamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/OP/Avg degrees meters 63.130 109.0 H - - PK 246 1.0 RB = 1MHz, VB = 10Hz 63.130 109.0 H - - PK 246 1.0 RB = 1MHz, VB = 10Hz 63.130 109.0 H - - PK 213 1.0 RB = 1MHz VB = 10Hz 61.190 106.2 V </td
Account Manager: Briggs / ErikserContact: Robert PaxmanContact: Robert PaxmanClass: N/AClass: N/AClass: N/Aandard: RSS 210 / FCC 15.247 DTS (Radiated)Class: N/AClass: N/Aandard: RSS 210 / FCC 15.247 DTS (Radiated)Class: N/Adamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHzquencyLevel Pol 15.209 / 15.247 Detector Azimuth Height CommentsMHz61.190 103.3 V- AVG 213 1.0 RB = 1MHz, VB = 10Hz61.190 106.2 V- PK 213 1.0 RB = VB = 1MHzMd Edge Signal Field StrengthquencyLevel Pol 15.209 / 15.247 Detector Azimuth Height CommentsMHzd BupV/mv/h- PK 213 1.0 RB = 1MHz, VB = 10HzMd Edge Signal Field Strength- PK 213 1.0 RB = 10HZMHZd BupV/m<
Class: N/A Class: N/A N/A N #1b: High Channel @ 2462 MHz Power Setting: GC = 22.5 Average power: 19.6 dBm (for reference purposes) ndamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees metrs 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = 1MHz VB = 10Hz 461.190 103.3 V - - PK 213 1.0 RB = VB = 10Hz nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz MHz Mageined Strength equency
n #1b: High Channel @ 2462 MHz Power Setting: GC = 22.5 Average power: 19.6 dBm (for reference purposes) ndamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz 461.190 103.3 V - - PK 213 1.0 RB = VB = 1MHz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz addition 106.2 V - - PK 213 1.0 RB = VB = 1MHz md Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h <td< td=""></td<>
Indamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = 1MHz, VB = 10Hz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz and Edge Signal Field Strength requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 483.530
ndamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = 1MHz, VB = 10Hz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = NB = 1MHz and Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H
equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz VB = 10Hz 463.130 103.3 V - - PK 246 1.0 RB = VB = 1MHz VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg d
MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 483.650 53.0 H 54.0 -10.6 PK 245 1.0 GC = 22.5 <t< td=""></t<>
463.130 109.0 H - - AVG 246 1.0 RB = 1MHz, VB = 10Hz 463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz 463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz addege Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.520 60.6 H 74.0 -13
463.130 112.0 H - - PK 246 1.0 RB = VB = 1MHz 461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz and Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 18.5 , AP = 16 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650
461.190 103.3 V - - AVG 213 1.0 RB = 1MHz, VB = 10Hz 461.190 106.2 V - - PK 213 1.0 RB = 1MHz, VB = 10Hz nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 18.5 , AP = 19 Measurements below for reference only Measurements below for reference only 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4
461.190 106.2 V - - PK 213 1.0 RB = VB = 1MHz nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only PK 244 1.0 GC = 18.5 , AP = 16 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
nd Edge Signal Field Strength equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only <
equency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only AVG 245 1.0 GC = 18.5 , AP = 16 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters meters 183.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 183.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only AP = 16 183.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 183.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 183.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only Measurements Delow for reference only MC 244 1.0 GC = 18.5 , AP = 16 483.520 60.6 H 74.0 -13.4 PK 247 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
483.530 63.4 H 74.0 -10.6 PK 245 1.0 GC = 22.5 , AP = 19 483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
483.650 53.0 H 54.0 -1.0 AVG 245 1.0 GC = 22.5 , AP = 19 Measurements below for reference only 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
Measurements below for reference only PK 244 1.0 GC = 18.5 AP = 16 483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
483.520 60.6 H 74.0 -13.4 PK 244 1.0 GC = 18.5 , AP = 16 483.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
183.550 47.3 H 54.0 -6.7 AVG 247 1.0 GC = 18.5 , AP = 16 183.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17
483.650 61.4 H 74.0 -12.6 PK 245 1.0 GC = 20.5 , AP = 17

Elliott EMC Test Data Job Number: J70979 Client: Intel T-Log Number: T71040 Model: 512an MMW Account Manager: Briggs / Eriksen Contact: Robert Paxman Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions, 1 - 26GHz 802.11b Mode Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Date of Test: 03/18/2008 Test Engineer: Ben Jing Config Change: None Test Location: FT Chamber # 4 Host Unit Voltage 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20 °C Rel. Humidity: 39 % Summary of Results Power Measured Run # Mode Channel Test Performed Limit Result / Margin Setting Power FCC Part 15.209 / 802.11b Radiated Emissions. 53.6dBuV/m @ 1 (2412) GC = 20.5 AP = 18.8 1a Chain A 1 - 26 GHz 15.247(c) 3000.3MHz (-24.5dB) 802.11b Radiated Emissions, FCC Part 15.209 / 53.2dBµV/m @ 6 (2437) GC = 18.5 AP = 16.7 1b Chain A 1 - 26 GHz 6498.8MHz (-20.5dB)

Radiated Emissions.

1 - 26 GHz

Modifications Made During Testing

No modifications were made to the EUT during testing

11 (2462)

Deviations From The Standard

802.11b

Chain A

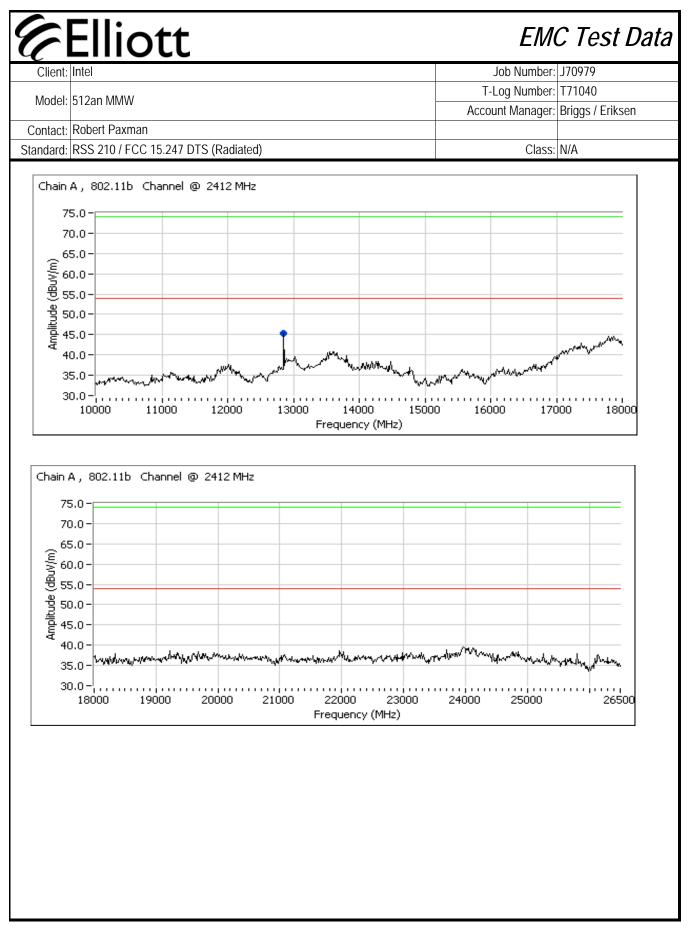
1c

No deviations were made from the requirements of the standard.

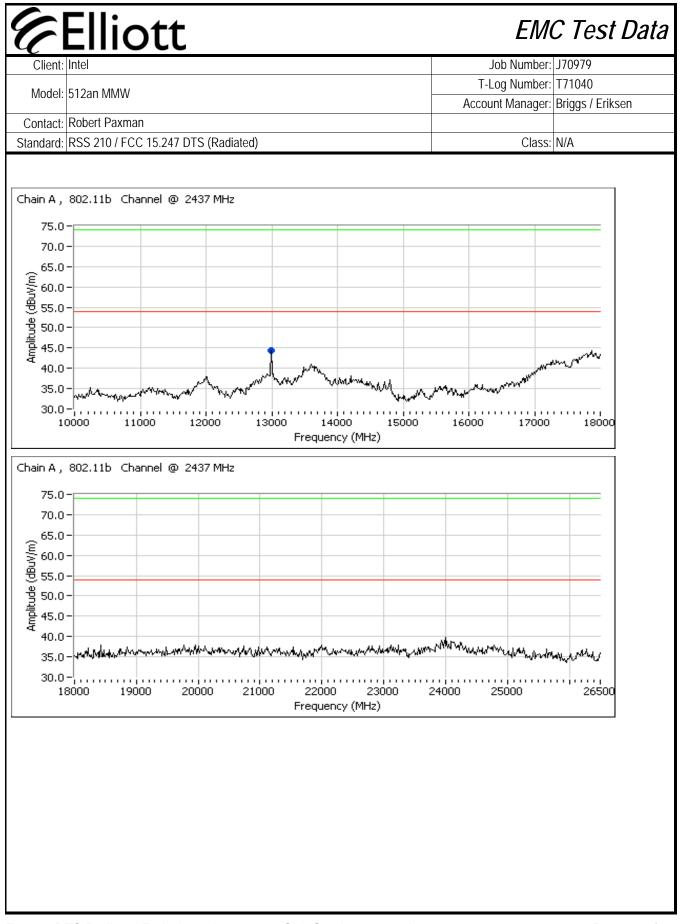
GC = 22.5

AP = 19.6

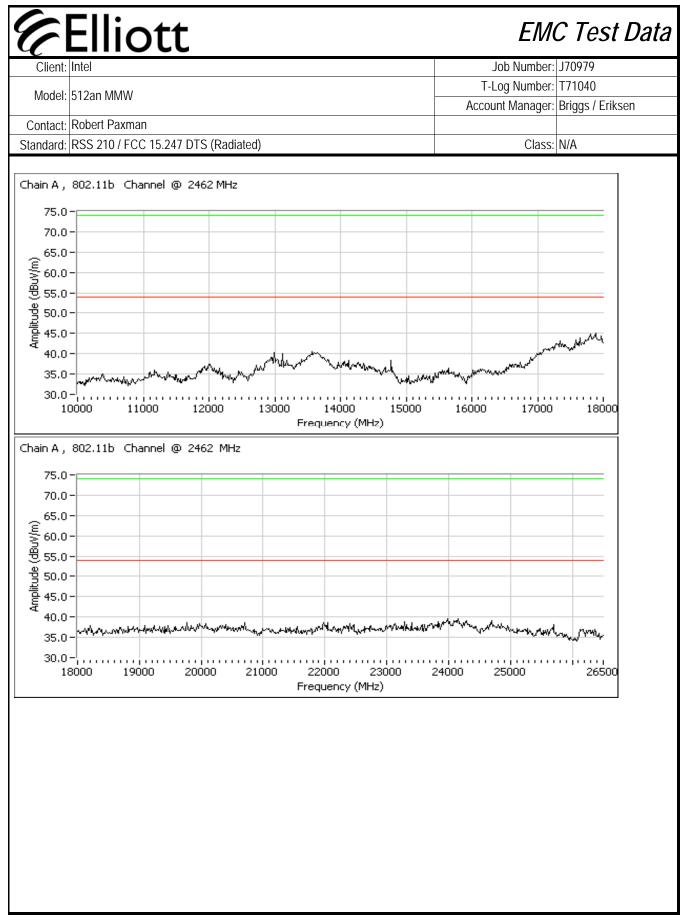
53.0dBµV/m @


3000.4MHz (-23.8dB)

15.247(c)


FCC Part 15.209 /

15.247(c)


Intel								170076
Intel							Job Number:	
512an MMW						T-Log Number		
							unt Manager:	Briggs / Eriksen
Robert Paxm	an							
RSS 210 / FC	C 15.247 E	OTS (Radiate	d)				Class:	N/A
diated Spuri	ous Emissi	ons, 1000 -	26000 MHz.	Operating M	lode: 802.11	b Chain A		
				1 5				
al Signal Fiel	d Strength			es measured	in 1 MHz, ar	nd peak valu	e measured i	n 100kHz
Level	Pol			Detector	Azimuth	Height	Comments	
dBµV/m		Limit	Margin	v	<u> </u>	meters		
		-	-					
108.1	Н	-	-	Pk	245	1.0	RB = VB = 2	I00kHz
undomontal or	mission lour	1@ 2m in 1(100.1				
						Limitic 200		wor massuramant)
	1112210112 00		וטנכט אפוועט.	/0.1	ubµv/III		אסר (סואוו 100	vei measurement)
	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments	
						× ×	Johnnents	
			Ň	<u>v</u>	<u> </u>		Note 2	
	V	78.1	-27.5	PK	163	1.0	Note 2	
52.7	V	78.1	-25.4	PK	167	1.0	Note 2	
	V	78.1		PK	191	1.0	Note 2	
A, 802.11b	Channel	@ 2412 M⊦	łz					
30.0-								
70.0-								
70.0-								
70.0-		•						
70.0 - 50.0 - 50.0 -								
70.0-	1 A L A	•		and the second			www.when	www.comence.
70.0 - 50.0 - 50.0 -	NMMMM,	Marin	, and the second second	mhr		Mangada makatika da	www.the	10 March - Carolin Marc
70.0 - 50.0 - 50.0 - 40.0 -	NMM	M	Julterara	and the second		when you and the first of the	www.when	hand the second the
70.0 - 50.0 - 40.0 - 30.0 -		<u>m</u>				·····		lawprote-no.
70.0 - 50.0 - 50.0 - 40.0 -		/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4000	5000 Frequency	6000			ww ^{wom} www.ww
	diated Spurie ow Channel of al Signal Fiel Level dBµV/m 101.6 108.1 Jundamental er Limit for er missions Level dBµV/m 53.6 50.6 52.7 49.0 For emissions level of the fu Signal is not i	diated Spurious Emissi ow Channel @ 2412 MH al Signal Field Strength Level Pol dBµV/m v/h 101.6 V 108.1 H Jundamental emission leve Limit for emissions ou missions Level Pol dBµV/m v/h 53.6 V 50.6 V 52.7 V 49.0 V For emissions in restricted level of the fundamental Signal is not in a restricted	diated Spurious Emissions, 1000 - ow Channel @ 2412 MHz al Signal Field Strength: Peak and a Level Pol 15.209 dBµV/m v/h Limit 101.6 V - 108.1 H - undamental emission level @ 3m in 10 Limit for emissions outside of restr missions Level Pol 15.209 dBµV/m v/h Limit 53.6 V 78.1 50.6 V 78.1 52.7 V 78.1 49.0 V 78.1 For emissions in restricted bands, the level of the fundamental and measure Signal is not in a restricted band.	ow Channel @ 2412 MHzal Signal Field Strength: Peak and average valuLevelPol $15.209 / 15.247$ $dB\mu V/m$ v/hLimitMargin 101.6 V 108.1 Hundamental emission level @ 3m in 100kHz RBW:Limit for emissions outside of restricted bands:missionsLevelPol $15.209 / 15.247$ $dB\mu V/m$ v/hLimitMargin 53.6 V 78.1 -27.5 52.7 V 78.1 -25.4 49.0 V 78.1 -25.4 49.0 V 78.1 -29.1	diated Spurious Emissions, 1000 - 26000 MHz. Operating M ow Channel @ 2412 MHz al Signal Field Strength: Peak and average values measured Level Pol 15.209 / 15.247 Detector dBµV/m v/h Limit Margin Pk/QP/Avg 101.6 V - Pk 108.1 H - Pk 108.1 H - Pk undamental emission level @ 3m in 100kHz RBW: 108.1 Limit for emissions outside of restricted bands: 78.1 missions Level Pol 15.209 / 15.247 Detector dBµV/m v/h Limit Margin Pk/QP/Avg 53.6 V 78.1 -24.5 PK 50.6 V 78.1 -27.5 PK 52.7 V 78.1 -25.4 PK 49.0 V 78.1 -29.1 PK	diated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11 ow Channel @ 2412 MHz al Signal Field Strength: Peak and average values measured in 1 MHz, ar Level Pol 15.209 / 15.247 Detector Azimuth dBµV/m v/h Limit Margin Pk/QP/Avg degrees 101.6 V Pk 88 108.1 H - Pk 245 undamental emission level @ 3m in 100kHz RBW: 108.1 dBµV/m Limit for emissions outside of restricted bands: 78.1 dBµV/m missions Level Pol 15.209 / 15.247 Detector Azimuth dBµV/m v/h Limit Margin Pk/QP/Avg degrees 53.6 V 78.1 -24.5 PK 279 50.6 V 78.1 -27.5 PK 163 52.7 V 78.1 -25.4 PK 167 49.0 V 78.1 -29.1 PK 191 For emissions in restricted bands, the limit of 15.209 was used. For all othe level of the fundamental and measured in 100kHz. Signal is not in a restricted band.	diated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11b Chain A ow Channel @ 2412 MHz al Signal Field Strength: Peak and average values measured in 1 MHz, and peak valu Level Pol 15.209 / 15.247 Detector Azimuth Height dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 101.6 V Pk 88 1.0 108.1 H - Pk 245 1.0 Indamental emission level @ 3m in 100kHz RBW: 108.1 dBµV/m Limit for emissions outside of restricted bands: 78.1 dBµV/m Limit for emissions outside of restricted bands: 78.1 dBµV/m Level Pol 15.209 / 15.247 Detector Azimuth Height dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 53.6 V 78.1 -24.5 PK 279 1.0 50.6 V 78.1 -27.5 PK 163 1.0 52.7 V 78.1 -25.4 PK 167 1.0 49.0 V 78.1 -29.1 PK 191 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions level of the fundamental and measured in 100kHz.	diated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11b Chain A ow Channel @ 2412 MHz al Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured i Level Pol 15.209 / 15.247 Detector Azimuth Height Comments dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 101.6 V - Pk 88 1.0 RB = VB = 1 108.1 H - Pk 245 1.0 RB = VB = 1 108.1 H - Pk 245 1.0 RB = VB = 1 undamental emission level @ 3m in 100kHz RBW: 108.1 dBμV/m Limit for emissions outside of restricted bands: 78.1 dBμV/m Limit is -30dBc (UNII pow missions Level Pol 15.209 / 15.247 Detector Azimuth Height Comments dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 53.6 V 78.1 -24.5 PK 279 1.0 Note 2 50.6 V 78.1 -27.5 PK 163 1.0 Note 2 52.7 V 78.1 -25.4 PK 167 1.0 Note 2 52.7 V 78.1 -25.4 PK 167 1.0 Note 2 49.0 V 78.1 -29.1 PK 191 1.0 Note 2 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was level of the fundamental and measured in 100kHz.

Model: 512an MMW T-Log Number: T71040 Contact: Robert Paxman Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Class: N/A undamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dByU/m v/h Limit Margin PV/DP/Avg degrees meters 2436.530 101.4 V - - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 103.7 dByLV/m Limit is -30dBc (UNII power measuremen Spirulus Firequency Level Pol 15.209 / 15.247	Client								Job Number:	J70979
Account Manager Briggs / Eriksen Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Run #1b: Center Channel @ 2437 MHz Class: N/A undamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/OP/Avg degrees meters 2436.530 101.4 V - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 254 1.0 RB = VB = 100kHz Fundamental emissions outside of restricted bands: 73.7 dBµV/m Limit is -30dBc (UNII power measuremen Standard Biz/Vm Vh Limit Margin PK/OP/Avg degrees meters 3000.350 52.9 V 73.7 -20.5 PK 126 1.0 Note 2 12997.330 46.8 V 73.7	Madal							T-	Log Number:	T71040
Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Run #1b: Center Channel @ 2437 MHz Indemntal Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Poil 15.209 / 15.247 Detector Azimuth Height Comments 2436.530 101.4 V - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 234 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 234 1.0 RB = VB = 100kHz Classisions Classisions outside of restricted bands: 73.7 dBµV/m Limit is -30dBc (UNII power measuremen spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/OP/Avg degrees meters 3000 300	woder	512an iviivivv						Accou	unt Manager:	Briggs / Eriksen
Fund #1b: Center Channel @ 2437 MHz undamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 2436.530 101.4 V - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 234 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 254 1.0 RB = VB = 100kHz Fundamental emissions level @ 3m in 100kHz RBW: 103.7 dBµV/m Limit for emissions nutristice bands: To 2.7 dBµV/m Limit Margin Pk/OP/Avg degrees meters 3000.350 <td>Contact:</td> <td>Robert Paxm</td> <td>an</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Contact:	Robert Paxm	an							
undamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Comments MHz Adiption <	Standard:	RSS 210 / F0	CC 15.247 D	TS (Radiate	ed)				Class:	N/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB _L V/m v/h Limit Margin PK/OP/Avg degrees meters 2436.530 101.4 V - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 Role value Limit value Itimit value Limit value Limit value Role value	un #1b:(Center Chann	el @ 2437 N	ЛНz						
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2436.530 101.4 V - - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz Fundamental emission level @ 3m in 100kHz RBW: 103.7 dBµV/m Limit for emissions outside of restricted bands: 73.7 dBµV/m Limit is -30dBc (UNII power measuremen purious Emissions reguency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 12997.330 46.8 V 73.7 -20.9 PK 205 1.0 Note 2 12997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note										n 100kHz
2436.530 101.4 V - - Pk 230 1.0 RB = VB = 100kHz 2437.520 103.7 H - Pk 254 1.0 RB = VB = 100kHz Eundamental emission level @ 3m in 100kHz RBW: 103.7 dBµV/m Limit for emissions outside of restricted bands. 73.7 dBµV/m Limit is -30dBc (UNII power measuremen purious Emissions requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. - - - - - -								<u> </u>	Comments	
2437.520 103.7 H - - Pk 254 1.0 RB = VB = 100kHz Fundamental emission level @ 3m in 100kHz RBW: 103.7 dB ₁ V/m Limit for emissions purious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 G498.790 53.2 V 73.7 -20.5 PK 126 1.0 Note 2 If or emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. Image: Signal is not in a restricted band.				Limit	Margin	<u>u</u>				00111-
Fundamental emission level @ 3m in 100kHz RBW: 103.7 dBµV/m Limit for emissions outside of restricted bands: 73.7 dBµV/m Limit is -30dBc (UNII power measuremen purious Emissions requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 27.6 1.0 Note 2 6498.790 53.2 V 73.7 -20.6 PK 205 1.0 Note 2 12997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 10te 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below 10te 2: Signal is not in a restricted band. Image: General and measured in 100kHz. Image: General and measured and measured in 100kHz. Image: General and measured and measur				-	-					
Limit for emissions outside of restricted bands: 73.7 dBµV/m Limit is -30dBc (UNII power measuremen purious Emissions requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 300.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -20.5 PK 126 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 2011: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. ctait set 30dB below cte 2: Signal is not in a restricted band. Chain A , 802.11b Channel @ 2437 MHz	2437.320	103.7	Π	-	-	ΓK	204	1.0	ND = ND =	UUNIIZ
Limit for emissions outside of restricted bands: 73.7 (BµV/m Limit is -30dBc (UNII power measuremen purious Emissions requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -20.5 PK 126 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 201 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. Signal is not in a restricted band. Signal is not in a restricted band. Chain A , 802.11b Channel @ 2437 MHz	F	undamental e	mission level	@ 3m in 1(00kHz RBW [.]	103.7	dBuV/m			
Durious Emissions Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµtV/m v/h Limit Margin Pk/OP/Avg degrees meters 900.030 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -20.5 PK 126 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 201 Evel of the fundamental and measured in 100kHz. 50.0 60.0 - - - - - - - - - - -	i							Limit is -300	dBc (UNII nov	ver measurement
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 0000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -20.9 PK 205 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 Dete 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. Dete 2: Signal is not in a restricted band. Chain A , 802.11b Channel @ 2437 MHz 000 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	ourious E								. (= por	
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3000.350 52.9 V 73.7 -20.8 PK 276 1.0 Note 2 2997.330 46.8 V 73.7 -20.5 PK 126 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 Dete 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below level of the fundamental and measured in 100kHz. Dete 1: Signal is not in a restricted band. Chain A , 802.11b Channel @ 2437 MHz 60.0		1	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
3498.790 53.2 V 73.7 -20.5 PK 126 1.0 Note 2 2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below ote 2: Signal is not in a restricted band.		dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	ě.		
2997.330 46.8 V 73.7 -26.9 PK 205 1.0 Note 2 ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below ote 2: Signal is not in a restricted band.	3000.350	52.9		73.7	-20.8	PK	276	1.0		
Inter 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Intervel of the fundamental and measured in 100kHz. Intervel				73.7				1.0		
Ote 1: level of the fundamental and measured in 100kHz. ote 2: Signal is not in a restricted band.	2997.330	46.8	V	73.7	-26.9	PK	205	1.0	Note 2	
70.0- 60.0- 50.0- 40.0- 30.0- 20.0- 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000		level of the fu	undamental a	and measure			For all othe	r emissions	, the limit was	s set 30dB below
(W 60.0 - 60.0 - 6000 7000 8000 9000 10000	Chain A ,	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	r emissions	, the limit was	s set 30dB below
50.0 - 40.0 - 30.0 - 20.0 - 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	lote 2: Chain A ,	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	r emissions	, the limit was	s set 30dB below
50.0 - 40.0 - 30.0 - 20.0 - 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	lote 2: Chain A , 80.0	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
50.0 40.0 30.0 20.0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	ote 2: Chain A , 80.0 70.0	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
30.0 - 20.0 - 2000 3000 4000 5000 6000 7000 8000 9000 10000	Chain A , 80.0 70.0	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
30.0 - 20.0 - 2000 3000 4000 5000 6000 7000 8000 9000 10000	Chain A , 80.0 70.0	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
30.0 - 30.0 - 3000 3000 4000 5000 6000 7000 8000 9000 10000	Chain A , 80.0 70.0	level of the fu Signal is not 802.11b Ch	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
20.0 -	Chain A , 80.0 70.0	level of the fu Signal is not	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	Chain A , 80.0 70.0	level of the fu Signal is not	indamental a in a restricte	and measure d band.			For all othe		, the limit was	s set 30dB below
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	Chain A , 80.0 70.0 (W) 60.0 appildwy 40.0	802.11b Ch	indamental a in a restricte	and measure d band.			For all othe		, the limit was	s set 30dB below
	Chain A , 80.0 70.0 (W/ngp) 90,0 10,0 20,0 30.0	level of the fu Signal is not	indamental a in a restricte	and measure d band.			For all othe	er emissions	, the limit was	s set 30dB below
	Chain A , 80.0 70.0 (W/ngp) 50.0 950.0 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz		lymbry ma	n norther the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yokayaya
	Chain A , Chain A , 80.0 70.0 (@/\mu) 60.0 50.0 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz	ed in 100kHz		o' ' 7000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yokayaya
	Chain A , 80.0 70.0 (W/ngp) 50.0 100 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz	ed in 100kHz		o' ' 7000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yakananan
	Chain A , 80.0 70.0 (W/ngp) 50.0 950.0 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz	ed in 100kHz		o' ' 7000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yokayaya
	Chain A , 80.0 70.0 (W/ngp) 50.0 9 50.0 10 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz	ed in 100kHz		o' ' 7000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yokayaya
	Chain A , 80.0 70.0 (W/ngp) 50.0 9 50.0 10 40.0 30.0 20.0	level of the fu Signal is not		and measure d band. 437 MHz	ed in 100kHz		o' ' 7000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Yokayaya

Chern	Intel	ott						Job Number:	J70979
Model	512an MMW						T-	Log Number:	T71040
							Ассо	unt Manager:	Briggs / Eriksen
	Robert Paxn								
	RSS 210 / F			d)				Class:	N/A
	ligh Channel tal Signal Fig			vorado valu	as maasurad	in 1 MHz a	nd noak valu	ie measured i	n 100kHz
requency		Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	IT TOOKITZ
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2460.980	101.2	V	-	-	Pk	93	1.0	RB = VB = 1	
462.510	106.8	Н	-	-	Pk	237	1.0	RB = VB = 1	100kHz
	undomontal	mission) @ ?m in 10		104.0		1		
F	undamental e		utside of restri			<u>dBµV/m</u> dBµV/m	Limitic 20	dRc (LINII nor	ver measuremer
urious F	missions	11115510115 00		icieu Dahus.	/0.0	αβμν/m		ивс (отип ром	
requency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3000.380	53.0	V	76.8	-23.8	PK	280	1.0	Note 2	
5000.720	51.2	V	76.8	-25.6	PK	272	1.3	Note 2	
6565.300	50.8	V	76.8	-26.0	PK	173	1.0	Note 2	
Chain A ,	802.11b C	hannel @ ;	2462 MHz						
	I - [
80.0									
70.0	-								
70.0									
70.0	-								
70.0	-		•			•			
70.0	-		•			ţ		providence and the	vous fit
70.0 (@) 60.0 PP	-		. Hanger at	mmm	L. M. M.	- Juna	Matthe	are plan sources	www.he
70.0			Jutterstration	nnun	L. M. M.	- June of the second	North Marting	neen plann son and	munhe
70.0 (W) 60.0 (BPA) 50.0 50.0 40.0 30.0	- - - - -		I. Marshada	nnmund	l m		Mostlattan	and the second	un for
70.0 (@) ngp 50.0 50.0 40.0 30.0 20.0	- - - - -		100 40	~~~~~)			, , , , , , , , , , , , , , , , , , ,		
70.0 (m/\nge 50.0 50.0 40.0 30.0 20.0	- - - - -		,	مریسیدین 00 50 Fre	00 600		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~~~~h+ ' ' 10000
70.0 (Jan 60.0 (Jan 60.0 (- - - - -) 						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
70.0 (Jan 60.0 (Jan 60.0 (- - - - -		,						~~~~/~
70.0 (W/Angp) 9pn110 40.0 30.0 20.0	- - - - -		,						
70.0 (@) ngp 50.0 50.0 40.0 30.0 20.0	- - - - -)00 ' ' 40						·····

Client: Intel Job Number: J70979 Model: 512an MMW T-Log Number: T71040 Contact: Robert Paxman Account Manager: Briggs / Eriksen Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions - Band Edge 802.11g Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/14/2008 Test Engineer: Ben Jing Test Location: FT Chamber # 4 Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	19 °C
	Rel. Humidity:	40 %

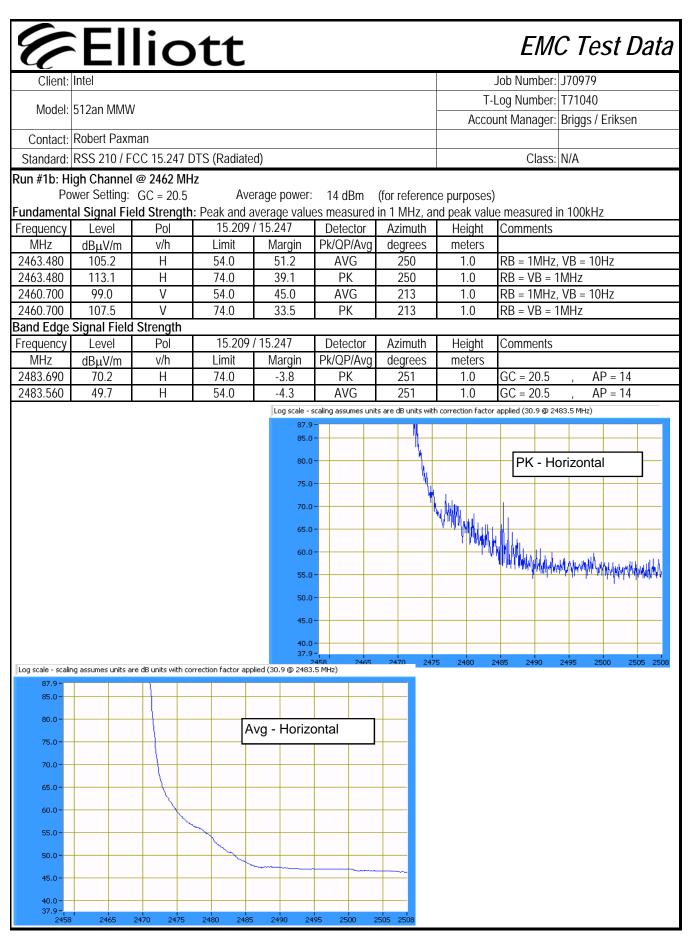
Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11g Chain A	1 2412MHz	GC = 20	14.5 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	52.5 dBuV/m @ 2389.9 MHz (-1.5dB)
1b	802.11g Chain A	11 2462MHz	GC = 20.5	14 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	70.2 dBuV/m @ 2483.6 MHz (-3.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

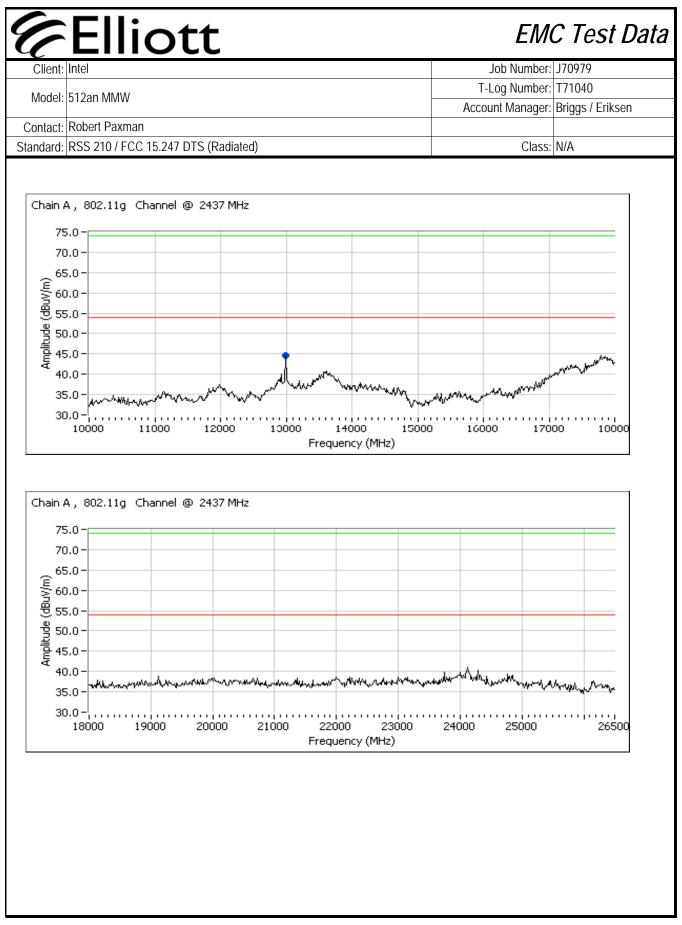

No deviations were made from the requirements of the standard.

Elliott FMC Test Data Job Number: J70979 Client: Intel T-Log Number: T71040 Model: 512an MMW Account Manager: Briggs / Eriksen Contact: Robert Paxman Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Run #1: Radiated Spurious Emissions, Band Edges. Operating Mode: 802.11g - Chain A Run #1a: Low Channel @ 2412 MHz Power Setting: GC = 20 Average power: 14.5 dBm (for reference purposes) Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency 15.209 / 15.247 Level Pol Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2413.160 105.4 Н 54.0 51.4 AVG 249 1.0 RB = 1MHz, VB = 10Hz 74.0 39.8 ΡK 249 1.0 RB = VB = 1MHz2413.160 113.8 Н 2410.980 98.8 V 54.0 44.8 AVG 157 1.0 RB = 1MHz, VB = 10Hz 2410.980 106.9 V 74.0 32.9 PΚ 157 1.0 RB = VB = 1MHz Band Edge Signal Field Strength 15.209 / 15.247 Detector Frequency Level Pol Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Ava degrees meters 2389.980 72.0 Н 74.0 -2.0 PΚ 248 1.0 GC = 20.0AP = 14.52389.950 54.0 AVG 52.5 Н -1.5 248 1.0 GC = 20.0AP = 14.5Log scale - scaling assumes units are dB units with correction factor applied (30.6 @ 2370.0 MHz) 87.6 85.0 80.0 PK - Horizontal 75.0 70.0 65.0 60.0 55.0 Ward Marian A where the and a second second and a second second and a second second second second second s 50.0 45.0 40.0 37.6-Log scale - scaling assumes units are dB units with correction factor applied (3 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 87.6 85.0 Avg - Horizontal 80.0 75.0 70.0 65.0 60.0 55.0 50.0

2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410

45.0 40.0 37.6

2330 2335 2340 2345 2350 2355


Elliot	t	EM	C Test I
Client: Intel		Job Number:	: J70979
Model: 512an MMW		T-Log Number	: T71040
		Account Manager:	: Briggs / Erikse
Contact: Robert Paxman			
Standard: RSS 210 / FCC 15.247 D	S (Radiated)	Class	: N/A
est Specific Details	of this tast special is to perform	final qualification tacting of the CLIT with	respect to the
Objective: The objective specification	of this test session is to perform f isted above.	final qualification testing of the EUT with	respect to the
Date of Test: 03/18/2008		Config. Used: 1	
Test Engineer: Ben Jing		Config Change: None	
Test Location: FT Chamber	# 4 Ho	ost Unit Voltage 120V/60Hz	
Seneral Test Configuration		or radiated sourious omissions testing	All romata auna
General Test Configuration The EUT and all local support equipme equipment was located approximately		O connections running on top of the grou	
he EUT and all local support equipme	30 meters from the EUT with all I/	O connections running on top of the grou	
he EUT and all local support equipme quipment was located approximately	30 meters from the EUT with all I/ Isurement antenna was located 3	O connections running on top of the grou	

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1b	802.11g Chain A	6 (2437)	GC = 23	AP = 16.7	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	54.5dBµV/m @ 6498.7MHz (-18.2dB)

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

Elliott FMC Test Data Job Number: J70979 Client: Intel T-Log Number: T71040 Model: 512an MMW Account Manager: Briggs / Eriksen Contact: Robert Paxman Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A Run #1: Radiated Spurious Emissions, 1000 - 26000 MHz. Operating Mode: 802.11g Chain A Run #1a and 1c (Low- and high-channel) were not performed, 802.11n was worst case based on center channel measurements Run #1b: Center Channel @ 2437 MHz Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz 15.209 / 15.247 Detector Azimuth Height Frequency Level Pol Comments Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters 2435.740 RB = VB = 100 kHz99.3 V Pk 123 1.0 --2438.260 102.7 Η Pk 250 RB = VB = 100 kHz1.0 Fundamental emission level @ 3m in 100kHz RBW: 102.7 dBµV/m Limit for emissions outside of restricted bands 72.7 dBµV/m Limit is -30dBc (UNII power measurement) Spurious Emissions Pol 15.209 / 15.247 Frequency Level Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 3000.370 53.3 V 72.7 -19.4 PΚ 280 1.0 Note 2 6000.810 50.3 V 72.7 -22.4 ΡK 162 1.0 Note 2 v 72.7 ΡK 6498.650 54.5 -18.2 346 1.3 Note 2 12997.360 48.0 V 72.7 -24.7 ΡK 188 1.0 Note 2 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the Note 1: level of the fundamental and measured in 100kHz. Note 2: Signal is in a restricted band. Chain A, 802.11g Channel @ 2437 MHz 80.0 70.0 Amplitude (dBuV/m) 60.0 50.0 40.0 30.0 20.0 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 Frequency (MHz)

Elliott	E	MC Test D
Client: Intel	Job Number:	J70979
Model: 512an MMW	T-Log Number:	T71831
	Account Manager:	Briggs / Eriksen
Contact: Robert Paxman	01	-
nissions Standard(s): RSS 210 / FCC 15.247 DTS (Radiated) nmunity Standard(s): -	Class: Environment:	
EMC Test Data - DTS Radi Universe Technology PI		ons
For The		
Intel		
Model		
512an MMW		
Date of Last Test: 6/10/20	008	

EMC Test Data

Client	Intel	Job Number:	J70979
Madal	512an MMW	T-Log Number:	T71831
wouer.		Account Manager:	Briggs / Eriksen
Contact:	Robert Paxman		
Standard	RSS 210 / FCC 15.247 DTS (Radiated)	Class:	DTS

Receiver Spurious Emissions, 1 - 18 GHz

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	23 °C
	Rel. Humidity:	36 %

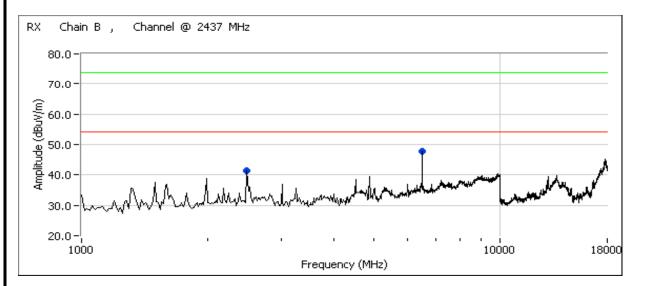
Summary of Results

Run #	Test Performed	Limit	Result	Margin
1a - RX chain A @ 2437 MHz	RE, 1000 - 18000 MHz, Maximized Emissions	RSS GEN	Pass	43.7dBµV/m @ 6498.7MHz (-10.3dB)
2a - RX chain B @ 2437 MHz	RE, 1000 - 18000 MHz, Maximized Emissions	RSS GEN	Pass	47.8dBµV/m @ 6498.7MHz (-6.2dB)
3a - RX chain A + B @ 2437 MHz	RE, 1000 - 18000 MHz, Maximized Emissions	RSS GEN	Pass	45.9dBµV/m @ 6498.6MHz (-8.1dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


7	<u>Ellic</u>	<u>ott</u>							C Test Dat
Client:	Intel			Job Number:					
Model:	512an MMW	/				-		Log Number:	
							Accou	unt Manager:	Briggs / Eriksen
	Robert Paxr								
	RSS 210 / F		DTS (Radia	ited)				Class:	DTS
Te: Te	Date of Test: st Engineer: ost Location: Above 1 GH	Ben Jing FT Cham		erage measu	rement. In a	ddition, the p	eak value o	f any emissio	n above 1 GHz, can
	exceed the a								
		0		IHz, Receiv Chain A ac	er single Cha tive	ain A active			
quency	Level	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
91.920	30.3	V V	54.0	-23.7	AVG	88 99	<u>1.0</u> 1.6		
90.070 9 8.670	28.3 43.7	V	54.0 54.0	-25.7 - 10.3	AVG AVG	201	1.6		
91.920	43.7 48.6	V	74.0	-25.4	PK	88	1.3		
90.070	46.3	V	74.0	-27.7	PK	99	1.6		
98.670	47.4	V	74.0	-26.6	PK	201	1.3		
80. 70. (w/\ngp 50. 50. 40. 30.	0 - 0 - 0 -	Channel	© 2437 M	Hz	here and the state of the state	nerthe and a second		· 10000	18000
					Frequency	(MHz)			

Client: Intel Job Number: J70979 Model: 512an MMW T-Log Number: T71831 Contact: Robert Paxman Briggs / Eriksen Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: DTS

Run #2: Maximized readings, 1000 - 18000 MHz, Receiver single Chain B active

Run # 2a :	Receiver 1	funed to 24	37 MHz	Chain I	B active	

Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2490.160	30.1	V	54.0	-23.9	AVG	77	1.6	
6498.670	47.8	V	54.0	-6.2	AVG	208	1.0	
2490.160	49.2	V	74.0	-24.8	PK	77	1.6	
6498.670	50.7	V	74.0	-23.3	PK	208	1.0	

Client:	Intel							Job Number:	J70979
	F10. 100						T-	Log Number:	T71831
Model:	512an MMW	/					0	Briggs / Eriksen	
Contact:	Robert Paxn	nan							
Standard:	RSS 210 / F	CC 1 <u>5</u> .247	DTS (Radia	ated)				Class:	DTS
[Date of Test:	5/31/2008	}						
	st Engineer:								
Te	est Location:	FT Cham	ber # 5						
Note 1:					irement. In a	ddition, the p	eak value o	f any emissio	n above 1 GHz, can not
	exceed the a	average lim	nt by more t	han 20 dB.					
Run #3: Ma	aximized rea	dings, 100)0 - 18000 N	IHz, Receiv	er All Chain	Active			
D # 6		1	-						
					+ B active	۸ ما ام	110:004	Comment	
Frequency	Level	Pol		GEN	Detector	Azimuth	Height	Comments	
MHz 1996.800	dBµV/m 34.9	v/h V	<u>Limit</u> 54.0	Margin -19.1	Pk/QP/Avg AVG	degrees 183	meters		
2490.040	29.9	H	54.0	-19.1	AVG	303	1.0 2.0		
3000.060	39.1	V	54.0	-24.1	AVG	261	1.0		
4874.000	44.6	V	54.0	-9.4	AVG	162	1.5		
6000.040	38.8	V	54.0	-15.2	AVG	221	1.0		
6498.580	45.9	v	54.0	-8.1	AVG	124	1.0		
1996.800	45.2	V	74.0	-28.8	PK	183	1.0		
2490.040	48.7	Н	74.0	-25.3	PK	303	2.0		
3000.060	44.6	V	74.0	-29.4	PK	261	1.0		
4874.000	48.3	V	74.0	-25.7	PK	162	1.5		
6000.040	46.8	V	74.0	-27.2	PK	221	1.0		
6498.580	49.5	V	74.0	-24.5	PK	124	1.0		
RX	Dual Cha	ain A + B	Chapp	el @ 2437 N	1H-2				
100			, chann		11 12				
	75.0								
	70.0-								
	65.0-								
(E)	60.0-								
Bu,	55.0-								
e 0	50.0-								
Amplitude (dBuV/m)	45.0-					•	1 6		
	40.0-		•	- <u>*</u> •	•	1 1	n Lun	1 CAN I	-smt - /
	35.0-	. A .	4 J	سي البيل	- tollowed the meda	all and the second second	44 ⁴	- hA	
	30.0-	$M \mathcal{M}$	Markantler	1 VAIN HAMAN					
	25.0-								.
	1000							10000	18000
					Frequenc	y (MHz)			

Elliott EMC Test Data Job Number: J70979 Client: Intel T-Log Number: T71831 Model: 512an MMW Account Manager: Briggs / Eriksen Contact: Robert Paxman Standard: RSS 210 / FCC 15.247 DTS (Radiated) Class: N/A RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions 802.11b Mode Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	36 %

Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11b	1	21.5	18.8 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	46.5dBµV/m @ 2385.9MHz (-7.5dB)
Id	Chain A	2412MHz	21.5	10.0 UDIII	Radiated Emissions,	FCC Part 15.209 /	46.1 dBuV/m @
			21.5		1 - 26 GHz	15.247(c)	6431.9 MHz (-7.9dB)
1b	802.11b	6	19.5	16.7 dBm	Radiated Emissions,	FCC Part 15.209 /	47.4 dBuV/m @ 6498.6
di	Chain A	2437MHz	17.0	TO.7 UDIT	1 - 26 GHz	15.247(c)	MHz (-6.6dB)
			23.0		Band Edge radiated	FCC Part 15.209 /	46.3dBµV/m @
1c	802.11b	11	23.0	19.6 dBm	field strength	15.247(c)	2484.8MHz (-7.7dB)
IC.	Chain A	2462MHz	22.5	(note)	Radiated Emissions,	FCC Part 15.209 /	53.0 dBuV/m @
			22.5		1 - 26 GHz	15.247(c)	7388.3 MHz (-1.0dB)

Note: for channel 11 (2462 MHz) radiated emissions test, the power setting GC = 22.5, measured power AP = 19.2 dBm.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

ЧC		iot	L					EIVIO	C Test
Client:								Job Number:	J70979
Madal		J					T-	Log Number:	T71831
Model:	512an MMW	V					Acco	unt Manager:	Briggs / Erikse
Contact:	Robert Paxr	nan							
Standard:	RSS 210 / F	CC 15.247 D	TS (Radiate	d)				Class:	N/A
D Te	ate of Test: est Engineer:	5/28/2008	and 5/29/2	•	rating Mode:	802.11b - C	hain A		
Po	ower Setting:	@ 2412 MH 21.5 eld Strength:	Ave	0 1	: 18.8 dBm n 100kHz	(for reference	e purposes)	
requency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2410.990	99.4	V	-	-	Pk	164	1.0		
411.500	98.3	Н	-	-	Pk	236	1.0		
equency	Signal Field	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz 2385.920	dBµV/m 46 .5	v/h H	Limit 54.0	Margin -7.5	Pk/QP/Avg Avg	degrees 230	meters 1.0	GC = 21.5	
385.990	45.4	V	54.0	-8.6	Avg	169	1.0	GC = 21.5 GC = 21.5	
387.150	58.7	Ĥ	74.0	-15.3	PK	228	1.0	GC = 21.5	
389.800	57.4	V	74.0	-16.6	Pk	166	1.0	GC = 21.5	
850	cremote contro	al							
		ble Max Hold 🔳	Log scale -	scaling assumes u	units are dB units wit	th correction facto	r applied (30.6 @	2365.0 MHz)	
(m	anual) ontrol	RB 💮 1MHz	- 86.6						
Tune	e to Peak	VB 🕘 10Hz	80.0						
BB	Signal Cer	nter F 💮 2365.000		A	Avg - Horizo	ntal			
	-	Span 🔵 90.000							
	-	ef Lvl 🍦 56.0	70.0)-					
		ATT AUTO?	65.0)-					
CF Step	125.00		60.0)					₩
	Update With Ne		55.0)-					¥
	nt Settings (All							Ŋ	V
		V 0.000010	50.0)-					
		n 90.0000	45.0)-		<u>├</u>		-nr	
	_	p 2410.000	40.0)-					<u> </u>
Re	ference Level 56.	0	36.6	-					
110				2320 2330	2340 23	50 2360	2370 238	30 2390	2400 2410
	Detector SAN Sweep Time 340					50 2360 Tim TURN TO MAIN PR	e	30 2390	2400 2410

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

Client:	EIII							Job Number:	J70979
Marial	E10	1					T-	Log Number:	T71831
Wodel:	512an MMW							-	Briggs / Eriksen
Contact:	Robert Paxm	nan						5	
	RSS 210 / F)TS (Radiate	d)				Class:	N/A
Standaru.	100 21071	00 10.247 1		u)				01033.	11/7
purious E	missions								
Frequency	1 1	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4823.910	43.6	V	54.0	-10.4	AVG	165	1.5		
4823.910	48.3	V	74.0	-25.7	PK	165	1.5		
6431.860	50.1	V	69.4	-19.3	PK	120	1.5	Note 2	
7238.730	44.7	V	54.0	-9.3	AVG	56	1.5		
7238.730	51.7	V	74.0	-22.3	PK	56	1.5		
lote 1: lote 2: Run #1b: C	level of the f	undamental in a restricte	and measure ed band, mea	ed in 100kHz			er emissions	s, the limit was	s set 30dB below
lote 2: Run #1b: C Gundament	level of the fi Signal is not Center Chanr tal Signal Fie	undamental in a restricto nel @ 2437 eld Strength	and measure ed band, mea MHz i: Peak and a	ed in 100kHz asurement ba average valu	z. andwidth is 10 es measured	<mark>)0kHz.</mark> in 1 MHz, ar	nd peak valu	ie measured i	
lote 2: Run #1b: C undament Frequency	level of the fi Signal is not Center Chanr tal Signal Fie Level	undamental in a restricto nel @ 2437 eld Strength Pol	and measure ed band, mea MHz I: Peak and a 15.209	ed in 100kHz asurement ba average valu / 15.247	andwidth is 10 es measured Detector	DOKHZ. in 1 MHz, ar Azimuth	nd peak valu Height		
lote 2: Run #1b: C undament Frequency MHz	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m	undamental in a restricton nel @ 2437 eld Strength Pol v/h	and measure ed band, mea MHz i: Peak and a	ed in 100kHz asurement ba average valu	andwidth is 10 es measured Detector Pk/QP/Avg	00kHz. in 1 MHz, ar Azimuth degrees	nd peak valu Height meters	ie measured i Comments	in 100kHz
lote 2: Run #1b: C undament Frequency MHz 2437.980	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7	undamental in a restricton nel @ 2437 eld Strength Pol V/h V	and measure ed band, mea MHz I: Peak and a 15.209	ed in 100kHz asurement ba average valu / 15.247	andwidth is 10 es measured Detector Pk/QP/Avg Pk	00kHz. in 1 MHz, ar Azimuth degrees 200	nd peak valu Height meters 1.0	ie measured i Comments RB = VB = 1	in 100kHz 100kHz
lote 2: Run #1b: C undament Frequency MHz	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m	undamental in a restricton nel @ 2437 eld Strength Pol v/h	and measure ed band, mea MHz I: Peak and a 15.209	ed in 100kHz asurement ba average valu / 15.247	andwidth is 10 es measured Detector Pk/QP/Avg	00kHz. in 1 MHz, ar Azimuth degrees	nd peak valu Height meters	ie measured i Comments	in 100kHz 100kHz
lote 2: Run #1b: C undament Frequency MHz 2437.980 2436.470	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5	undamental in a restricte nel @ 2437 eld Strength Pol V/h V H	and measure ed band, mea MHz I: Peak and a 15.209 Limit -	ed in 100kHz asurement ba average valu / 15.247 Margin - -	es measured Detector Pk/QP/Avg Pk	00kHz. in 1 MHz, ar Azimuth degrees 200 6	nd peak valu Height meters 1.0	ie measured i Comments RB = VB = 1	in 100kHz 100kHz
lote 2: Run #1b: C undament Frequency MHz 2437.980 2436.470	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission leve	and measure ed band, mea MHz I: Peak and a 15.209 Limit -	ed in 100kHz asurement ba average valu / 15.247 Margin - - D0kHz RBW:	es measured Detector Pk/QP/Avg Pk Pk 96.7	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m	nd peak valu Height meters 1.0 1.0	ie measured i Comments RB = VB = 7 RB = VB = 7	in 100kHz 100kHz 100kHz
lote 2: Run #1b: C undament Frequency MHz 2437.980 2436.470	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission leve	and measure ed band, mea MHz I: Peak and a 15.209 Limit - - el @ 3m in 10	ed in 100kHz asurement ba average valu / 15.247 Margin - - D0kHz RBW:	es measured Detector Pk/QP/Avg Pk Pk 96.7	00kHz. in 1 MHz, ar Azimuth degrees 200 6	nd peak valu Height meters 1.0 1.0	ie measured i Comments RB = VB = 7 RB = VB = 7	in 100kHz 100kHz
lote 2: Run #1b: C undament Frequency MHz 2437.980 2436.470 Fi	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission leve	and measure ed band, mea MHz 1: Peak and a 15.209 Limit - - el @ 3m in 10 utside of restr	ed in 100kHz asurement ba average valu / 15.247 Margin - - D0kHz RBW:	es measured Detector Pk/QP/Avg Pk Pk 96.7	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m	nd peak valu Height meters 1.0 1.0	ie measured i Comments RB = VB = 7 RB = VB = 7	in 100kHz 100kHz 100kHz
lote 2: un #1b: C undament Frequency MHz 2437.980 2436.470 Frequency Frequency MHz 2436.470 Frequency Frequen	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions	undamental in a restricten nel @ 2437 eld Strength Pol v/h V H emission leve emissions ou	and measure ed band, mea MHz 1: Peak and a 15.209 Limit - - el @ 3m in 10 utside of restr	ed in 100kHz asurement ba average valu / 15.247 Margin - - - D0kHz RBW: icted bands:	es measured Detector Pk/QP/Avg Pk Pk 96.7 66.7	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m	nd peak valu Height meters 1.0 1.0 Limit is -30	ie measured i Comments RB = VB = 1 RB = VB = 1 dBc (UNII pov	in 100kHz 100kHz 100kHz
lote 2: un #1b: C undament Frequency MHz 2437.980 2436.470 Frequency Frequency	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions Level	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission leve emissions ou Pol v/h V	and measure ed band, mea MHz 15.209 Limit - el @ 3m in 10 itside of restr	ed in 100kHz asurement ba average valu / 15.247 Margin - - D0kHz RBW: icted bands: / 15.247	es measured Detector Pk/QP/Avg Pk Pk 96.7 66.7 Detector	00kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m Azimuth	nd peak valu Height neters 1.0 1.0 Limit is -30 Height	ie measured i Comments RB = VB = 1 RB = VB = 1 dBc (UNII pov	in 100kHz 100kHz 100kHz
lote 2: 2 an #1b: C andament Frequency MHz 2437.980 2436.470 Frequency MHz 4873.950 4873.950	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions Level dBµV/m 42.2 47.1	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission levo emissions ou Pol v/h V V V	and measure ed band, mea MHz : Peak and a 15.209 Limit - el @ 3m in 10 itside of restr 15.209 Limit 54.0 74.0	ed in 100kHz asurement ba average valu / 15.247 Margin - D0kHz RBW: icted bands: / 15.247 Margin -11.8 -26.9	es measured Detector Pk/QP/Avg Pk 96.7 66.7 Detector Pk/QP/Avg AVG PK	DokHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m Azimuth degrees 200 200 200	nd peak valu Height meters 1.0 1.0 Limit is -30 Height meters 1.0 1.0	ie measured i Comments RB = VB = 7 RB = VB = 7 dBc (UNII pov	in 100kHz 100kHz 100kHz
lote 2: 2 un #1b: C undament Frequency MHz 2437.980 2436.470 Frequency Frequency MHz 4873.950 6498.610	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions Level dBµV/m 42.2 47.1 51.2	undamental in a restrictor hel @ 2437 eld Strength Pol v/h V H emission leve emissions ou Pol v/h V V V V	and measure ed band, mea MHz 15.209 Limit - el @ 3m in 10 itside of restr 15.209 Limit 54.0 74.0 66.7	ed in 100kHz asurement ba average valu / 15.247 Margin - - 00kHz RBW: icted bands: / 15.247 Margin -11.8 -26.9 -15.5	es measured Detector Pk/QP/Avg Pk Pk 96.7 66.7 Detector Pk/QP/Avg AVG PK PK PK	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m Azimuth degrees 200 200 111	nd peak valu Height neters 1.0 1.0 Limit is -30 Height neters 1.0 1.0 1.5	ie measured i Comments RB = VB = 1 RB = VB = 1 dBc (UNII pov	in 100kHz 100kHz 100kHz
lote 2: un #1b: C undament Frequency MHz 2437.980 2436.470 Frequency MHz 4873.950 4873.950 6498.610 7313.830	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions Level dBµV/m 42.2 47.1 51.2 46.4	undamental in a restricton nel @ 2437 eld Strength Pol v/h V H emission levo emissions ou Pol v/h V V V V V V	and measure ed band, mea MHz 15.209 Limit - el @ 3m in 10 ttside of restr 15.209 Limit 54.0 74.0 66.7 54.0	ed in 100kHz asurement ba average valu / 15.247 Margin - - 00kHz RBW: icted bands: / 15.247 Margin -11.8 -26.9 -15.5 -7.6	andwidth is 10 es measured Detector Pk/QP/Avg Pk Pk Pk 96.7 66.7 0etector Pk/QP/Avg AVG PK PK PK AVG	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m Azimuth degrees 200 200 111 51	nd peak valu Height neters 1.0 1.0 Limit is -30 Height meters 1.0 1.0 1.5 1.5	ie measured i Comments RB = VB = 7 RB = VB = 7 dBc (UNII pov	in 100kHz 100kHz 100kHz
lote 2: 2 un #1b: C undament Frequency MHz 2437.980 2436.470 Frequency Frequency MHz 4873.950 6498.610	level of the fi Signal is not Center Chanr tal Signal Fie Level dBµV/m 96.7 91.5 undamental e Limit for e missions Level dBµV/m 42.2 47.1 51.2	undamental in a restrictor hel @ 2437 eld Strength Pol v/h V H emission leve emissions ou Pol v/h V V V V	and measure ed band, mea MHz 15.209 Limit - el @ 3m in 10 itside of restr 15.209 Limit 54.0 74.0 66.7	ed in 100kHz asurement ba average valu / 15.247 Margin - - 00kHz RBW: icted bands: / 15.247 Margin -11.8 -26.9 -15.5	es measured Detector Pk/QP/Avg Pk Pk 96.7 66.7 Detector Pk/QP/Avg AVG PK PK PK	D0kHz. in 1 MHz, ar Azimuth degrees 200 6 dBµV/m dBµV/m Azimuth degrees 200 200 111	nd peak valu Height neters 1.0 1.0 Limit is -30 Height neters 1.0 1.0 1.5	ie measured i Comments RB = VB = 7 RB = VB = 7 dBc (UNII pov	in 100kHz 100kHz 100kHz

Note 1: level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band, measurement bandwidth is **100kHz**.

Client:	Intel							Job Number:	J70979
Madel		1					T-I	_og Number:	T71831
wodel:	512an MMW	I .					Αссоι	Int Manager:	Briggs / Eriksen
Contact:	Robert Paxr	nan							
Standard:	RSS 210 / F	CC 15.247 D	TS (Radiate	d)				Class:	N/A
un #1c: H	ligh Channel	@ 2462 MH	Z				L		
	ower Setting:	23.0		rage power:	19.6 dBm	(for reference	e purposes)		
	tal Signal Fie						-		
requency		Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		
2461.010 2462.990	100.0 101.6	V H	-	-	Pk Pk	179 158	1.0 1.0		
2402.990	101.0	Π	-	-	ΡK	100	1.0		
F	undamental e	emission leve	el @ 3m in 10	0kHz RBW:	101.6	dBµV/m			
			tside of restr			dBµV/m	Limit is -300	IBc (UNII pov	ver measuremen
						p		, Г [,]	
	Signal Field				•				
requency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	00 00 0	
2484.750	46.3	H	54.0 54.0	-7.7 -8.1	Avg	161	1.0	GC = 23.0	
	45.0			-8	Avg	177	1.0	GC = 23.0	
2484.760	45.9	V			Ŭ	154	10	CC 220	
2484.760 2484.830 2484.920	59.1 57.2	H V	74.0 74.0	-14.9 -16.8 scaling assumes u	PK PK	156 145			
2484.760 2484.830 2484.920 E 85x0 (m CF Step RBW Center	59.1 57.2 cremote control contro contro	H V Dele Max Hold RB () 1MHz VB () 10Hz VB () 10Hz vter F () 2515.000 Span () 100.000 of LVI () 54.0 ATT AUTO?	74.0 74.0	-14.9 -16.8	PK PK	145	1.0	GC = 23.0	

		Οι	L					LIVI	
Client:	Intel							Job Number:	J70979
Madal		1					T-	Log Number:	T71831
Model:	512an MMW						Acco	unt Manager:	Briggs / Eriksen
Contact:	Robert Paxm	nan						-	
Standard:	RSS 210 / F	CC 15.247 D	TS (Radiate	d)				Class:	N/A
Spurious E	missions (GC = 22.5 ,	AP = 19.	2 dBm)					I
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4923.950	43.1	V	54.0	-10.9	AVG	173	1.5		
4923.950	48.4	V	74.0	-25.6	PK	173	1.5		
6565.240	51.2	V	71.6	-20.4	PK	171	1.0	Note 2	
7388.310	53.0	V	54.0	-1.0	AVG	264	2.0		
7388.310	58.2	V	74.0	-15.8	PK	264	2.0		
9847.880	54.9	V	71.6	-16.7	PK	83	1.5	Note 2	
ote 1:	level of the fu	undamental	and measure	ed in 100kHz			er emissions	s, the limit was	s set 30dB below the
lote 2:	Signal is not	in a restricte	ed band, mea	asurement ba	andwidth is 10)0kHz.			

EMC Test Data

 Client:
 Intel
 Job Number:
 J70979

 Model:
 512an MMW
 T-Log Number:
 T71831

 Account Manager:
 Briggs / Eriksen

 Contact:
 Robert Paxman
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS, 2400 - 2483.5 MHz) Radiated Spurious Emissions - Band Edge 802.11g Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 5/28/2008 Test Engineer: Ben Jing Test Location: FT Chamber # 5 Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	22 °C
	Rel. Humidity:	36 %

Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1a	802.11g	1	20 . 5	14.5 dBm	Band Edge radiated field strength	FCC Part 15.209 / 15.247(c)	47.4dBµV/m @ 2389.9MHz (-6.6dB)
Id	Chain A	2412MHz	20.0	14.5 UDIII	Radiated Emissions,	FCC Part 15.209 /	Covered by n20 mode
					1 - 26 GHz	15.247(c)	measurements
1b	802.11g	6			Radiated Emissions,	FCC Part 15.209 /	Covered by n20 mode
di	Chain A	2437MHz			1 - 26 GHz	15.247(c)	measurements
					Band Edge radiated	FCC Part 15.209 /	45.7dBµV/m @
1c	802.11g	11	21.5	14 dBm	field strength	15.247(c)	2483.6MHz (-8.3dB)
i C	Chain A	2462MHz	21.0	14 UDIII	Radiated Emissions,	FCC Part 15.209 /	Covered by n20 mode
					1 - 26 GHz	15.247(c)	measurements

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

n MMW rt Paxman 210 / FCC 15.247 d Spurious Emiss nannel @ 2412 Mi etting: 20.5 nal Field Strengt	sions, Band I	:d)				Job Number: Log Number:	
rt Paxman 210 / FCC 15.247 d Spurious Emiss nannel @ 2412 Mi etting: 20.5	sions, Band I	:d)			T-	Log Number:	T71831
rt Paxman 210 / FCC 15.247 d Spurious Emiss nannel @ 2412 Mi etting: 20.5	sions, Band I	:d)					
210 / FCC 15.247 d Spurious Emiss nannel @ 2412 Mi etting: 20.5	sions, Band I	:d)			Accou	unt Manager:	Briggs / Eriksen
210 / FCC 15.247 d Spurious Emiss nannel @ 2412 Mi etting: 20.5	sions, Band I	;d)					
d Spurious Emiss nannel @ 2412 Mi etting: 20.5	sions, Band I	,				Class:	N/A
nannel @ 2412 Mi etting: 20.5		Edges Oper	ating Mode	802 11a - C	hain A		
0		-ugosi opoi	uting model	oozing o			
nal Field Strengt	Ave	erage power:	14.5 dBm	(for reference	e purposes)		
nai i leiu Strengt	h: Peak value	e measured in	n 100kHz	•	,		
vel Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
	Limit	Margin	Ŭ	0	meters		
	-	-					
3.4 H	-	-	PK	295	1.0		
ontal omission lou	ol @ 2m in 1		02.0		1		
					l imit is _20/		ver measurement
			02.7	υσμν/Π			
I Field Strenath							
vel Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
ιV/m v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7.4 V	54.0	-6.6	Avg	140	1.0	GC = 20.5	
			Avg		1.0		
0.5 V		0 6	DK	140	10	CC = 20 h	
note control Enable Max Hol RB () 11 eak VB () 10	d Log so		ies units are dB unit			•	
note control Enable Max Hol RB 🕘 11	d Log so 1Hz Hz 50.000 0	ale - scaling assum				•	
note control Enable Max Hol RB 11 VB 10 eak Center F 123 Center F 123 Ref Lvl 156. ATT AUTO?	d Log so 1Hz Hz 50.000 0	ale - scaling assum 86.5 - 80.0 - 75.0 - 70.0 - 65.0 - 60.0 -	ies units are dB unit			•	
Anote control RB (1) 10 RB (1) 10 RB (1) 10 Center F (1) 23 Center F (1) 23 Freq. Span (1) 100 Ref LVI (1) 56. ATT AUTO? 125.00 Att AUTO?	d Log so 1Hz Hz 50.000 0	ale - scaling assum 86.5 - 80.0 - 75.0 - 70.0 - 65.0 - 60.0 - 55.0 -	ies units are dB unit			•	
note control Enable Max Hol RB 10 RB 10 Center F 23 Freq. Span 10 Ref Lvl 56. ATT AUTO? 125.00 Idate With New Settings ettings (All freqs in MH 20000 VBW 0.000010	d Log so 1Hz Hz 50.000 0	:ale - scaling assum 86.5 80.0 75.0 75.0 65.0 65.0 55.0 50.0 45.0	ies units are dB unit			•	
note control Part Enable Max Hol RB 1 IN VB 1 IO Center F 2 23 Center F 2 23 Freq. Span 1 IO Ref Lvl 56. ATT AUTO? 125.00 Att AUTO? 125.00 Ref Lvl 56. ATT AUTO? 125.00 Ref Lvl 56. ATT AUTO? 125.00 Ref Lvl 56. ATT AUTO? 100.0000 VBW 0.000010 0.0000 Span 100.0000	d Log so 1Hz Hz 50.000 0	:ale - scaling assum 86.5 30.0 75.0 70.0 65.0 65.0 55.0 50.0	ies units are dB unit			•	
ATT AUTO? AUT AUT AUTO? AUT AUT	d Log so 1Hz Hz 50.000 0	:ale - scaling assum 86.5 20.0 75.0 70.0 65.0 60.0 55.0 50.0 40.0	Avg - Veri			•	2400 2410
note control Enable Max Hol RB 11 VB 10 Center F 23 Center F 23 Center F 23 Ref Lvl 56. ATT AUTO? 125.00 VBW 0.000010 0.000 Span 100.0000 Stop 2410.000 Rec Level 56.0	d Log so 1Hz Hz 50.000 0	ale - scaling assum 86.5 80.0 75.0 70.0 65.0 60.0 55.0 50.0 40.0 36.5	Avg - Veri	tical	actor applied (30.1	5 @ 2360.0 MHz)	
	V/m v/h 2.9 V 3.4 H ental emission lev nit for emissions or I Field Strength vel Pol V/m v/h 7.4 V 5.3 H 0.6 H	V/m v/h Limit 2.9 V - 3.4 H - ental emission level @ 3m in 10 nit for emissions outside of restr I Field Strength vel Pol 15.209 V/m v/h Limit 7.4 V 54.0 5.3 H 54.0 0.6 H 74.0	V/m v/h Limit Margin 2.9 V - - 3.4 H - - ental emission level @ 3m in 100kHz RBW: nit for emissions outside of restricted bands: I Field Strength vel Pol 15.209 / 15.247 V/m v/h Limit Margin 7.4 V 54.0 -6.6 5.3 H 54.0 -8.7 0.6 H 74.0 -13.4	W/mv/hLimitMarginPk/QP/Avg2.9VPK3.4HPKa.4HPKental emission level @ 3m in 100kHz RBW:92.9nit for emissions outside of restricted bands:62.9I Field StrengthvelPol15.209 / 15.247DetectorW/mv/hLimitMarginPk/QP/Avg7.4V54.0-6.6Avg5.3H54.0-8.7Avg	W/m V/h Limit Margin Pk/QP/Avg degrees 2.9 V - - PK 140 3.4 H - - PK 295 ental emission level @ 3m in 100kHz RBW: 92.9 dBµV/m nit for emissions outside of restricted bands: 62.9 dBµV/m I Field Strength vel Pol 15.209 / 15.247 Detector Azimuth V/m V/h Limit Margin Pk/QP/Avg degrees V.4 V 54.0 -6.6 Avg 140 5.3 H 54.0 -8.7 Avg 294 0.6 H 74.0 -13.4 PK 288	W/m v/h Limit Margin Pk/QP/Avg degrees meters 2.9 V - - PK 140 1.0 3.4 H - - PK 295 1.0 eental emission level @ 3m in 100kHz RBW: 92.9 dB μ V/m nit for emissions outside of restricted bands: 62.9 dB μ V/m Limit is -300 I Field Strength Vel Pol 15.209 / 15.247 Detector Azimuth Height V/m v/h Limit Margin Pk/QP/Avg degrees meters V/m V/h Limit Margin Pk/QP/Avg degrees meters V/m 0 15.209 / 15.247 Detector Azimuth Height V/m V/h Limit Margin Pk/QP/Avg degrees meters V/m Vh Limit Margin Pk/QP/Avg 294 1.0 5.3 H 54.0 -8.7 Avg 294 1.0	W/m v/h Limit Margin Pk/QP/Avg degrees meters 2.9 V - - PK 140 1.0 3.4 H - - PK 295 1.0 ental emission level @ 3m in 100kHz RBW: 92.9 $dB\mu V/m$ nit for emissions outside of restricted bands: $62.9 \ dB\mu V/m$ Limit is -30dBc (UNII power the stricted bands: Vel Pol 15.209 / 15.247 Detector Azimuth Height Comments V/m v/h Limit Margin Pk/QP/Avg degrees meters 0.4 V 54.0 -8.7 Avg <

Client:	1 1 1							1 I NI	170070
	Intel							Job Number:	
Model	512an MM	N						Log Number:	
							Accou	unt Manager:	Briggs / Erikser
Contact:	Robert Pax	man							
Standard:	RSS 210 /	FCC 15.247 D	TS (Radiate	d)				Class:	N/A
		el @ 2462 MH							
	ower Setting			erage power:		(for reference	e purposes)		
		ield Strength				A ' 1 -	11.2.1.1		
Frequency MHz	Level	Pol v/h	Limit	/ 15.247	Detector Pk/QP/Avg	Azimuth	Height	Comments	
2460.710	dBµV/m 93.5	VIII	LIIIII	Margin	PKOPIAVy	degrees 128	meters 1.0		
2463.280	89.9	V H	-	-	PK	152	1.0		
2100.200	07.7			<u> </u>		102	1.0	1	
F	undamental	emission leve	el @ 3m in 10	OkHz RBW:	93.5	dBµV/m	1		
	Limit for	emissions ou	tside of restr	icted bands:		dBµV/m	Limit is -300	dBc (UNII pov	ver measuremer
							-	-	
ž	Signal Fiel							1.	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h H	Limit	Margin	Pk/QP/Avg	degrees	meters	CC 01 F	
		н н	54.0	-8.3	Avg	157	1.0	GC = 21.5	
2483.550	45.7		74.0	0 0	DV	126	1 1 1	1 (-1 - 1) b	
2483.550 2483.550	65.0	V	74.0 54 0	-9.0 -8 3	Pk Ava	126 145	1.0	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.560 2483.580	65.0 45.7 63.5 5xx remote co Local (manual) Control	V V H Enable Max Hold RB () 1MHz	54.0 74.0	-8.3 -10.5	Pk Avg Pk es units are dB units	145 159	1.0 1.0	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.580 2483.580 [□ 8 [□ 8 [□ 8 [□ 1 [□ 1 [□ 1 [□ 1 [□ 1 [□ 1 [□ 1 [□ 1	65.0 45.7 63.5 (manual) (Control une to Peak BB Signal NB Signal NB Signal tep () 125.00 Update With rrent Settings w 1.000000	V H H H H H H H H H H H H H H H H H H H	54.0 74.0	-8.3 -10.5	Avg Pk	145 159	1.0 1.0	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.580 2483.580	65.0 45.7 63.5 (manual) (Control une to Peak BB Signal NB Signal NB Signal (Control Update With rrent Settings (Control Update With rrent Settings	V H htrol Enable Max Hold RB (1 10Hz VB (1 10Hz Center F (1 2515. req. Span (1 100.0 Ref Lvl (1 57.0 ATT AUTO? New Settings (All freqs in MHz) VBW 0.000010 Span 100.0001	54.0 74.0	-8.3 -10.5	Avg Pk	145 159	1.0 1.0	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.580 2483.580 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8	65.0 45.7 63.5 5xx remote co Local (manual) Control une to Peak BB Signal NB Signal NB Signal tep (2125.00 Update With rrent Settings W 1.000000 er 2515.000 rt 2465.000	V V H http://www.settings (All freqs in MHz) VB 0.000010 Span 100.00001 Stop 2565.000	54.0 74.0	-8.3 -10.5	Avg Pk	145 159	1.0 1.0	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.580 2483.580 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8	65.0 45.7 63.5 (manual) (Control Une to Peak BB Signal NB Signal (Control Update With rrent Settings (Control Update With rrent Settings (Control Control (Control) (Control) (Control (Control) (Cont	V V H http://www.settings (All freqs in MHz) VBW 0.000010 Span 100.0001 Stop 2565.000 57.0	54.0 74.0	-8.3 -10.5	Avg Pk	145 159	1.0 1.0 ctor applied (31.0 Avg - Ver	GC = 21.5 GC = 21.5	
2483.550 2483.550 2483.580 2483.580 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8 [₽ 8	65.0 45.7 63.5 (manual) (Control une to Peak BB Signal BB Signal BB Signal Update With rrent Settings W 1.000000 er 2515.000 rt 2465.000 Reference Level Detector	V V H http://www.settings (All freqs in MHz) VBW 0.000010 Span 100.0001 Stop 2565.000 57.0	54.0 74.0	-8.3 -10.5	Avg Pk	145 159	1.0 1.0 ctor applied (31.0 Avg - Ver	GC = 21.5 GC = 21.5	