

# FCC OET BULLETIN 65 SUPPLEMENT C SAR EVALUATION REPORT

FOR

INTEL WIFI/WIMAX LINK 5150 SERIES (TESTED INSIDE OF LENOVO U150)

> FCC ID: PD9512ANXHU MODEL: 512ANXHMW

REPORT NUMBER: 09U12725-3G2

**ISSUE DATE: MARCH 17, 2010** 

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

(R) NVLAP LAB CODE 200065-0

### **Revision History**

| Rev. | Issue Date     | Revisions                                                       | Revised By   |
|------|----------------|-----------------------------------------------------------------|--------------|
|      | August 7, 2009 | Initial Issue                                                   |              |
| А    | Nov.02, 2009   | Change DL:UL ratio based upon PBA response from FCC             | Cho Yen      |
| В    | Dec. 10, 2009  | Modify the Test Report based upon FCC PBA response              | Sunny Hsih   |
| С    | Dec. 16, 2009  | Modify the Test Report based upon FCC/Applicant conference call | Sunny Hsih   |
| D    | Dec. 18, 2009  | Redo SAR linearly tests in section 16                           | Sunny Hsih   |
| D1   | Jan. 04, 2010  | Update scale up factor                                          | Sunny Hsih   |
| Е    | Jan. 26, 2010  | Update scaling factor                                           | Sunny Hsih   |
| F    | March 09, 2010 | Fixed typo error on FCC ID and Model Number                     | Aliza Zaffar |
| G    | March 15, 2010 | Modifications based upon March 15 conference call with FCC      | Mike Kuo     |
| G1   | March 16, 2010 | Update Page 8 and Page 40                                       | Mike Kuo     |
| G2   | March 17, 2010 | Update Page 8 Probe Calibration error %                         | Mike Kuo     |

Page 2 of 49

# **TABLE OF CONTENTS**

| 1. | Α    | TTESTATION OF TEST RESULTS                              | .5 |
|----|------|---------------------------------------------------------|----|
| 2. | TE   | EST METHODOLOGY                                         | .6 |
| 3. | FÆ   | ACILITIES AND ACCREDITATION                             | .6 |
| 4. | C    | ALIBRATION AND UNCERTAINTY                              | .7 |
|    | 4.1. | MEASURING INSTRUMENT CALIBRATION                        | .7 |
|    | 4.2. | MEASUREMENT UNCERTAINTY                                 | .8 |
| 5. | E    | QUIPMENT UNDER TEST                                     | .9 |
| 6. | S    | YSTEM DESCRIPTION                                       | 10 |
| 7. | С    | OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS | 11 |
| 8. | SI   | MULATING LIQUID CHECK                                   | 12 |
|    | 8.1. | SIMULATING LIQUID CHECK RESULTS                         | 13 |
| 9. | S    | YSTEM PERFORAMCE CHECK                                  | 14 |
|    | 9.1. | SYSTEM PERFORMANCE CHECK RESULTS                        | 15 |
| 10 | •    | WIMAX / 802.16e DEVICE SPECIFICATION                    | 16 |
|    | 10.1 | 1. WiMAX Zone Types                                     | 16 |
|    | 10.2 | 2. Duty Factor and Scaling Considerations               | 17 |
|    | 10.3 |                                                         |    |
|    | 10   | D.3.1. Conversion Factor                                | 20 |
| 11 |      |                                                         | 20 |
| 12 | •    | SIGNAL GENERATEOR DETAILS                               | 22 |
| 13 | •    | COMMUNICATION TEST SET DETAILS                          | 24 |
| 14 | •    | OUTPUT POWER, DUTY CYCLE AND PEAK TO AVERAGE RATIO      | 26 |
|    | 14.1 | PEAK TO AVERAGE RATIO                                   | 34 |
| 15 | •    | SUMMARY OF TEST RESULTS                                 | 40 |
|    | 15.1 | 1. 10 MHz CHANNEL BANDWIDTH                             | 40 |
|    | 15.2 | 2. 5 MHz CHANNEL BANDWIDTH                              | 40 |

Page 3 of 49

| 16. | PAR and SAR Error Consideration | .41 |
|-----|---------------------------------|-----|
| 17. | ATTACHMENTS                     | .47 |
| 18. | TEST SETUP PHOTO                | .48 |
| 19. | HOST DEVICE PHOTO               | .49 |

Page 4 of 49

## **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME:       | INTEL CORPORATION.<br>2111 N.E. 25TH AVENUE<br>HILLSBORO, OR 97124, US. | A                |
|---------------------|-------------------------------------------------------------------------|------------------|
| EUT DESCRIPTION:    | INTEL WIFI LINK 5150 SERI                                               | ES               |
| MODEL:              | 512ANXHMW                                                               |                  |
| DEVICE CATEGORY:    | Portable                                                                |                  |
| EXPOSURE CATEGORY:  | General Population/Uncon                                                | trolled Exposure |
| DATE TESTED:        | July 22 - 29, 2009                                                      |                  |
| HIGHEST SAR VALUES: | See table below                                                         |                  |
|                     |                                                                         |                  |

| FCC / IC   | Frequency Range | The Highest          | Limit (mW/g) |  |  |
|------------|-----------------|----------------------|--------------|--|--|
| Rule Parts | [MHz]           | SAR Values (1g_mW/g) |              |  |  |
| 27         | 2498.5 – 2687.5 | 0.012                | 1.6          |  |  |

#### **APPLICABLE STANDARDS:**

| STANDARD                         | TEST RESULTS |
|----------------------------------|--------------|
| FCC OET BULLETIN 65 SUPPLEMENT C | Pass         |

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Tested By:

Sunay Shih

Chaopen Um

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

CHAO YEN LIN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters and KDB 447498\_RF Exposure Requirements and Procedures for mobile and portable devices and 802.16e/WiMAX Permit-But-Ask and SAR Guidance.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <a href="http://www.ccsemc.com">http://www.ccsemc.com</a>

Page 6 of 49

# 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

| Name of Equipment            | Manufacturer  | Type/Model  | Serial Number |                          | Cal. Due date |                   |  |  |
|------------------------------|---------------|-------------|---------------|--------------------------|---------------|-------------------|--|--|
|                              | Manuracturer  | i ype/model | Senarivumber  | MM                       | DD            | Year              |  |  |
| Robot - Six Axes             | Stäubli       | RX90BL      | N/A           |                          |               | N/A               |  |  |
| Robot Remote Control         | Stäubli       | CS7MB       | 3403-91535    |                          |               | N/A               |  |  |
| DASY4 Measurement Server     | SPEAG         | SEUMS001BA  | 1041          |                          |               | N/A               |  |  |
| Probe Alignment Unit         | SPEAG         | LB (V2)     | 261           |                          |               | N/A               |  |  |
| SAM Phantom (SAM1)           | SPEAG         | QD000P40CA  | 1185          |                          |               | N/A               |  |  |
| SAM Phantom (SAM2)           | SPEAG         | QD000P40CA  | 1050          |                          |               | N/A               |  |  |
| Oval Flat Phantom (ELI 4.0)  | SPEAG         | QD OVA001 B | 1003          |                          |               | N/A               |  |  |
| Electronic Probe kit         | HP            | 85070C      | N/A           | N/A                      |               | N/A               |  |  |
| S-Parameter Network Analyzer | Agilent       | 8753ES-6    | MY40001647    | 11 14 20                 |               | 2009              |  |  |
| Signal Generator             | Agilent       | 8753ES-6    | MY40001647    | 11                       | 11 14 2009    |                   |  |  |
| E-Field Probe                | SPEAG         | EX3DV4      | 3686          | 3                        | 3 23 2010     |                   |  |  |
| Thermometer                  | ERTCO         | 639-1S      | 1718          | 5                        | 1             | 2010              |  |  |
| Data Acquisition Electronics | SPEAG         | DAE3 V1     | 427           | 10                       | 20            | 2009              |  |  |
| System Validation Dipole     | SPEAG         | D2600V2     | 1006          | 4                        | 22            | 2011              |  |  |
| MXA Signal Analyzer          | Agilent       | N9020A      | US48350984    | 10                       | 23            | 2009              |  |  |
| ESG Vector Signal Generator  | Agilent       | E4438C      | US44271090    | 9                        | 17            | 2010              |  |  |
| Power Meter                  | Giga-tronics  | 8651A       | 8651404       | 1                        | 1 11 2010     |                   |  |  |
| Power Sensor                 | Giga-tronics  | 80701A      | 1834588       | 1 11 2010                |               | 2010              |  |  |
| Amplifier                    | Mini-Circuits | ZVE-8G      | 90606         | N/A                      |               |                   |  |  |
| Amplifier                    | Mini-Circuits | ZHL-42W     | D072701-5     |                          | N/A           |                   |  |  |
| Simulating Liquid            | CCS           | M2600       | N/A           | Within 24 hrs of first t |               | hrs of first test |  |  |

Page 7 of 49

## 4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

| 300 MHz to 3 GHz averaged over 1 gram            |               |                   |         |             |           |
|--------------------------------------------------|---------------|-------------------|---------|-------------|-----------|
| Component                                        | error, %      | Distribution      | Divisor | Sensitivity | U (Xi), % |
| Measurement System                               |               |                   |         |             |           |
| Probe Calibration (k=1)@2600 MHz                 | 5.5           | Normal            | 1       | 1           | 5.5       |
| Axial Isotropy                                   | 1.15          | Rectangular       | 1.732   | 0.7071      | 0.47      |
| Hemispherical Isotropy                           | 2.30          | Rectangular       | 1.732   | 0.7071      | 0.94      |
| Boundary Effect                                  | 0.90          | Rectangular       | 1.732   | 1           | 0.52      |
| Probe Linearity                                  | 3.45          | Rectangular       | 1.732   | 1           | 1.99      |
| System Detection Limits                          | 1.00          | Rectangular       | 1.732   | 1           | 0.58      |
| Readout Electronics                              | 0.30          | Normal            | 1       | 1           | 0.30      |
| Response Time                                    | 0.80          | Rectangular       | 1.732   | 1           | 0.46      |
| Integration Time                                 | 2.60          | Rectangular       | 1.732   | 1           | 1.50      |
| RF Ambient Conditions - Noise                    | 3.00          | Rectangular       | 1.732   | 1           | 1.73      |
| RF Ambient Conditions - Reflections              | 3.00          | Rectangular       | 1.732   | 1           | 1.73      |
| Probe Positioner Mechanical Tolerance            | 0.40          | Rectangular       | 1.732   | 1           | 0.23      |
| Probe Positioning with respect to Phantom        | 2.90          | Rectangular       | 1.732   | 1           | 1.67      |
| Extrapolation, Interpolation and Integration     | 1.00          | Rectangular       | 1.732   | 1           | 0.58      |
| Test Sample Related                              |               |                   |         |             |           |
| Test Sample Positioning                          | 2.90          | Normal            | 1       | 1           | 2.90      |
| Device Holder Uncertainty                        | 3.60          | Normal            | 1       | 1           | 3.60      |
| Output Power Variation - SAR Drift               | 5.00          | Rectangular       | 1.732   | 1           | 2.89      |
| Phantom and Tissue Parameters                    |               |                   |         |             |           |
| Phantom Uncertainty (shape and thickness)        | 4.00          | Rectangular       | 1.732   | 1           | 2.31      |
| Liquid Conductivity - deviation from target      | 5.00          | Rectangular       | 1.732   | 0.64        | 1.85      |
| Liquid Conductivity - measurement                | 1.01          | Normal            | 1       | 0.64        | 0.65      |
| Liquid Permittivity - deviation from target      | 5.00          | Rectangular       | 1.732   | 0.6         | 1.73      |
| Liquid Permittivity - measurement uncertainty    | 1.01          | Normal            | 1       | 0.6         | 0.61      |
| Combined Standard Uncertainty Uc(y)              |               |                   |         |             | 9.48      |
| Expanded Uncertainty U, Coverage Factor = 2, > 9 | 95 % Confider | l<br>lce = 18.96% |         |             |           |
| Expanded Uncertainty U, Coverage Factor = 2, > 9 |               |                   |         |             |           |

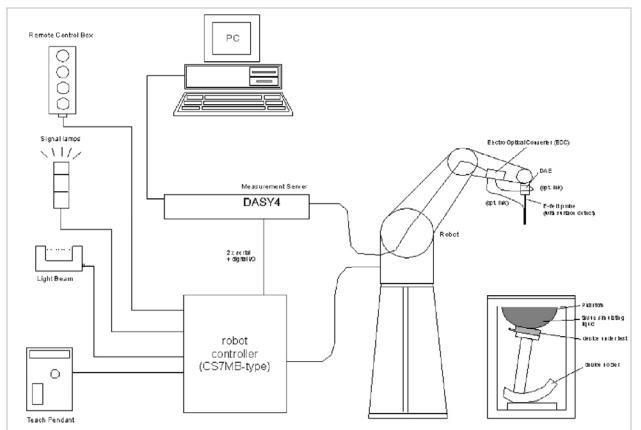
Page 8 of 49

# 5. EQUIPMENT UNDER TEST

Intel WiFi/Wimax Link 5150 Series (Tested inside of LENOVO U150)

| Normal operation: | Lap-held only<br>Note: SAR test with display open at 90° to the keyboard |
|-------------------|--------------------------------------------------------------------------|
| Antenna tested:   | Quanta, TX 1 Antenna, Part Number: LL2ANT00100                           |
|                   | Antenna-to-User Separation Distance:18.5 cm                              |

The Intel WiFi/WiMax Link 5150 is an embedded IEEE 802.16e and 802.11a/b/g/n wireless network adapter that operates in the 2.4 GHz and 5 GHz spectra for WiFi and 2.6 GHz for WiMAX. The adapter is installed inside the Lenovo host. This adapter is capable of delivering up to 300 Mbps Tx/Rx over WiFi and up to 4 Mbps UL/10 Mbps DL over WiMAX.


Link 5150 transmits on 5 ms frames using 5 MHz and 10 MHz channels. The 10 MHz channel bandwidth uses 1024 sub-carriers and 35 sub-channels, with 184 null sub-carriers and 840 available for transmission, consisting of 560 data sub-carriers and 280 pilot sub-carriers. The 5 MHz channel bandwidth uses 512 sub-carriers and 17 sub-channels, with 104 null sub-carriers and 408 available for transmission, consisting 272 data sub-carriers and 136 pilot sub-carriers.

WiMAX and 802.11 a/b/g/n co-location conditions:

The 802.16e WiMAX and 802.11 a/b/g/n WiFi radio will not transmit simultaneously. When the 512ANXMMW is installed in the typical laptop computer, once the network is chosen by the end user during WiMAX/WiFi network, only the WiMAX radio or WiFi radio will transmit.

Page 9 of 49

# 6. SYSTEM DESCRIPTION



### The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Page 10 of 49

# 7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

| Ingredients         |       | Frequency (MHz) |       |      |       |       |       |      |      | ) 2600 |      |
|---------------------|-------|-----------------|-------|------|-------|-------|-------|------|------|--------|------|
| (% by weight)       | 4     | 50              | 83    | 35   | 9     | 915   |       | 1900 |      | 2450   |      |
| Tissue Type         | Head  | Body            | Head  | Body | Head  | Body  | Head  | Body | Head | Body   | Body |
| Water               | 38.56 | 51.16           | 41.45 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2   | 73.2 |
| Salt (NaCl)         | 3.95  | 1.49            | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04   | 0.05 |
| Sugar               | 56.32 | 46.78           | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0    | 0.0  |
| HEC                 | 0.98  | 0.52            | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0    | 0.0  |
| Bactericide         | 0.19  | 0.05            | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0    | 0.0  |
| Triton X-100        | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0    | 0.0  |
| DGBE                | 0.0   | 0.0             | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7   | 27.2 |
| Dielectric Constant | 43.42 | 58.0            | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5   | 52.5 |
| Conductivity (S/m)  | 0.85  | 0.83            | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78   | 2.16 |

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M $\Omega$ + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 11 of 49

# 8. SIMULATING LIQUID CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within  $\pm$  5% of the values given in the table below.

## **Reference Values of Tissue Dielectric Parameters for Body Phantom**

The body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a body. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

| Target Frequency (MHz)     | Body           |         |  |  |
|----------------------------|----------------|---------|--|--|
| raiget Frequency (IVII IZ) | ٤ <sub>r</sub> | σ (S/m) |  |  |
| 2450                       | 52.7           | 1.95    |  |  |
| 2500                       | 52.6           | 2.02    |  |  |
| 2600                       | 52.5           | 2.16    |  |  |
| 2690                       | 52.4           | 2.29    |  |  |

( $\varepsilon_r$  = relative permittivity,  $\sigma$  = conductivity and  $\rho$  = 1000 kg/m<sup>3</sup>)

Page 12 of 49

## 8.1. SIMULATING LIQUID CHECK RESULTS

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2600 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Chaoyen Lin

| Simulating Liquid |            |    |         | Parameters                                 | Measured | Target | Deviation (%)  | Limit (%) |
|-------------------|------------|----|---------|--------------------------------------------|----------|--------|----------------|-----------|
| f (MHz)           | Depth (cm) |    |         | r arameters                                | Measureu | raiget | Deviation (70) |           |
| 2500              | 15         | e' | 53.1328 | Relative Permittivity ( $\varepsilon_r$ ): | 53.1328  | 52.6   | 1.01           | ± 5       |
| 2500              | 2500 15    | e" | 14.5098 | Conductivity (σ):                          | 2.01800  | 2.02   | -0.10          | ± 5       |
| 2590              | 2590 15    | e' | 52.8267 | Relative Permittivity ( $\varepsilon_r$ ): | 52.8267  | 52.5   | 0.62           | ± 5       |
| 2590              | 15         | e" | 14.7705 | Conductivity (σ):                          | 2.12821  | 2.15   | -1.01          | ± 5       |
| 2600              | 15         | e' | 52.8212 | Relative Permittivity ( $\varepsilon_r$ ): | 52.8212  | 52.5   | 0.59           | ± 5       |
| 2000              | 15         | e" | 14.8705 | Conductivity (σ):                          | 2.15089  | 2.16   | -0.46          | ± 5       |
| 2690              |            | e' | 52.4162 | Relative Permittivity ( $\varepsilon_r$ ): | 52.4162  | 52.4   | 0.03           | ± 5       |
| 2090              | 15         | e" | 15.1909 | Conductivity (σ):                          | 2.27329  | 2.29   | -0.73          | ± 5       |

Liquid Check

Ambient temperature: 25 deg. C; Liquid Temperature: 24 deg. C July 27, 2009 08:33 AM

| July 27, 2009 08:3 | 3 AIVI  |         |
|--------------------|---------|---------|
| Frequency          | e'      | e"      |
| 2450000000         | 53.2933 | 14.4436 |
| 246000000          | 53.2169 | 14.4482 |
| 2470000000         | 53.1313 | 14.4104 |
| 248000000          | 53.1003 | 14.4021 |
| 249000000          | 53.1146 | 14.428  |
| 250000000          | 53.1328 | 14.5098 |
| 2510000000         | 53.1009 | 14.6351 |
| 2520000000         | 53.0604 | 14.7329 |
| 2530000000         | 53.0411 | 14.8096 |
| 254000000          | 52.9851 | 14.8624 |
| 2550000000         | 52.9261 | 14.892  |
| 2560000000         | 52.8433 | 14.8421 |
| 2570000000         | 52.8035 | 14.7759 |
| 258000000          | 52.8071 | 14.7333 |
| 259000000          | 52.8267 | 14.7705 |
| 260000000          | 52.8212 | 14.8705 |
| 261000000          | 52.7757 | 14.9813 |
| 262000000          | 52.7211 | 15.0986 |
| 263000000          | 52.6337 | 15.1873 |
| 264000000          | 52.5455 | 15.241  |
| 2650000000         | 52.4793 | 15.2335 |
| 266000000          | 52.4579 | 15.2052 |
| 267000000          | 52.4416 | 15.1741 |
| 268000000          | 52.4351 | 15.1706 |
| 269000000          | 52.4162 | 15.1909 |
| 270000000          | 52.3798 | 15.2562 |
|                    |         |         |

The conductivity ( $\sigma$ ) can be given as:

### $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where  $\mathbf{f} = target f * 10^6$ 

 $\boldsymbol{\varepsilon_0} = 8.854 * 10^{-12}$ 

Page 13 of 49

# 9. SYSTEM PERFORAMCE CHECK

The system performance check is performed prior to any usage of the system in order to verify SAR measurement accuracy. The system performance check verifies that the system operates within its specifications of  $\pm 10\%$ .

## System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an isotropic E-filed Probe EX3DV4 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
  For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration.
- Distance between probe sensors and phantom surface was set to 3 mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

#### **Reference SAR Values for body-tissue**

The reference SAR values based on SPEAG's Calibration Certificate, Certificate No: D2600V2-1006\_APR09.

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 14.4 mW / g                |
| SAR normalized                                        | normalized to 1W   | 57.6 mW / g                |
| SAR for nominal Body TSL parameters 1                 | normalized to 1W   | 57.7 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Body TSL | condition          |                            |
|---------------------------------------------|--------------------|----------------------------|
| SAR measured                                | 250 mW input power | 6.46 mW / g                |
| SAR normalized                              | normalized to 1W   | 25.8 mW / g                |
| SAR for nominal Body TSL parameters 1       | normalized to 1W   | 25.9 mW / g ± 16.5 % (k=2) |

Page 14 of 49

## 9.1. SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2600V2 SN:1006

Date: July 27, 2009

Ambient Temperature =  $24^{\circ}$ C; Relative humidity = 40%

Measured by: Chaoyen Lin

| Medium | CW Signal<br>(MHz) | Forward power<br>(mW) |          | sured<br>ed to 1 W) | Target | Delta (%) | Tolerance<br>(%) |
|--------|--------------------|-----------------------|----------|---------------------|--------|-----------|------------------|
| Body   | 2600               | 250                   | 1g SAR:  | 56.1                | 57.6   | -2.60     | ±10              |
| воцу   | 2000               | 250                   | 10g SAR: | 25                  | 25.8   | -3.10     | ΞĪŪ              |

Page 15 of 49

# 10. WIMAX / 802.16e DEVICE SPECIFICATION

## 10.1. WiMAX Zone Types

The device and its system are both transmitting using only PUSC zone type. This enables multiple users to transmit simultaneously within the system. FUSC, AMC and other zone types are not used by Link 5150 for uplink transmission. The maximum DL:UL symbol ratio can be determined according to the PUSC requirements. The system transmit an odd number of symbols using DL-PUSL consisting of even multiples of traffics and control symbols plus one symbol for the preamble. Multiples of three symbols are transmitted by the device using UL-PUSC. The OFDMA symbol time allows up to 48 downlink and uplink symbols in each 5 ms frame. TTG and RTG are also included in each frame as DL/UL transmission gaps; therefore, the system can only allow 47 or less symbols per frame. The maximum DL:UL symbol ratio is determined according to these PUSC parameters for evaluating SAR compliance.

| Description                                                                       | Down Link | Up Link |
|-----------------------------------------------------------------------------------|-----------|---------|
|                                                                                   | 35        | 12      |
|                                                                                   | 34        | 13      |
|                                                                                   | 32        | 15      |
|                                                                                   | 31        | 16      |
| Number of OFDM Symbols in Down Link and<br>Up Link for 5 MHz and 10 MHz Bandwidth | 30        | 17      |
|                                                                                   | 29        | 18      |
|                                                                                   | 28        | 19      |
|                                                                                   | 27        | 20      |
|                                                                                   | 26        | 21      |

WiMAX chipset is capable of supporting the following Downlink / Uplink based upon 802.16e.

Page 16 of 49

## 10.2. Duty Factor and Scaling Considerations

- a. All Test Vectors are performing with all UL symbols at maximum power
- b. Although the chipset can supply higher downlink-to-uplink (DL/UL) symbol ratios, Link 5150 is scaled up or down based upon BRS/EBS WiMAX operators with agreements to transmit at a maximum DL/UL symbol ratio of 29:18 Vs actual UL traffic symbols were used during SAR measurement. Therefore, the maximum transmission duty factor supported by the chipset is not applicable for this device. The system can transmit up to 48 OFDMA symbols in each 5 ms frame, including 1.6 symbols for TTG and RTG.
- c. UL Burst Max. Average Power: was measured using spectrum analyzer gated to measure the power only during TX "ON" stage.
  - i. 10 MHz/16QAM: 23.1 dBm / 204.17mW
  - ii. 10 MHz / QPSK: 23.29 dBm / 213.3mW
  - iii. 5 MHz / 16QAM:23.83 dBm / 241.55mW
  - iv. 5 MHz:/QPSK: 23.63 dBm / 230.67mW
- d. The control channels may occupy up to 5 slots during normal operation. A slot is a subchannel with the duration of 3 symbols. There are a total of 35 slots in the 10 MHz channel configuration.
- e. The control channels may occupy up to 5 slots during normal operation. A slot is a subchannel with the duration of 3 symbols. There are a total of 17 slots in the 5 MHz channel configuration.

| Modulation | Channel Bandwidth | Power |
|------------|-------------------|-------|
| 16QAM      | 10 MHz            | 200mW |
| QPSK       | 10 MHz            | 205mW |
| 16QAM      | 5 MHz             | 242mW |
| QPSK       | 5 MHz             | 240mW |

f. Max. Rated / Certified Power:

g. By comparing to the measured output power (section 10.2 item c) Vs the Max. Rated / Certified Power (section 10.2 item f), the following max. power is used to calculate the scaling factor

| Max. Power Used to Calculate the Scaling Factor |          |       |  |  |
|-------------------------------------------------|----------|-------|--|--|
| Modulation Channel Bandwidth Power              |          |       |  |  |
| 16QAM                                           | 204.17mW |       |  |  |
| QPSK                                            | 213.3mW  |       |  |  |
| 16QAM                                           | 5 MHz    | 242mW |  |  |

| QPSK | 5 MHz | 240mW |
|------|-------|-------|
|------|-------|-------|

- h. When the device is transmitting at max. rated power, the output power for the control symbol is:
  - i. 10 MHz/16QAM : (**204.17mW**x5)/35=29.17mW
  - ii. 10 MHz/QPSK: (**213.3mW**x5)/35=30.47mW
  - iii. 5 MHz/16QAM : (**242mW**x5)/17=71.18mW
  - iv. 5 MHz/QPSK : (**240mW**x5)/17=70.59mW
- i. The target output power for DL:UL ratio of 29:18 is calculated as the following:

| Modulation | Channel Bandwidth | 29:18 DL:UL Ratio Power /mW              |
|------------|-------------------|------------------------------------------|
| 16QAM      | 10 MHz            | (29.17 x 3)+( <b>204.17</b> x15)=3150.06 |
| QPSK       | 10 MHz            | (30.47x3)+( <b>213.3</b> X15)=3290.91    |
| 16QAM      | 5 MHz             | (71.18 X 3) +( <b>242</b> X15)=3843.54   |
| QPSK       | 5 MHz             | (70.59X3) +( <b>240</b> X15)=3811.77     |

## j. Test Vector waveform power

| DQ4_12_UQ16_12_10M(32:15 DL:UL Ratio)<br>10 MHz BW/ 16 QAM |               |                                       |                              |                          |
|------------------------------------------------------------|---------------|---------------------------------------|------------------------------|--------------------------|
| Channel No                                                 | Frequency/MHz | Measured Power                        | Number of Traffic<br>Symbols | Traffic Symbols<br>Power |
| 0                                                          | 2501          | 186.21mW                              | 12                           | 2234.52mW                |
| 368                                                        | 2593          | 188.36mW                              | 12                           | 2260.32mW                |
| 736                                                        | 2685          | 204.17mW                              | 12                           | 2450.04mW                |
|                                                            | DQ64_UQ4_     | 12_21S_10M (23:24<br>10 MHz BW / QPSF | -                            |                          |
| 0                                                          | 2501          | 20370mW                               | 21                           | 4277.7mW                 |
| 368                                                        | 2593          | 206.06mW                              | 21                           | 4327.26mW                |
| 736                                                        | 2685          | 213.30mW                              | 21                           | 4479.3mW                 |
| DQ4_12_UQ16_34_5M (26:21 DL:UL Ratio)<br>5 MHz BW / 16QAM  |               |                                       |                              |                          |

Page 18 of 49

| 0                                    | 2498.5 | 220.80mW       | 18 | 3974.4mW  |  |
|--------------------------------------|--------|----------------|----|-----------|--|
| 378                                  | 2593   | 232.27mW       | 18 | 4180.86mW |  |
| 756                                  | 2687.5 | 241.55mW       | 18 | 4347.9mW  |  |
| DQ64_56_UQ4_12_5M(26:21 DL:UL Ratio) |        |                |    |           |  |
|                                      |        | 5 MHz BW/ QPSK |    |           |  |
| 0                                    | 2498.5 | 216.77mW       | 18 | 3901.86mW |  |
| 378                                  | 2593   | 225.94mW       | 18 | 4066.92mW |  |
| 756                                  | 2687.5 | 230.67mW       | 18 | 4837.5mW  |  |

## 10.3. Duty-Factor Scaling to DL:UL Ratio of 29:18

|            | DQ4_12_UQ16_12_10M(32:15 DL:UL Ratio) |                      |                               |                                                     |  |
|------------|---------------------------------------|----------------------|-------------------------------|-----------------------------------------------------|--|
|            |                                       | 10 MHz BW/ 16 Q      | AM                            |                                                     |  |
| Channel No | Frequency/MHz                         | 29:18 Rated<br>Power | 32:15 Traffic<br>Symbol Power | Scaling Factor<br>(rated<br>power/traffic<br>power) |  |
| 0          | 2501                                  | 3150.06mW            | 2234.52mW                     | 1.41                                                |  |
| 368        | 2593                                  | 3150.06mW            | 2260.32mW                     | 1.39                                                |  |
| 736        | 2685                                  | 3150.06mW            | 2450.04mW                     | 1.29                                                |  |
|            | DQ64_UQ4_                             | 12_21S_10M (23:2     | 24 DL:UL Ratio)               |                                                     |  |
|            |                                       | 10 MHz BW / QPS      | SK                            |                                                     |  |
| 0          | 2501                                  | 3290.91mW            | 4277.7mW                      | 0.77                                                |  |
| 368        | 2593                                  | 3290.91mW            | 4327.26mW                     | 0.76                                                |  |
| 736        | 2685                                  | 3290.91mW            | 4479.3mW                      | 0.74                                                |  |
|            | DQ4_12_U                              | Q16_34_5M (26:21     | DL:UL Ratio)                  |                                                     |  |
|            |                                       | 5 MHz BW / 16QA      | M                             |                                                     |  |
| 0          | 2498.5                                | 3843.54mW            | 3974.4mW                      | 0.97                                                |  |
| 378        | 2593                                  | 3843.54mW            | 4180.86mW                     | 0.92                                                |  |
| 756        | 2687.5                                | 3843.54mW            | 4347.9mW                      | 0.88                                                |  |

Page 19 of 49

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET, FREMONT, CA 94538, USA FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888

This report shall not be reproduced except in full, without the written approval of CCS.

| DQ64_56_UQ4_12_5M(26:21 DL:UL Ratio)<br>5 MHz BW/ QPSK |        |           |           |      |  |
|--------------------------------------------------------|--------|-----------|-----------|------|--|
| 0                                                      | 2498.5 | 3811.77mW | 3901.86mW | 0.98 |  |
| 378                                                    | 2593   | 3811.77mW | 4066.92mW | 0.94 |  |
| 756                                                    | 2687.5 | 3811.77mW | 4837.5mW  | 0.79 |  |

## 10.3.1. Conversion Factor

| Test Vector File Name | BW     | DL/UL | Duty<br>Cycle | Conversion<br>Factor | UL Modulation |
|-----------------------|--------|-------|---------------|----------------------|---------------|
| DQ4_12_UQ16_12_10M    | 10 MHz | 32:15 | 24.7%         | 4.05                 | 16QAM R1/2    |
| DQ64_UQ4_12_21S_10M   | 10 MHz | 23:24 | 43.2%         | 2.32                 | QPSK R1/2     |
| DQ4_12_UQ16_34_5M     | 5 MHz  | 26:21 | 37%           | 2.7                  | 16QAM R3/4    |
| DQ64_56_UQ4_12_5M     | 5 MHz  | 26:21 | 37%           | 2.7                  | QPSK R1/2     |

Conversion Factor = 1 / (duty factor). Duty Factor =(number of uplink traffic symbols x 102.857us)/5000us).

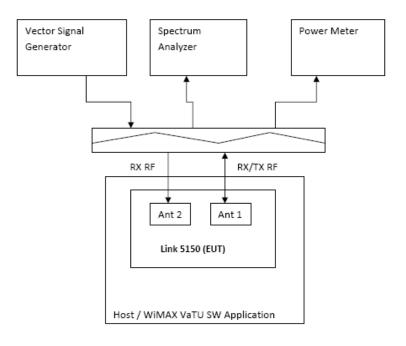
## 11. TEST SOFTWARE

The test software tool (WiMAX VaTU SW application ) is installed on the Lenovo U150 Netbook computer to configure the test device, Intel WiFi/WiMAX Link 5150, to transmit at max. output power. During normal operation, the output power of WiFi/WiMAX client module is controlled by a WiMAX basestation, which also determines the characteristics of the transmission. For testing purposes, the device output power is kept at this max. using WiMAX VATU SW application loaded in the Lenovo U150 Netbook. The uplink transmission is maintained at a stable condition by the radio profile loaded in Vector signal generator. This enables the WiFi/WiMAX module to transmit at max. power with a constant duty factor according to the specific radio profile as documented in the section 3. The test software serves only one purpose, to configure the WiFi/WiMAX module to transmit at the max. power during SAR measurement.

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

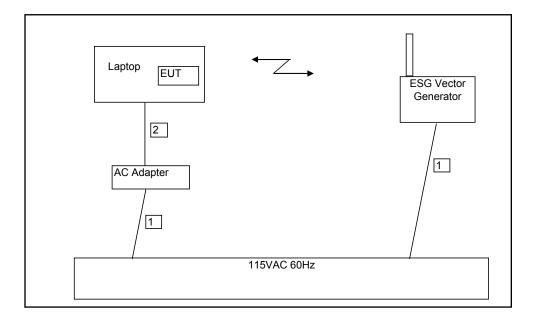
Page 20 of 49

| WiMAX VaTU            |           |                 |                   |                  |                          |                      |
|-----------------------|-----------|-----------------|-------------------|------------------|--------------------------|----------------------|
| Settings Test Mode    | Help      |                 |                   |                  |                          |                      |
|                       |           | WM Binary Viev  | W NVM Layout      | View Fields View | Prod Lock Internal Calib | rations Gpio Control |
| Band Profil           | .e        |                 |                   |                  |                          |                      |
| Radio Profile         |           |                 | _                 | Test Vector File | e                        |                      |
| Prof 3.A 2.496 - 10 - | By/Ty     |                 |                   |                  |                          |                      |
| Prof3.A_2.496 - 5 - 1 |           |                 |                   | Start Frequenc   |                          |                      |
|                       |           |                 |                   |                  | /                        | ntel)                |
| All Channels (7)      | 1.1       | Channel No. / F | Freq [MHz]        | VCO Sub Band     |                          | incer .              |
| All Channels (        | Partiai   |                 | •                 |                  |                          |                      |
| 2X                    |           |                 |                   |                  | Тх                       |                      |
| Rx Chain 1 🔽 C        | H Enabled | Rx Chair        | n 2 👿 C           | H Enabled        | Power Out [dBm]          | 30 : Tp              |
| I-Dac Q-Da            | ic.       | I-Dac           | Q-D               | ac               | 22.50                    | Att                  |
|                       |           | 1546            |                   |                  |                          | 0                    |
| Digital Att [dB]      |           | Freq Offset     | [H <sub>7</sub> ] |                  |                          |                      |
| IF Att [dB]           |           | rioq olisor     | []                |                  |                          | -40                  |
| RF Att [dB]           |           |                 |                   |                  | Dent District MD-1       |                      |
|                       |           |                 |                   |                  | Pout Digital [dBm]       |                      |
| Total Att [dB]        |           |                 |                   |                  | RF Att [dB]              |                      |
| RSSI [dBm]            | CINR [dB] |                 | BER               |                  | PA Gain [dB]             |                      |
|                       |           |                 | I                 |                  | Pout Total [dBm]         | <u>1</u>             |
| Averaging             | 🕅 Averagi | ing             | 🔲 Infinity Ac     | cumulation       |                          |                      |
| Averaging / Sampling  | Averaging | / Sampling      | Accumulation      | 1 / Refresh      | PA Detector [mV]         |                      |
| [Frames]              | [Frames]  |                 | [Frames]          |                  | I-Dac                    | Q-Dac                |
| 100                   | 100       |                 | 100               |                  |                          | AD LO                |


Page 21 of 49

# 12. SIGNAL GENERATEOR DETAILS

| Test Vector File Name | BW     | DL:UL | Duty<br>Cycle | DL Modulation | UL Modulation |
|-----------------------|--------|-------|---------------|---------------|---------------|
| DQ64_UQ4_12_21S_10M   | 10 MHz | 23:24 | 43.2%         | QAM64 R5/6    | QPSK R1/2     |
| DQ4_12_UQ16_12_10M    | 10 MHz | 32:15 | 24.7%         | QPSK R1/2     | QAM16 R3/4    |
| DQ64_56_UQ4_12_5M     | 5 MHz  | 26:21 | 37%           | QAM64 R5/6    | QPSK R1/2     |
| DQ4_12_UQ16_34_5M     | 5 MHz  | 26:21 | 37%           | QPSK R1/2     | QAM16 R3/4    |


a. Frame Profile loaded in Vector Signal Generator:

## b. Connection Diagram- RF conducted Power Measurement



Page 22 of 49

### SAR Measurement



Agilent ESG Vector Signal Generator / Model :E4438C is used in conjunction with Intel supplied radio profile to configure the WiFi/WiMAX module for the SAR evaluation. ESG Vector Signal Generator is loaded with the downlink signal, containing the respective FCH, DL-MAP and UL-MAP required by the test device to configure the uplink transmission. The waveform is configured with 12 uplink symbols with max power for 10 MHz/16QAM; 21 uplink symbols with max. max. power for 10MHz/QPSK and 18 uplink symbols at max. power for 5 MHz/16QAM and QPSK using Intel Signal Waveform Software for 802.16 WiMAX, on the PC and downloaded to the VSG. The test device can synchronize itself to the signal received from VSG, both in frequency and time. It then modulates the DL-MAP and UL-MAP transmitted in the downlink sub-frame and determine the DL:UL symbol ratio. The downlink burst is repeated in each frame, every 5 ms, to simulate the normal transmission from a WiMAX base station. The UL-MAP received by the device is used to configure the uplink burst with all data symbols and sub-channels active. Since this is a one-way communication configuration, control channel transmission is neither requested nor transmitted.

For TDD systems, both uplink and downlink transmissions are at the same frequency. The output power of the VSG is kept at least 80 dB lower than the test device to avoid interfering with the SAR measurements. In addition, a horn antenna is used for the VSG and it is kept more than 1 meter away from the test device to further minimize unnecessary pickup by the SAR probe.

Page 23 of 49

# **13. COMMUNICATION TEST SET DETAILS**

Modulation and channel bandwidth selection is loaded to Vector Signal Generator. For example, when evaluating 16QAM with 10 MHz channel Bandwidth, radio profile name "DQ4\_12\_UQ16\_12\_10M" is active on the Vector Signal Generator.

| Parameter /Value                                          | Fram               | e definition for 10 MHz FCC |             |
|-----------------------------------------------------------|--------------------|-----------------------------|-------------|
|                                                           | Test veo           | ctor name                   |             |
|                                                           | DQ4_12_UQ16_12_10M | DQ64_UQ4_12_21S_10M         | Remark      |
| Band Width                                                | 10MHz              | 10MHz                       |             |
| FFT size                                                  | 1024               | 1024                        |             |
| UL Symbols at Max.<br>Power                               | 12                 | 21                          |             |
| Down link                                                 |                    |                             |             |
| Zone profiles                                             | Zone 1 – PUSC      | Zone 1 – PUSC               | single zone |
| Burst profile / MCS                                       | MCS : QPSK R1/2    | MCS : QAM64 R5/6            | Single DIUC |
| Up link                                                   |                    |                             |             |
| SAR compensation<br>factor used during SAR<br>measurement | 4.05               | 2.32                        |             |
| Zone profiles                                             | Zone 1 – PUSC      | Zone 1 – PUSC               | single zone |
| Burst profile / MCS                                       | MCS : QAM16 R1/2   | MCS : QPSK R1/2             | Single DIUC |

| Parameter /Value            | Fram              |                   |             |
|-----------------------------|-------------------|-------------------|-------------|
|                             | Test veo          | ctor name         | Dementer    |
|                             | DQ64_56_UQ4_12_5M | DQ4_12_UQ16_34_5M | Remarks     |
| Band Width                  | 5MHz              | 5MHz              |             |
| FFT size                    | 512               | 512               |             |
| UL Symbols at Max.<br>Power | 18                | 18                |             |
| Down link                   |                   |                   |             |
| Zone profiles               | Zone 1 – PUSC     | Zone 1 – PUSC     | single zone |
| Burst profile / MCS         | MCS : QAM64 R5/6  | MCS : QPSK R1/2   | Single DIUC |
| Up link                     |                   |                   |             |

Page 24 of 49

#### REPORT NO: 09U12725-3G2 FCC ID: PD9512ANXHU

| SAR compensation<br>factor used during SAR<br>measurement | 2.7             | 2.7              |             |
|-----------------------------------------------------------|-----------------|------------------|-------------|
| Zone profiles                                             | Zone 1 – PUSC   | Zone 1 – PUSC    | single zone |
| Burst profile / MCS                                       | MCS : QPSK R1/2 | MCS : QAM16 R3/4 | Single DIUC |

Page 25 of 49

# 14. OUTPUT POWER, DUTY CYCLE AND PEAK TO AVERAGE RATIO

The max average conducted output power is measured for the uplink durst in the difference modulation and channel bandwidth. Conducted average output power were measured with the module embedded in the Lenovo laptop with over-to-air communication link to Vector Signal generator.

The EUT driver software installed in the host support equipment during testing was WiMAX VaTU, version: 3.0.0.0

The modes with highest output power channel were chosen for the conducted output power measurement.

10 MHz

| Mode       | Test Vector file name | Number of Control Symbol at<br>reduced power | Number of UL traffic<br>Symbols at Max. Power |
|------------|-----------------------|----------------------------------------------|-----------------------------------------------|
| 16QAM R1/2 | DQ4_12_UQ16_12_10M    | 0                                            | 12                                            |
| QPSK R1/2  | DQ64_UQ4_12_21S_10M   | 0                                            | 21                                            |

5 MHz

| Mode       | Test Vector file name | Number of Control Symbol at<br>reduced power | Number of UL traffic<br>Symbols at Max. Power |
|------------|-----------------------|----------------------------------------------|-----------------------------------------------|
| 16QAM R3/4 | DQ4_12_UQ16_34_5M     | 0                                            | 18                                            |
| QPSK R1/2  | DQ64_56_UQ4_12_5M     | 0                                            | 18                                            |

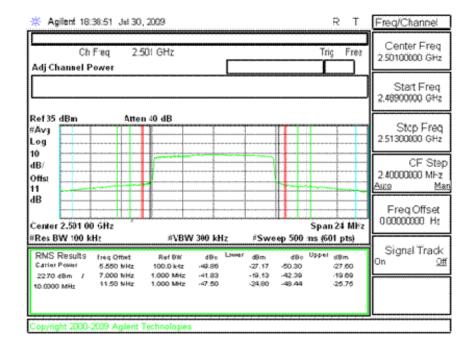
Page 26 of 49

### AVERAGE OUTPUT POWER

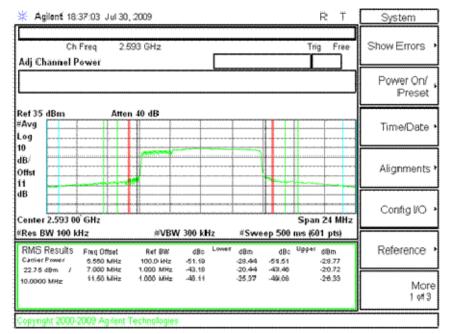
| Mode  | Test Vector file name    | Ch. No | f (MHz) | AVG Output<br>power/dBm | AVG Output<br>power/mW | Drift/dB |
|-------|--------------------------|--------|---------|-------------------------|------------------------|----------|
|       | 16QAM DQ4_12_UQ16_12_10M | 0      | 2501    | 22.70                   | 186.21                 |          |
| 16QAM |                          | 368    | 2593    | 22.75                   | 188.36                 |          |
|       |                          | 736    | 2685    | 23.10                   | 204.17                 | 0.17     |
|       | QPSK DQ64_UQ4_12_21S_10M | 0      | 2501    | 23.09                   | 203.70                 |          |
| QPSK  |                          | 368    | 2593    | 23.14                   | 206.06                 |          |
|       |                          | 736    | 2685    | 23.29                   | 213.30                 | 0.11     |

10 MHz

#### 5 MHz


| Mode                   | Test Vector file name   | Ch. No | f (MHz) | AVG Output<br>power/dBm | AVG Output<br>power/mW | Drift/dB |
|------------------------|-------------------------|--------|---------|-------------------------|------------------------|----------|
|                        | 16QAM DQ4_12_UQ16_34_5M | 0      | 2498.5  | 23.44                   | 220.80                 |          |
| 16QAM                  |                         | 378    | 2593    | 23.66                   | 232.27                 |          |
|                        |                         | 756    | 2687.5  | 23.83                   | 241.55                 | 0.16     |
|                        |                         | 0      | 2498.5  | 23.36                   | 216.77                 |          |
| QPSK DQ64_56_UQ4_12_5M | 378                     | 2593   | 23.54   | 225.94                  |                        |          |
|                        |                         | 756    | 2687.5  | 23.63                   | 230.67                 | 0.1      |

Drift: Per the requirement stated in IEEE1528 section 6.3.3., power drift shall be recorded the absolute value between step 1 and step 4. However, with repeat testing, it is not possible to obtain meaningful absolute value. In order to determine if device output has been stable during a SAR measurement, conducted power were measured before and after based upon the length of time of each SAR test to verify if the output changes are within the 5% drift (< 0.25 dB).


Page 27 of 49

#### Average Power Plots for 10 MHz

#### 10 MHz\_16QAM Low CH



#### 10 MHz 16QAM Mid CH



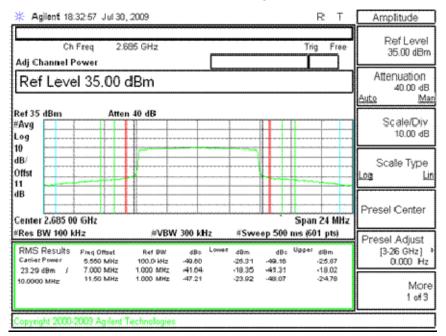
COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 28 of 49

| 10 MHz | 16QAM | High CH |  |
|--------|-------|---------|--|
|        |       |         |  |

| 🔆 Agilent 18:40:23 Jul 30,                                                                                       | 2009                                                                          |                                         |                                                          | RT       | Freq/Channel                             |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------|------------------------------------------|
| Ch Freq 2.8<br>Adj Channel Power                                                                                 | 85 GHz                                                                        |                                         | Tri                                                      | g Free   | Center Freq<br>2.68500000 GHz            |
|                                                                                                                  |                                                                               |                                         |                                                          |          | Start Freq<br>2.67300000 GHz             |
| #Avg<br>Log                                                                                                      | 140 dB                                                                        |                                         |                                                          |          | Stop Freq<br>2.69700000 GHz              |
| 10<br>dB/<br>Offst                                                                                               |                                                                               |                                         |                                                          |          | CF Step<br>2.40000000 MHz<br>Auto Mar    |
| dB<br>Center 2.685 00 GHz                                                                                        |                                                                               |                                         |                                                          | n 24 MHz | Freq Offset<br>0.00000000 Hz             |
| KRes BW 100 kHz  RMS Results Freq Offset  Cartier Foreir 5,550 MHz  23-10 dBm / 7,000 MHz  10,0000 MHz 11,50 MHz | #VBW 300<br>Ref Int dB<br>100.01 kHz 50.8<br>1.000 MHz 42.6<br>1.000 MHz 47.6 | o Loveer dBm.<br>13 -27.53<br>15 -19.55 | eep 500 ms (6<br>dBo Upper<br>-60.36<br>-42.12<br>-48.41 |          | Signal Track<br><sup>On <u>Off</u></sup> |
| Copyright 2000-2009 Agilent 1                                                                                    | lechnologies                                                                  |                                         |                                                          |          |                                          |

#### 10 MHz QPSK Low CH



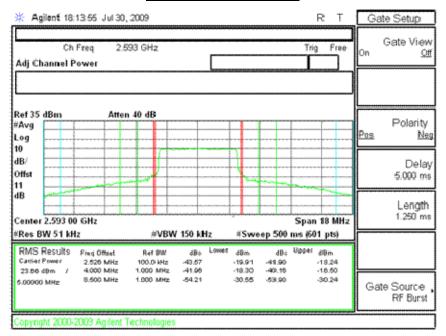

Page 29 of 49

| * Agilent 18:34:47 Jul 30                                                                                              | , 2009                                                                         |                                        |                                                      | RT       | Freq/Channel                            |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------|-----------------------------------------|
| Ch Freq 2.<br>Adj Channel Power                                                                                        | 593 GHz                                                                        |                                        | Tr                                                   | ig Free  | Center Freq<br>2.59300000 GHz           |
|                                                                                                                        |                                                                                | Langer                                 |                                                      |          | Start Freq<br>2.58100000 GHz            |
| #Avg<br>Log                                                                                                            | n 40 dB                                                                        |                                        |                                                      |          | Stop Freq<br>2.60500000 GHz             |
| 10<br>dB/<br>Offst<br>11                                                                                               |                                                                                |                                        |                                                      |          | CF Step<br>2.40000000 MHz<br>Auto Ma    |
| dB<br>Center 2.593 00 GHz                                                                                              |                                                                                |                                        |                                                      | n 24 MHz | Freq Offset<br>0.00000000 Hz            |
| #Res BW 100 kHz<br>RMS Results Freq Other<br>Cartier Power 6.680 MHz<br>23.14 dbm / 7.000 MHz<br>10.0000 MHz 11.50 MHz | #VBW 300<br>Ref 8% dB<br>100.0 kHz -50.0<br>1.000 MHz -42.1<br>1.000 MHz -47.0 | o. Lower dBm;<br>15 -26.91<br>0 -18.96 | 480 Upp41<br>480 Upp41<br>480.19<br>-42.22<br>-48.24 |          | Signal Track<br><sup>On <u>Of</u></sup> |
| Copyright 2000-2009 Agilent                                                                                            | Technologies                                                                   |                                        |                                                      |          |                                         |

### <u>10 MHz\_QPSK Mid CH</u>

#### 10 MHz QPSK High CH




Page 30 of 49

#### Power Plots 5 MHz

| Agilent 18:10:24 Jul 30,                      |                        |                  |                  |                  |                                         | R T            | , <u> </u> | weep<br>eep Time     |
|-----------------------------------------------|------------------------|------------------|------------------|------------------|-----------------------------------------|----------------|------------|----------------------|
|                                               | 985 GHz                | <b></b>          |                  |                  | Trig                                    | Free           | Auto       | -500.0 ms<br>Ma      |
| Adj Channel Power                             |                        |                  |                  |                  |                                         |                |            |                      |
| Sweep Time 500                                | .0 ms                  |                  |                  |                  |                                         |                | Single     | Sweiep<br><u>Con</u> |
|                                               | 10.105                 |                  |                  |                  |                                         |                | L          |                      |
| tef 35 dBm Atter                              | 40 dB                  |                  |                  |                  |                                         |                | Aut        | o Sweep              |
| .09                                           |                        |                  |                  |                  | + + + + + + + + + + + + + + + + + + + + |                | Norm       | Tim<br>Ass           |
| 0<br>B/                                       | 7                      |                  |                  |                  |                                         |                |            |                      |
| )tfst                                         |                        |                  |                  |                  |                                         |                | On         | Gate                 |
| 1                                             |                        |                  |                  |                  | -                                       |                | 20         | ×                    |
| B                                             |                        |                  |                  |                  |                                         |                | Gal        | e Setup              |
| Center 2,498 50 GHz                           |                        |                  |                  |                  | Span                                    | 18 MHz         | 08         | e Semh               |
| Res BW 51 kHz                                 | ⊭VBW                   | 150 kHz          | ≋Swe             | ep 500 i         | ns (60                                  | 1 pts)         |            |                      |
| RMS Results Freq Offset                       | Ref ØW                 | dBo Lower        | dBm.             |                  |                                         | diBm           |            | Points<br>60         |
| Cartier Power 2,520 MHz 23,44 dBm / 4,000 MHz | 100.0 kHz<br>1.000 MHz | -43.33<br>-38.85 | -19.88<br>-15.41 | -41.50<br>-39.31 |                                         | 18.12<br>15.87 | L          |                      |
| 5.00000 MHz 8.500 MHz                         | 1.000 MHz              | -52.48           | -29.04           | 53.62            |                                         | -30,17         |            |                      |
|                                               |                        |                  |                  |                  |                                         |                |            |                      |
| opyright 2000-2009 Agilent 1                  |                        |                  |                  |                  | and and and                             |                | ]          |                      |

#### 5 MHz 16QAM Low CH

### 5 MHz 16QAM Mid CH

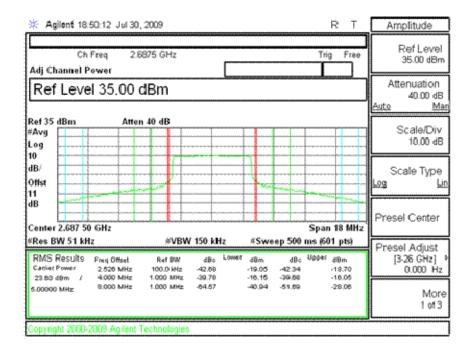



Page 31 of 49

| ☆ Agilent 18:18:44 Jul 30,                                                                          | 2009                                                                    |                                                                           | R T                 | Sweep<br>Sweep Time           |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-------------------------------|
| Ch Freq 2.8<br>Adj Channel Power                                                                    | 875 GHz                                                                 | Tr                                                                        | g Free              | 500.0 ms<br>Auto <u>Ms</u>    |
| Sweep Time 500                                                                                      | .0 ms                                                                   |                                                                           |                     | Sweier<br><u>Single Con</u>   |
| Avg                                                                                                 | 140 dB                                                                  |                                                                           |                     | Auto Sweep<br>Tim<br>Norm Acc |
| ID<br>IB/<br>Diffst                                                                                 |                                                                         |                                                                           |                     | Gate<br>On Of                 |
| IB<br>Center 2.687 50 GHz<br>(Res BW 51 kHz                                                         | #VBW 150 kHz                                                            |                                                                           | n 18 MHz<br>01 pts) | Gate Setup                    |
| RMS Results Freq Other<br>Cartier Power 2,526 MHz<br>23.83 dBm / 4,000 MHz<br>6,00000 MHz 8,500 MHz | Ref INN dBc<br>100.0 kHz -43.17<br>1.000 MHz -39.20<br>1.000 MHz -52.80 | Lowest dBm, dBc Upper<br>-19.35 -45.46<br>-15.37 -398.21<br>-28.97 -53(85 |                     | Points<br>60                  |

#### 5 MHz\_16QAM High CH

#### 5 MHz QPSK Low CH




Page 32 of 49

| Agilent 18:05:50 Jul 30, 2<br>Ch Freq 2:59:<br>Adj Channel Power | 3 GHz            | R Trig Fr                                                                                                                                                                       | Freq/Channel<br>Center Freq<br>2.59300000 GHz |
|------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                  | Lange            |                                                                                                                                                                                 | Start Freq<br>2.58400000 GHz                  |
| Ref 35 dBm Atten 4<br>#Avg                                       | 10 dB            |                                                                                                                                                                                 | Stop Freq<br>2.60200000 GHz                   |
| 10<br>dB/<br>Offst<br>11                                         |                  |                                                                                                                                                                                 | CF Ste<br>1.80000000 MHz<br><u>Auto M</u>     |
| dB                                                               |                  | Span 18 M                                                                                                                                                                       |                                               |
|                                                                  | 1.000 MHz -40.54 | #Sweep 500 ms (601 pts)        dBm      dB      Upper      dBm        19.30      -42.43      -19.89        -17.00      -40.65      -17.11        -29.73      -54.02      -30.47 | Signal Track                                  |

## 5 MHz\_QPSK Mid CH

## 5 MHz QPSK High CH



Page 33 of 49

## 14.1. PEAK TO AVERAGE RATIO

Peak and Average Output power measurements were made with Power Meter. Power meter in the Pulse mode measuring only during the ON time of the burst.

10 MHz

| Mode  | Mode Test Vector file name |     | f (MHz) | Conducted Power (dBm) |             | Peak-to-average |  |
|-------|----------------------------|-----|---------|-----------------------|-------------|-----------------|--|
|       | Ch. No                     |     | Peak    | Average               | ratio (PAR) |                 |  |
| 16QAM | DQ4_12_UQ16_12_10M         | 368 | 2593    | 30.777                | 23.266      | 7.511           |  |
| QPSK  | DQ64_UQ4_12_21S_10M        | 368 | 2593    | 30.841                | 22.787      | 8.054           |  |

5 MHz

| Mode  | Mode Test Vector file name |        | f (MHz) | Conducted Power (dBm) |         | Peak-to-average |  |
|-------|----------------------------|--------|---------|-----------------------|---------|-----------------|--|
| mouo  | Node Test vector me name   | Ch. No | . (     | Peak                  | Average | ratio (PAR)     |  |
| 16QAM | DQ4_12_UQ16_34_5M          | 378    | 2593    | 30.823                | 23.649  | 7.174           |  |
| QPSK  | DQ64_56_UQ4_12_5M          | 378    | 2593    | 30.823                | 22.83   | 7.993           |  |

Page 34 of 49

### Peak to Average Ratio Plots ON time of Burst

10MHz\_16QAM



10MHz QPSK



Page 35 of 49

### Peak to Average Ratio Plots On time of Burst

5MHz\_16QAM



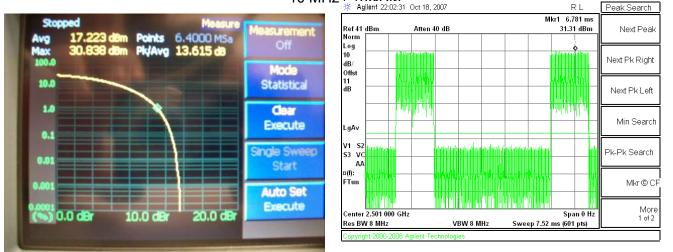
5MHz\_QPSK



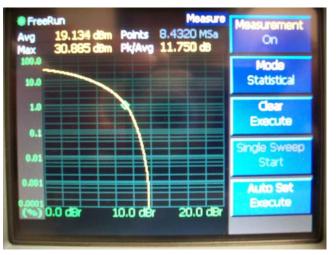
Page 36 of 49

## PAR ratio including OFF time

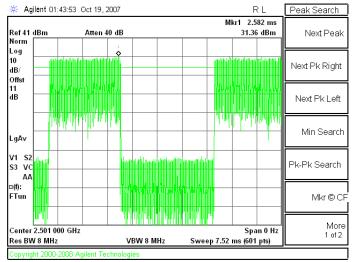
## 10 MHz


| Mode  | Test Vector file name | Ch. No | f (MHz) | Peak-to-average<br>ratio (PAR) |
|-------|-----------------------|--------|---------|--------------------------------|
| 16QAM | DQ4_12_UQ16_12_10M    | 368    | 2593    | 13.615                         |
| QPSK  | DQ64_UQ4_12_21S_10M   | 368    | 2593    | 11.75                          |

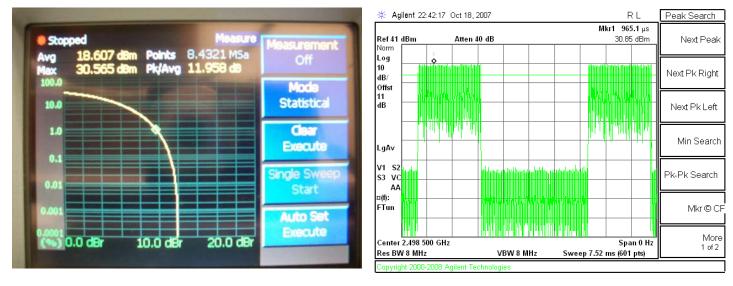
#### 5 MHz


| Mode  | Test Vector file name | Ch. No | f (MHz) | Peak-to-average<br>ratio (PAR) |
|-------|-----------------------|--------|---------|--------------------------------|
| 16QAM | DQ4_12_UQ16_34_5M     | 378    | 2593    | 11.958                         |
| QPSK  | DQ64_56_UQ4_12_5M     | 378    | 2593    | 12.115                         |

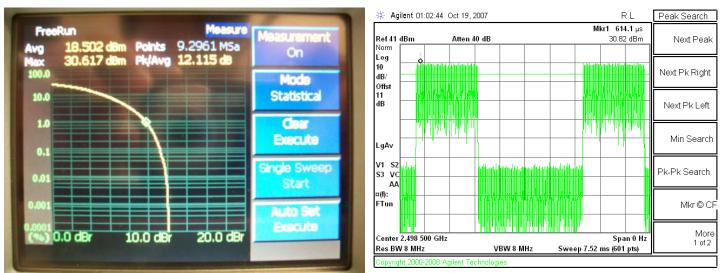
COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.


Page 37 of 49




#### 10 MHz / 160AM




## 10 MHz/ QPSK



Page 38 of 49



#### 5 MHz / 16QAM



#### 5 MHz/ QPSK

COMPLIANCE CERTIFICATION SERVICESFORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of CCS.

Page 39 of 49

# 15. SUMMARY OF TEST RESULTS

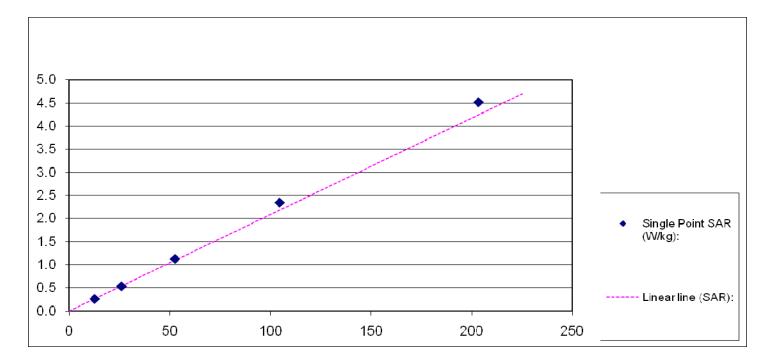
The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

## 15.1. 10 MHz CHANNEL BANDWIDTH

| Mode  | Test vector file name | f (MHz) | 1g_SAR (mW/g) | Duty Cycle Scale<br>Up Factor to<br>DL:UL of 29:18 | Scaled 1g_SAR<br>(mW/g) | Limit<br>(mW/g) |
|-------|-----------------------|---------|---------------|----------------------------------------------------|-------------------------|-----------------|
| 16QAM | DQ4_12_UQ16_12_10M    | 2593    | 0.007         | 1.39                                               | 0.009                   | 1.6             |
| QPSK  | DQ64_UQ4_12_21S_10M   | 2593    | 0.011         | 0.76                                               | 0.008                   | 1.0             |

## 15.2. 5 MHz CHANNEL BANDWIDTH

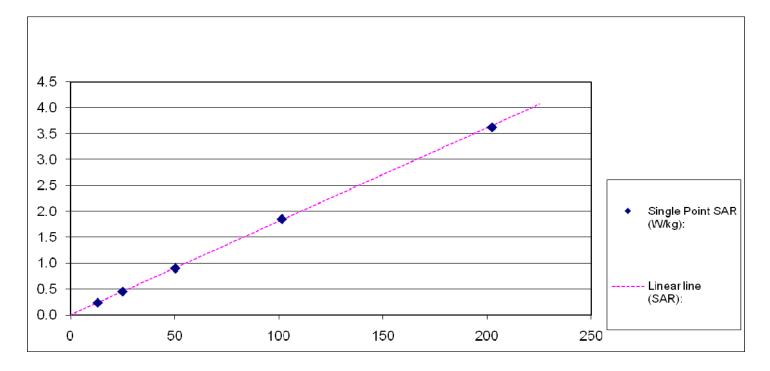
| Mode  | Test vector file name | f (MHz) | 1g_SAR (mW/g) | Duty Cycle Scale<br>Up Factor to<br>DL:UL of 29:18 | Scaled 1g_SAR<br>(mW/g) | Limit<br>(mW/g) |
|-------|-----------------------|---------|---------------|----------------------------------------------------|-------------------------|-----------------|
| 16QAM | DQ4_12_UQ16_34_5M     | 2593    | 0.013         | 0.92                                               | 0.012                   | 1.6             |
| QPSK  | DQ64_56_UQ4_12_5M     | 2593    | 0.012         | 0.94                                               | 0.012                   | 1.0             |


Page 40 of 49

# 16. PAR and SAR Error Consideration

In order to estimate the measurement error due to PAR issues, the configuration with the highest SAR in each channel bandwidth and frequency band is measured at various power levels, from approximately 12.5 mW at approx. 3 dB steps, until the maximum power is reached. During the tests, the edge of LCD panel is positioned at 0 cm separation distance to flat phantom ( for purpose of evaluation but not consider as normal operation ).

### 10 MHz/QPSK


| Average Power (mW):      | 12.43 | 25.75  | 52.34 | 104.36 | 203.20 | 225.00 |
|--------------------------|-------|--------|-------|--------|--------|--------|
| Single Point SAR (W/kg): | 0.260 | 0.537  | 1.130 | 2.350  | 4.520  |        |
| Linear line (SAR):       | 0.260 | 0.539  | 1.095 | 2.183  | 4.250  | 4.706  |
| Estimation (%):          | 0.000 | -0.300 | 3.215 | 7.654  | 6.344  |        |



Page 41 of 49

## 5 MHz/ 16QAM

| Average Power (mW):      | 12.95 | 24.88  | 50.23  | 101.45 | 202.40 | 225   |
|--------------------------|-------|--------|--------|--------|--------|-------|
| Single Point SAR (W/kg): | 0.234 | 0.449  | 0.898  | 1.850  | 3.620  |       |
| Linear line (SAR):       | 0.234 | 0.450  | 0.908  | 1.833  | 3.657  | 4.066 |
| Estimation (%):          | 0.000 | -0.127 | -1.061 | 0.919  | -1.019 |       |



Page 42 of 49

16QAM 10 MHz Ch. BW SAR Plot & Data

Date/Time: 7/27/2009 9:42:37 AM

Test Laboratory: Compliance Certification Services

### Laptop mode 10M

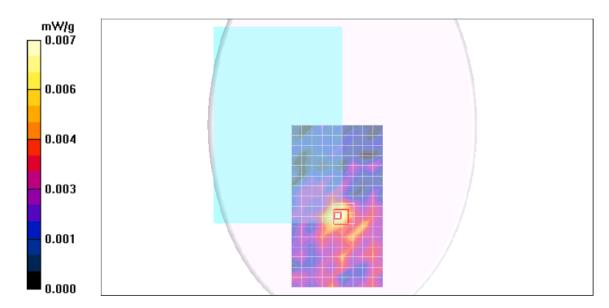
DUT: Lenovo; Type: U150; Serial: N/A

Communication System: WIMAX 2.6G 10M; Frequency: 2593 MHz; Duty Cycle: 1:4.05 Medium parameters used (interpolated): f = 2593 MHz;  $\sigma$  = 2.14 mho/m;  $\epsilon_r$  = 52.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.4, 6.4, 6.4); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
  Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


#### 16QAM 10M - Mid-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.007 mW/g

16QAM 10M - Mid-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.00682 mW/g; SAR(10 g) = 0.00306 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.009 mW/g



Page 43 of 49

#### QPSK 10 MHz Ch. BW SAR Plot & Data

Date/Time: 7/27/2009 10:20:56 AM

Test Laboratory: Compliance Certification Services

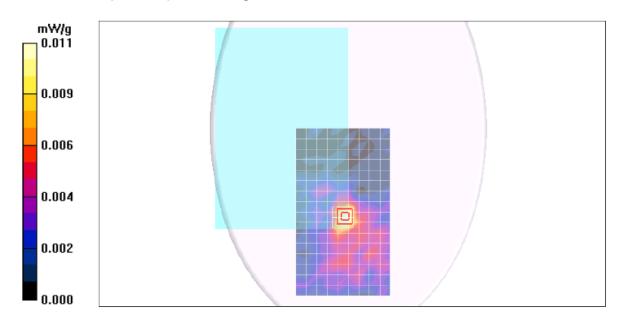
## Laptop mode 10M

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: WIMAX 2.6G 10M; Frequency: 2593 MHz;Duty Cycle: 1:2.32 Medium parameters used (interpolated): f = 2593 MHz;  $\sigma$  = 2.14 mho/m;  $\epsilon_r$  = 52.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.4, 6.4, 6.4); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## QPSK 10M - Mid-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.011 mW/g

# QPSK 10M - Mid-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Peak SAR (extrapolated) = 0.021 W/kg **SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00543 mW/g** Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.014 mW/g



Page 44 of 49

#### 16QAM 5 MHz Ch. BW SAR Plot & Data

Date/Time: 7/27/2009 11:02:34 AM

Test Laboratory: Compliance Certification Services

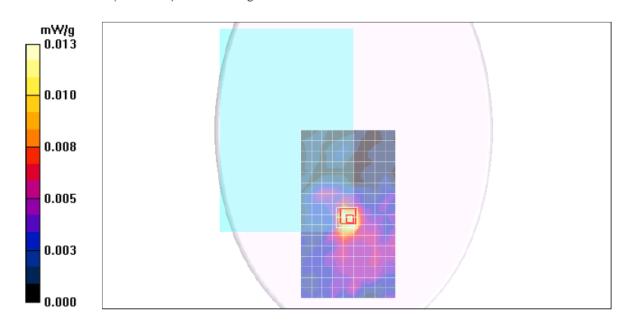
## Laptop mode 5M

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: WIMAX 2.6G 5M; Frequency: 2593 MHz;Duty Cycle: 1:2.7 Medium parameters used (interpolated): f = 2593 MHz;  $\sigma$  = 2.14 mho/m;  $\epsilon_r$  = 52.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.4, 6.4, 6.4); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 16QAM 5M - Mid-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.013 mW/g

## 16QAM 5M - Mid-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Peak SAR (extrapolated) = 0.046 W/kg SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.00524 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.048 mW/g



Page 45 of 49

#### QPSK 5 MHz Ch. BW SAR Plot & Data

Date/Time: 7/27/2009 11:58:15 AM

Test Laboratory: Compliance Certification Services

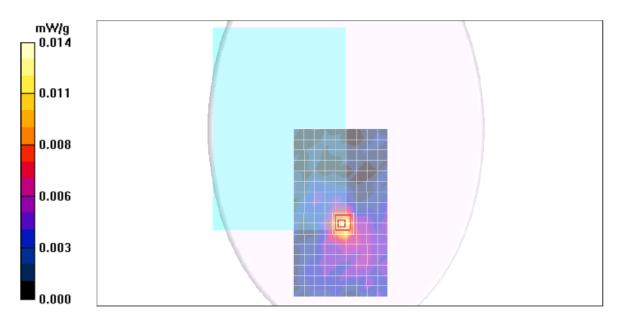
## Laptop mode 5M

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: WIMAX 2.6G 5M; Frequency: 2593 MHz;Duty Cycle: 1:2.7 Medium parameters used (interpolated): f = 2593 MHz;  $\sigma$  = 2.14 mho/m;  $\epsilon_r$  = 52.8;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.4, 6.4, 6.4); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:XXXX
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

### QPSK 5M - Mid-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.014 mW/g

## QPSK 5M - Mid-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Peak SAR (extrapolated) = 0.022 W/kg SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00704 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.016 mW/g



Page 46 of 49

## **17. ATTACHMENTS**

| No. | Contents                                                    | No. of page (s) |
|-----|-------------------------------------------------------------|-----------------|
| 1   | System Performance Check Plots                              | 2               |
| 2   | Certificate of E-Field Probe - EX3DV4 SN3686                | 10              |
| 3   | Certificate of System Validation Dipole - D2600V2 - SN:1006 | 6               |

Page 47 of 49