

Modular Approval
Test Report
And Application for Grant of Equipment Authorization

TEST REPORT PERTAINING TO:

Equipment Under Test	Model Number(s)
Intel WiMax/WiFi Link 5150	512ANXHMW

CONFIGURATION

IEEE 802.11a / 802.11b / 802.11g / 802.11n with a set of Shanghai Universe Communication Electron Co., Ltd Antennas

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING STANDARD (S)

Regulatory Standard(s)

47 CFR Part 15, Subpart E Section 15.407 (UNII Devices)

Test Method:

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Certificate Number: 1111.01

PREPARED FOR:

Intel Corporation 2111 NE 25th Avenue Hillsboro, Oregon 97124

Contact(s): Mr. Robert Paxman

PREPARED BY:

Aegis Labs, Inc. 8 Rancho Circle Lake Forest, CA 92630

Agent(s): Mr. Rick Candelas

Mr. Johnny Candelas Mr. Kevin Navares

Test Report #: INTEL-080923F

Test Report Revision: NONE

	DEDORT DODY	APPEN	DICES	TOTAL DACEC
	REPORT BODY	\boldsymbol{A}	В	TOTAL PAGES
PAGES	16	154	1	171

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.

The Intel logo is used for identification purposes only and is a registered trademark of Intel Corporation

Page 1 of 16

Report Number: INTEL-080923F Revision Number: NONE

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	REGULATORY COMPLIANCE GUIDELINES	03
1.1	Guidelines For Testing To Emissions Standards	03
2.0	SUMMARY OF REGULATORY LIMITS	04
3.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	10
4.0	DESCRIPTION OF EUT CONFIGURATION	11
4.1	EUT Description	11
4.2	EUT Configuration	12
4.3	List of EUT Sub-Assemblies and Host Equipment.	12
4.4	I/O Cabling Diagram and Description	13
4.5	EMC Test Hardware and Software Measurement Equipment	14
5.0	CONDITIONS DURING EMISSIONS MEASUREMENTS	15
5.1	General	15
5.2	Conducted Emissions Test Setup	15
5.3	Radiated Emissions Test Setup.	16

	APPENDICES		
A	Test Data		
В	Modifications And Recommendations		

1.0 REGULATORY COMPLIANCE GUIDELINES

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual. Testing and engineering functions provided by Aegis Labs were furnished by RF technicians and engineers with accredited qualifications and training credentials to carry out their duties.

The object of this report was to publish verifiable test results of an EUT subjected to the tests outlined in the standard listed on the cover page of this report.

1.1 Guidelines For Testing To Emissions Standards

This standard for EMC emission requirements apply to electrical equipment for Information Technology Equipment (ITE). Compliance to these standards and in combination with the other standards listed in this test report can be used to demonstrate presumption of compliance with the protection requirements of the appropriate agency standard.

The purpose of this standard is to specify minimum requirements for emissions regarding electromagnetic compatibility (EMC) and protect the radio frequency spectrum 9 kHz. – 400 GHz. from unwanted interference generated from electrical/digital systems that intentionally or unintentionally generated RF energy. The emissions standards, normative documents and/or publications were used to conduct all tests performed on the equipment herein referred to as "Equipment Under Test".

SUMMARY OF TEST RESULTS 2.0

802.11a Mode (5150-5350 MHz) Chain A

	EMISSIONS STANDARD				
FCC Part 15 Section	Description	Results	Comments		
	Operation in the 5.15-5.25 GHz Band				
15.407(d)	Any UNII device shall use a transmitting antenna that is an integral part of the device.	PASSED	The antenna will be integral when installed in a notebook computer		
15.407(e)	UNII devices will be restricted to indoor operations.	PASSED	Refer to "User's Manual" Exhibit		
15.407(a)(1)	26dB emissions bandwidth in MHz.	N/A	5.18 GHz = 21.75 MHz 5.20 GHz = 21.75 MHz 5.24 GHz = 21.67 MHz		
15.407(a)(1)	Peak transmit power shall not exceed the lesser of 50mW or 4dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.18 GHz = 16.54dBm (45.12mW) 5.20 GHz = 16.72dBm (47.03mW) 5.24 GHz = 16.40dBm (43.69mW)		
15.407(a)(1)	The peak power spectral density shall not exceed 4dBm in any 1MHz band.	PASSED	5.18 GHz = 0.681dBm 5.20 GHz = 0.964dBm 5.24 GHz = 0.560dBm		
15.407(a)(1)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)		
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)		
15.407(b)(1)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz.	PASSED	See Data Sheets		
	Operation in the 5.25-5.35 GHz Ban	d			
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.26 GHz = 21.67 MHz 5.28 GHz = 21.50 MHz 5.32 GHz = 21.58 MHz		
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or 11dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.26 GHz = 16.46dBm (44.30mW) 5.28 GHz = 16.36dBm (43.29mW) 5.32 GHz = 16.39dBm (43.59mW)		
15.407(a)(2)	The peak power spectral density shall not exceed 11dBm in any 1MHz band.	PASSED	5.26 GHz = 0.280dBm 5.28 GHz = 0395dBm 5.32 GHz = -0.165dBm		
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)		
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)		
15.407(b)(2)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz. Must meet all applicable technical requirements for operating in the 5.15-5.25 GHz band.	PASSED	See Data Sheets		
	General Requirements For All Band	s			
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.	PASSED	5.18 GHz = 7.00 dB 5.20 GHz = 5.34 dB 5.24 GHz = 5.66 dB 5.26 GHz = 5.84 dB 5.28 GHz = 5.50 dB 5.32 GHz = 5.83 dB		
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations		
15.407(b)(6) 15.207	UNII devices using AC power line are required to comply with the conducted limits set forth in Section 15.207.	PASSED	See FCC 15.247 report (INTEL-080922F)		

Page 4 of 16 Report Number: INTEL-080923F Revision Number: NONE

2.0 Summary Of Test Results (Continued)

802.11n Mode 20MHz Wide (5150-5350 MHz) Chain A

EMISSIONS STANDARD					
FCC Part 15 Section	Description	Results	Comments		
	Operation in the 5.15-5.25 GHz Band				
15.407(d)	Any UNII device shall use a transmitting antenna that is an integral part of the device.	PASSED	The antenna will be integral when installed in a notebook computer		
15.407(e)	UNII devices will be restricted to indoor operations.	PASSED	Refer to "User's Manual" Exhibit		
15.407(a)(1)	26dB emissions bandwidth in MHz.	N/A	5.18 GHz = 22.08 MHz 5.20 GHz = 22.17 MHz 5.24 GHz = 22.00 MHz		
15.407(a)(1)	Peak transmit power shall not exceed the lesser of 50mW or 4dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.18 GHz = 16.63dBm (46.06mW) 5.20 GHz = 16.64dBm (46.17mW) 5.24 GHz = 16.74dBm (47.25mW)		
15.407(a)(1)	The peak power spectral density shall not exceed 4dBm in any 1MHz band.	PASSED	5.18 GHz = 0.194dBm 5.20 GHz = 0.208dBm 5.24 GHz = 0.337dBm		
15.407(a)(1)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)		
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)		
15.407(b)(1)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz.	PASSED	See Data Sheets		
	Operation in the 5.25-5.35 GHz Ban	d			
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.26 GHz = 22.25 MHz 5.28 GHz = 22.25 MHz 5.32 GHz = 21.92 MHz		
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or 11dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.26 GHz = 16.63dBm (46.06mW) 5.28 GHz = 16.54dBm (45.12mW) 5.32 GHz = 16.58dBm (45.54mW)		
15.407(a)(2)	The peak power spectral density shall not exceed 11dBm in any 1MHz band.	PASSED	5.26 GHz = 0.644dBm 5.28 GHz = 0.337dBm 5.32 GHz = 0.377dBm		
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)		
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)		
15.407(b)(2)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz. Must meet all applicable technical requirements for operating in the 5.15-5.25 GHz band.	PASSED	See Data Sheets		
	General Requirements For All Band	s			
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.	PASSED	5.18 GHz = 5.84 dB 5.20 GHz = 6.00 dB 5.24 GHz = 5.67 dB 5.26 GHz = 5.50 dB 5.28 GHz = 6.00 dB 5.32 GHz = 5.83 dB		
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations		
15.407(b)(6) 15.207	UNII devices using AC power line are required to comply with the conducted limits set forth in Section 15.207.	PASSED	See FCC 15.247 report (INTEL-080922F)		

Page 5 of 16

Report Number: INTEL-080923F Revision Number: NONE

2.0 Summary Of Test Results (Continued)

802.11n Mode 40MHz Wide (5150-5350 MHz) Chain A

	EMISSIONS STANDARD			
FCC Part 15 Section	Description	Results	Comments	
	Operation in the 5.15-5.25 GHz Ban	d		
15.407(d)	Any UNII device shall use a transmitting antenna that is an integral part of the device.	PASSED	The antenna will be integral when installed in a notebook computer	
15.407(e)	UNII devices will be restricted to indoor operations.	PASSED	Refer to "User's Manual" Exhibit	
15.407(a)(1)	26dB emissions bandwidth in MHz.	N/A	5.19 GHz = 40.70 MHz 5.23 GHz = 40.70 MHz	
15.407(a)(1)	Peak transmit power shall not exceed the lesser of 50mW or 4dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.19 GHz = 16.63dBm (46.00mW) 5.23 GHz = 16.45dBm (44.13mW)	
15.407(a)(1)	The peak power spectral density shall not exceed 4dBm in any 1MHz band.	PASSED	5.19 GHz = -3.282dBm 5.23 GHz = -3.114dBm	
15.407(a)(1)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)	
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)	
15.407(b)(1)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz.	PASSED	See Data Sheets	
	Operation in the 5.25-5.35 GHz Ban	d		
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.27 GHz = 40.70 MHz 5.31 GHz = 40.50 MHz	
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or $11 \text{dBm} + 10 \log B$ (where $B = 26 \text{dB}$ emissions bandwidth).	PASSED	5.27 GHz = 16.74dBm (47.18mW) 5.31 GHz = 16.46dBm (44.24mW)	
15.407(a)(2)	The peak power spectral density shall not exceed 11dBm in any 1MHz band.	PASSED	5.27 GHz = -2.834dBm 5.31 GHz = -2.585dBm	
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)	
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)	
15.407(b)(2)	All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of –27dBm/MHz. Must meet all applicable technical requirements for operating in the 5.15-5.25 GHz band.	PASSED	See Data Sheets	
	General Requirements For All Band	ls		
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.	PASSED	5.19 GHz = 6.50 dB 5.23 GHz = 7.17 dB 5.27 GHz = 6.33 dB 5.31 GHz = 6.00 dB	
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations	
15.407(b)(6) 15.207	UNII devices using AC power line are required to comply with the conducted limits set forth in Section 15.207.	PASSED	See FCC 15.247 report (INTEL-080922F)	

Page 6 of 16

Report Number: INTEL-080923F Revision Number: NONE

Summary Of Test Results (Continued) 2.0

802.11a Mode (5470-5725 MHz) Chain A

	EMISSIONS STANDARD			
FCC Part 15 Section	Description	Results	Comments	
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.50 GHz = 21.67 MHz 5.60 GHz = 21.5 MHz 5.70 GHz = 21.42 MHz	
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or 11dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.50 GHz = 16.64dBm (46.17mW) 5.60 GHz = 16.72dBm (47.03mW) 5.70 GHz = 16.45dBm (44.19mW)	
15.407(a)(2)	The peak power spectral density shall not exceed 11dBm in any 1MHz band.	PASSED	5.50 GHz = -0.809 dBm 5.60 GHz = -0.463 dBm 5.70 GHz = 0.183 dBm	
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)	
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)	
15.407(b)(3)	For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.	PASSED	See Data Sheets	
	General Requirements For All Band	ls		
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.	PASSED	5.50 GHz = 6.00 dB 5.60 GHz = 6.00 dB 5.70 GHz = 7.00 dB	
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations	
15.407(b)(6) 15.207	UNII devices using AC power line are required to comply with the conducted limits set forth in Section 15.207.	PASSED	See FCC 15.247 report (INTEL-080922F)	

Page 7 of 16 Report Number: INTEL-080923F Revision Number: NONE

2.0 Summary Of Test Results (Continued)

802.11n Mode 20MHz Wide (5470-5725 MHz) Chain A

	EMISSIONS STANDARD			
FCC Part 15	Description	Results	Comments	
Section				
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.50 GHz = 22.33 MHz	
			5.60 GHz = 22.00 MHz	
15 407(-)(2)	D. 1. (DACCED	5.70 GHz = 22.17 MHz 5.50 GHz = 16.57dBm (45.43mW)	
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or $11 \text{dBm} + 10 \text{logB}$ (where $B = 26 \text{dB}$ emissions bandwidth).	PASSED	5.60 GHz = 16.72 dBm (47.03 mW)	
15.405(.)(2)	,	5.10055	5.70 GHz = 16.45dBm (44.19mW)	
15.407(a)(2)	The peak power spectral density shall not exceed 11dBm in any	PASSED	5.50 GHz = -0.206dBm	
	1MHz band.		5.60 GHz = -0.635dBm 5.70 GHz = 0.128dBm	
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be	N/A	All antennas tested have less than	
15.407(a)(2)	reduced by the amount in dB that the transmitting antenna exceeds	IN/A	6dBi antenna gain (Please see the	
	6dBi.		antenna data sheets)	
15.407(b)(6)	Unwanted emissions below 1 GHz must comply with the general	PASSED	See FCC 15.247 report	
15.209	field strength limits set forth in Section 15.209.		(INTEL-080922F)	
15.407(b)(3)	For transmitters operating in the 5.47-5.725 GHz band: all	PASSED	See Data Sheets	
	emissions outside of the 5.47-5.725 GHz band shall not exceed an			
	EIRP of -27dBm/MHz.			
	General Requirements For All Band			
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the	PASSED	5.50 GHz = 6.16 dB	
	peak transmit power shall not exceed 13dB across any 1 MHz		5.60 GHz = 6.00 dB	
	bandwidth or the emissions bandwidth whichever is less.		5.70 GHz = 6.33 dB	
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations	
15.407(b)(6)	UNII devices using AC power line are required to comply with the	PASSED	See FCC 15.247 report	
15.207	conducted limits set forth in Section 15.207.		(INTEL-080922F)	

Report Number: INTEL-080923F Revision Number: NONE

Summary Of Test Results (Continued) 2.0

802.11n Mode 40MHz Wide (5470-5725 MHz) Chain A

EMISSIONS STANDARD			
FCC Part 15 Section	Description	Results	Comments
15.407(a)(2)	26dB emissions bandwidth in MHz.	N/A	5.51 GHz = 40.80 MHz 5.59 GHz = 40.50 MHz 5.67 GHz = 40.50 MHz
15.407(a)(2)	Peak transmit power shall not exceed the lesser of 250mW or 11dBm+10logB (where B = 26dB emissions bandwidth).	PASSED	5.51 GHz = 16.47dBm (44.34mW) 5.59 GHz = 16.80dBm (47.84mW) 5.67 GHz = 16.78dBm (47.62mW)
15.407(a)(2)	15.407(a)(2) The peak power spectral density shall not exceed 11dBm in any 1MHz band.		5.51 GHz = -4.342dBm 5.59 GHz = -3.942dBm 5.67 GHz = -3.551dBm
15.407(a)(2)	Peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the transmitting antenna exceeds 6dBi.	N/A	All antennas tested have less than 6dBi antenna gain (Please see the antenna data sheets)
15.407(b)(6) 15.209	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209.	PASSED	See FCC 15.247 report (INTEL-080922F)
15.407(b)(3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.		PASSED	See Data Sheets
	General Requirements For All Band	ls	
15.407(a)(6)	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.	PASSED	5.51 GHz = 6.17 dB 5.59 GHz = 6.00 dB 5.67 GHz = 7.00 dB
15.407(f)	Radio frequency radiation exposure requirement.	PASSED	Refer to MPE Calculations
15.407(b)(6) 15.207	UNII devices using AC power line are required to comply with the conducted limits set forth in Section 15.207.	PASSED	See FCC 15.247 report (INTEL-080922F)

ANALYSIS AND CONCLUSIONS

Based upon the measurement results we find that this equipment is within the limits of the global standards listed on the cover page of this test report. All results are based on a test of one sample. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

Approval Signatories

Test and Report Completed By:

Johnny Candelas

Test Technician Aegis Labs, Inc. Date:

Rick Candelas

Report Approved By:

Date:

Quality Assurance & EMC Lab Manager

Aegis Labs, Inc.

Revision Number: NONE

3.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED:	ITE Type: Intel WiMax/WiFi Link 5150 Model Number(s): 512ANXHMW Serial Number: 0016EB01D1C7 FCC ID: PD9512ANXHD
DATE EUT RECEIVED: TEST DATE(S):	January 16 th , 2008 April 24 th – September 3 nd , 2008
ORIGIN OF TEST SAMPLE(S):	Production
EQUIPMENT CLASS:	EUT tested as CLASS B device
RESPONSIBLE PARTY:	Intel Corporation 2111 NE 25 th Avenue Hillsboro, Oregon 97124
CLIENT CONTACT:	Mr. Robert Paxman
MANUFACTURER:	Intel Corporation
TEST LOCATION:	Aegis Labs, Inc. 32231 Trabuco Creek Road Trabuco Canyon, CA 92678 Open Area Test Site #1 & #2
ACCREDITATION CERTIFICATE(s):	A2LA Certificate Number: 1111.01, Valid through February 28, 2010
PURPOSE OF TEST:	To demonstrate compliance with the standards as described in Sections 1.0 & 2.0 of this report.
UNCERTAINTY BUDGET:	Proficiency Testing and Uncertainty Calculations for all tests indicated in this report have been conducted in accordance with ISO 17025: 2005 requirements Section 5.4.6, and 5.9. Uncertainty Budgets and Proficiency Test results available upon request.
STATEMENT OF CALIBRATION:	All accredited equipment calibrations were performed by Liberty Labs, Inc. and World Cal. with typical calibration uncertainty estimates derived from ISO Guide to the determination of uncertainties with a Coverage Factor of k=2 for 95% level of confidence.

4.0 DESCRIPTION OF EUT CONFIGURATION

4.1 EUT Description

	Equipment Under Test (EUT)
Trade Name:	Intel WiMax/WiFi Link 5150
Model Number:	512ANXHMW
Frequency Range:	802.11a = 5.15-5.35 GHz & 5.47-5.725 802.11n = 5.15-5.35 GHz & 5.47-5.725
Enclosure:	The EUT contains its own shield made of aluminum approximately 2.5cm wide by 2cm deep by 2mm high.
Transfer Rate:	6/36/54 Mbps for 802.11a mode Up to 450 Mbps for 802.11n mode
Antenna Type:	Shanghai Universe Communication Electron Co., Ltd Antennas: PIFA
Antenna Gain (See Note 2):	3.73dBi @ 5 GHz
Transmit Output Power:	Please see Appendix A (Data Sheets) for actual output power.
Power Supply:	3.3VDC from external source
Number of External Test Ports Exercised:	2 Antenna Ports (Chain A – TX & Chain B – RX)

The Intel WiMax/WiFi Link 5150 is an embedded IEEE 802.16e and 802.11a/b/g/n wireless network adapter that operates in the 2.4 GHz and 5.0 GHz spectra for WiFi and 2.5 GHz for WiMax. The adapter is capable of delivering up to 450 Mbps Tx/Rx over WiFi and up to 4 Mbps UL/10 Mbps DL over WiMax.

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: The EUT was tested with a set of Shanghai Universe Communication Antennas. (Refer to the antenna information exhibits).

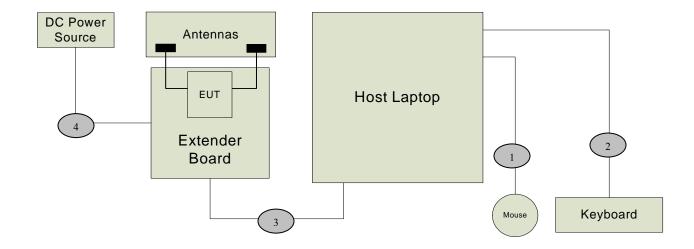
4.2 EUT Configuration

The EUT was tested installed in the Mini PCI-E slot of an extender board which is then connected to the host computer. The EUT was then connected to a set of antennas via its Chain A & B antenna ports. Data for a set of Shanghai Universe Communication Electron Co., Ltd Antennas can be found in Appendix A (Data Sheets)

The low, middle, and high channels were tested in 802.11a, b, g, & n modes. Also, the EUT was tested transmitting from Chain A. The EUT was placed in continuous transmit mode by a program provided by the manufacturer (*CRTU Version 5.0.51.0000*).

4.3 List of EUT, Sub-Assemblies and Host Equipment

Equipment Under Test									
Manufacturer	Equipment Name	Model or Part Number	Serial Number						
Intel Corporation	Intel WiMax/WiFi Link 5150	512ANXHMW	0016EB01D1C7						


EUT Sub Assemblies									
Manufacturer	Equipment Name	Model or Part Number	Serial Number						
Shanghai Universe Communication	Chain A Antenna	SUC ANT S11	N/A						
Electron Co., Ltd	Chain B Antenna	SUC ANT S11	N/A						

HOST EQUIPMENT LIST										
Manufacturer	Equipment Name	Model or Part Number	Serial Number							
Generic	Host Laptop	ENG001	None							
Protek	DC Power Source	3006B	AC2018							
Logitech	Keyboard	Y-BF37	MCT25200581							
Logitech	Mouse	M-BJ58	LNA22802012							

NOTE: All the power cords of the above support equipment are standard and non-shielded.

I/O Cabling Diagram and Description 4.4

	Signal Line Cable Description											
Cable	Length	Construction	Source Connector			Ferrite Attached	Note					
1	1.5m	Round, Braid & Foil Shielded	Host Computer: USB Port	Keyboard: Hardwired	N/A	N/A	N/A					
2	1.5m	Round, Braid & Foil Shielded	Host Computer: USB Port	Mouse: Hardwired	N/A	N/A	N/A					
3	0.5m	0.5m Flat, Braid & Foil Exten Shielded Mini		Host Laptop: Mini PCIe slot	N/A	N/A	N/A					
4	0.5m	Round Un- shielded	Extender Board: Power Input	DC Power Source: Power Output	N/A	N/A	N/A					

Page 13 of 16 Report Number: INTEL-080923F Revision Number: NONE

EMC Test Hardware and Software Measurement Equipment 4.5

	TEST EQU	JIPMENT LIST -	Emissions		
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Maintenance Calibration Cycle
Spectrum Analyzer	Agilent	8565EC	3946A00245	07/24/09	1 Year
PSA Spectrum Analyzer	Agilent	E4440A	MY44303400	10/24/08	1 Year
Antenna – Horn	ETS	3117	00057423	03/28/09	1 Year
Preamp	Miteq	JS42-01001800- 25-10P	815980	09/21/09	1 Year
28 Foot Coax	Semflex	S1L29BFS1348	608	07/26/09	1 Year
5.15-5.35 GHz Notch Filter	Microwave Circuits	N0452502	3173-01	NCR	NCR
Antenna - 18-26.5 GHz Pre- amplified Horn	Aegis Labs, Inc.	H042	SLK-35-3W	02/08/09	1 Year
Antenna - 26.5-40 GHz Pre- amplified Horn	Aegis Labs, Inc.	H028	GM1260-10	02/08/09	1 Year
EMI Receiver - RF Section	Hewlett Packard	8546A	3325A00137	04/26/09	1 Year
EMI Receiver - RF Filter Section	Hewlett Packard	85460A	3330A00138	04/26/09	1 Year
10 dB Attenuator	Pasternack	PE7014-10	N/A	09/05/09	1 Year
LISN (EUT)	Fisher Custom Communications	FCC-LISN-50-25- 2	9931	03/30/09	1 Year
LISN (Access)	EMCO	3825/2	9108-1848	03/30/09	1 Year
Antenna - Biconical	EMCO	3110B	3383	03/20/09	1 Year
Antenna - Log Periodic	EMCO	3148	47943	03/20/09	1 Year
Power Meter	Anritsu	ML2487A	6K00001785	05/29/09	1 Year
Wide Bandwidth Sensor	Anritsu	MA2491A	31193	05/29/09	1 Year
12dB Attenuator	Narda	4779-12	203	06/09/09	1 Year
Temperature/Humidity Monitor	Dickson	TH550	7255185	04/13/09	1 Year

NCR – No Calibration Required.

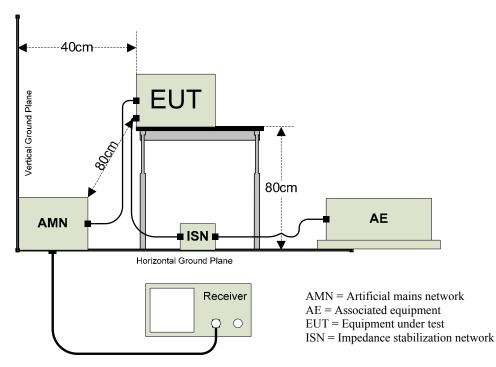
Page 14 of 16 Report Number: INTEL-080923F Revision Number: NONE

5.0 CONDITIONS DURING EMISSIONS MEASUREMENTS

5.1 General

All measurements were made according to the procedures defined in or referred to by the standard listed on the cover page of this report. The measurements were made in the operating mode producing the largest emissions consistent with normal operation and connected to the minimum configuration of auxiliary devices.

5.2 Conducted Emissions Test Setup


The following was the test configuration.

EUT signal cables that hung closer than 40 cm to the horizontal metal ground plane were folded back and forth forming a bundle 30 cm to 40 cm long. The power cord of the EUT was also bundled in the center and plugged into one of the artificial mains network (AMN). All peripheral equipment was powered from a second AMN via a multiple outlet strip placed at a distance on 10cm from each other. The AMN and ISN were positioned 80cm from the EUT. Signal cables that were not connected to an AE were terminated using the correct termination. If applicable, the current probe was placed at 0.1 m from the ISN.

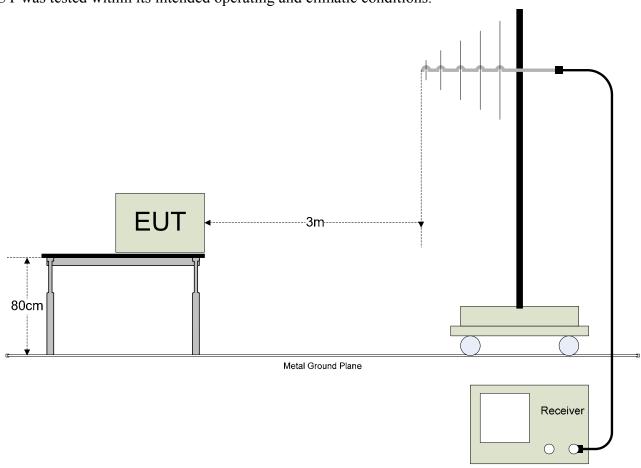
Peak, quasi-peak and/or average detectors were used for testing performed between 150 kHz and 30 MHz. A swept frequency scan was performed for both Line 1 and Line 2. The six highest readings were compared against the limit and recorded in the data sheet along with a snapshot image of the sweep scan. The graphical scans in Appendix A only reflect peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak measurements.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 15 of 16

Report Number: INTEL-080923F Revision Number: NONE


5.3 Radiated Emissions Test Setup

The Open Area Test Site (OATS) was used for radiated emission testing. The receiving (Rx) antenna(s) was placed 10m from the nearest side of the EUT facing the Rx antenna. The EUT (if floor-standing) was placed directly on the flush-mounted 360 degree rotating turntable. The EUT (if table-top) was placed directly on an 80cm high non-metallic table, and the table was placed on the rotating turntable. During the initial EMI scan, all the suspect frequencies, i.e.; harmonics, broadband signals were checked with the Rx broadband antennas in both vertical and horizontal polarities. The biconical Rx, log periodic Rx, and horn Rx antennas were used from 30MHz – 299.99MHz, 300MHz – 1000MHz, and 1GHz – 18GHz respectively.

Upon completion of all harmonic and broadband measurements, the balance of any remaining frequencies was checked between 30MHz – 18GHz. Any signals appearing within 20 dB of the classification limit was measured. Each signal was maximized by first rotating the turntable at least 360 degrees and recording the azimuth in the data sheet. Lastly, the Rx antenna was raised and/or lowered to maximize the signal elevation. If the measured signal was obtained using the peak detector and that signal appeared within 3 dB of the regulatory limit line, then the same signal was re-measured using the quasi-peak detector on the EMI receiver. Both meter readings if necessary were recorded on the data sheet.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Report Number: INTEL-080923F Revision Number: NONE

APPENDIX A

TEST DATA

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11a (5150-5350 MHz) mode.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

	Unwanted Spurious Emissions Limits										
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)								
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc								

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11a mode (5150-5350 MHz)
Channels 36, 40, 48, 52, & 64
Continuous TX at Chain A Antenna port with Shanghai Universal Antennas
Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization												
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments		
(MHz)	Reading	Height	(degrees)	AVG (dBi	uV)	Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)					
5180.00	74.02	100	270			2.98	34.62	111.62			Ch. 36		
5180.00				63.71	A	2.98	34.62	101.31					
5200.00	72.64	100	270			2.98	34.66	110.28			Ch. 40		
5200.00				62.65	Α	2.98	34.66	100.29					
5240.00	70.81	100	225			3.00	34.73	108.54			Ch. 48		
5240.00				60.70	A	3.00	34.73	98.43					
5260.00	70.03	100	270			3.00	34.77	107.80			Ch. 52		
5260.00				60.29	Α	3.00	34.77	98.06					
5320.00	71.29	100	270			3.02	34.88	109.19			Ch. 64		
5320.00				61.45	A	3.02	34.88	99.35					

	RADIATED EMISSIONS - Vertical Antenna Polarization												
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments		
(MHz)	Reading	Height	(degrees)	AVG (dBi	uV)	Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)					
5180.00	66.82	100	180			2.98	34.39	104.19			Ch. 36		
5180.00				56.37	Α	2.98	34.39	93.74					
5200.00	66.93	100	135			2.98	34.42	104.33			Ch. 40		
5200.00				56.88	A	2.98	34.42	94.28					
5240.00	65.69	100	180			3.00	34.48	103.17			Ch. 48		
5240.00				54.96	A	3.00	34.48	92.44					
5260.00	66.70	100	180			3.00	34.52	104.22			Ch. 52		
5260.00				56.21	A	3.00	34.52	93.73					
5320.00	65.85	100	135			3.02	34.61	103.48			Ch. 64		
5320.00				55.70	A	3.02	34.61	93.33					

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in 802.11a mode (5150-5350 MHz) Channels 36 & 64

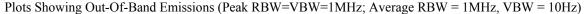
Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

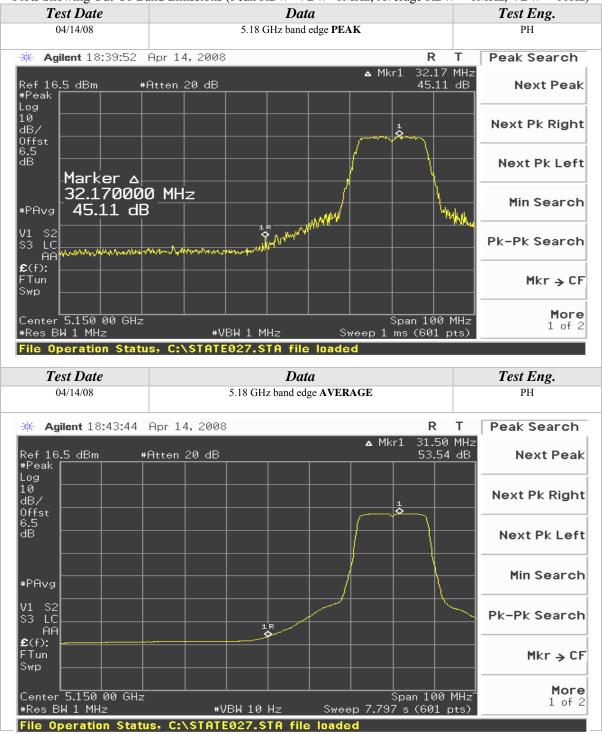
	RADIATED EMISSIONS - Horizontal Antenna Polarization											
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments	
(MHz)	Reading	Height	(degrees)	AVG (dBu	V)	Factor	Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)				
5150.00								66.51	74.00	-7.49	Ch. 36	
5150.00					A			47.77	54.00	-6.23		
5350.00								66.33	74.00	-7.67	Ch. 64	
5350.00					A			47.09	54.00	-6.91		

	RADIATED EMISSIONS - Vertical Antenna Polarization											
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments		
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)					
5150.00							59.08	74.00	-14.92	Ch. 36		
5150.00				A			40.20	54.00	-13.80			
5350.00							60.62	74.00	-13.38	Ch. 64		
5350.00				A			41.07	54.00	-12.93			

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

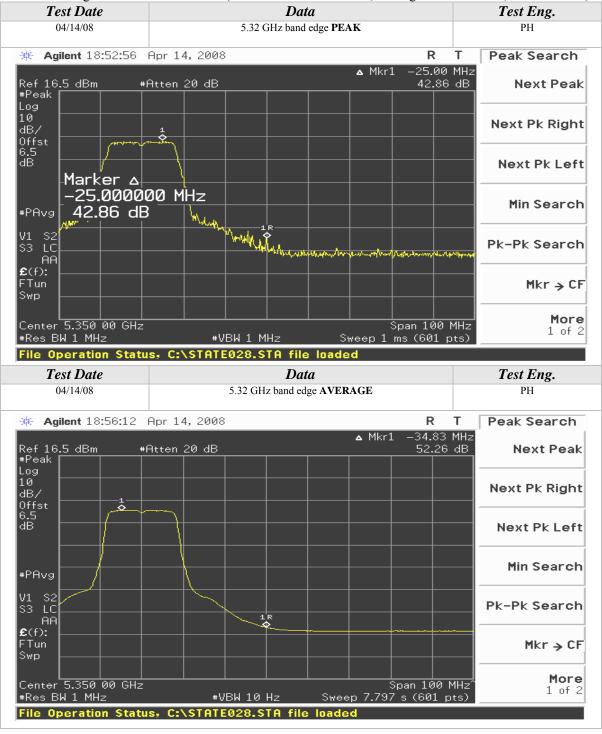
 $BE = Fm - \Delta m$


Where


BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)



Spurious Emissions Measurements in 802.11a mode (5150-5350 MHz) Channels 36, 40, & 48

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq. (MHz)															
	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain				
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)			Tested				
3466.66	54.17	100	135		46.60	2.42	32.32	42.31	68.00	-25.69	Ch. 40/				
3453.33	54.50	100	135		46.60	2.41	32.29	42.60	68.00	-25.40	Ch. 36/				
3493.33	54.50	100	135		46.60	2.43	32.38	42.71	68.00	-25.29	Ch. 48/				

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
	Reading	Height	(degrees)	AVG(dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)							
3466.66	53.00	100	135		46.60	2.42	31.83	40.64	68.00	-27.36	Ch. 40/				
3453.33	53.67	100	135		46.60	2.41	31.80	41.28	68.00	-26.72	Ch. 36/				
3493.33	54.17	100	135		46.60	2.43	31.89	41.88	68.00	-26.12	Ch. 48/				

Spurious Emissions Measurements in 802.11a mode (5150-5350 MHz) Channels 52, 56, & 64

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel/		
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain		
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested		
3520.00	55.83	100	135			46.59	2.44	32.44	44.12	68.00	-23.88	Ch. 56/		
3506.66	56.50	100	135			46.60	2.43	32.41	44.75	68.00	-23.25	Ch. 52/		
3546.66	53.67	100	180			46.59	2.45	32.50	42.03	68.00	-25.97	Ch. 64/		
10639.99	48.83	100	180			44.67	4.46	38.76	47.37	74.00	-26.63			
10639.99				36.87	Α	44.67	4.46	38.76	35.41	54.00	-18.59			

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	cor	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments			
	Reading	Height	(degrees)	AVG (dB	ÃVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)						
3520.00	53.67	100	180			46.59	2.44	31.95	41.47	68.00	-26.53	Ch. 56/			
3506.66	54.33	100	135			46.60	2.43	31.92	42.08	68.00	-25.92	Ch. 52/			
3546.66	54.00	100	135			46.59	2.45	32.02	41.88	68.00	-26.12	Ch. 64/			
10640.00	51.83	100	225			44.67	4.46	38.73	50.34	74.00	-23.66				
10640.00				40.03	Α	44.67	4.46	38.73	38.54	54.00	-15.46				

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11n (5150-5350 MHz) mode 20MHz Wide.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

		Unwanted Spurious Emissions I	Limits
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in **802.11n mode 20MHz Wide** (**5150-5350 MHz**)
Channels 36, 40, 48, 52, & 64

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBi	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)							
5180.00	73.71	100	270		(2.02		34.62	111.31			Ch. 36				
5180.00				62.82	Α	2.98	34.62	100.42							
5200.00	74.03	100	270			2.98	34.66	111.67			Ch. 40				
5200.00				63.00	Α	2.98	34.66	100.64							
5240.00	73.29	100	270			3.00	34.73	111.02			Ch. 48				
5240.00				62.45	Α	3.00	34.73	100.18							
5260.00	72.96	100	270			3.00	34.77	110.73			Ch. 52				
5260.00				62.08	Α	3.00	34.77	99.85							
5320.00	73.14	100	270			3.02	34.88	111.04			Ch. 64				
5320.00				62.26	A	3.02	34.88	100.16							

		RADIA	TED EM	IISSIO	NS .	- Vertic	al Ante	nna Pola	rizatio	n	
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBi	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5180.00	68.10	100	180		55.50		34.39	105.47			Ch. 36
5180.00				57.72	A	2.98	34.39	95.09			
5200.00	68.69	100	180			2.98	34.42	106.09			Ch. 40
5200.00				58.05	A	2.98	34.42	95.45			
5240.00	67.38	100	180			3.00	34.48	104.86			Ch. 48
5240.00				56.12	A	3.00	34.48	93.60			
5260.00	66.62	100	135			3.00	34.52	104.14			Ch. 52
5260.00				55.35	A	3.00	34.52	92.87			
5320.00	65.13	100	135			3.02	34.61	102.76			Ch. 64
5320.00				54.36	A	3.02	34.61	91.99			

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in 802.11n mode 20MHz Wide (5150-5350 MHz)
Channels 36 & 64

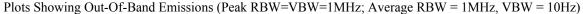
Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.															
(MHz)	Reading	Height	(degrees)	AVG (dBu	V)	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)							
5150.00								65.15	74.00	-8.85	Ch. 36				
5150.00					A			47.99	54.00	-6.01					
5350.00								67.77	74.00	-6.23	Ch. 64				
5350.00					A			48.77	54.00	-5.23					

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG(dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)							
5150.00							59.31	74.00	-14.69	Ch. 36				
5150.00				A			42.66	54.00	-11.34					
5350.00							59.49	74.00	-14.51	Ch. 64				
5350.00				A			40.60	54.00	-13.40					

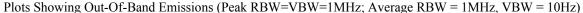
NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

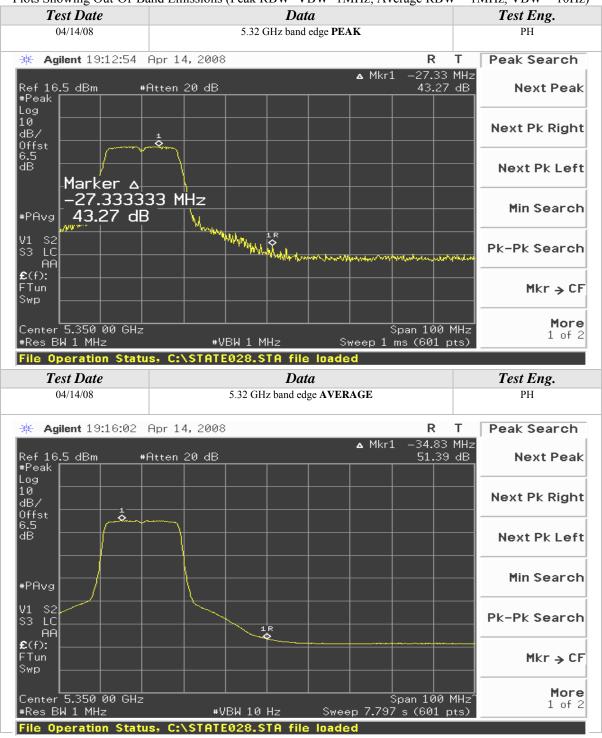
 $BE = Fm - \Delta m$


Where

BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)


 Δm = Measured Conducted Band Edge Delta (Peak or Average)



Spurious Emissions Measurements in 802.11n mode 20MHz Wide (5150-5350 MHz) Channels 36, 40, & 48

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq. (MHz)															
	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain				
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)			Tested				
3466.66	53.17	100	135		46.60	2.42	32.32	41.31	68.00	-26.69	Ch. 40/				
3453.33	55.17	100	135		46.60	2.41	32.29	43.27	68.00	-24.73	Ch. 36/				
3493.33	54.67	100	135		46.60	2.43	32.38	42.88	68.00	-25.12	Ch. 48/				

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments			
	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)						
3466.66	53.67	100	180		46.60	2.42	31.83	41.31	68.00	-26.69	Ch. 40/			
3453.33	55.67	100	180		46.60	2.41	31.80	43.28	68.00	-24.72	Ch. 36/			
3493.33	53.83	100	135		46.60	2.43	31.89	41.54	68.00	-26.46	Ch. 48/			

Spurious Emissions Measurements in 802.11n mode 20MHz Wide (5150-5350 MHz) Channels 52, 56, & 64

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization												
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel/	
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain	
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested	
3520.00	54.33	100	135			46.59	2.44	32.44	42.62	68.00	-25.38	Ch. 56/	
3506.66	56.67	100	180			46.60	2.43	32.41	44.92	68.00	-23.08	Ch. 52/	
3546.66	55.00	100	180			46.59	2.45	32.50	43.36	68.00	-24.64	Ch. 64/	
10639.98	51.83	100	180			44.67	4.46	38.76	50.37	74.00	-23.63		
10639.98				38.86	Α	44.67	4.46	38.76	37.40	54.00	-16.60		

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments		
	Reading	Height	(degrees)	AVG (dB	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL			
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)					
3520.00	54.67	100	180			46.59	2.44	31.95	42.47	68.00	-25.53	Ch. 56/		
3506.66	54.50	100	180			46.60	2.43	31.92	42.25	68.00	-25.75	Ch. 52/		
3546.66	54.00	100	180			46.59	2.45	32.02	41.88	68.00	-26.12	Ch. 64/		
10640.00	54.50	100	270			44.67	4.46	38.73	53.01	74.00	-20.99			
10640.00				41.83	Α	44.67	4.46	38.73	40.34	54.00	-13.66			

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11n (5150-5350 MHz) mode 40MHz Wide.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

	Unwanted Spurious Emissions Limits											
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)									
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc									

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in **802.11n mode 40MHz Wide** (**5150-5350 MHz**)
Channels 38, 46, 54, & 62

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments			
(MHz)	Reading	Height	(degrees)	AVG (dBi	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)					(dB)	(dBuV)						
5190.00	71.41	100	225			2.98	34.64	109.03			Ch. 38			
5190.00				59.44	Α	2.98	34.64	97.06						
5230.00	72.05	100	225			2.99	34.71	109.76			Ch. 46			
5230.00				60.28	Α	2.99	34.71	97.99						
5270.00	71.69	100	225			3.01	34.79	109.48			Ch. 54			
5270.00				59.15	Α	3.01	34.79	96.94						
5310.00	69.76	100	225			3.02	34.86	107.64			Ch. 62			
5310.00				58.76	Α	3.02	34.86	96.64						

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments			
(MHz)	Reading	Height	(degrees)	AVG (dBi	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)					(dB)	(dBuV)						
5190.00	65.82	100	225			2.98	34.40	103.21			Ch. 38			
5190.00				53.90	Α	2.98	34.40	91.29						
5230.00	65.69	100	225			2.99	34.47	103.15			Ch. 46			
5230.00				53.72	Α	2.99	34.47	91.18						
5270.00	63.98	100	225			3.01	34.53	101.52			Ch. 54			
5270.00				51.86	A	3.01	34.53	89.40						
5310.00	61.74	100	225			3.02	34.60	99.35			Ch. 62			
5310.00				50.34	Α	3.02	34.60	87.95						

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in 802.11n mode 40MHz Wide (5150-5350 MHz) Channels 38 & 62

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

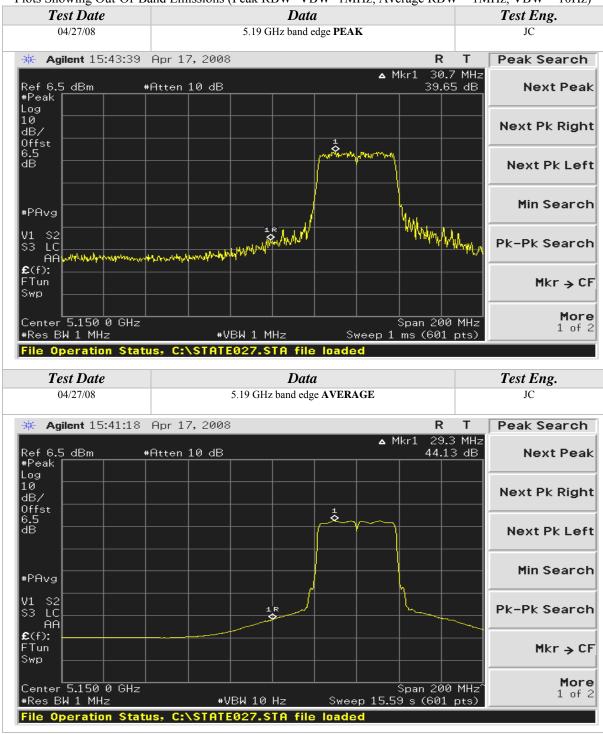
	RADIATED EMISSIONS - Horizontal Antenna Polarization												
Freq.	Meter	Antenna	Azimuth	Quasi pk o	r Cab	le Ant.	Corrected	Limits	Diff(dB)	Comments			
(MHz)	Reading	Height	(degrees)	AVG (dBuV) Fact	or Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)			(dB	(dB)	(dBuV)						
5150.00							69.38	74.00	-4.62	Ch. 38			
5150.00					A		52.93	54.00	-1.07				
5350.00							69.74	74.00	-4.26	Ch. 62			
5350.00					A		52.24	54.00	-1.76				

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG(dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)							
5150.00							63.56	74.00	-10.44	Ch. 38				
5150.00				A			47.16	54.00	-6.84					
5350.00							61.45	74.00	-12.55	Ch. 62				
5350.00				A			43.55	54.00	-10.45					

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

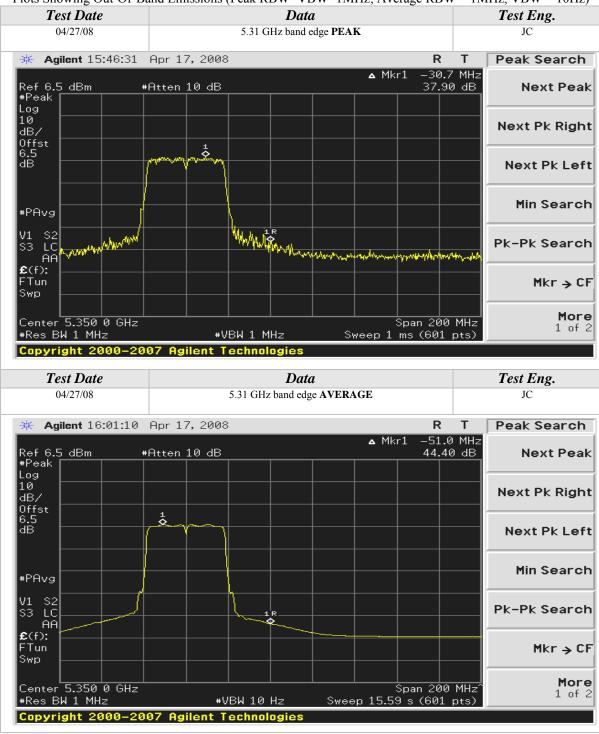
 $BE = Fm - \Delta m$

Where


BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)



Note: Tested at 16.5dBm with lower internal attenuation – PASS

Note: Tested at 16.5dBm with lower internal attenuation – PASS

Spurious Emissions Measurements in **802.11n mode 40MHz Wide** (**5150-5350 MHz**)
Channels 38 & 46

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

		RAD	IATED 1	EMISSION	IS - Hori	zontal A	Antenna	Polarizat	ion						
Freq. (MHz)															
	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain				
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)			Tested				
3486.66	55.17	100	135		46.60	2.43	32.37	43.36	68.00	-24.64	Ch. 46/				
3460.00	54.33	100	135		46.60	2.42	32.30	42.45	68.00	-25.55	Ch. 38/				

		RA	DIATED	EMISSIO	NS - Ver	tical A	ntenna I	Polarizatio	n						
Freq. (MHz)	Freq. (MHz) Meter Antenna Azimuth Quasi pk or Preamp Cable Ant. Corrected Limits Diff (dB) Comments														
	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)			(dB)	(dB)	(dB)	(dBuV)							
3486.66	54.50	100	135		46.60	2.43	31.87	42.20	68.00	-25.80	Ch. 46/				
3460.00	53.33	100	180		46.60	2.42	31.81	40.96	68.00	-27.04	Ch. 38/				

Spurious Emissions Measurements in **802.11n mode 40MHz Wide** (**5150-5350 MHz**)
Channels 54 & 62

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
												Channel/			
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain			
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested			
3513.33	53.83	100	135			46.60	2.44	32.43	42.10	68.00	-25.90	Ch. 54/			
3540.00	54.17	100	135			46.59	2.45	32.49	42.51	68.00	-25.49	Ch. 62/			
10620.00	49.00	100	180			44.65	4.45	38.75	47.55	74.00	-26.45				
10620.00				37.24	Α	44.65	4.45	38.75	35.79	54.00	-18.21				

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq. (MHz) Meter Antenna Azimuth Quasi pk or Preamp Cable Ant. Corrected Limits Diff (dB)											Comments				
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL				
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)						
3513.33	54.17	100	270			46.60	2.44	31.93	41.94	68.00	-26.06	Ch. 54/			
3540.00	52.17	100	180			46.59	2.45	32.00	40.03	68.00	-27.97	Ch. 62/			
10620.00	52.67	100	270			44.65	4.45	38.72	51.20	74.00	-22.80				
10620.00				40.06	A	44.65	4.45	38.72	38.59	54.00	-15.41				

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11a (5470-5725 MHz) mode.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

		Unwanted Spurious Emissions I	Limits
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11a mode (5470-5725 MHz)
Channels 100, 120, & 140
Continuous TX at Chain A Antenna port with Shanghai Universal Antennas
Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL					
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)							
5500.00	71.98	100	270			3.08	35.20	110.26			Ch. 100				
5500.00				61.69	Α	3.08	35.20	99.97							
5600.00	69.12	100	270			3.11	35.22	107.45			Ch. 120				
5600.00				58.42	A	3.11	35.22	96.75							
5700.00	67.33	100	180			3.14	35.24	105.71			Ch. 140				
5700.00				56.81	Α	3.14	35.24	95.19							

		RADIA	TED EM	IISSIO	NS	- Vertical Antenna Polarization						
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments	
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)				
5500.00	68.23	100	135			3.08	34.90	106.21			Ch. 100	
5500.00				58.06	A	3.08	34.90	96.04				
5600.00	67.30	100	135			3.11	34.96	105.37			Ch. 120	
5600.00				57.89	A	3.11	34.96	95.96				
5700.00	65.29	100	180			3.14	35.02	103.45			Ch. 140	
5700.00				54.73	A	3.14	35.02	92.89				

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in **802.11a mode** (**5470-5725 MHz**)
Channels 100 & 140

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

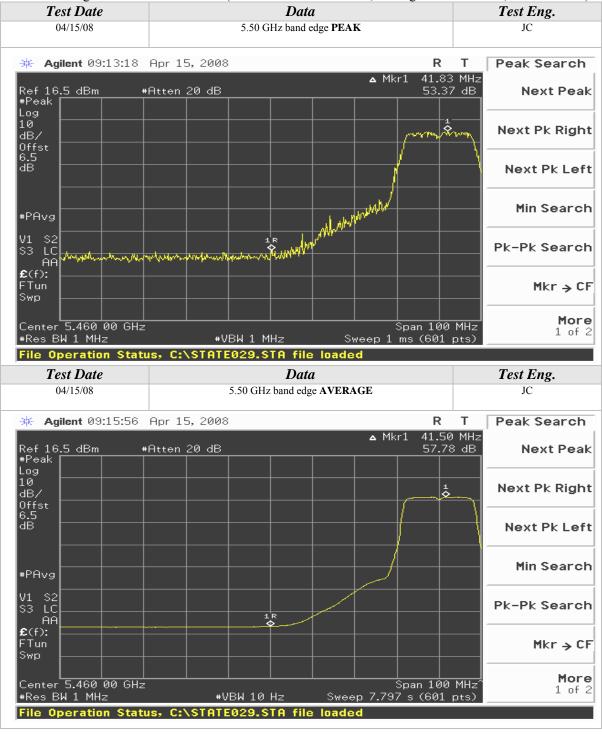
	I	RADIAT	ED EM	ISSIONS	- Hor	izontal A	Antenna P	olarizati	on						
Freq.															
(MHz)															
	(dBuV) (cm) (dB) $(dBuV)$														
5460.00							56.89	74.00	-17.11	Ch. 100					
5460.00				1	4		42.19	54.00	-11.81						
5725.00	36.86	100	180		3.1	35.25	75.25	85.71	-10.46	Ch. 140					

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq. Meter Antenna Azimuth Quasi pk or Cable Ant. Corrected Limits Diff (dB) Commen															
(MHz)	Reading	Height	(degrees)	AVG (dBuV)	Factor	Factor	Reading	(dBuV)	+=FAIL						
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)								
5460.00							52.84	74.00	-21.16	Ch. 100					
5460.00				A			38.26	54.00	-15.74						
5725.00	36.91	100	180		3.15	35.04	75.09	83.45	-8.36	Ch. 140					

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$


Where


BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Spurious Emissions Measurements in 802.11a mode (5470-5725 MHz) Channels 100, 120, & 140

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	kor	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel/			
	Reading	Height	(degrees)	AVG (dB	AVG (dBuV)		Factor	Factor	Reading	(dBuV)	+=FAIL	Chain			
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested			
3733.33	53.83	100	180			46.55	2.53	32.91	42.72	74.00	-31.28	Ch. 120/			
3733.33				41.07	Α	46.55	2.53	32.91	29.96	54.00	-24.04	A			
3666.66	53.67	100	180			46.56	2.50	32.77	42.37	74.00	-31.63	Ch. 100/			
3666.66				41.51	Α	46.56	2.50	32.77	30.21	54.00	-23.79	A			
3800.00	51.17	100	180			46.54	2.55	33.06	40.25	74.00	-33.75	Ch. 140/			
3800.00				39.53	Α	46.54	2.55	33.06	28.61	54.00	-25.39	A			

	RADIATED EMISSIONS - Vertical Antenna Polarization											
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			
3733.33	52.83	100	135			46.55	2.53	32.51	41.31	74.00	-32.69	Ch. 120/
3733.33				40.65	Α	46.55	2.53	32.51	29.13	54.00	-24.87	A
3666.66	52.67	100	135			46.56	2.50	32.33	40.94	74.00	-33.06	Ch. 100/
3666.66				40.32	Α	46.56	2.50	32.33	28.59	54.00	-25.41	A
3800.00	52.00	100	135			46.54	2.55	32.68	40.70	74.00	-33.30	Ch. 140/
3800.00				39.90	Α	46.54	2.55	32.68	28.60	54.00	-25.40	A

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11n (5740-5745 MHz) mode 20MHz Wide.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

	Unwanted Spurious Emissions Limits										
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)								
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc								

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11n mode 20MHz Wide (5470-5725 MHz) Channels 100, 120, & 140

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

	RADIATED EMISSIONS - Horizontal Antenna Polarization										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBı	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5500.00	72.76	100	270			3.08	35.20	111.04			Ch. 100
5500.00				62.34	A	3.08	35.20	100.62			
5600.00	72.09	100	270			3.11	35.22	110.42			Ch. 120
5600.00				61.63	A	3.11	35.22	99.96			
5700.00	70.85	100	270			3.14	35.24	109.23			Ch. 140
5700.00				60.02	A	3.14	35.24	98.40			

		RADIA	TED EM	IISSIO	NS	- Vertic	al Ante	nna Pola	rizatio	n	
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBı	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5500.00	69.89	100	135			3.08	34.90	107.87			Ch. 100
5500.00				59.11	A	3.08	34.90	97.09			
5600.00	67.78	100	180			3.11	34.96	105.85			Ch. 120
5600.00				57.68	A	3.11	34.96	95.75			
5700.00	66.32	100	180			3.14	35.02	104.48			Ch. 140
5700.00				55.80	A	3.14	35.02	93.96			

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in 802.11n mode 20MHz Wide (5470-5725 MHz) Channels 100 & 140

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

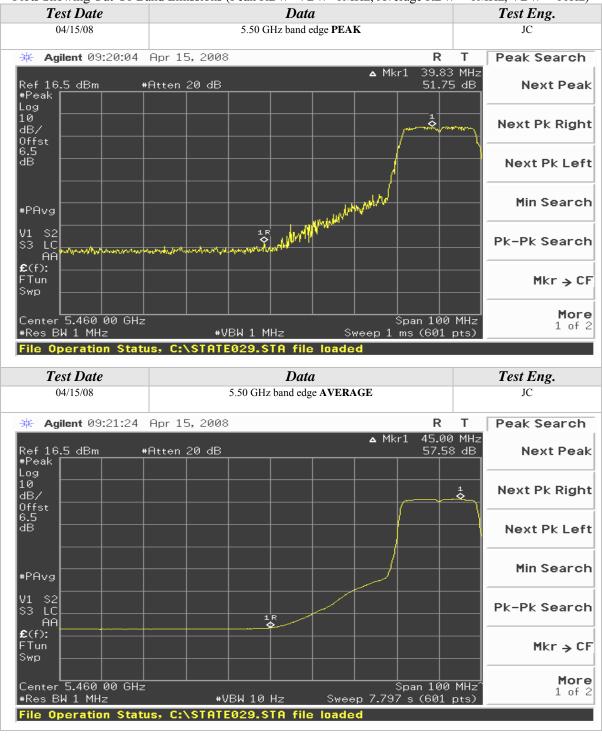
	RADIATED EMISSIONS - Horizontal Antenna Polarization										
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments	
(MHz)	Reading	Height	(degrees)	AVG (dBuV	Factor	Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)				
5460.00							59.29	74.00	-14.71	Ch. 100	
5460.00				I I	\		43.04	54.00	-10.96		
5725.00	37.43	100	270		3.15	35.25	75.82	89.23	-13.41	Ch. 140	

	RADIATED EMISSIONS - Vertical Antenna Polarization											
Freq.	Meter	Antenna	Azimuth	Quasi pk o	r	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments	
(MHz)	Reading	Height	(degrees)	AVG (dBuV	V)	Factor	Factor	Reading	(dBuV)	+=FAIL		
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)				
5460.00								56.12	74.00	-17.88	Ch. 100	
5460.00					A			39.51	54.00	-14.49		
5725.00	37.85	100	180			3.15	35.04	76.03	84.48	-8.45	Ch. 140	

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$

Where


BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Spurious Emissions Measurements in 802.11n mode 20MHz Wide (5470-5725 MHz) Channels 100, 120, & 140

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization											
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	kor	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel/
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested
3733.33	53.33	100	180			46.55	2.53	32.91	42.22	74.00	-31.78	Ch. 120/
3733.33				41.37	Α	46.55	2.53	32.91	30.26	54.00	-23.74	A
3666.66	54.00	100	180			46.56	2.50	32.77	42.70	74.00	-31.30	Ch. 100/
3666.66				41.94	Α	46.56	2.50	32.77	30.64	54.00	-23.36	A
3800.00	51.50	100	135			46.54	2.55	33.06	40.58	74.00	-33.42	Ch. 140/
3800.00				39.57	A	46.54	2.55	33.06	28.65	54.00	-25.35	A

	RADIATED EMISSIONS - Vertical Antenna Polarization											
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			
3733.33	52.67	100	180			46.55	2.53	32.51	41.15	74.00	-32.85	Ch. 120/
3733.33				41.21	Α	46.55	2.53	32.51	29.69	54.00	-24.31	A
3666.66	52.50	100	135			46.56	2.50	32.33	40.77	74.00	-33.23	Ch. 100/
3666.66				41.20	Α	46.56	2.50	32.33	29.47	54.00	-24.53	A
3800.00	51.17	100	180			46.54	2.55	32.68	39.87	74.00	-34.13	Ch. 140/
3800.00				39.77	Α	46.54	2.55	32.68	28.47	54.00	-25.53	A

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC/KN
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
CONFIGURATION:	Tested installed in an extender board connected to the host laptop's mini PCI slot in 802.11n (5740-5745 MHz) mode 40MHz Wide.	TEMPERATURE: HUMIDITY: TIME:	21 deg. C 32% RH 2:00 PM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.

	Unwanted Spurious Emissions Limits								
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)						
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc						

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Fundamental Measurements in 802.11n mode 40MHz Wide (5470-5725 MHz) Channels 102, 118, & 134

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

	F	RADIAT	ED EM	ISSION	S -]	Horizon	tal An	tenna Po	larizati	ion	
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBı	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5510.00	70.51	100	270			3.08	35.20	108.79			Ch. 102
5510.00				59.39	Α	3.08	35.20	97.67			
5590.00	69.78	100	270			3.10	35.22	108.10			Ch. 118
5590.00				59.13	A	3.10	35.22	97.45			
5670.00	68.82	100	270			3.13	35.23	107.18			Ch. 134
5670.00				58.20	Α	3.13	35.23	96.56			

	RADIATED EMISSIONS - Vertical Antenna Polarization										
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBi	$\iota V)$	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5510.00	64.37	100	180			3.08	34.91	102.36			Ch. 102
5510.00				53.89	A	3.08	34.91	91.88			
5590.00	64.03	100	180			3.10	34.95	102.09			Ch. 118
5590.00				53.52	A	3.10	34.95	91.58			
5670.00	63.64	100	180			3.13	35.00	101.77			Ch. 134
5670.00				53.18	A	3.13	35.00	91.31			

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Band Edge Field Strength Measurements in **802.11n mode 40MHz Wide** (**5470-5725 MHz**)
Channels 102 & 134

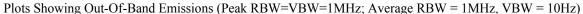
Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-07

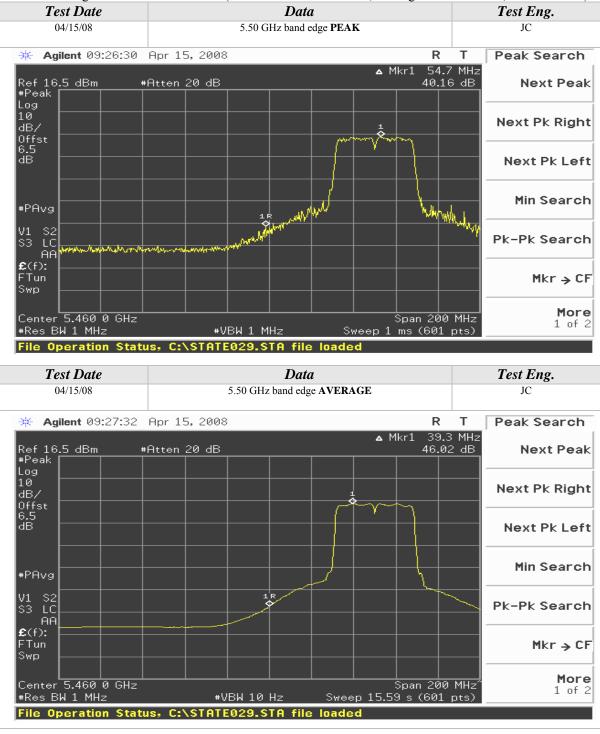
	RADIATED EMISSIONS - Horizontal Antenna Polarization									
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBuV) Facto	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)			(dB)	(dB)	(dBuV)			
5460.00							68.63	74.00	-5.37	Ch. 102
5460.00				1	A		51.65	54.00	-2.35	
5725.00	36.72	100	270		3.15	35.25	75.11	87.18	-12.07	Ch. 134

	RADIATED EMISSIONS - Vertical Antenna Polarization										
Freq.	Meter	Antenna	Azimuth	Quasi pk o	r	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
(MHz)	Reading	Height	(degrees)	AVG (dBuV	V)	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dBuV)			
5460.00								62.20	74.00	-11.80	Ch. 102
5460.00					Α			45.86	54.00	-8.14	
5725.00	36.10	100	180			3.15	35.04	74.28	81.77	-7.49	Ch. 134

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$


Where


BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Spurious Emissions Measurements in 802.11n mode 40MHz Wide (5470-5725 MHz)
Channels 102, 118, & 134

Continuous TX at Chain A Antenna port with Shanghai Universal Antennas Aegis Labs, Inc. File #: INTEL-080922-08

	RADIATED EMISSIONS - Horizontal Antenna Polarization											
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	kor	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel/
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Chain
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			Tested
3726.66	53.00	100	180			46.55	2.52	32.90	41.87	74.00	-32.13	Ch. 118/
3726.66				41.21	Α	46.55	2.52	32.90	30.08	54.00	-23.92	A
3673.33	53.33	100	180			46.56	2.50	32.78	42.05	74.00	-31.95	Ch. 102/
3673.33				41.18	Α	46.56	2.50	32.78	29.90	54.00	-24.10	A
3780.00	52.00	100	135			46.54	2.55	33.02	41.02	74.00	-32.98	Ch. 134/
3780.00				39.80	Α	46.54	2.55	33.02	28.82	54.00	-25.18	A

	RADIATED EMISSIONS - Vertical Antenna Polarization											
Freq. (MHz)	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments
	Reading	Height	(degrees)	AVG (dB	uV)	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			
3726.66	53.83	100	180			46.55	2.52	32.49	42.29	74.00	-31.71	Ch. 118/
3726.66				40.89	Α	46.55	2.52	32.49	29.35	54.00	-24.65	A
3673.33	52.83	100	135			46.56	2.50	32.35	41.12	74.00	-32.88	Ch. 102/
3673.33				40.16	Α	46.56	2.50	32.35	28.45	54.00	-25.55	В
3780.00	51.00	100	180			46.54	2.55	32.63	39.63	74.00	-34.37	Ch. 134/
3780.00				39.74	Α	46.54	2.55	32.63	28.37	54.00	-25.63	В

PEAK TRANSMIT POWER

CLIENT:	Intel Corporation	DATE:	04/16/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	JC
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
	Tested installed in an extender	TEMPERATURE:	22 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	33% RH
	laptop's mini PCI slot	TIME:	12:30 PM

Description:	For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10logB, where B is the 26-dB emission bandwidth in MHz.
	For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10logB, where B is the 26-dB emission bandwidth in MHz.
Results:	Passed (See Data Sheet)
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

Peak Transmit Power (Continued)

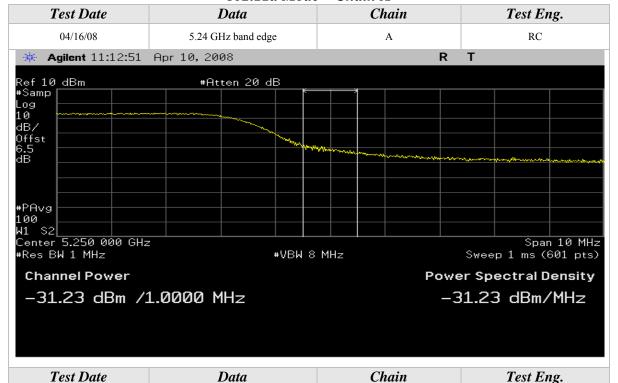
Mode	Channel	Frequency (MHz)	Chain	Data Rate (Mbps)	Total Power (dBm)	Total Power (mW)
802.11a	36	5180	A	6	16.54	45.12
802.11a	40	5200	A	6	16.72	47.03
802.11a	48	5240	A	6	16.40	43.69
802.11a	52	5260	A	6	16.46	44.30
802.11a	56	5280	A	6	16.36	43.29
802.11a	64	5320	A	6	16.39	43.59
802.11n	36	5180	A	HT0	16.63	46.06
802.11n	40	5200	A	HT0	16.64	46.17
802.11n	48	5240	A	HT0	16.74	47.25
802.11n	52	5260	A	HT0	16.63	46.06
802.11n	56	5280	A	HT0	16.54	45.12
802.11n	64	5320	A	HT0	16.58	45.54
802.11n (40MHz)	38(F)	5190	A	HT0	16.63	46.00
802.11n (40MHz)	46(F)	5230	A	HT0	16.45	44.13
802.11n (40MHz)	54(F)	5270	A	HT0	16.74	47.18
802.11n (40MHz)	62(F)	5310	A	HT0	16.46	44.24
802.11a	100	5500	A	6	16.64	46.17
802.11a	120	5600	A	6	16.72	47.03
802.11a	140	5700	A	6	16.45	44.19
802.11n	100	5500	A	HT0	16.57	45.43
802.11n	120	5600	A	HT0	16.72	47.03
802.11n	140	5700	A	HT0	16.45	44.19
802.11n (40MHz)	102(F)	5510	A	HT0	16.47	44.34
802.11n (40MHz)	118(F)	5590	A	HT0	16.80	47.84
802.11n (40MHz)	134(F)	5670	A	HT0	16.78	47.62

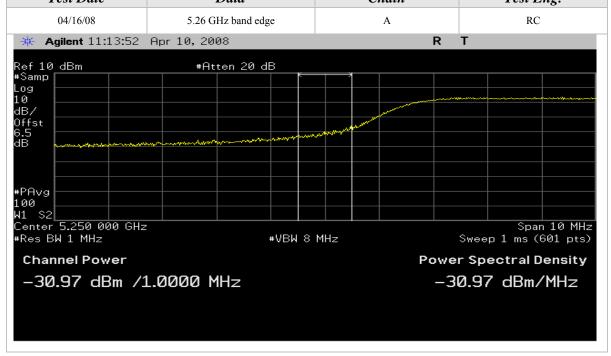
NOTE: The output power measurement is conducted.

CONDCUTED BAND EDGE EMISSIONS TEST RESULTS

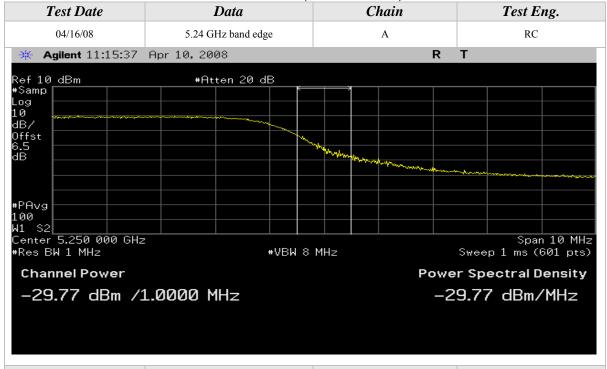
CLIENT:	Intel Corporation	DATE:	04/16/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	RC
SERIAL NUMBER:	0016EB01D1C7	SITE #:	1
	Tested installed in an extender	TEMPERATURE:	20 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	46% RH
	laptop's mini PCI slot	TIME:	10:00 AM

Description:	5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz
D14	in the 5.15-5.25 GHz band.
Results:	See Data Sheet
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set
	at the following voltage and frequency.
	• 120VAC / 60 Hz.


Unwanted Spurious Emissions Limits		
Frequency (MHz) Field Strength (dBm/Hz)		
	(Emissions outside the restricted bands)	
5250-5350	EIRP < -27dBm/Hz (68.3dBuV/m)	



CONDCUTED BAND EDGE EMISSIONS TEST RESULTS							
Freq.(MHz)	TX Chain	Power Spec Den. Reading (dBm/MHz)	Antenna Gain (dBi)	Corrected Reading (dBm/MHz)	Limits (dBm/MHz)	Diff(dB) +=FAIL	Comments
802.11a							
5250.00	Α	-31.32	2.57	-28.75	-27.00	-1.75	Tx @ 5240 MHz
5250.00	A	-30.97	2.57	-28.40	-27.00	-1.40	Tx @ 5260 MHz
802.11n (20MI	Hz Wide)						
5250.00	A	-29.77	2.57	-27.20	-27.00	-0.20	Tx @ 5240 MHz
5250.00	A	-30.34	2.57	-27.77	-27.00	-0.77	Tx @ 5260 MHz
802.11n (40MI	Hz Wide)						
5250.00	Α	-36.78	2.57	-34.21	-27.00	-7.21	Tx @ 5240 MHz
5250.00	A	-36.78	2.57	-34.21	-27.00	-7.21	Tx @ 5260 MHz

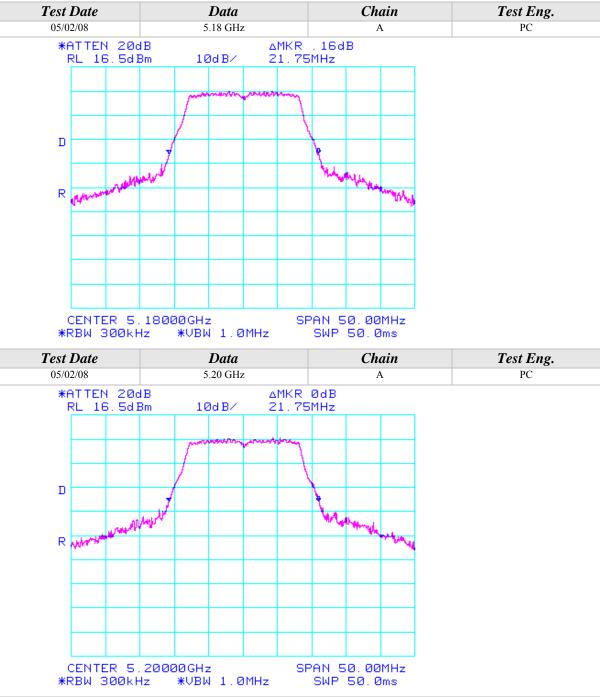

802.11a Mode - Chain A


802.11n Mode (20 MHz Wide)

Test Date	Data	Chain	Test Eng.	
04/16/08	5.26 GHz band edge	A	RC	
* Agilent 11:17:27	Apr 10, 2008	R	Т	
Ref 10 dBm	#Atten 20 dB			
#Samp Log		1 1		
10 dB/				
Offst 6.5 dB		War and a second		
ав	and the second of the second o	7.		
- Comment of the Comm				
#PAvg 100				
W1 S2 Center 5. 250 000 GHz			Span 10 MHz	
#Res BW 1 MHz	#VBW 8	MHz	Sweep 1 ms (601 pts)	
Channel Power		Powe	er Spectral Density	
-30.34 dBm /3	1.0000 MHz	-3	0.34 dBm/MHz	

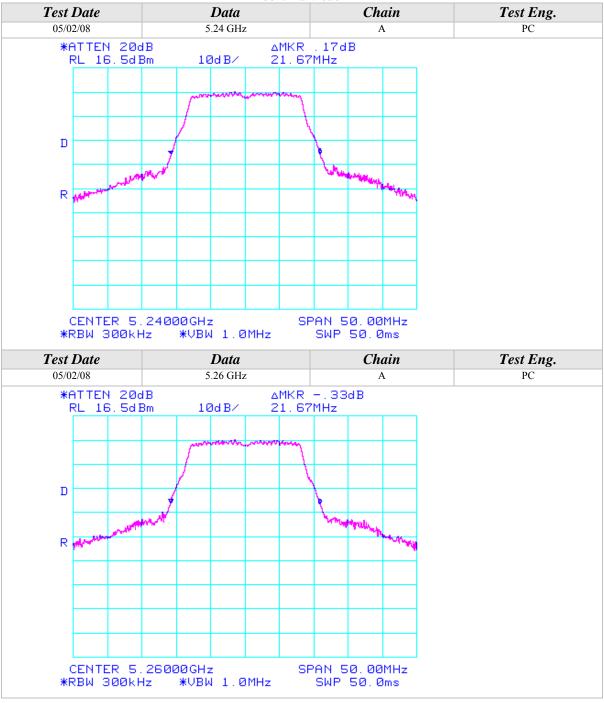
802.11n Mode (40 MHz Wide)

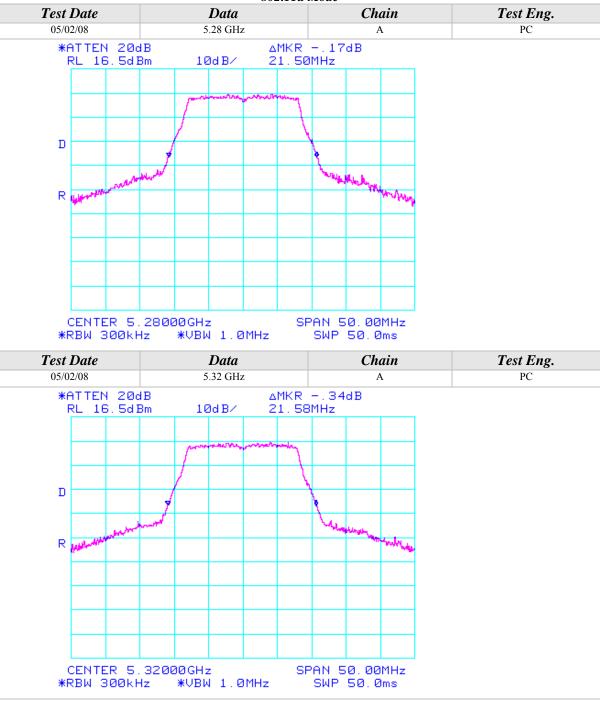
Test Date	Data	Chain	Test Eng.	
04/16/08	5.26 GHz band edge	A	RC	
* Agilent 11:21:29	Agilent 11:21:29 Apr 10, 2008 R T			
Ref 10 dBm	#Atten 20 dB			
#Samp Log				
10 dB/				
Offst				
6.5 dB	and the same of th	was dear and desired		
#PAvg				
100				
W1 S2 Center 5.250 000 GHz	<u> </u>		Span 10 MHz	
#Res BW 1 MHz	#VBW 8	MHz	Sweep 1 ms (601 pts)	
Channel Power		Powe	er Spectral Density	
-36.78 dBm /	1.0000 MHz	-3	6.78 dBm/MHz	

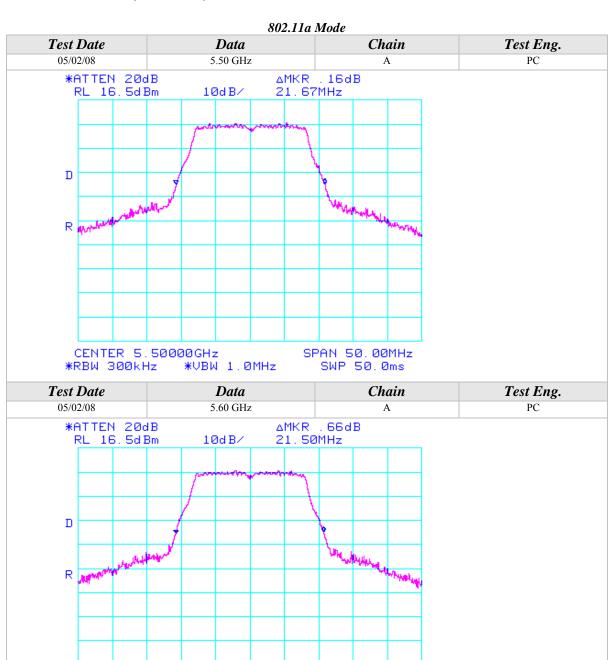

26dB EMISSIONS BANDWIDTH

CLIENT:	Intel Corporation	DATE:	05/02/08
EUT:	Intel WiFi/WiMax Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	PC
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
	Tested installed in an extender	TEMPERATURE:	23 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	30% RH
	laptop's mini PCI slot	TIME:	4:15 PM

Description:	26dB emissions bandwidth in MHz.
Results:	See Data Sheet
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. • 120VAC / 60 Hz.



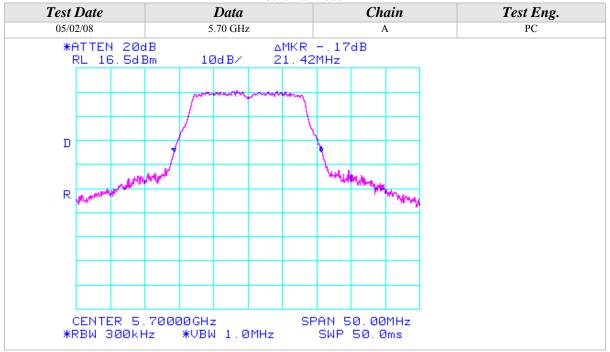




CENTER 5.60000GHz

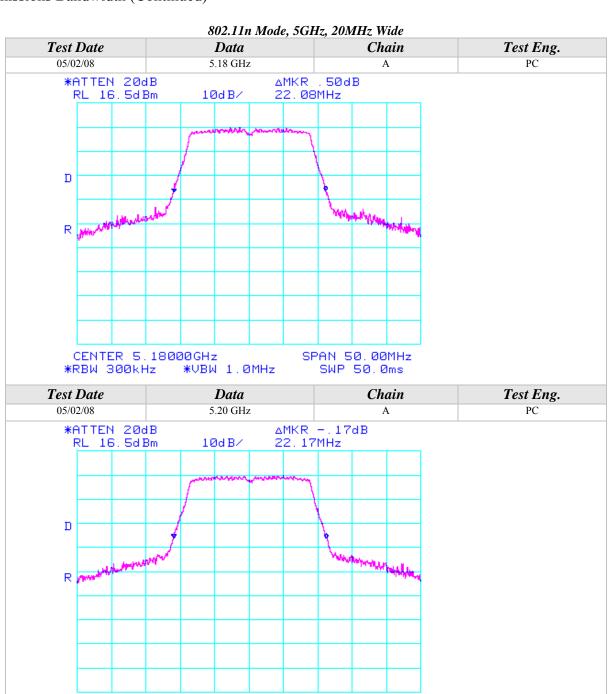
*VBW 1.0MHz

*RBW 300kHz



SPAN 50.00MHz

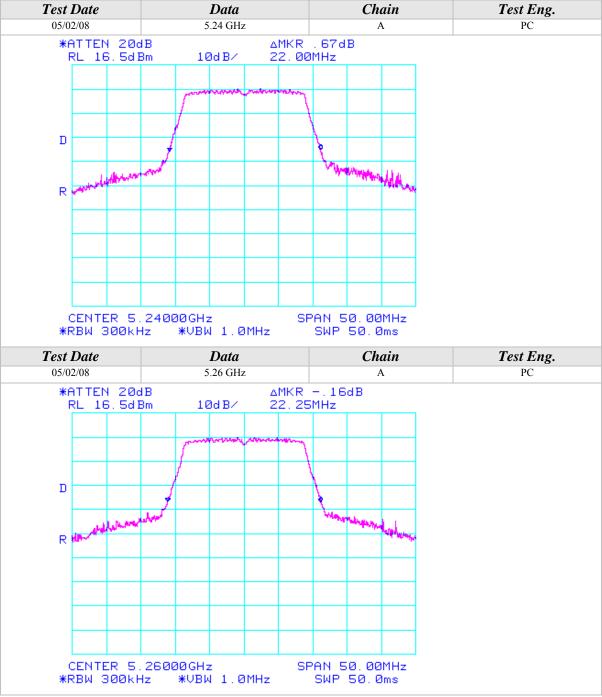
SWP 50.0ms



CENTER 5.20000GHz

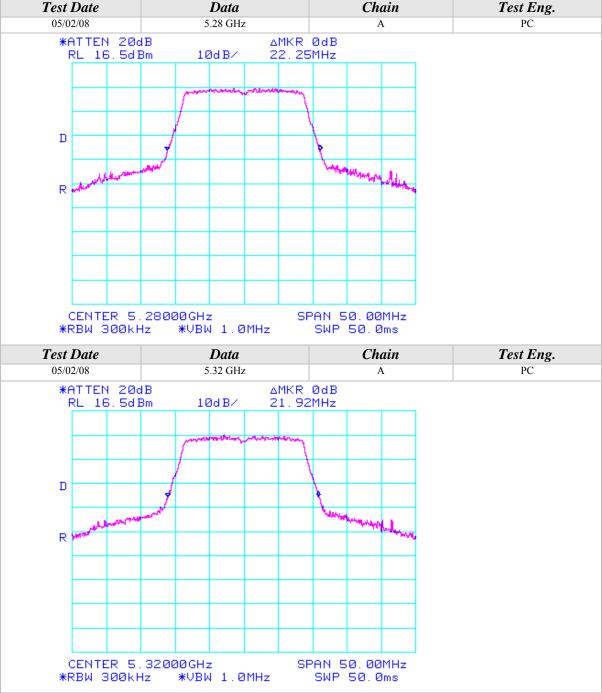
*VBW 1.0MHz

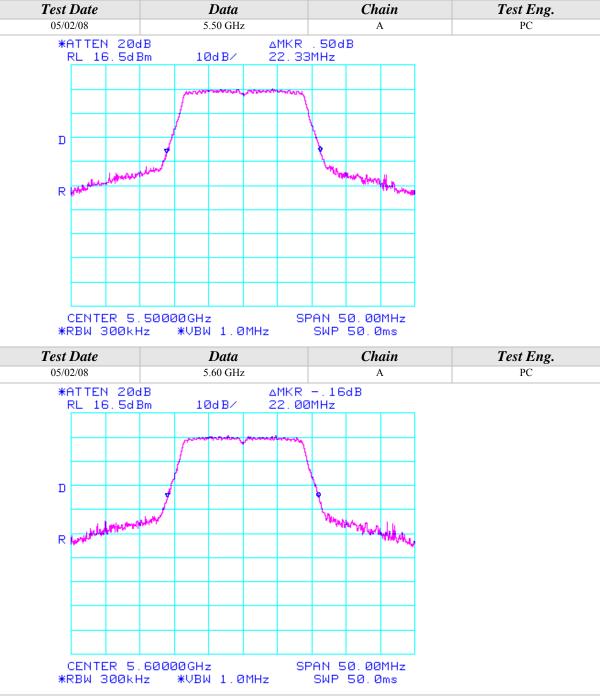
*RBW 300kHz

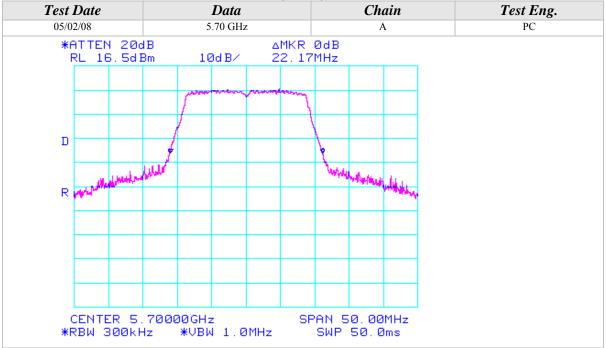


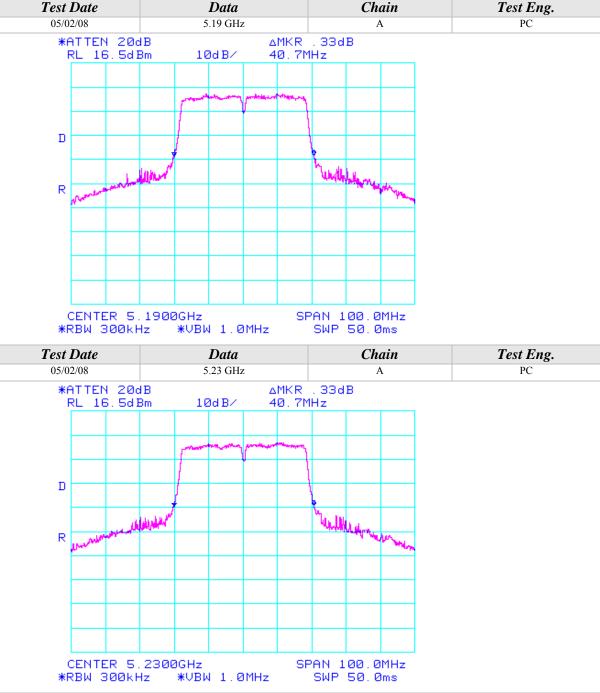
SPAN 50.00MHz

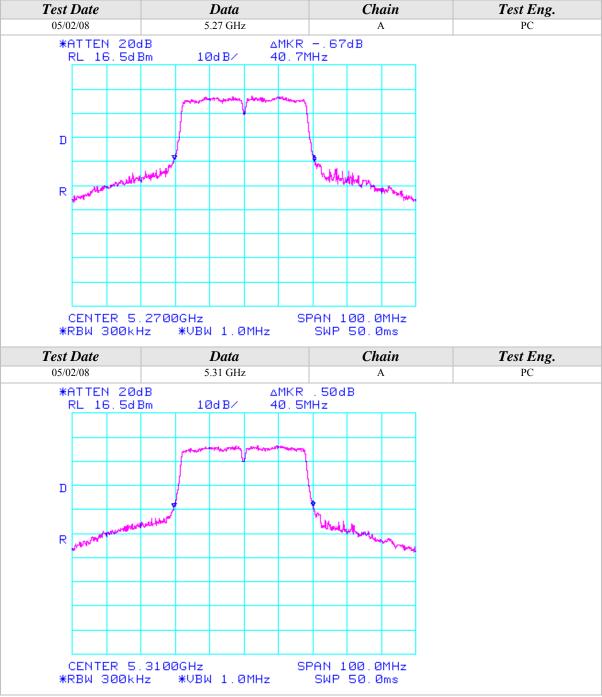
SWP 50.0ms



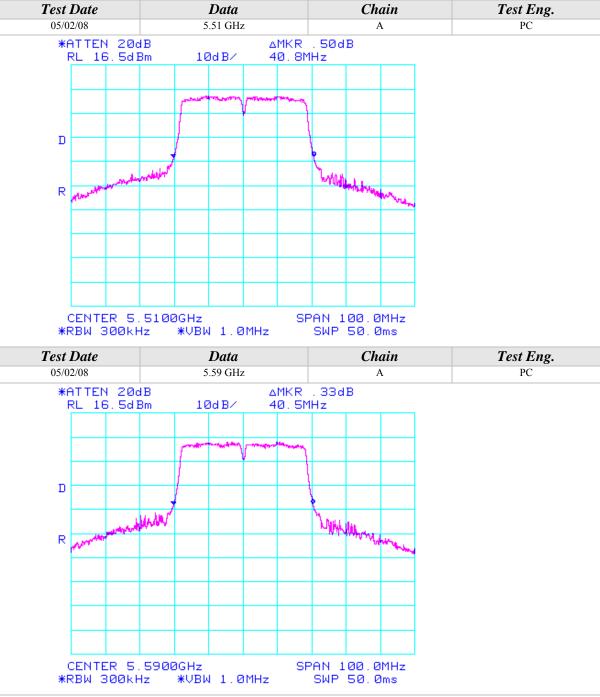








26dB Emissions Bandwidth (Continued)

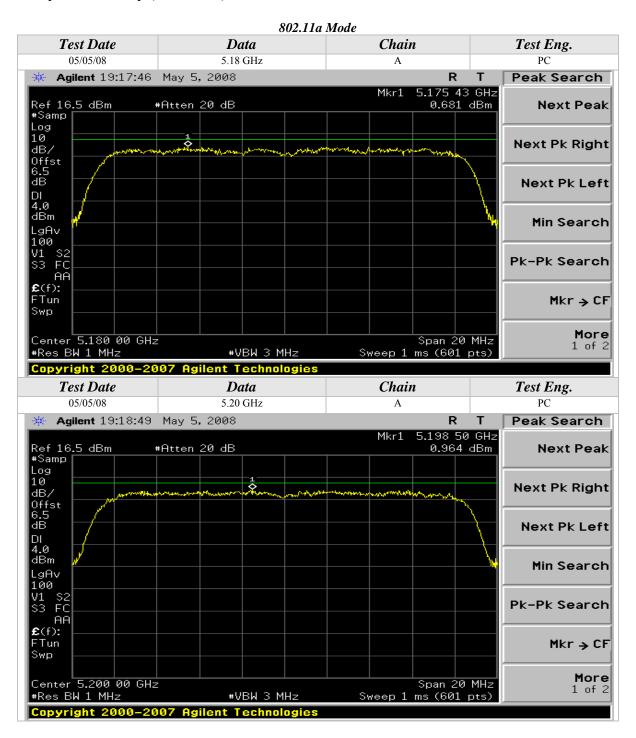


26dB Emissions Bandwidth (Continued)

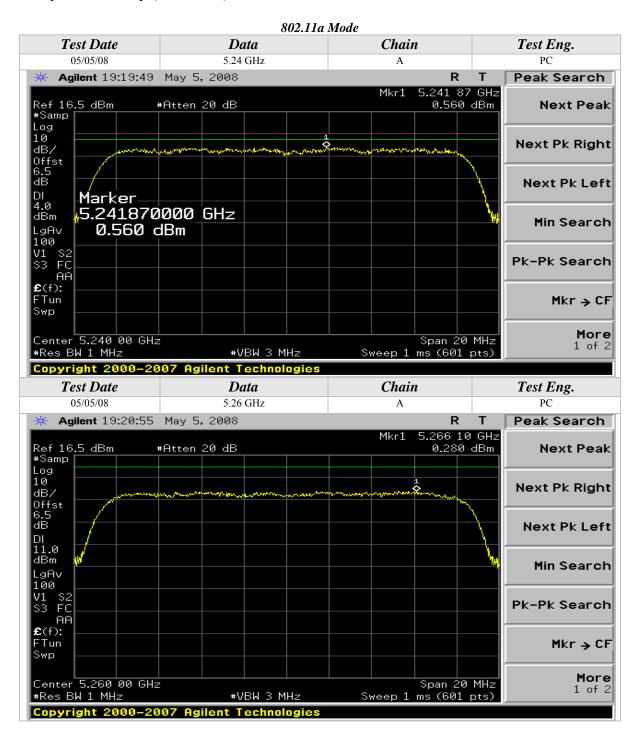


26dB Emissions Bandwidth (Continued)

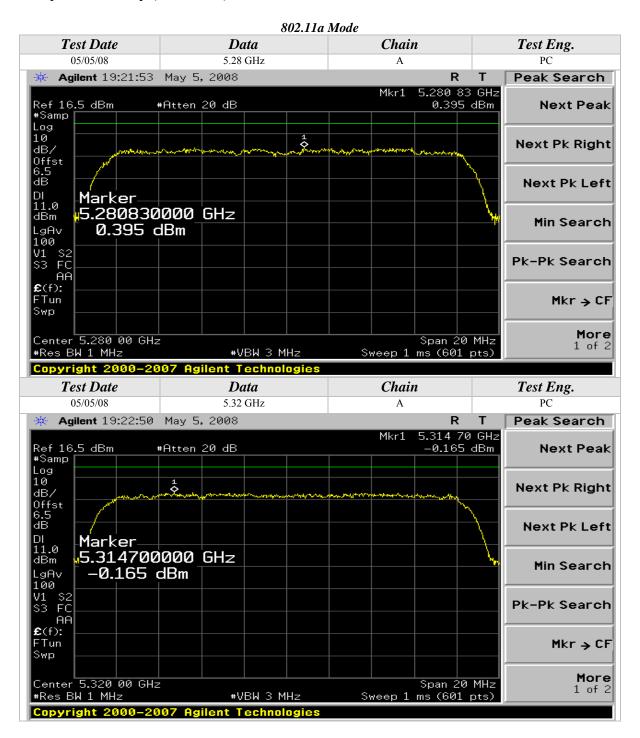
PEAK POWER SPECTRAL DENSITY

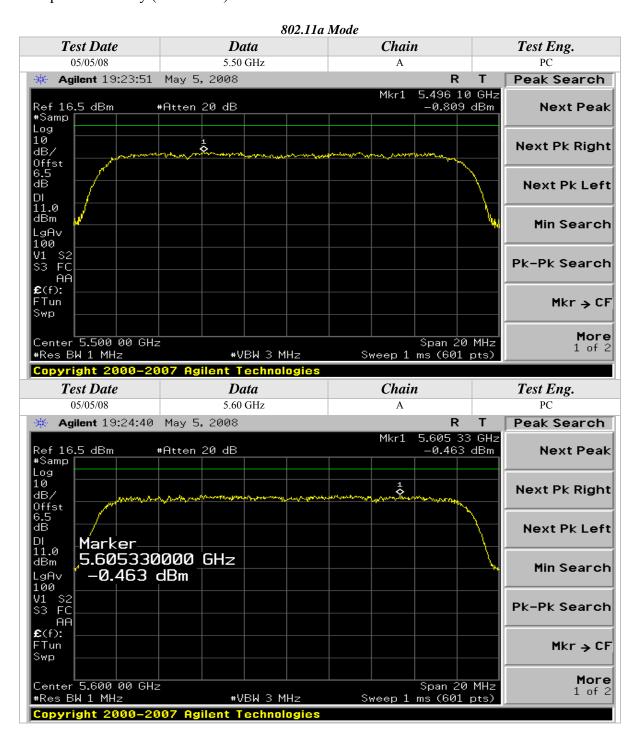

CLIENT:	Intel Corporation	DATE:	04/28/08
EUT:	Intel WiFi/WiMax Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	PC
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
	Tested installed in an extender	TEMPERATURE:	15 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	40% RH
	laptop's mini PCI slot	TIME:	03:00 PM

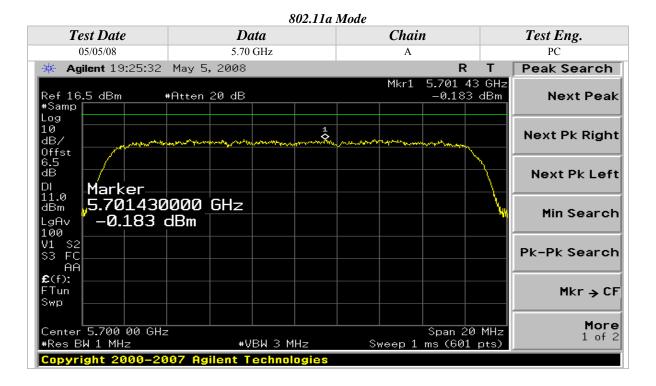
Description:	For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band For the band 5.2 5-5.35 GHz & 5.47-5.725, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band
Results:	See Data Sheet
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

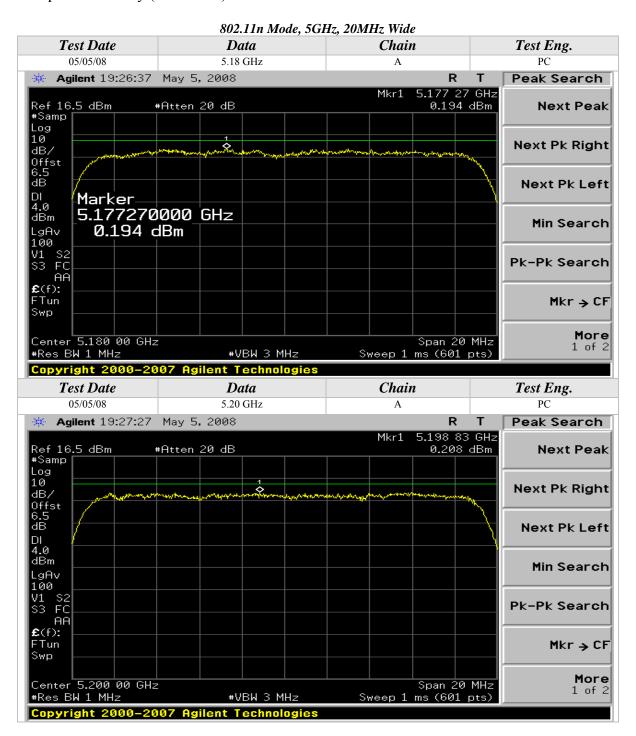

Peak Power Spectral Density Limits		
Frequency (MHz)	Limit (dBm)	
5150-5250	4	
5250-5350	11	
5470-5725	11	

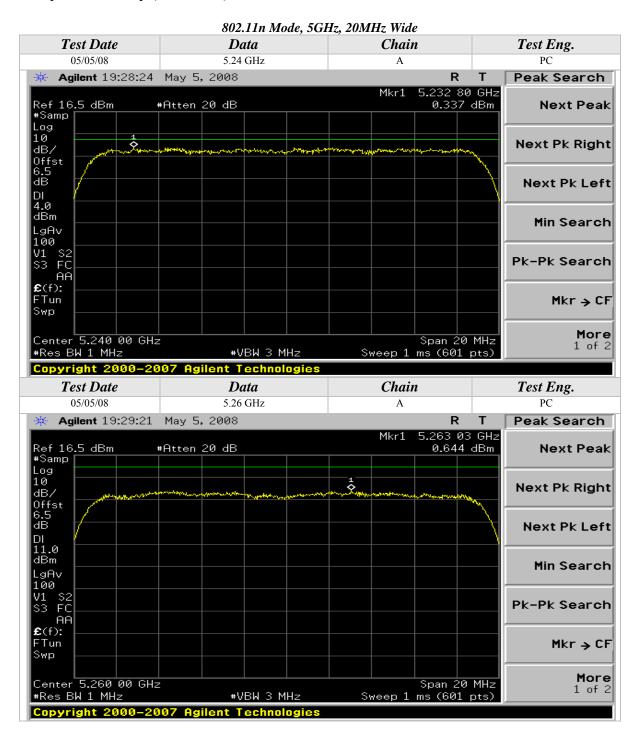
Using "Method 2" of the FCC Public Notice (DA 02-2138) for all frequency bands

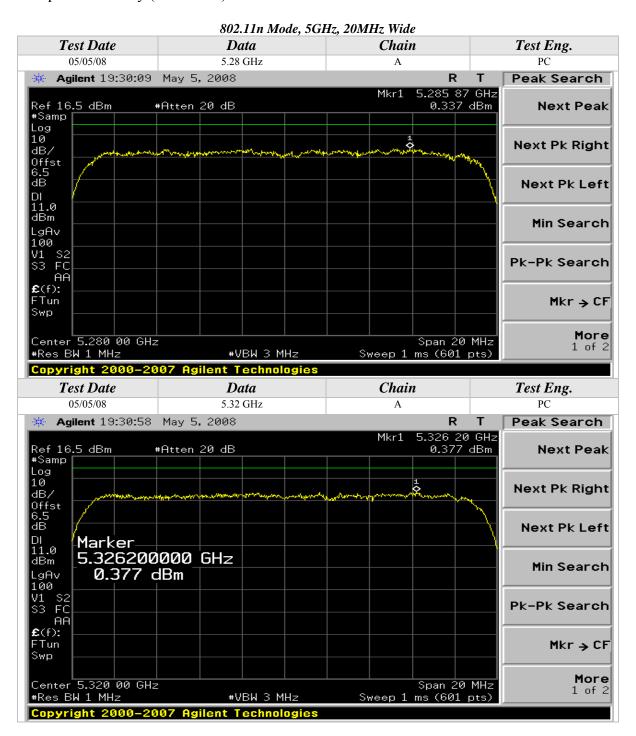


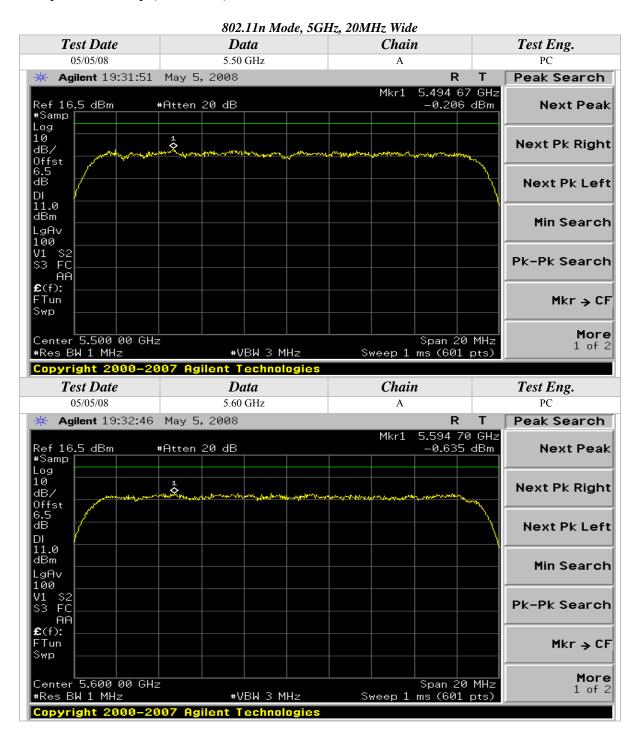


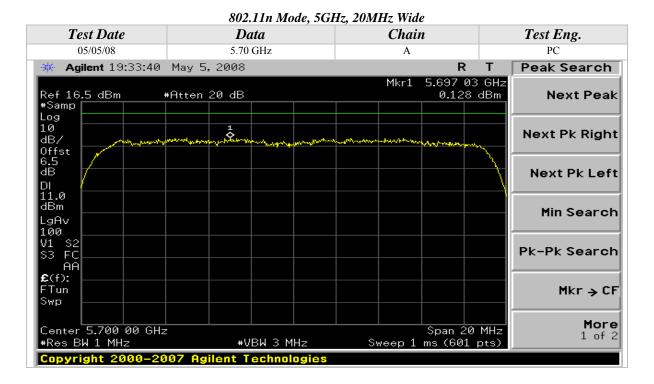


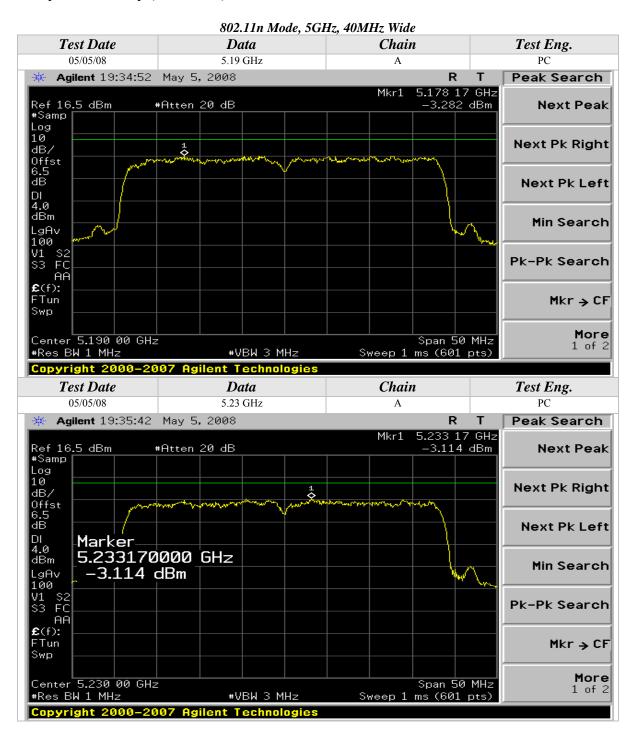


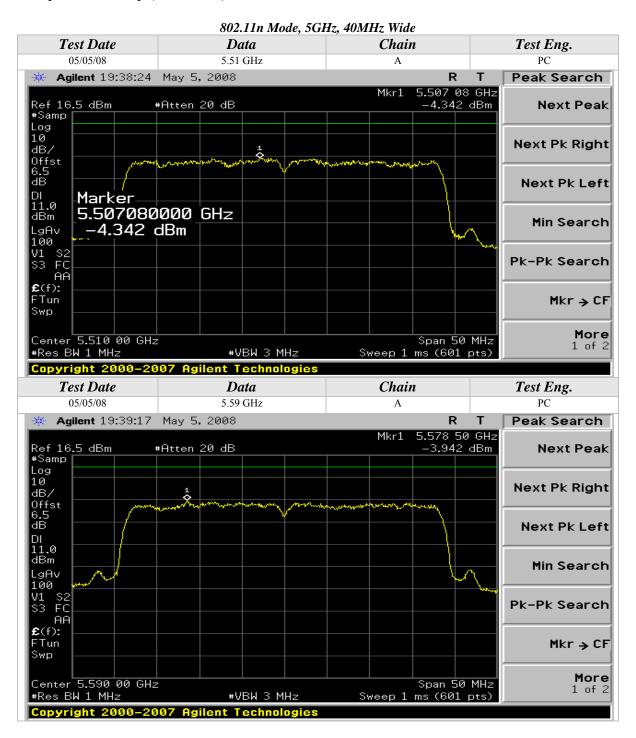






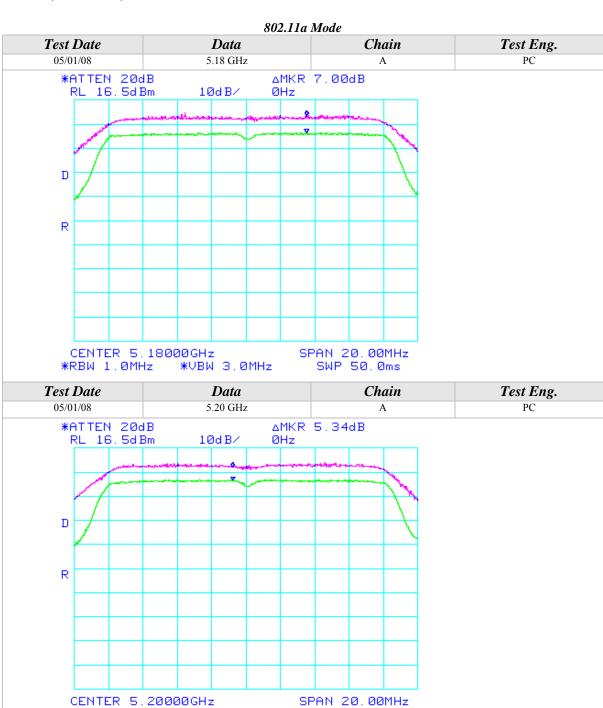




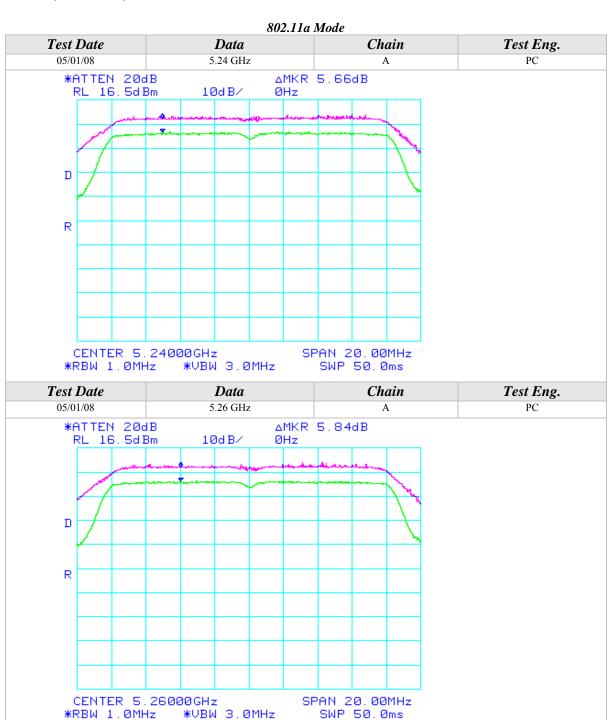


PEAK EXCURSION

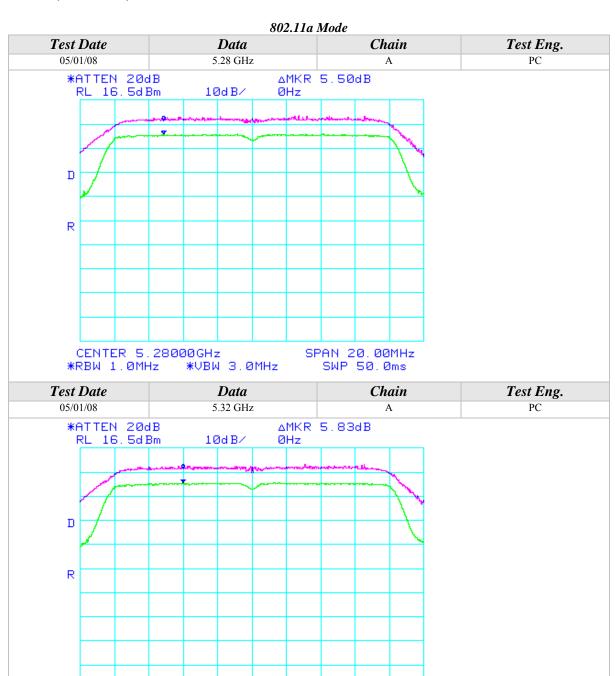
CLIENT:	Intel Corporation	DATE:	05/01/08
EUT:	Intel WiMax/WiFi Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	PC
SERIAL NUMBER:	INTEL-080922	SITE #:	2
	Tested installed in an extender	TEMPERATURE:	23 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	46% RH
	laptop's mini PCI slot	TIME:	11:00 AM


Description:	The ratio of the peak excursion of the modulation envelope to the peak transmit power shall not exceed 13dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.
Results:	See Data Sheet
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

Peak Power Spectral Density Limits		
Frequency (MHz)	Limit (dBm)	
5150-5350	13	
5470-5725	13	

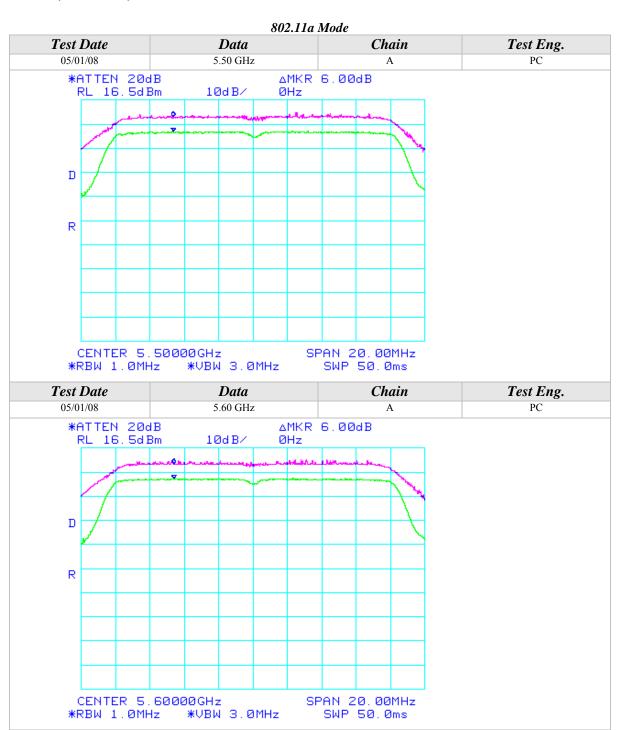

*RBW 1.0MHz

*VBW 3.0MHz



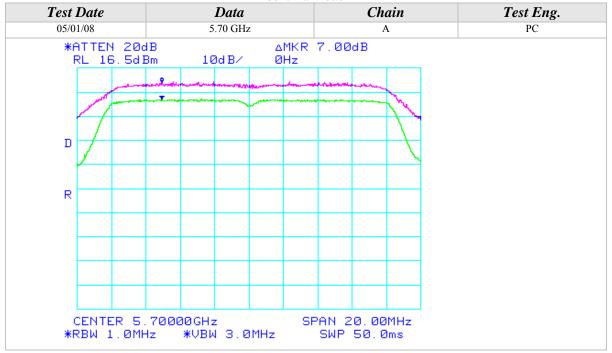
SWP 50.0ms

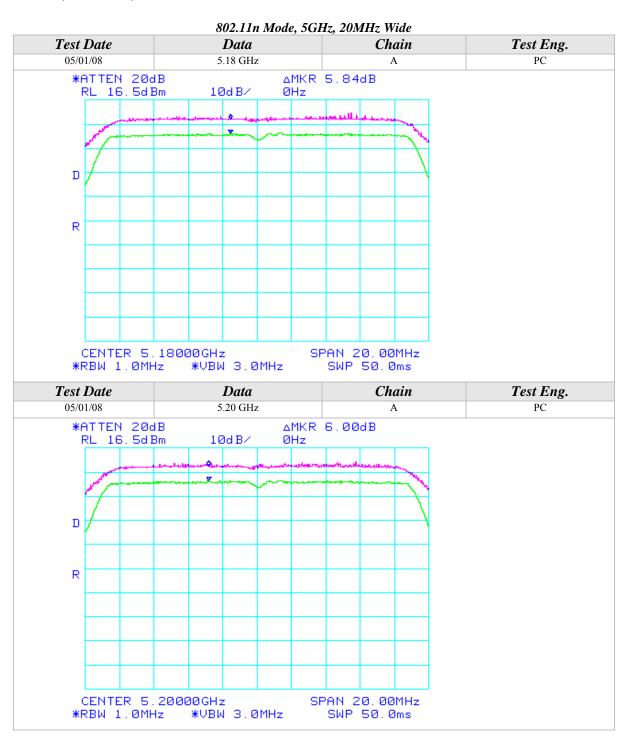
SPAN 20.00MHz

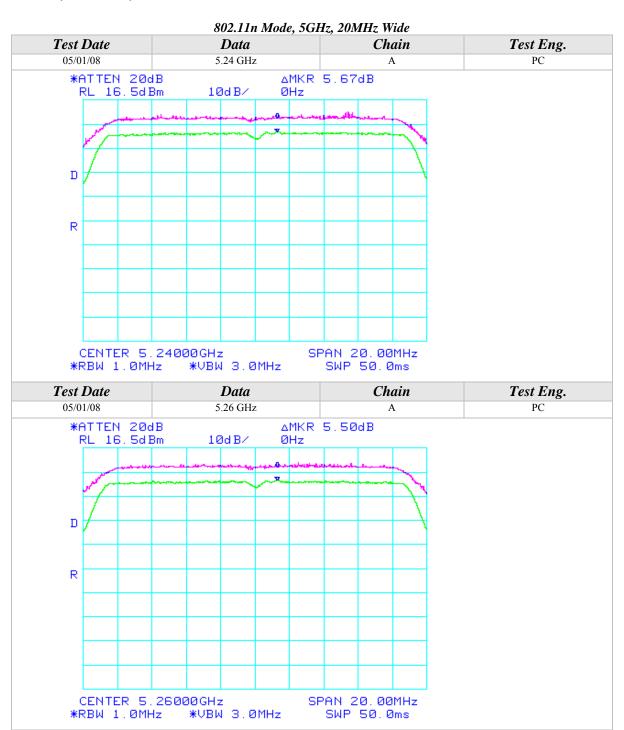

SWP 50.0ms

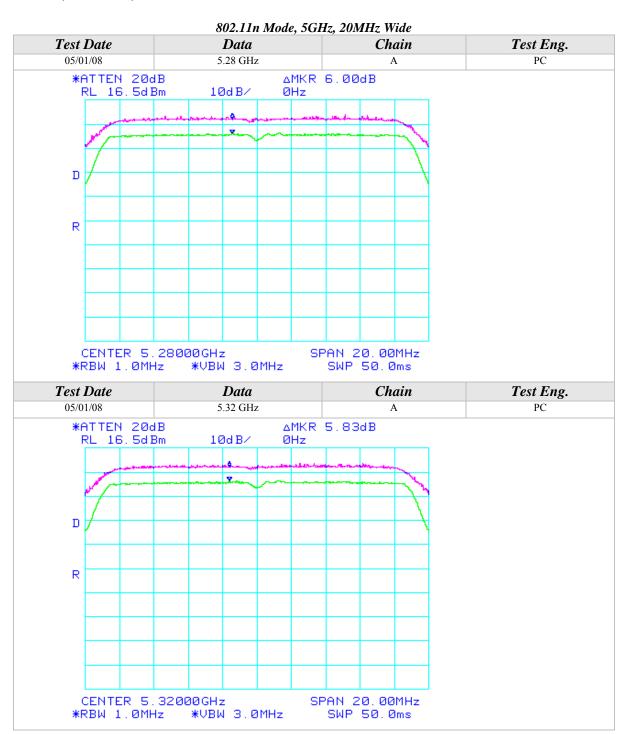
CENTER 5.32000GHz

*VBW 3.0MHz

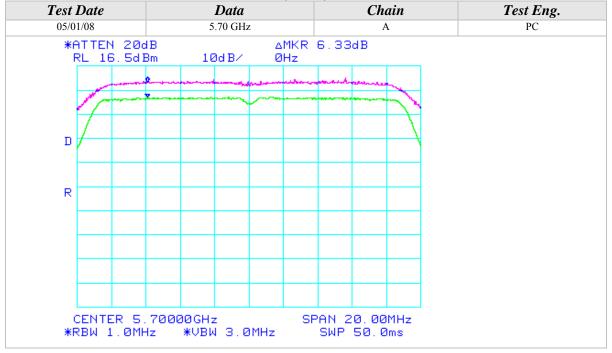

*RBW 1.0MHz

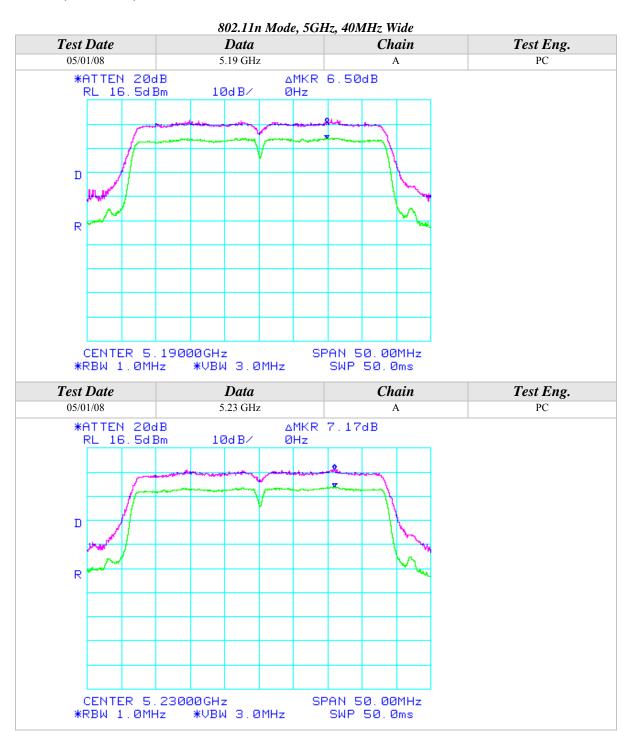


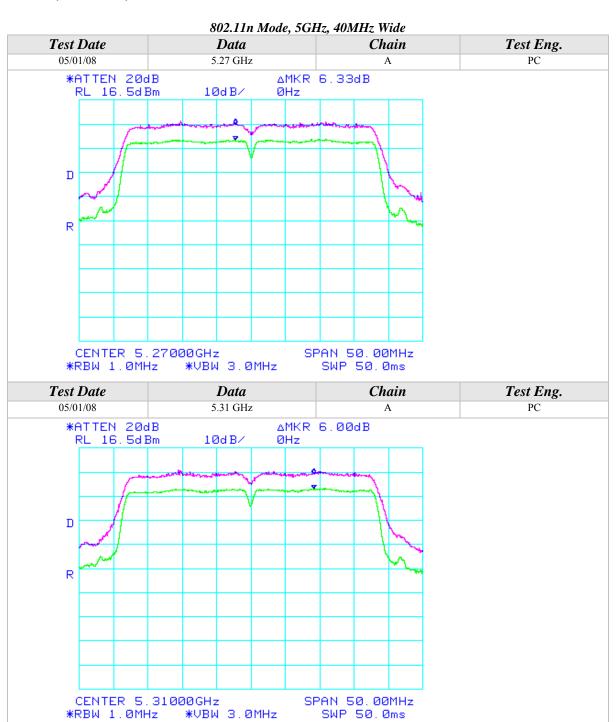


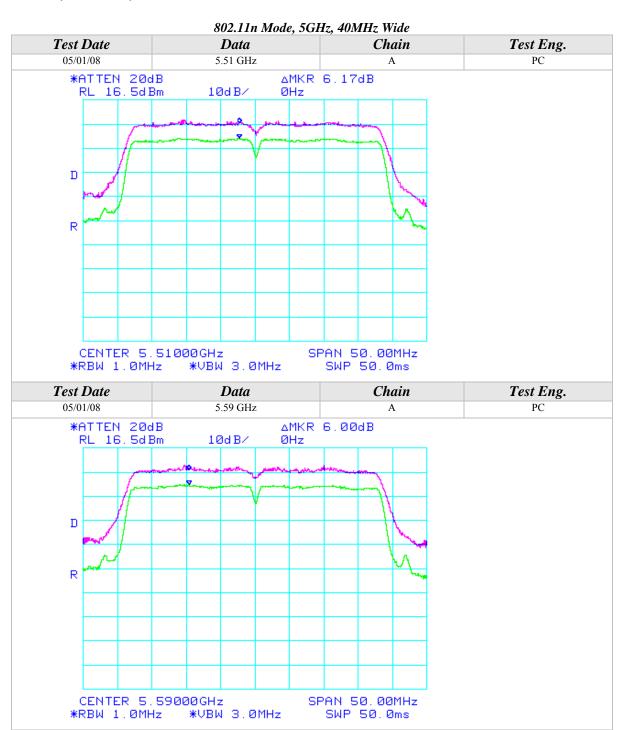


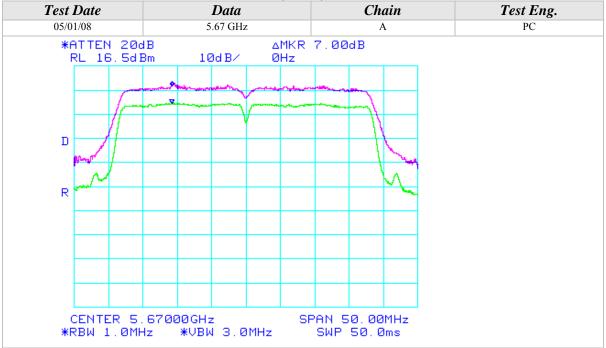




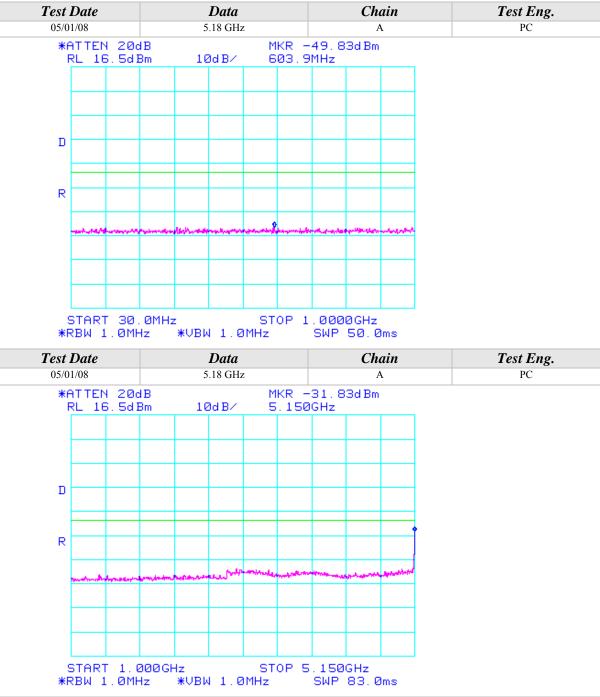






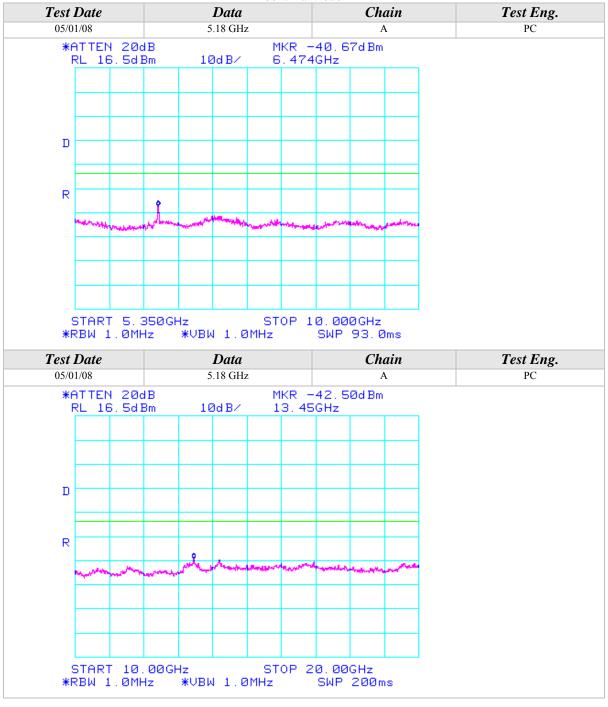


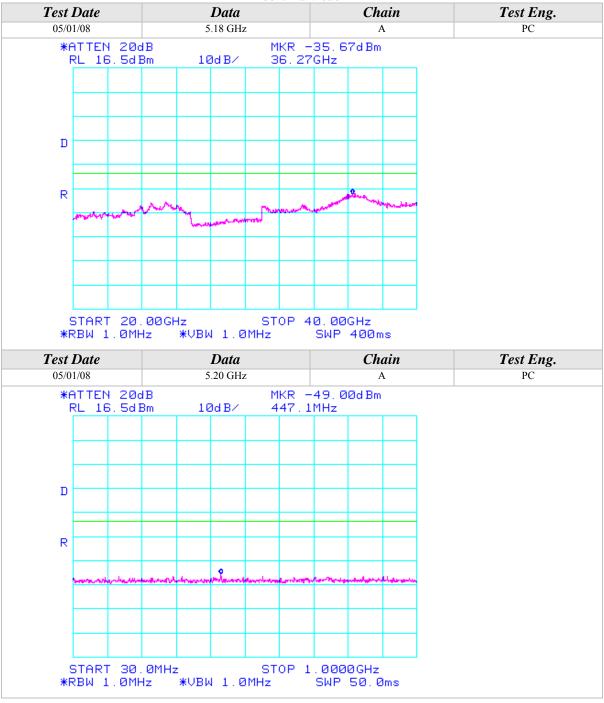
CONDUCTED OUT OF BAND EMISSIONS

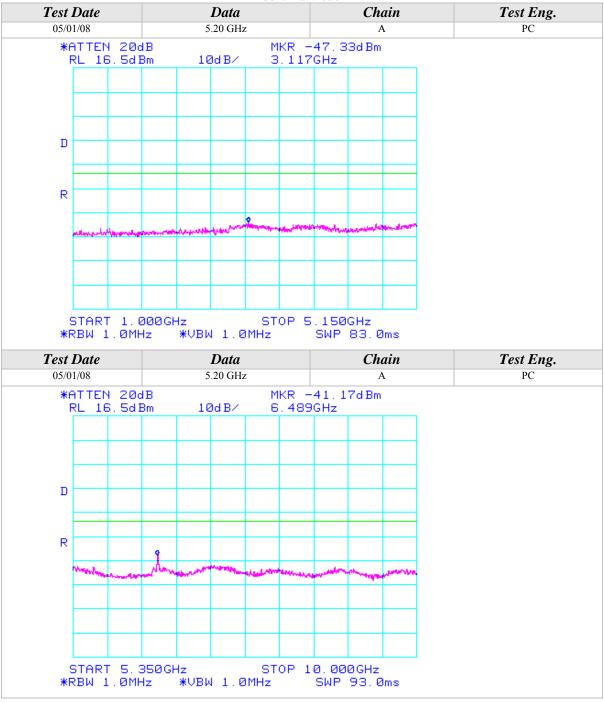

CLIENT:	Intel Corporation	DATE:	05/05/08
EUT:	Intel WiFi/WiMax Link 5150	PROJECT NUMBER:	INTEL-080922
MODEL NUMBER:	512ANXHMW	TEST ENGINEER:	PC
SERIAL NUMBER:	0016EB01D1C7	SITE #:	2
	Tested installed in an extender	TEMPERATURE:	17 deg. C
CONFIGURATION:	board connected to the host	HUMIDITY:	40% RH
	laptop's mini PCI slot	TIME:	08:20 AM

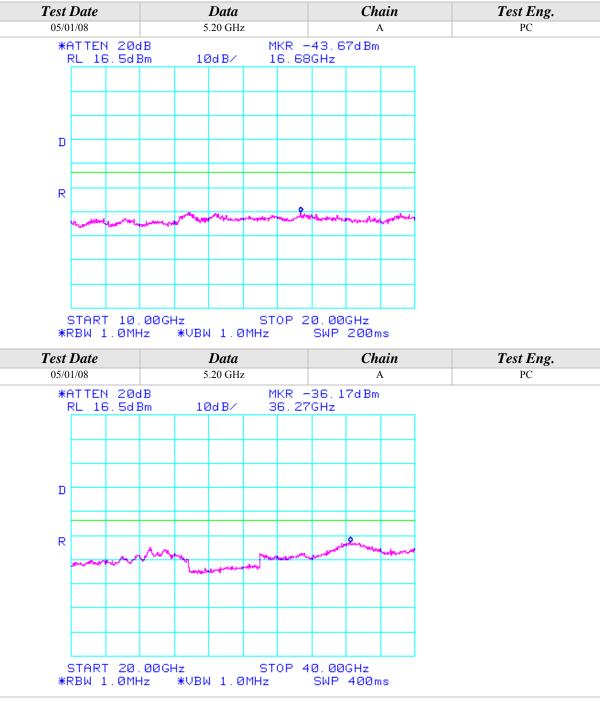
Description:	For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.
	For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.
	For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.
Results:	See Data Sheet
Note:	Conducted Emissions Measurements were performed on the EUT with power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

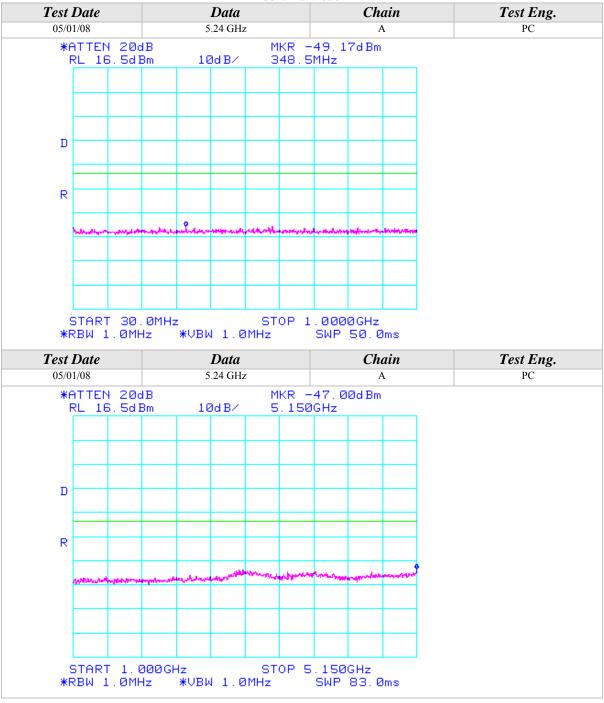
Conducted Out Of Band Emissions (Continued)

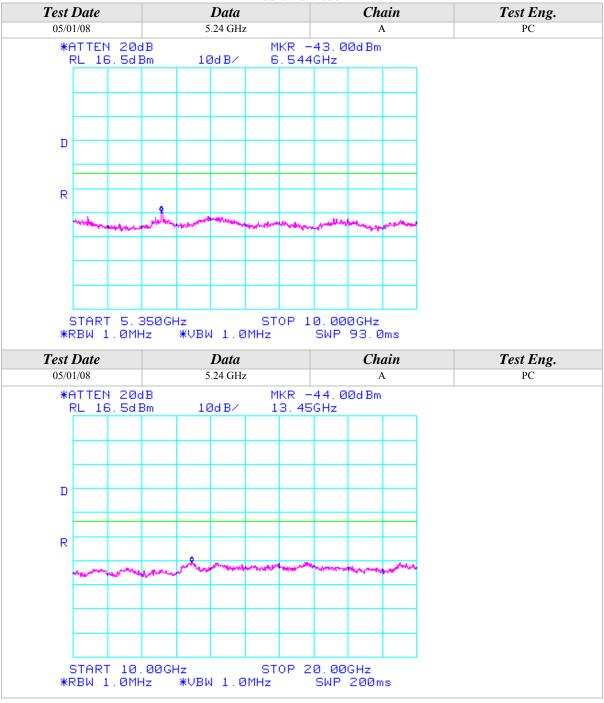


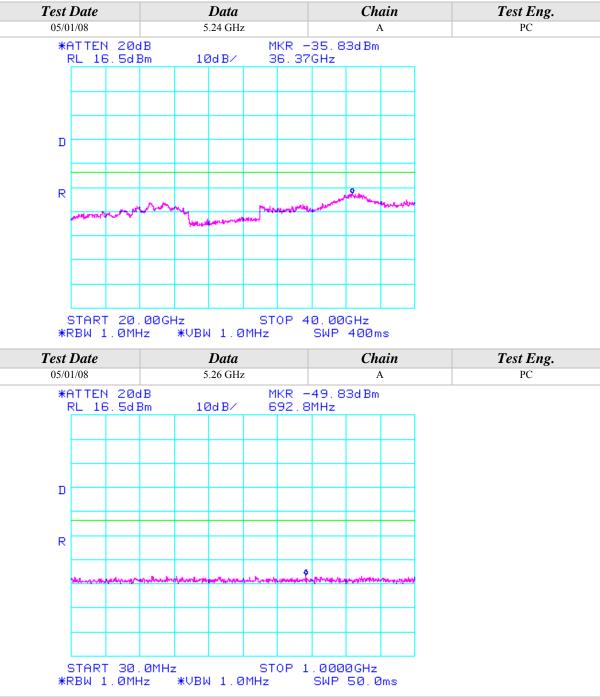

Conducted Out Of Band Emissions (Continued)

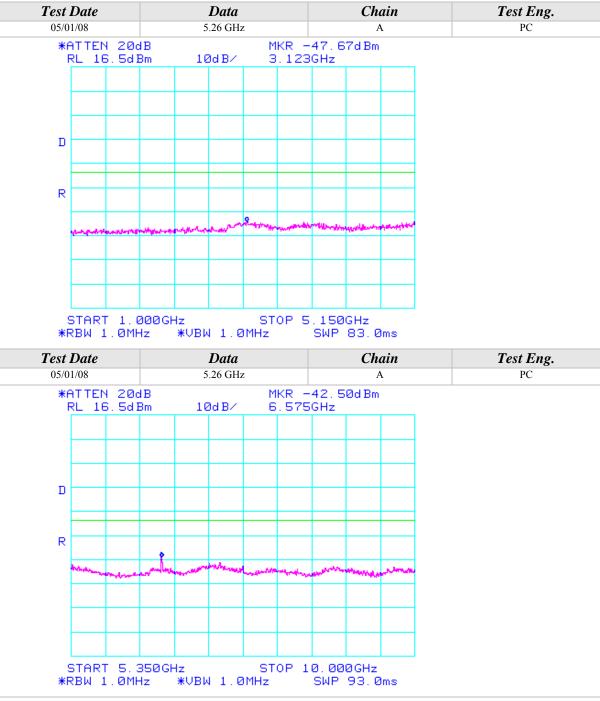


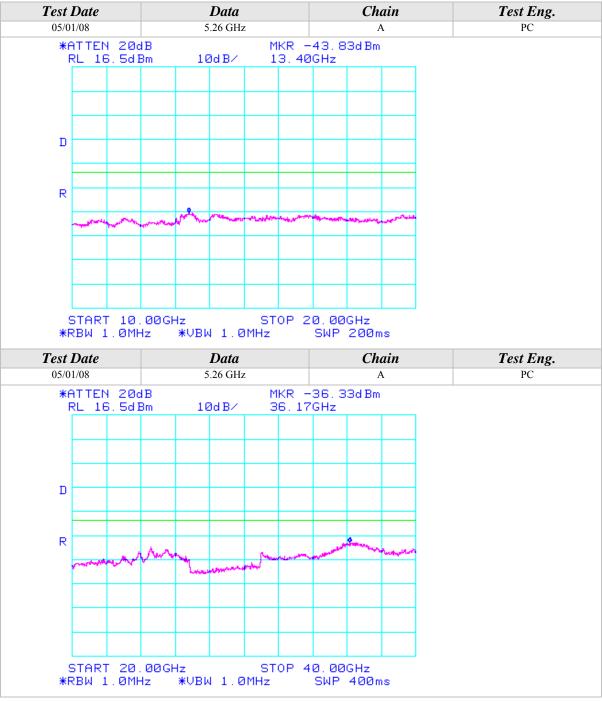


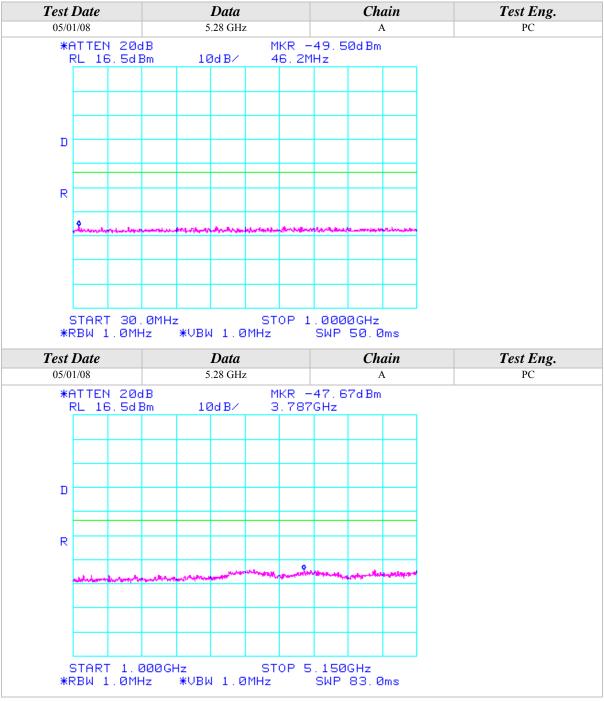


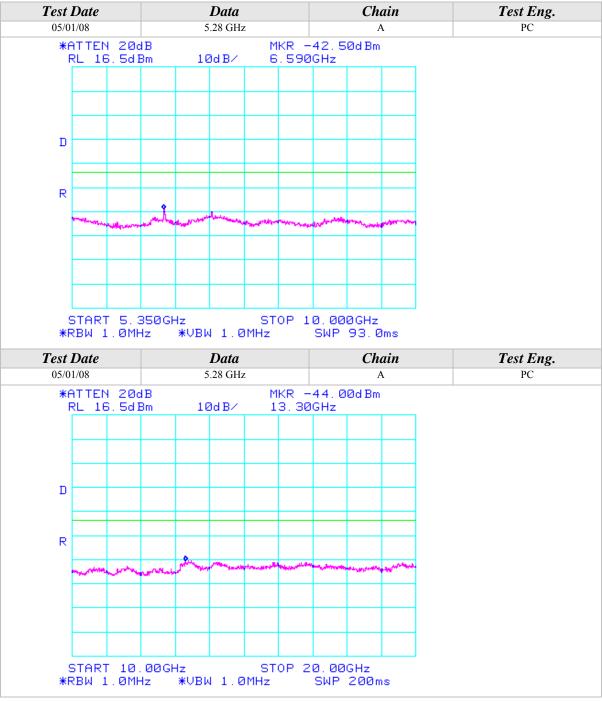


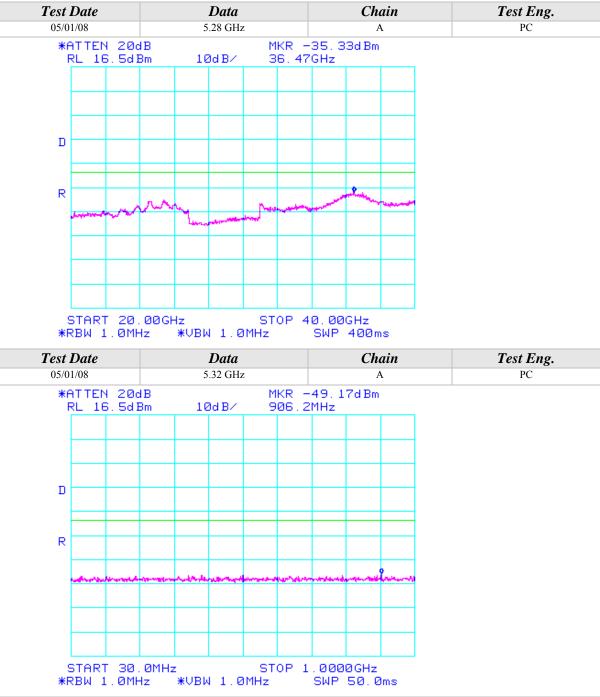


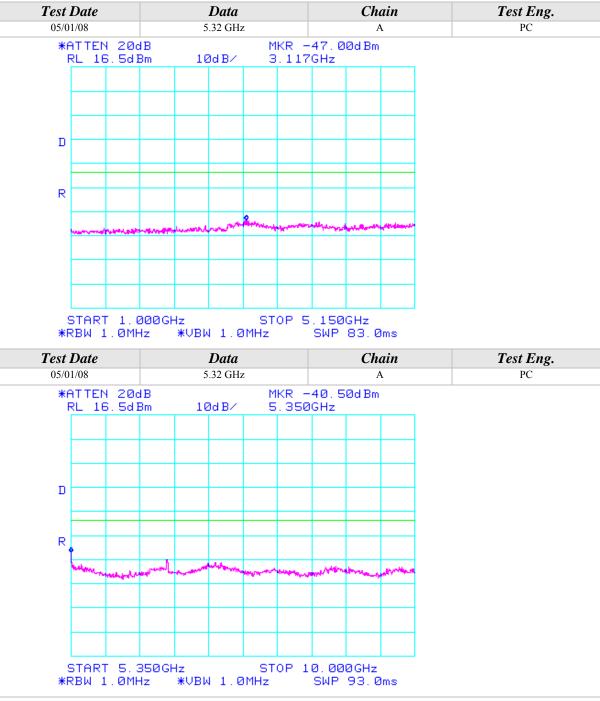


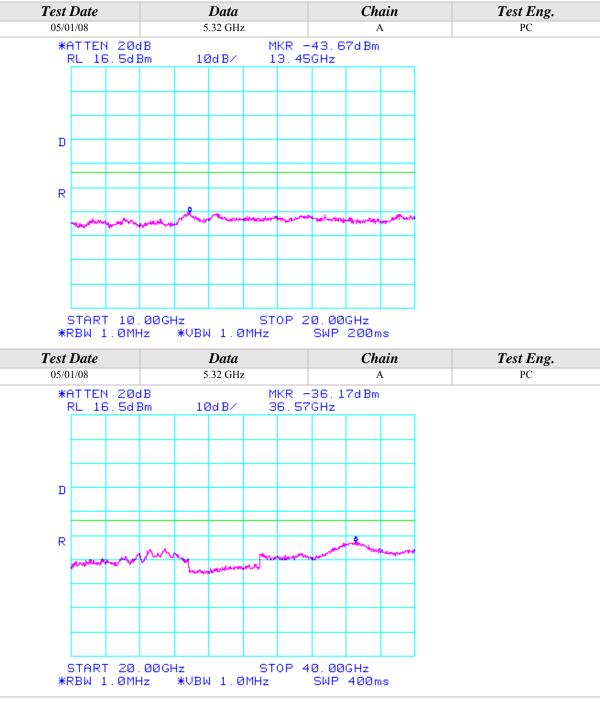


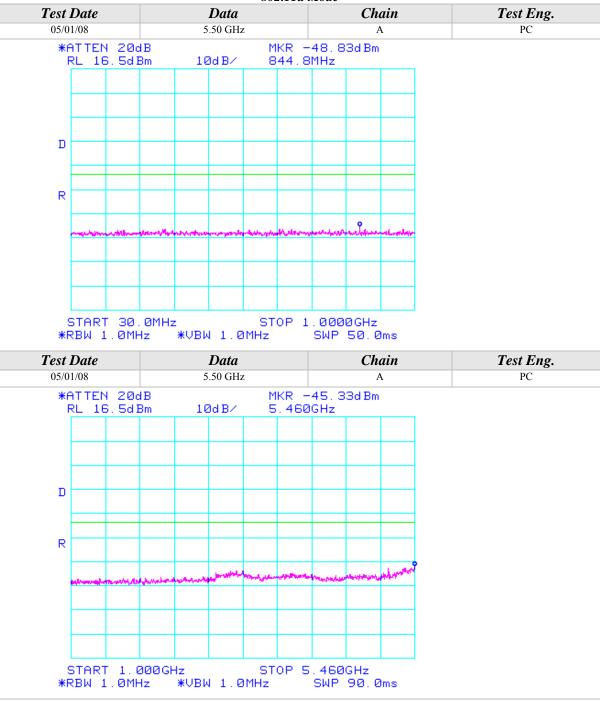


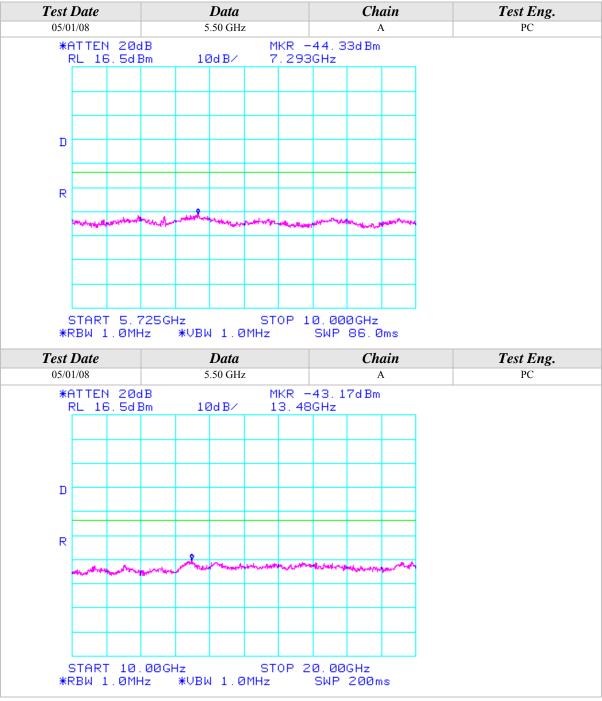


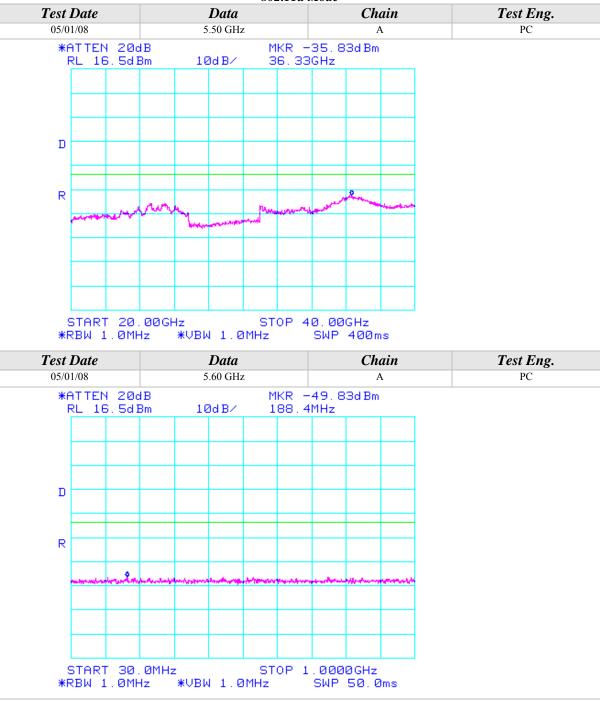


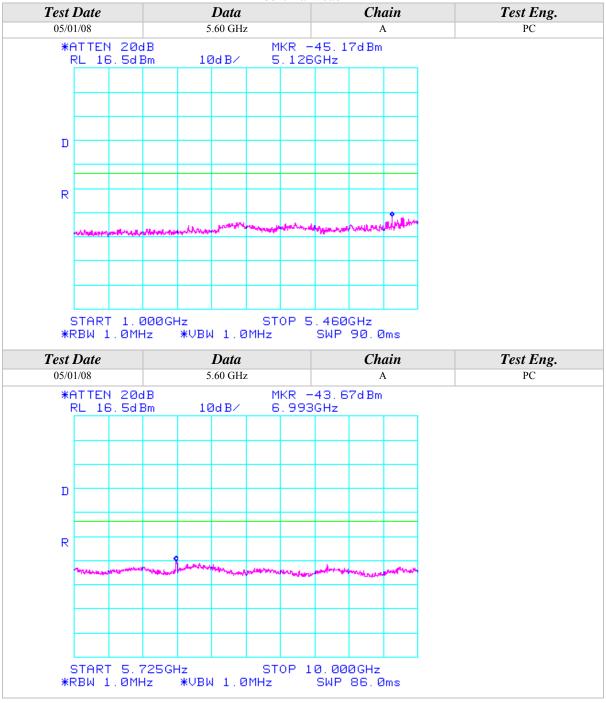


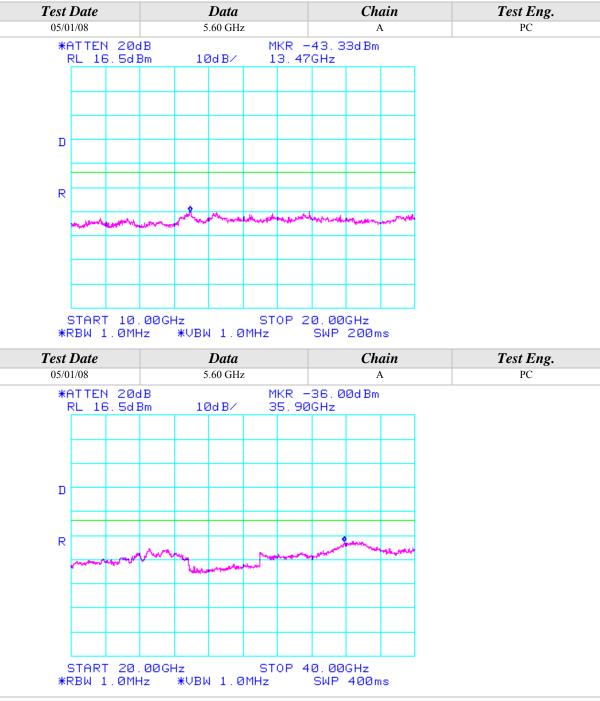


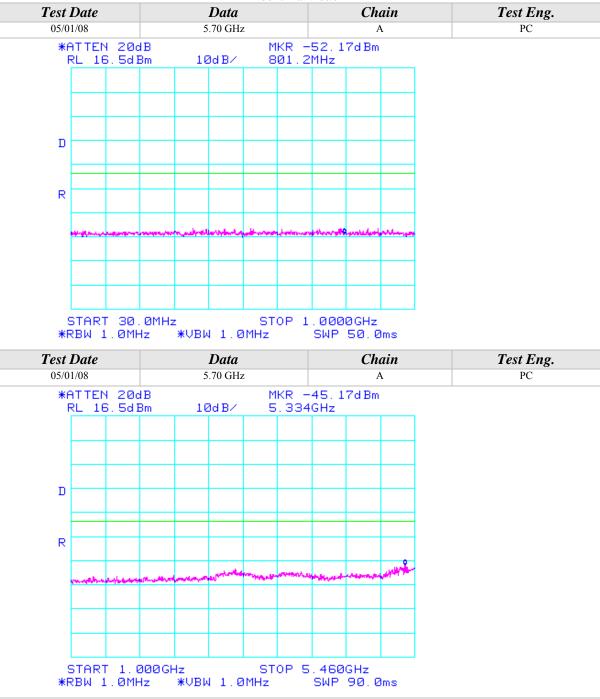


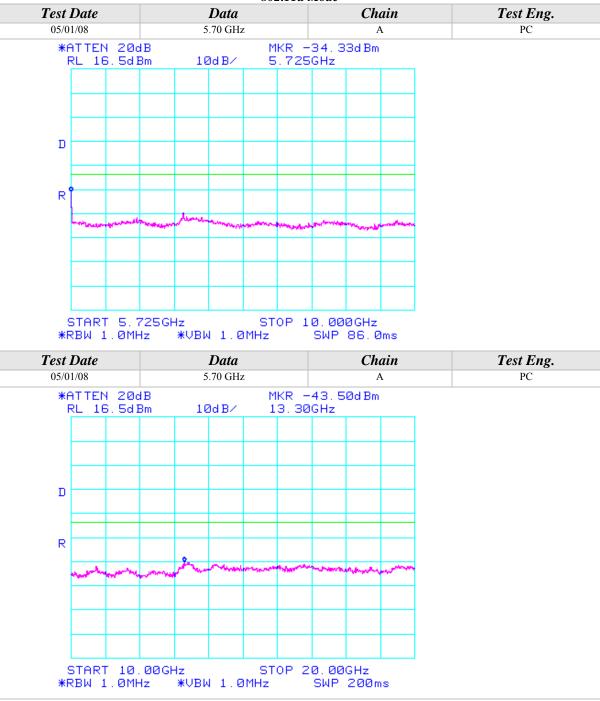


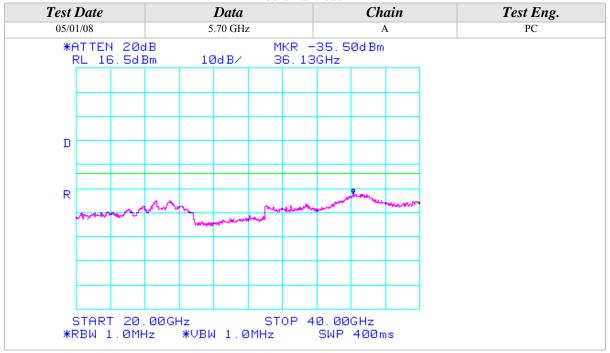


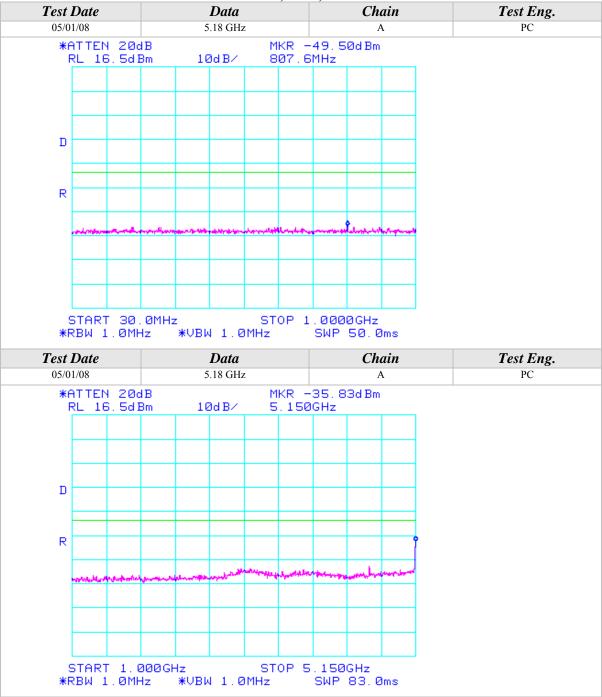


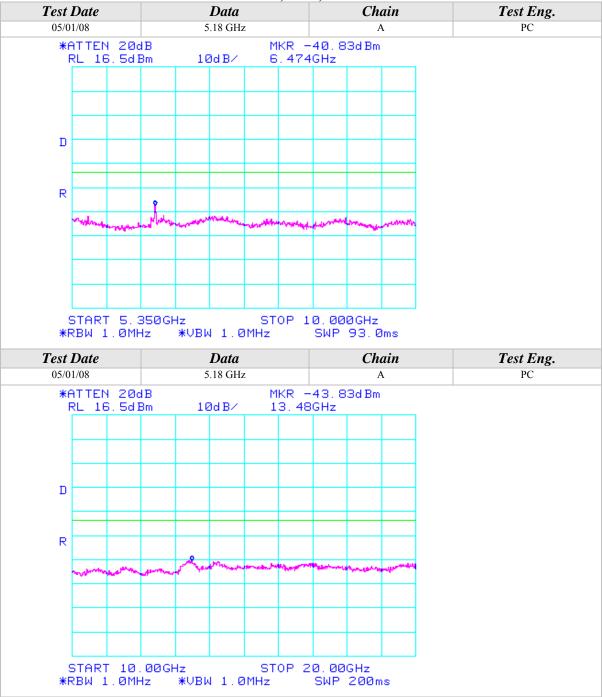


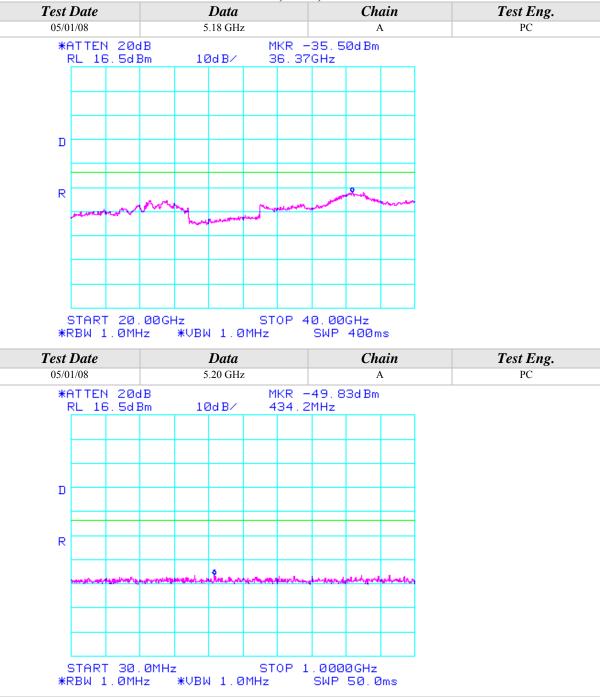


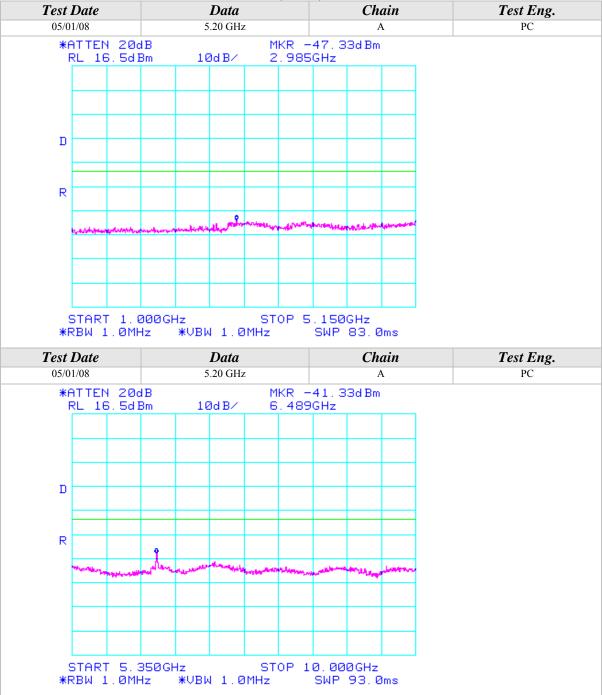


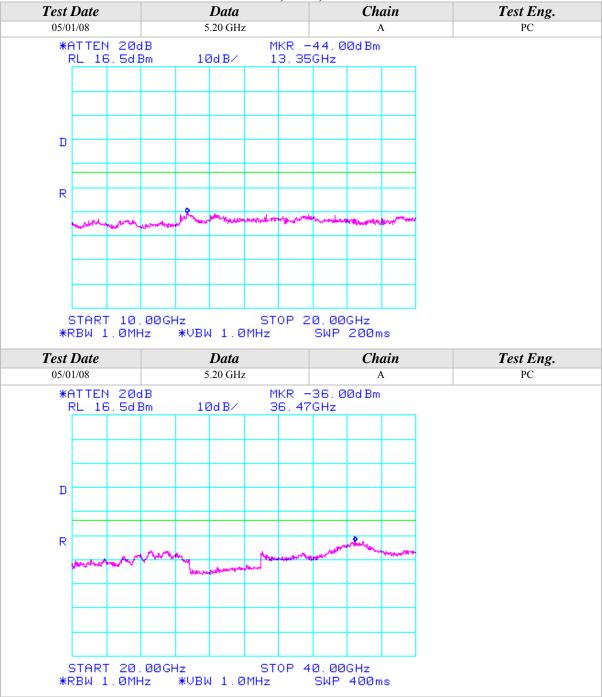


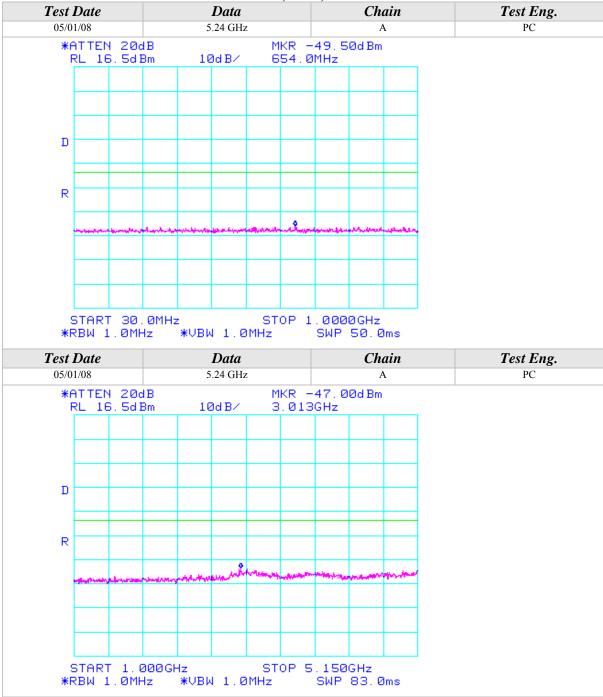


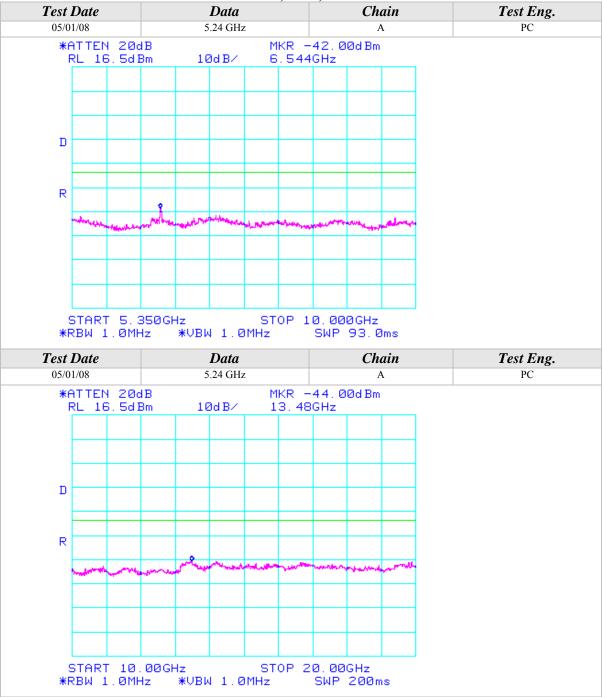


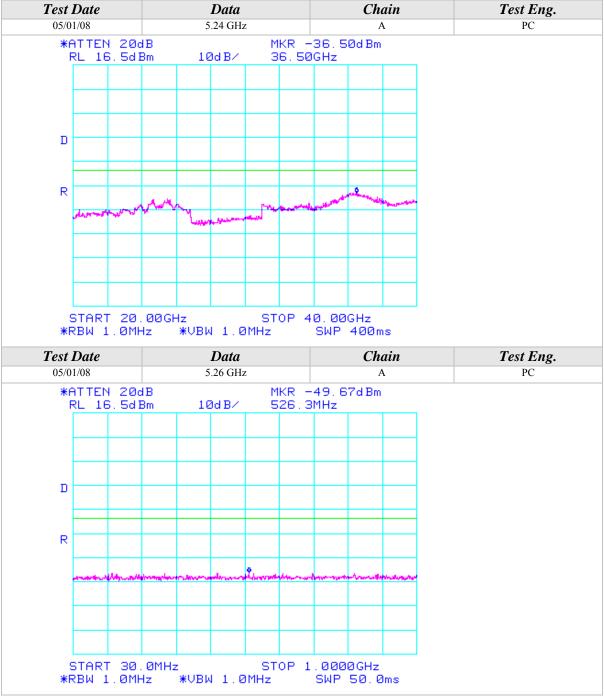


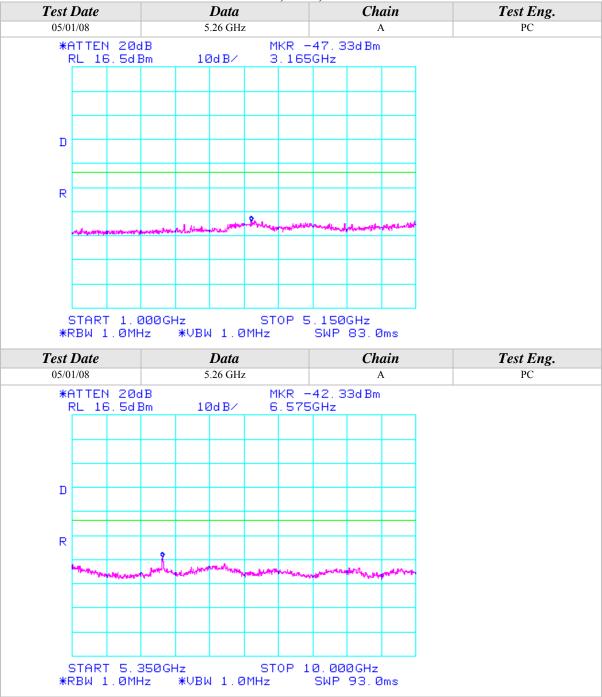


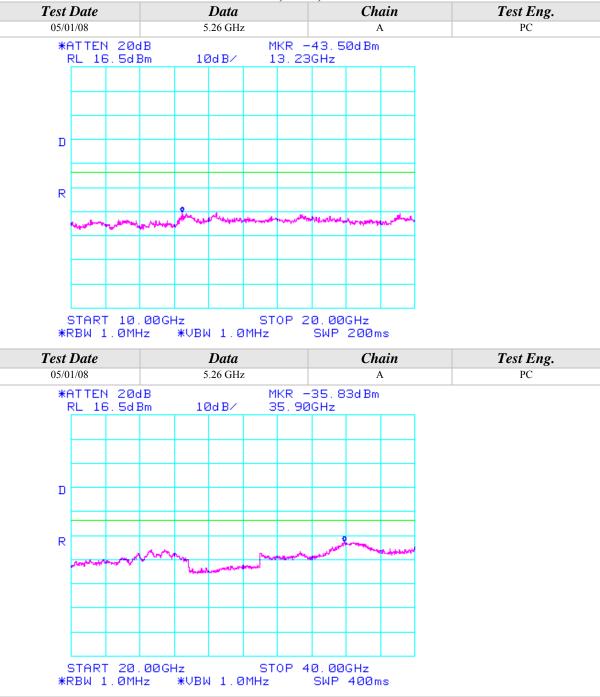


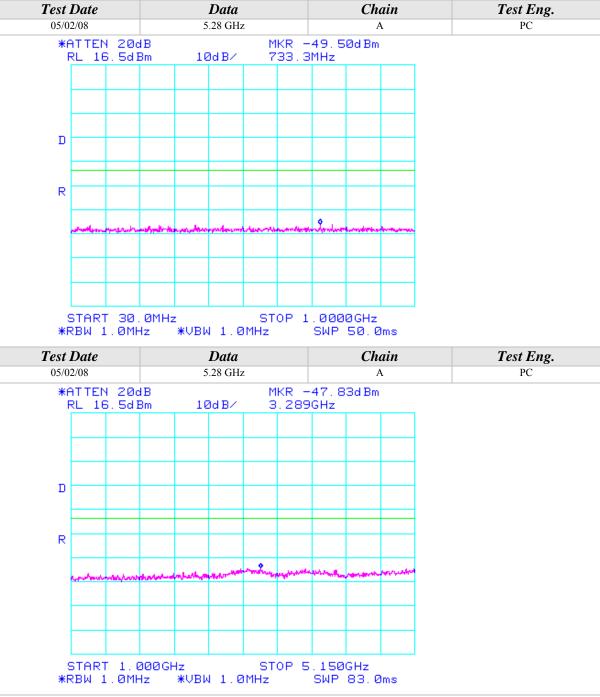


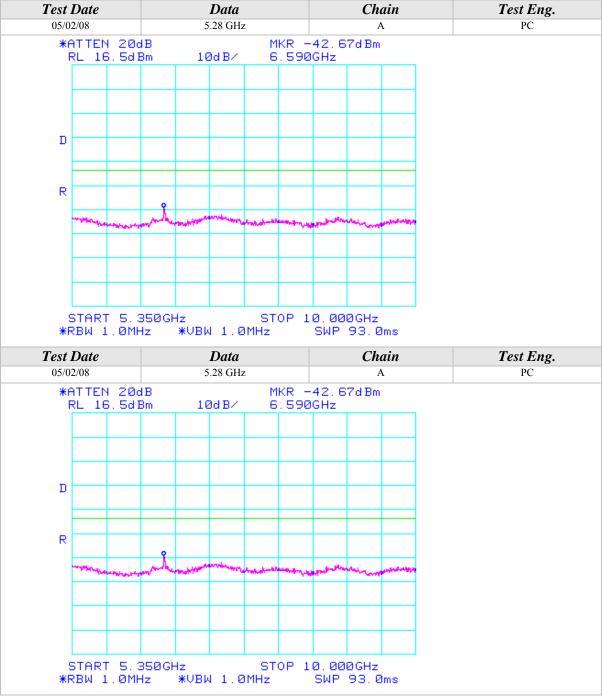


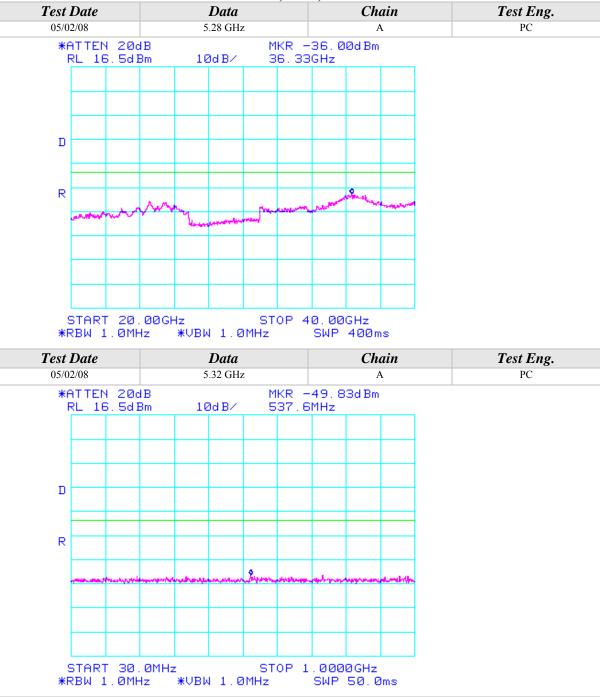


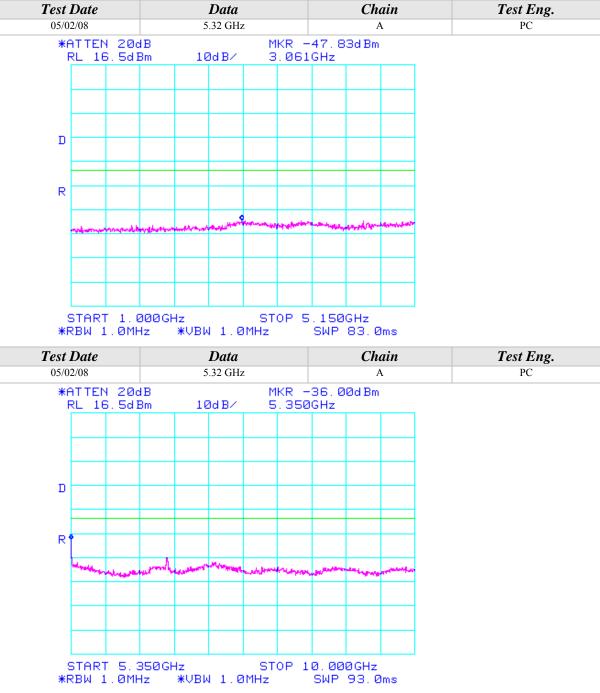


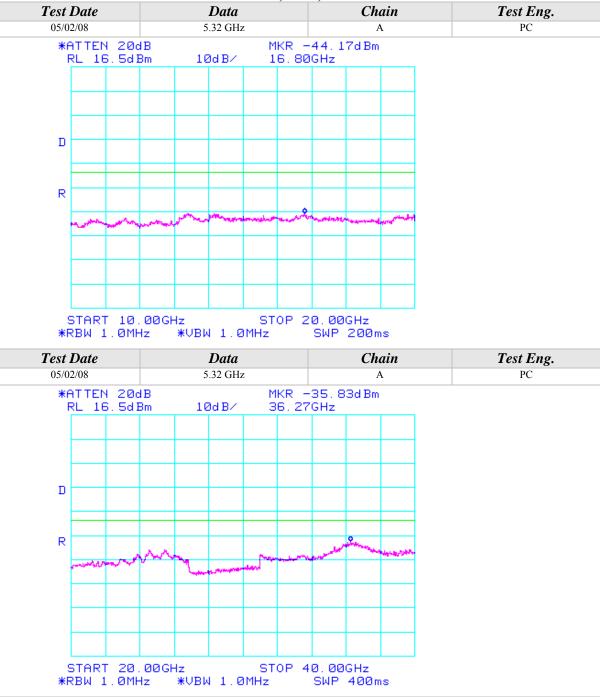


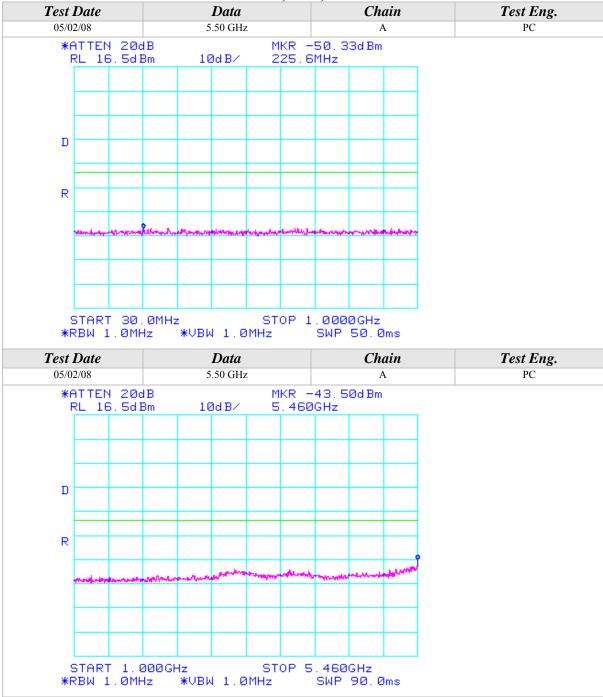


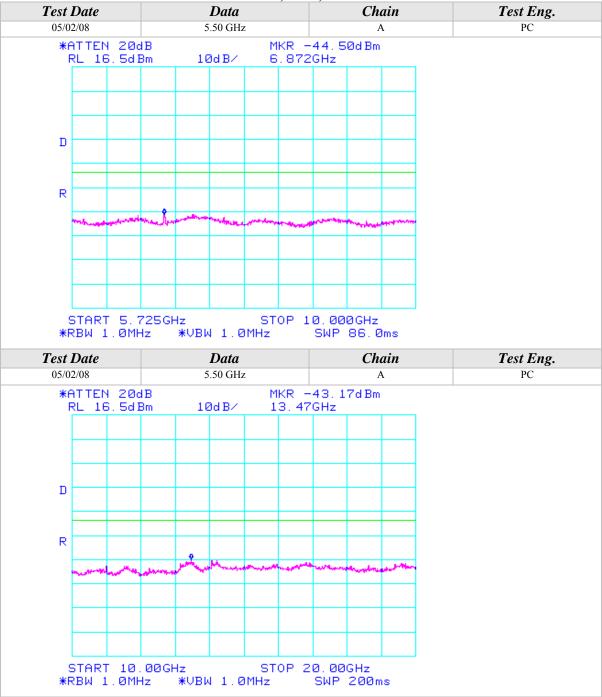


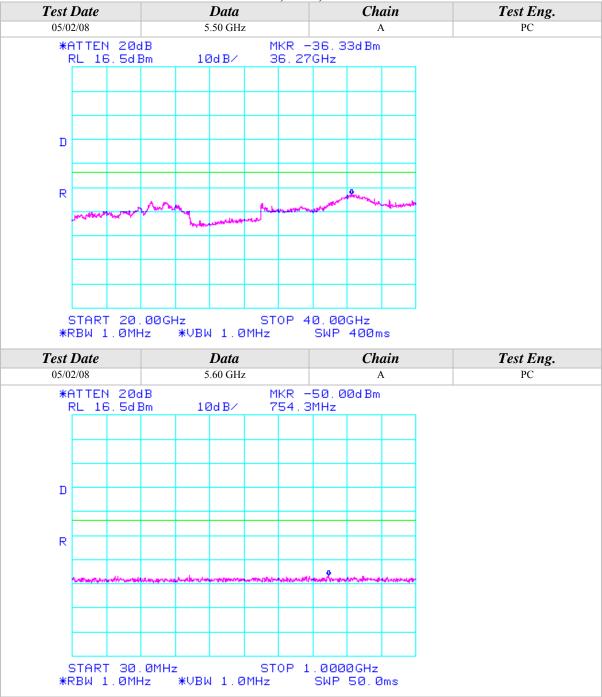


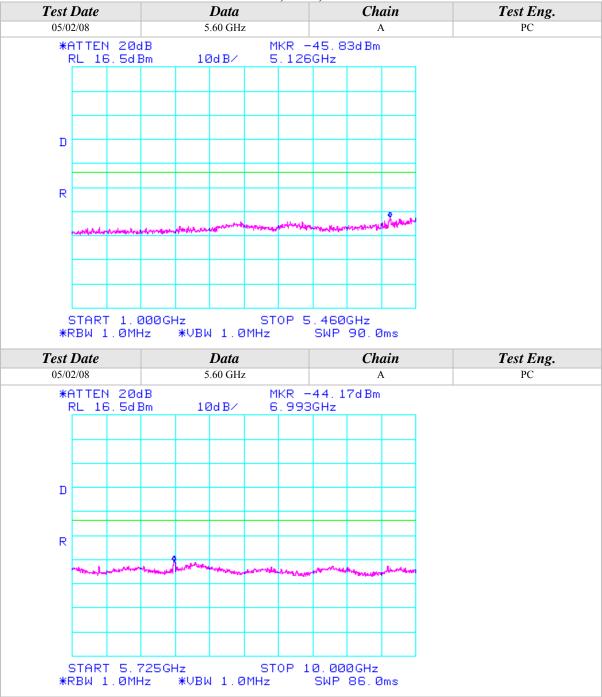


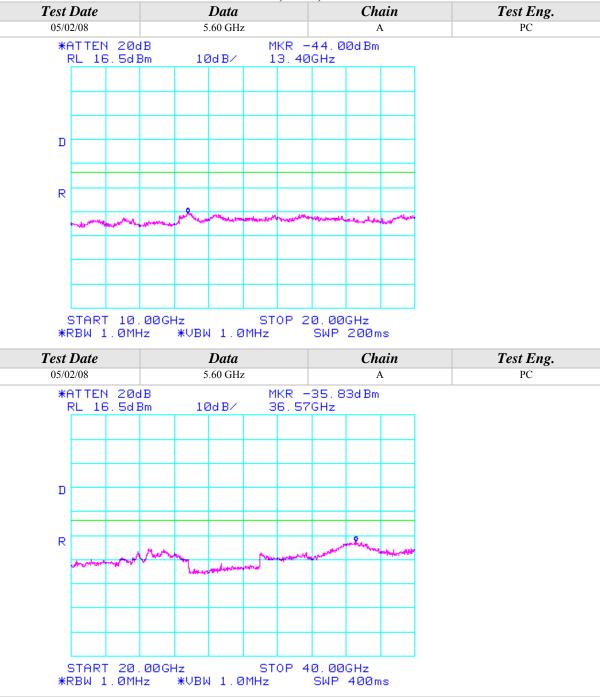


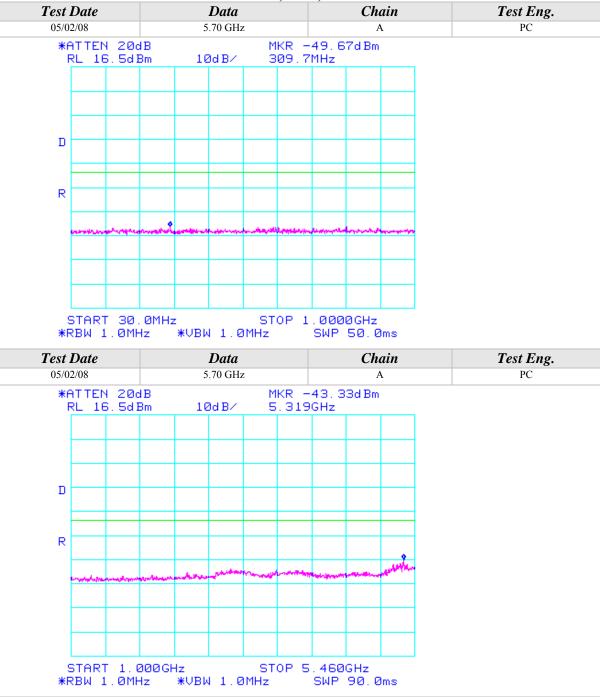


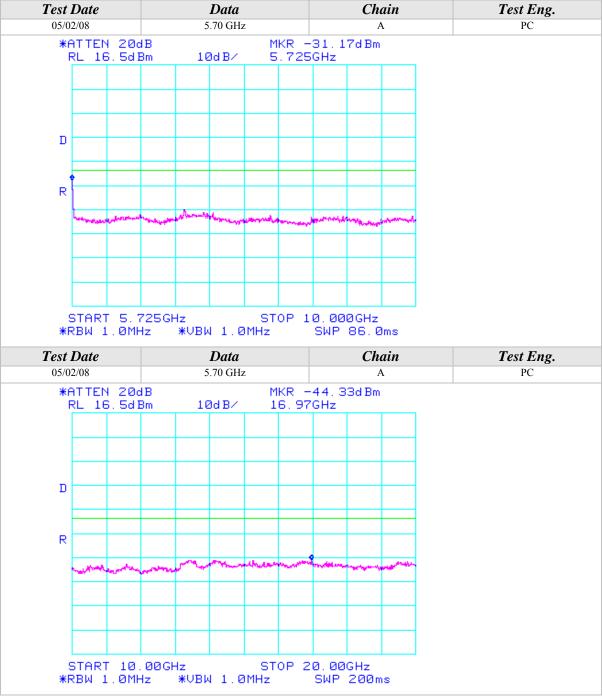


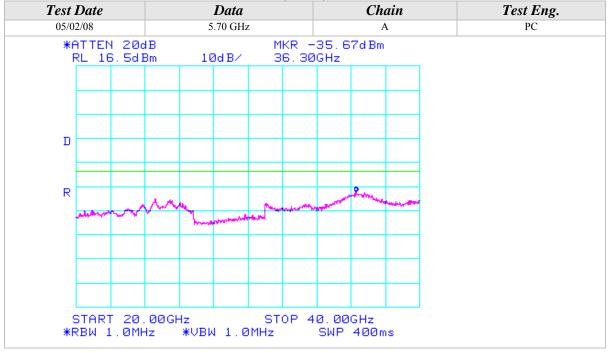


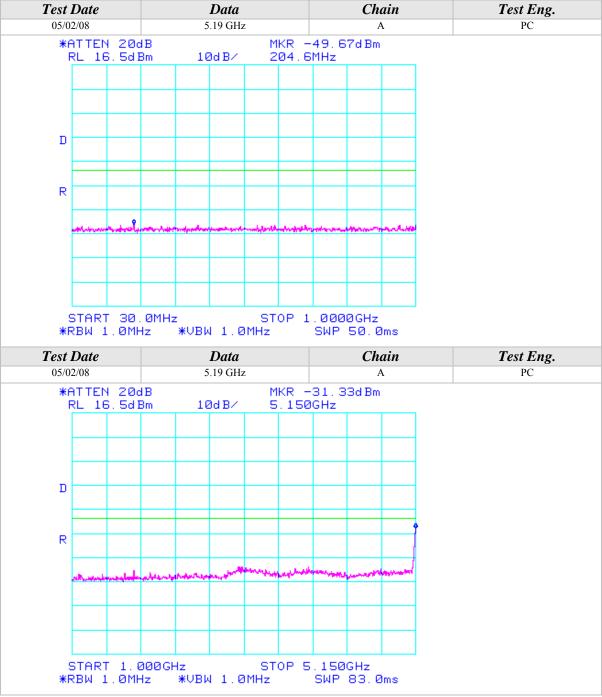


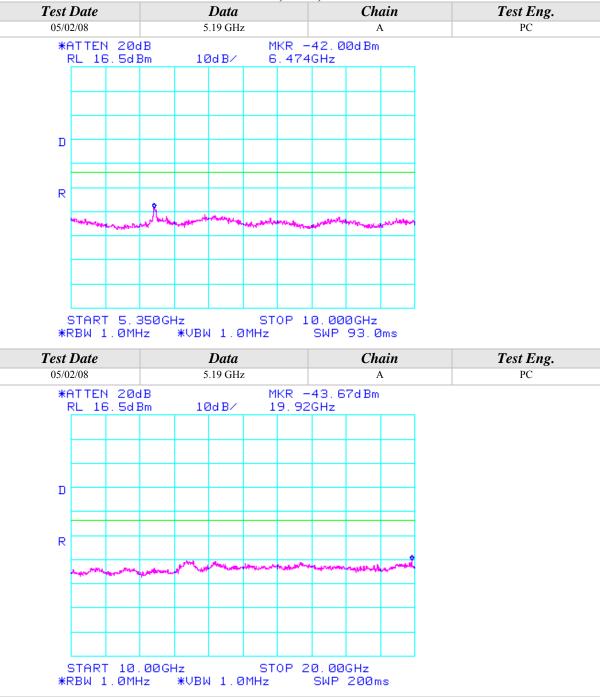


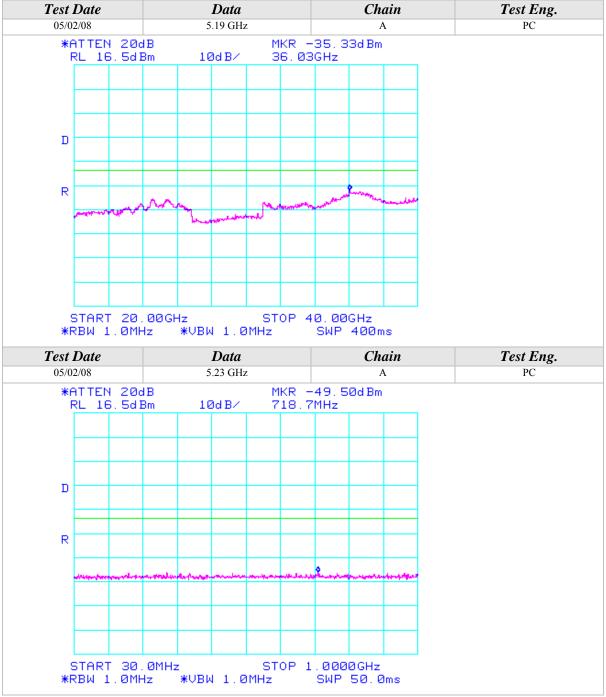


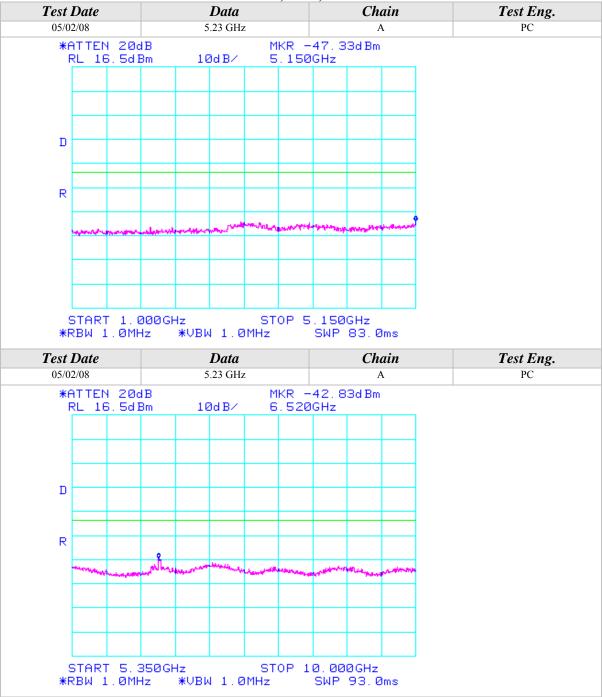


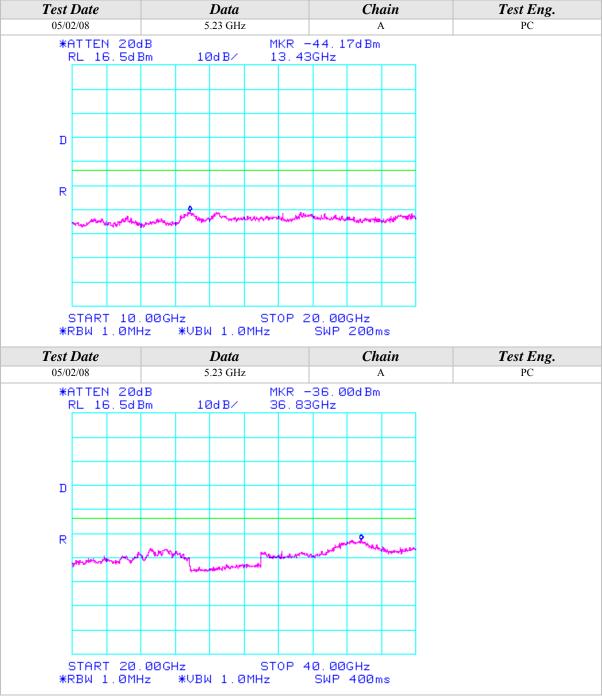


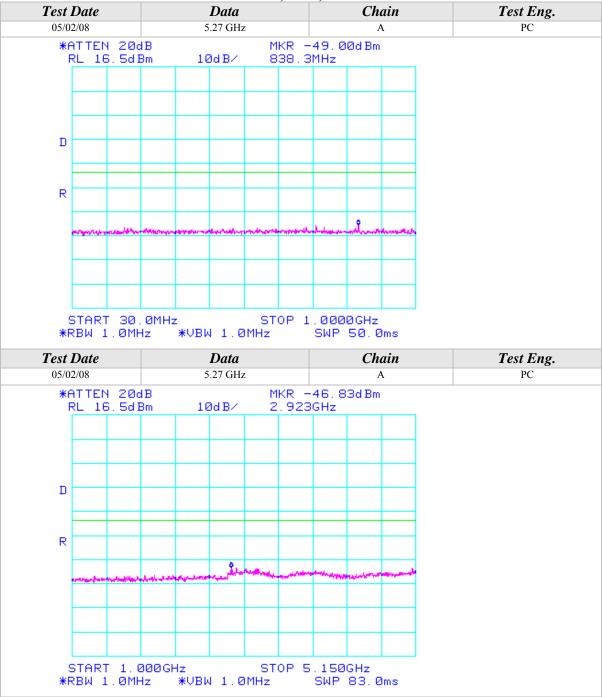


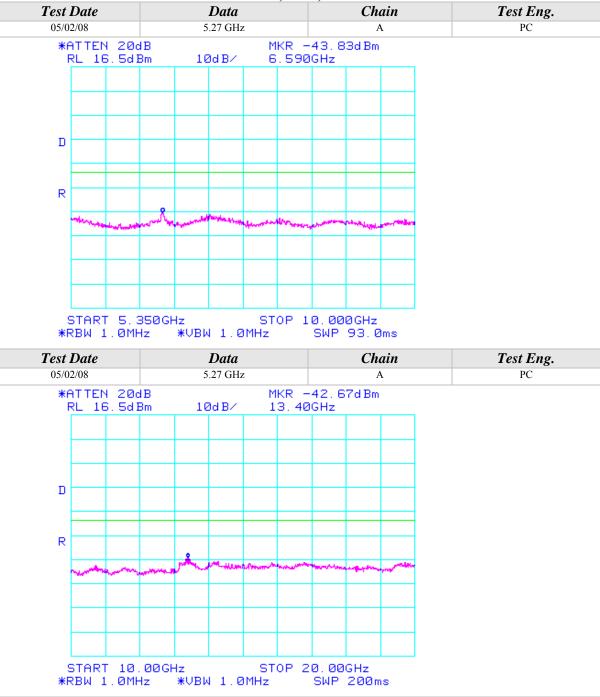


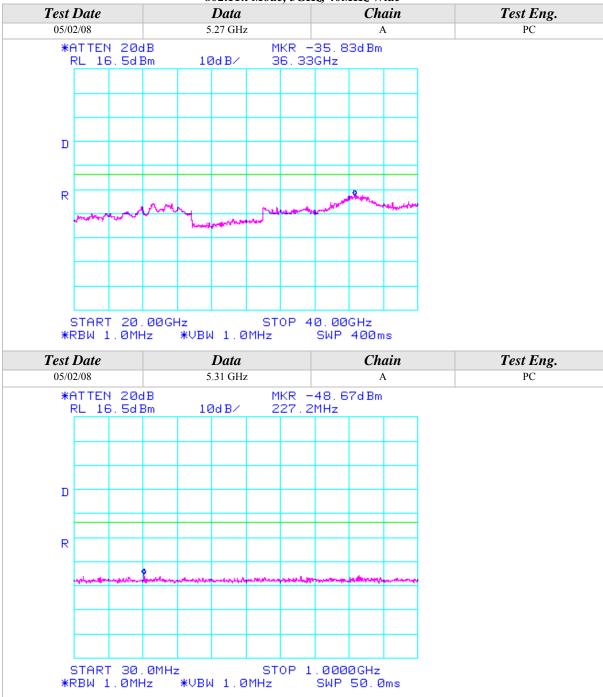


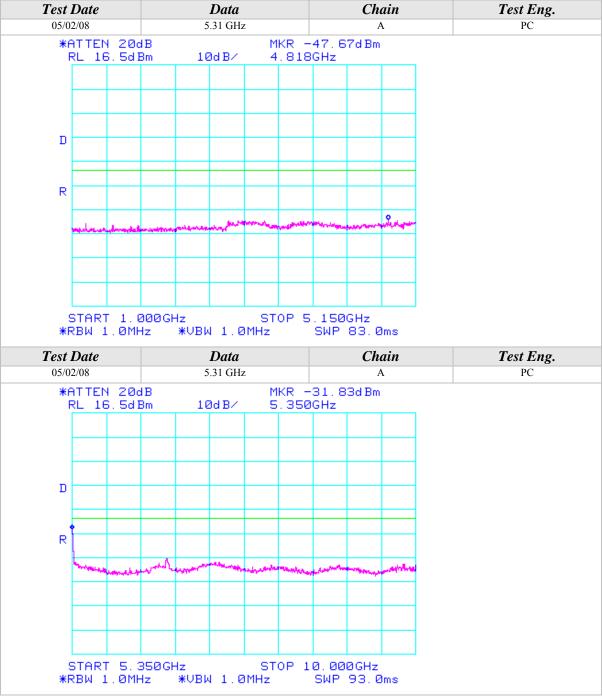


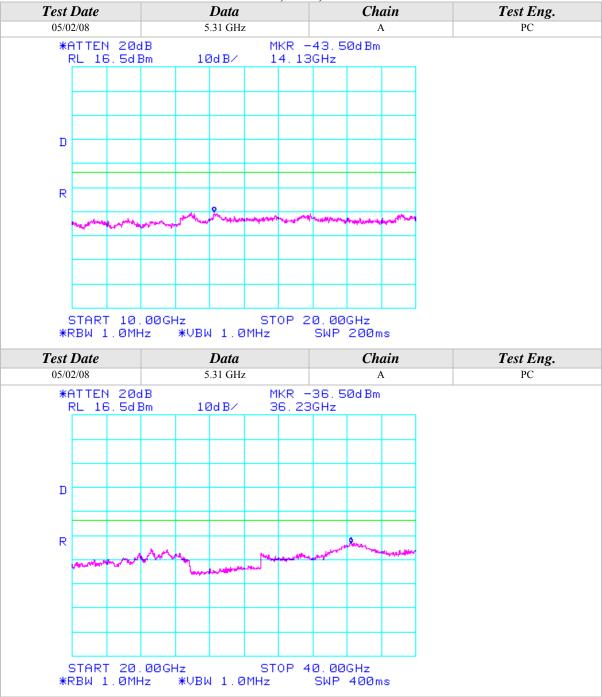


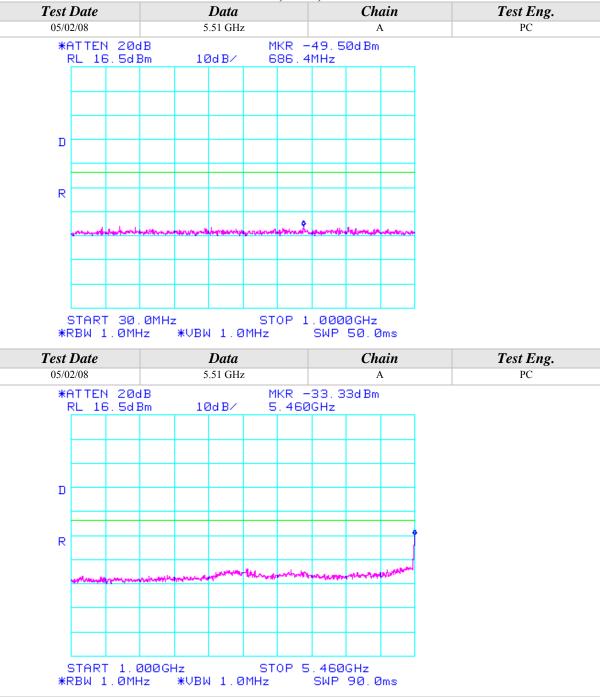


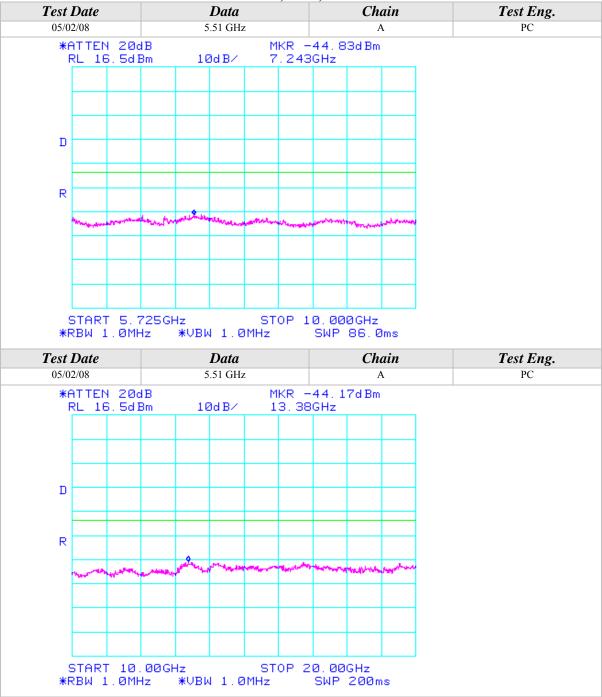


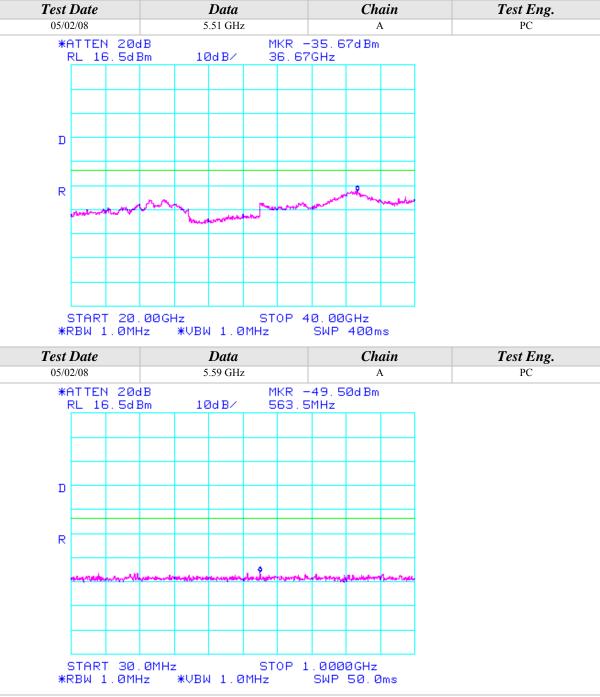


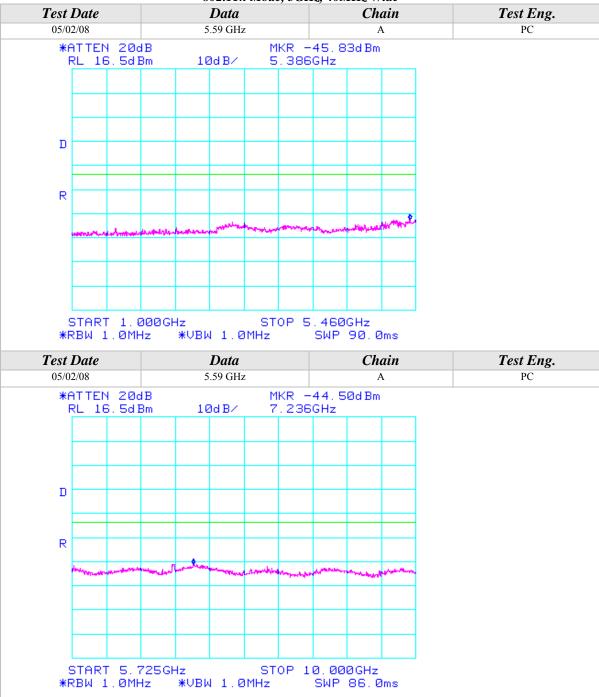


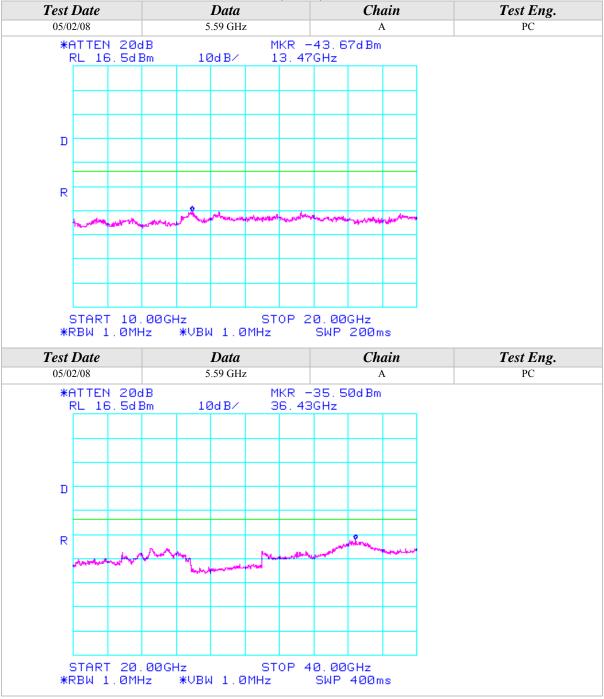


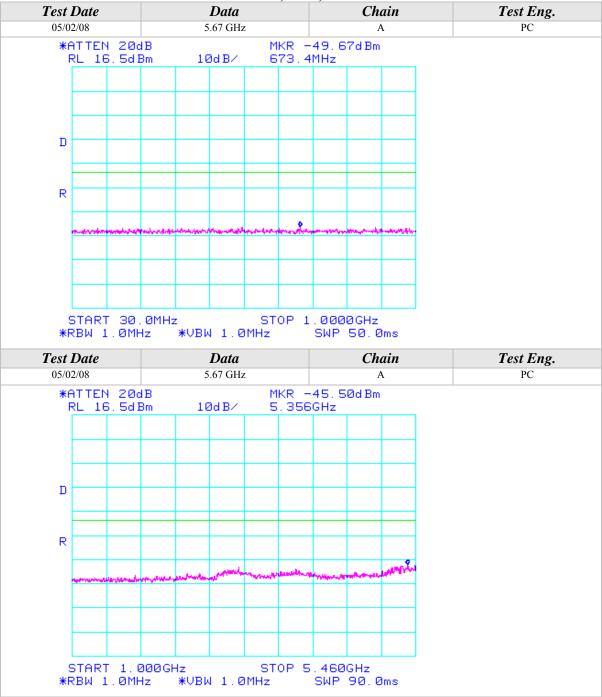


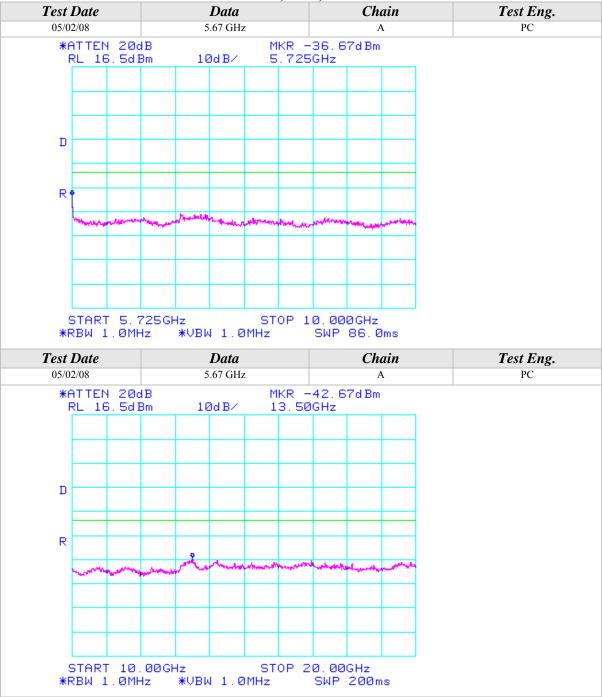


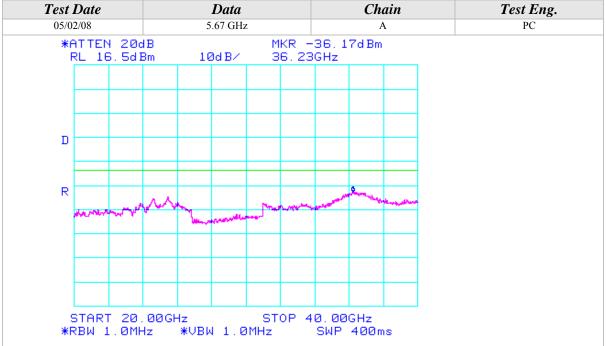












APPENDIX B

MODIFICATIONS AND RECOMMENDATIONS

1.0	NONE