

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 3

SAR EVALUATION REPORT

For

Intel Half-Mini Version WiFi Link 5100 Series (Tested inside of Lenovo U150)

> FCC ID: PD9512ANHU IC: 1000M-512ANHU

FCC MODEL: 512AN_HMW IC MODEL: 512ANHU

REPORT NUMBER: 09U12724-1

ISSUE DATE: August 7, 2009

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	August 7, 2009	Initial Issue	

Page 2 of 26

TABLE OF CONTENTS

1.	A٦	ITESTATION OF TEST RESULTS4
2.	TE	EST METHODOLOGY
3.	FA	ACILITIES AND ACCREDITATION
4.	C	ALIBRATION AND UNCERTAINTY6
4	.1.	MEASURING INSTRUMENT CALIBRATION6
4	.2.	MEASUREMENT UNCERTAINTY7
5.	EC	QUIPMENT UNDER TEST9
6.	S١	YSTEM SPECIFICATIONS
7.	С	OMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS
8.	LI	QUID PARAMETERS CHECK12
8	.1.	LIQUID CHECK RESULTS FOR 2450 MHZ13
8	.2.	LIQUID CHECK RESULTS FOR 5 GHZ14
9.	S١	YSTEM CHECK
9	.1.	SYSTEM CHECK RESULTS FOR D2450V216
9	.2.	SYSTEM CHECK RESULTS FOR D5GHzV216
10.		OUTPUT POWER VERIFICATION
11.		SUMMARY OF TEST RESULTS18
1	1.1	. SAR TEST RESULT FOR THE 2.4 GHZ BAND18
1	1.2	. SAR TEST RESULT FOR THE 5 GHZ BANDS
12.		WORST-CASE SAR TEST PLOTS
13.		ATTACHMENTS24
14.		TEST SETUP PHOTO25
15.		HOST DEVICE PHOTO

Page 3 of 26

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	INTEL CORPORATION
	2111 N.E. 25TH AVENUE
	HILLSBORO, OR 97124, USA
FCC ID:	PD9512ANHU
MODEL:	512AN_HMW
IC:	1000M-512ANHU
MODEL:	512ANHU
DEVICE CATEGORY:	Portable
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure
DATE TESTED:	July 22 - 28, 2009

THE HIGHEST SAR VALUES:

FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)	
15.247 / RSS-102	2400 – 2483.5	0.026		
15.2477 N35-102	5725 – 5850	0.0033		
	5150 – 5250	0.0012	1.6	
15.407 / RSS-102	5250 – 5350	0.0023		
	5470 – 5725	0.0082		

APPLICABLE STANDARDS AND TEST PROCEDURES:

STANDARD	TEST RESULTS				
FCC OET BULLETIN 65 SUPPLEMENT C	Pass				
RSS-102 ISSUE 3	Pass				

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

Sunay Shih

SUNNY SHIH ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES Chaopen Lin

CHAO YEN LIN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 26

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters and IC RSS 102 Issue 3.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 26

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

	Manufacturer	Turne/Mendel	Carial Na	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A		N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Electronic Probe kit	HP	85070C	N/A			N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	14	2009	
Signal Generator	Agilent	8753ES-6	MY40001647	11	14	2009	
E-Field Probe	SPEAG	EX3DV4	3686	3	23	2010	
Thermometer	ERTCO	639-1S	1718	5	1	2010	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	10	20	2009	
System Validation Dipole	SPEAG	D835V2	4d002	4	23	2011	
System Validation Dipole	SPEAG	D900V2	108	1	21	2010	
System Validation Dipole	SPEAG	D1800V2	294	1	29	2010	
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010	
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010	
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009	
MXA Signal Analyzer	Agilent	N9020A	US48350984	10	23	2009	
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010	
Power Meter	Giga-tronics	8651A	8651404	1	11	2010	
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010	
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
Simulating Liquid	SPAEG	H2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPAEG	M2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPAEG	M5800	N/A	Withir	ו 24 h	rs of first test	

Page 6 of 26

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Unc.(±%)	
	101. (=70)	TTODO DIOL	Div.	01(19)	or (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval)	1		K=2			22.87	20.98

1. Tol. - tolerance in influence quaitity

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

Page 7 of 26

Measurement uncertainty for 3 GHz - 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	Ci (10g)	Std. Un	Std. Unc.(±%)	
Oncertainty component	101. (± //)	Dist.	DIV.	Cr(rg)	CI (TUG)	Ui (1g)	Ui(10g)	
Measurement System								
Probe Calibration	4.80	N	1	1	1	4.80	4.80	
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92	
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92	
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58	
Linearity	4.70	R	1.732	1	1	2.71	2.71	
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58	
Readout Electronics	1.00	N	1	1	1	1.00	1.00	
Response Time	0.80	R	1.732	1	1	0.46	0.46	
Integration Time	2.60	R	1.732	1	1	1.50	1.50	
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73	
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73	
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23	
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67	
Extrapolation, interpolation, and integration								
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25	
Test sample Related								
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10	
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60	
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89	
Phantom and Tissue Parameters								
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31	
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24	
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70	
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41	
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62	
Combined Standard Uncertainty			RSS			11.66	10.73	
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46	
Notesfor table								
1. Tol tolerance in influence quaitity								
2 N - Nomal								

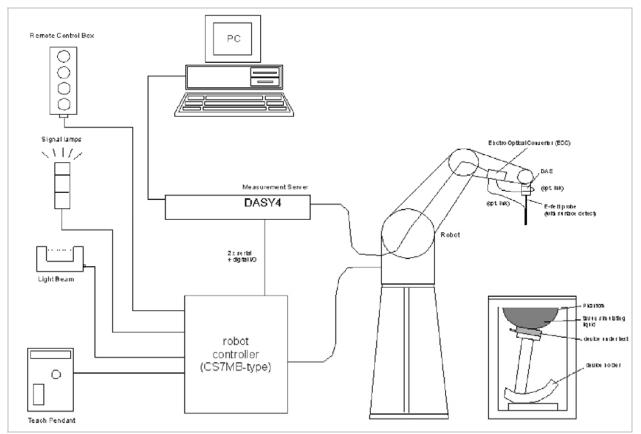
2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

Page 8 of 26


5. EQUIPMENT UNDER TEST

Intel Half-Mini Version Wi-Fi Link 5100 Series (Tested inside of LENOVO U150) 820.11abgn MISO with HT20 and HT40

Normal operation:	Lap-held only Note: SAR test with display open at 90° to the keyboard
Antenna tested:	Quanta, TX 1 Antenna, Part Number: LL2ANT00100
Power supply:	Power supplied through laptop computer (host device)

Page 9 of 26

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Page 10 of 26

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	4	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 11 of 26

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
raiget i requency (mirz)	ε _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 26

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Chaoyen Lin

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)		
2450	e'	52.13	Relative Permittivity (ε_r):	52.134	52.7	-1.07	± 5		
2450	e"	13.74	Conductivity (σ):	1.873	1.95	-3.96	± 5		
Liquid Tempera	ature: 23	deg. C							
July 22, 2009 1:10 PM									
Frequency		e'	e"						
240000000		52.2304	13.496						
2405000000		52.2183	13.5694	ł					
2410000000		52.2037	13.6346						
2415000000		52.2001	13.6781						
2420000000		52.1862	13.7043						
2425000000		52.1816	13.7225						
2430000000		52.1873	13.7158						
2435000000		52.1715	13.7219						
2440000000		52.1671	13.7364						
2445000000		52.1381	13.7641						
2450000000		52.1342	13.7432						
2455000000		52.0652	13.7198						
2460000000		52.0291	13.6917						
2465000000		51.9653	13.6545						
2470000000		51.9499	13.6069						
2475000000		51.9348	13.5827						
2480000000		51.9426	13.5898						
2485000000		51.9358	13.6089						
2490000000		51.9382	13.6662	2					
2495000000		51.9401	13.74						
2500000000		51.9352	13.8429)					
The conductivit	y (σ) can	be given a	as:						
$\sigma = \omega \varepsilon_0 e'' = 2$	$2\pi f \varepsilon_0$	e"							
where f = targ	et f * 10 ⁶								
ε ₀ = 8.8	54 * 10 ⁻¹²								

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

Page 13 of 26

8.2. LIQUID CHECK RESULTS FOR 5 GHZ

Simulating Liquid Dielectric Parameters for Muscle 5800 MHz

Room Ambient Temperature = 25°C; Relative humidity = 38%

Measured by: Chaoyen Lin

						Sy: enacyc		
f (MHz)		Muscle Liqu	uid Parameters	Measured	Target	Delta (%)	Limit (%)	
5200	e'	47.8893	Relative Permittivity (ε_r):	47.8893	49.0	-2.27	± 10	
5200	e"	18.0152	Conductivity (σ):	5.21148	5.30	-1.67	± 5	
	e'	47.8126	Relative Permittivity (ε_r):	47.8126	48.6	-1.62	± 10	
5500	e"	18.7288	Conductivity (σ):	5.73049	5.65	1.42	± 5	
5000	e'	46.7128	Relative Permittivity (ε_r):	46.7128	48.2	-3.09	± 10	
5800	e"	19.1394	Conductivity (σ):	6.17555	6.00	2.93	± 5	
iquid temperat	ure: 24 c	lea C						
uly 27, 2009 4:								
requency		e'	e''					
000000000		49.231	17.1687					
650000000		49.2697	17.3868					
700000000		49.1162	17.2664					
750000000		48.8963	17.5233					
800000000		49.0811	17.4949					
8500000000		48.6659	17.5027					
1900000000		48.7974	17.846					
1950000000		48.4271	17.6004					
5000000000		48.3083	17.9673					
5050000000		48.2967	17.8849					
5100000000		47.8769	17.9707					
5150000000		48.0712	18.0166					
5200000000		47.8893	18.0152					
5250000000		48.1733	18.5586					
5300000000		48.0273	18.5493					
5350000000		47.9269	18.7727					
5400000000		47.9924	18.6664					
5450000000		47.6683	18.8108					
5500000000		47.8126	18.7288					
5550000000		47.4634	18.7889					
5600000000		47.4749	18.8928					
5650000000		47.2424	18.8706					
5700000000		47.1995	19.069					
5750000000		47.2074	19.035					
5800000000		46.7128	19.1394					
5850000000		46.9667	19.3154					
5900000000		46.7323	19.1049					
5950000000		46.4167	19.3336					
000000000		46.8208	19.5776					
The Conductivity	y (σ) can	n be given as	3: 					
σ = ωε ₀ e″= 2	•							
where $\mathbf{f} = target f * 10^6$								
E 0 = 8.85	54 * 10 ⁻¹²	2						

9. SYSTEM CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D5GHzV2-1003_Nov07 and D2450V2-748_Apr08

f (MHZ)	Head	Tissue	Body Tissue		
f (MHz)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	
2450			49.5	23.3	
5200	78.6	22.1	74.7	21.1	
5500	80.4	22.7	80.1	22.5	
5800	79.9	22.4	70.8	19.8	

Page 15 of 26

9.1. SYSTEM CHECK RESULTS FOR D2450V2

System Validation Dipole: D2450V2 SN: 748

Date: July 22, 2009

Ambient Temperature = 24° C; Relative humidity = 40%

Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Body	2450	250	1g SAR:	52.9	49.5	6.87	±10
Body	2450 250	250	10g SAR:	24.8	23.3	6.44	ŦIU

9.2. SYSTEM CHECK RESULTS FOR D5GHzV2

System Validation Dipole: D5GHzV2 SN 1003

Date: July 27, 2009

Ambient Temperature = 25° C; Relative humidity = 40%

Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Muscle	5200	250	1g SAR:	78.4	74.7	4.95	±10
wuscie	5200	250	10g SAR:	22.7	21.1	7.58	±10
Muscle	5500	500 250	1g SAR:	78.9	80.1	-1.50	±10
Wuscie	5500		10g SAR:	22.2	22.5	-1.33	±10
Muscle	5800	5800 250	1g SAR:	71.8	70.8	1.41	±10
Wuscie	5800		10g SAR:	20.2	19.8	2.02	±10

Page 16 of 26

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU v5.10.25.0, which enable a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement.

Results:

802.11bgn mode (2.4 GHz band)

ſ			_	Average	
	Mode	Channel	f (MHz)	Output Power	Duty Cycle (%)
	802.11b	6	2437 (M)	18.3	100
ſ	802.11n 20 MHz	6	2437 (M)	16.6	99

802.11an mode (5.8 GHz band)

			Average	
Mode	Channel	f (MHz)	Output Power	Duty Cycle (%)
802.11a	157	5785	17.9	99
802.11n 40 MHz	159	5795	16.9	98

802.11an mode (5.2 GHz band)

			Average	
Mode	Channel	f (MHz)	Output Power	Duty Cycle (%)
802.11a	40	5200	17.7	99
802.11n 20 MHz	40	5200	17.6	99

802.11an mode (5.3 GHz band)

			Average	
Mode	Channel	f (MHz)	Output Power	Duty Cycle (%)
802.11a	56	5280	17.6	99
802.11n 20 MHz	54	5270	17.5	98

802.11an mode (5.5 GHz band)

			Average	
Mode	Channel	f (MHz)	Output Power	Duty Cycle (%)
802.11a	100	5500	17.9	99
802.11n 20 MHz	118	5590	17.6	98

Page 17 of 26

11. SUMMARY OF TEST RESULTS

If the SAR measured at the middle channel for each test configuration is at least 3.0 dB (0.8 mW/g) lower than the SAR limit (1.6 mW/g), testing at the high and low channels is optional for such test configuration(s).

11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	TX 1	0.026	1.6
802.11n 20 MHz	6	2437 (M)	TX 1	0.005	1.0

11.2. SAR TEST RESULT FOR THE 5 GHZ BANDS

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit	
	40	5200 (M)	TX 1	0.0012		
902 110	56	5280 (M)	TX 1	0.0023	1.6	
802.11a	100	5500 (L)	TX 1	0.0082	1.6	
	157	5785 (M)	TX 1	0.0033		

Page 18 of 26

12. WORST-CASE SAR TEST PLOTS

WORST-CASE SAR PLOT for 2.4 GHz Band

Date/Time: 7/22/2009 2:29:59 PM

Test Laboratory: Compliance Certification Services

802.11bg for Lapheld

DUT: Lenovo; Type: U150; Serial: NA

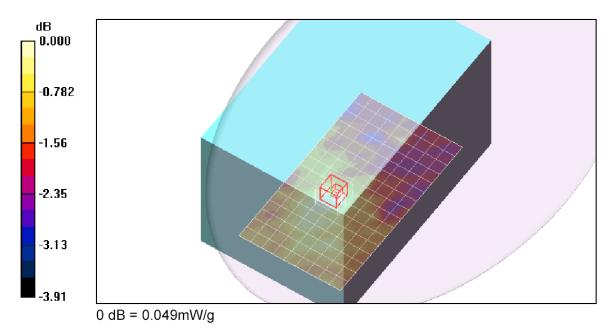
Communication System: 802.11bg; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.86 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009


- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld, 802.11b M-ch/Area Scan (10x17x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.051 mW/g

Lapheld, 802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 4.02 V/m; Power Drift = 0.255 dB Peak SAR (extrapolated) = 0.130 W/kg SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.00697 mW/g

Maximum value of SAR (measured) = 0.049 mW/g

Page 19 of 26

WORST-CASE SAR PLOT for 5.2 GHz Band

Date/Time: 7/28/2009 8:21:12 AM

Test Laboratory: Compliance Certification Services

802.11a 5.2GHz

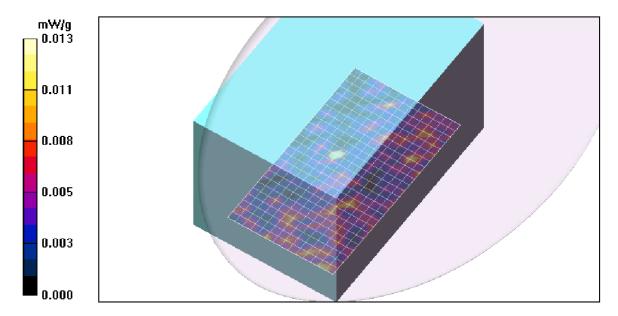
DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.21 mho/m; ε_r = 47.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(4.08, 4.08, 4.08); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Lapheld - 5.2G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.023 mW/g

Lapheld - 5.2G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 1.05 V/m; Power Drift = -2.49 dB

Peak SAR (extrapolated) = 0.018 W/kg

SAR(1 g) = 0.00115 mW/g; SAR(10 g) = 0.000274 mW/g

Maximum value of SAR (measured) = 0.013 mW/g

Page 20 of 26

WORST-CASE SAR PLOT for 5.3 GHz Band

Date/Time: 7/28/2009 9:09:57 AM

Test Laboratory: Compliance Certification Services

802.11a 5.3GHz

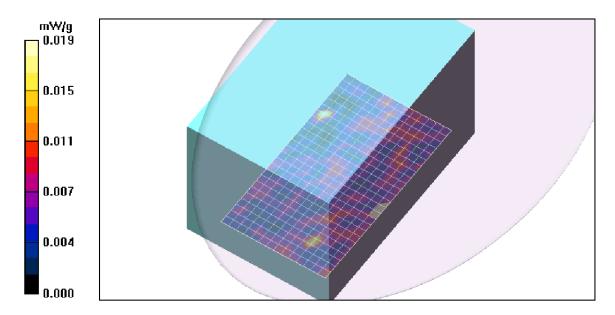
DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5280 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5280 MHz; σ = 5.45 mho/m; ε_r = 48.1; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.81, 3.81, 3.81); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Lapheld - 5.3G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.214 mW/g

Lapheld - 5.3G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 0.800 V/m; Power Drift = 3.34 dB Peak SAR (extrapolated) = 0.042 W/kg SAR(1 g) = 0.00233 mW/g; SAR(10 g) = 0.00053 mW/g

Maximum value of SAR (measured) = 0.019 mW/g

Page 21 of 26

WORST-CASE SAR PLOT for 5.5 GHz Band

Date/Time: 7/28/2009 10:03:35 AM

Test Laboratory: Compliance Certification Services

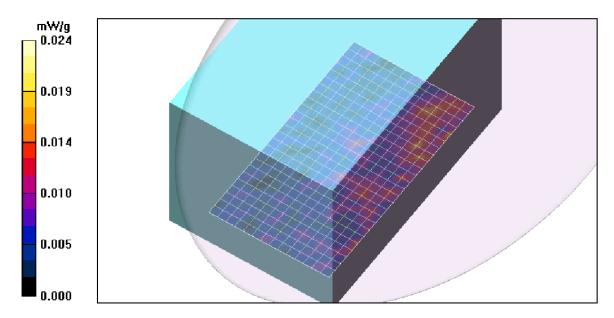
802.11a 5.5 GHz

DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.73 mho/m; ϵ_r = 47.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.76, 3.76, 3.76); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Lapheld - 5.5 G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.018 mW/g

Lapheld - 5.5 G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 1.22 V/m; Power Drift = -2.04 dB

Peak SAR (extrapolated) = 0.083 W/kg SAR(1 g) = 0.00818 mW/g; SAR(10 g) = 0.00298 mW/g

Maximum value of SAR (measured) = 0.062 mW/g

Page 22 of 26

WORST-CASE SAR PLOT for 5.8 GHz Band

Date/Time: 7/28/2009 10:56:23 AM

Test Laboratory: Compliance Certification Services

802.11a 5.8 GHz

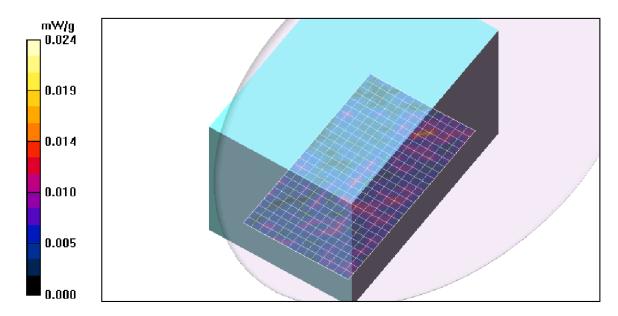
DUT: Lenovo; Type: U150; Serial: N/A

Communication System: 802.11abgn; Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz; σ = 6.15 mho/m; ε_r = 46.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.84, 3.84, 3.84); Calibrated: 3/23/2009
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 10/20/2008
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Lapheld - 5.8 G/Area Scan (15x26x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.017 mW/g

Lapheld - 5.8 G/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 1.46 V/m; Power Drift = -4.41 dB

Peak SAR (extrapolated) = 0.062 W/kg SAR(1 g) = 0.00334 mW/g; SAR(10 g) = 0.00101 mW/g

Maximum value of SAR (measured) = 0.024 mW/g

Page 23 of 26

13. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	8
2	SAR Test Plots	6
3	Certificate of E-Field Probe – EX3DV4 SN 3686	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6
5	Certificate of System Validation Dipole – D5GHzV2 SN 1003	15

Page 24 of 26