RF Exposure Lab

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 <u>http://www.rfexposurelab.com</u>

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Intel Mobile Communication 100 Center Point Circle, Suite 200 Columbia, SC 29210 Dates of Test: May 23-May 29, 2013 Test Report Number: SAR.20130502

FCC I		PD93160H & PD93160HU
IC Ce	rtificate:	1000M-3160H
Model	l(s):	3160HMW
SKU(s	s):	3160.HMWG.S
Test S	Sample:	Engineering Unit Same as Production
MAC	Address:	001500BD59A2
Equip	ment Type:	Wireless Module
	ification:	Portable Transmitter Next to Body
TX Fr	equency Range:	2412 – 2462 MHz; 5180 – 5320 MHz; 5500 – 5700 MHz; 5745 – 5825 MHz
Frequ	ency Tolerance:	± 2.5 ppm
Maxim	num RF Output:	2450 MHz (b) $-$ 15.00 dB, 2450 MHz (g) $-$ 15.00 dB, 2450 MHz (n20) $-$ 15.00 dB, 2450 MHz (n40) $-$ 15.00 dB, 5250 MHz (a) $-$ 13.50 dB, 5250 MHz (n20) $-$ 13.50 dB, 5250 MHz (n40) $-$ 13.50 dB, 5250 MHz (ac) $-$ 13.50 dB, 5600 MHz (a) $-$ 13.50 dB, 5600 MHz (n20) $-$ 13.50 dB, 5600 MHz (n20) $-$ 13.50 dB, 5600 MHz (n40) $-$ 13.50 dB, 5600 MHz (n20) $-$ 13.50 dB, 5800 MZ (n20) $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50 $-$ 13.50
Signal	I Modulation:	DSSS, OFDM
Anten	na Type:	Shanghai Universe Communications Electron Co., Ltd., PIFA Antenna
Applic	ation Type:	Certification
FCC F	Rule Parts:	Part 2, 15C, 15E
KDB 1	Fest Methodology:	KDB 447498 D01 v05, KDB 248227 v01r02, KDB 616217 D04 v01
Indust	try Canada:	RSS-102, Safety Code 6
	num SAR Value:	0.798 W/kg
	ation Distance:	5 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, IEC 62209-2 and OET Bulletin 65 Supp. C (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	. 3
SAR Definition [5]	. 4
2. SAR Measurement Setup	. 5
Robotic System	. 5
System Hardware	. 5
System Electronics	. 6
Probe Measurement System	
3. Probe and Dipole Calibration	11
4. Phantom & Simulating Tissue Specifications	12
Head & Body Simulating Mixture Characterization	12
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	13
Uncontrolled Environment	13
Controlled Environment	13
6. Measurement Uncertainty	14
7. System Validation	15
Tissue Verification	15
Test System Verification	
8. SAR Test Data Summary	
Procedures Used To Establish Test Signal	16
Device Test Condition	
SAR Data Summary – 2450 MHz Body 802.11b	
SAR Data Summary – 5150 MHz Body 802.11a	
SAR Data Summary – 5250 MHz Body 802.11a	
SAR Data Summary – 5600 MHz Low Band Body 802.11a	30
SAR Data Summary – 5600 MHz High Band Body 802.11a	
SAR Data Summary – 5800 MHz Body 802.11a	32
SAR Data Summary – 5 GHz Body 802.11ac 80 MHz Bandwidth	33
SAR Data Summary – Simultaneous Evaluation	
9. Enhanced Energy Coupling	
10. Test Equipment List	
11. Conclusion	
12. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	99

1. Introduction

This measurement report shows compliance of the Intel Corporation Model 3160HMW FCC ID: PD93160H & PD93160HU with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 1000M-3160H with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Intel Corporation Model 3160HMW and therefore apply only to the tested sample.

The models are electrically identical with only differences in firmware. The firmware is programmed in the factory for these family models and cannot be changed by the OEM or the final user.

The module is sold under two different FCC/IC ID numbers. The ID's ending in "U" are intended to allow user install conditions and host systems must be provided with a BIOS locking feature that prevents installation of unauthorized devices.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the 3160HMW wireless modem. The table also shows the tolerance for the power level for each mode.

Band	Technology	Class	3GPP Nominal Power dBm	Setpoint Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
WLAN – 2.4 GHz	802.11b	N/A	N/A	13.5	±1.5	12.0	15.0
WLAN – 2.4 GHz	802.11g/n(Ch. 1 and 11)	N/A	N/A	12	±1.5	10.5	13.5
WLAN – 2.4 GHz	802.11 g/n(Ch. 2-10	N/A	N/A	13.5	±1.5	12.0	15.0
WLAN – 5 GHz	802.11a	N/A	N/A	12	±1.5	10.5	13.5
WLAN – 5 GHz	802.11n	N/A	N/A	12	±1.5	10.5	13.5

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

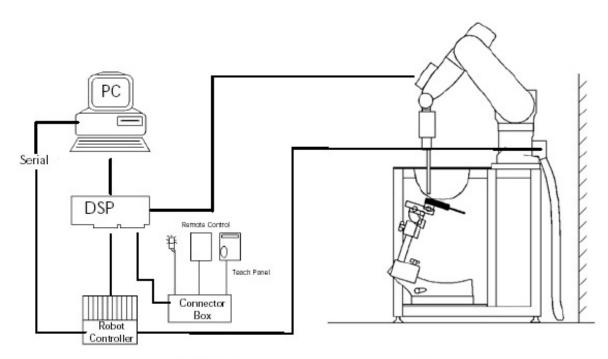
$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)


2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

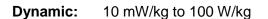
A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.



DAE System

Probe Specifications

- Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz
- Frequency: 10 MHz to 6 GHz
- Linearity: ±0.2dB (30 MHz to 6 GHz)

- **Range:** Linearity: ±0.2dB
- Dimensions: Overall length: 330 mm
- Tip length: 20 mm
- Body diameter: 12 mm
- Tip diameter: 2.5 mm
- Distance from probe tip to sensor center: 1 mm
- Application: SAR Dosimetry Testing Compliance tests of wireless device

A - BEAM

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

SAR =
$$C \frac{\Delta T}{\Delta t}$$

$$\mathsf{SAR} = \frac{\left|\mathsf{E}\right|^2 \cdot \sigma}{\rho}$$

simulated tissue conductivity,

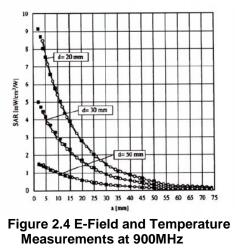
Tissue density (1.25 g/cm³ for brain tissue)

where:

where:

σ

ρ


 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

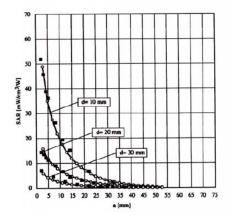


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

$$W_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 Cf = crest factor of exciting field (DASY parameter)
 dcp_{i} = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:	with	V _i Norm _i	 = compensated signal of channel i (i = x,y,z) = sensor sensitivity of channel i (i = x,y,z)
$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$		ConvF E _i	μV/(V/m) ² for E-field probes = sensitivity of enhancement in solution = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{2} \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pure} = \frac{E_{tot}^2}{3770}$$
 with
$$P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$$
$$= \text{total electric field strength in V/m}$$

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom:	SAM Twin Phantom (V4.0)
Shell Material:	Vivac Composite
Thickness:	2.0 ± 0.2 mm

Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worstcase condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. **Probe and Dipole Calibration**

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Ingredients		Simulating Tissue						
		2450 MHz Body	5250 MHz Body	5600 MHz Body	5785 MHz Body			
Mixing Percentage								
Water		73.20						
Sugar		0.00	Proprietary Mixture					
Salt		0.04						
HEC		0.00						
Bactericide		0.00						
DGBE		26.70						
Dielectric Constant Ta	arget	52.70	48.96	48.47	48.25			
Conductivity (S/m) Ta	rget	1.95	5.35	5.77	5.96			

Table 4.1 Typical Composition of Ingredients for Tissue

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

Table 5.1 Human Exposure Limits

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters									
	2450 N	MHz Body	5200 N	/Hz Body	5300 MHz Body				
	May	28, 2013	May 23, 2013		May 23, 2013				
20.0	Target Measured		Target	Measured	Target	Measured			
	52.70	52.24	49.01	49.11	48.88	48.95			
Conductivity: σ		2.00	5.30	5.27	5.42	5.39			
	5600 N	MHz Body	5800 MHz Body						
	May 26, 2013		May 26, 2013						
Liquid Temperature (°C) 20.0		Measured	Target	Measured					
Dielectric Constant: ε		48.47	48.22	48.15					
	5.77	5.80	5.98	6.08					
	20.0	2450 May 20.0 Target 20.0 Target 52.70 1.95 5600 May 20.0 Target 48.47	2450 Hz Body 2450, May ≥8, 2013 20.0 Target Measured 52.70 52.24 1.95 2.00 5600 Hz Body May ≥6, 2013 20.0 Target Measured 48.47	2450 Hz Body 5200 M May ∠8, 2013 May 2 20.0 Target Measured Target 20.0 Target Measured Target 52.70 52.24 49.01 1.95 2.00 5.30 5600 Hz Body 5800 M 20.0 Target May 2 48.47 48.47 48.22	2450 Hz Body 5200 Hz Body May 28, 2013 May 23, 2013 20.0 Target Measured Target 52.70 52.24 49.01 49.11 1.95 2.00 5.30 5.27 5600 Hz Body 5800 Hz Body 5.27 20.0 Target Measured 5.27 48.47 48.47 48.22 48.15	2450 Hz Body 5200 Hz Body 5300 M May 28, 2013 May 2, 2013 May 2 20.0 Target Measured Target Measured Target 52.70 52.24 49.01 49.11 48.88 1.95 2.00 5.30 5.27 5.42 5600 Hz Body 5800 Hz Body 5802 5.42 May 26, 2013 May 2, 2013 May 2, 2013 5.42 20.0 Target Measured 5.42 48.47 Measured Target Measured 48.47 48.47 48.22 48.15			

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation to Target SAR (%)	Plot Number
28-May-2013	2450 MHz	51.50	52.20	Body	+ 1.36	1
23-May-2013	5200 MHz	73.40	73.30	Body	- 0.14	2
23-May-2013	5300 MHz	73.60	74.70	Body	+ 1.50	3
26-May-2013	5600 MHz	79.10	80.80	Body	+ 2.15	4
27-May-2013	5800 MHz	72.90	71.50	Body	- 1.92	5

See Appendix A for data plots.

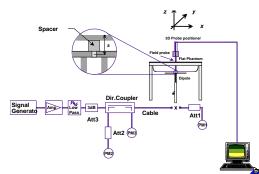


Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

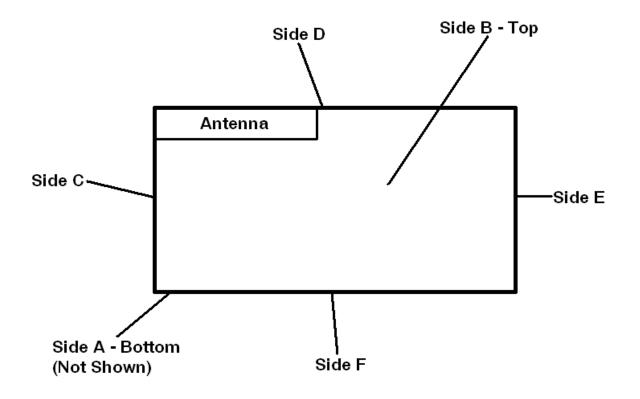
Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The EUT was installed into a laptop computer. The laptop computer was used to configure the EUT to continuously transmit at a maximum output power on the channel specified in the test data.

The data rates used when evaluating the WiFi transmitter were the lowest data rates for each mode. The device was operating at its maximum output power at the lowest data rate for all measurements.

Bluetooth operation was not evaluated as the power level of the BT transmitter was 6 mW which is excluded per KDB 447498 Appendix A. The Bluetooth transmitter does simultaneously transmit with the WiFi transmitter. The installation guide has instructions to the installer to set the two antennas with a minimum of 50 mm separation. Simultaneous transmission is evaluated on page 35.


The PC was using the Intel test utility DRTU Version 1.6.1-628 and the device driver was version 16.0.0.49.

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector.

The antenna was tested on all six sides of the antenna device. During each test, the antenna was on a minimum of 10 cm of Styrofoam during the test. The coaxial cable from the module to the antenna was 500 mm in length. The laptop was set to be >10 cm from the antenna during the test. The following is a pictorial drawing of the locations.

SAR Location Diagram

RF Exposure Lab

Report Number: SAR.20130502

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Power (dBm)
			. 1	2412			14 92
	802.11b	20	6	2437	1 Mbps	Chain A	15.00
			11	2462			14.96
	002.11	20	1	2412	C 1 4	Chain A	14.89
	802.11g	20	6	2437	6 Mbps	Chain A	14.95
2450 MHz			11	2462			14.93
	002 11-	20	1	2412			14.89
	802.11n	20	6	2437	HT4	Chain A	14.86
			11	2462			14.90
	002.44	40	3	2422			14.79
	802.11n	40	6	2437	HT4	Chain A	14.86
			9	2452			14.82
	802.11a	20	36	5180	6 Mbps	Chain A	13.40
			40	5200			13.45
			44	5220			13.50
			48	5240	HT4	Chain A	13.46
			36	5180			13.41
5.15-5.25 GHZ	802.11n	20	40 44	5200 5220			<u>13.43</u> 13.46
5.15-5.25 GHz			44				
			48 38	5240 5190	HT4	Chain A	13.43 10.27
	802.11n	40	46	5230			13.39
	802.11ac	80	40	5230	VHT6	Chain A	8.57
	002.11dL	80	52	5260	VIIIO	Clidill A	13.43
			56	5280			13.45
	802.11a	20	60	5300	6 Mbps	Chain A	13.50
			64	5320			13.43
			52	5260			13.45
5.25-5.35 GHz			56	5280			13.42
5.25 5.55 6.12	802.11n	20	60	5300	HT4	Chain A	13.40
			64	5320			13.39
			54	5270			9.89
	802.11n	40	62	5310	HT4	Chain A	11.28
	802.11ac	80	58	5290	VHT6	Chain A	10.83

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Power (dBm)
			100	5500			13.46
			104	5520			13.42
			108	5540			13.43
			112	5560			13.50
			116	5580			13.41
	802.11a	20	120	5600	6 Mbps	Chain A	13.39
			124	5620			13.45
			128	5640			13.50
			132	5660			13.47
			136	5680			13.44
			140	5700			13.42
			100	5500	HT4	Chain A	13.44
		20	104	5520			13.41
			108	5540			13.43
			112	5560			13.39
5 COO MUL-			116	5580			13.36
5600 MHz	802.11n		120	5600			13.45
			124	5620			13.38
			128	5640			13.37
			132	5660			13.41
			136	5680			13.43
			140	5700			13.40
			102	5510			11.56
			110	5550			13.46
	802.11n	40	118	5580	HT4	Chain A	13.45
			126	5610			13.40
			134	5670			13.40
		20	144	5720	VHT0	Chain A	5.38
		40	142	5710	VHIU	Chain A	13.39
	802.11ac		106	5530			9.56
		80	122	5610	VHT6	Chain A	13.48
			138	5690		Chairry	13.46

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Power (dBm)
			149	5745			13.43
			153	5765			13.48
	802.11a	20	157	5785	6 Mbps	Chain A	13.50
			161	5805			13.42
			165	5825			13.46
			149	5745			13.45
5800 MHz			153	5765	1 1	Antenna 6 Mbps Chain A HT8 Chain A HT8 Chain A	13.41
	802.11n	20	157	5785	HT8		Chain A
			161	5805			13.40
			165	5825			13.39
	802.11n	40	151	5755	цтο	Chain A	13.42
	002.110	40	159	5795	010	Challi A	13.49
	802.11ac	80	155	5775	VHT6	Chain A	13.43

Figure 8.1 Test Reduction Table – WiFi							
Mode	Side	Required Channel	Tested/Reduced				
		1 – 2412 MHz	Reduced ¹				
	Side A	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
	Side B	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
	Side C	6 – 2437 MHz	Tested				
000 441		11 – 2462 MHz	Reduced ¹				
802.11b		1 – 2412 MHz	Reduced ¹				
	Side D	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
	Side E	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ¹				
	Side F	6 – 2437 MHz	Tested				
		11 – 2462 MHz	Reduced ¹				
		1 – 2412 MHz	Reduced ²				
	Side A	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side B	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side C	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
802.11g		1 – 2412 MHz	Reduced ²				
	Side D	6 – 2437 MHz	Reduced ²				
	0100 2	11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side E	6 – 2437 MHz	Reduced ²				
	0.00 -	11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side F	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side A	6 – 2437 MHz	Reduced ²				
	Clastic	11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side B	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side C	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
802.11n		1 – 2412 MHz	Reduced ²				
	Side D	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side E	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
		1 – 2412 MHz	Reduced ²				
	Side F	6 – 2437 MHz	Reduced ²				
		11 – 2462 MHz	Reduced ²				
na mid ahannal ia	2 dD holow the limit	the remaining channels of					

Figure 8.1 Test Reduction Table – WiFi

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05 section 4.3.3 page 13.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the g mode, testing is not required per KDB 248227 page 5.

		Demuined	
Mode	Side	Required	Tested/Reduced
		Channel	
		36 – 5180 MHz	Reduced ¹
	Side A	40 – 5200 MHz	Reduced ¹
	Claori	44 – 5220 MHz	Tested
_		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced
	Side B	40 – 5200 MHz	Reduced
		44 – 5220 MHz	Tested
_		48 – 5240 MHz	Reduced
		36 – 5180 MHz	Reduced
	Side C	40 – 5200 MHz	Reduced
000.44		44 – 5220 MHz	Tested
802.11a		48 – 5240 MHz	Reduced
5150 MHz		36 – 5180 MHz	Reduced
	Side D	40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Tested
-		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced
	Side E	40 – 5200 MHz	Reduced
		44 – 5220 MHz	Tested
-		48 – 5240 MHz	Reduced
	Side F	36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced
		36 – 5180 MHz	Reduced ²
	Side A	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
-		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Side B	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
-		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Side C	40 – 5200 MHz	Reduced ²
000.44		44 – 5220 MHz	Reduced ²
802.11n		48 – 5240 MHz	Reduced ²
5150 MHz		36 – 5180 MHz	Reduced ²
	Side D	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
-		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Side E	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
F		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Side F	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
	Ciela A	48 – 5240 MHz	Reduced ²
F	Side A Side B	42 – 5210 MHz	Reduced ²
000 1100		42 – 5210 MHz	Reduced ²
802.11ac	Side C	42 – 5210 MHz	Reduced ²
5210 MHz	Side D	42 – 5210 MHz	Tested
F	Side E	42 – 5210 MHz	Reduced ²
	Side F	42 – 5210 MHz	Reduced ²

Reduced¹ – When the highest conducted power channel is 3 dB below the limit, the remaining channels are not required per KDB

447498 D01 v05 section 4.3.3 page 13.Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5 and KDB Inquiry 448433.

Mode Side Required Channel Tested/Reduced Side A 52 - 5260 MHz Reduced' 60 - 5300 MHz Reduced' 60 - 5300 MHz Reduced' 802.11a Side B 56 - 5280 MHz Reduced' Side B 60 - 5300 MHz Reduced' Reduced' Side B 60 - 5300 MHz Reduced' Reduced' Side C 60 - 5300 MHz Reduced' Reduced' Side C 60 - 5300 MHz Reduced' Reduced' Side C 60 - 5300 MHz Reduced' Reduced' Side D 56 - 5280 MHz Reduced' Reduced' Side D 56 - 5280 MHz Reduced' Reduced' Side D 56 - 5280 MHz Reduced' Reduced' Side E 60 - 5300 MHz Reduced' Reduced' Side F 56 - 5280 MHz Reduced' Reduced' Side F 56 - 5280 MHz Reduced' Reduced' Side F 56 - 5280 MHz Reduced' Reduced' Side			Docuired	
Bide A Chained 52 = 5280 MHz Reduced' Reduced' Side A 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' Side B 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 64 - 5320 MHz Reduced' 65 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5260 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5260 MHz Reduc	Mode	Side		Tested/Reduced
Side A 56 - 5280 MHz Reduced' 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 55 - 5280 MHz Reduced' 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 52 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5280 MHz Reduced' 64 - 5320 MHz <t< th=""><th></th><th></th><th></th><th></th></t<>				
Side A 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 52 - 5260 MHz Reduced' Side B 56 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 62 - 5260 MHz Reduced' 64 - 5320 MHz Reduced' 56 - 5280 MHz Reduced' 56 - 5280 MHz Reduced' 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 56 - 5280 MHz Reduced' 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 52 - 5260 MHz Reduced' 52 - 5260 MHz Reduced' 53 - 5280 MHz Reduced' 53 - 5280 MHz Reduced' 53 - 5280 MHz Reduced' 52 - 5280 MHz Reduced' 52 - 5280 MHz Reduced' 52 - 5280 MHz Reduced' 5				
Bit Norm 60 - 5300 MHz Tested Side B 52 - 5260 MHz Reduced' Side B 56 - 5200 MHz Reduced' 64 - 5320 MHz Reduced' Reduced' 52 - 5260 MHz Reduced' Reduced' 64 - 5320 MHz Reduced' Reduced' 52 - 5260 MHz Reduced' Reduced' Side E 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Reduced' 52 - 5260 MHz Reduced' Reduced' 52 - 5260 MHz Reduced' Reduced' 64 - 5320 MHz Reduced' Reduced'		Side A		
Side B 52 - 5260 MHz Reduced' Side B 66 - 5300 MHz Tested 64 - 5320 MHz Reduced' Side C 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 56 - 5280 MHz Reduced' 66 - 5300 MHz Reduced'		0.0071		
Side B 56 - 5280 MHz Reduced' 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' 52 - 5260 MHz Reduced' 66 - 5300 MHz Reduced' 52 - 5260 MHz Reduced' 64 - 5320 MHz Reduced' 52 - 5260 MHz Reduced' 64 - 5320 MHz				
Side B 60 - 5300 MHz Tested 64 - 5320 MHz Reduced' Side C 52 - 5280 MHz Reduced' 525 0 MHz Reduced' 60 - 5300 MHz Tested 525 0 MHz Reduced' 60 - 5300 MHz Tested 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 52 - 5280 MHz R				
802.11a 52 - 5260 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 5250 MHz Side C 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ²		Side B		
Side C 52 - 5260 MHz Reduced ¹ 50 MHz Reduced ¹ 156 - 5280 MHz Reduced ¹ 5250 MHz Side D 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5280 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5280 MHz Reduced ² 52 - 5260 MHz				
Side C 56 - 5280 MHz Reduced' 60 - 5300 MHz Tested 5250 MHz 64 - 5320 MHz Reduced' Side D 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' 66 - 5300 MHz Side D 60 - 5300 MHz Reduced' 61 - 5320 MHz Reduced' 66 - 5300 MHz Side E 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 66 - 5300 MHz Side E 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 66 - 5300 MHz Side F 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 66 - 5300 MHz Side F 56 - 5280 MHz Reduced' 52 - 5260 MHz Reduced' 66 - 5300 MHz Side A 56 - 5280 MHz Reduced' 56 - 5280 MHz Reduced' 66 - 5300 MHz Side B 56 - 5280 MHz Reduced' 56 - 5280 MHz Reduced' 66 - 5300 MHz Side B 56 - 5280 MHz Reduced'	_			
Side C 60 - 5300 MHz Tested 5250 MHz Side D 52 - 5260 MHz Reduced ¹ 5250 MHz Side D 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz				
802.11a 64 - 5320 MHz Reduced' 5250 MHz Side D 52 - 5260 MHz Reduced' 56 - 5280 MHz Reduced' 60 - 5300 MHz Reduced' 64 - 5320 MHz Reduced' 66 - 5300 MHz Reduced' Side E 52 - 5260 MHz Reduced' 66 - 5300 MHz Reduced' Side E 66 - 5300 MHz Reduced' 64 - 5320 MHz Reduced' Side F 52 - 5260 MHz Reduced' 64 - 5320 MHz Reduced' Side F 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side F 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side A 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side A 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side B 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side B 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduced' Side B 56 - 5280 MHz Reduced' 64 - 5320 MHz Reduc		Side C		
5250 MHz Side D 52 - 5260 MHz Reduced ¹ Side D 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ Side E 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 66 - 5280 MHz Reduced ¹ 66 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 65 - 5280 MHz Reduced ² 52 - 5260 MHz Reduced ²	000.44			
Side D 56 - 5280 MHz Reduced ¹ 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ Side E 56 - 5280 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 55 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 55 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5300 MHz <t< td=""><td></td><td></td><td></td><td></td></t<>				
Side D 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ 62 - 5260 MHz Reduced ¹ Side E 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz <t< td=""><td></td><td></td><td></td><td></td></t<>				
Bide E 64 - 5320 MHz Reduced ¹ Side E 52 - 5260 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 65 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 61 - 5320 MHz Reduced ² 52 - 5260 MHz		Side D		
Side E 52 - 5260 MHz Reduced ¹ Side E 56 - 5280 MHz Reduced ¹ 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ Side F 52 - 5260 MHz Reduced ¹ 52 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ² 64 -				
Side E 56 - 5280 MHz Reduced ¹ 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ Side F 56 - 5280 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 65 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 65 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 5250 MHz Side C Side D 56 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz<	_			
Side E 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ Side F 56 - 5280 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 66 - 5300 MHz Reduced ¹ 66 - 5300 MHz Reduced ² 61 - 5320 MHz Reduced ² 62 - 5260 MHz Reduced ² 63 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5300 MHz <t< td=""><td></td><td></td><td></td><td></td></t<>				
Bide F 64 - 5320 MHz Reduced ¹ Side F 52 - 5260 MHz Reduced ¹ 60 - 5300 MHz Reduced ¹ 60 - 5300 MHz Reduced ¹ 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ¹ 64 - 5320 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 55 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5280 MHz		Side E		
Side F 52 - 5260 MHz Reduced ¹ 56 - 5280 MHz Reduced ¹ 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 65 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 55 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² </td <td></td> <td></td> <td></td> <td></td>				
Side F 56 - 5280 MHz Reduced ¹ 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ Side A 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5300 MHz <t< td=""><td></td><td></td><td></td><td></td></t<>				
Side F 60 - 5300 MHz Tested 64 - 5320 MHz Reduced ¹ 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5300 MHz Reduced ² </td <td></td> <td rowspan="2">Side F</td> <td></td> <td></td>		Side F		
Bide A 64 - 5320 MHz Reduced ¹ Side A 52 - 5260 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 61 - 5320 MHz Reduced ² 62 - 5260 MHz Reduced ² 64 - 5320 MHz				
Side A 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ²				
Side A 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ²				
Side A 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side B 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz				
Bide B 64 - 5320 MHz Reduced ² Side B 52 - 5260 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5300 MHz Reduced ² 64 - 5300 MHz Reduced ² 64 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5380 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 66 - 5300 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz		Side A		
Side B 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 55 - 5280 MHz Reduced ² 66 - 5300 MHz Reduced ² 52 - 5260 MHz Reduced ² 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 66 - 5320 MHz Reduced ² 66 - 5320 MHz Reduced ² 66 - 5320 MHz Reduced ²				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Side B $60 - 5300 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $52 - 5260 \text{ MHz}$ Reduced ² $56 - 5280 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $56 - 5280 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $52 - 5260 \text{ MHz}$ Reduced ² $52 - 5260 \text{ MHz}$ Reduced ² $52 - 5260 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ²				
		Side B		
Side C $60 - 5300 \text{ MHz}$ Reduced ² 802.11n 5250 MHz Reduced ² 5250 MHz $52 - 5260 \text{ MHz}$ Reduced ² Side D $56 - 5280 \text{ MHz}$ Reduced ² $60 - 5300 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² Side E $52 - 5260 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² Side E $56 - 5280 \text{ MHz}$ Reduced ² $66 - 5300 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² $52 - 5260 \text{ MHz}$ Reduced ² Side F $56 - 5280 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² Side F $56 - 5280 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ² Side B $58 - 5290 \text{ MHz}$ Reduced ² $64 - 5320 \text{ MHz}$ Reduced ²				
		Side C		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	802 11n			
Side D 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side E 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 64 - 5320 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 52 - 5260 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 60 - 5300 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Tested Side E 58 - 5290 MHz Reduced ²	0200			
64 - 5320 MHz Reduced ² Side E 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Tested Side E 58 - 5290 MHz Reduced ²		Side D		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Side E 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side F 52 - 5260 MHz Reduced ² 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Reduced ² Side E 58 - 5290 MHz Reduced ²				
64 - 5320 MHz Reduced ² Side F 52 - 5260 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Reduced ² Side E 58 - 5290 MHz Reduced ²		Side E		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Side F 56 - 5280 MHz Reduced ² 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Reduced ² Side E 58 - 5290 MHz Reduced ²	F			
Side F 60 - 5300 MHz Reduced ² 64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side C 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Reduced ² Side E 58 - 5290 MHz Reduced ²		0:4 5		
64 - 5320 MHz Reduced ² Side A 58 - 5290 MHz Reduced ² Side B 58 - 5290 MHz Reduced ² 802.11ac Side C 58 - 5290 MHz Reduced ² 5290 MHz Side D 58 - 5290 MHz Reduced ² Side D 58 - 5290 MHz Tested Side E 58 - 5290 MHz Reduced ²		Side F		
Side A 58 – 5290 MHz Reduced ² Side B 58 – 5290 MHz Reduced ² 802.11ac Side C 58 – 5290 MHz Reduced ² 5290 MHz Side D 58 – 5290 MHz Reduced ² Side D 58 – 5290 MHz Tested Side E 58 – 5290 MHz Reduced ²				
Side B 58 – 5290 MHz Reduced ² 802.11ac Side C 58 – 5290 MHz Reduced ² 5290 MHz Side D 58 – 5290 MHz Tested Side E 58 – 5290 MHz Reduced ²		Side A		
802.11ac Side C 58 – 5290 MHz Reduced ² 5290 MHz Side D 58 – 5290 MHz Tested Side E 58 – 5290 MHz Reduced ²	F			
5290 MHz Side D 58 – 5290 MHz Tested Side E 58 – 5290 MHz Reduced ²	802.11ac			
Side E 58 – 5290 MHz Reduced ²				
				Reduced ²
	F	Side F	58 – 5290 MHz	Reduced ²

Reduced¹ – When the highest conducted power channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05 section 4.3.3 page 13.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5 and KDB Inquiry 448433.

Report Number: SAR.20130502

Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Tested
		116 – 5580 MHz	Reduced ¹
	Side A	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced
		132 – 5660 MHz	Tested
		136 – 5680 MHz	Reduced ¹
		140 – 5700 MHz	Reduced
		100 – 5500 MHz	Reduced
		104 – 5520 MHz	Reduced
		104 – 5540 MHz	Reduced
		112 – 5560 MHz	Tested
		116 – 5580 MHz	Reduced ¹
	Side B		Reduced Reduced
	Side D	120 – 5600 MHz	1
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced
		132 – 5660 MHz	Tested
		136 – 5680 MHz	Reduced
		140 – 5700 MHz	Reduced
		100 – 5500 MHz	Reduced
		104 – 5520 MHz	Reduced
		108 – 5540 MHz	Reduced
		112 – 5560 MHz	Tested
		116 – 5580 MHz	Reduced
	Side C	120 – 5600 MHz	Reduced
		124 – 5620 MHz	Reduced
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Tested
		136 – 5680 MHz	Reduced ¹
802.11a		140 – 5700 MHz	Reduced ¹
5600 MHz		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Tested
		116 – 5580 MHz	Reduced ¹
	Side D	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Tested
		136 – 5680 MHz	Reduced ¹
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced
		112 – 5560 MHz	Tested
		116 – 5580 MHz	Reduced ¹
	Side E	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced
		124 – 5640 MHz	Reduced
		132 – 5660 MHz	Tested
		132 – 5680 MHz	Reduced ¹
		140 – 5700 MHz 100 – 5500 MHz	Reduced ¹
			Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced'
		112 – 5560 MHz	Tested
	o:	116 – 5580 MHz	Reduced
	Side F	120 – 5600 MHz	Reduced
		124 – 5620 MHz	Reduced
		128 – 5640 MHz	Reduced
		132 – 5660 MHz	Tested
		100 5000 1411	D a dura a d
		136 – 5680 MHz 140 – 5700 MHz	Reduced ¹ Reduced ¹

Reduced¹ – When the highest conducted power channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05 section 4.3.3 page 13.

Report Number: SAR.20130502

Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side A	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side B	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side C	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
802.11n		140 – 5700 MHz	Reduced ²
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side D	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side E	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Side F	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
	L	140 - 3700 WITZ	Neuliceu

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5 and KDB Inquiry 448433.

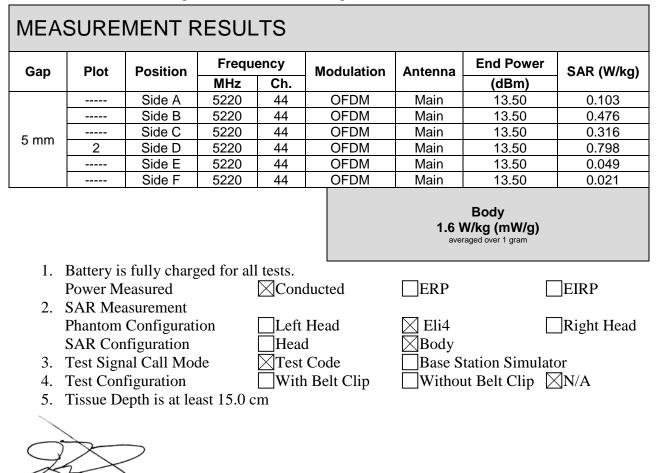
Mode	Side	Required Channel	Tested/Reduced
		106 – 5530 MHz	Reduced ²
	Side A	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Side B	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Side C	122 – 5610 MHz	Reduced ²
802.11ac		138 – 5690 MHz	Reduced ²
5600 MHz	Side D	106 – 5530 MHz	Reduced ²
		122 – 5610 MHz	Tested
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Side E	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Side F	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5 and KDB Inquiry 448433.

Report Number: SAR.20130502

	0.1		T (1/D)
Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced
	Side A	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced
		165 – 5825 MHz	Reduced
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Side B	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Side C	157 – 5785 MHz	Tested
	01000	161 – 5805 MHz	Reduced ¹
802.11a		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced
5000 WI 12			,
	Olde D	153 – 5765 MHz	Reduced
	Side D	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced
		165 – 5825 MHz	Reduced
		149 – 5745 MHz	Reduced
		153 – 5765 MHz	Reduced ¹
	Side E	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Side F	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Side A	157 – 5785 MHz	Reduced
	Side A		2
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Side B	157 – 5785 MHz	Reduced
		161 – 5805 MHz	Reduced
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Side C	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
802.11n		165 – 5825 MHz	Reduced ²
5800 MHz		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Side D	157 – 5785 MHz	Reduced
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
			9
		149 – 5745 MHz	Reduced ²
	0:	153 – 5765 MHz	Reduced ²
	Side E	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Side F	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
	Side A	155 – 5775 MHz	Reduced ²
	Side B	155 – 5775 MHz	Reduced ²
802.11ac	Side C	155 – 5775 MHz	Reduced ²
5775 MHz	Side D	155 – 5775 MHz	Tested
	Side D		Reduced ²
		155 – 5775 MHz	
	Side F	155 – 5775 MHz	Reduced ²

Reduced¹ – When the highest conducted power channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05 section 4.3.3 page 13. Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5 and KDB Inquiry 448433.


RF Exposure Lab

SAR Data Summary – 2450 MHz Body 802.11b

MEA	SURE	MENT F	RESUL	TS				
Gap	Plot	Position	Frequ	ency	Modulation	Antenna	End Power	SAR (W/kg)
Cup		reenter	MHz	Ch.	modulation	/	(dBm)	0/ (11/1.g)
		Side A	2437	6	OFDM	Main	15.00	0.143
		Side B	2437	6	OFDM	Main	15.00	0.437
5 mm	1	Side C	2437	6	OFDM	Main	15.00	0.779
5 11111		Side D	2437	6	OFDM	Main	15.00	0.211
		Side E	2437	6	OFDM	Main	15.00	0.167
		Side F	2437	6	OFDM	Main	15.00	0.095
							Body N/kg (mW/g) raged over 1 gram	
	Power M	s fully charg easured asurement	ged for all	l tests. ⊠Cono	ducted	ERP		EIRP
		Configuration	ion	Left Head	Head 1	⊠Eli4 ⊠Body		Right Head
3.	Test Sign	al Call Mo	de	Test	Code	Base S	tation Simulate	or
4.	Test Con	figuration		With	n Belt Clip	Withou	ut Belt Clip 🛛	N/A
		epth is at lea	ast 15.0 c		1		1 🗠	_
	>							

Jay M. Moulton Vice President

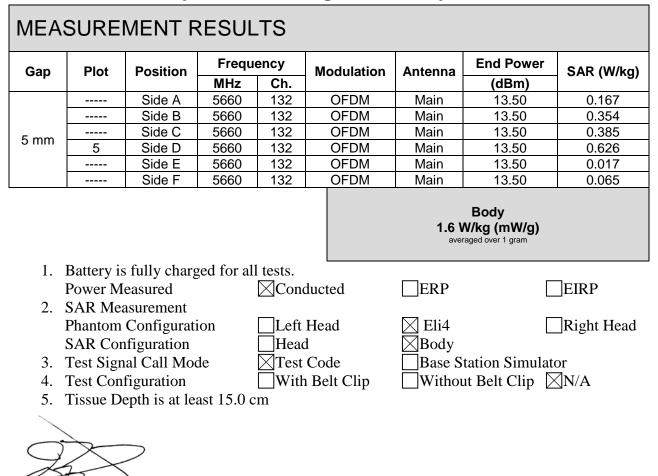
SAR Data Summary – 5150 MHz Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – 5250 MHz Body 802.11a

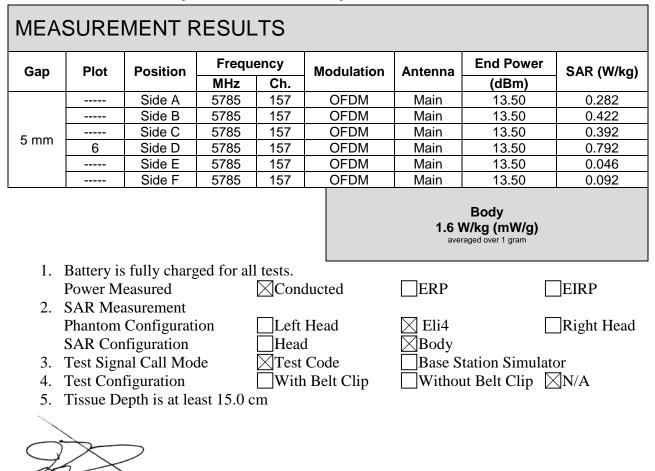
MEASUREMENT RESULTS **End Power** Frequency Plot Position Modulation Antenna SAR (W/kg) Gap MHz Ch. (dBm) 0.126 5300 OFDM -----Side A 60 Main 13.50 60 Side B 5300 OFDM Main 13.50 0.494 ____ OFDM 0.339 -----Side C 5300 60 Main 13.50 5 mm 3 Side D 5300 60 OFDM Main 13.50 0.785 Side E 5300 60 OFDM Main 13.50 0.098 ---------Side F 5300 60 OFDM 13.50 0.091 Main Body 1.6 W/kg (mW/g) averaged over 1 gram 1. Battery is fully charged for all tests. Power Measured Conducted ERP EIRP 2. SAR Measurement Phantom Configuration Left Head \boxtimes Eli4 Right Head SAR Configuration Head \boxtimes Body 3. Test Signal Call Mode Test Code Base Station Simulator 4. Test Configuration With Belt Clip Without Belt Clip N/A 5. Tissue Depth is at least 15.0 cm

Jay M. Moulton Vice President


SAR Data Summary – 5600 MHz Low Band Body 802.11a

MEA	SURE	MENT F	RESUL	TS					
Gap	Plot	Position	Frequ	ency	Modulation	Antenna	End Power	SAR (W/kg)	
Cup	1100	1 051001	MHz	Ch.	modulation	Antonna	(dBm)		
		Side A	5560	112	OFDM	Main	13.50	0.229	
		Side B	5560	112	OFDM	Main	13.50	0.425	
5 mm		Side C	5560	112	OFDM	Main	13.50	0.539	
5 mm	4	Side D	5560	112	OFDM	Main	13.50	0.735	
		Side E	5560	112	OFDM	Main	13.50	0.015	
		Side F	5560	112	OFDM	Main	13.50	0.049	
							Body N/kg (mW/g) raged over 1 gram		
	Power M		ged for all		ducted	ERP		EIRP	
3. 4.	2. SAR Measurement □Left Head □Eli4 □Right Head Phantom Configuration □Head □Body 3. Test Signal Call Mode □Test Code □Base Station Simulator 4. Test Configuration □With Belt Clip □Without Belt Clip ⊠N/A								
\bigcirc	>	\geq							

Jay M. Moulton Vice President


SAR Data Summary – 5600 MHz High Band Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – 5800 MHz Body 802.11a

Jay M. Moulton Vice President

SAR Data Summary – 5 GHz Body 802.11ac 80 MHz Bandwidth

MEAS	SURE	MENT F	RESUL	TS				
Gap	Plot	Position	Frequency		Modulation	Antenna	End Power	SAR (W/kg)
Ψup			MHz	Ch.			(dBm)	e, (
		Side D	5210	42	OFDM	Main	8.37	0.122
5 mm		Side D	5290	58	OFDM	Main	10.46	0.188
Jiiiii		Side D	5610	122	OFDM	Main	13.47	0.167
L		Side D	5775	155	OFDM	Main	13.49	0.137
1	Dottom	fully chose	ad for all	taata			W/kg (mW/g) raged over 1 gram	
	Power M	fully charge easured asurement	·	\square Con	ducted	ERP		EIRP
	Phantom	Configurati	on	Left Head	Head 1	⊠ Eli4 ⊠Body		Right Head
3.	Test Sign	al Call Mod	le	Test	Code	Base S	tation Simulate	or
4. '	Test Con	figuration		With	n Belt Clip	Withou	ıt Belt Clip 🛛 🛛	N/A
		epth is at lea	ast 15.0 c		1		1 —	_
Z	Z	>						

Jay M. Moulton Vice President

Freque	ency	Modulation	Frequ	ency	Modulation	SAR₁	SAR ₂ *	SAR Total
MHz	Ch.	modulation	MHz	Ch.	modulation		UAN2	UAI I I I I
2437	6	OFDM	2480	79	GFSK	0.779	0.252	1.031
5220	44	OFDM	2480	79	GFSK	0.798	0.252	1.050
5300	60	OFDM	2480	79	GFSK	0.785	0.252	1.037
5560	112	OFDM	2480	79	GFSK	0.735	0.252	0.987
5660	132	OFDM	2480	79	GFSK	0.626	0.252	0.878
5785	157	OFDM	2480	79	GFSK	0.792	0.252	1.044
						1.6 W/k	ody g (mW/g) over 1 gram	

SAR Data Summary – Simultaneous Evaluation

* The value for SAR_2 was calculated per KDB 447498 D01 v05 section 4.3.2 2) page 12 as follows:

[max power including tune up, mW/min test separation, mm]*[$\sqrt{f_{(GHz)}}/x$] where x=7.5 for 1 g SAR [6/5]*[$\sqrt{2.48}/7.5$]=0.252 W/kg

To calculate the separation ratio the following formula is used:

 $(SAR_1 + SAR_2)^{1.5}/R_i$ where R_i is in mm

For each of the pairs, the following calculations show the separation ratio at the 50 mm separation stated in the installation guide.

2.4 GHz Band:	$(0.779+0.252)^{1.5}/50 = 0.02$
5.1 GHz Band:	$(0.798+0.252)^{1.5}/50 = 0.02$
5.2 GHz Band:	$(0.785+0.252)^{1.5}/50 = 0.02$
5.6 GHz Band:	$(0.735+0.252)^{1.5}/50 = 0.02$
5.6 GHz Band:	$(0.626+0.252)^{1.5}/50 = 0.02$
5.8 GHz Band:	$(0.792+0.252)^{1.5}/50 = 0.02$

9. Enhanced Energy Coupling

Worst-case test configuration	Band	Antenna-to-person distance (mm)		Peak SAR (W/kg)	Percent Change
Side A		Initial	5	0.24	
	2450 MHz	1	10	0.18	-23.8
		2	15	0.10	-58.5
	2450 MHz	Initial	5	0.52	
Side B		1	10	0.38	-26.4
		2	15	0.27	-48.3
		3	20	0.15	-72.1
	2450 MHz	Initial	5	0.82	
Side C		1	10	0.61	-25.2
		2	15	0.34	-58.2
		Initial	5	0.27	
Side D	2450 MHz	1	10	0.19	-30.3
		2	15	0.12	-53.9
		Initial	5	0.19	
Side E	2450 MHz	1	10	0.14	-23.1
		2	15	0.08	-55.1
	2450 MHz	Initial	5	0.11	
		1	10	0.08	-28.1
Side F		2	15	0.05	-48.7
		3	20	0.03	-73.8
	5250 MHz	Initial	5	0.14	
Side A		1	10	0.10	-30.7
		2	15	0.06	-56.4
Side B	5250 MHz	Initial	5	0.53	
		1	10	0.37	-29.7
		2	15	0.23	-56.4
Side C	5250 MHz	Initial	5	0.36	
		1	10	0.27	-24.5
		2	15	0.16	-54.6
Side D	5250 MHz	Initial	5	0.81	
		1	10	0.60	-25.9
		2	15	0.35	-56.1
Side E	5250 MHz	Initial	5	0.11	
		1	10	0.08	-31.4
		2	15	0.05	-58.4
	5250 MHz	Initial	5	0.11	
Side F		1	10	0.08	-22.3
0.001		2	15	0.05	-53.0

Worst-case test configuration	Band	Antenna-to-person distance (mm)		Peak SAR (W/kg)	Percent Change
Side A		Initial	5	0.26	
	5600 MHz	1	10	0.19	-28.9
		2	15	0.13	-50.5
	5600 MHz	Initial	5	0.44	
Side B		1	10	0.32	-28.2
		2	15	0.20	-54.2
	5600 MHz	Initial	5	0.57	
Side C		1	10	0.40	-28.9
		2	15	0.23	-59.8
		Initial	5	0.75	
Side D	5600 MHz	1	10	0.57	-24.9
		2	15	0.36	-52.5
		Initial	5	0.07	
0.17	5000 1411	1	10	0.05	-27.5
Side E	5600 MHz	2	15	0.03	-49.8
		3	20	0.02	-74.8
		Initial	5	0.08	
Side F	5600 MHz	1	10	0.06	-22.0
		2	15	0.04	-55.4
	5800 MHz	Initial	5	0.31	
Side A		1	10	0.22	-30.4
		2	15	0.14	-55.6
	5800 MHz	Initial	5	0.47	
Side B		1	10	0.36	-23.1
		2	15	0.24	-49.6
		3	20	0.10	-77.8
Side C	5800 MHz	Initial	5	0.42	
		1	10	0.30	-27.8
		2	15	0.18	-55.8
Side D	5800 MHz	Initial	5	0.82	
		1	10	0.60	-27.5
		2	15	0.37	-54.6
	5800 MHz	Initial	5	0.09	
Side E		1	10	0.06	-29.8
		2	15	0.05	-49.1
		3	20	0.02	-77.2
Side F		Initial	5	0.11	
	5800 MHz	1	10	0.08	-22.1
		2	15	0.05	-52.2

Data Acquisition Electronics 4

Speag E-Field Probe EX3DV4

Agilent N1911A Power Meter

Agilent N1922A Power Sensor

Agilent (HP) 83525A RF Plug-In

Aprel Dielectric Probe Assembly

Body Equivalent Matter (5 GHz)

Speag Validation Dipole D2450V2

Speag Validation Dipole D5GHzV2

Advantest R3261A Spectrum Analyzer

Agilent (HP) 8753C Vector Network Analyzer

Agilent (HP) 85047A S-Parameter Test Set

Agilent (HP) 8350B Signal Generator

Agilent (HP) 8960 Base Station Sim.

Body Equivalent Matter (2450 MHz)

SAR Software V52.8.2.969

Device Holder

Anritsu MT8820C

08/15/2012

08/20/2012

12/04/2012

12/11/2012

03/25/2013

03/27/2013

03/25/2013

03/25/2013

03/25/2013

03/25/2013

03/25/2013

04/05/2012

08/03/2012

N/A

N/A

N/A

N/A

Serial Number F07/55M6A1/A/01

1012

1065

N/A

759

N/A

3693

829

1085

GB45100254

MY45240464

2749A10226

2647A01172

3135A01724

2904A00595

MY48360364

6201176199

0011

N/A

N/A

31720068

Test Equipment List 10.

	Table 10.1 Equipment Spec	ifications	
Туре	Calibration Due Date	Calibration Done Date	
Staubli Robot TX60L	N/A	N/A	
Measurement Controller CS8c	N/A	N/A	
ELI4 Flat Phantom	N/A	N/A	
Device Holder	N/A	N/A	

08/15/2013

08/20/2013

12/04/2013

12/11/2013

03/25/2014

03/27/2014

03/25/2014

03/25/2014

03/25/2014

03/25/2014

03/25/2014

04/05/2014

08/03/2014

N/A

N/A

N/A

N/A

11. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

12. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, June 2001.

[5] IEEE Standard 1528 – 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

[6] Industry Canada, RSS – 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

Test Result		+++++++++ +++++++++++++++++++++++++++		* * * * * * * * * * * * * *
Tue 28/May,		ciccerie rui	ameter	
Freq Frequ				
FCC eH		in 65 Supple	ement C (Ju	ne 2001) Limits for Head Epsilon
FCC sH				e 2001) Limits for Head Sigma
FCC eB		for Body Ep		
FCC sB		for Body S:		
_ Test e	Epsilon o		2	
Test s	Sigma of U			
********	-		* * * * * * * * * * * *	* * * * * * * * * * * * * *
Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.4000	52.76	1.90	52.42	1.94
2.4100	52.75	1.91	52.35	1.95
2.4200	52.74	1.92	52.31	1.96
2.4300	52.73	1.93	52.30	1.98
2.4370	52.716	1.937	52.279	1.987*
2.4400	52.71	1.94	52.27	1.99
2.4500	52.70	1.95	52.24	2.00
2.4600	52.69	1.96	52.21	2.01
2.4700	52.67	1.98	52.19	2.02
2.4800	52.66	1.99	52.10	2.03
* value int	erpolated			
varue int	Leipoiated			
				* * * * * * * * * * * * *
	for UIM Di	electric Pai	rameter	
Thu 23/May				
Freq Frequ				- 2001) timita fan Hard Burdlan
FCC_eH				ne 2001) Limits for Head Epsilon e 2001) Limits for Head Sigma
FCC_sH				
FCC_eB	FUC LIMITUS		adlan	e zoor) minites for nead signa
		for Body Ep		2001, Dimits for nead Signa
FCC_sB	FCC Limits	for Body Si		2001, Dimits for near signa
Test_e	FCC Limits Epsilon o	for Body Si f UIM		2001) Huits for head bigua
Test_e Test_s	FCC Limits Epsilon o Sigma of U	for Body Si f UIM IM	lgma	****
Test_e Test_s *********	FCC Limits Epsilon o Sigma of U	for Body S f UIM IM *********	lgma	* * * * * * * * * * * * *
Test_e Test_s ********** Freq	FCC Limits Epsilon o Sigma of U ************ FCC_eB	for Body S f UIM IM *********** FCC_sB	lgma	************** Test_s
Test_e Test_s *********	FCC Limits Epsilon o Sigma of U	for Body S f UIM IM *********	gma ************** Test_e	* * * * * * * * * * * * *
Test_e Test_s ********** Freq 5.1000 5.1200	FCC Limits Epsilon o Sigma of U FCC_eB 49.15 49.12	for Body Si f UIM IM FCC_sB 5.18 5.21	Igma Test_e 49.26 49.23	************* Test_s 5.14 5.17
Test_e Test_s ********** Freq 5.1000 5.1200 5.1400	FCC Limits Epsilon o Sigma of U ********* FCC_eB 49.15 49.12 49.10	for Body Si f UIM IM FCC_sB 5.18 5.21 5.23	Igma Test_e 49.26 49.23 49.20	************** Test_s 5.14 5.17 5.20
Test_e Test_s ********** Freq 5.1000 5.1200	FCC Limits Epsilon o Sigma of U FCC_eB 49.15 49.12	for Body Si f UIM IM FCC_sB 5.18 5.21	Igma Test_e 49.26 49.23	************* Test_s 5.14 5.17
Test_e Test_s *********** Freq 5.1000 5.1200 5.1400 5.1600	FCC Limits Epsilon o Sigma of U ********* FCC_eB 49.15 49.12 49.10 49.07	for Body Si f UIM IM FCC_sB 5.18 5.21 5.23 5.25	Igma Test_e 49.26 49.23 49.20 49.18	**************** Test_s 5.14 5.17 5.20 5.22
Test_e Test_s *********** Freq 5.1000 5.1200 5.1400 5.1600 5.1800	FCC Limits Epsilon o Sigma of U *********** FCC_eB 49.15 49.12 49.10 49.07 49.04	for Body Si f UIM IM *********** FCC_sB 5.18 5.21 5.21 5.23 5.25 5.25 5.28	Igma Test_e 49.26 49.23 49.20 49.18 49.15	******************* Test_s 5.14 5.17 5.20 5.22 5.24
Test_e Test_s *********** Freq 5.1000 5.1200 5.1400 5.1600 5.1800 5.2000	FCC Limits Epsilon o Sigma of U ********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01	for Body Si f UIM IM FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11	<pre>************************************</pre>
Test_e Test_s *********** Freq 5.1000 5.1200 5.1400 5.1600 5.1600 5.1800 5.2000 5.2200	FCC Limits Epsilon o Sigma of U *********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99	for Body Si f UIM IM *********** FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30 5.32	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08	<pre>************************************</pre>
Test_e Test_s ***********************************	FCC Limits Epsilon o Sigma of U *********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99 48.96	for Body Si f UIM IM ************ FCC_sB 5.18 5.21 5.23 5.25 5.25 5.28 5.30 5.32 5.32 5.35	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08 49.05	<pre>************************************</pre>
Test_e Test_s ***********************************	FCC Limits Epsilon o Sigma of U *********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99 48.96 48.93	for Body Si f UIM IM ************ FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30 5.32 5.32 5.35 5.37	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08 49.05 49.02	<pre>************************************</pre>
Test_e Test_s ***********************************	FCC Limits Epsilon o Sigma of U ********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99 48.96 48.93 48.91	for Body Si f UIM IM ************ FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30 5.32 5.30 5.32 5.35 5.37 5.39	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08 49.05 49.02 48.99	<pre>************************************</pre>
Test_e Test_s ***********************************	FCC Limits Epsilon o Sigma of U ********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99 48.96 48.93 48.91 48.88	for Body Si f UIM IM ************ FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30 5.32 5.30 5.32 5.35 5.37 5.39 5.42	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08 49.05 49.05 49.02 48.99 48.95 48.92 48.89	<pre>************************************</pre>
Test_e Test_s ***********************************	FCC Limits Epsilon o Sigma of U ********** FCC_eB 49.15 49.12 49.10 49.07 49.04 49.01 48.99 48.90 48.93 48.91 48.88 48.85	for Body Si f UIM IM ************ FCC_sB 5.18 5.21 5.23 5.25 5.28 5.30 5.32 5.30 5.32 5.35 5.37 5.39 5.42 5.44	Igma Test_e 49.26 49.23 49.20 49.18 49.15 49.11 49.08 49.05 49.02 48.99 48.95 48.92	<pre>************************************</pre>

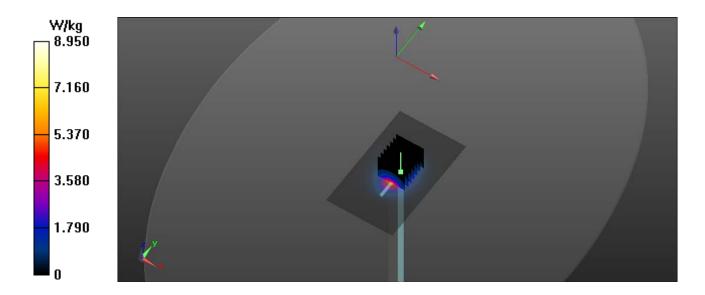
© 2013 RF Exposure Lab, LLC Page 40 of 100 *This report shall not be reproduced except in full without the written approval of RF Exposure Lab, LLC.*

********	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *
Test Result	t for UIM Di	electric Para	ameter	
Sun 26/May,	/2013			
Freq Frequ	- · ·			
FCC_eH				e 2001) Limits for Head Epsilon
FCC_sH				2001) Limits for Head Sigma
FCC_eB		for Body Eps		
FCC_sB		for Body Sig	gma	
Test_e	Epsilon of			
Test_s	Sigma of U			
				* * * * * * * * * * * * *
Freq	FCC_eB	FCC_sB	Test_e	Test_s
5.4600	48.66	5.60	48.69	5.61
5.4800	48.63	5.63	48.66	5.64
5.5000	48.61	5.65	48.63	5.66
5.5200	48.58	5.67	48.60	5.68
5.5400	48.55	5.70	48.57	5.71
5.5600	48.53	5.72	48.53	5.74
5.5800	48.50	5.74 5.77	48.50	5.77 5.80
5.6000 5.6200	48.47 48.44	5.79	48.47 48.44	5.80
5.6400	48.42	5.81	48.41	5.84
5.6600	48.39	5.84	48.38	5.87
5.6800	48.36	5.86	48.34	5.90
5.7000	48.34	5.88	48.31	5.93
5.7200	48.31	5.91	48.28	5.97
5.7400	48.28	5.93	48.25	5.99
5.7600	48.25	5.95	48.21	6.02
5.7800	48.23	5.98	48.18	6.06
5.7850	48.223	5.985	48.173	6.065*
5.8000	48.20	6.00	48.15	6.08
5.8200	48.17	6.02	48.12	6.11
5.8400	48.15	6.05	48.08	6.14
5.8600	48.12	6.07	48.05	6.17

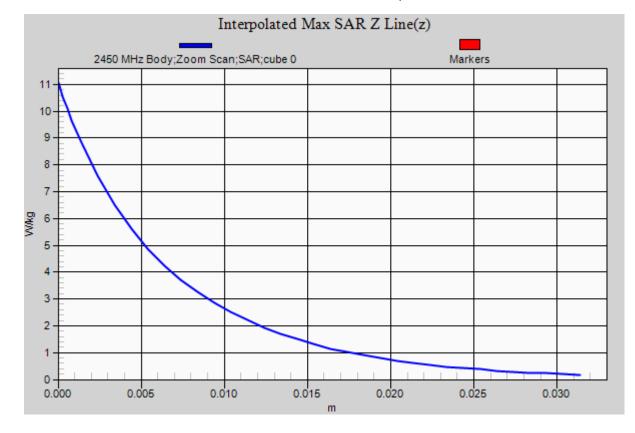
* Value interpolated

Plot 1

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 2 S/m; ϵ_r = 52.24; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/28/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(6.76, 6.76, 6.76); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

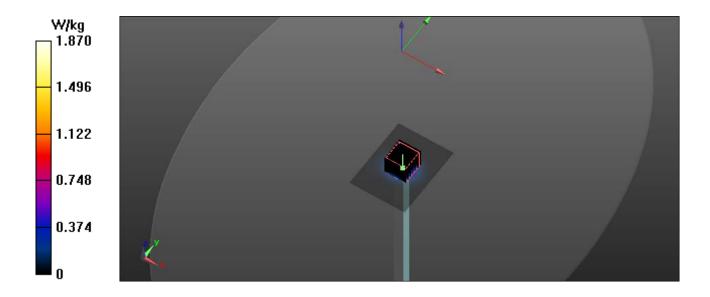

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg

Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.598 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 8.71 W/kg

Plot 2

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085


Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; σ = 5.27 S/m; ϵ_r = 49.11; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/23/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.31, 4.31, 4.31); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Procedure Notes:

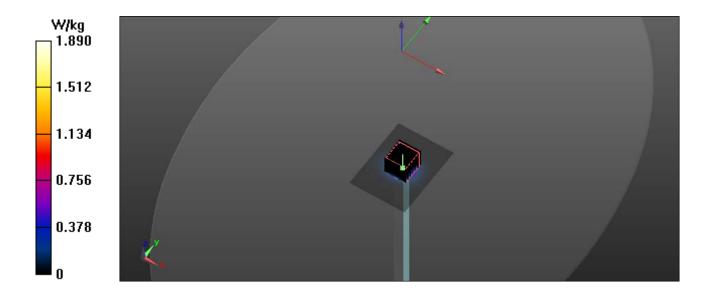
Body Verification/5200 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.87 W/kg

Body Verification/5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 13.793 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.05 W/kg Pin=10 mW SAR(1 g) = 0.733 W/kg; SAR(10 g) = 0.199 W/kg Maximum value of SAR (measured) = 1.85 W/kg

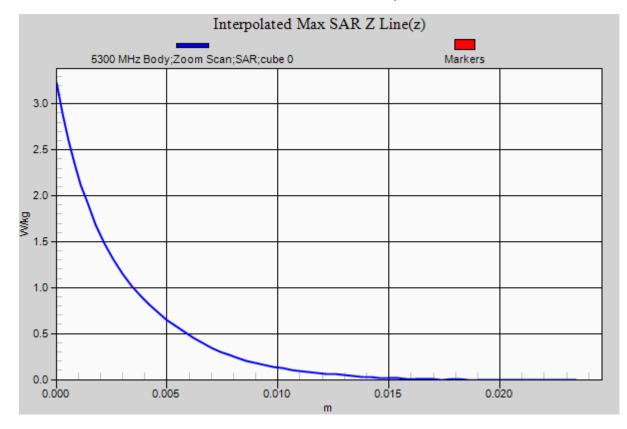
Report Number: SAR.20130502

Plot 3

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085


Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5300 MHz; σ = 5.39 S/m; ϵ_r = 48.95; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/23/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.24, 4.24, 4.24); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

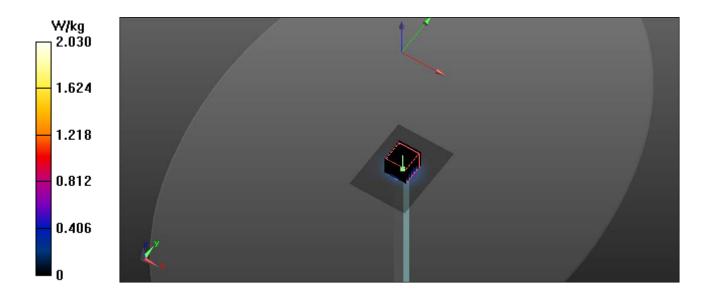

Procedure Notes:

Body Verification/5300 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.89 W/kg

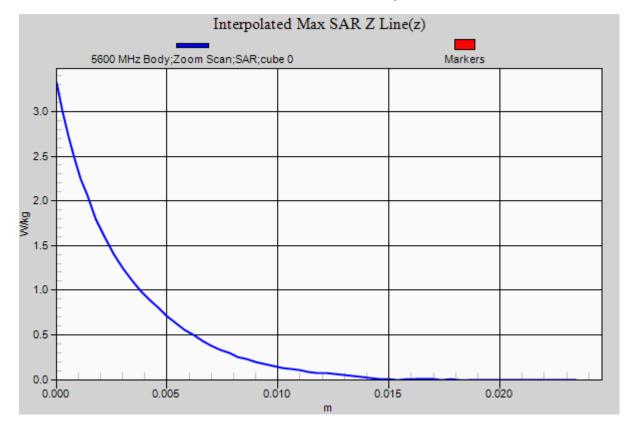
Body Verification/5300 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.835 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.23 W/kg Pin=10 mW SAR(1 g) = 0.747 W/kg; SAR(10 g) = 0.204 W/kg Maximum value of SAR (measured) = 1.93 W/kg

Plot 4

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085


Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; σ = 5.74 S/m; ϵ_r = 48.53; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/26/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(3.76, 3.76, 3.76); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

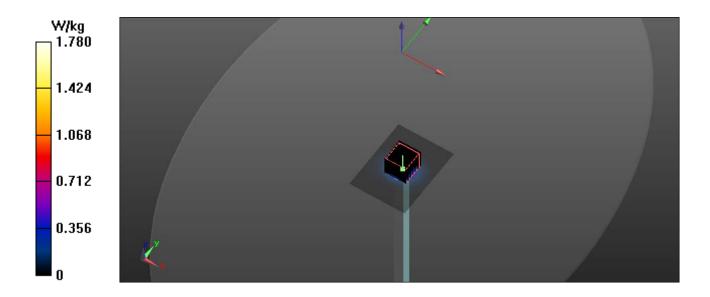

Procedure Notes:

Body Verification/5600 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.03 W/kg

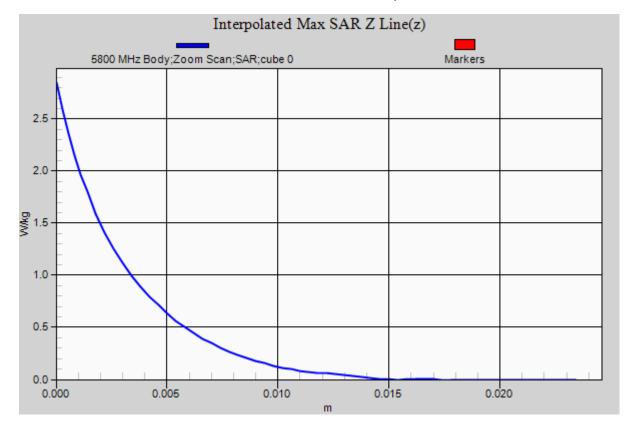
Body Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 13.146 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.32 W/kg Pin=10 mW SAR(1 g) = 0.808 W/kg; SAR(10 g) = 0.220 W/kg Maximum value of SAR (measured) = 2.05 W/kg

Plot 5

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085


Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; σ = 6.08 S/m; ϵ_r = 48.15; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/26/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.08, 4.08, 4.08); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)


Procedure Notes:

Body Verification/5800 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.78 W/kg

Body Verification/5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.143 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.85 W/kg Pin=10 mW SAR(1 g) = 0.715 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 1.80 W/kg

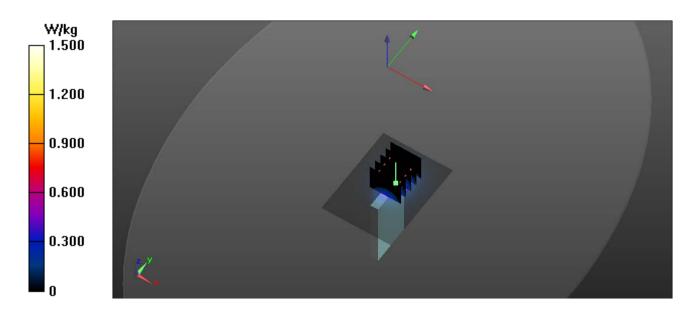
Appendix B – SAR Test Data Plots

Plot 1

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; σ = 1.987 S/m; ϵ_r = 52.279; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/28/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(6.76, 6.76, 6.76); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)


Procedure Notes:

2450 MHz - WiFi/Main Side C Mid/Area Scan (61x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.50 W/kg

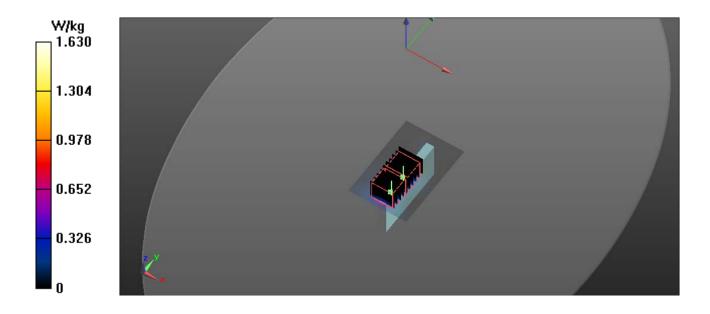
2450 MHz - WiFi/Main Side C Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.004 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.95 W/kg SAR(1 g) = 0.779 W/kg; SAR(10 g) = 0.316 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.52 W/kg

Plot 2

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5220 MHz; σ = 5.29 S/m; ϵ_r = 49.08; ρ = 1000 kg/m³ Phantom section: Flat Section


Test Date: 5/24/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.31, 4.31, 4.31); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Procedure Notes:

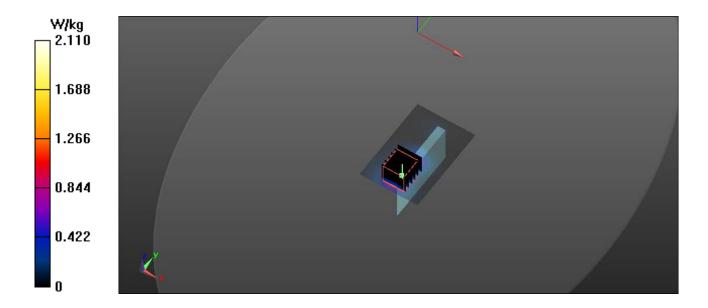
5150 MHz/Main Side D Mid/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.63 W/kg

5150 MHz/Main Side D Mid/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 6.450 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 3.60 W/kg **SAR(1 g) = 0.798 W/kg; SAR(10 g) = 0.209 W/kg** Maximum value of SAR (measured) = 1.89 W/kg

5150 MHz/Main Side D Mid/Zoom Scan (6x6x12)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 6.450 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 2.21 W/kg **SAR(1 g) = 0.492 W/kg; SAR(10 g) = 0.130 W/kg** Maximum value of SAR (measured) = 1.26 W/kg

Plot 3

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2


Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5300 MHz; σ = 5.39 S/m; ϵ_r = 48.95; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/24/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.24, 4.24, 4.24); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

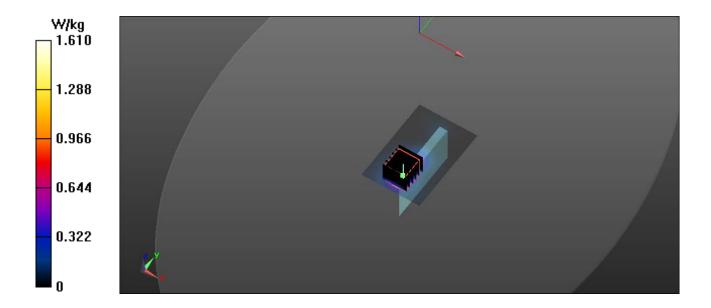
Procedure Notes:

5250 MHz/Main Side D Mid/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.11 W/kg

5250 MHz/Main Side D Mid/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 7.402 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 4.64 W/kg SAR(1 g) = 0.785 W/kg; SAR(10 g) = 0.195 W/kg Maximum value of SAR (measured) = 2.43 W/kg

Plot 4

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2


Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5560 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5560 MHz; σ = 5.74 S/m; ϵ_r = 48.53; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/27/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(3.76, 3.76, 3.76); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

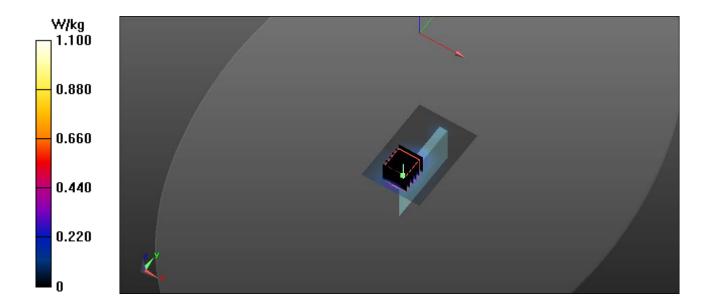
Procedure Notes:

5600 MHz Low/Main Side D Mid/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.61 W/kg

5600 MHz Low/Main Side D Mid/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 7.402 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.214 W/kg Maximum value of SAR (measured) = 1.79 W/kg

Plot 5

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2


Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5660 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5660 MHz; σ = 5.87 S/m; ϵ_r = 48.38; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: 5/27/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(3.76, 3.76, 3.76); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Procedure Notes:

5600 MHz High/Main Side D Mid/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.10 W/kg

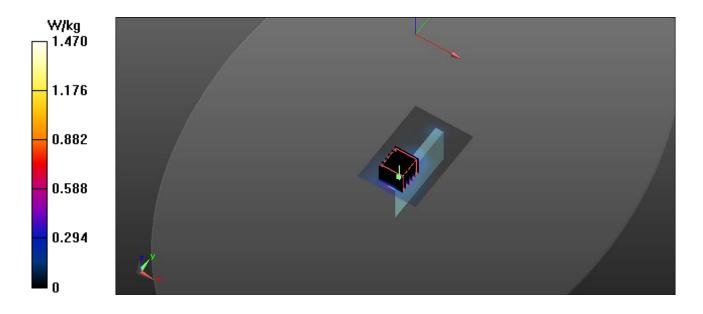
5600 MHz High/Main Side D Mid/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 4.367 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 2.32 W/kg SAR(1 g) = 0.626 W/kg; SAR(10 g) = 0.188 W/kg Maximum value of SAR (measured) = 1.21 W/kg

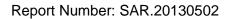
Plot 6

DUT: Modular Antenna; Type: PIFA Antenna; Serial: 001500BD59A2

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; σ = 6.065 S/m; ϵ_r = 48.172; ρ = 1000 kg/m³ Phantom section: Flat Section

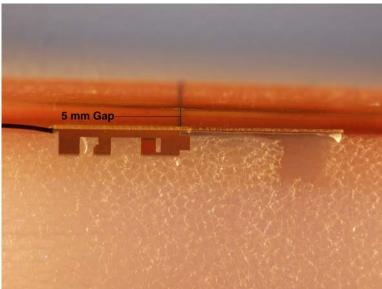
Test Date: 5/28/2013; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693; ConvF(4.08, 4.08, 4.08); Calibrated: 8/20/2012; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/15/2012 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065 Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

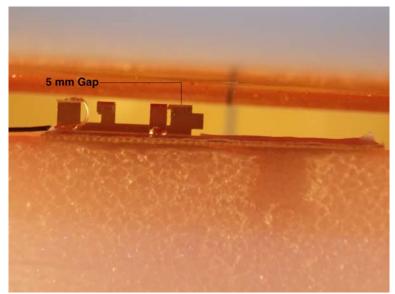

Procedure Notes:


5800 MHz/Main Side D Mid/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

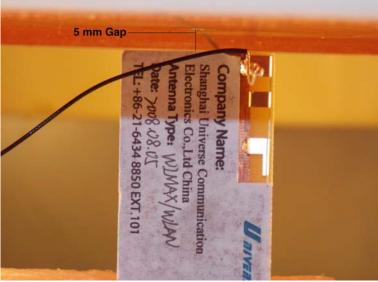
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.47 W/kg

5800 MHz/Main Side D Mid/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 4.367 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 0.792 W/kg; SAR(10 g) = 0.277 W/kg

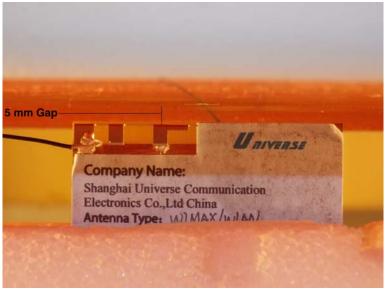

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.229 W/kg



Appendix C – SAR Test Setup Photos

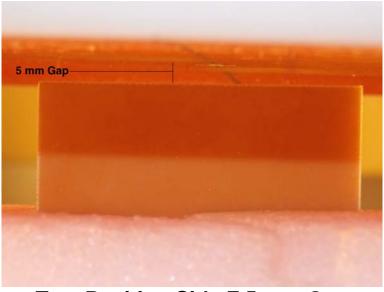


Test Position Side A 5 mm Gap



Test Position Side B 5 mm Gap

Test Position Side C 5 mm Gap



Test Position Side D 5 mm Gap

Test Position Side E 5 mm Gap

Test Position Side F 5 mm Gap

Test Locations

Module

Test System

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation N

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: EX3-3693_Aug12

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3693
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
Calibration date:	August 20, 2012
	nts the traceability to national standards, which realize the physical units of measurements (SI). ainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conducted	ed in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature /
Calibrated by:	Jeton Kastrati	Laboratory Technician	FUL

Approved by:

Katja Pokovic

Technical Manager

Issued: August 20, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniques". December 2003
- b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3693

Calibrated:

Manufactured: April 22, 2009 August 20, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3693

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.48	0.46	± 10.1 %
DCP (mV) ^B	98.3	100.5	98.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A	В	С	VR	Unc ^E
				dB	dB	dB	mV	(k=2)
0	CW	0.00	X	0.00	0.00	1.00	161.4	±3.0 %
			Y	0.00	0.00	1.00	154.4	
			Z	0.00	0.00	1.00	158.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3693

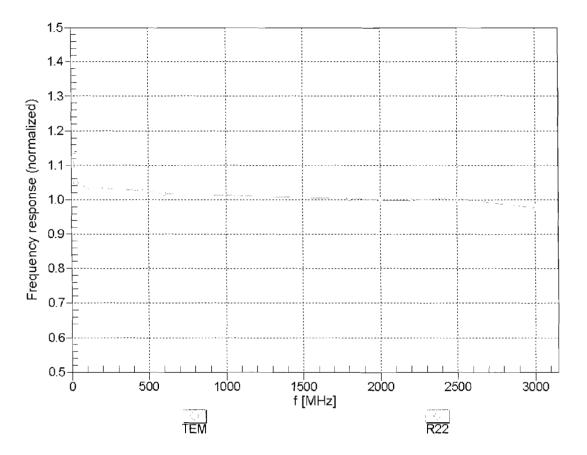
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.99	8.99	8.99	0.23	1.20	± 12.0 %
835	41.5	0.90	8.55	8.55	8.55	0.18	1.56	± 12.0 %
1750	40.1	1.37	8.00	8.00	8.00	0.51	0.76	± 12.0 %
1900	40.0	1.40	7.67	7.67	7.67	0.75	0.63	± 12.0 %
2450	39.2	1.80	6.72	6.72	6.72	0.29	1.09	± 12.0 %
2550	39.1	1.91	6.55	6.55	6.55	0.39	0.93	± 12.0 %
5200	36.0	4.66	4.97	4.97	4.97	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.78	4.78	4.78	0.30	1.80	± 13.1 %
5600	_35.5	5.07	4.22	4.22	4.22	0.40	1.80	± 13.1 %
<u>58</u> 00	35.3	5.27	4.34	4.34	4.34	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

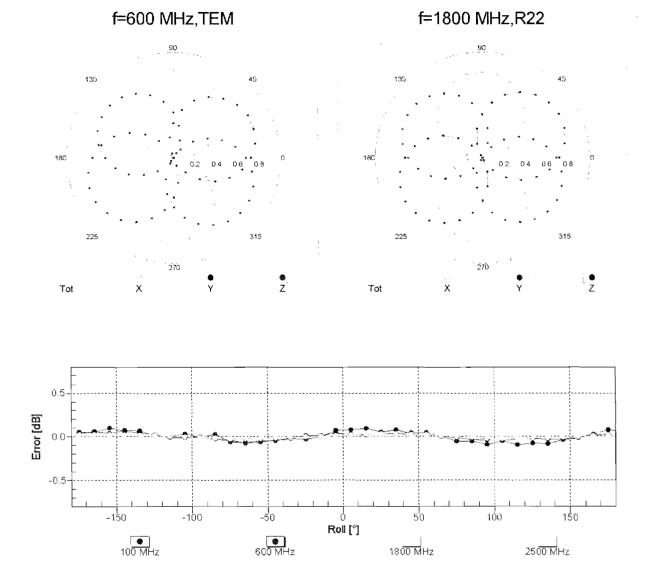
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

⁺ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3693

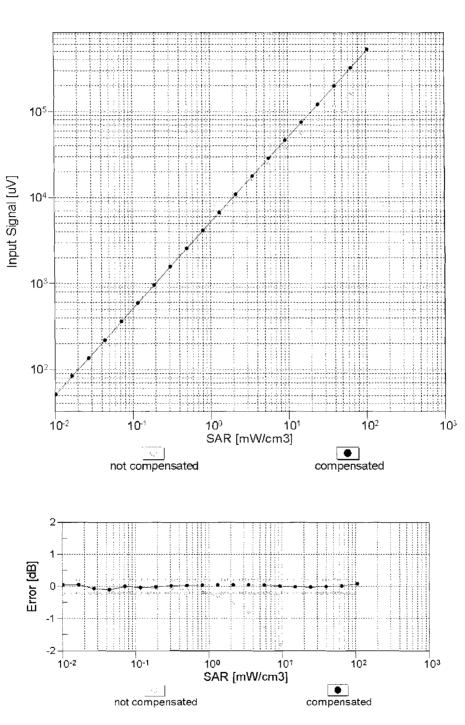

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.84	8.84	8.84	0.29	1.09	± 12.0 <u>%</u>
835	55.2	0.97	8.87	8.87	8.87	0.60	0.71	± 12.0 %
1750	53.4	1.49	7.43	7.43	7.43	0.41	0.85	± 12.0 %
1900	53.3	1.52	7.13	7.13	7.13	0.41	0.82	± 12.0 %
2450	52.7	1.95	6.76	6.76	6.76	0.80	0.50	± 12.0 %
2550	52.6	2.09	6.75	6.75	6.75	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.31	4.31	4.31	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.24	4.24	4.24	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.76	3.76	3.76	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.08	4.08	4.08	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

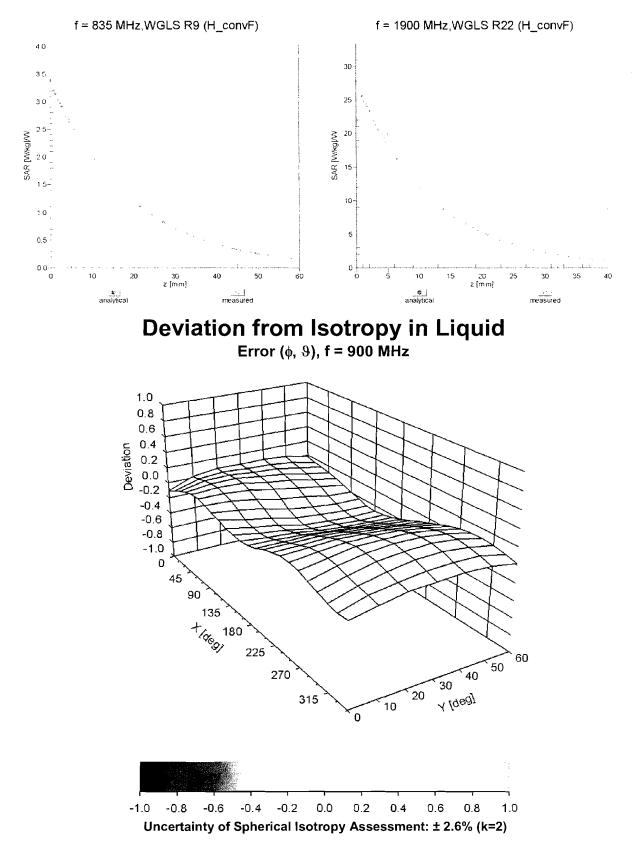

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^c At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3693

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	155.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm
Recommended Measurement Distance from Surface	

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

BC MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

D2450V2 - SN: 829

Client RF Exposure Lab

Object

Certificate No: D2450V2-829_Dec12

CAL	IBRA	ΓΙΟΝ	CERT	IFIC	ATE

Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	SN: 3205 SN: 601 ID # MY41092317 100005	27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13
Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 3205 SN: 601 ID #	30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Apr-13 Dec-12 Jun-13 Scheduled Check
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Apr-13 Dec-12
			Apr-13
71	011.0047.0700027	27-Mar-12 (No. 217-01533)	•
Type-N mismatch combination	SN: 5047.3 / 06327		Api-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
All calibrations have been conduct Calibration Equipment used (M&		ry facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	d are part of the certificate.
		onal standards, which realize the physical un	
Calibration date:	December 04, 20	012	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ve 700 MHz

Approved by:

Technical Manager

Sel Their

Issued: December 4, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end ٠ of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-829_Dec12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-829_Dec12

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 4.2 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 5.1 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.158 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

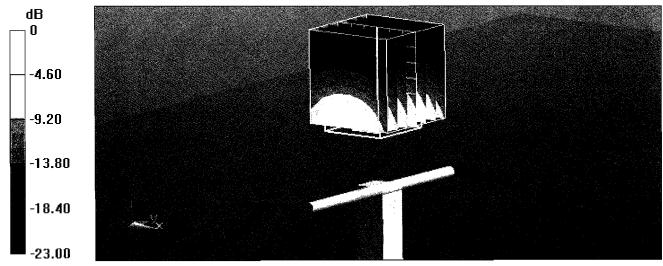
Manufactured by	SPEAG
Manufactured on	December 11, 2008

DASY5 Validation Report for Head TSL

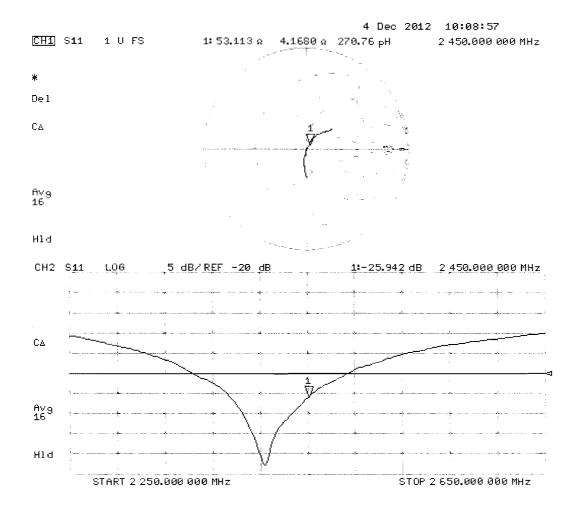
Date: 04.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 mho/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

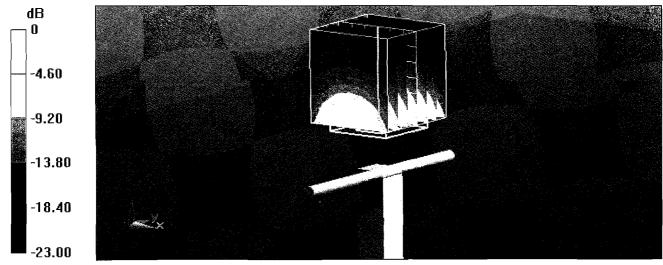
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 17.8 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

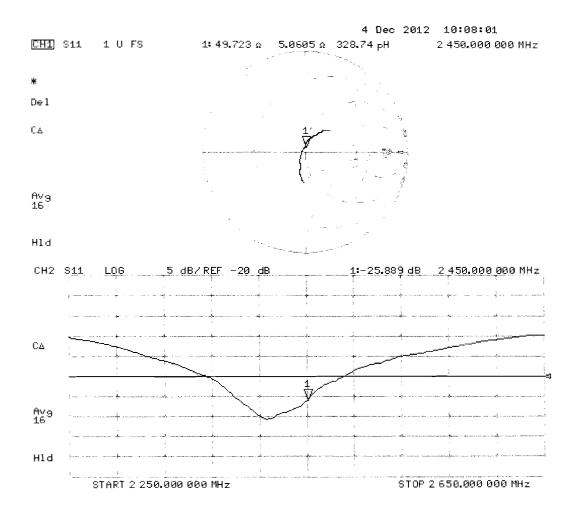
DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829


Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D5GHzV2-1085_Dec12

CALIBRATION CERTIFICATE D5GHzV2 - SN: 1085 Object QA CAL-22.v1 Calibration procedure(s) Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: December 11, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration GB37480704 Power meter EPM-442A 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 Type-N mismatch combination SN: 5047.3 / 06327 27-Mar-12 (No. 217-01533) Apr-13 Reference Probe EX3DV4 SN: 3503 30-Dec-11 (No. EX3-3503_Dec11) Dec-12 DAE4 SN: 601 27-Jun-12 (No. DAE4-601_Jun12) Jun-13 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 04-Aug-99 (in house check Oct-11) 100005 In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 In house check: Oct-13 18-Oct-01 (in house check Oct-12) Name Function Signature Calibrated by: Israe El-Naouq Laboratory Technician Jaran Unaque Approved by: Katja Pokovic Technical Manager Issued: December 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1085_Dec12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.9 Ω - 9.9 jΩ
Return Loss	- 20.2 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 5.6 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.1 Ω - 4.4 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω - 4.6 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.0 Ω - 9.5 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.7 Ω - 5.0 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 3.4 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω - 4.7 jΩ
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 21, 2009

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.63$ mho/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ mho/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.15$ mho/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

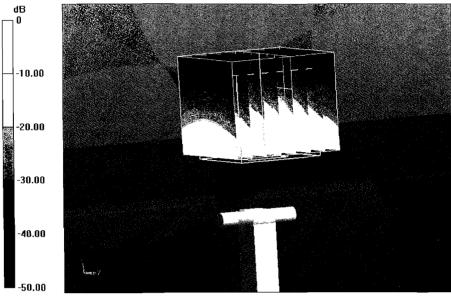
- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(5.1, 5.1, 5.1); Calibrated: 30.12.2011, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.782 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 18.9 W/kg

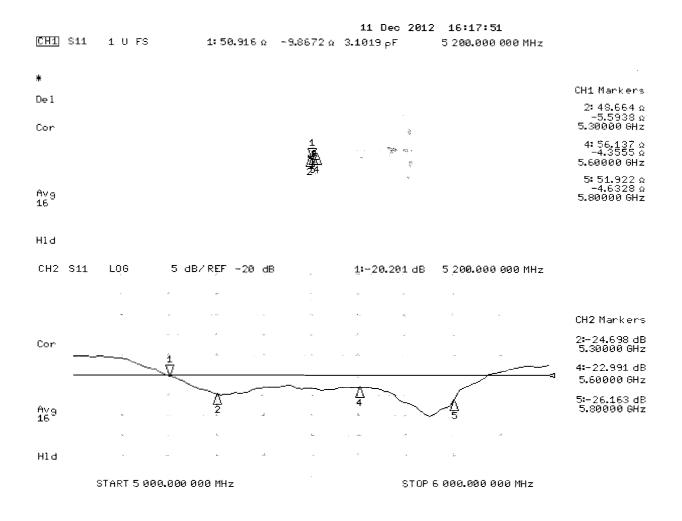
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.947 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.857 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 34.4 W/kg SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.48 W/kg Maximum value of SAR (measured) = 20.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.816 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.35$ mho/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.47$ mho/m; $\varepsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.86$ mho/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.13$ mho/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

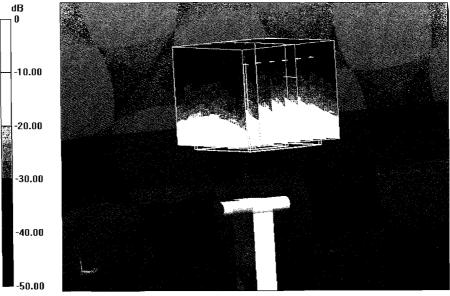
- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.67, 4.67, 4.67); Calibrated: 30.12.2011, ConvF(4.22, 4.22, 4.22); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.435 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 17.3 W/kg

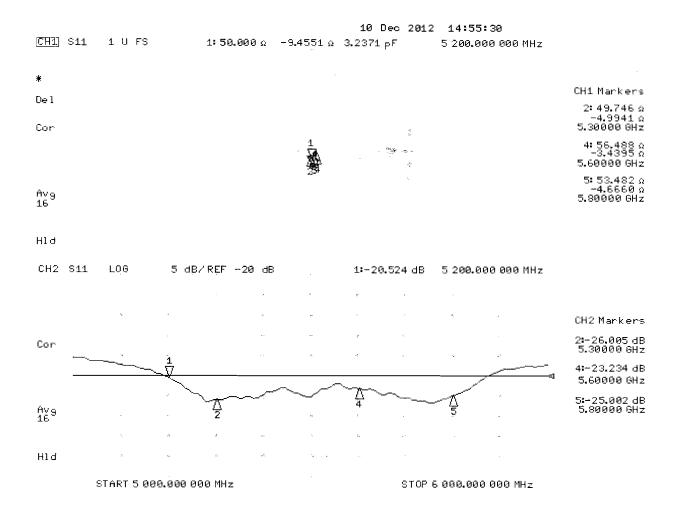
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.938 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.467 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.901 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Appendix F – Phantom Calibration Data Sheets

S

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0	
Type No	QD OVA 001 B	
Series No	1003 and higher	
Manufacturer	Untersee Composites	
	Knebelstrasse 8	
	CH-8268 Mannenbach, Switzerland	

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material	Compliant with the standard	Bottom plate:	all
thickness	requirements	2.0mm +/- 0.2mm	
Material	Dielectric parameters for required	< 6 GHz: Rel. permittivity = 4	Material
parameters	frequencies	+/-1, Loss tangent ≤ 0.05	sample
Material	The material has been tested to be	DGBE based simulating	Equivalent
resistivity	compatible with the liquids defined in	liquids.	phantoms,
-	the standards if handled and cleaned	Observe Technical Note for	Material
	according to the instructions.	material compatibility.	sample
Shape	Thickness of bottom material,	Bottom elliptical 600 x 400 mm	Prototypes,
	Internal dimensions,	Depth 190 mm,	Sample
	Sagging	Shape is within tolerance for	testing
	compatible with standards from	filling height up to 155 mm,	_
	minimum frequency	Eventual sagging is reduced or	[
		eliminated by support via DUT	

Standards

- CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices – Human models, Instrumentation and Procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. **S P G a G**

Date	28.4.2008	Signature / Stamp	Schmid_& Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41,44,245 9779 info@speag.com; http://www.speag.com
------	-----------	-------------------	---

Doc No 881 - QD OVA 001 B - D

Page 1 (1)