

TEST REPORT

EUT Description	Wireless Gigabit radio installed in a Dell convertible 2 in 1 laptop
Brand	Intel® Tri-Band Wireless-AC 17265
Model	17265NGW
Serial Number	Host Laptop: ZAU7002850 (see section 4)
FCC/IC ID	FCC ID: PD917265NG
Hardware/Software Version	Test SW: DRTU version 1.7.6-1123 Driver ver.: 1.1.3028
Date of Sample Receipt	2015-05-21
Date of start/end of Tests	Start : 2015-05-26 End: 2015-06-19
Date of issue	2015-08-05
Features	Module: WiGig + 802.11a/b/g/n/ac Wireless LAN + BT 4.1 Host: Dell P58G (see section 5)
Applicant	Intel Mobile Communications
Address	100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA
Contact Person	Steven Hackett
Telephone/Fax/ Email	steven.c.hackett@intel.com
Reference Standards	FCC CFR Title 47 Part 15.255 (see section 1)
Test Report number	15052702.TR01
Revision Control	Rev. 04

The test results relate only to the samples tested.

The test report shall not be reproduced in full, without written approval of the laboratory.

Issued by	Reviewed by	Approved by

Jose M. FORTES (Technical Manager)

Jose M. FORTES (Technical Manager)

Nawfal ASRIH (Laboratory Manager)

Table of Contents

1. St	tanda	rds, reference documents and applicable test methods	3
2. G	enera	Il conditions, competences and guarantees	3
3. Eı	nviroi	nmental Conditions	3
4. Te	est sa	ımples	3
		atures	
		ks and comments	
		erdicts summary	
8. D	ocum	ent Revision History	
Annex	(Α .	Test & System Description	5
A.1	TES	T CONDITIONS	5
A.2	ME	ASUREMENT SYSTEM	5
A.3	TES	T EQUIPMENT LIST	5
A.4	ME	ASUREMENT UNCERTAINTY EVALUATION	6
Α.	4.1	Aperture Probe Gain Characterization	6
Α.	4.2	EUT Measurement	6
A.5	Pov	NER SENSOR CONSIDERATION AND PULSE RESPONSE	7
Annex	В.	Test Results	8
B.1	Dut	TY CYCLE	8
B.2	EIR	P & Power Density	13
Annex	C.	Aperture Probe Antenna Characterization	17
C.1	DES	CRIPTION OF THE ANTENNA	17
C.2	DER	RIVATION OF CHARACTERIZATION EQUATIONS	17
C.3	CHA	ARACTERIZATION PROCEDURE	18
C.4	CHA	ARACTERIZATION RESULTS AND VALIDATION	
C	4.1	Far-Field Distance	
C	4.2	Probe Gain	
C.	4.3	Validation	20
Annex	D.	Photographs	21

1. Standards, reference documents and applicable test methods

1. FCC 47 CFR part 2 – Subpart C – §15.255 Operation within the band 57-64 GHz.

2. General conditions, competences and guarantees

- ✓ Intel Mobile Communications Wireless RF Lab (Intel WRF Lab) is a testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA).
- ✓ Intel Mobile Communications Wireless RF Lab (Intel WRF Lab) is an Accredited Test Firm listed by the FCC, with Designation Number FR0011.
- ✓ Intel WRF Lab only provides testing services and is committed to providing reliable, unbiased test results and interpretations.
- ✓ Intel WRF Lab is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.
- ✓ Intel WRF Lab has developed calibration and proficiency programs for its measurement equipment to ensure correlated and reliable results to its customers.
- ✓ This report is only referred to the item that has undergone the test.
- ✓ This report does not imply an approval of the product by the Certification Bodies or competent Authorities.
- ✓ Complete or partial reproduction of the report cannot be made without written permission of Intel WRF Lab.

3. Environmental Conditions

✓ At the site where the measurements were performed the following limits were not exceeded during the tests:

Temperature	22°C ± 2°C
Humidity	50% ± 5%

4. Test samples

Sample	Control #	Description	Model	Serial #	Date of reception
	15052702.S01	Laptop	Dell P58G	ZAU7002850	2015-05-21
#01	15052702.S02	AC/DC Adapter	Dell DA45NM131	CN-04H6NV- 48661-46R-11M1- A01	2015-05-21

5. EUT features

These are the detailed bands and modes supported by the equipment under Test:

WiGig	60GHz (58.320 – 62.640 GHz)
802.11b/g/n	2.4GHz (2400.0 – 2483.5 MHz)
802.11a/n/ac	5.2GHz (5150.0 – 5350.0 MHz) 5.6GHz (5470.0 – 5725.0 MHz) 5.8GHz (5725.0 – 5850.0 MHz)
BDR/EDR v2.1 Bluetooth LE v4.0	2.4GHz (2400.0 – 2483.5 MHz)

6. Remarks and comments

- 1. This report documents the results of radiated measurements of the EIRP and the resulting power density of a radio device operating in the 60 GHz unlicensed band.
- 2. Dell model P58G is the regulatory model number. This identical host is also marketed under the name Dell Latitude 7350. In the report we refer only to P58G model.

7. Test Verdicts summary

N/A

8. Document Revision History

Revision #	Date	Modified by	Details		
Rev. 00	2015-05-29	W. El Hajj	First Issue		
Rev. 01	2015-06-29	W. El Hajj	Editorial changes		
			Added measurements for channels 1 and 3, and Power		
			Added Sensor pulse response measurement		
Rev. 02	2015-07-22	W. El Hajj	Editorial changes.		
			Modifications to address FCC comments:		
			Comment 1: The word "either" in the section B.1 is		
			deleted.		
			Comment 2: In the section B.2, added explanation		
			on the way how the free-space attenuation is used		
			in the calculation.		
			Comment 3: Captions added below each graph in		
			Page 16.		
Rev. 03	2015-08-05	W. El Hajj	Editorial changes: A statement is added in paragraph 6		
			concerning the Dell model number information.		
Rev. 04	2015-08-31	J.M. Fortes	Added column for conducted power in results tables in		
			B.2.		

Annex A. Test & System Description

A.1 Test Conditions

The EUT is an Intel Wireless Gigabit radio model 17265NGW, FCC ID PD917265NG, installed in a Dell P58G convertible 2 in 1 laptop.

The antenna is an integral phased array antenna with a maximum gain of 15.45 dBi.

The DUT was set to transmit at highest power on MCS1 with 50% duty cycle using proprietary software (Intel DRTU version 1.7.6-1123).

A.2 Measurement system

A Thorlabs Motorized Travel Stage controlled by software is used to maintain a consistent and accurate placement of the probe.

Absorber material covering up to 110GHz is placed around the support structures and alignment fixture to reduce reflections, scattering and perturbations.

The Aperture Probe is aligned with the boresight of the EUT antenna. The probe is scanned over X / Y / Polarization to maximize the emissions level.

The channel power is measured and recorded for all channels, then Pt*Gt, Power density and EIRP are calculated as described below.

The measurement distance is varied from 10 to 20 cm in 1-cm steps and the power and results of subsequent calculations are recorded for each distance. The distance corresponds to the separation between the antenna plane of the EUT and the aperture plane of the probe.

A.3 Test Equipment List

ID#	Device	Type/Model	Serial Number	Manufacturer	Cal. Date	Cal. Due Date
0014	Power Sensor (DC -67 GHz)	NRP-Z57	00152266	Rohde & Schwarz	2015-05-06	2017-05-06
0015	Spectrum analyzer	FSU67	100092	Rohde & Schwarz	2013-11-12	2015-11-12
0016	Signal Generator	SMF100A	102117	Rohde & Schwarz	2014-03-11	2016-03-11
0066	Standard Horn Antenna	FH-SG-075- 25	20012	RPG	Calibration Not Required	
0331	Aperture Probe antenna	15EWG1.85	J215060133	A-Info	Characterized Internally	
0063	MULTIPLIER ASSEMBLY 40- 220GHz	AFM-40-220	394	RPG	Calibration N	Not Required

Note: The Duty cycle is measured using the FSU67 spectrum analyzer and a standard horn antenna. The FSU67 covers (20Hz-67GHz) frequency range, therefore the measurement is performed directly without a need to an external mixer.

A.4 Measurement Uncertainty Evaluation

The Total Measurement Uncertainty is of **1.26 dB.** This value is obtained by calculating first the Aperture Probe Gain Measurement Uncertainty (see A.4.1) and then using this value with the other uncertainty sources to deduce the total Uncertainty (see A.4.2).

A.4.1 Aperture Probe Gain Characterization

3 Antennas Gain Method / Probe Characterization

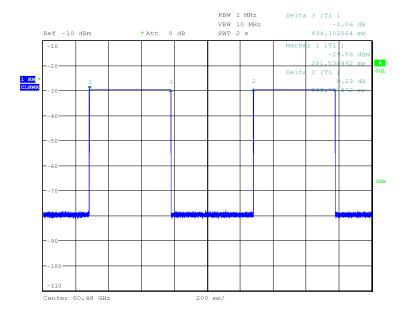
Source of Uncertainty	Value [dB]	Probability Distribution	Divisor	Sensitivity Coefficient	Expanded Uncertainty [dB]
Mismatch VSWR SG Block 1.1 - TR 1.5	0.08	U-shaped	1.414	1	0.06
Mismatch VSWR TR 1.5 - PM 1.35	0.26	U-shaped	1.414	1	0.18
Insertion Loss transition	0.40	rectangular	1.732	1	0.23
Mismatch VSWR SG Block 1.1 - Antenna Block 1.1	0.02	U-shaped	1.414	1	0.01
Mismatch VSWR Antenna Block 1.1 - TR 2	0.14	U-shaped	1.414	1	0.10
Mismatch VSWR TR 2 - PM 1.35	0.44	U-shaped	1.414	1	0.31
Position of the phase centre (Receiving Ant.)	0.13	rectangular	1.732	1	0.08
Linearity (included in Repeatability)	0.000	rectangular	1.732	1	0.00
Zero Offset	0.211	rectangular	1.732	1	0.12
Repeatability (Relative Power Meas.)	0.01	rectangular	1.732	1	0.01
Meas Noise	0.043	rectangular	1.732	1	0.02
Combined Standard Uncertainty					
Expanded Uncertainty (k=2)*					0.93

A.4.2 EUT Measurement.

Source of Uncertainty	Value [dB]	Probability Distribution	Divisor	Sensitivity Coefficient	Expanded Uncertainty [dB]
Meas. Antenna Gain Rx Aperture Probe	0.93	rectangular	1.732	1	0.47
Mismatch VSWR Block Antenna 2 - PM 1.35	0.44	U-shaped	1.414	1	0.31
Power Meter Accuracy	0.25	rectangular	1.732	1	0.14
Range Length (near/far field condition)	0.00	rectangular	1.732	1	0.00
Position of the phase center (Receiving Ant.)	0.13	rectangular	1.732	1	0.08
Ambient temperature impact	0.10	normal	1	1	0.10
Repeatability	0.20	normal	1	1	0.20
Zero Offset	0.144	rectangular	1.732	1	0.08
Meas Noise	0.019	rectangular	1.732	1	0.01
		Com	bined Standa	ard Uncertainty	0.63
Expanded Uncertainty (k=2)*					1.26

SG: Signal Generator TR: Transition PM: Power Meter

^{*} The expanded Measurement Uncertainty with coverage factor (k=2) corresponds to a confidence level of 95%.



A.5 Power Sensor Consideration and Pulse Response

The averaging settings of the power meter / power sensor combination must be adjusted to respond properly to the modulation bursts and burst period.

The power sensor is connected to the microwave signal generator. The output frequency of the generator is set to 60.48 GHz corresponding to EUT channel 2. The generator is adjusted for pulse modulation using the nominal timing values for the Duty cycle across the Burst Period (500 msec ON, 1000 msec Period). The Duty cycle is verified by measurement (see figure below) using the FSU67 spectrum analyzer.

Description	ON Time (ms)	Period (ms)		
Nominal Duty Cycle over Burst Period	500	1000	0.5	3
Measured Nominal Duty Cycle over Burst Period	494.102564	996.794872	0.4957	3.0479

Date: 18.JUN.2015 19:20:06

The power meter averaging number is then adjusted to provide a stable measurement (after the published settling time has elapsed).

Pulse modulation is then turned off, the delta between Modulation OFF and ON is measured, and compared to the expected measured value of 10 * Log (Measured Nominal duty cycle across Burst period) = 3.0479 dB.

An averaging number of 64000 provided measurements stable to within approximately 0.018 dB (3.0479-3.03dB) for the EUT's nominal pulse characteristics documented above. The power sensor showed a measured difference of 3.03 dB, between CW and modulated.

Description	Pulse Modulation OFF	Pulse Modulation ON	Measured Difference (dB)
Average Power (dBm)	-29.63	-32.66	3.03

<u>Note:</u> The output average level of the mm-Wave generator is adjusted to be similar to the lowest power value obtained during the EIRP measurement. This confirms the measurement averaging stability at the measured power levels.

Annex B. Test Results

B.1 Duty Cycle

Test procedure

Duty cycle is calculated as [(ON Time)/Period].

The Duty cycle within the Burst is multiplied by the Duty cycle over the Burst Period to derive the Duty Cycle.

The duty cycle of the EUT modulation is measured, and used to provide the duty cycle correction factor.

Duty Cycle Correction Factor = 10*Log(Duty Cycle)

Where:

Duty Cycle Correction Factor is (dB)

Duty Cycle is (Linear)

The Duty cycle is measured using the FSU67 spectrum analyzer and a standard horn antenna. The FSU67 covers (20Hz-67GHz) frequency range. Therefore the measurement is performed directly without a need to an external mixer.

Results tables

Channel 1

Description	ON Time (ms)	Period (ms)	Duty Cycle Linear
Duty Cycle Within Burst	1.991506	2.046635	0.973
Duty Cycle over Burst period	496.794872	1003.205	0.495
Duty Cycle			0.48187

Duty Cycle Correction (dB)	3.1707

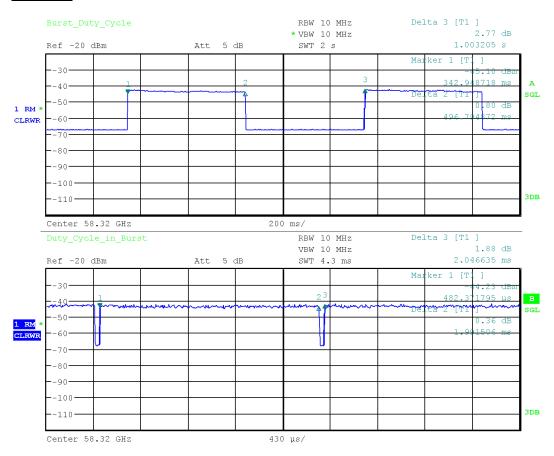
Channel 2

Description	ON Time (ms)	Period (ms)	Duty Cycle Linear
Duty Cycle Within Burst	1.998397	2.067308	0.967
Duty Cycle over Burst period	496.794872	1000	0.497
Duty Cycle			0.48023

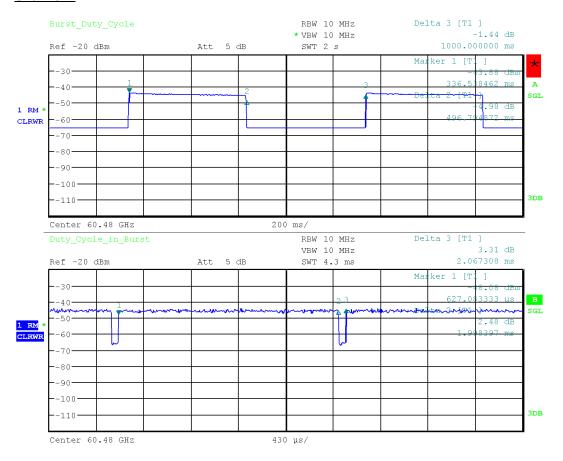
Duty Cycle Correction (dB)	3.1855

Channel 3

Description	ON Time (ms)	Period (ms)	Duty Cycle Linear
Duty Cycle Within Burst	1.984615	2.060417	0.963
Duty Cycle over Burst period	496.794872	1003.205	0.495
Duty Cycle			0.4799

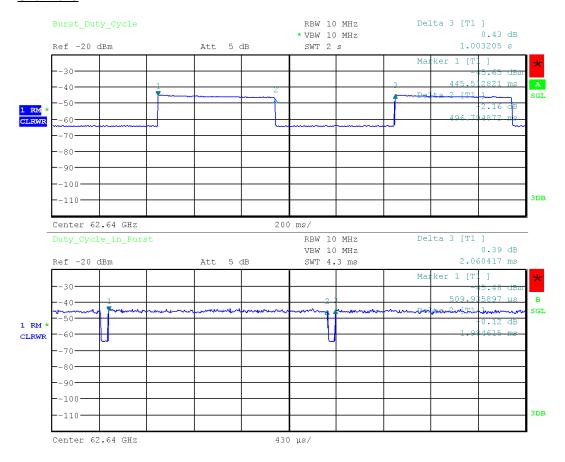

Duty Cycle Correction (dB)	3.2149

Results screenshot


Duty Cycle

Channel 1

Date: 22.MAY.2015 17:00:23


Channel 2

Date: 22.MAY.2015 18:02:49

intel

Channel 3

Date: 22.MAY.2015 18:18:13

B.2 EIRP & Power Density

Test procedure

The radiated emission level is measured with the aperture probe antenna connected to a power sensor.

Using the far-field Friis equation:

$$\frac{P_R}{P_T} = G_T G_R \left(\frac{\lambda}{4\pi D}\right)^2$$

the measured power P_R is converted to $P_T^*G_T$ using the same equation in logarithmic domain:

$$(P_T^*G_T) = P_R - G_R + Free Space Attenuation (dB)$$

Where the:

Free space Attenuation (dB) =
$$20Log(\frac{4\pi D}{\lambda})$$

and:

 $(P_T^*G_T)$ is (dBm) $(P_T$ is the transmitted power and G_T the emission antenna Gain)

D is in (m)

 P_R is in (dBm)

 G_R is the small aperture probe antenna Gain in (dBi)

 λ is the wavelength in (m)

 P_T*G_T is converted to power density using:

Power Density =
$$\frac{P_T G_T}{4\pi D^2}$$

Where:

Power Density is in (mW/cm²)

 P_T*G_T is in (mW)

D is in (cm)

 P_T*G_T is also converted to EIRP during the ON time of the burst using:

$$EIRP = (P_T * G_T) + Duty Cycle Correction Factor$$

Where:

EIRP is in (dBm)

 P_T*G_T is in (dBm)

Duty Cycle Correction Factor is in (dB)

Results tables

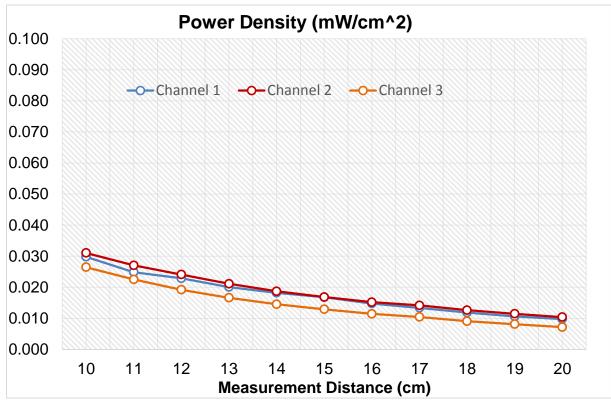
Channel 1

EUT antenna gain = 15.30dBi

Freq (GHz)	Meas. Distance (cm)	Small Aperture Probe Gain G _R (dBi)	Free Space Att. (dB)	Meas Avg Power P _R (dBm)	Рт*Gт (dBm)	Рт*Gт (mW)	Power Density (mW/cm2)	Duty Cycle Corr. (dB)	EIRP (dBm)	Cond Power (dBm)
58.32	10	5.37	47.76	-26.65	15.74	37.48	0.02983	3.1707	18.91	3.61
58.32	11	5.37	48.59	-27.44	15.78	37.81	0.02487	3.1707	18.95	3.65
58.32	12	5.37	49.34	-27.80	16.17	41.42	0.02289	3.1707	19.34	4.04
58.32	13	5.37	50.04	-28.37	16.30	42.63	0.02007	3.1707	19.47	4.17
58.32	14	5.37	50.68	-28.79	16.52	44.88	0.01822	3.1707	19.69	4.39
58.32	15	5.37	51.28	-29.14	16.77	47.53	0.01681	3.1707	19.94	4.64
58.32	16	5.37	51.84	-29.70	16.77	47.54	0.01478	3.1707	19.94	4.64
58.32	17	5.37	52.37	-30.13	16.87	48.61	0.01338	3.1707	20.04	4.74
58.32	18	5.37	52.86	-30.65	16.84	48.35	0.01187	3.1707	20.01	4.71
58.32	19	5.37	53.33	-31.13	16.83	48.23	0.01063	3.1707	20.00	4.70
58.32	20	5.37	53.78	-31.49	16.92	49.19	0.00979	3.1707	20.09	4.79

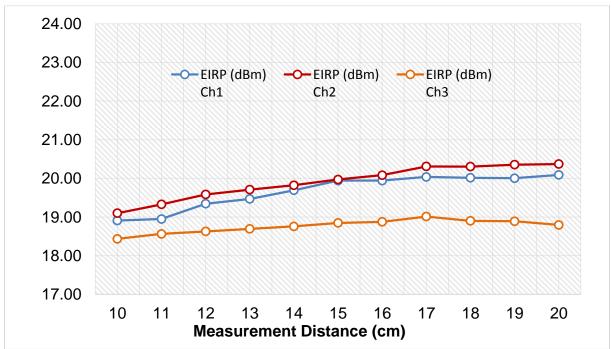
<u>Channel 2</u> EUT antenna gain = 15.45dBi

Freq (GHz)	Meas. Distance (cm)	Small Aperture Probe Gain G _R (dBi)	Free Space Att. (dB)	Meas Avg Power P _R (dBm)	Рт*Gт (dBm)	Рт*Gт (mW)	Power Density (mW/cm2)	Duty Cycle Corr. (dB)	EIRP (dBm)	Cond Power (dBm)
60.48	10	5.86	48.07	-26.30	15.91	39.03	0.03106	3.1855	19.10	3.65
60.48	11	5.86	48.90	-26.90	16.14	41.13	0.02705	3.1855	19.33	3.88
60.48	12	5.86	49.66	-27.40	16.40	43.63	0.02411	3.1855	19.58	4.13
60.48	13	5.86	50.35	-27.97	16.52	44.90	0.02114	3.1855	19.71	4.26
60.48	14	5.86	51.00	-28.50	16.64	46.10	0.01872	3.1855	19.82	4.37
60.48	15	5.86	51.60	-28.95	16.79	47.71	0.01687	3.1855	19.97	4.52
60.48	16	5.86	52.16	-29.40	16.90	48.94	0.01521	3.1855	20.08	4.63
60.48	17	5.86	52.68	-29.70	17.12	51.56	0.0142	3.1855	20.31	4.86
60.48	18	5.86	53.18	-30.20	17.12	51.52	0.01265	3.1855	20.30	4.85
60.48	19	5.86	53.65	-30.62	17.17	52.11	0.01149	3.1855	20.35	4.90
60.48	20	5.86	54.09	-31.05	17.18	52.30	0.0104	3.1855	20.37	4.92



<u>Channel 3</u> EUT antenna gain = 15.00dBi

Freq (GHz)	Meas. Distance (cm)	Small Aperture Probe Gain G _R (dBi)	Free Space Att. (dB)	Meas Avg Power P _R (dBm)	Рт*Gт (dBm)	Рт*Gт (mW)	Power Density (mW/cm2)	Duty Cycle Corr. (dB)	EIRP (dBm)	Cond Power (dBm)
62.64	10	7.56	48.38	-25.60	15.22	33.26	0.02646	3.2149	18.43	3.43
62.64	11	7.56	49.21	-26.30	15.35	34.25	0.02253	3.2149	18.56	3.56
62.64	12	7.56	49.96	-26.99	15.41	34.77	0.01922	3.2149	18.63	3.63
62.64	13	7.56	50.66	-27.62	15.48	35.30	0.01662	3.2149	18.69	3.69
62.64	14	7.56	51.30	-28.20	15.54	35.82	0.01454	3.2149	18.76	3.76
62.64	15	7.56	51.90	-28.71	15.63	36.56	0.01293	3.2149	18.85	3.85
62.64	16	7.56	52.46	-29.24	15.66	36.82	0.01145	3.2149	18.88	3.88
62.64	17	7.56	52.99	-29.63	15.80	38.00	0.01046	3.2149	19.01	4.01
62.64	18	7.56	53.48	-30.24	15.68	37.02	0.00909	3.2149	18.90	3.90
62.64	19	7.56	53.95	-30.72	15.67	36.93	0.00814	3.2149	18.89	3.89
62.64	20	7.56	54.40	-31.26	15.58	36.14	0.00719	3.2149	18.79	3.79


Results graph

Power Density

Power Density measured during the tests (i.e. with the ~ 48 % duty cycle measured in B.1)

EIRP

EIRP normalized for 100% duty cycle (after adding the Duty cycle correction factor measured in B.1)

Annex C. Aperture Probe Antenna Characterization

C.1 Description of the Antenna

The measuring antenna is an open-ended waveguide as specified in IEEE Std C95.3-2002 Clause 5.5.1.1.3 Small apertures. The aperture probe antenna consists of a 19 cm straight section of WR15 rectangular waveguide with a standard UG-385/U flange at one end. The aperture dimensions are $(1.88 \times 3.76 \text{ mm}^2)$.

C.2 Derivation of characterization equations

Indeed, the ratio between the received power and the transmitted power between a pair of antennas is expressed in terms of their gains as follow:

$$G_T G_R = \frac{P_R}{P_T} \left(\frac{4\pi D}{\lambda}\right)^2$$

Converting from linear to logarithmic domain yields:

$$G_T + G_R = P_R - P_T + 20Log(\frac{4\pi D}{\lambda})$$

Converting from wavelength in meters to frequency in GHz yields:

$$G_T + G_R = P_R - P_T + 20Log(D) + 20Log(f) + 32.44$$
 (1)

Where:

 G_T is the gain of the transmit antenna (dBi)

 G_R is the gain of the receive antenna (dBi)

 P_R is the power received (dBm)

 P_T is the power transmitted (dBm)

D is the distance between the antennas (m)

f is the frequency (GHz)

The individual far-field gain of each of three different antennas can be determined from three path loss measurements made under identical far-field conditions using the three different antennas taken in pairs. Three path loss measurements ($P_{R12} - P_T$), ($P_{R13} - P_T$) and ($P_{R23} - P_T$) are sufficient to simultaneously solve for three unknowns G_1 , G_2 and G_3 .

The Equation (1) is applied to each of the three path loss measurement as follows applied

$$A = G_1 + G_2 = P_{R12} - P_T + 20Log(D) + 20Log(f) + 32.44$$
 (2)

$$B = G_1 + G_3 = P_{R13} - P_T + 20Log(D) + 20Log(f) + 32.44$$
 (3)

$$C = G_2 + G_3 = P_{R23} - P_T + 20Log(D) + 20Log(f) + 32.44$$
 (4)

Where:

 $A = (G_1 + G_2)$ is the sum of the gains of Antennas 1 and 2

 $B = (G_1 + G_3)$ is the sum of the gains of Antennas 1 and 3

 $C = (G_2 + G_3)$ is the sum of the gains of Antennas 2 and 3

PR12 is the power received when measuring Antennas 1 and 2 (dBm)

 P_{R13} is the power received when measuring Antennas 1 and 3 (dBm)

 P_{R23} is the power received when measuring Antennas 2 and 3 (dBm)

 P_T is the transmitted power (dBm)

D is the distance between the antennas (m)

f is the frequency (GHz)

The gain of each individual antenna is calculated as follows:

$$G_1 = 0.5 (A + B - C) (5)$$

$$G_2 = 0.5 (A + C - B) ag{6}$$

$$G_2 = 0.5 (A + C - B)$$
 (6)
 $G_3 = 0.5 (B + C - A)$ (7)

Where:

G₁ is the gain of Antenna 1 (dBi)

 G_2 is the gain of Antenna 2 (dBi)

G₃ is the gain of Antenna 3 (dBi)

A is the result of applying Equation (2)

B is the result of applying Equation (3)

C is the result of applying Equation (4)

C.3 Characterization Procedure

- 1. Allow the signal source, power sensor and power meter to warm up as specified by the manufacturer of the instruments.
- 2. Adjust the instruments to the applicable frequency. Connect the power sensor to the output of the source. Measure and record Power Transmitted.
- 3. Connect the first pair of antennas to their respective source (Tx antenna) and power sensor (Rx antenna). Place the antennas at the selected far-field separation distance in a bore-sight configuration using a laser level to align the antennas. Measure and record Power Received.
- 4. Repeat step 3 for each pair of antennas.
- 5. Calculate the antenna gains by applying Equations (2) through (7).

C.4 Characterization Results and Validation

C.4.1 Far-Field Distance

The gain reduction (relative to the far-field gain G^{∞}) of an antenna is estimated as a function of normalized distance.

The normalized distance is given in terms of $n = d\lambda/a^2$ where d is distance, λ is wavelength and a is the largest aperture dimension. The far-field gain holds for distances greater than about $(8a^2)/\lambda$ (n > 8).

Note that for the verification we use three aperture antennas, the far field distance is therefore calculated using the largest aperture dimension among the three antennas (in our case it is the antenna 1) and a=5mm.

The minimum far field distance is calculated for each channel as follow:

Frequency (GHz)	Wavelength λ (m)	Largest aperture dimension a (m)	Ratio (a²/λ)	Minimum distance d (cm)
58.32	0.005144033	0.005	0.00486	3.888
60.48	0.004960317	0.005	0.00504	4.032
62.64	0.004789272	0.005	0.00522	4.176

We decide therefore to do the characterization at 15 cm.

C.4.2 Probe Gain

The probe under verification is noted <u>Antenna 3</u> with Gain G_3 . The antennas 1 and 2 are used to perform the characterization. The verification procedure (see § 12.3) is applied as follow:

1st Path Loss measurement → In Tx: Antenna 1 / In Rx: Antenna 2

Channel	PT (dBm)	PR12 (dBm)	D (m)	f (GHz)	G1+G2 (dBi)
1	5.01	-30.53	0.15	58.32	15.74
2	7.34	-29.41	0.15	60.48	14.84
3	7.04	-28.28	0.15	62.64	16.58

2nd Path Loss measurement → In Tx: Antenna 2 / In Rx: Antenna 3

Channel	PT (dBm)	PR23 (dBm)	D (m)	f (GHz)	G2+G3 (dBi)
1	5.01	-35.3	0.15	58.32	10.97
2	7.34	-32.93	0.15	60.48	11.32
3	7.04	-30.66	0.15	62.64	14.199

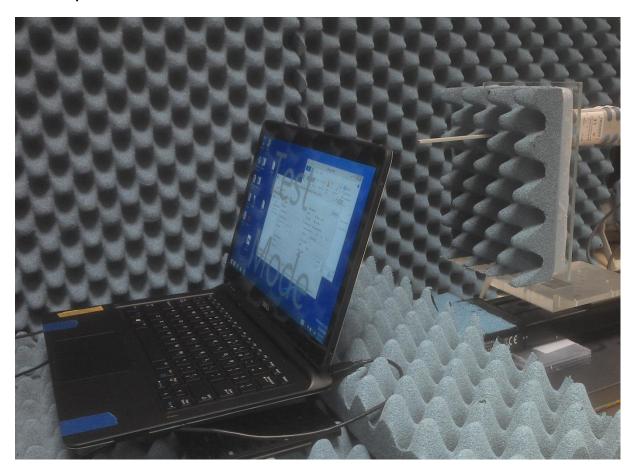
3rd Path Loss measurement → In Tx: Antenna 1 / In Rx: Antenna 3

Channel	PT (dBm)	PR13 (dBm)	D (m)	f (GHz)	G1+G3 (dBi)
1	5.01	-30.76	0.15	58.32	15.51
2	7.34	-29.01	0.15	60.48	15.24
3	7.04	-27.35	0.15	62.64	17.51

20V 04

The measured gains are deduced and showed as follows:

Antenna	Channel 1 Gain (dBi)	Channel 2 Gain (dBi)	Channel 3 Gain (dBi)
Aperture Antenna 1	10.14	9.38	9.94
Aperture Antenna 2	5.60	5.46	6.63
Open Ended Waveguide Probe Antenna	5.37	5.86	7.56


C.4.3 Validation

The measured gain of the original probe antenna is compared to the realized gain from a theoretical model of common open-ended waveguide apertures with a two-to-one aspect ratio, i.e., a /b = 2, provided by IEEE Std C95.3 Clause 5.5.1.1.3 equation (4)

Channel	Frequency (GHz)	Dimension a (m)	Theoretical Gain (dBi) $10 \log(21.6 \cdot f[GHz] \cdot a)$	Measured Gain (dBi)	Delta to Theoretical Gain (dB)
1	58.32	0.00376	6.75	5.37	1.38
2	60.48	0.00376	6.91	5.86	1.05
3	62.64	0.00376	7.06	7.56	0.50

Annex D. Photographs

Test Setup

