

#### *EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C*

## Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU

| IC CERTIFICATION #:<br>FCC ID: | 1000M-135BNH and 1000M-135BNHU<br>PD9135BNH and PD9135BNHU                   |
|--------------------------------|------------------------------------------------------------------------------|
| APPLICANT:                     | Intel Corporation<br>100 Center Point Circle Suite 200<br>Columbia, SC 29210 |
| TEST SITE(S):                  | Elliott Laboratories<br>41039 Boyce Road.<br>Fremont, CA. 94538-2435         |
| IC SITE REGISTRATION #:        | 2845B-3; 2845B-4, 2845B-5, 2845B-7                                           |
| REPORT DATE:                   | October 13, 2011                                                             |
| FINAL TEST DATES:              | September 12, 20, 21, 22 and 23, 2011                                        |
| TOTAL NUMBER OF PAGES:         | 80                                                                           |
|                                |                                                                              |

PROGRAM MGR / TECHNICAL REVIEWER:

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / EINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer



Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

#### **REVISION HISTORY**

| Rev# | Date       | Comments                                     | Modified By   |
|------|------------|----------------------------------------------|---------------|
| -    | 10-7-2011  | First release                                |               |
| 1    | 10-13-2011 | Revised to correct typos in the test results | Dave Guidotti |
|      |            | summary                                      |               |

#### TABLE OF CONTENTS

| REVISION HISTORY                                                             | 2         |
|------------------------------------------------------------------------------|-----------|
| TABLE OF CONTENTS                                                            | 3         |
| SCOPE                                                                        | 4         |
| OBJECTIVE                                                                    | 4         |
| STATEMENT OF COMPLIANCE                                                      | 5         |
| DEVIATIONS FROM THE STANDARDS                                                | 5         |
| TEST RESULTS SUMMARY                                                         | 6         |
| FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHZ, LESS THAN 75 CHANNELS) | 6         |
| GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS                                 | 6         |
| MEASUREMENT UNCERTAINTIES                                                    | 7         |
| EQUIPMENT UNDER TEST (EUT) DETAILS                                           | 8         |
| GENERAL                                                                      | 8         |
| ANTENNA SYSTEM                                                               | 8         |
| ENCLOSURE                                                                    | 8         |
| MODIFICATIONS                                                                | 8         |
| SUPPORT EQUIPMENT                                                            | 9         |
|                                                                              | 9         |
|                                                                              |           |
| TEST SITE                                                                    | 10        |
| GENERAL INFORMATION                                                          | 10        |
| RADIATED EMISSIONS CONSIDERATIONS                                            | 10        |
|                                                                              | 11        |
| MEASUKEMENT INSTRUMENTATION                                                  | <b>II</b> |
| INSTRUMENT CONTROL COMPLITER                                                 | 11        |
| LINE IMPEDANCE STABILIZATION NETWORK (LISN)                                  | 11        |
| FILTERS/ATTENUATORS                                                          |           |
| ANTENNAS                                                                     | 12        |
| ANTENNA MAST AND EQUIPMENT TURNTABLE                                         | 12        |
| INSTRUMENT CALIBRATION                                                       | 12        |
| TEST PROCEDURES                                                              | 13        |
| EUT AND CABLE PLACEMENT                                                      | 13        |
| CONDUCTED EMISSIONS                                                          | 13        |
| RADIATED EMISSIONS                                                           | 13        |
| RADIATED EMISSIONS                                                           | 14        |
| CONDUCTED EMISSIONS FROM ANTENNA PORT                                        |           |
| BANDWIDTH MEASUKEMENTS                                                       | 16        |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS                                 | 17        |
| GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS                  | 17        |
| RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS                    | 18        |
| OUTPUT POWER LIMITS – FHSS SYSTEMS                                           |           |
| TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS      | 19        |
| SAMPLE CALCULATIONS - CONDUCTED EMISSIONS                                    | 19        |
| SAMPLE CALCULATIONS - RADIATED EMISSIONS                                     | 20        |
| SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION                      | 21        |
| APPENDIX A TEST EQUIPMENT CALIBRATION DATA                                   | 22        |
| APPENDIX B TEST DATA                                                         | 25        |
| END OF REPORT                                                                | 80        |
|                                                                              |           |

#### SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FHSS test procedure DA 00-0705A1, March 2000

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

#### **OBJECTIVE**

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on model Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU.

#### STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

#### DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

#### TEST RESULTS SUMMARY

| FCC<br>Rule Part                                      | RSS<br>Rule Part              | Description                                          | Measured Value /<br>Comments                                                                                        | Limit / Requirement                                           | Result   |  |  |
|-------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------|--|--|
| 15.247                                                | RSS 210                       | 20dB Bandwidth                                       | Basic Rate: 965 kHz<br>EDR: 1300 kHz                                                                                | Channel spacing > $2/3rds 20dB BW$                            | Complies |  |  |
| (a)(1)                                                | A0.1 (1)                      | Channel Separation                                   | 1 MHz                                                                                                               | 2/3105 200D D W                                               | Complies |  |  |
| 15.247<br>(a) (1) (ii)                                | RSS 210<br>A8.1 (4)           | Number of Channels                                   | Min 20<br>Max                                                                                                       | 15 or more                                                    | Complies |  |  |
| 15.247<br>(a) (1) (ii)                                | RSS 210<br>A8.1 (4)           | Channel Dwell Time<br>(average time of<br>occupancy) | 0.4 seconds per 31.6<br>seconds for 79<br>channels                                                                  | <0.4 second within a<br>period of 0.4 x<br>number of channels | Complies |  |  |
| 15.247<br>(a) (1)                                     | RSS 210<br>A8.1 (1)           | Channel Utilization                                  | The system uses the<br>Bluetooth algorithm<br>and, therefore, meets<br>all requirements for<br>channel utilization. | All channels shall,<br>on average, be used<br>equally         | Complies |  |  |
| 15.247 (b)<br>(3)                                     | RSS 210<br>A8.4 (2)           | Output Power                                         | Basic Rate: 7.2 dBm<br>(0.005 W)<br>EDR: 4.8 dBm<br>(0.003 W)<br>EIRP = 0.109 W <sup>Note 1</sup>                   | 0.125 Watts<br>(EIRP < 0.5W)                                  | Complies |  |  |
| 15.247(c)                                             | RSS 210<br>A8.5               | Spurious Emissions –<br>30MHz – 25GHz                | All spurious<br>emissions < -20dBc                                                                                  | < -20dBc                                                      | Complies |  |  |
| 15.247(c) /<br>15.209                                 | RSS 210<br>A8.5<br>Table 2, 3 | Radiated Spurious<br>Emissions<br>30MHz – 25GHz      | 47.0dBµV/m @<br>2483.5MHz (-7.0dB)                                                                                  | 15.207 in restricted<br>bands, all others<br>< -20dBc         | Complies |  |  |
| 15.247<br>(a) (1)                                     | RSS 210<br>A8.1(2)            | Receiver bandwidth                                   | Refer to operational description                                                                                    | Shall match the channel bandwidth                             | Complies |  |  |
| Note 1: EIRP calculated using antenna gain of 3.2 dBi |                               |                                                      |                                                                                                                     |                                                               |          |  |  |

#### GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

| FCC Rule<br>Part                | RSS<br>Rule part            | Description                 | Measured Value /<br>Comments                                                                         | Limit / Requirement                                  | Result<br>(margin) |
|---------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| 15.203                          | -                           | RF Connector                |                                                                                                      | Unique or integral<br>antenna required               | Complies           |
| 15.207                          | RSS GEN<br>Table 4          | AC Conducted<br>Emissions   | 41.7dBµV @<br>8.000MHz (-8.3dB)                                                                      | Refer to page 17                                     | Complies           |
| 15.109                          | RSS GEN<br>6.1<br>Table 2   | Receiver spurious emissions | 49.0dBµV/m @<br>2320.0MHz (-5.0dB)                                                                   | Refer to page 18                                     | Complies           |
| 15.247 (b)<br>(5)<br>15.407 (f) | RSS GEN<br>5.6<br>RSS 102   | RF Exposure<br>Requirements | Refer to MPE<br>calculations in<br>Exhibit 11, RSS 102<br>declaration and User<br>Manual statements. | Refer to OET 65,<br>FCC Part 1 and RSS<br>102        | Complies           |
| -                               | RSP 100<br>RSS GEN<br>7.1   | User Manual                 | Refer to page 11 of the user's manual                                                                | Statement required<br>regarding non-<br>interference | Complies           |
| -                               | RSP 100<br>RSS GEN<br>7.1   | User Manual                 | Not applicable,<br>antenna is integral to<br>host systems.                                           | Statement for<br>products with<br>detachable antenna | Complies           |
| -                               | RSP 100<br>RSS GEN<br>4.6.1 | 99% Bandwidth               | Basic: 889 kHz<br>EDR: 1.19 MHz                                                                      | Information only                                     | N/A                |

#### MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

| Measurement Type                           | Measurement<br>Unit | Frequency Range                     | Expanded<br>Uncertainty                         |
|--------------------------------------------|---------------------|-------------------------------------|-------------------------------------------------|
| RF power, conducted (power meter)          | dBm                 | 25 to 7000 MHz                      | ± 0.52 dB                                       |
| RF power, conducted (Spectrum analyzer)    | dBm                 | 25 to 7000 MHz                      | $\pm 0.7 \text{ dB}$                            |
| Conducted emission of transmitter          | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$                            |
| Conducted emission of receiver             | dBm                 | 25 to 26500 MHz                     | $\pm 0.7 \text{ dB}$                            |
| Radiated emission<br>(substitution method) | dBm                 | 25 to 26500 MHz                     | $\pm 2.5 \text{ dB}$                            |
| Radiated emission (field strength)         | dBµV/m              | 25 to 1000 MHz<br>1000 to 40000 MHz | $\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$ |
| Conducted Emissions (AC<br>Power)          | dBµV                | 0.15 to 30 MHz                      | $\pm 2.4 \text{ dB}$                            |

#### EQUIPMENT UNDER TEST (EUT) DETAILS

#### GENERAL

The Intel Centrino Wireless-N 135, models 135BNHMW and 135BNHU are PCIe Half Mini Card form factor IEEE 802.11b/g/n wireless network adapters that supports 1x1 (SISO) and a Bluetooth adapter that supports Basic Rate, Enhanced Data Rate and Low Energy modes of operation.

The device is sold under model numbers 135BNHMW and 135BNHU

Model numbers with FCC ID: PD9135BNHU and IC: 1000M-135BNHU are intended for end user installation and operate with a BiOS lock feature to ensure they can only be used in the appropriate host systems to prevent unauthorized operation. Other models are only intended for OEM factory installation.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 7, 2011 and tested on September 12, 20, 21, 22 and 23, 2011. The EUT consisted of the following component(s):

| Company              | Model    | Description                                                            | Serial Number                | FCC ID                                      |
|----------------------|----------|------------------------------------------------------------------------|------------------------------|---------------------------------------------|
| Intel<br>Corporation | 135BNHMW | 35BNHMW PCIe Half Mini<br>Card form factor<br>Bluetooth /<br>IEEE 0015 | JBP:<br>00150096B4F5<br>DTS: | PD9135BNH<br>PD9135BNHU<br>1000M-<br>135BNH |
|                      | 135BNHU  | wireless<br>network adapter                                            | 00150096B40F                 | 1000M-<br>135BNHU                           |

#### ANTENNA SYSTEM

The EUT antenna is a a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd for both chains. There is also an option to use a trace antenna etched onto the board for Chain B Bluetooth transmit operation.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

| Band        | Antenna Gain |      | Comment |
|-------------|--------------|------|---------|
|             | PIFA Trace   |      |         |
| 2400-2483.5 | 3.2 dBi      | 1dBi |         |

#### ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

#### MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

#### SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

| Company | Model    | Description    | Serial Number | FCC ID |
|---------|----------|----------------|---------------|--------|
| Dell    | Latitude | Laptop         | -             | -      |
| Intel   | -        | Extender board | -             | -      |
| Agilent | E3610A   | Power Supply   | -             | -      |

The following equipment was used as remote support equipment for testing:

| Company | Model | Description | Serial Number | FCC ID |
|---------|-------|-------------|---------------|--------|
| Netgear | GS108 | Hub         | GS16152CB035  | -      |
| _       |       |             | 447           |        |

#### EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

| Port                       |              | Cable(s)    |                     |           |  |
|----------------------------|--------------|-------------|---------------------|-----------|--|
| From                       | То           | Description | Shielded/Unshielded | Length(m) |  |
| USB                        | Printer      | USB         | Shielded            | 2         |  |
| Ethernet                   | Hub          | CAT 5       | Unshielded          | 10        |  |
| USB / Test<br>Fixture      | Laptop       | USB         | Shielded            | 1         |  |
| Ribbon / Test<br>Fixture   | Laptop       | Multiwire   | -                   | 1         |  |
| DC Power /<br>Test Fixture | Power supply | 2wire       | -                   | 1         |  |

#### EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes - 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth).

The data rates used for all tests were the lowest data rates for each  $802.11 \mod -1 Mb/s$  for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate.

The PC was using the Intel test utility DRTU Version 1.5.3-0320 and the device driver was version 15.0.0.51.

#### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

| Site      | Registratio   | Location |                  |  |
|-----------|---------------|----------|------------------|--|
| 5110      | FCC           | Canada   | Location         |  |
| Chamber 3 | 769238        | 2845B-3  |                  |  |
| Chamber 4 | 211948        | 2845B-4  | 41039 Boyce Road |  |
| Chamber 5 | 211948        | 2845B-5  | Fremont,         |  |
| Chamber 7 | A2LA          | 2045D 7  | CA 94538-2435    |  |
| Chamber / | accreditation | 28430-7  |                  |  |

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

#### RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

#### MEASUREMENT INSTRUMENTATION

#### RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

#### INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

#### LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

#### ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

#### ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

#### TEST PROCEDURES

#### EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

#### CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



**Figure 1 Typical Conducted Emissions Test Configuration** 

#### RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

#### CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.



#### Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

#### **BANDWIDTH MEASUREMENTS**

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

#### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

#### CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

| Frequency<br>(MHz) | Average<br>Limit<br>(dBuV)                                                   | Quasi Peak<br>Limit<br>(dBuV)                                                |
|--------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 0.150 to 0.500     | Linear decrease on<br>logarithmic frequency<br>axis<br>between 56.0 and 46.0 | Linear decrease on<br>logarithmic frequency<br>axis<br>between 66.0 and 56.0 |
| 0.500 to 5.000     | 46.0                                                                         | 56.0                                                                         |
| 5.000 to 30.000    | 50.0                                                                         | 60.0                                                                         |

#### GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands<sup>1</sup> (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m)              | Limit<br>(dBuV/m @ 3m)                               |
|-----------------------------|------------------------------|------------------------------------------------------|
| 0.009-0.490                 | 2400/F <sub>KHz</sub> @ 300m | 67.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 300m |
| 0.490-1.705                 | 24000/F <sub>KHz</sub> @ 30m | 87.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 30m  |
| 1.705 to 30                 | 30 @ 30m                     | 29.5 @ 30m                                           |
| 30 to 88                    | 100 @ 3m                     | 40 @ 3m                                              |
| 88 to 216                   | 150 @ 3m                     | 43.5 @ 3m                                            |
| 216 to 960                  | 200 @ 3m                     | 46.0 @ 3m                                            |
| Above 960                   | 500 @ 3m                     | 54.0 @ 3m                                            |

#### RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

| Frequency<br>Range<br>(MHz) | Limit<br>(uV/m @ 3m) | Limit<br>(dBuV/m @ 3m) |
|-----------------------------|----------------------|------------------------|
| 30 to 88                    | 100                  | 40                     |
| 88 to 216                   | 150                  | 43.5                   |
| 216 to 960                  | 200                  | 46.0                   |
| Above 960                   | 500                  | 54.0                   |

<sup>&</sup>lt;sup>1</sup> The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

#### OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

| Operating Frequency<br>(MHz) | Number of Channels | Output Power         |
|------------------------------|--------------------|----------------------|
| 902 - 928                    | ≥ 50               | 1 Watt (30 dBm)      |
| 902 - 928                    | 25 to 49           | 0.25 Watts (24 dBm)  |
| 2400 - 2483.5                | ≥ 75               | 1 Watt (30 dBm)      |
| 2400 - 2483.5                | < 75               | 0.125 Watts (21 dBm) |
| 5725 - 5850                  | 75                 | 1 Watt (30 dBm)      |

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

#### TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

#### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$ 

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

#### SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $F_d$  = Distance Factor in dB  $D_m$  = Measurement Distance in meters  $D_s$  = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$ 

where:

 $R_r$  = Receiver Reading in dBuV/m

 $F_d$  = Distance Factor in dB

 $R_c$  = Corrected Reading in dBuV/m

 $L_S$  = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

#### SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$  microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

## Appendix A Test Equipment Calibration Data

| Radiated Emissions, 1<br><u>Manufacturer</u><br>EMCO<br>Hewlett Packard                                           | 000 - 6,500 MHz, 08-Sep-11<br>Description<br>Antenna, Horn, 1-18 GHz<br>SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue      | <u>Model</u><br>3115<br>8564E (84125C)   | <u>Asset #</u><br>487<br>1393 | <u>Cal Due</u><br>7/6/2012<br>8/9/2012   |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------------------------------------|
| Manufacturer<br>EMCODescription<br>Antenna, Horn, 1-18 GHzHewlett PackardSpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue |                                                                                                                       | <u>Model</u><br>3115<br>8564E (84125C)   | <u>Asset #</u><br>786<br>1393 | <u>Cal Due</u><br>12/11/2011<br>8/9/2012 |
| Radiated Emissions, 1<br><u>Manufacturer</u><br>Hewlett Packard                                                   | ,000 - 40,000 MHz, 12-Sep-11<br><u>Description</u><br>Microwave Preamplifier, 1-                                      | <u>Model</u><br>8449B                    | <b>Asset #</b><br>785         | <u>Cal Due</u><br>5/18/2012              |
| EMCO<br>Hewlett Packard                                                                                           | Antenna, Horn, 1-18 GHz<br>SpecAn 9 kHz - 40 GHz, FT                                                                  | 3115<br>8564E (84125C)                   | 786<br>1393                   | 12/11/2011<br>8/9/2012                   |
| Rohde & Schwarz<br>Hewlett Packard                                                                                | EMI Test Receiver, 20 Hz-7 GHz<br>Head (Inc W1-W4, 1742, 1743)                                                        | ESIB7<br>84125C                          | 1538<br>1620                  | 11/2/2011<br>5/9/2012                    |
| A.H. Systems<br>Sunol Sciences<br>Micro-Tronics                                                                   | Blue System Horn, 18-40GHz<br>Biconilog, 30-3000 MHz<br>Band Reject Filter, 2400-2500<br>MHz                          | SAS-574, p/n: 2581<br>JB3<br>BRM50702-02 | 2159<br>2197<br>2249          | 3/23/2012<br>12/29/2011<br>10/11/2011    |
| Radiated Emissions, 1                                                                                             | 000 - 40000 MHz, 12-Sep-11                                                                                            | Madal                                    | A + #                         |                                          |
| EMCO<br>Hewlett Packard                                                                                           | Antenna, Horn, 1-18 GHz<br>Microwave Preamplifier, 1-                                                                 | <u>Model</u><br>3115<br>8449B            | <u>Asset #</u><br>487<br>785  | <u>Car Due</u><br>7/6/2012<br>5/18/2012  |
| Hewlett Packard                                                                                                   | SpecAn 9 kHz - 40 GHz, FT<br>(SA40) Blue                                                                              | 8564E (84125C)                           | 1393                          | 8/9/2012                                 |
| A.H. Systems<br>Micro-Tronics                                                                                     | Èlue Śystem Horn, 18-40GHz<br>Band Reject Filter, 2400-2500<br>MHz                                                    | SAS-574, p/n: 2581<br>BRM50702-02        | 2159<br>2249                  | 3/23/2012<br>10/11/2011                  |
| Radiated Emissions, 1<br><u>Manufacturer</u><br>EMCO<br>Hewlett Packard                                           | 000 - 18,000 MHz, 15-Sep-11<br><u>Description</u><br>Antenna, Horn, 1-18GHz<br>SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | <u>Model</u><br>3115<br>8564E (84125C)   | <u>Asset #</u><br>868<br>1148 | <u>Cal Due</u><br>6/8/2012<br>8/15/2012  |
| Radiated Emissions, 1                                                                                             | 000 - 40000MHz, 16-Sep-11                                                                                             | <b>M</b> - 4-1                           |                               |                                          |
| Hewlett Packard                                                                                                   | Description<br>Microwave Preamplifier, 1-<br>26 5GHz                                                                  | <u>Model</u><br>8449B                    | <u>Asset #</u><br>263         | <u>Cal Due</u><br>12/8/2011              |
| EMCO<br>Hewlett Packard                                                                                           | Antenna, Horn, 1-18 GHz<br>SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red                                                     | 3115<br>8564E (84125C)                   | 487<br>1148                   | 7/6/2012<br>8/15/2012                    |
| Micro-Tronics                                                                                                     | Band Reject Filter, 2400-2500<br>MHz                                                                                  | BRM50702-02                              | 2249                          | 10/11/2011                               |
| Radiated Emissions, 1<br><u>Manufacturer</u>                                                                      | 000 - 40,000 MHz, 17-Sep-11<br><u>Description</u>                                                                     | Model                                    | Asset #                       | <u>Cal Due</u>                           |

|                          | Report Date: 0                                        | clober 7, 2011 Reissue | Dale: Ociol    | ber 15, 2011          |
|--------------------------|-------------------------------------------------------|------------------------|----------------|-----------------------|
| EMCO<br>Hewlett Packard  | Antenna, Horn, 1-18 GHz<br>Microwave Preamplifier, 1- | 3115<br>8449B          | 487<br>785     | 7/6/2012<br>5/18/2012 |
| Hewlett Packard          | SpecAn 9 kHz - 40 GHz, FT                             | 8564E (84125C)         | 1393           | 8/9/2012              |
| Hewlett Packard          | Head (Inc W1-W4, 1742 , 1743)                         | 84125C                 | 1620           | 5/9/2012              |
| Micro-Tronics            | Band Reject Filter, 2400-2500                         | BRM50702-02            | 1683           | 8/3/2012              |
| A.H. Systems             | Blue System Horn, 18-40GHz                            | SAS-574, p/n: 2581     | 2159           | 3/23/2012             |
| Radiated Emissions,      | 1000 - 40000MHz, 20-Sep-11                            |                        |                |                       |
| Manufacturer             | Description                                           | Model                  | Asset #        | Cal Due               |
| Hewlett Packard          | Microwave Preamplifier, 1-<br>26.5GHz                 | 8449B                  | 263            | 12/8/2011             |
| EMCO                     | Antenna, Horn, 1-18 GHz<br>(SA40-Red)                 | 3115                   | 1142           | 8/2/2012              |
| Hewlett Packard          | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red                | 8564E (84125C)         | 1148           | 8/15/2012             |
| Micro-Tronics            | Band Reject Filter, 2400-2500<br>MHz                  | BRM50702-02            | 2249           | 10/11/2011            |
| Radiated Emissions       | 1000 - 10 000 MHz 21-Sep-11                           |                        |                |                       |
| Manufacturer             | Description                                           | Model                  | Asset #        | Cal Due               |
| EMCO                     | Antenna, Horn, 1-18 GHz                               | 3115                   | 786            | 12/11/2011            |
| Micro-Tronics            | Band Reject Filter, 2400-2500<br>MHz                  | BRM50702-02            | 1683           | 8/3/2012              |
| Hewlett Packard          | Microwave Preamplifier, 1-<br>26.5GHz                 | 8449B                  | 2199           | 2/23/2012             |
| Hewlett Packard          | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple               | 8564E (84125C)         | 2415           | 7/28/2012             |
| Radiated Emissions,      | 30 - 1,000 MHz, 23-Sep-11                             |                        |                |                       |
| Manufacturer             | Description                                           | Model                  | Asset #        | Cal Due               |
| Rohde & Schwarz          | EMI Test Receiver, 20 Hz-7 GHz                        | ESIB7                  | 1538           | 11/2/2011             |
| Hewlett Packard          | Preamplifier, 100 kHz - 1.3 GHz                       | 8447D OPT 010          | 1826           | 5/17/2012             |
| Sunoi Sciences           | Biconilog, 30-3000 MHZ                                | JB3                    | 2197           | 12/29/2011            |
| Conducted Emissions      | s - AC Power Ports, 23-Sep-11                         |                        | • • •          | 0 I D                 |
| Manufacturer             | Description                                           | Model                  | <u>Asset #</u> | <u>Cal Due</u>        |
| ENICO<br>Robde & Schwarz | LISN, TU KHZ-TUU MHZ, 25A<br>Pulse Limiter            | 3023/2<br>FSH3 72      | 1292           | 3/1/2012              |
| Rohde & Schwarz          | EMI Test Receiver. 20 Hz-7 GHz                        | ESIB7                  | 1538           | 11/2/2012             |
| Fischer Custom           | LISN, 25A, 150kHz to 30MHz,                           | FCC-LISN-50-25-2-      | 2001           | 9/15/2012             |
| Comm                     | 25 Amp,                                               | 09                     |                |                       |
| Radio Antenna Port (I    | Power and Spurious Emissions), 2                      | 23-Sep-11              |                |                       |
| Manufacturer             | Description                                           | Model                  | Asset #        | Cal Due               |
| Hewlett Packard          | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple               | 8564E (84125C)         | 2415           | 7/28/2012             |
| Radiated Emissions,      | 30 - 40,000 MHz, 23-Sep-11                            |                        |                |                       |
| Manufacturer             | Description                                           | <u>Model</u>           | Asset #        | Cal Due               |
| EMCO                     | Antenna, Horn, 1-18 GHz                               | 3115                   | 786            | 12/11/2011            |
|                          | 26.5GHz                                               | 8449B                  | 2199           | 2/23/2012             |
| Micro-Ironics            | Band Reject Filter, 2400-2500                         | вкм50702-02            | 2238           | 10/1/2011             |
| Hewlett Packard          | SpecAn 9 kHz - 40 GHz, (SA40)                         | 8564E (84125C)         | 2415           | 7/28/2012             |

#### Purple

| Radiated Emissions, 3      | 80 - 1,000 MHz, 26-Sep-11                |                |                |                |
|----------------------------|------------------------------------------|----------------|----------------|----------------|
| <u>Manufacturer</u>        | Description                              | Model          | Asset #        | Cal Due        |
| Hewlett Packard            | EMC Spectrum Analyzer, 9 KHz<br>- 22 GHz | 8593EM         | 1319           | 11/22/2011     |
| Rohde & Schwarz            | Test Receiver, 9 kHz-2750 MHz            | ESCS 30        | 1337           | 11/24/2011     |
| Sunol Sciences             | Biconilog, 30-3000 MHz                   | JB3            | 1548           | 6/24/2012      |
| Com-Power Corp.            | Preamplifier, 30-1000 MHz                | PA-103         | 1632           | 4/29/2012      |
| <b>Conducted Emissions</b> | - AC Power Ports, 27-Sep-11              |                |                |                |
| <u>Manufacturer</u>        | <b>Description</b>                       | <u>Model</u>   | Asset #        | Cal Due        |
| EMCO                       | LISN, 10 kHz-100 MHz, 25A                | 3825/2         | 1292           | 3/1/2012       |
| EMCO                       | LISN, 10 kHz-100 MHz                     | 3825/2         | 1293           | 3/1/2012       |
| Hewlett Packard            | EMC Spectrum Analyzer, 9 KHz<br>- 22 GHz | 8593EM         | 1319           | 11/22/2011     |
| Rohde & Schwarz            | Test Receiver, 9 kHz-2750 MHz            | ESCS 30        | 1337           | 11/24/2011     |
| Rohde & Schwarz            | Pulse Limiter                            | ESH3 Z2        | 1401           | 4/21/2012      |
| Radiated Emissions, 3      | 80 - 6,500 MHz, 29-Sep-11                |                |                |                |
| <u>Manufacturer</u>        | Description                              | <u>Model</u>   | <u>Asset #</u> | <u>Cal Due</u> |
| EMCO                       | Antenna, Horn, 1-18 GHz                  | 3115           | 487            | 7/6/2012       |
| Hewlett Packard            | Microwave Preamplifier, 1-<br>26.5GHz    | 8449B          | 2199           | 2/23/2012      |
| Hewlett Packard            | SpecAn 9 kHz - 40 GHz, (SA40)<br>Purple  | 8564E (84125C) | 2415           | 7/28/2012      |

## Appendix B Test Data

T84548 Pages 26 - 79



## EMC Test Data

| PET APAddee            | 2 company                 |                  |                   |
|------------------------|---------------------------|------------------|-------------------|
| Client:                | Intel                     | Job Number:      | J84264            |
| Model:                 | 135BNHMW & 135BNHU        | T-Log Number:    | T84548            |
|                        |                           | Account Manager: | Christine Krebill |
| Contact:               | Steve Hackett             |                  |                   |
| Emissions Standard(s): | FCC 15 B, 15.247, RSS 210 | Class:           | В                 |
| Immunity Standard(s):  | -                         | Environment:     | -                 |
|                        |                           |                  |                   |

## **EMC** Test Data

For The

## Intel

Model

135BNHMW & 135BNHU

Date of Last Test: 9/29/2011

# Elliott

## EMC Test Data

|           | company                   |                  |                   |
|-----------|---------------------------|------------------|-------------------|
| Client:   | Intel                     | Job Number:      | J84264            |
| Madalı    |                           | T-Log Number:    | T84548            |
| would.    |                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett             |                  |                   |
| Standard: | FCC 15 B, 15.247, RSS 210 | Class:           | N/A               |
|           |                           |                  |                   |

#### RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

#### General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

| Ambient Conditions: | Temperature:   | 21.5 °C |  |
|---------------------|----------------|---------|--|
|                     | Rel. Humidity: | 41 %    |  |

#### Summary of Results

For Wi-Fi, only Chain A is used for Tx. For Bluetooth only chain B is used for Tx. Both chains are used for Rx for Wi-Fi and Bluetooth MAC Address: 00150096B40F DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51 - Sample with PIFA antenna

|            |                |               |                  |                   |                          |                       | anterna             |
|------------|----------------|---------------|------------------|-------------------|--------------------------|-----------------------|---------------------|
| Run #      | Mode           | Channel       | Power<br>Setting | Measured<br>Power | Test Performed           | Limit                 | Result / Margin     |
|            | BT Basic       | 2402MHz       | 7dBm             | 5.9               |                          | FCC Part 15.209 /     | 42.6dBµV/m@         |
| 1          | 802.1b         | 2412MHz       | 16.5dBm          | 16.6              |                          | 15.247( c)            | 2251.7MHz (-11.4dB) |
| 2          | BT Basic       | 2480MHz       | 7dBm             | 6.4               |                          | FCC Part 15.209 /     | 46.8dBµV/m @        |
| 2          | 802.1b         | 2462MHz       | 16.5dBm          | 16.7              | Radiated Emissions,      | 15.247( c)            | 2500.0MHz (-7.2dB)  |
| n          | BT Basic       | 2402MHz       | 7dBm             | 5.9               | 1 - 10 GHz               | FCC Part 15.209 /     | 39.7dBµV/m@         |
| 3          | 802.11g        | 2412MHz       | 16.5dBm          | 16.6              |                          | 15.247( c)            | 1457.6MHz (-14.3dB) |
| 4          | BT Basic       | 2480MHz       | 7dBm             | 6.4               |                          | FCC Part 15.209 /     | 44.7dBµV/m @        |
| 4          | 802.1g         | 2462MHz       | 16.5dBm          | 16.8              |                          | 15.247( c)            | 2299.8MHz (-9.3dB)  |
| Wi-Fi mode | for the follow | ing runs bas/ | ed on the wo     | rst case mod      | le from runs 1 through 4 |                       |                     |
| F          | BT Basic       | 2402MHz       | 7dBm             | 5.9               |                          | FCC Part 15.209 /     | 53.8dBµV/m @        |
| 5          | 802.1b         | 2437MHz       | 16.5dBm          | 16.6              |                          | 15.247( c)            | 2365.0MHz (-0.2dB)  |
| 4          | BT Basic       | 2440MHz       | 7dBm             | 6.5               |                          | FCC Part 15.209 /     | 42.2dBµV/m @        |
| 0          | 802.1b         | 2412MHz       | 16.5dBm          | 16.6              | Radiated Emissions,      | 15.247( c)            | 2868.6MHz (-11.8dB) |
| 7          | BT Basic       | 2440MHz       | 7dBm             | 6.5               | 1 - 10 GHz               | FCC Part 15.209 /     | 44.4dBµV/m @        |
| 1          | 802.11b        | 2462MHz       | 16.5dBm          | 16.7              |                          | 15.247( c)            | 2299.2MHz (-9.6dB)  |
| 0          | BT Basic       | 2480MHz       | 7dBm             | 6.4               |                          | FCC Part 15.209 /     | 42.2dBµV/m @        |
| 0          | 802.11b        | 2437MHz       | 16.5dBm          | 16.6              |                          | 15.247( c)            | 2278.8MHz (-11.8dB) |
| Wi-Fi mode | and channel    | and Bluetoot  | th channel fo    | r the followin    | g run based on the worst | case mode from runs 1 | ihrough 8           |
| 0          | BT EDR         | 2402MHz       | 7dBm             | 2.5               | Radiated Emissions,      | FCC Part 15.209 /     | 50.2dBµV/m@         |
| 9          | 802.1b         | 2437MHz       | 16.5dBm          | 16.6              | 1 - 10 GHz               | 15.247( c)            | 2370.6MHz (-3.8dB)  |
|            |                |               |                  |                   |                          |                       |                     |

# Elliott

## EMC Test Data

| e e          | An AZ               | Company        |               |               |              |              |            |              |                   |   |
|--------------|---------------------|----------------|---------------|---------------|--------------|--------------|------------|--------------|-------------------|---|
| Client:      | Intel               |                |               |               |              |              |            | Job Number:  | J84264            |   |
| Madal        |                     |                | 1             |               |              |              | T-I        | Log Number:  | T84548            |   |
| wodel:       | 133RINHIM           | a 132RINHL     | J             |               |              |              | Αссоι      | unt Manager: | Christine Krebill |   |
| Contact:     | Steve Hacke         | ett            |               |               |              |              |            |              |                   |   |
| Standard:    | FCC 15 B, 1         | 5.247, RSS     | 210           |               |              |              |            | Class:       | N/A               |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
| Modificat    | ions Made           | Durina T       | estina        |               |              |              |            |              |                   |   |
| No modificat | tions were m        | ade to the El  | JT during tes | sting         |              |              |            |              |                   |   |
|              |                     |                | Ū             | 0             |              |              |            |              |                   |   |
| Deviation    | s From Th           | ie Standar     | ď             |               |              |              |            |              |                   |   |
| No deviation | is were made        | e from the rea | quirements o  | f the standar | d.           |              |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
| Run #1: Ra   | diated Spur         | ious Emissi    | ons, 1-10GF   | lz. Operatin  | g Mode: 802. | 11b @ 2412   | , BT Basic | @ 2402 MHz   | Z                 |   |
|              | Jate of Test:       | 9/20/2011      | 00            |               |              |              |            |              |                   |   |
|              | St Engineer:        | Kalael Vare    | idS<br>r #2   |               |              |              |            |              |                   |   |
| It           |                     |                | #3            |               |              |              |            |              |                   |   |
| Preliminary  | Sourious F          | missions ex    | cluding allo  | cated hand    | (Peak versu  | s average li | mit)       |              |                   |   |
| Frequency    | Level               | Pol            | 15.209        | / 15.247      | Detector     | Azimuth      | Height     | Comments     |                   |   |
| MHz          | dBuV/m              | v/h            | Limit         | Margin        | Pk/QP/Avg    | dearees      | meters     | oonintonto   |                   |   |
| 1200.190     | 39.2                | V              | 54.0          | -14.8         | Peak         | 142          | 1.0        |              |                   |   |
| 1457.690     | 39.0                | Н              | 54.0          | -15.0         | Peak         | 159          | 1.0        |              |                   |   |
| 7237.170     | 44.9                | V              | 70.0          | -25.1         | Peak         | 290          | 1.3        |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
| Final measu  | urements at         | 3m             |               |               | 1            |              |            | 1            |                   |   |
| Frequency    | Level               | Pol            | 15.209        | / 15.247      | Detector     | Azimuth      | Height     | Comments     |                   |   |
| MHZ          | dBµV/m              | v/h            | Limit         | Margin        | PK/QP/Avg    | degrees      | meters     |              |                   |   |
| 1197.920     | 31.4<br>45.2        | V              | 54.0          | -22.6<br>20.0 | AVG          | 138          | 1.0        |              |                   |   |
| 1199.920     | 40.Z                | V              | 74.0          | -20.0         | FN           | 130          | 1.0        | KD I WINZ, V |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
| 1            | 20.0                |                |               |               |              |              |            |              |                   |   |
| 1            | 20.0                |                |               |               |              |              |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
| '            | .00.0 -             |                |               |               |              |              |            |              |                   |   |
| μ/λη         | on n -              |                |               |               |              |              |            |              |                   | 1 |
| 9 B)         | 00.0-               |                | {}{           |               |              |              | 4          |              |                   |   |
| l de         | <i>(</i> <b>0 0</b> |                |               |               |              |              | [] []]     |              |                   |   |
| plit         | 60.0-               |                |               |               |              |              |            |              |                   |   |
| 4            | 40.0-               |                |               |               | Lib .        |              |            |              |                   |   |
|              | 40.0 - N. M         | WWW W          | richards      | Mart          | Merter       |              |            |              |                   |   |
|              | 20.0-               |                |               |               |              |              |            |              |                   |   |
|              | 20.0 - j<br>1000    |                |               |               |              |              | i          | i i          | 10000             |   |
|              |                     |                |               |               | Frequency    | (MHz)        |            |              |                   |   |
|              |                     |                |               |               |              | -            |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |
|              |                     |                |               |               |              |              |            |              |                   |   |





Class: N/A

|                                              | -Ilic                                                           | htt                                                  |                                   |              |             |              |             | FM           | r Test D          |
|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------------------------|--------------|-------------|--------------|-------------|--------------|-------------------|
|                                              | An AZ                                                           | A company                                            |                                   |              |             |              |             |              |                   |
| Client:                                      | Intei                                                           |                                                      |                                   |              |             |              |             | JOD NUMBER:  | J84264            |
| Model <sup>.</sup>                           | 135BNHMW                                                        | & 135BNHI                                            | J                                 |              |             |              | -           | Log Number:  | 184548            |
| mouon                                        | TOODITIIII                                                      |                                                      | •                                 |              |             |              | Acco        | unt Manager: | Christine Krebill |
| Contact:                                     | Steve Hacke                                                     | ett                                                  |                                   |              |             |              |             |              |                   |
| Standard:                                    | FCC 15 B, 1                                                     | 5.247, RSS                                           | 210                               |              |             |              |             | Class:       | N/A               |
| un #2: Ra<br>[<br>Te<br>Te                   | idiated Spur<br>Date of Test:<br>est Engineer:<br>est Location: | ious Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe | <b>ons, 1-10GF</b><br>las<br>r #3 | lz. Operatin | g Mode: 802 | .11b @ 2462  | 2, BT Basic | : @ 2480 MHz | 2                 |
| reliminary                                   | Sourious F                                                      | missions ex                                          | cluding allo                      | cated band   | (Peak versu | s average li | mit)        |              |                   |
| requency                                     |                                                                 | Pol                                                  | 15 200                            | / 15.247     | Detector    | Azimuth      | Height      | Comments     |                   |
| MH7                                          | dBuV/m                                                          | v/h                                                  | l imit                            | Margin       |             | degrees      | meters      | Somments     |                   |
| 1232 450                                     | <u>45</u> 1                                                     | V                                                    | 54 0                              | -8.6         | Peak        | n n          | 1 2         |              |                   |
| 1252.450                                     | 40.4                                                            | V<br>⊔                                               | 54.0                              | -0.0<br>12 / | Poak        | 171          | 1.5         |              |                   |
| 7306 020                                     | 40.0<br>//7.1                                                   | \/                                                   | 54.0                              | -60          | Poak        | 288          | 1.0         |              |                   |
| 370.030                                      | 47.1                                                            | v                                                    | J4.U                              | -0.7         | ι ταΝ       | 200          | 1.0         |              |                   |
| inal measu                                   | urements at                                                     | 3m                                                   |                                   |              |             |              |             |              |                   |
| requency                                     |                                                                 | Pol                                                  | 15 209                            | / 15 247     | Detector    | Azimuth      | Height      | Comments     |                   |
| MHz                                          | dBuV/m                                                          | v/h                                                  | Limit                             | Margin       |             | dearees      | meters      | Comments     |                   |
| 7390 630                                     | <u>44</u> 1                                                     | V                                                    | 54.0                              | _0.0         | AVG         | 287          | 1.8         | RB 1 MHz·W   | /R 10 Hz·Pk       |
| 7386.060                                     | 51.7                                                            | V                                                    | 74.0                              | 22.7         |             | 207          | 1.0         |              |                   |
|                                              |                                                                 | V                                                    | 74.0                              | -22.3        | РК          | 287          | 1.8         | RB1MHz;V     | 'B 3 MHZ;PK       |
| 120.<br>(w/\ngp) apprilduw<br>40.            | 0-<br>0-<br>0-<br>0-                                            | Innha                                                | 74.0                              | -22.3        | PK          | 287          |             | RB 1 MHz;v   | B 3 MHz;PK        |
| 120.<br>(W/MgP) 80.<br>9011100<br>40.<br>20. |                                                                 | Innh                                                 | 14.0                              | -22.3        |             | 287          | 1.8         | RB 1 MHz;v   | B 3 MHZ;PK        |



## EMC Test Data

|                                       | 111 214                                                             |             |             |             |                        |                       |        |              | 1                 |
|---------------------------------------|---------------------------------------------------------------------|-------------|-------------|-------------|------------------------|-----------------------|--------|--------------|-------------------|
| Client:                               | Intel                                                               |             |             |             |                        |                       |        | Job Number:  | J84264            |
| Madal                                 |                                                                     |             |             |             |                        |                       | T-     | Log Number:  | T84548            |
| Wodel:                                | 135BINHIMM                                                          | / & 135BNHU | J           |             |                        | -                     | Acco   | unt Manager: | Christine Krebill |
| Contact                               | Steve Hacke                                                         | tt<br>tt    |             |             |                        |                       |        | 5            |                   |
| Standard                              |                                                                     | 5 2/7 RSS   | 210         |             |                        |                       |        | Class        | NI/Δ              |
| Stariuaru.                            |                                                                     | J.247, NJJ. | 210         |             |                        |                       |        | 0/033.       |                   |
|                                       |                                                                     |             | ~~ <i>c</i> |             |                        |                       |        |              |                   |
| Preliminary                           | Spurious E                                                          | missions at | 20cm from   | 2-3 GHz (Pe | eak versus av          | erage limit)          |        |              |                   |
| Frequency                             | Level                                                               | P0I         | 15.209      | / 15.24/    | Detector               | Azimuth               | Height | Comments     |                   |
| MHZ                                   | dBµV/m                                                              | V/n         | Limit       | Margin      | PK/QP/AVg              | degrees               | meters |              |                   |
| 2305.000                              | 44.7                                                                | V           | 54.0        | -9.3        | Peak                   | 181                   | 1.0    |              |                   |
| 2500.000                              | 43.8                                                                | V           | 54.0        | -10.2       | Реак                   | 181                   | 1.0    |              |                   |
| Einal moas                            | uromonte at                                                         | 2m          |             |             |                        |                       |        |              |                   |
| Final meas                            |                                                                     | Dol         | 15 200      | / 15 2/7    | Dotoctor               | Azimuth               | Hoight | Commonts     |                   |
| MHz                                   |                                                                     | r Ui<br>v/h | Limit       | Margin      |                        | doaroos               | motors | COMMENTS     |                   |
| 2500.000                              | <u>46</u> 8                                                         | Н           | 54.0        | -7.2        |                        | 352                   | 10     | RB 1 MHz·\   | /R 10 Hz·Pk       |
| 2300.000                              | 55.2                                                                | H           | 74.0        | -18.8       | PK                     | 352                   | 1.0    | RB 1 MHz·    | /B 3 MHz·Pk       |
| 2495 530                              | 40.5                                                                | V           | 54.0        | -13.5       | AVG                    | 263                   | 1.0    | RB 1 MHz·V   | /B 10 Hz·Pk       |
| 2495 500                              | 50.4                                                                | V           | 74.0        | -23.6       | PK                     | 263                   | 1.1    | RB 1 MHz·V   | /B 3 MHz·Pk       |
| 2299.750                              | 44.8                                                                | H           | 54.0        | -9.2        | AVG                    | 240                   | 1.1    | RB 1 MHz:V   | /B 10 Hz:Pk       |
| 2299.980                              | 53.9                                                                | Н           | 74.0        | -20.1       | PK                     | 240                   | 1.1    | RB 1 MHz:V   | /B 3 MHz:Pk       |
| 12<br>10<br>(W/\ngp) 4<br>6<br>4<br>2 | 0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>2000 | 2100 2      | 200 230     |             | 0 2500<br>Frequency (f | ~~~~~<br>2600<br>4Hz) | 2700   | 2800 2       | 2900 3000         |
|                                       |                                                                     |             |             |             |                        |                       |        |              |                   |

|                            | -11:                                                               |                                                      |                            |                    |              |              |                |               |                   |
|----------------------------|--------------------------------------------------------------------|------------------------------------------------------|----------------------------|--------------------|--------------|--------------|----------------|---------------|-------------------|
|                            |                                                                    | DCC<br>Ar <sup>*</sup> company                       |                            |                    |              |              |                | EM            | C Test Da         |
| Client:                    | Intel                                                              |                                                      |                            |                    |              |              |                | Job Number:   | J84264            |
| Model                      | 135RNHMM                                                           | / & 135RNHI                                          | 1                          |                    |              |              | T-             | Log Number:   | T84548            |
| wouci.                     | TJJDINI IMIN                                                       | & IJJDINIIC                                          | ,                          |                    |              |              | Acco           | unt Manager:  | Christine Krebill |
| Contact:                   | Steve Hacke                                                        | ett                                                  |                            |                    |              |              |                |               |                   |
| Standard:                  | FCC 15 B, 1                                                        | 5.247, RSS                                           | 210                        |                    |              |              |                | Class:        | N/A               |
| un #3: Ra<br>I<br>Te<br>Tu | adiated Spur<br>Date of Test:<br>est Engineer:<br>est Location:    | ious Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe | ons, 1-10GH<br>las<br>r #3 | Iz. Operatir       | ng Mode: 802 | 11g @ 2412   | 2, BT Basic    | : @ 2402 MH;  | Z                 |
| eliminary                  | / Spurious E                                                       | Dol                                                  | Cluding allo               | / 15 247           | Dotoctor     | S average II | MIL)<br>Hoight | Commonts      |                   |
| MH7                        | dBuV/m                                                             | v/h                                                  | imit                       | Margin             | Pk/OP/Avn    | dearees      | meters         | COMMENIS      |                   |
| 457.690                    | 38.6                                                               | H                                                    | 54.0                       | -15.4              | Peak         | 160          | 1.3            |               |                   |
| 238.670                    | 47.6                                                               | V                                                    | 54.0                       | -6.4               | Peak         | 284          | 1.3            | Signal not in | restricted band   |
|                            |                                                                    |                                                      |                            |                    |              |              |                |               |                   |
| nal meas                   | urements at                                                        | 3m                                                   | 15 000                     | 115 047            | Datastas     | A            | 11.2.4.1       | 0             |                   |
| equency                    |                                                                    | P0I                                                  | 15.209                     | / 15.247<br>Margin | Detector     | Azimuth      | Height         | Comments      |                   |
| 10102<br>157 560           | αΒμν/Π<br>39.7                                                     | - Will<br>H                                          | 54 0                       | 1/1 3              | AVG          | 168          | 1 0            | RB 1 MHz·\    | /B 10 Hz·Pk       |
| 457.550                    | 42.9                                                               | H                                                    | 74.0                       | -31.1              | PK           | 168          | 1.0            | RB 1 MHz:V    | /B 3 MHz:Pk       |
| Amplitude (dBuV/m)         | 120.0 -<br>100.0 -<br>80.0 -<br>60.0 -<br>40.0 -<br>20.0 -<br>1000 | - A.MA                                               | Lunmu                      | ~~                 | Frequence    | с,житер с    |                |               |                   |
|                            | 20.0 -¦<br>1000                                                    |                                                      |                            |                    | ' '          | ,<br>y (MHz) |                |               | . 10              |

| C                | Ellic                                        | ott         |             |                                |                        |               |                                        | EM           | C Test Da |
|------------------|----------------------------------------------|-------------|-------------|--------------------------------|------------------------|---------------|----------------------------------------|--------------|-----------|
| Client           | Intel                                        | ළ) company  |             |                                |                        |               |                                        | Job Number:  | J84264    |
| Madal            |                                              |             |             |                                |                        |               | T-Log Number: T84548                   |              |           |
| woder            | : 135BINHIVIV                                | / & 135BNHI | J           |                                |                        |               | Account Manager: Christine Kre         |              |           |
| Contact          | : Steve Hack                                 | ett         |             |                                |                        |               |                                        |              |           |
| Standard         | : FCC 15 B, 7                                | 5.247, RSS  | 210         |                                |                        |               |                                        | Class:       | N/A       |
|                  |                                              |             |             |                                |                        |               |                                        |              |           |
| Preliminar       | y Spurious E                                 | missions at | t 20cm from | <u>2-3 GHz (P€</u><br>/ 15 247 | eak versus av          | verage limit) | Hoight                                 | Commonts     |           |
| MHz              | dBuV/m                                       | v/h         | Limit       | Margin                         | Pk/OP/Ava              | degrees       | meters                                 | COMMENTS     |           |
|                  | ασμιτιπ                                      | .,          |             | - mai gin                      |                        | uogioco       |                                        |              |           |
|                  |                                              |             |             |                                |                        |               |                                        |              |           |
| Final meas       | surements at                                 | 3m<br>Pol   | 15 209      | / 15 247                       | Detector               | Azimuth       | Heinht                                 | Comments     |           |
| MHz              | dBµV/m                                       | v/h         | Limit       | Margin                         | Pk/QP/Ava              | degrees       | meters                                 | Johnnents    |           |
|                  |                                              |             |             |                                |                        |               |                                        |              |           |
| Amplitude (dBuV) | 30.0 -<br>50.0 -<br>40.0 -<br>20.0 -<br>2000 | 2100        | 2200 23     | 00 240                         | 0 2500<br>Frequency (I |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~ <b>~~</b> | 2900 3000 |

|                                                                 |                                                                         |                                                     |                                                |                    |                       |                            |                     | EMC Test L                   |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--------------------|-----------------------|----------------------------|---------------------|------------------------------|
| Client                                                          | Intel                                                                   | company                                             |                                                |                    |                       |                            |                     | Job Number: J84264           |
| Model                                                           | 135RNIHM///                                                             | & 135BNHI                                           |                                                |                    |                       |                            | T-                  | Log Number: T84548           |
| MUUEI                                                           |                                                                         |                                                     | J                                              |                    |                       |                            | Ассо                | unt Manager: Christine Krebi |
| Contact                                                         | Steve Hacke                                                             | tt                                                  |                                                |                    |                       |                            |                     |                              |
| Standard                                                        | FCC 15 B, 15                                                            | 5.247, RSS                                          | 210                                            |                    |                       |                            |                     | Class: N/A                   |
| reliminary                                                      | adiated Spurie<br>Date of Test: (<br>est Engineer: )<br>est Location: ) | ous Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe | ions, 1-10GH<br>Has<br>Fr #3<br>Yochuding allo | Iz. Operatin       | ig Mode: 802.         | 11g @ 2462<br>s average li | 2, BT Basic         | : @ 2480 MHz                 |
| Frequency                                                       | l evel                                                                  | Pol                                                 | 15 209                                         | / 15 247           | Detector              | Azimuth                    | Height              | Comments                     |
| MHz                                                             | dBuV/m                                                                  | v/h                                                 | Limit                                          | Margin             | Pk/QP/Ava             | degrees                    | meters              | o si il nonto                |
| 1457.690                                                        | 39.5                                                                    | H                                                   | 54.0                                           | -14.5              | Peak                  | 160                        | 1.0                 |                              |
| 7381.300                                                        | 48.3                                                                    | V                                                   | 54.0                                           | -5.7               | Peak                  | 282                        | 1.6                 |                              |
|                                                                 |                                                                         |                                                     |                                                |                    |                       |                            |                     |                              |
| inal meas                                                       | urements at 3                                                           | <u>3m</u>                                           | 15 200                                         | 115 017            | Detector              | A                          | l la la la la la la | Commonte                     |
| -requency                                                       | Level                                                                   | P01                                                 | 15.209                                         | / 15.247<br>Margin | Delector<br>Dk/OD/Avg | Azimuln                    | Height              | Comments                     |
| 7385 270                                                        | ΔΔμν/Π<br>43.1                                                          | V                                                   | 54 0                                           | -10.9              | AVG                   | 286                        | 1 2                 | RB 1 MHz·VB 10 Hz·Pk         |
| 7387.830                                                        | 55.0                                                                    | V                                                   | 74.0                                           | _10.7              | PK                    | 286                        | 1.2                 | RB 1 MHz·VB 3 MHz·Pk         |
| 120.<br>100.<br>( <sup>()</sup> /AP<br>( <sup>()</sup> )<br>80. | 0-                                                                      |                                                     | •                                              |                    |                       |                            |                     |                              |



## EMC Test Data

| 0                  | An AZ                                                              | A company   |           |             |                      |               |            |              |                   |
|--------------------|--------------------------------------------------------------------|-------------|-----------|-------------|----------------------|---------------|------------|--------------|-------------------|
| Client:            | Intel                                                              |             |           |             |                      |               |            | Job Number:  | J84264            |
| Madal              |                                                                    |             | 1         |             |                      |               | T-I        | Log Number:  | T84548            |
| Model:             | 132BINHIVIV                                                        | A 135BNH    | J         |             |                      |               | Αссοι      | unt Manager: | Christine Krebill |
| Contact:           | Steve Hacke                                                        | ett         |           |             |                      |               |            |              |                   |
| Standard:          | FCC 15 B, 1                                                        | 5.247, RSS  | 210       |             |                      |               |            | Class:       | N/A               |
| Preliminary        | Spurious F                                                         | missions at | 20cm from | 2-3 GHz (Pe | ak versus av         | verage limit) |            |              |                   |
| Frequency          | Level                                                              | Pol         | 15.209    | / 15.247    | Detector             | Azimuth       | Height     | Comments     |                   |
| MHz                | dBuV/m                                                             | v/h         | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters     |              |                   |
| 2299.000           | 44.9                                                               | V           | 54.0      | -9.1        | Peak                 | 179           | 1.0        |              |                   |
| Final measu        | urements at                                                        | 3m          |           |             |                      |               |            |              |                   |
| Frequency          | Level                                                              | Pol         | 15.209    | / 15.247    | Detector             | Azimuth       | Height     | Comments     |                   |
| MHz                | dBµV/m                                                             | v/h         | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters     |              |                   |
| 2299.750           | 44.7                                                               | Н           | 54.0      | -9.3        | AVG                  | 236           | 1.0        | RB 1 MHz;V   | /B 10 Hz;Pk       |
| 2298.580           | 54.6                                                               | Н           | 74.0      | -19.4       | PK                   | 236           | 1.0        | RB 1 MHz;V   | /B 3 MHz;Pk       |
| 2297.900           | 41.5                                                               | V           | 54.0      | -12.5       | AVG                  | 253           | 1.2        | RB 1 MHz;V   | /B 10 Hz;Pk       |
| 2297.100           | 52.6                                                               | V           | 74.0      | -21.4       | PK                   | 253           | 1.2        | RB 1 MHz;V   | /B 3 MHz;Pk       |
| Amplitude (dBuV/m) | 120.0 -<br>100.0 -<br>80.0 -<br>60.0 -<br>40.0 -<br>20.0 -<br>2000 |             | 2200      |             | 400 250<br>Frequency |               | · · · 2700 |              |                   |
|                    |                                                                    |             |           |             |                      |               |            |              |                   |

| Client:<br>Model:<br>Contact:<br>Standard:<br>Cun #5: Rac | Intel<br>135BNHMW<br>Steve Hacke<br>FCC 15 B, 15                                    | & 135BNHL                                                          | J                                            |                        |                                |                            | T-                  | Job Number: J84264<br>Log Number: T84548 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|------------------------|--------------------------------|----------------------------|---------------------|------------------------------------------|--|--|--|--|
| Model:<br>Contact: Standard: I<br>un #5: Rac<br>D         | 135BNHMW<br>Steve Hacke<br>FCC 15 B, 15                                             | & 135BNHL                                                          | J                                            |                        |                                |                            | T-                  | Log Number: T84548                       |  |  |  |  |
| Contact: Standard:                                        | Steve Hacke<br>FCC 15 B, 15                                                         |                                                                    | J                                            |                        |                                |                            | Δ                   | T-Log Number: T84548                     |  |  |  |  |
| Contact:<br>Standard:<br>Cun #5: Rac                      | Steve Hacke<br>FCC 15 B, 15                                                         |                                                                    |                                              | Contact. Stove Hackett |                                |                            |                     |                                          |  |  |  |  |
| Standard:<br>In #5: Rac                                   | FCC 15 B, 15                                                                        | - 147 DCC                                                          |                                              |                        |                                |                            |                     |                                          |  |  |  |  |
| Run #5: Rac<br>D                                          |                                                                                     | 0.247, KSS                                                         | 210                                          |                        |                                |                            | Class: N/A          |                                          |  |  |  |  |
| Tes<br>Te:<br>reliminary                                  | diated Spuri<br>Date of Test: (<br>st Engineer: )<br>est Location: )<br>Spurious Fr | ous Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe<br>nissions ex | ions, 1-10GH<br>las<br>r #3<br>ccluding allo | lz. Operatir           | ng Mode: 802.<br>I (Peak versu | 11b @ 2437<br>s average li | ′ MHz, BT I<br>mit) | Basic @ 2402 MHz                         |  |  |  |  |
| Frequency                                                 | Level                                                                               | Pol                                                                | 15.209/                                      | 15.247                 | Detector                       | Azimuth                    | Height              | Comments                                 |  |  |  |  |
| MHz                                                       | dBµV/m                                                                              | v/h                                                                | Limit                                        | Margin                 | Pk/QP/Avg                      | degrees                    | meters              |                                          |  |  |  |  |
| 1457.690                                                  | 38.6                                                                                | Н                                                                  | 54.0                                         | -15.4                  | Peak                           | 161                        | 1.3                 |                                          |  |  |  |  |
| 7317.760                                                  | 45.6                                                                                | V                                                                  | 54.0                                         | -8.4                   | Peak                           | 283                        | 1.6                 |                                          |  |  |  |  |
| inal maas                                                 | iromonto et (                                                                       | m                                                                  |                                              |                        |                                |                            |                     |                                          |  |  |  |  |
| Frequency                                                 |                                                                                     | Pol                                                                | 15,209                                       | 15.247                 | Detector                       | Azimuth                    | Height              | Comments                                 |  |  |  |  |
| MHz                                                       | dBµV/m                                                                              | v/h                                                                | Limit                                        | Margin                 | Pk/QP/Ava                      | degrees                    | meters              |                                          |  |  |  |  |
| 7313.760                                                  | 43.2                                                                                | V                                                                  | 54.0                                         | -10.8                  | AVG                            | 286                        | 1.6                 | RB 1 MHz;VB 10 Hz;Pk                     |  |  |  |  |
| 7307.060                                                  | 51.1                                                                                | V                                                                  | 74.0                                         | -22.9                  | PK                             | 286                        | 1.6                 | RB 1 MHz;VB 3 MHz;Pk                     |  |  |  |  |
| 120.0<br>(U/\ngp) 80.0<br>(U/\ngp) 60.0<br>40.0<br>20.0   |                                                                                     | MM                                                                 | -<br>Maria                                   |                        |                                | 12)                        |                     | 10000                                    |  |  |  |  |


|                    | An ZAZ                                                           | AS company                                                                   |           |             |                      |               |        |              |                                        |  |  |  |  |
|--------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|-------------|----------------------|---------------|--------|--------------|----------------------------------------|--|--|--|--|
| Client:            | Intel                                                            |                                                                              |           |             |                      |               |        | Job Number:  | J84264                                 |  |  |  |  |
|                    |                                                                  | 35BNHMW & 135BNHU T-Log Number: T84548<br>Account Manager: Christine Krebill |           |             |                      |               |        |              |                                        |  |  |  |  |
| Model:             | 135BNHMW                                                         | (& 135BNHL                                                                   | J         |             |                      |               | Acco   | unt Manager: | Christine Krebill                      |  |  |  |  |
| Contact:           | Steve Hacke                                                      | ett                                                                          |           |             |                      |               |        |              |                                        |  |  |  |  |
| Standard:          | FCC 15 B, 1                                                      | 5.247, RSS                                                                   | 210       |             |                      |               |        | Class:       | N/A                                    |  |  |  |  |
|                    | 1                                                                |                                                                              |           |             |                      |               |        |              | I                                      |  |  |  |  |
| Preliminary        | Spurious E                                                       | missions at                                                                  | 20cm from | 2-3 GHz (Pe | ak versus av         | verage limit) |        |              |                                        |  |  |  |  |
| Frequency          | Level                                                            | Pol                                                                          | 15.209    | / 15.247    | Detector             | Azimuth       | Height | Comments     |                                        |  |  |  |  |
| MHz                | dBµV/m                                                           | v/h                                                                          | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters |              |                                        |  |  |  |  |
| 2280.000           | 42.0                                                             | V                                                                            | 54.0      | -12.0       | Peak                 | 179           | 1.0    |              |                                        |  |  |  |  |
| 2368.330           | 48.9                                                             | V                                                                            | 54.0      | -5.1        | Peak                 | 179           | 1.0    |              |                                        |  |  |  |  |
|                    |                                                                  |                                                                              |           |             |                      |               |        |              |                                        |  |  |  |  |
| Final measu        | urements at                                                      | 3m                                                                           | 15.000    |             | <del> </del>         |               |        | <u> </u>     |                                        |  |  |  |  |
| Frequency          | Level                                                            | Pol                                                                          | 15.209    | / 15.247    | Detector             | Azimuth       | Height | Comments     |                                        |  |  |  |  |
| MHz                | dBµV/m                                                           | v/h                                                                          | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters |              |                                        |  |  |  |  |
| 2364.960           | 53.8                                                             | H                                                                            | 54.0      | -0.2        | AVG                  | 345           | 1.3    | RB 1 MHz;V   | /B 10 Hz;Pk                            |  |  |  |  |
| 2367.630           | 58.9                                                             | H                                                                            | 74.0      | -15.1       | PK                   | 345           | 1.3    | RB 1 MHz;V   | /B 3 MHz;Pk                            |  |  |  |  |
| 2364.860           | 51.6                                                             | V                                                                            | 54.0      | -2.4        | AVG                  | 86            | 1.1    | RB 1 MHz;V   | /B 10 Hz;Pk                            |  |  |  |  |
| 2369.430           | 57.3                                                             | V                                                                            | 74.0      | -16.7       | PK                   | 86            | 1.1    | RB 1 MHz;V   | /B 3 MHz;Pk                            |  |  |  |  |
| Amplitude (dBuV/m) | 20.0 -<br>80.0 -<br>60.0 -<br>40.0 -<br>20.0 -<br>20.0 -<br>2000 |                                                                              | 2200 2    | 2300 24     | 00 2500<br>Frequency | 2600<br>(MHz) | 2700   | 2800         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |  |  |  |
|                    |                                                                  |                                                                              |           |             |                      |               |        |              |                                        |  |  |  |  |
|                    |                                                                  |                                                                              |           |             |                      |               |        |              |                                        |  |  |  |  |

| Ű                                                      |                                                                 | D <b>tt</b>                                                         |                                             |              |                               |                             |                     | EM            | C Test Data                           |
|--------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|--------------|-------------------------------|-----------------------------|---------------------|---------------|---------------------------------------|
| Client:                                                | Intel                                                           |                                                                     |                                             |              |                               |                             |                     | Job Number:   | J84264                                |
| Model.                                                 | 135RNIHM///                                                     | / & 135RNHI                                                         | 1                                           |              |                               |                             | T-                  | Log Number:   | T84548                                |
| wouer.                                                 |                                                                 |                                                                     | J                                           |              |                               |                             | Ассо                | unt Manager:  | Christine Krebill                     |
| Contact:                                               | Steve Hacke                                                     | ett                                                                 |                                             |              |                               |                             |                     |               |                                       |
| Standard:                                              | FCC 15 B, 1                                                     | 5.247, RSS                                                          | 210                                         |              |                               |                             |                     | Class:        | N/A                                   |
| Run #6: Ra<br>[<br>Te<br>Te<br>Preliminary             | idiated Spur<br>Date of Test:<br>est Engineer:<br>est Location: | ious Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe<br>missions ex | ons, 1-10GH<br>las<br>r #3<br>ccluding allo | Iz. Operatin | ng Mode: 802<br>I (Peak versu | .11b @ 2412<br>s average li | 2 MHz, BT ∣<br>mit) | Basic @ 244(  | ) MHz                                 |
| Frequency                                              | Level                                                           | Pol                                                                 | 15.209                                      | / 15.247     | Detector                      | Azimuth                     | Height              | Comments      |                                       |
| MHz                                                    | dBµV/m                                                          | v/h                                                                 | Limit                                       | Margin       | Pk/QP/Avg                     | degrees                     | meters              |               |                                       |
| 7237.170                                               | 44.6                                                            | V                                                                   | 54.0                                        | -9.4         | Peak                          | 293                         | 1.3                 | Signal not ir | restricted band                       |
| 1457.690                                               | 38.3                                                            | H                                                                   | 54.0                                        | -15.7        | Peak                          | 155                         | 1.0                 |               |                                       |
| Final moas                                             | uromonts at                                                     | 3m                                                                  |                                             |              |                               |                             |                     |               |                                       |
| Frequency                                              |                                                                 | Pol                                                                 | 15.209                                      | / 15.247     | Detector                      | Azimuth                     | Heiaht              | Comments      |                                       |
| MHz                                                    | dBuV/m                                                          | v/h                                                                 | Limit                                       | Margin       | Pk/QP/Avg                     | degrees                     | meters              | o on internet |                                       |
| 1457.560                                               | 39.5                                                            | Н                                                                   | 54.0                                        | -14.5        | AVG                           | 163                         | 1.0                 | RB 1 MHz;V    | /B 10 Hz;Pk                           |
| 1457.550                                               | 42.9                                                            | Н                                                                   | 74.0                                        | -31.1        | PK                            | 163                         | 1.0                 | RB 1 MHz;V    | /B 3 MHz;Pk                           |
| 120.<br>100.<br>(W)<br>80.<br>80.<br>60.<br>40.<br>20. | 0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>1000                  | hmm                                                                 | In                                          |              |                               | 1z)                         |                     |               | · · · · · · · · · · · · · · · · · · · |
|                                                        |                                                                 |                                                                     |                                             |              |                               |                             |                     |               |                                       |



| <u> </u>                          | An ZALZA                                                                      | Company       |           |                                |                        |                    |        |                                |
|-----------------------------------|-------------------------------------------------------------------------------|---------------|-----------|--------------------------------|------------------------|--------------------|--------|--------------------------------|
| Client:                           | Intel                                                                         |               |           |                                |                        |                    |        | Job Number: J84264             |
|                                   | 10551                                                                         |               |           |                                | T-                     | Log Number: T84548 |        |                                |
| Model:                            | 135BNHMW                                                                      | & 135BNHU     | J         |                                |                        | ·                  | Acco   | unt Manager: Christine Krebill |
| Contact:                          | Steve Hacke                                                                   | ett           |           |                                |                        |                    |        |                                |
| Standard                          | FCC 15 B 1                                                                    | 5 247 RSS     | 210       |                                |                        |                    |        | Class: N/A                     |
| Standaru.                         | 100100,1                                                                      | 5.2 H , 100 . | 210       |                                |                        |                    |        |                                |
| Droliminory                       |                                                                               | miccione at   | 20cm from | 2 2 CUz (D/                    | ak voreue a            | (orago limit)      |        |                                |
| Frequency                         |                                                                               | Dol           | 15 200    | <u>2-3 GHZ (Ре</u><br>/ 15 247 | Detector               |                    | Hoight | Comments                       |
| MHz                               | dBuV/m                                                                        | v/h           | L imit    | Margin                         | Pk/OP/Avg              | dearees            | meters | Comments                       |
| 2255 000                          | <u>44 4</u>                                                                   |               | 54.0      | -96                            | Peak                   | 181                | 10     |                                |
| 2266.670                          | 51.1                                                                          | V             | NA        | NA                             | Peak                   | 181                | 1.0    |                                |
| 2573.330                          | 44.6                                                                          | V             | 54.0      | -9.4                           | Peak                   | 181                | 1.0    | 1                              |
| 2871.670                          | 45.2                                                                          | V             | 54.0      | -8.8                           | Peak                   | 181                | 1.0    |                                |
|                                   |                                                                               | I             |           |                                |                        |                    |        |                                |
| Final measu                       | urements at                                                                   | 3m            |           |                                |                        |                    |        |                                |
| Frequency                         | Level                                                                         | Pol           | 15.209    | / 15.247                       | Detector               | Azimuth            | Height | Comments                       |
| MHz                               | dBµV/m                                                                        | v/h           | Limit     | Margin                         | Pk/QP/Avg              | degrees            | meters |                                |
| 2868.570                          | 42.2                                                                          | Н             | 54.0      | -11.8                          | AVG                    | 235                | 1.0    | RB 1 MHz;VB 10 Hz;Pk           |
| 2868.440                          | 49.9                                                                          | Н             | 74.0      | -24.1                          | PK                     | 235                | 1.0    | RB 1 MHz;VB 3 MHz;Pk           |
| 2253.670                          | 41.9                                                                          | Н             | 54.0      | -12.1                          | AVG                    | 236                | 1.2    | RB 1 MHz;VB 10 Hz;Pk           |
| 2251.470                          | 51.6                                                                          | Н             | 74.0      | -22.4                          | PK                     | 236                | 1.2    | RB 1 MHz;VB 3 MHz;Pk           |
| 2874.770                          | 39.5                                                                          | V             | 54.0      | -14.5                          | AVG                    | 271                | 1.0    | RB 1 MHz;VB 10 Hz;Pk           |
| 2863.870                          | 51.0                                                                          | V             | 74.0      | -23.0                          | PK                     | 271                | 1.0    | RB 1 MHz;VB 3 MHz;Pk           |
| 12<br>10<br>(W//m)<br>6<br>4<br>2 | 0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 -<br>0.0 - | 2100 2        | 2200 23   | 00 240                         | 00 2500<br>Frequency ( |                    | 2700   | 2800 2900 3000                 |
|                                   |                                                                               |               |           |                                |                        |                    |        |                                |

| Madal                                                                | İ                                                              |                                                     |                                             |              |               |                            |                                    | JOD Mullipel. J04204 |  |
|----------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------|---------------|----------------------------|------------------------------------|----------------------|--|
|                                                                      |                                                                |                                                     | 1                                           |              |               |                            | T-                                 | Log Number: T84548   |  |
| woder:                                                               | 132RIAHIM                                                      | & 135BINH                                           | J                                           |              |               |                            | Account Manager: Christine Krebill |                      |  |
| Contact:                                                             | Steve Hacke                                                    | tt                                                  |                                             |              |               |                            |                                    |                      |  |
| Standard:                                                            | FCC 15 B, 1                                                    | 5.247, RSS                                          | 210                                         |              |               |                            |                                    | Class: N/A           |  |
| Run #7: Ra<br>[<br>Te<br>Te<br>Preliminary                           | diated Spuri<br>Date of Test:<br>st Engineer:<br>est Location: | ous Emissi<br>9/20/2011<br>Rafael Vare<br>FT Chambe | ons, 1-10GF<br>las<br>r #3<br>coluding allo | lz. Operatin | ig Mode: 802. | 11b @ 2462<br>s average li | 2 MHz, BT I                        | Basic @ 2440 MHz     |  |
| Frequency                                                            | Level                                                          | Pol                                                 | 15.209                                      | 15.247       | Detector      | Azimuth                    | Heiaht                             | Comments             |  |
| MHz                                                                  | dBµV/m                                                         | v/h                                                 | Limit                                       | Margin       | Pk/QP/Avg     | degrees                    | meters                             |                      |  |
| 1328.830                                                             | 44.9                                                           | V                                                   | 54.0                                        | -9.1         | Peak          | 138                        | 1.0                                |                      |  |
| 1457.690                                                             | 38.6                                                           | Н                                                   | 54.0                                        | -15.4        | Peak          | 163                        | 1.0                                |                      |  |
| 7385.110                                                             | 47.8                                                           | V                                                   | 54.0                                        | -6.2         | Peak          | 283                        | 1.6                                |                      |  |
| inal mass                                                            | iromonto et                                                    | 2m                                                  |                                             |              |               |                            |                                    |                      |  |
| Frequency                                                            |                                                                | Pol                                                 | 15 200                                      | / 15 247     | Detector      | Δzimuth                    | Height                             | Comments             |  |
| MHz                                                                  | dBuV/m                                                         | v/h                                                 | l imit                                      | Margin       | Pk/OP/Avg     | dearees                    | meters                             | Comments             |  |
| 7384.970                                                             | 46.1                                                           | V                                                   | 54.0                                        | -7.9         | AVG           | 284                        | 1.7                                | RB 1 MHz:VB 10 Hz:Pk |  |
| 7384.840                                                             | 52.6                                                           | V                                                   | 74.0                                        | -21.4        | PK            | 284                        | 1.7                                | RB 1 MHz;VB 3 MHz;Pk |  |
| 1328.200                                                             | 29.3                                                           | V                                                   | 54.0                                        | -24.7        | AVG           | 139                        | 1.0                                | RB 1 MHz;VB 10 Hz;Pk |  |
| 1332.160                                                             | 47.1                                                           | V                                                   | 74.0                                        | -26.9        | PK            | 139                        | 1.0                                | RB 1 MHz;VB 3 MHz;Pk |  |
| 120.<br>100.<br>(m/<br>ngp)<br>apnjitude<br>(gn/<br>WW<br>40.<br>20. |                                                                | Winter                                              | Martan                                      |              | hallen been w |                            |                                    |                      |  |
|                                                                      |                                                                |                                                     |                                             | Fi           | requency (MH  | łz)                        |                                    |                      |  |
|                                                                      |                                                                |                                                     |                                             |              |               |                            |                                    |                      |  |



|                            | An /AZ                                                           | △ company   |           |             |                      |               |        |              |                   |
|----------------------------|------------------------------------------------------------------|-------------|-----------|-------------|----------------------|---------------|--------|--------------|-------------------|
| Client:                    | Intel                                                            |             |           |             |                      |               |        | Job Number:  | J84264            |
|                            | 4050111000                                                       |             |           |             |                      |               | T-     | Log Number:  | T84548            |
| Model:                     | 135BNHMW                                                         | & 135BNHU   | J         |             |                      |               | Acco   | unt Manager: | Christine Krebill |
| Contact:                   | Steve Hacke                                                      | ett         |           |             |                      |               |        |              |                   |
| Standard:                  | FCC 15 B, 1                                                      | 5.247, RSS  | 210       |             |                      |               |        | Class:       | N/A               |
|                            |                                                                  |             |           |             |                      |               |        |              | L                 |
| Preliminary                | Spurious E                                                       | missions at | 20cm from | 2-3 GHz (Pe | ak versus av         | verage limit) |        |              |                   |
| Frequency                  | Level                                                            | Pol         | 15.209    | / 15.247    | Detector             | Azimuth       | Height | Comments     |                   |
| MHz                        | dBµV/m                                                           | v/h         | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters |              |                   |
| 2299.540                   | 43.9                                                             | V           | 54.0      | -10.1       | Peak                 | 182           | 1.0    |              |                   |
| 2421.670                   | 49.5                                                             | V           | NA        | NA          | Peak                 | 182           | 1.0    |              |                   |
|                            |                                                                  |             |           |             |                      |               |        |              |                   |
| Final measu                | urements at                                                      | 3m          |           |             |                      |               |        | 1-           |                   |
| Frequency                  | Level                                                            | Pol         | 15.209    | / 15.247    | Detector             | Azimuth       | Height | Comments     |                   |
| MHz                        | dBµV/m                                                           | v/h         | Limit     | Margin      | Pk/QP/Avg            | degrees       | meters |              |                   |
| 2299.230                   | 44.4                                                             | H           | 54.0      | -9.6        | AVG                  | 242           | 1.2    | RB 1 MHz;V   | /B 10 Hz;Pk       |
| 2299.540                   | 53.3                                                             | H           | /4.0      | -20.7       | PK                   | 242           | 1.2    | RB 1 MHz;V   | /B 3 MHz;Pk       |
| 2299.210                   | 42.3                                                             | V           | 54.0      | -11./       | AVG                  | 2/2           | 1.2    | RB 1 MHz;V   | /B 10 Hz;Pk       |
| 2297.940                   | 52.0                                                             | V           | /4.0      | -22.0       | PK                   | 272           | 1.2    | RB 1 MHz;V   | /B 3 MHz;Pk       |
| 1<br>(m//mblitude (dBuv/m) | 20.0 -<br>00.0 -<br>80.0 -<br>60.0 -<br>40.0 -<br>20.0 -<br>2000 | 2100        | 2200 2    | 300 24      | 00 2500<br>Frequency |               | 2700   | 2800         | 2900 3000         |
|                            |                                                                  |             |           |             |                      |               |        |              |                   |
|                            |                                                                  |             |           |             |                      |               |        |              |                   |

| Client: Intel<br>Model: 135BNHMW & 135BNF<br>Contact: Steve Hackett<br>Standard: FCC 15 B, 15.247, RSS<br>Date of Test: 9/20/2011<br>Test Engineer: Rafael Var<br>Test Location: FT Chamb<br>Preliminary Spurious Emissions of<br>Frequency Level Pol<br>MHz dBµV/m v/h<br>1457.690 38.8 H<br>7318.300 45.1 V<br>inal measurements at 3m<br>Frequency Level Pol<br>MHz dBµV/m v/h<br>7313.730 44.3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U<br>sions, 1-10GHz. Oper<br>elas<br>er #3<br>excluding allocated k<br>15.209 / 15.247<br>Limit Marg<br>54.0 -15.<br>54.0 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pand (Peak versu<br>Detector<br>2 Peak                                        | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | T-<br>Acco<br>MHz, BT                       | Job Number: J84264<br>Log Number: T84548<br>unt Manager: Christine Krebil<br>Class: N/A<br>Basic @ 2480 MHz |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Model:       135BNHMW & 135BNH         Contact:       Steve Hackett         Standard:       FCC 15 B, 15.247, RSS         un #8:       Radiated Spurious Emissions         Date of Test:       9/20/2011         Test Engineer:       Rafael Var         Test Location:       FT Chamb         requency       Level       Pol         MHz       dBµV/m       v/h         1457.690       38.8       H         7318.300       45.1       V         inal measurements at 3m       Frequency       Level       Pol         MHz       dBµV/m       v/h       V/h         313.730       44.3       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U<br>5 210<br>5 210<br>5 210<br>5 210<br>5 210<br>5 210<br>5 209<br>5 210<br>5 209<br>5 210<br>5 209<br>5 210<br>5 209<br>5 210<br>5 200<br>5 210<br>5 210 | rating Mode: 802<br>pand (Peak versu<br>/ Detector<br>gin Pk/QP/Avg<br>2 Peak | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | T-<br>Acco<br>' MHz, BT I<br>mit)<br>Height | Log Number: T84548<br>Punt Manager: Christine Krebi<br>Class: N/A<br>Basic @ 2480 MHz                       |
| Contact: Steve Hackett         Standard:       FCC 15 B, 15.247, RSS         Un #8: Radiated Spurious Emissions Emissions Emissions Engineer: Rafael Var Test Location: FT Chamb         Test Location: FT Chamb         reliminary Spurious Emissions e         Test Location: FT Chamb         MHz         MHz <td< td=""><td>5 210<br/>sions, 1-10GHz. Oper<br/>elas<br/>er #3<br/>excluding allocated k<br/>15.209 / 15.247<br/>Limit Marg<br/>54.0 -15.<br/>54.0 -8.9</td><td>rating Mode: 802<br/>pand (Peak versu<br/>/ Detector<br/>gin Pk/QP/Avg<br/>2 Peak</td><td>2.11b @ 2437<br/>us average li<br/>Azimuth<br/>degrees</td><td>MHz, BT</td><td>Class: N/A Class: N/A Basic @ 2480 MHz</td></td<> | 5 210<br>sions, 1-10GHz. Oper<br>elas<br>er #3<br>excluding allocated k<br>15.209 / 15.247<br>Limit Marg<br>54.0 -15.<br>54.0 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rating Mode: 802<br>pand (Peak versu<br>/ Detector<br>gin Pk/QP/Avg<br>2 Peak | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | MHz, BT                                     | Class: N/A Class: N/A Basic @ 2480 MHz                                                                      |
| Contact: Steve Hackett         Standard:       FCC 15 B, 15.247, RSS         un #8:       Radiated Spurious Emissions         Date of Test:       9/20/2011         Test Engineer:       Rafael Var         Test Location:       FT Chamb         reliminary Spurious Emissions e         Trequency       Level         MHz       dBµV/m       v/h         1457.690       38.8       H         7318.300       45.1       V         inal measurements at 3m       Trequency       Level         Frequency       Level       Pol         MHz       dBµV/m       v/h         313.730       44.3       V                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 210<br>5 210<br>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rating Mode: 802<br>pand (Peak versu<br>/ Detector<br>gin Pk/QP/Avg<br>2 Peak | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | MHz, BT                                     | Class: N/A<br>Basic @ 2480 MHz<br>TComments                                                                 |
| Standard:       FCC 15 B, 15.247, RSS         un #8:       Radiated Spurious Emissions         Date of Test:       9/20/2011         Test Engineer:       Rafael Var         Test Location:       FT Chamb         reliminary Spurious Emissions e         Frequency       Level         MHz       dBµV/m       v/h         1457.690       38.8       H         7318.300       45.1       V         inal measurements at 3m       Frequency       Level       Pol         MHz       dBµV/m       v/h         7313.730       44.3       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sions, 1-10GHz. Oper<br>elas<br>er #3<br><u>xcluding allocated k</u><br><u>15.209 / 15.247</u><br><u>Limit Marg</u><br><u>54.0 -15.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pand (Peak versu<br>2 Detector<br>2 Peak                                      | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | MHz, BT                                     | Class: N/A Basic @ 2480 MHz Comments                                                                        |
| un #8: Radiated Spurious Emiss         Date of Test: 9/20/2011         Test Engineer: Rafael Var         Test Location: FT Chamb         reliminary Spurious Emissions effequency         Erequency       Level         MHz       dBµV/m         1457.690       38.8         7318.300       45.1         V       inal measurements at 3m         Frequency       Level         Pol       MHz         MHZ       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sions, 1-10GHz. Oper<br>elas<br>er #3<br>excluding allocated to<br>15.209 / 15.247<br>Limit Marc<br>54.0 -15.<br>54.0 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pand (Peak versu<br>2 Detector<br>2 Peak                                      | 2.11b @ 2437<br>us average li<br>Azimuth<br>degrees | MHz, BT                                     | Basic @ 2480 MHz                                                                                            |
| requency         Level         Pol           MHz         dBμV/m         v/h           1457.690         38.8         H           7318.300         45.1         V           nal measurements at 3m           requency         Level         Pol           MHz         dBμV/m         v/h           7318.300         45.1         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.209 / 15.247           Limit         Marg           54.0         -15.           54.0         -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Peak                                                                        | Azimuth<br>degrees                                  | Height                                      | Comments                                                                                                    |
| MHz         dBμV/m         v/h           1457.690         38.8         H           7318.300         45.1         V           inal measurements at 3m         Frequency         Level         Pol           MHz         dBμV/m         v/h         7313.730         44.3         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limit Marc<br>54.0 -15.<br>54.0 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gin Pk/QP/Avg<br>2 Peak                                                       | degrees                                             | motore                                      |                                                                                                             |
| 1457.690         38.8         H           7318.300         45.1         V           inal measurements at 3m         Trequency         Level         Pol           MHz         dBμV/m         v/h         7313.730         44.3         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.0         -15.           54.0         -8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Peak                                                                        |                                                     | meters                                      | <u> </u>                                                                                                    |
| 7318.300         45.1         V           inal measurements at 3m         Trequency         Level         Pol           MHz         dBμV/m         v/h         7313.730         44.3         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0 -8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                             | 171                                                 | 1.0                                         |                                                                                                             |
| inal measurements at 3m<br>requency Level Pol<br>MHz dBµV/m v/h<br>7313.730 44.3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 Peak                                                                        | 285                                                 | 1.6                                         |                                                                                                             |
| requencyLevelPolMHzdBμV/mv/h7313.73044.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                     |                                             |                                                                                                             |
| MHz         dBμV/m         v/h           7313.730         44.3         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,209 / 15,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detector                                                                      | Azimuth                                             | Heiaht                                      | Comments                                                                                                    |
| 7313.730 44.3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gin Pk/QP/Avg                                                                 | degrees                                             | meters                                      |                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.0 -9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 AVG                                                                         | 288                                                 | 1.6                                         | RB 1 MHz;VB 10 Hz;Pk                                                                                        |
| 7315.100 51.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.0 -22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 PK                                                                          | 288                                                 | 1.6                                         | RB 1 MHz;VB 3 MHz;Pk                                                                                        |
| 120.0-<br>100.0-<br>(W/ng) e0.0-<br>40.0-<br>20.0-<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency (M                                                                  | Hz)                                                 |                                             |                                                                                                             |



| Client:   | Intel                     | Job Number:      | J84264            |
|-----------|---------------------------|------------------|-------------------|
| Model     |                           | T-Log Number:    | T84548            |
| wouer.    |                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett             |                  |                   |
| Standard: | FCC 15 B, 15.247, RSS 210 | Class:           | N/A               |
|           |                           |                  |                   |

#### Preliminary Spurious Emissions at 20cm from 2-3 GHz (Peak versus average limit)

| Level  | Pol                                     | 15.209                                                                                                                    | / 15.247                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                      | Azimuth                                                                                                                                                                                                                                                                                                                                 | Height                                                                                                                                                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dBµV/m | v/h                                     | Limit                                                                                                                     | Margin                                                                                                                                                                                        | Pk/QP/Avg                                                                                                                                                                                                                                                     | degrees                                                                                                                                                                                                                                                                                                                                 | meters                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 42.7   | V                                       | 54.0                                                                                                                      | -11.3                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                          | 183                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46.1   | V                                       | 54.0                                                                                                                      | -7.9                                                                                                                                                                                          | Peak                                                                                                                                                                                                                                                          | 183                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                         | signal not in restricted band                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 46.4   | V                                       | 54.0                                                                                                                      | -7.6                                                                                                                                                                                          | Peak                                                                                                                                                                                                                                                          | 183                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                         | signal not in restricted band                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | Level<br>dBµV/m<br>42.7<br>46.1<br>46.4 | Level         Pol           dBμV/m         v/h           42.7         V           46.1         V           46.4         V | Level         Pol         15.209           dBμV/m         v/h         Limit           42.7         V         54.0           46.1         V         54.0           46.4         V         54.0 | Level         Pol         15.209 / 15.247           dBμV/m         v/h         Limit         Margin           42.7         V         54.0         -11.3           46.1         V         54.0         -7.9           46.4         V         54.0         -7.6 | Level         Pol         15.209 / 15.247         Detector           dBμV/m         v/h         Limit         Margin         Pk/QP/Avg           42.7         V         54.0         -11.3         Peak           46.1         V         54.0         -7.9         Peak           46.4         V         54.0         -7.6         Peak | Level         Pol         15.209 / 15.247         Detector         Azimuth           dBμV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees           42.7         V         54.0         -11.3         Peak         183           46.1         V         54.0         -7.9         Peak         183           46.4         V         54.0         -7.6         Peak         183 | Level         Pol         15.209 / 15.247         Detector         Azimuth         Height           dBμV/m         v/h         Limit         Margin         Pk/QP/Avg         degrees         meters           42.7         V         54.0         -11.3         Peak         183         1.0           46.1         V         54.0         -7.9         Peak         183         1.0           46.4         V         54.0         -7.6         Peak         183         1.0 |

#### Final measurements at 3m

| Frequency | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |
|-----------|--------|-----|--------|----------|-----------|---------|--------|----------------------|
| MHz       | dBµV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |
| 2278.830  | 42.2   | Н   | 54.0   | -11.8    | AVG       | 242     | 1.2    | RB 1 MHz;VB 10 Hz;Pk |
| 2279.600  | 51.2   | Н   | 74.0   | -22.8    | PK        | 242     | 1.2    | RB 1 MHz;VB 3 MHz;Pk |



| Client:<br>Model:<br>Contact: Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intel<br>135BNHMW<br>Steve Hacket<br>FCC 15 B, 15                    | & 135BNHL                                          | J                                           |              |               |            |              | Job Number:       | J84264                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------|---------------|------------|--------------|-------------------|---------------------------------------|
| Model:<br>Contact:<br>Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135BNHMW<br>Steve Hacket<br>FCC 15 B, 15                             | & 135BNHL<br>t                                     | J                                           |              |               |            |              |                   |                                       |
| Contact:<br>Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steve Hacket                                                         | t                                                  | )                                           |              |               |            | T-           | Log Number:       | T84548                                |
| Contact:<br>Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steve Hacket<br>FCC 15 B, 15                                         | t                                                  |                                             |              |               | Ассо       | unt Manager: | Christine Krebill |                                       |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FCC 15 B, 15                                                         |                                                    |                                             |              |               |            |              |                   |                                       |
| un #9∙ Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 5.247, RSS                                         | 210                                         |              |               |            |              | Class:            | N/A                                   |
| D<br>Tes<br>Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | diated Spurid<br>Date of Test: 9<br>St Engineer: F<br>St Location: F | bus Emissi<br>D/20/2011<br>Rafael Vare<br>T Chambe | ons, 1-10GH<br>las<br>r #3<br>voluding allo | lz. Operatin | ig Mode: 802. | 11b @ 2437 | ′MHz, BT ∣   | EDR @ 2402        | MHz                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level                                                                | Pol                                                | 15.209/                                     | 15.247       | Detector      | Azimuth    | Heiaht       | Comments          |                                       |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBµV/m                                                               | v/h                                                | Limit                                       | Margin       | Pk/QP/Avg     | degrees    | meters       | e en internet     |                                       |
| 1458.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.8                                                                 | Н                                                  | 54.0                                        | -16.2        | Peak          | 159        | 1.0          |                   |                                       |
| 7311.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.5                                                                 | V                                                  | 54.0                                        | -9.5         | Peak          | 288        | 1.6          |                   |                                       |
| inal maagu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iromonto at 2                                                        |                                                    |                                             |              |               |            |              |                   |                                       |
| That measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      | Pol                                                | 15 209                                      | 15 247       | Detector      | Azimuth    | Height       | Comments          |                                       |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBµV/m                                                               | v/h                                                | Limit                                       | Margin       | Pk/QP/Avg     | degrees    | meters       | Comments          |                                       |
| 7315.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.4                                                                 | V                                                  | 54.0                                        | -9.6         | AVG           | 288        | 1.6          | RB 1 MHz;V        | ′B 10 Hz;Pk                           |
| 7314.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.1                                                                 | V                                                  | 74.0                                        | -21.9        | PK            | 288        | 1.6          | RB 1 MHz;V        | 'B 3 MHz;Pk                           |
| 120.0<br>(W/Mg<br>(W/Ang<br>(W/Ang<br>(W/Ang<br>(W/Ang<br>(W/Ang<br>(W/Ang<br>(W/Ang<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>(W/Ang)<br>( | ) -<br>) -<br>) -<br>) -<br>) -<br>) -<br>) -<br>) -<br>) -<br>) -   | www.                                               | Juli                                        |              |               |            |              |                   | · · · · · · · · · · · · · · · · · · · |



|                                                                                                          | An ZAZ                                                   | Company     |           |             |                                                |                            |        |                                |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|-----------|-------------|------------------------------------------------|----------------------------|--------|--------------------------------|
| Client:                                                                                                  | Intel                                                    |             |           |             |                                                |                            |        | Job Number: J84264             |
|                                                                                                          |                                                          |             |           |             |                                                |                            | T-     | Log Number: T84548             |
| Model:                                                                                                   | 135BNHMW                                                 | & 135BNHL   | J         |             |                                                | ł                          | Acco   | unt Manager: Christine Krebill |
| Contact:                                                                                                 | Steve Hacke                                              | ett         |           |             |                                                |                            |        |                                |
| Standard:                                                                                                | FCC 15 B, 1                                              | 5.247, RSS  | 210       |             |                                                |                            |        | Class: N/A                     |
| otandara                                                                                                 |                                                          |             |           |             |                                                |                            |        |                                |
| Preliminary                                                                                              | Spurious F                                               | missions at | 20cm from | 2-3 GHz (Pe | ak versus av                                   | verage limit)              | 1      |                                |
| Frequency                                                                                                | Level                                                    | Pol         | 15.209    | / 15.247    | Detector                                       | Azimuth                    | Heiaht | Comments                       |
| MHz                                                                                                      | dBµV/m                                                   | v/h         | Limit     | Margin      | Pk/QP/Avg                                      | degrees                    | meters |                                |
| 2276.670                                                                                                 | 43.0                                                     | V           | 54.0      | -11.0       | Peak                                           | 179                        | 1.0    |                                |
| 2368.330                                                                                                 | 46.4                                                     | V           | 54.0      | -7.6        | Peak                                           | 179                        | 1.0    |                                |
| 2473.330                                                                                                 | 49.4                                                     | V           | NA        | NA          | Peak                                           | 179                        | 1.0    |                                |
| 2565.000                                                                                                 | 47.1                                                     | V           | 54.0      | -6.9        | Peak                                           | 179                        | 1.0    | Signal not in restricted band  |
|                                                                                                          |                                                          |             |           |             |                                                |                            |        |                                |
| Final measu                                                                                              | urements at                                              | 3m          |           |             | <b>•</b> - • • • • • • • • • • • • • • • • • • | ·····                      | ····   | T.                             |
| Frequency                                                                                                | Level                                                    | Pol         | 15.209/   | / 15.24/    | Detector                                       | Azimuth                    | Height | Comments                       |
| MHz                                                                                                      | dBµV/m                                                   | v/h         | Limit     | Margin      | Pk/QP/Avg                                      | degrees                    | meters |                                |
| 23/0.600                                                                                                 | 50.2                                                     | <u>H</u>    | 54.0      | -3.8        | AVG                                            | 345                        | 1.0    | RB1 MHz;VB 10 Hz;PK            |
| 2369.230                                                                                                 | 57.8                                                     | <u>H</u>    | /4.0      | -16.2       | PK                                             | 345                        | 1.0    |                                |
| 22/8.3/0                                                                                                 | 42.0                                                     | <u>H</u>    | 54.0      | -12.0       | AVG                                            | 243                        | 1.2    |                                |
| 2278.500                                                                                                 | 51.1                                                     | H           | /4.0      | -22.9       | PK                                             | 243                        | 1.2    |                                |
| 23/0.460                                                                                                 | 46.3                                                     | V           | 54.0      | -/./        | AVG                                            | 88                         | 1.1    |                                |
| 2305.900                                                                                                 | 54.3                                                     | V           | /4.0      | -19.7       | ΡK                                             | бõ                         | 1.1    | RB I MHZ;VB 3 MHZ;PK           |
| t;<br>10<br>11<br>12<br>12<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 20.0 -<br>00.0 -<br>80.0 -<br>40.0 -<br>20.0 -<br>20.0 - | 2100        | 2200 2:   | 300 24      | 00 2500<br>Frequency                           | ил Паллан<br>2600<br>(MHz) |        | 2800 2900 3000                 |
|                                                                                                          |                                                          |             |           |             |                                                |                            |        |                                |
|                                                                                                          |                                                          |             |           |             |                                                |                            |        |                                |

| <b>C</b>               |                            |                             |                                |                              |                                   | EMO                     | C Test Data                         |
|------------------------|----------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------------|-------------------------|-------------------------------------|
| Client:                | Intel                      |                             |                                |                              |                                   | Job Number:             | J84264                              |
| Model <sup>.</sup>     | 135BNHMW                   | / & 135BNHI                 | J                              |                              |                                   | T-Log Number:           | T84548                              |
|                        |                            |                             | 5                              |                              |                                   | Account Manager:        | Christine Krebill                   |
| Contact:               | Steve Hack                 | ett                         | 210                            |                              |                                   | Class                   | ΝΙ/Λ                                |
| Stanuaru:              | FUC 13 D, 1                | J.247, KJJ                  | 210                            |                              |                                   | Class.                  | N/A                                 |
|                        | RS                         | S 210 Ra                    | diated S                       | purious                      | Emissions (Bluet                  | ooth Receive Mo         | ode)                                |
| Test Spec              | cific Detai                | ls                          |                                |                              |                                   |                         |                                     |
|                        | Objective:                 | The objective specification | e of this test<br>listed above | session is to<br>e.          | perform final qualification       | testing of the EUT with | respect to the                      |
| Summary                | of Result                  | s - Device                  | e Operatin                     | g in the 24                  | 00-2483.5 MHz Ban                 | b                       |                                     |
| Run #                  | Mode                       | Channel                     | Target<br>Power                | Measured<br>Power            | Test Performed                    | Limit                   | Result / Margin                     |
| MAC Addre              | ss: 0015009                | 6B40F DR1                   | U Tool Vers                    | sion 1.5.3-03                | 20 Driver version 15.0.0          | 0.51 - Sample with PIF  | A antenna                           |
| 1                      |                            | 2441                        |                                |                              | Radiated Emissions,<br>1 - 40 GHz | RSS 210                 | 36.8dBµV/m @<br>2332 1MHz (-17 2dB) |
| MAC Addre              | ess: 0015009               | 6C325 DRT                   | U Tool Vers                    | ion 1.5.3-032                | 20 Driver version 15.0.0          | .51 - Sample with integ | gral antenna                        |
| 2                      | Receive<br>Trace           | 2441                        | -                              | -                            | Radiated Emissions,<br>1 - 40 GHz | RSS 210                 | 49.0dBµV/m @<br>2320.0MHz (-5.0dB)  |
| Ambient                | Condition                  | S:                          | T<br>R                         | emperature:<br>el. Humidity: | 18-25 °C<br>30-40 %               |                         |                                     |
| Modificat<br>No modifi | ions Made<br>cations were  | e During T<br>made to the   | <b>esting</b><br>EUT during    | testing                      |                                   |                         |                                     |
| Deviation<br>No deviat | is From Th<br>ions were ma | ne Standa                   | r <b>d</b><br>requirement      | s of the stand               | lard.                             |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |
|                        |                            |                             |                                |                              |                                   |                         |                                     |





| <b>E</b>                |                                                                              |                                |                          | EMO                       | C Test Data       |
|-------------------------|------------------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------|-------------------|
| Client:                 | Intel                                                                        |                                |                          | Job Number:               | J84264            |
| Model.                  | 135RNHMW & 135RNHH                                                           |                                |                          | T-Log Number:             | T84548            |
|                         |                                                                              |                                |                          | Account Manager:          | Christine Krebill |
| Contact:                | Steve Hackett                                                                |                                |                          | Class                     | ΝΙ/Λ              |
| Stanuaru.               | FUU 10 D, 10.247, KOO ZIU                                                    |                                |                          | Ulass.                    | N/A               |
| RS                      | S 210 and FCC 15.247                                                         | (FHSS) Radia                   | ted Spurious I           | Emissions (Bluet          | ooth FHSS)        |
| Test Spec               | Cific Details<br>Objective: The objective of this<br>specification listed ab | test session is to pe<br>pove. | rform final qualificatio | n testing of the EUT with | respect to the    |
| Ambient (               | Conditions:                                                                  | Temperature:<br>Rel. Humidity: | 18 - 25 °C<br>30 - 45 %  |                           |                   |
| Modificat<br>No modific | ions Made During Testing<br>cations were made to the EUT dur                 | ing testing                    |                          |                           |                   |
| No deviati              | ions were made from the requirem                                             | ents of the standard           | Ι.                       |                           |                   |

| Ć                    |                              |               |                                       |                             |                                                  | EMO                             | C Test Data                          |
|----------------------|------------------------------|---------------|---------------------------------------|-----------------------------|--------------------------------------------------|---------------------------------|--------------------------------------|
| Client:              | Intel                        |               |                                       |                             |                                                  | Job Number:                     | J84264                               |
| Model                |                              | / 8. 125BNIUI |                                       | T-Log Number:               | T84548                                           |                                 |                                      |
| Mouel.               |                              |               | 0                                     |                             | Account Manager:                                 | Christine Krebill               |                                      |
| Contact:             | t: Steve Hackett             |               |                                       |                             |                                                  |                                 |                                      |
| Standard:            | d: FCC 15 B, 15.247, RSS 210 |               |                                       |                             |                                                  | Class:                          | N/A                                  |
| Summary<br>Target po | of Result                    | s - Device    | e Operating                           | g in the 24<br>It exceeding | 00-2483.5 MHz Banc<br>7dBm for both integral and | I<br>PIFA antennas              |                                      |
| Run #                | Mode                         | Channel       | Power<br>Setting                      | Measured<br>Power           | Test Performed                                   | Limit                           | Result / Margin                      |
| MAC Addre            | ess: 0015009                 | 6B40F DR      | TU Tool Vers                          | ion 1.5.3-03                | 20 Driver version 15.0.0                         | .51 - Sample with PIF.          | A antenna                            |
|                      |                              |               | 8                                     | 6.1                         | Restricted Band Edge                             | FCC Part 15.209 /               | 42.3dBµV/m@                          |
| 1a                   | 2402                         | 1a 2402       |                                       |                             | (2390 IVIHZ)<br>Radiated Emissions               | I5.247(C)<br>FCC Part 15 209 /  | /3 2dBul//m@                         |
|                      |                              |               | 8                                     | 6.1                         | 1 -40 GHz                                        | 15.247( c)                      | 1233.2MHz (-10.8dB)                  |
| 16                   | Basic rate                   | 2441          | 0                                     | 6.6                         | Radiated Emissions,                              | FCC Part 15.209 /               | 43.0dBµV/m @                         |
| ai                   | 1Mb/s                        | 2441          | ð                                     | 0.0                         | 1 - 26 GHz                                       | 15.247( c)                      | 1457.8MHz (-11.0dB)                  |
|                      |                              |               | 8                                     | 6.4                         | Restricted Band Edge                             | FCC Part 15.209 /               | 42.8dBµV/m@                          |
| 1c                   | 2480                         | 2480          |                                       |                             | (2483.5 MHZ)<br>Dadiated Emissions               | 15.247( C)                      | 2483.5MHZ (-11.20B)                  |
|                      |                              |               | 8                                     | 6.4                         | 1 -40 GHz                                        | 15.247( c)                      | 1457.6MHz (-11.3dB)                  |
|                      |                              |               | 0                                     | 2.(                         | Restricted Band Edge                             | FCC Part 15.209 /               | 42.3dBµV/m @                         |
| 29                   |                              | 2402          | 8                                     | 2.6                         | (2390 MHz)                                       | 15.247( c)                      | 2389.9MHz (-11.7dB)                  |
| 20                   |                              | 2402          | 8                                     | 2.6                         | Radiated Emissions,                              | FCC Part 15.209 /               |                                      |
|                      |                              |               |                                       | 2.0                         | 1 -40 GHz                                        | 15.247( c)                      |                                      |
| 2b                   | EDR<br>2Mb/s                 | 2441          | 8                                     | 3.4                         | Radiated Emissions,                              | FUU Part 15.209 /<br>15.247( c) | 42.90BµV/m@<br>1457.6MHz (11.1dB)    |
|                      | 21010/2                      |               |                                       |                             | Restricted Band Edge                             | FCC Part 15,209 /               | 43.0dBuV/m @                         |
| 0.                   |                              | 0.400         | 8                                     | 3.0                         | (2483.5 MHz)                                     | 15.247( c)                      | 2483.5MHz (-11.0dB)                  |
| 2C                   |                              | 2480          | 0                                     | 2.0                         | Radiated Emissions,                              | FCC Part 15.209 /               |                                      |
|                      |                              |               | 0                                     | 5.0                         | 1 -40 GHz                                        | 15.247( c)                      |                                      |
| MAC Addre            | ess: 0015009                 | 06C325 DRT    | U Tool Vers                           | ion 1.5.3-032               | 20 Driver version 15.0.0.                        | 51 - Sample with inte           | gral antenna                         |
| 3a                   | Worst case                   | 2402          | 8                                     |                             | Restricted Band Edge                             | FCC Part 15.209 /               | 42.1dBµV/m@                          |
|                      | (EDR)                        |               |                                       |                             | (2390 MHZ)<br>Restricted Band Edge               | I5.247(C)<br>FCC Part 15 2097   | 2382.9MHZ (-11.90B)<br>//7.0dBu/V/m@ |
| 3b                   | (FDR)                        | 2480          | 8                                     |                             | (2483.5 MHz)                                     | 15.247( c)                      | 2483.5MHz (-7.0dB)                   |
| 4                    | LENY                         | 0.400         | 0                                     |                             | Radiated Emissions,                              | FCC Part 15.209 /               | 46.8dBµV/m @                         |
| 48                   | Worst case                   | 2402          | 8                                     |                             | 1 -40 GHz                                        | 15.247( c)                      | 2980.0MHz (-7.2dB)                   |
| 4b                   | Mode from                    | 2441          | 8                                     |                             | Radiated Emissions,                              | FCC Part 15.209 /               | 45.3dBµV/m@                          |
|                      | runs 1 and                   |               | , , , , , , , , , , , , , , , , , , , |                             | 1-40 GHz                                         | 15.247( c)                      | 2998.3MHz (-8.7dB)                   |
| 4c                   | 2 (Basic)                    | 2480          | 8                                     |                             | Raulated Emissions,<br>1-40 GHz                  | 15.247( c)                      | 45.50Bµv/m@<br>2998.3MHz (-8.5dB)    |
|                      |                              | 1             | 1                                     |                             |                                                  |                                 |                                      |
|                      |                              |               |                                       |                             |                                                  |                                 |                                      |

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                     |                |                   |                              |                          |                 |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|----------------|-------------------|------------------------------|--------------------------|-----------------|-----------------------|
| <b>CE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                     |                |                   |                              |                          | EMO             | C Test Data           |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                     |                |                   |                              |                          | Job Number:     | J84264                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                     |                |                   |                              | T-I                      | Log Number:     | T84548                |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135BNHMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | & 135BNHL                                                           | J                                   |                |                   | ļ                            | Αςςοι                    | unt Manager:    | Christine Krebill     |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Steve Hacke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ett                                                                 |                                     |                |                   |                              |                          |                 |                       |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FCC 15 B, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.247, RSS                                                          | 210                                 |                |                   |                              |                          | Class:          | N/A                   |
| otandare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 012.1.7                                                             |                                     |                |                   |                              |                          |                 |                       |
| Run #1: Ra<br>C<br>Te<br>Run #1a: L<br>Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | diated Spuri<br>Date of Test:<br>St Engineer:<br>ow Channel<br>Signal Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ious Emissi<br>9/12/2011<br>David Bare<br>@ 2402 MH<br>I Strength - | ons, 1000 - 4<br>Iz<br>Direct measu | 10,000 MHz.    | Operating M<br>Te | lode:Basic r<br>st Location: | rate, 1Mb/s<br>FT Chambe | er #4           |                       |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pol                                                                 | 15.209/                             | / 15.247       | Detector          | Azimuth                      | Height                   | Comments        |                       |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v/h                                                                 | Limit                               | Margin         | Pk/QP/Avg         | degrees                      | meters                   |                 |                       |
| 2389.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                   | 54.0                                | - <u>11.</u> 7 | AVG               | 72                           | 1.2                      | POS; RB11       | MHz; VB: <u>10 Hz</u> |
| 2388.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                   | 74.0                                | -18.7          | PK                | 72                           | 1.2                      | POS; RB 1 M     | MHz; VB: 10 MHz       |
| 2387.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н                                                                   | 54.0                                | -11.8          | AVG               | 246                          | 1.5                      | POS; RB1N       | MHz; VB: 10 Hz        |
| 2387.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н                                                                   | 74.0                                | -18.5          | PK                | 246                          | 1.5                      | POS; RB 1 M     | MHz; VB: 10 MHz       |
| 2 Amplitude (dBuV/m)<br>5 Amplitu | 0.0 -<br>0.0 -<br>0. | Muni                                                                | milian                              | Judal          | Frequency         | (MHz)                        |                          |                 | · · · 10000           |
| Other Spuri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OUS EMISSIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DNS<br>Pol                                                          | 15,209                              | / 15 247       | Detector          | ∆zimuth                      | Height                   | Comments        |                       |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dRuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v/h                                                                 | Limit                               | Margin         | Pk/OP/Avg         | dearees                      | meters                   | Comments        |                       |
| 1233.210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                                                   | 54.0                                | -10.8          | Peak              | 104                          | 1.0                      | Peak readin     | a vs. average limit   |
| 1457.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н                                                                   | 54.0                                | -11.4          | Peak              | 133                          | 1.0                      | Peak readin     | g vs. average limit   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                     |                |                   |                              |                          | <u>I</u> ,      |                       |
| Note 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For emissior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns in restricte                                                     | ed bands, the                       | limit of 15.2  | .09 was used.     |                              |                          |                 |                       |
| Note 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emissions n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ot in restricte                                                     | ed bands are                        | measured a     | s antenna cor     | nducted and                  | compared t               | o the out of b. | and power limit.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scans made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | between 10                                                          | - 40GHz with                        | n the measu    | rement anten      | na moved ar                  | ound the ca              | ard and its an  | tennas 10-20cm from   |
| Note 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the device in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | idicated there                                                      | e were no sig                       | jnifcant emis  | sions in this f   | requency rar                 | nge. 19.696              | GHz was visa    | able at 10cm but not  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | above the no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bise floor of t                                                     | he measurm                          | ent system 1   | meter away.       | This emission                | on does not              | change with     | Tx frequency.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                     |                |                   |                              |                          |                 |                       |



| C I        |                            |                 |               |                      |                |                      |                                                                                                               | EM                                           | C Test Data         |  |  |
|------------|----------------------------|-----------------|---------------|----------------------|----------------|----------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|--|--|
| Client:    | Intel                      |                 |               |                      |                |                      |                                                                                                               | Job Number:                                  | J84264              |  |  |
|            |                            |                 |               | T-Log Number: T84548 |                | T84548               |                                                                                                               |                                              |                     |  |  |
| Model:     | 135BNHMW                   | / & 135BNHL     | J             | Acco                 | unt Manager:   | Christine Krebill    |                                                                                                               |                                              |                     |  |  |
| Contact:   | Steve Hacke                | Steve Hackett   |               |                      |                |                      |                                                                                                               |                                              |                     |  |  |
| Standard:  | FCC 15 B, 1                | 5.247, RSS      | 210           |                      |                |                      |                                                                                                               | Class:                                       | N/A                 |  |  |
|            |                            |                 |               |                      |                |                      | l                                                                                                             |                                              |                     |  |  |
| Run #1c: H | igh Channel                | @ 2480 MH       | Z             |                      |                |                      |                                                                                                               |                                              |                     |  |  |
| Band Edge  | Signal Field               | Strength - I    | Direct measu  | urement of           | field strength | ١                    |                                                                                                               |                                              |                     |  |  |
| Frequency  | Level                      | Pol             | 15.209/       | / 15.247             | Detector       | Azimuth              | Height                                                                                                        | Comments                                     |                     |  |  |
| MHz        | dBµV/m                     | v/h             | Limit         | Margin               | Pk/QP/Avg      | degrees              | meters                                                                                                        |                                              |                     |  |  |
| 2483.500   | 42.8                       | V               | 54.0          | -11.2                | AVG            | 284                  | 1.2                                                                                                           | POS; RB 1                                    | MHz; VB: 10 Hz      |  |  |
| 2484.330   | 56.0                       | V               | 74.0          | -18.0                | PK             | 284                  | 1.2                                                                                                           | POS; RB 1                                    | MHz; VB: 10 MHz     |  |  |
| 2483.500   | 42.7                       | Н               | 54.0          | -11.3                | AVG            | 201                  | 1.0                                                                                                           | POS; RB 1                                    | MHz; VB: 10 Hz      |  |  |
| 2484.740   | 55.7                       | Н               | 74.0          | -18.3                | PK             | 201                  | 1.0                                                                                                           | POS; RB 1                                    | MHz; VB: 10 MHz     |  |  |
| (dBuV/m)   | 70.0 -<br>60.0 -<br>50.0 - |                 |               |                      |                |                      |                                                                                                               |                                              |                     |  |  |
| Amplitude  | 40.0-<br>30.0-             | MM              | millim        | And                  | hillinka       | han ha nation and an | مەربىيە مەربى | fyr <sup>ande</sup> fyn a <sup>bdre</sup> fy |                     |  |  |
|            | 20.0 -<br>10.0 -<br>1000   |                 |               |                      | Frequency      | (MHz)                |                                                                                                               |                                              | 10000               |  |  |
| Other Sp   | urious Emis                | sions           | 45.000        |                      |                |                      |                                                                                                               |                                              |                     |  |  |
| Frequency  | Level                      | Pol             | 15.2097       | / 15.24/             | Detector       | Azimuth              | Height                                                                                                        | Comments                                     |                     |  |  |
| MHZ        | dBµV/m                     | v/h             | Limit         | Margin               | Pk/QP/Avg      | degrees              | meters                                                                                                        | Deale "                                      |                     |  |  |
| 1457.570   | 42.7                       | H               | 54.0          | -11.3                | Peak           | 135                  | 1.0                                                                                                           | Peak readin                                  | g vs. average limit |  |  |
| 1233.360   | 41.7                       | V               | 54.0          | -12.3                | Peak           | 19                   | 1.0                                                                                                           | Peak readin                                  | g vs. average limit |  |  |
|            | <b>F</b>                   |                 | d have to the |                      | 00             |                      |                                                                                                               |                                              |                     |  |  |
| Note 1:    | For emission               | ns in restricte | a bands, the  | imit of 15.2         | was used.      |                      |                                                                                                               |                                              |                     |  |  |
| Note 2:    | Lemissions n               | ot in restricte | d bands are   | measured a           | s antenna cor  | nducted and          | compared                                                                                                      | to the out of b                              | pand power limit.   |  |  |

|                              | Intel                                               |                                                    |                       |                          |                           |                          |                                  | Job Number:                               | J84264                                     |
|------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|----------------------------------|-------------------------------------------|--------------------------------------------|
| Model                        |                                                     | 8. 125RNUI                                         | 1                     |                          |                           |                          | T-                               | Log Number:                               | T84548                                     |
| wouer.                       |                                                     |                                                    | ,                     |                          |                           |                          | Ассон                            | unt Manager:                              | Christine Krebill                          |
| Contact                      | Steve Hacke                                         | tt                                                 |                       |                          |                           |                          |                                  |                                           |                                            |
| Standard:                    | FCC 15 B, 15                                        | 5.247, RSS 2                                       | 210                   |                          |                           |                          |                                  | Class:                                    | N/A                                        |
| un #2: Ra<br>Te<br>un #2a: L | adiated Spuri<br>Date of Test: (<br>est Engineer: ) | ous Emissi<br>9/12/2011<br>David Bare<br>@ 2402 MH | ons, 1000 -<br>Z      | 40,000 MHz.              | . Operating N<br>Te       | lode: EDR, ast Location: | 3Mb/s<br>FT Chamb                | er #4                                     |                                            |
| Band Ed                      | ge Signal Fiel                                      | Id Strength                                        | - Direct me           | asurement of 15 247      | Dotoctor                  | Jth<br>Azimuth           | Hoight                           | Commonts                                  |                                            |
| MH7                          | dBuV/m                                              | v/h                                                | Limit                 | Margin                   | Pk/OP/Ava                 | degrees                  | meters                           | COMINCHIS                                 |                                            |
| 2389.930                     | 42.3                                                | V                                                  | 54.0                  | -11.7                    | AVG                       | 72                       | 1.2                              | POS; RB 1                                 | MHz; VB: 10 Hz                             |
| 2389.800                     | 57.3                                                | V                                                  | 74.0                  | -16.7                    | PK                        | 72                       | 1.2                              | POS; RB 1                                 | MHz; VB: 10 MHz                            |
| 2390.000                     | 42.3                                                | Н                                                  | 54.0                  | -11.7                    | AVG                       | 246                      | 1.5                              | POS; RB 1                                 | MHz; VB: 10 Hz                             |
| 2389.910                     | 54.9                                                | Н                                                  | 74.0                  | -19.1                    | PK                        | 246                      | 1.5                              | POS; RB 1                                 | MHz; VB: 10 MHz                            |
| MHz<br>1457.590<br>1234.430  | dBμV/m<br>42.9<br>42.2                              | v/h<br>H<br>H                                      | Limit<br>54.0<br>54.0 | Margin<br>-11.1<br>-11.8 | Pk/QP/Avg<br>Peak<br>Peak | degrees<br>130<br>146    | meters<br>1.0<br>1.0             | Peak readin<br>Peak readin                | g vs. average limit<br>g vs. average limit |
|                              | ··                                                  |                                                    |                       | ·                        | I                         |                          |                                  |                                           | 5 5                                        |
| lote 1:                      | For emission                                        | s in restricte                                     | d bands, the          | limit of 15.2            | 09 was used.              | ducted and               | compared t                       | to the out of h                           | and nowar limit                            |
|                              | The emission                                        | $\frac{1}{10}$ at 1233 a                           | nd 1457 MH            | z do not cha             | s anienna cui             | FUT Ty free              | uency is ch                      | anded or the                              | Tx is stonned                              |
|                              | 80.0 -                                              |                                                    |                       |                          |                           |                          |                                  |                                           |                                            |
| Amplitude (dBuV/m)           | 60.0 -<br>50.0 -<br>40.0 -<br>30.0 -<br>20.0 -      | <br>                                               | multim                | shaw                     | heller                    | manne                    | يند. <del>الأو</del> اد مروز روم | ,<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                            |





| Client:   | Intel                     | Job Number:      | J84264            |
|-----------|---------------------------|------------------|-------------------|
| Madal     |                           | T-Log Number:    | T84548            |
| MUUUEI.   |                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett             |                  |                   |
| Standard: | FCC 15 B, 15.247, RSS 210 | Class:           | N/A               |
|           |                           |                  |                   |

### Run #3b: High Channel @ 2480 MHz, Mode: WORST CASE FROM RUNS 1 and 2 (EDR)

| Band Edge Signal Field Strength - Direct measurement of heid strength |        |     |        |          |           |         |        |                      |  |
|-----------------------------------------------------------------------|--------|-----|--------|----------|-----------|---------|--------|----------------------|--|
| Frequency                                                             | Level  | Pol | 15.209 | / 15.247 | Detector  | Azimuth | Height | Comments             |  |
| MHz                                                                   | dBµV/m | v/h | Limit  | Margin   | Pk/QP/Avg | degrees | meters |                      |  |
| 2483.500                                                              | 47.0   | Н   | 54.0   | -7.0     | AVG       | 129     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |
| 2483.500                                                              | 42.5   | V   | 54.0   | -11.5    | AVG       | 302     | 1.0    | RB 1 MHz;VB 10 Hz;Pk |  |
| 2483.640                                                              | 56.8   | Н   | 74.0   | -17.2    | PK        | 129     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |
| 2483.580                                                              | 52.5   | V   | 74.0   | -21.5    | PK        | 302     | 1.0    | RB 1 MHz;VB 3 MHz;Pk |  |



|                                                  | An AZ                                                                                            | うしし<br>A <sup>*</sup> company                                       |                                            |                                              |                                                    |                                              |                                     | EIVIO                                            |                                                              |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| Client:                                          | Intel                                                                                            |                                                                     |                                            |                                              |                                                    |                                              |                                     | Job Number:                                      | J84264                                                       |
| Model:                                           | 135BNHMW                                                                                         | ' & 135BNHU                                                         | J                                          |                                              |                                                    |                                              | T-                                  | Log Number:                                      | T84548                                                       |
|                                                  |                                                                                                  |                                                                     |                                            | Acco                                         | unt Manager:                                       | Christine Krebill                            |                                     |                                                  |                                                              |
| Contact:                                         | Steve Hacke                                                                                      | ett                                                                 |                                            |                                              |                                                    |                                              |                                     |                                                  |                                                              |
| Standard:                                        | FCC 15 B, 1                                                                                      | 5.247, RSS 2                                                        | 210                                        |                                              |                                                    |                                              |                                     | Class:                                           | N/A                                                          |
| Run #4: Ra<br>[<br>Te<br>MAC Addre<br>Run #4a: L | adiated Spur<br>Date of Test:<br>est Engineer:<br>ess: 0015009<br>.ow Channel                    | ious Emissie<br>9/23/2011<br>M. Birgani<br>6C325 DRTU<br>@ 2402 MH: | ons, 1-40GF<br>J Tool Versi<br>z           | lz. Integrate                                | ed Trace Ante<br>Te<br>20 Driver ver               | enna, Opera<br>est Location:<br>rsion 15.0.0 | ting Mode:<br>FT Chamb<br>.51 - Sam | : Basic<br>er #4<br>ple with inte                | gral antenna                                                 |
| Other Sp                                         | urious Emis                                                                                      | sions                                                               |                                            |                                              | r r                                                |                                              |                                     |                                                  |                                                              |
| -requency                                        | Level                                                                                            | Pol                                                                 | 15.209                                     | / 15.24/                                     | Detector                                           | Azimuth                                      | Height                              | Comments                                         |                                                              |
| MHZ                                              | dBµV/m                                                                                           | v/h                                                                 | Limit                                      | Margin                                       | PK/QP/Avg                                          | degrees                                      | meters                              | Dook roadin                                      | ave average limit                                            |
| <u>2980.000</u><br>1660.000                      | 40.8<br>30.0                                                                                     | V                                                                   | 54.0                                       | -7.Z                                         | Peak                                               | 20/                                          | 1.0                                 | Peak readin                                      | g vs. average limit                                          |
| 1192 500                                         | 38.8                                                                                             | V<br>H                                                              | 54.0                                       | -15.2                                        | Peak                                               | 76                                           | 1.0                                 | Peak readin                                      | g vs. average limit                                          |
| 1458.330                                         | 38.2                                                                                             | H                                                                   | 54.0                                       | -15.8                                        | Peak                                               | 136                                          | 1.6                                 | Peak readin                                      | g vs. average limit                                          |
|                                                  |                                                                                                  |                                                                     |                                            |                                              |                                                    |                                              |                                     |                                                  | 5 5                                                          |
| ote 1:                                           | For emission                                                                                     | ns in restricte                                                     | d bands, the                               | limit of 15.2                                | 109 was used.                                      |                                              |                                     |                                                  |                                                              |
| lote 2:                                          | Emissions n                                                                                      | ot in restricte                                                     | d bands are                                | measured a                                   | s antenna cor                                      | nducted and                                  | compared                            | to the out of b                                  | and power limit.                                             |
|                                                  |                                                                                                  | between 10                                                          | - 40GHz wit                                | h the measu                                  | rement anten                                       | na moved ar                                  | round the c                         | ard and its an                                   | tennas 10-20cm from                                          |
| Amplitude (dBuV/m)                               | 110.0 -<br>100.0 -<br>90.0 -<br>80.0 -<br>70.0 -<br>60.0 -<br>50.0 -<br>40.0 -<br>25.0 -<br>1000 | alicated there<br>bise floor of the                                 | - 40GHz wit<br>e were no sig<br>he measurm | h the measu<br>gnifcant emis<br>ent system 1 | rement anten<br>ssions in this fi<br>I meter away. | na moved ar<br>requency ran<br>This emission | round the c.                        | ard and its an<br>oGHz was vis-<br>t change with | tennas 10-20cm from<br>able at 10cm but not<br>Tx frequency. |





## Elliott

## EMC Test Data

| Client:   | Intel                     | Job Number:      | J84264            |
|-----------|---------------------------|------------------|-------------------|
| Model     |                           | T-Log Number:    | T84548            |
| wouei.    |                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett             |                  |                   |
| Standard: | FCC 15 B, 15.247, RSS 210 | Class:           | N/A               |

#### FCC 15.247 FHSS - Power, Bandwidth and Conducted Spurious Emissions

#### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

#### General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

| Ambient Conditions: | Temperature:   | 18-23 °C |
|---------------------|----------------|----------|
|                     | Rel. Humidity: | 30-40 %  |

#### Summary of Results

MAC: 00150096B40F DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51

| Run # | Test Performed     | Limit      | Pass / Fail | Result / Margin                                                      |
|-------|--------------------|------------|-------------|----------------------------------------------------------------------|
| 1     | Output Dowor       | 15.247(b)  | DACC        | Basic Rate: 7.2 dBm (0.005 W)                                        |
| I     | Oulpul Power       | 15.247(D)  | PASS        | EDR: 4.8 dBm (0.003 W)                                               |
| 2     | 20dP Pandwidth     | 15.247(2)  | DACC        | Basic Rate: 965 kHz                                                  |
| ۲     |                    | 10.247(a)  | PASS        | EDR: 1300 kHz                                                        |
| 2     | 00% handwidth      | 15.247(2)  | DASS        | Basic Rate: 889 kHz                                                  |
| ۷.    | 9976 Danuwiuun     | 15.247 (a) | PASS        | EDR: 1188 kHz                                                        |
| 3     | Channel Spacing    | 15.247(a)  | PASS        | 1 MHz                                                                |
| 3     | Channel Occupancy  | 15.247(a)  | PASS        | Device complies with the Bluetooth 2                                 |
| 3     | Number of Channels | 15.247(a)  | PASS        | hopping channels                                                     |
| 5     | Conducted Spurious | 15.247(a)  | PASS        | All emissions more than 20dB below the highest in-band signal level. |

#### Modifications Made During Testing:

No modifications were made to the EUT during testing

#### Deviations From The Standard

No deviations were made from the requirements of the standard.

# CElliott

## EMC Test Data

| Client:   | Intel                     | Job Number:      | J84264            |
|-----------|---------------------------|------------------|-------------------|
| Model     |                           | T-Log Number:    | T84548            |
| wouer.    |                           | Account Manager: | Christine Krebill |
| Contact:  | Steve Hackett             |                  |                   |
| Standard: | FCC 15 B, 15.247, RSS 210 | Class:           | N/A               |
|           |                           |                  |                   |

#### Run #1: Output Power

Date of Test: 9/22/2011 Test Engineer: M. Birgani Test Location: FT Chamber#4

For frequency hopping systems in the 2400-2483.5 MHz band employing less than 75 channels the maximum allowed output power is **0.125 watts**.

Maximum antenna gain: 3.2 dBi

| Mode       | Channel | Frequency (MHz) | Res BW | Output Power (dBm) | Output Power (W) | EIRP (W) |
|------------|---------|-----------------|--------|--------------------|------------------|----------|
|            | Low     | 2402            | 1 MHz  | 6.3                | 0.0043           | 0.0089   |
| Basic Rate | Mid     | 2441            | 1 MHz  | 7.2                | 0.0052           | 0.0109   |
|            | High    | 2480            | 1 MHz  | 7.0                | 0.0050           | 0.0105   |
| EDR        | Low     | 2402            | 1 MHz  | 3.8                | 0.0024           | 0.0050   |
|            | Mid     | 2441            | 1 MHz  | 4.8                | 0.0030           | 0.0064   |
|            | High    | 2480            | 1 MHz  | 4.5                | 0.0028           | 0.0059   |

#### Run #2: Bandwidth, Channel Occupancy, Spacing and Number of Channels

Date of Test: 9/22/2011

Test Location: FT Chamber#4

| Test Engineer: | M. Birgani |
|----------------|------------|
|----------------|------------|

| Mode       | Channel | Frequency (MHz) | Resolution<br>Bandwidth | 20dB Bandwidth (kHz) | Resolution<br>Bandwidth | 99% Bandwidth (kHz) |
|------------|---------|-----------------|-------------------------|----------------------|-------------------------|---------------------|
|            | Low     | 2402            | 30 kHz                  | 960                  | 30 kHz                  | 879                 |
| Basic Rate | Mid     | 2441            | 30 kHz                  | 965                  | 30 kHz                  | 889                 |
|            | High    | 2480            | 30 kHz                  | 965                  | 30 kHz                  | 889                 |
| EDR        | Low     | 2402            | 30 kHz                  | 1295                 | 30 kHz                  | 1178                |
|            | Mid     | 2441            | 30 kHz                  | 1300                 | 30 kHz                  | 1188                |
|            | High    | 2480            | 30 kHz                  | 1300                 | 30 kHz                  | 1188                |
|            |         |                 |                         |                      |                         |                     |

| Note 1: | 20dB bandwidth measured using $RB = 30kHz$ , $VB = 100kHz$ ( $VB > RB$ ) |
|---------|--------------------------------------------------------------------------|
| Note 2: | 99% bandwidth measured using RB = 30kHz, VB = 100kHz VB >=3RB)           |



#### Elliott EMC Test Data Job Number: Client: Intel J84264 T84548 T-Log Number: Model: 135BNHMW & 135BNHU Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15 B, 15.247, RSS 210 Class: N/A Channel Spacing Channel Spacing: 1000.0 kHz 20dB Bandwidth: 1300 kHz The channel spacing was measured in Basic rate mode with hopping enabled - see plot below showing channel spacing: The channel spacing shall be greater than 2/3 Times the widest 20dB bandwidth as the ouput power is <0.125W. Number of channels: 79 Max 20 Min (AFH enabled) The number of channels was measured in Basic rate mode with hopping enabled with both the maximum (all) channels enabled and with the minimum number of channels enabled. The system shall employ a minimum of 15 hopping channels. 8.0 Analyzer Settings HP8564E,EMICF: 2429.000 MHz 6.0 SPAN: 5,000 MHz RB: 300 kHz 4.0 VB: 100 kHz Detector: POS Amplitude Attn: 20 DB 2.0 RL Offset: 10.0 DB Sweep Time: 50.0ms 0.0 Ref Lvl: 10.5 DBM -2.0 Comments Channel Spacing: 1.00 MHz -4.0 -5.0 2431.0 2431.5 2426.5 2427.0 2428.0 2429.0 2430.0 Frequency (MHz) ≁ ն-+ 2430.0385 10.00 Delta Freg. 1.000 Cursor 1 **Elliott**

#### Run #4: Channel Occupancy and Number of Channels

10.00

2429.0385

Requirement: Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

\*- Շ-

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)

Delta Amplitude 0.00

The device complies with the Bluetooth protocol and employs a minimum of 20 of the available 79 hopping channels when employing adaptove frequency hopping and all 79 channels when not. Channels are selected in a speudo random manner to ensure, on average, all channels are used equally.

The hopping rate is 1600 hops per second although any new channel may be used for a single hop slot, 3 hop slots or 5 hop slots. The dwell time per channel is, therefore either 0.625ms (single slot), 1.875ms (three slot) or 3.125ms (five slot). The average time of occupancy will not exceed 0.4s in any time interval of 0.4s mutliplied by the number of channels being used.

Cursor 2



#### Elliott EMC Test Data Client: Intel Job Number: J84264 T84548 T-Log Number: Model: 135BNHMW & 135BNHU Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC 15 B, 15.247, RSS 210 Class: N/A Run #4: Antenna Conducted Spurious Emissions, 30 - 26500 MHz. Date of Test: 9/22/2011 Test Location: FT Chamber#4 Test Engineer: M. Birgani Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature disabled. Addiitonal plots with hopping enabled at the band edges. Low channel -Basic Rate Basic rate 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 26500 10000 30 100 1000 Frequency (MHz) Basic rate 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 "MA -40.0 -50.0 -60.0 2400 2404 2401 2403 2402 Frequency (MHz)





Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the **hopping feature enabled** to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.



Low channel, hopping enabled - Basic Rate







Refer to plots below. Scans made using RBW=VB=100 KHz with the limit line set at 20dB below the highest in-band signal level with the **hopping feature enabled** to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.



| Ellio                                                                                                                           | tt                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EMC :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intel                                                                                                                           | company                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Job Number: J842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                 | 12EDNUU                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -Log Number: T84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                 | (133BNHU                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ount Manager: Chri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stine Krebill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Steve Hackett                                                                                                                   | 247 DCC 210                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FUC 15 B, 15.                                                                                                                   | 247, RSS 210                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Class: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 | Conduc<br>(Elliott Laboratories Fremo                                                                                                                                                                                                                                                                                   | cted Emissions<br>ont Facility, Semi-Anec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | choic Chaml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ber)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>cific Details</b><br>Objective: T<br>s                                                                                       | he objective of this test session is to<br>becification listed above.                                                                                                                                                                                                                                                   | perform final qualification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on testing of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the EUT with respe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date of Test: 9/22/2011Config. Used: -Test Engineer: M. BirganiConfig Change: -Test Location: FT Chamber #4Host Unit Voltage 12 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Fest Configu</b><br>system was loc<br>LISN. A second                                                                         | Iration<br>ated on a wooden table inside the se<br>LISN was used for all local support of                                                                                                                                                                                                                               | emi-anechoic chamber,<br>equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 cm from a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a vertical coupling p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | plane and 80cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Conditions:                                                                                                                     | Temperature:                                                                                                                                                                                                                                                                                                            | 17-23 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 | Rel. Humidity:                                                                                                                                                                                                                                                                                                          | 30-40 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| y of Results                                                                                                                    |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ,<br>150096B40F_D                                                                                                               | RTU Tool Version 1.5.3-0320 Driv                                                                                                                                                                                                                                                                                        | ver version 15.0.0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ın #                                                                                                                            | Test Performed                                                                                                                                                                                                                                                                                                          | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tions Made I<br>ications were m                                                                                                 | During Testing<br>ade to the EUT during testing<br>Standard                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tions were mad                                                                                                                  | e from the requirements of the stand                                                                                                                                                                                                                                                                                    | ard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                 | Intel<br>Intel<br>I35BNHMW &<br>Steve Hackett<br>FCC 15 B, 15.<br>Cific Details<br>Objective: TI<br>SP<br>Date of Test: 9/<br>est Engineer: Me<br>est Location: F<br>Fest Configu<br>system was loc<br>LISN. A second<br>Conditions:<br>y of Results<br>150096B40F D<br>In #<br>1<br>tions Made I<br>ications were made | Intel         135BNHMW & 135BNHU         Steve Hackett         FCC 15 B, 15.247, RSS 210         Conduction (Elliott Laboratories Freme)         Date of Test: 9/22/2011         est Engineer: M. Birgani         est Location: FT Chamber #4         Test Configuration         System was located on a wooden table inside the second LISN was used for all local support         Conditions: remperature: Rel. Humidity:         Y of Results         150096B40F DRTU Tool Version 1.5.3-0320 Driv         Intest Performed         1 CE, AC Power,120V/60Hz         tions Made During Testing         ications were made to the EUT during testing         Is From The Standard         tions were made from the requirements of the stand | Intel         135BNHMW & 135BNHU         Steve Hackett         FCC 15 B, 15.247, RSS 210         Conducted Emissions         Conducted Emissions         Conducted Emissions         Conducted Emissions         Config Change         Config V2/2011         Config Change         Stere made for this test session is to perform final qualificative         Config V2/2011         Config Change         Stere made for these above.         Date of Test: 9/22/2011         Config Change         est Location: FT Chamber #4         Stere was located on a wooden table inside the semi-anechoic chamber,         ISO096B40F DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51         Im#         150096B40F DRTU Tool Version 1.5.3-0320 Driver version 15.0.0.51         Im#         1 Test Performed         Limit         1 Ce, AC Power,120V/60Hz         Class B | Intel       Image: | Image: Display: D |
| 6                                    |                                         | D <b>tt</b>                               |                                     |                            |                            |                      | EM                  | C Test Data |
|--------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------|----------------------------|----------------------------|----------------------|---------------------|-------------|
| Client:                              | Intel                                   |                                           |                                     |                            |                            |                      | Job Number:         | J84264      |
|                                      |                                         |                                           | _                                   |                            |                            |                      | T-Log Number:       | T84548      |
| Model:                               | 135BNHMW                                | / & 135BNHL                               | J                                   |                            | Account Manager:           | Christine Krebill    |                     |             |
| Contact:                             | Steve Hack                              | ett                                       |                                     |                            |                            |                      |                     |             |
| Standard:                            | FCC 15 B, 1                             | 15.247, RSS 2                             | 210                                 |                            |                            |                      | Class:              | В           |
| Run #1: AC<br>Note: The<br>Final qua | Power Port<br>e module w<br>si-peak and | Conducted<br>as transmitti<br>average rea | Emissions,<br>ing at 2437<br>idings | 0.15 - 30MH<br>MHz (Wi-Fi) | lz, 120V/60H<br>at 17dBm a | łz<br>nd 2440 MHz (B | luetooth) at maximu | m level.    |
| Frequency                            | Level                                   | AC                                        | Cla                                 | ss B                       | Detector                   | Comments             |                     |             |
| MHz                                  | dBµV                                    | Line                                      | Limit                               | Margin                     | QP/Ave                     |                      |                     |             |
| 8.000                                | 41.7                                    | Line                                      | 50.0                                | -8.3                       | AVG                        | AVG (0.10s)          |                     |             |
| 8.000                                | 40.5                                    | Neutral                                   | 50.0                                | -9.5                       | AVG                        | AVG (0.10s)          |                     |             |
| 10.733                               | 37.4                                    | Neutral                                   | 50.0                                | -12.6                      | AVG                        | AVG (0.10s)          |                     |             |
| 8.000                                | 46.2                                    | Line                                      | 60.0                                | -13.8                      | QP                         | QP (1.00s)           |                     |             |
| 8.000                                | 45.6                                    | Neutral                                   | 60.0                                | -14.4                      | QP                         | QP (1.00s)           |                     |             |
| 14.149                               | 35.0                                    | Neutral                                   | 50.0                                | -15.0                      | AVG                        | AVG (0.10s)          |                     |             |
| 10.342                               | 34.5                                    | Line                                      | 50.0                                | -15.5                      | AVG                        | AVG (0.10s)          |                     |             |
| 10.733                               | 43.6                                    | Neutral                                   | 60.0                                | -16.4                      | QP                         | QP (1.00s)           |                     |             |
| 14.633                               | 33.5                                    | Line                                      | 50.0                                | -16.5                      | AVG                        | AVG (0.10s)          |                     |             |
| 10.342                               | 41.0                                    | Line                                      | 60.0                                | -19.0                      | QP                         | QP (1.00s)           |                     |             |
| 14.149                               | 40.3                                    | Neutral                                   | 60.0                                | -19.7                      | QP                         | QP (1.00s)           |                     |             |
| 14.633                               | 38.9                                    | Line                                      | 60.0                                | -21.1                      | QP                         | QP (1.00s)           |                     |             |
| 0.555                                | 19.8                                    | Line                                      | 56.0                                | -36.2                      | QP                         | QP (1.00s)           |                     |             |
| 0.549                                | 19.8                                    | Neutral                                   | 56.0                                | -36.2                      | QP                         | QP (1.00s)           |                     |             |
| 0.228                                | 26.2                                    | Line                                      | 62.5                                | -36.3                      | QP                         | QP (1.00s)           |                     |             |
| 0.224                                | 26.4                                    | Neutral                                   | 62.7                                | -36.3                      | QP                         | QP (1.00s)           |                     |             |
| 0.555                                | 4.5                                     | Line                                      | 46.0                                | -41.5                      | AVG                        | AVG (0.10s)          |                     |             |
| 0 5 40                               | 4.3                                     | Neutral                                   | 46.0                                | -41.7                      | AVG                        | AVG (0.10s)          |                     |             |
| 0.549                                | 10.1                                    | Line                                      | 52.5                                | -42.4                      | AVG                        | AVG (0.10s)          |                     |             |
| 0.549                                | 10.1                                    | LINC                                      |                                     |                            |                            |                      |                     |             |





# Client: Intel Job Number: J84264 Model: 135BNHMW & 135BNHU T-Log Number: T48548 Contact: Steve Hackett Christine Krebill Standard: FCC 15 B, 15.247, RSS 210 Class:

# Radiated Emissions - Module

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

### Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/22/2011 Test Engineer: M. Birgani Test Location: FT Chamber #4 Config. Used: 1 Config Change: -Host Unit Voltage 120V/60Hz

### General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

| Ambient Conditions: | Temperature:   | 17-22 °C |
|---------------------|----------------|----------|
|                     | Rel. Humidity: | 30-40 %  |

### Summary of Results

| Run #           | Test Performed             | Limit           | Result | Margin                          |
|-----------------|----------------------------|-----------------|--------|---------------------------------|
| 1a 000 11b      | Radiated Emissions         | 15.209 / 15.247 | DACC   | 44.0dBµV/m @ 662.49MHz (Margin: |
| 1a - 002.11D    | 30 - 1000 MHz, Preliminary | RSS 210         | PASS   | -2.0dB)                         |
| 1b Dlustaath    | Radiated Emissions         | 15.209 / 15.247 | DACC   | 45.2dBµV/m @ 662.47MHz (Margin: |
| ID - DIUELUULII | 30 - 1000 MHz, Preliminary | RSS 210         | PASS   | -0.8dB)                         |
| 2 Worst Case    | Radiated Emissions         | 15.209 / 15.247 | DACC   | 45.2dBµV/m @ 662.47MHz (Margin: |
|                 | 30 - 1000 MHz, Maximized   | RSS 210         | PASS   | -0.8dB)                         |

### Modifications Made During Testing

No modifications were made to the EUT during testing

### Deviations From The Standard

No deviations were made from the requirements of the standard.

| Frequency Range | Test Distance | Limit Distance | Extrapolation Factor |
|-----------------|---------------|----------------|----------------------|
| 30 - 1000 MHz   | 3             | 3              | 0.0                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | An CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A company                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             | Job Number:                                                                                                                                                                        | J84264           |
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135RNHM///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125RN                                                                                                                     | нп                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | T-                                                                                                          | Log Number:                                                                                                                                                                        | T84548           |
| wouer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | & 135DN                                                                                                                   | ΠŪ                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | Ассо                                                                                                        | unt Manager:                                                                                                                                                                       | Christine Krebil |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Steve Hacke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ett                                                                                                                       |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FCC 15 B, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.247, RS                                                                                                                 | S 210                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             | Class:                                                                                                                                                                             | В                |
| n #1a: F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reliminary R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | adiated E                                                                                                                 | Emissions, 3                                                                                                                                                                                                              | 0 - 1000 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z, EUT at 243                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7MHz, 802.1                                                                                                                  | 11b Mode (*                                                                                                 | 16.5dBm)                                                                                                                                                                           |                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    | 1                |
| <u>_</u> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J.U-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                                                                                         | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f                                                                                                                         | 1                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                            |                                                                                                             | · .                                                                                                                                                                                | <b> </b> ¶ , ,   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | $\rightarrow$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                                                                                                            |                                                                                                             |                                                                                                                                                                                    |                  |
| <u>⊒</u> i<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D.O-  - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sim$                                                                                                                    | 7 / 7                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / LA _ L95                                                                                                                   |                                                                                                             |                                                                                                                                                                                    |                  |
| 2 Ampliti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0- V<br>5.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sim$                                                                                                                    | V٣                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Am MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CMWM                                                                                                                         |                                                                                                             |                                                                                                                                                                                    |                  |
| 2 Public                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0-<br>5.0-<br>0.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim$                                                                                                                    | V۳                                                                                                                                                                                                                        | Wh,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mym                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Warn                                                                                                                        |                                                                                                             | WWARN                                                                                                                                                                              |                  |
| Hilduw 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0- V<br>5.0-<br>0.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sim$                                                                                                                    | V'n                                                                                                                                                                                                                       | Why                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MyM                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Wym)                                                                                                                        | W                                                                                                           |                                                                                                                                                                                    |                  |
| 11<br>Hdw<br>Z<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 - V<br>5.0 -<br>0.0 -<br>5.0 -<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~                                                                                                                         |                                                                                                                                                                                                                           | Wh.<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |                                                                                                             |                                                                                                                                                                                    |                  |
| Tildue 2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 - V<br>5.0 -<br>0.0 -<br>5.0 -<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                       | V ~<br>                                                                                                                                                                                                                   | M.<br>. 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (MHz)                                                                                                                        |                                                                                                             | WMAN                                                                                                                                                                               |                  |
| Prelimina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 - V<br>5.0 -<br>0.0 -<br>5.0 -<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           | tured during                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Myr)<br>(MHz)                                                                                                               |                                                                                                             |                                                                                                                                                                                    | 100              |
| <u>Prelimina</u><br>equency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 - V<br>5.0 -<br>5.0 -<br>5.0 -<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jings cap                                                                                                                 | tured during                                                                                                                                                                                                              | pre-scan<br>9 / RSS 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Myr)<br>(MHz)<br>Azimuth                                                                                                    | Height                                                                                                      | Comments                                                                                                                                                                           |                  |
| Prelimina<br>Prelimina<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 - V<br>5.0 - 5.0 - 5.0 - 5.0 - 30<br><b>Try peak read</b><br>Level<br>dB $\mu$ V/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jings cap<br>Pol<br>v/h                                                                                                   | tured during<br>FCC 15.200<br>Limit                                                                                                                                                                                       | pre-scan<br>9/RSS 210<br>Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency<br>Detector<br>Pk/QP/Avg                                                                                                                                                                                                                                                                                                                                                                                                                                      | (MHz)                                                                                                                        | Height<br>meters                                                                                            | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 - V<br>5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dings cap<br>Pol<br>V/h<br>V                                                                                              | tured during<br>FCC 15.20<br>Limit<br>40.0                                                                                                                                                                                | pre-scan<br>9 / RSS 210<br>Margin<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                              | (MHz)<br>Azimuth<br>degrees<br>360                                                                                           | Height<br>meters<br>1.0                                                                                     | Comments                                                                                                                                                                           |                  |
| Image: Apple of the second s | 0.0 - V<br>5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jings cap<br>Pol<br>V/h<br>V<br>H                                                                                         | tured during<br>FCC 15.20 <sup>o</sup><br>Limit<br>40.0<br>40.0                                                                                                                                                           | 100<br>pre-scan<br>9 / RSS 210<br>Margin<br>0.3<br>-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                      | Azimuth<br>degrees<br>360<br>244                                                                                             | Height<br>meters<br>1.0<br>1.0                                                                              | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H                                                                                    | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0                                                                                                                                                                | 100<br>pre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                              | Azimuth<br>degrees<br>360<br>244<br>79                                                                                       | Height<br>meters<br>1.0<br>1.5                                                                              | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{0.0} - \bigvee$<br>$p_{0.0} - \bigvee$<br>$p_{0$ | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V                                                                               | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0<br>40.0                                                                                                                                                        | 100<br>pre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                      | Azimuth<br>degrees<br>360<br>244<br>79<br>88                                                                                 | Height<br>meters<br>1.0<br>1.5<br>1.0                                                                       | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 - V<br>5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H                                                                          | tured during<br>FCC 15.200<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0                                                                                                                                               | yre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                              | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224                                                                          | Height<br>meters<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0                                                         | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>62.492<br>32.984<br>99.970<br>36.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c c} 0.0 - & V \\ \hline 5.0 - & \\ 0.0 - & \\ \hline 5.0 - & \\ 30 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V                                                                     | tured during<br>FCC 15.20 <sup>0</sup><br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0                                                                                                                                   | 100<br>pre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                              | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136                                                                   | Height<br>meters<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             | Comments                                                                                                                                                                           |                  |
| Prelimina<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970<br>236.587<br>Prelimina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>H<br>V                                                           | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0                                                                                                                                | 9 / RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3<br>pulation of F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>UT interface                                                                                                                                                                                                                                                                                                                                                              | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)                                                        | Height<br>meters<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970<br>236.587<br>Prelimina<br>equency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 - V<br>5.0 - 30<br>0.0 - 30<br>10.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>ak reading<br>Pol                                                | tured during<br>FCC 15.20 <sup>0</sup><br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>55 (no manip                                                                                                           | 100<br>pre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3<br>pulation of E<br>9/RSS 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>UT interface<br>Detector                                                                                                                                                                                                                                                                                                                                                          | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth                                             | Height<br>meters<br>1.0<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>Height                          | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970<br>236.587<br>Prelimina<br>equency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 - V<br>5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>Pol<br>V/h                                         | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manip<br>FCC 15.20<br>Limit                                                                                                   | 100<br>pre-scan<br>9 / RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3<br>pulation of E<br>9 / RSS 210<br>Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Ava                                                                                                                                                                                                                                                                                                                                                             | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees                                  | Height<br>meters<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970<br>236.587<br>Prelimina<br>equency<br>MHz<br>562.492<br>562.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>Pol<br>V/h<br>H                                    | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manip<br>FCC 15.20<br>Limit<br>46.0                                                                                   | 100<br>pre-scan<br>9/RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3<br>pulation of E<br>9/RSS 210<br>Margin<br>-2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>UT interface<br>Detector<br>Pk/QP/Avg<br>QP                                                                                                                                                                                                                                                                                                                               | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees<br>83                            | Height<br>meters<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0        | Comments                                                                                                                                                                           |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>62.492<br>32.984<br>99.970<br>36.587<br>Prelimina<br>equency<br>MHz<br>62.492<br>31.915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>V<br>Pol<br>V/h<br>H<br>H                          | tured during<br>FCC 15.20<br>Limit<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0                                                                                                                        | ioo           pre-scan           9 / RSS 210           Margin           0.3           -1.5           -2.1           -5.8           -11.1           -13.3           pulation of E           9 / RSS 210           Margin           -2.1           -5.8           -11.1           -13.3           pulation of E           9 / RSS 210           Margin           -2.0           -10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees<br>83<br>253                     | Height<br>meters<br>1.0<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | Comments Comments Comments Comments Comments QP (1.00s) QP (1.00s)                                                                                                                 |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>62.492<br>32.984<br>99.970<br>36.587<br>Prelimina<br>equency<br>MHz<br>62.492<br>31.915<br>99.970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 - V<br>5.0 - 30<br>0.0 - 30<br>5.0 - 30<br>10.0 - 30<br>5.0 - 30<br>30<br>10.0 - 30<br>10.0 - 30<br>10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>Pol<br>V/h<br>H<br>H<br>H                          | tured during<br>FCC 15.20 <sup>o</sup><br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manip<br>FCC 15.20 <sup>o</sup><br>Limit<br>46.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                         | intervention           interventintervention           inter | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>QP<br>QP<br>QP<br>QP                                                                                                                                                                                                                                                                                                        | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees<br>83<br>253<br>214              | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | Comments  Comments  Comments  QP (1.00s)  QP (1.00s)                                                                                                                               |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>62.492<br>32.984<br>999.970<br>236.587<br>Prelimina<br>equency<br>MHz<br>662.492<br>31.915<br>662.492<br>31.915<br>999.970<br>32.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 - V<br>5.0 - 30<br>0.0 - 5.0 - 30<br>10.0 - 5.0 - 30<br>10.0 - 5.0 - 30<br>10.0 - 5.0 - 30<br>10.0 - 5.0 - 5.0 - 30<br>10.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>Pol<br>V/h<br>H<br>H<br>H<br>H<br>V                | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manip<br>FCC 15.20<br>Limit<br>46.0<br>40.0<br>46.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0                                   | 100<br>pre-scan<br>9 / RSS 210<br>Margin<br>0.3<br>-1.5<br>-2.1<br>-5.8<br>-11.1<br>-13.3<br>pulation of E<br>9 / RSS 210<br>Margin<br>-2.0<br>-10.5<br>-11.3<br>-13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>QP<br>QP<br>QP<br>QP<br>QP                                                                                                                                                                                                                                                                                                          | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees<br>83<br>253<br>214<br>80        | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                      | Comments  Comments  Comments  Comments  Comments  Comments  QP (1.00s)  QP (1.00s)  QP (1.00s)                                                                                     |                  |
| Prelimina<br>equency<br>MHz<br>54.406<br>31.915<br>562.492<br>32.984<br>599.970<br>236.587<br>Prelimina<br>equency<br>MHz<br>562.492<br>31.915<br>599.970<br>32.984<br>236.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jings cap<br>Pol<br>V/h<br>V<br>H<br>H<br>V<br>H<br>V<br>Ak reading<br>Pol<br>V/h<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V | tured during<br>FCC 15.20 <sup>0</sup><br>Limit<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manip<br>FCC 15.20 <sup>0</sup><br>Limit<br>46.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 | pre-scan           9 / RSS 210           Margin           0.3           -1.5           -2.1           -5.8           -11.1           -13.3           pulation of E           9 / RSS 210           Margin           -13.3           -10.5           -11.3           -13.7           -14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP<br>QP                                                                                                                                                                                                                                                                                              | Azimuth<br>degrees<br>360<br>244<br>79<br>88<br>224<br>136<br>cables)<br>Azimuth<br>degrees<br>83<br>253<br>214<br>80<br>135 | Height<br>meters<br>1.0<br>1.0<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | Comments  Comments  Comments  Comments  Comments  Comments  QP (1.00s)                    |

| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intel                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                    | Job Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J84264          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40555444444                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              | T                                                                                                                                                                  | -Log Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T84548          |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135BNHMW                                                                                                                                                                                                        | & 135BN                                                                                                                                                                                                                                                                      | HU                                                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              | Ассо                                                                                                                                                               | unt Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Christine Krebi |
| Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Steve Hacke                                                                                                                                                                                                     | tt                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Standard:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCC 15 B, 1                                                                                                                                                                                                     | 5.247, RS                                                                                                                                                                                                                                                                    | S 210                                                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                    | Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В               |
| n #1b: F<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                             | adiated E                                                                                                                                                                                                                                                                    | Emissions, 3                                                                                                                                                                                    | 30 - 1000 MH                                                                                                                                                 | z, EUT at 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OMHz, Blue                                                                                                                   | tooth Basi                                                                                                                                                         | c Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| (m/vuab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0-                                                                                                                                                                                                            | /                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 2 Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 -<br>5.0 -<br>0.0 -<br>5.0 -                                                                                                                                                                                |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                 | Why                                                                                                                                                          | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MuM<br>M                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Prelimina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 -<br>5.0 -<br>0.0 -<br>5.0 -<br>30                                                                                                                                                                          | lings cap                                                                                                                                                                                                                                                                    | tured during                                                                                                                                                                                    | pre-scan                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (MHz)                                                                                                                        | Hojabt                                                                                                                                                             | Commonts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30                                                                                                                                                                          | ings cap                                                                                                                                                                                                                                                                     | tured during<br>FCC 15.20                                                                                                                                                                       | y pre-scan                                                                                                                                                   | Frequency<br>Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)                                                                                                                        | Height<br>meters                                                                                                                                                   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8                                                                                                                              | lings cap<br>Pol<br>V/h<br>H                                                                                                                                                                                                                                                 | tured during<br>FCC 15.20<br>Limit<br>40.0                                                                                                                                                      | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2                                                                                                                  | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (MHz)                                                                                                                        | Height<br>neters<br>1.0                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4                                                                                                                      | lings cap<br>Pol<br>V/h<br>H<br>V                                                                                                                                                                                                                                            | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0                                                                                                                                              | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6                                                                                                                        | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (MHz)<br>Azimuth<br>degrees<br>246<br>326                                                                                    | Height<br>meters<br>1.0<br>1.0                                                                                                                                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0                                                                                                              | lings cap<br>Pol<br>V/h<br>H<br>V<br>V                                                                                                                                                                                                                                       | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0                                                                                                                                      | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0                                                                                                   | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Azimuth<br>degrees<br>246<br>326<br>42                                                                                       | Height<br>meters<br>1.0<br>1.0<br>1.0                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>Prelimina<br>2<br>2<br>1<br>Prelimina<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30<br>ary peak read<br>Level<br>dBμV/m<br>37.8<br>33.4<br>40.0<br>31.4                                                                                             | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V                                                                                                                                                                                                                                  | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0                                                                                                                              | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6                                                                                          | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Azimuth<br>degrees<br>246<br>326<br>42<br>114                                                                                | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0                                                                                                                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>662.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30<br>ary peak read<br>Level<br>dBμV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5                                                                                              | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V                                                                                                                                                                                                                             | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>46.0<br>46.0                                                                                                                              | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5                                                                                                | Frequency<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82                                                                          | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.5                                                                                                                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>62.473<br>99.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30<br>ary peak read<br>Level<br>dBμV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9                                                                             | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>H<br>H                                                                                                                                                                                                                   | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0                                                                                                      | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1                                                                         | Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221                                                                   | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0                                                                                                         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>2<br>2<br>1<br>Prelimina<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2         | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9                                                                                      | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>H<br>H                                                                                                                                                                                                                        | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0                                                                                                              | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1                                                                         | Frequency<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221                                                                   | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0                                                                                                                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>237.073<br>62.473<br>99.990<br>Prelimina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30<br>ary peak read<br>Level<br>dBμV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea                                                            | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>V<br>H<br>H<br>H                                                                                                                                                                                                         | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>gs (no manij                                                                                      | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E                                                                      | Frequency<br>Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)                                                        | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0                                                                                                                | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>662.473<br>99.990<br>Prelimina<br>equency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBµV/m                                                  | lings cap<br>Pol<br>v/h<br>H<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>H                                                                                                                                                                                                         | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.                                                                                               | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin                                             | Frequency<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace<br>Peace | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees                                  | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>Height<br>meters                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>62.473<br>99.990<br>Prelimina<br>equency<br>MHz<br>62.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>5.0 -<br>30<br>ary peak read<br>Level<br>dBμV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBμV/m<br>45.2               | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>k readin<br>Pol<br>V/h<br>H                                                                                                                                                                               | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0                                                                                              | y pre-scan<br>9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin<br>-0.8                       | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees<br>91                            | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>Height<br>meters<br>1 1                                                                              | Comments Comments Comments Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Prelimina<br>aquency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>62.473<br>99.990<br>Prelimina<br>equency<br>MHz<br>62.468<br>99.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBµV/m<br>45.2<br>34.9                                  | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>Ak reading<br>Pol<br>V/h<br>H<br>H                                                                                                                                                                   | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manij<br>FCC 15.20<br>Limit<br>46.0<br>46.0<br>46.0                                         | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin<br>-0.8<br>-11.1                            | Frequency<br>Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>CUT interface<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees<br>91<br>223                     | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>Height<br>meters<br>1.1<br>1.0                                                                              | Comments Comments Comments Comments Comments Comments Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| Prelimina<br>aquency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>62.473<br>99.990<br>Prelimina<br>aquency<br>MHz<br>62.468<br>99.990<br>55.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBµV/m<br>45.2<br>34.9<br>26.3                          | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                       | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>5 (no manij<br>FCC 15.20<br>Limit<br>46.0<br>46.0<br>46.0<br>40.0                                 | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin<br>-0.8<br>-11.1<br>-13.7                   | Frequency<br>Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>Peak<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MMHz)<br>Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees<br>91<br>223<br>44      | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>Height<br>meters<br>1.1<br>1.0<br>1.0<br>1.0                                                         | Comments Com |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>62.473<br>99.990<br>Prelimina<br>equency<br>MHz<br>62.468<br>99.990<br>55.470<br>37.073                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBµV/m<br>45.2<br>34.9<br>26.3<br>31.0                  | lings cap<br>Pol<br>V/h<br>H<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                       | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0                                                                                              | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin<br>-0.8<br>-11.1<br>-13.7<br>-15.0          | Frequency<br>Frequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees<br>91<br>223<br>44<br>112        | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>Height<br>meters<br>1.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                                    | Comments Com |                 |
| Prelimina<br>equency<br>MHz<br>30.000<br>37.047<br>55.475<br>37.073<br>662.473<br>699.990<br>Prelimina<br>equency<br>MHz<br>662.468<br>999.990<br>55.470<br>237.073<br>30.012                                                                                                                                                                                                                                                                                                                                                                                                                                            | o.o -<br>5.o -<br>5.o -<br>5.o -<br>5.o -<br>30<br>ary peak read<br>Level<br>dBµV/m<br>37.8<br>33.4<br>40.0<br>31.4<br>44.5<br>35.9<br>ary quasi-pea<br>Level<br>dBµV/m<br>45.2<br>34.9<br>26.3<br>31.0<br>22.8 | lings cap<br>Pol<br>v/h<br>H<br>V<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V<br>V<br>H<br>H<br>H<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>H<br>V<br>V<br>V<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | tured during<br>FCC 15.20<br>Limit<br>40.0<br>40.0<br>40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>5 (no manin<br>FCC 15.20<br>Limit<br>46.0<br>46.0<br>46.0<br>40.0<br>40.0<br>40.0<br>40.0<br>40.0 | 9 / RSS 210<br>Margin<br>-2.2<br>-6.6<br>0.0<br>-14.6<br>-1.5<br>-10.1<br>pulation of E<br>9 / RSS 210<br>Margin<br>-0.8<br>-11.1<br>-13.7<br>-15.0<br>-17.2 | Frequency<br>Prequency<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>CUT interface<br>Detector<br>Pk/QP/Avg<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Azimuth<br>degrees<br>246<br>326<br>42<br>114<br>82<br>221<br>cables)<br>Azimuth<br>degrees<br>91<br>223<br>44<br>112<br>226 | Height<br>meters<br>1.0<br>1.0<br>1.0<br>1.0<br>1.5<br>1.0<br>1.5<br>1.0<br>Height<br>meters<br>1.1<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | Comments Com |                 |

| (7 Ell                    | iott |  |
|---------------------------|------|--|
| Client <sup>,</sup> Intel |      |  |

# EMC Test Data

|                        | AN ZALZ                                                                                                                 | company ے |           |             |             |              |                   |          |   |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|-------------|--------------|-------------------|----------|---|--|--|
| Client:                | Intel                                                                                                                   |           |           |             | Job Number: | J84264       |                   |          |   |  |  |
| Madal                  |                                                                                                                         |           |           |             | T-          | Log Number:  | T84548            |          |   |  |  |
| wodel:                 | 132RINHIM                                                                                                               | & 135BIN  | 10        |             | Accou       | unt Manager: | Christine Krebill |          |   |  |  |
| Contact:               | Steve Hackett                                                                                                           |           |           |             |             |              |                   |          |   |  |  |
| Standard:              | FCC 15 B, 1                                                                                                             | 5.247, RS | S 210     |             |             |              |                   | Class:   | В |  |  |
| Run #2: Ma<br>Maximize | Run #2: Maximized Readings From Run #1<br>Maximized guasi-peak readings (includes manipulation of EUT interface cables) |           |           |             |             |              |                   |          |   |  |  |
| Frequency              | Level                                                                                                                   | Pol       | FCC 15.20 | 9 / RSS 210 | Detector    | Azimuth      | Height            | Comments |   |  |  |
| MHz                    | dBµV/m                                                                                                                  | v/h       | Limit     | Margin      | Pk/QP/Avg   | degrees      | meters            |          |   |  |  |
| 662.468                | 45.2                                                                                                                    | Н         | 46.0      | -0.8        | Peak        | 82           | 1.5               |          |   |  |  |
| 699.990                | 34.9                                                                                                                    | Н         | 46.0      | -11.1       | Peak        | 221          | 1.0               |          |   |  |  |
| 55.470                 | 26.3                                                                                                                    | V         | 40.0      | -13.7       | Peak        | 42           | 1.0               |          |   |  |  |
| 236.587                | 31.7                                                                                                                    | V         | 46.0      | -14.3       | QP          | 135          | 1.0               |          |   |  |  |
| 32.984                 | 26.3                                                                                                                    | V         | 40.0      | -13.7       | QP          | 80           | 1.0               |          |   |  |  |
| 31.915                 | 29.5                                                                                                                    | Н         | 40.0      | -10.5       | QP          | 253          | 1.0               |          |   |  |  |
|                        |                                                                                                                         |           |           |             |             |              | -                 |          |   |  |  |

## End of Report

This page is intentionally blank and marks the last page of this test report.