B. 7 RF Exposure

B.7.1 Limits

RSS part	Limits				
RSS-102	3. Evaluation Methods (...) Devices operating above 6 GHz regardless of the separation distance shall undergo an RF exposure evaluation. 4. Exposure Limits For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6. Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)				
	Frequency Range (MHz) $0.003-10^{21}$	$\begin{gathered} \begin{array}{c} \text { Electric Field } \\ \text { (V/m rms) } \end{array} \\ \hline 83 \end{gathered}$	Magnetic Field ($\mathrm{A} / \mathrm{m} \mathrm{rms}$)	Power Density (W/m²)	Reference Period (minutes)
	0.003-10 ${ }^{21}$	83	90 $0.73 / f$	-	$\frac{\text { Instantaneous* }}{6 * *}$
	0.1-10	- ${ }^{-} / f^{0.5}$	0.73/f	-	6**
	10-20	27.46	0.0728	2	6
	20-48	$58.07 / f^{0.25}$	$0.1540 / f^{0.25}$	$8.944 / f^{0.5}$	6
	48-300	22.06	0.05852	1.291	6
	300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6
	6000-15000	61.4	0.163	10	6
	15000-150000	61.4	0.163	10	$616000 / f^{1.2}$
	150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	$6.67 \times 10^{-5} f$	$616000 / f^{1.2}$
	Note: f is frequency *Based on nerve stin ** Based on specific	in MHz. lation (NS). bsorption rate (SA			

B.7.2 Test procedure

For the purpose of this evaluation, a minimum distance of 20 cm was used to calculate the equivalent plan wave power density based on the Average EIRP values obtained in B. 2 to be compared with the power density limit, according to following formula:

$$
S_{e q}=\frac{P_{a v g} \cdot G}{4 \cdot \pi \cdot R^{2}} \Rightarrow S_{e q}=\frac{E I R P}{4 \cdot \pi \cdot R^{2}}
$$

Where:
$S_{e q}=$ Equivalent Plane Wave Power Density, in Watts per square meter.
$P_{\text {avg }}=$ Source-Based Average Power at antenna terminals, in Watts.
$E I R P=$ Equivalent Isotropically Radiated Power, in Watts.
$G=$ Gain of the Transmitting Antenna.
$R=$ Distance from the Transmitting Antenna, in meters.

B.7.3 Results

B.7.3.1 Antenna A

Power Density Calculation							
Mode	MCS	Frequency (GHz)	Average EIRP (dBm)	Average EIRP (W)	Separation Distance (m)	Power Density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	Limit $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
WiGig	1	58.32	23.92	0.25	0.2	0.49	10
WiGig	1	60.48	25.24	0.33	0.2	0.66	10
WiGig	1	62.64	23.66	0.23	0.2	0.46	10

Test Report N ${ }^{\circ}$ 180209-01.TR01
Rev. 00

B.7.3.1 Antenna B

Power Density Calculation							
Mode	MCS	Frequency (GHz)	Average EIRP (dBm)	Average EIRP (W)	Separation Distance (m)	Power Density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	Limit $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
WiGig	1	58.32	22.50	0.18	0.2	0.35	10
WiGig	1	60.48	24.53	0.28	0.2	0.56	10
WiGig	1	62.64	23.45	0.22	0.2	0.44	10

