

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel® Centrino® Wireless-N 130 (models 130BNHMW and 130BNHU)

IC CERTIFICATION #: 1000M-130BNH and 1000M-130BNHU

FCC ID: PD9130BNH and PD9130BNHU

APPLICANT: Intel Corporation

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-5, 2845B-7

REPORT DATE: October 1, 2010

FINAL TEST DATES: September 2, 7, 13, 14, and 15, 2010

AUTHORIZED SIGNATORY:

Mark Briggs
Staff Engineer

Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80709 Page 1 of 20

Test Report Report Date: October 1, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-01-2010	First release	

File: R80709 Page 2 of 20

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
ADDITIONAL MEASUREMENTS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTSEUT OPERATION	
TEST SITEGENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	12
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	13
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	10
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	19
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Wireless-N 130 (models 130BNHMW and 130BNHU), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R80709 Page 4 of 20

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Wireless-N 130 (models 130BNHMW and 130BNHU) complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Wireless-N 130 (models 130BNHMW and 130BNHU) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80709 Page 5 of 20

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	10.2 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power	802.11b: 0.063 W 802.11g: 0.118 W n20: 0.123 W n40: 0.035 W	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-5.3 dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	802.11g and n20MHz: more than -20dBc 802.11b and n40MHz: more than -30dBc	< -20 dBc or $< -30 dBc$ Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.8dBµV/m @ 2483.5MHz	15.207 in restricted bands, all others <-30dBc Note 2	Complies (-0.2dB)

Note 1: EIRP calculated using antenna gain of 3.2 dBi

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	Unique	Integral or unique connector required	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	43.5dBμV/m @ 7500.1MHz	Refer to page 18	Complies (-10.5dB))
15.207	RSS GEN Table 2	AC Conducted Emissions	41.7dBμV @ 15.505MHz	Refer to page 17	Complies (-8.3dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual page 8	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to pages 11 and 12 of the user's manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 13.6 MHz 802.11g: 18.4 MHz n20: 19.7 MHz n40: 36.6 MHz	Information only	N/A

File: R80709 Page 6 of 20

ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.2109	RSS 210	Receiver spurious emissions	51.0dBμV/m @ 2496.2MHz	15.209 in restricted bands, all others < -20dBc	Complies (-3.0dB)

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field	dBμV/m	25 to 1000 MHz	± 3.6 dB
strength)	ασμ ν/ιιι	1000 to 40000 MHz	$\pm 6.0 \text{ dB}$
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

File: R80709 Page 7 of 20

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Wireless-N 130 is a PCIe Half Mini Card form factor Bluetooth / IEEE 802.11b/g/n wireless network adapter that supports 1x1 (SISO) for 802.11bgn modes. Bluetooth operation supports a 1x1 mode.

The card is sold under two different model numbers:

The Intel® Centrino® Wireless-N 130 is sold under model numbers 130BNHMW and 130BNHU

Model numbers with FCC ID: PD9130BNHU and IC: 1000M-130BNHU are intended for end user installation and operate with a BiOS lock feature to ensure they can only be used in the appropriate host systems to prevent unauthorized operation. Other models are only intended for OEM factory installation.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 2, 2010 and tested on September 2, 7, 13, 14, and 15, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Mac Address	FCC ID
		PCIe Half Mini Card		PD9130BNH
Intel	130BNHMW	form factor	00150079C6	PD9130BNHU
Corporation		Bluetooth / IEEE	BF	1000M-130BNH
Corporation	130BNHU	802.11b/g/n wireless	DΓ	1000M-130BNHU
	ISUDINITU	network adapter		1000M-130DNHO

ANTENNA SYSTEM

The EUT antenna is a a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

File: R80709 Page 8 of 20

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel Corporation	Shiloh Motherboard	Test Fixture	1	N/A
Dell	-	Laptop PC	Prototype	N/A
Agilent	E3610A	DC Supply	-	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)			
Poit	То	Description	Shielded or Unshielded	Length(m)	
Laptop USB	Fixture USB	USB cable	Shielded	1	
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	0.5	
DC Power	Fixture DC power	2-wire	unshielded	0.5	

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used for all tests were the lowest data rates for each 802.11 mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements). Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s and had a slightly lower output power than the 3Mb/s data rate.

The PC was using the Intel test utility DRTU Version 1.2.2-0177 and the driver version 14.0.0.39.

File: R80709 Page 9 of 20

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	n Numbers	Location	
Site	FCC	Canada	Location	
Chamber 4	211948	2845B-4	41020 Dayras Band	
Chamber 5	211948	2845B-5	41039 Boyce Road Fremont,	
Chamber 7	A2LA accreditation	2845B-7	CA 94538-2435	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R80709 Page 10 of 20

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R80709 Page 11 of 20

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

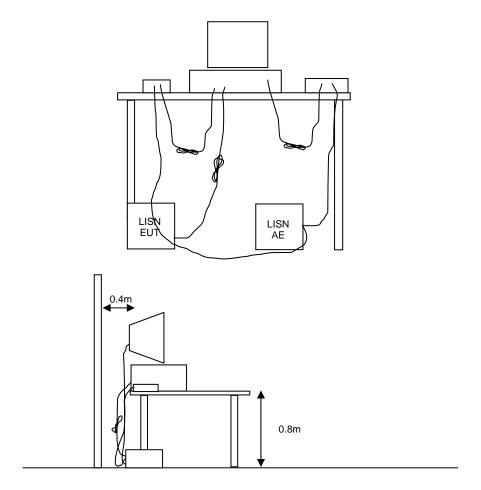
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R80709 Page 12 of 20


TEST PROCEDURES

EUT AND CABLE PLACEMENT

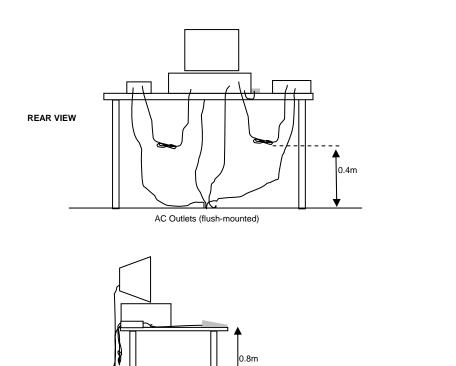
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R80709 Page 13 of 20

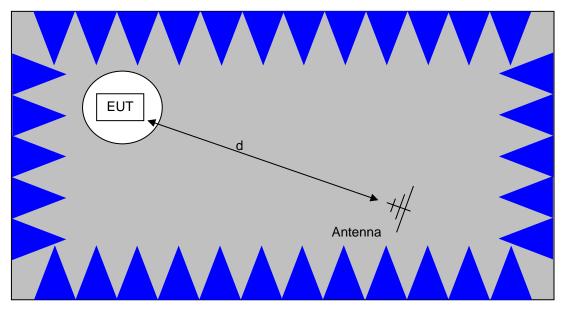
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

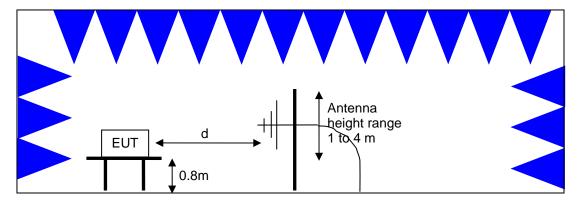
A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


File: R80709 Page 14 of 20

Typical Test Configuration for Radiated Field Strength Measurements


SIDE VIEW

File: R80709 Page 15 of 20

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R80709 Page 16 of 20

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500 Linear decrease on logarithmic frequency axis between 56.0 and 46.0		Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R80709 Page 17 of 20

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R80709 Page 18 of 20

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R80709 Page 19 of 20

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R80709 Page 20 of 20

Appendix A Test Equipment Calibration Data

Radio Antenna Port (P	ower and Spurious Emissions), 0	2-03-Sep-10		
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	6/30/2011
	er and Spurious Emissions), 07-0	8-Sep-10		
<u>Manufacturer</u>	<u>Description</u>	Model .	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Radiated Emissions, 1	000 - 26,500 MHz, 13,14-Sep-10			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	12/15/2010
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/4/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	11/4/2010
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011
Radio Antenna Port, 1	4,15-Sep-10			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	9/13/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
Radiated Emissions, 3	0 - 1,000 MHz, 15-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7GHz	ESIB7	1538	10/15/2010
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
	- AC Power Ports, 15-Sep-10			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7GHz	ESIB7	1538	10/15/2010
Fischer Custom	LISN, 50uH, 25 Amps, Dual Line	FCC-LISN-50/250-	1575	4/19/2011
Comm.	Dulas Limitar	25-2-01	1502	E/07/0044
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1593	5/27/2011

File: R80709 Appendix Page 1 of 2

Appendix B Test Data

T80458 71 Pages

File: R80709 Appendix Page 2 of 2

Ellio		EMC Test Data			
Client:	Intel Corporation	Job Number:	J80397		
Model:	Intel® Centrino® Wireless-N 1030 and Intel®	T-Log Number:	T80458		
	Centrino® Wireless-N 130	Account Manager:	Christine Krebill		
Contact:	Steve Hackett		-		
Emissions Standard(s):	FCC.247, RSS-210 Issue 7	Class:	В		
Immunity Standard(s):	-	Environment:	-		

EMC Test Data

For The

Intel Corporation

Model

Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130

Date of Last Test: 9/15/2010

	Elliott An AZAS company	ЕМО	C Test Data
	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
wodei.	Intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/15/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

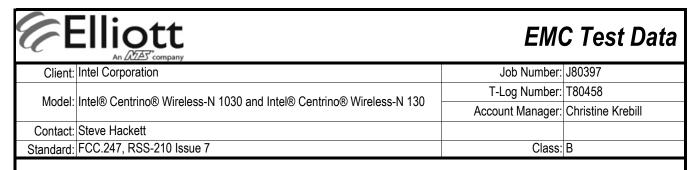
The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 21.6 °C

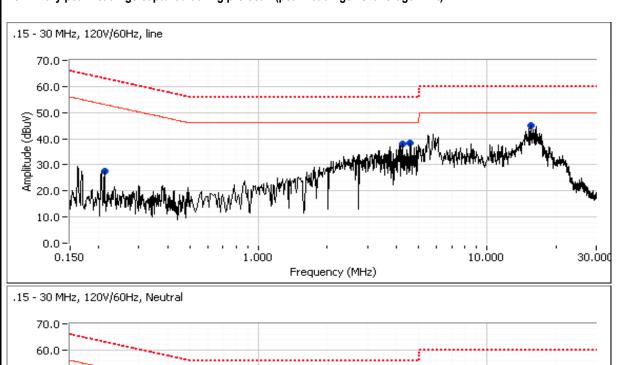
Rel. Humidity: 37 %

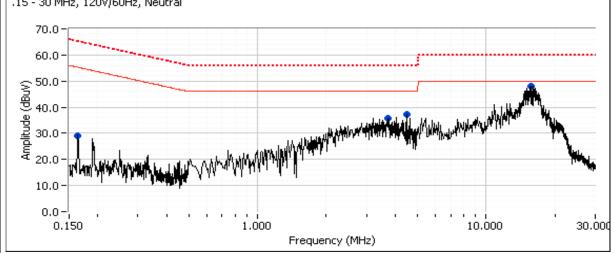
Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	RSS 210 / 15.207	Pass	41.7dBµV @ 15.505MHz (-8.3dB)

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/50Hz Preliminary peak readings captured during pre-scan (peak readings vs. average limit)

0	Intel Corpor	文文 Company ation					Job Number	: J80397
							T-Log Number	
Model:	Intel® Centi	rino® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirele	ess-N 130	Account Manager	
Contact:	Steve Hack	ett					, toodant manager	
		SS-210 Issue	e 7				Class	· B
otanaara.							3.833	
	I	I 40	01.		I B. C. C.	Io		
requency	Level	AC		ss B	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave			
0.213	27.4	Line 1	53.1	-25.7 7.0	Peak			
4.229	38.1	Line 1	46.0	-7.9	Peak			
4.617 15.408	38.4 45.1	Line 1 Line 1	46.0 50.0	-7.6 -4.9	Peak Peak			
0.164	29.2	Neutral	55.3	-4.9 -26.1	Peak			
	23.2		46.0	-8.7	Peak			
1 168	37 3	Noutral						
4.468 3.731	37.3 35.6	Neutral						
3.731	35.6	Neutral	46.0	-10.4	Peak			
3.731 15.505 inal quasi	35.6 48.1	Neutral Neutral verage readi	46.0 50.0 ngs	-10.4 -1.9	Peak Peak			
3.731 15.505 inal quasi requency	35.6 48.1 -peak and a Level	Neutral Neutral verage readi AC	46.0 50.0 ngs	-10.4 -1.9	Peak Peak Detector	Comments		
3.731 15.505 inal quasi requency MHz	35.6 48.1 -peak and a Level dBµV	Neutral Neutral verage readi AC Line	46.0 50.0 ngs Cla Limit	-10.4 -1.9 ss B Margin	Peak Peak Detector QP/Ave			
3.731 15.505 nal quasi requency MHz 15.505	35.6 48.1 -peak and a Level dBμV 41.7	Neutral Neutral verage readi AC Line Neutral	46.0 50.0 ngs Cla Limit 50.0	-10.4 -1.9 ss B Margin -8.3	Peak Peak Detector QP/Ave AVG	AVG (0.10s)		
3.731 15.505 inal quasi requency MHz 15.505 15.408	35.6 48.1 -peak and a Level dBμV 41.7 38.0	Neutral Neutral verage readi AC Line Neutral Line 1	46.0 50.0 ngs Cla Limit 50.0 50.0	-10.4 -1.9 ss B Margin -8.3 -12.0	Peak Peak Detector QP/Ave AVG AVG	AVG (0.10s) AVG (0.10s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505	35.6 48.1 -peak and a Level dBμV 41.7 38.0 46.4	Neutral Neutral verage readi AC Line Neutral Line 1 Neutral	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6	Peak Peak Detector QP/Ave AVG AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505 15.408	35.6 48.1 -peak and a Level dBµV 41.7 38.0 46.4 42.8	Neutral Neutral verage readi AC Line Neutral Line 1 Neutral Line 1	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2	Peak Peak Detector QP/Ave AVG AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505 15.408 3.731	35.6 48.1 -peak and a Level dBµV 41.7 38.0 46.4 42.8 31.4	Neutral Neutral Verage readi AC Line Neutral Line 1 Neutral Line 1 Neutral	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505 15.408 3.731 4.229	35.6 48.1 -peak and a Level dBμV 41.7 38.0 46.4 42.8 31.4 30.6	Neutral Neutral Verage readi AC Line Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
3.731 15.505 mal quasi requency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617	35.6 48.1 -peak and a Level dBμV 41.7 38.0 46.4 42.8 31.4 30.6 29.7	Neutral Neutral Verage readi AC Line Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Line 1	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468	35.6 48.1 -peak and a Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6	Neutral Neutral Verage readi AC Line Neutral Line 1 Neutral	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 56.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
3.731 15.505 nal quasi requency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731	35.6 48.1 -peak and a Level dBμV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4	Neutral Neutral AC Line Neutral Line 1 Neutral	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 46.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP QP QP QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
3.731 15.505 inal quasi requency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731 4.229	35.6 48.1 -peak and a Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4 18.7	Neutral Neutral Verage readi AC Line Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Line 1 Line 1 Neutral Line 1 Line 1	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 46.0 46.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6 -27.3	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP QP QP AVG AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
3.731 15.505 inal quasi Frequency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731	35.6 48.1 -peak and a Level dBμV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4	Neutral Neutral AC Line Neutral Line 1 Neutral	46.0 50.0 ngs Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 46.0	-10.4 -1.9 ss B Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6	Peak Peak Peak Detector QP/Ave AVG AVG QP QP QP QP QP QP QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		

L	All Barry Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	Intel® Centino® Wheless-14 1000 and intel® Centino® Wheless-14 100	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/15/2010 Config. Used: Modular Test
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 21.6 °C Rel. Humidity: 37 %

Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

Run#	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	30.2dBµV/m @ 200.01MHz (-13.3dB)

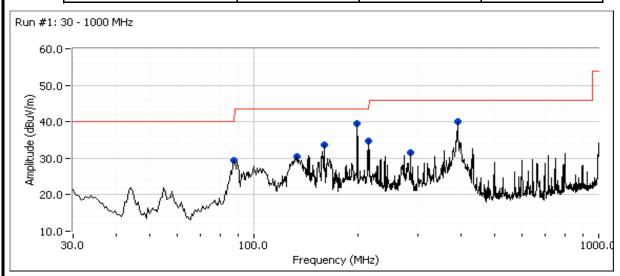
Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data rate).

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.



Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	Intel® Centino® Wheless-IV 1000 and intel® Centino® Wheless-IV 100	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	В

Run #1: Preliminary Radiated Emissions, 30 - 1000 MHz

Configured to TX, 802.11b 16.5dBm on each chain (settings 20.0) on channel 6, Bluetooth 7dBm, 1Mb/s (settings 8.0)

,	<u> </u>	, , , , , , , , , , , , , , , , , , ,	<u> </u>	
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
30 - 1000 MHz	3	3	0.0	

Preliminary peak readings captured during pre-scan

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
89.727	29.4	Н	40.0	-10.6	Peak	52	2.0	
133.637	30.5	V	43.5	-13.0	Peak	175	2.0	
160.029	33.8	Н	43.5	-9.7	Peak	217	2.0	
200.008	39.6	Н	43.5	-3.9	Peak	218	1.5	
216.011	34.7	Н	43.5	-8.8	Peak	238	2.0	
285.274	31.5	V	46.0	-14.5	Peak	95	1.0	
391.699	40.0	Н	46.0	-6.0	Peak	188	1.0	

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	FCC 15.209	9 / RSS 210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
200.008	30.2	Н	43.5	-13.3	QP	218	1.5	QP (1.00s)
160.029	29.2	Н	43.5	-14.3	QP	205	1.6	QP (1.00s)
89.727	27.5	Н	43.5	-16.0	QP	75	2.2	QP (1.00s)
391.699	29.6	Н	46.0	-16.4	QP	186	1.0	QP (1.00s)
133.637	21.9	V	43.5	-21.6	QP	191	1.0	QP (1.00s)
216.011	23.0	Н	46.0	-23.0	QP	219	1.6	QP (1.00s)

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

Run#	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
Run # 1 0		#3 2422MHz		12.0	Restricted Band Edge at 2400 MHz	15.209	53.7dBµV/m @ 2390.0MHz (-0.3dB)
Rull# I	Chain A	#9 2452MHz		11.8	Restricted Band Edge at 2483.5 MHz	15.209	53.8dBµV/m @ 2483.5MHz (-0.2dB)
Run # 2	n40	#4 2427MHz		12.0	Restricted Band Edge at 2400 MHz	15.209	52.0dBµV/m @ 2390.0MHz (-2.0dB)
Rull#2	Chain A	#8 2447MHz		13.0	Restricted Band Edge at 2483.5 MHz	15.209	53.4dBµV/m @ 2483.5MHz (-0.6dB)
Run # 3	n40	#5 2432MHz		13.8	Restricted Band Edge at 2400 MHz	15.209	51.6dBµV/m @ 2390.0MHz (-2.4dB)
Rull#3	Chain A	#7 2442MHz		13.1	Restricted Band Edge at 2483.5 MHz	15.209	51.3dBµV/m @ 2483.5MHz (-2.7dB)
Run # 4	n40	#6		15.4	Restricted Band Edge at 2400 MHz	15.209	53.1dBµV/m @ 2390.0MHz (-0.9dB)
Null#4	Chain A	2437MHz	14.5		Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.5MHz (-1.7dB)
Run # 5	n20	#1 2412MHz		14.1	Restricted Band Edge at 2400 MHz	15.209	51.8dBµV/m @ 2390.0MHz (-2.2dB)
Rull#3	Chain A	#11 2462MHz		13.5	Restricted Band Edge at 2483.5 MHz	15.209	53.5dBµV/m @ 2483.5MHz (-0.5dB)
Run # 6	802.11g	#1 2412MHz		16.5	Restricted Band Edge at 2400 MHz	15.209	53.6dBµV/m @ 2390.0MHz (-0.4dB)
IXuII#0	Chain A	#11 2462MHz		14.1	Restricted Band Edge at 2483.5 MHz	15.209	51.9dBµV/m @ 2483.5MHz (-2.1dB)
Run # 7	802.11b	#1 2412MHz		16.6	Restricted Band Edge at 2400 MHz	15.209	45.9dBµV/m @ 2390.0MHz (-8.1dB)
Tull#7	Chain A	#11 2462MHz		16.6	Restricted Band Edge at 2483.5 MHz	15.209	48.7dBµV/m @ 2483.5MHz (-5.3dB)

Note - the measured powers are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

	An ZZZZZ Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	Intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation.

The fundamental field strength is always measured at a 3m test distance.

	An ZAZE) company		
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

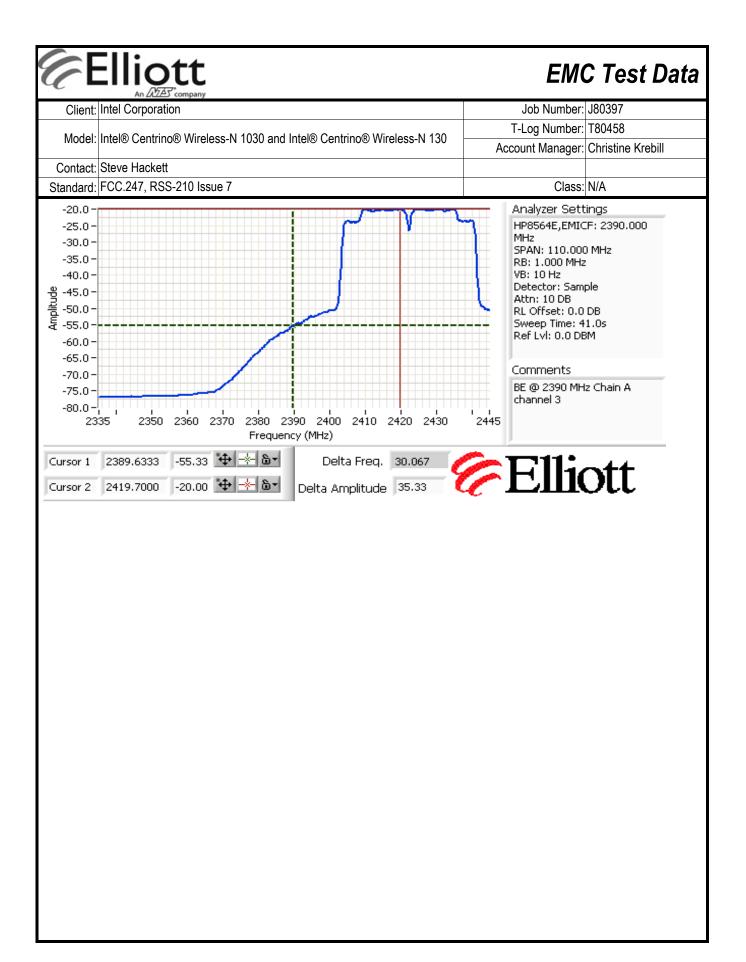
Run # 1, Band Edge Field Strength - n40, Chain A

Date of Test: 9/2/2010 Test Location: FT Chamber #4

Test Engineer: Joseph Cadigal Config Change: none

Run # 1a, EUT on Channel #3 2422MHz - n40, Chain A

		Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	12.0	19.0						


Fundamental Signal Field Strength

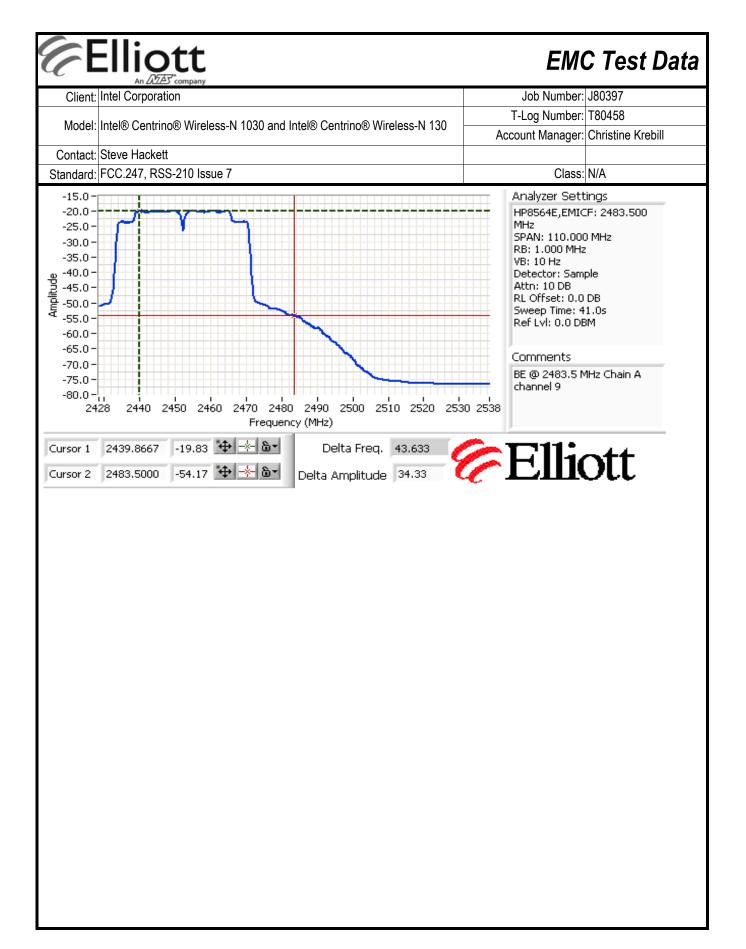
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2430.400	87.2	V	-	-	AVG	183	1.7	RB 1 MHz;VB 10 Hz;Pk
2432.600	95.6	V	-	-	PK	183	1.7	RB 1 MHz;VB 3 MHz;Pk
2423.480	89.0	Н	-	-	AVG	360	1.0	RB 1 MHz;VB 10 Hz;Pk
2423.470	98.2	Н	-	-	PK	360	1.0	RB 1 MHz;VB 3 MHz;Pk

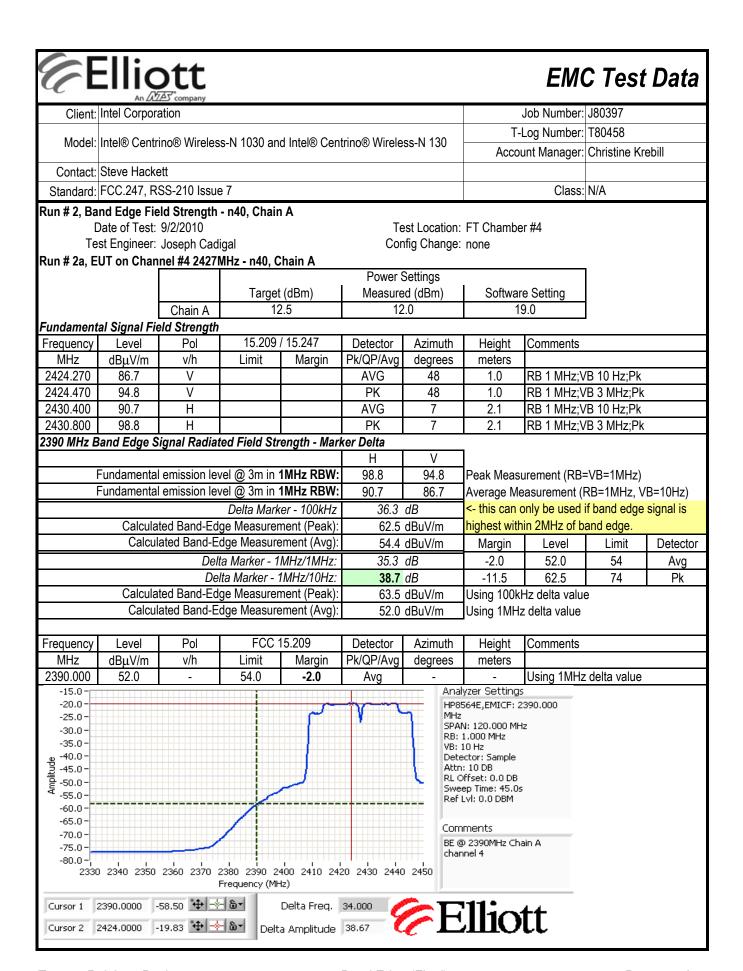
2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

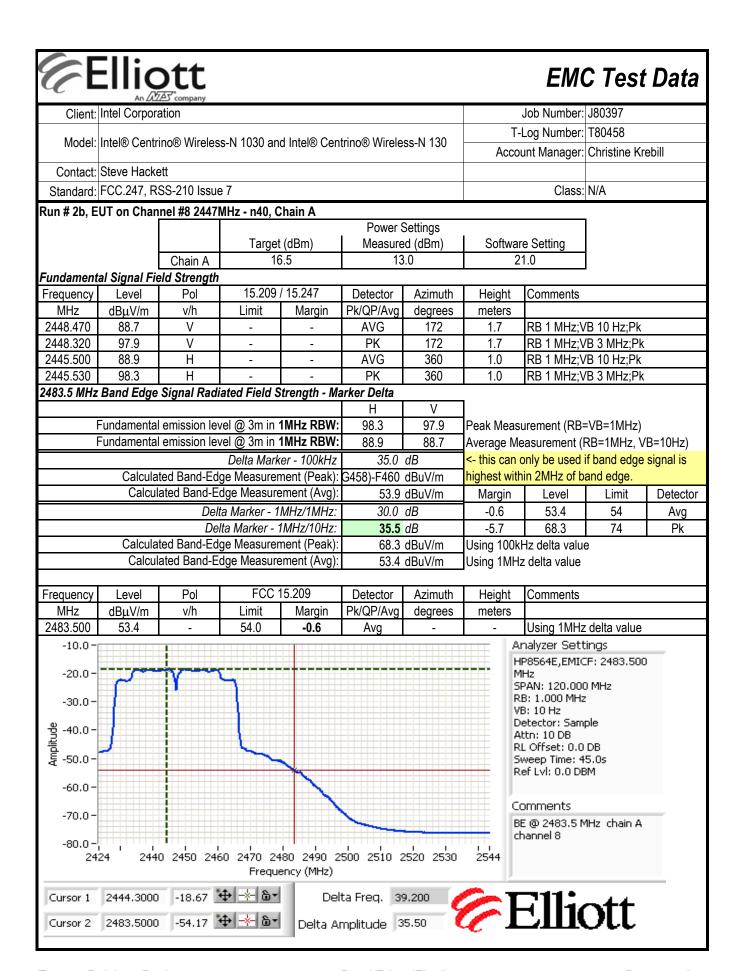
	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:	98.2	95.6	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	89.0	87.2	Average Me	asurement (F	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	32.7	dB	<- this can o	nly be used	if band edge	signal is
Calculated Band-Edge Measurement (Peak):	65.5	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	56.3	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	31.2	dB	-0.3	53.7	54	Avg
Delta Marker - 1MHz/10Hz:	35.3	dB	-8.5	65.5 74 Pk		
Calculated Band-Edge Measurement (Peak):	67.0	67.0 dBuV/m Using 100kHz delta value				
Calculated Band-Edge Measurement (Avg):	53.7	dBuV/m	Using 1MHz delta value			

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.7	-	54.0	-0.3	Avg	ı	-	Using 1MHz delta value

CE!)tt						EMO	C Test	Data
Client:	Intel Corpora	ation					,	Job Number:	J80397	
3.4 callada			11 4000			31.400	T-I	Log Number:	T80458	
Modei:	Intel® Centr	ino® Wireles	ss-N 1030 and	d Intel® Cen	trino® vvireie	ss-N 130		unt Manager:		ebill
Contact:	Steve Hacke	ett								
Standard:	FCC.247, R	SS-210 Issur	e 7					Class:	N/A	
Run # 1b. E	UT on Char	nel #9 2452	MHz - n40, C	hain A						
,		100 110 110			Power S	Settings			[
	ľ	l'	Target	t (dBm)	Measure		Softwar	e Setting		
	ľ	Chain A	16	ô.5	11	.8	19	9.0		
					· 				·	
l										
	tal Signal Fie			145 047	T - 1 - 1 - 1 - 1		T CONTRACT	Toto		
Frequency		Pol	1	/ 15.247	Detector	Azimuth	Height	Comments		
MHz 2449.270	dBμV/m 88.0	v/h V	Limit	Margin	Pk/QP/Avg		meters		(D 40 H=-Dk	
2449.270	96.4	V		-	AVG PK	261 261	1.0 1.0	RB 1 MHz;V	/B 10 HZ;PK /B 3 MHz;Pk	
2440.330	88.1	V H		-	AVG	342	1.0	RB 1 MHz;V		
2459.730	98.9	H	-	-	PK	342	1.2		/B 3 MHz;Pk	
2700.700	00.0	<u> </u>			1 115 1		1	ND 1, .	D 0 1711 12,	
2483. <u>5 MHz</u>	. Band Edge	Signal Rad	liated Field S	treng <u>th - Ma</u>	arker <u>Delta</u>					
					Н	V				
			vel @ 3m in 1			96.4		urement (RB=	,	
	<u>Fundamental</u>	emission lev	vel @ 3m in 1		<u> </u>	88.0	_	easurement (F		,
				ker - 100kHz	31.7	-		only be used i	_	signal is
			lge Measuren			dBuV/m	_ ·	in 2MHz of ba		
	Calcul		dge Measure	, ,,		dBuV/m	Margin	Level	Limit	Detector
			lta Marker - 1		30.2		-0.2	53.8	54	Avg
	2 ! !		elta Marker - 1		34.3		-6.8	67.2	74	Pk
			lge Measuren			dBuV/m	_	Hz delta value	Э	
	Calcul	ated Band-⊏	dge Measure	ment (Avg):	53.8	dBuV/m	Using 1MHz	z delta value		
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	00		
0402 500	E2 0		E4.0	0.0	Λ			Llaina 1MLla	مريامي مقامات	

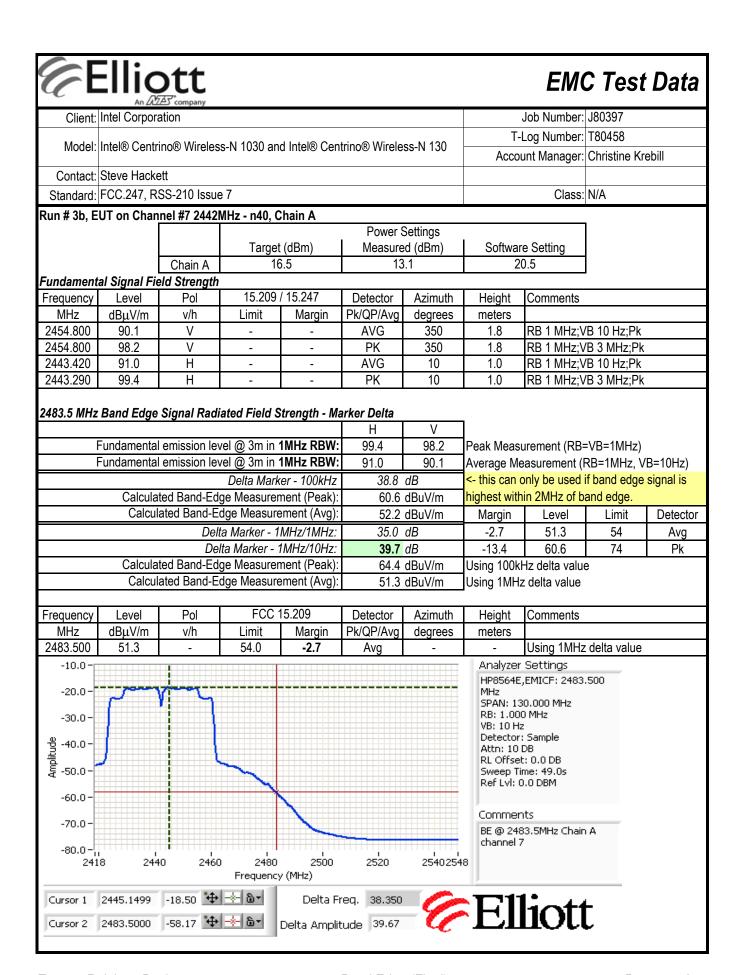

2483.500


53.8


54.0

-0.2

Using 1MHz delta value



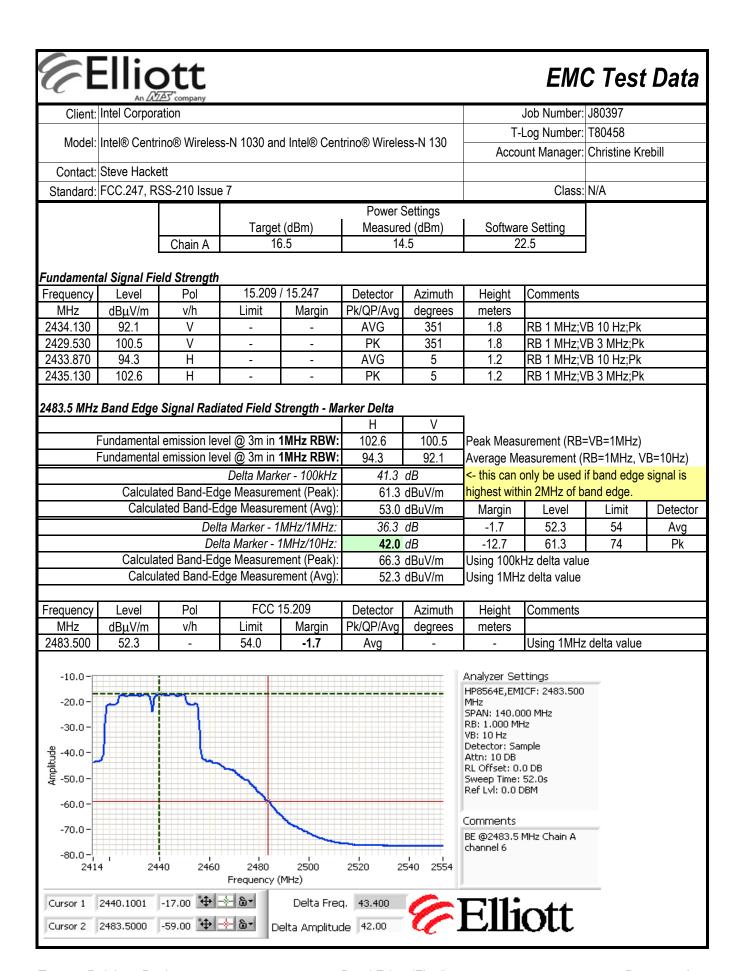
Elliott EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A Run # 3, Band Edge Field Strength - n40, Chain A Date of Test: 9/2/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none Run # 3a, EUT on Channel #5 2432MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 13.8 21.5 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2429.800 90.9 ٧ AVG 350 2.1 RB 1 MHz;VB 10 Hz;Pk -2430.200 99.2 ٧ PK 2.1 350 RB 1 MHz;VB 3 MHz;Pk 2435.400 92.1 Η **AVG** 6 2.0 RB 1 MHz;VB 10 Hz;Pk 2433.800 100.0 Н PΚ 6 2.0 RB 1 MHz;VB 3 MHz;Pk 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 100.0 99.2 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 92.1 90.9 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **40.5** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 59.5 dBuV/m Calculated Band-Edge Measurement (Avg): 51.6 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 34.2 dB -2.4 51.6 54 Avg Delta Marker - 1MHz/10Hz: 59.5 40.0 dB -14.5 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.8 dBuV/m Calculated Band-Edge Measurement (Avg): 52.1 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments Limit MHz dBμV/m v/h Margin Pk/QP/Avg degrees meters 2390.000 51.6 54.0 -2.4 Using 100kHz delta value Avq -10.0 Analyzer Settings HP8564E,EMICF: 2390.000 -20.0 SPAN: 130.000 MHz RB: 100 kHz -30.0 VB: 100 kHz Detector: POS -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 72.0ms Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @ 2390MHz Chain A -80.0 2360 2380 2400 2340 2420 2440 2325 Frequency (MHz) -54.50 ♣ -*- ७ ▼ Delta Freq. 46.367 Cursor 1 2390.0000 Elliott -14.00 💠 📥 🖫

Delta Amplitude 40.50

Elliott EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A Run # 4, Band Edge Field Strength - n40, Chain A Date of Test: 9/7/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none EUT on Channel #6 2437MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 15.4 23.5 Chain A Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin meters degrees 2449.600 95.1 Η AVG 5 1.2 RB 1 MHz;VB 10 Hz;Pk -2446.330 Н PK 5 1.2 104.1 RB 1 MHz;VB 3 MHz;Pk 2433.870 93.4 ٧ **AVG** 351 1.8 RB 1 MHz;VB 10 Hz;Pk 2429.600 102.1 ٧ PΚ 351 1.8 RB 1 MHz;VB 3 MHz;Pk 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta V Fundamental emission level @ 3m in 1MHz RBW: 102.1 104.1 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 95.1 93.4 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz **42.0** dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 62.1 dBuV/m Calculated Band-Edge Measurement (Avg): 53.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 38.3 dB -0.9 53.1 54 Avg Delta Marker - 1MHz/10Hz: 41.7 dB -11.9 62.1 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 65.8 dBuV/m Calculated Band-Edge Measurement (Avg): 53.4 dBuV/m Using 100kHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 53.1 54 0 -0.9 Using 100kHz delta value Ava -10.0 Analyzer Settings HP8564E,EMICF: 2390.000 -20.0 MHz SPAN: 140,000 MHz RB: 100 kHz VB: 100 kHz -30.0 Detector: POS -40.0 Attn: 10 DB RL Offset: 0.0 DB Sweep Time: 77.0ms Ref Lvl: 0.0 DBM -50.0 -60.0 Comments -70.0 BE @2390 MHz Chain A -80.0 2380 2400 2320 2340 2360 2420 2440 2460

Cursor 1 2389.7666

Cursor 2 2441.5667


Frequency (MHz)

Delta Freq. 51.800

Delta Amplitude 42.00

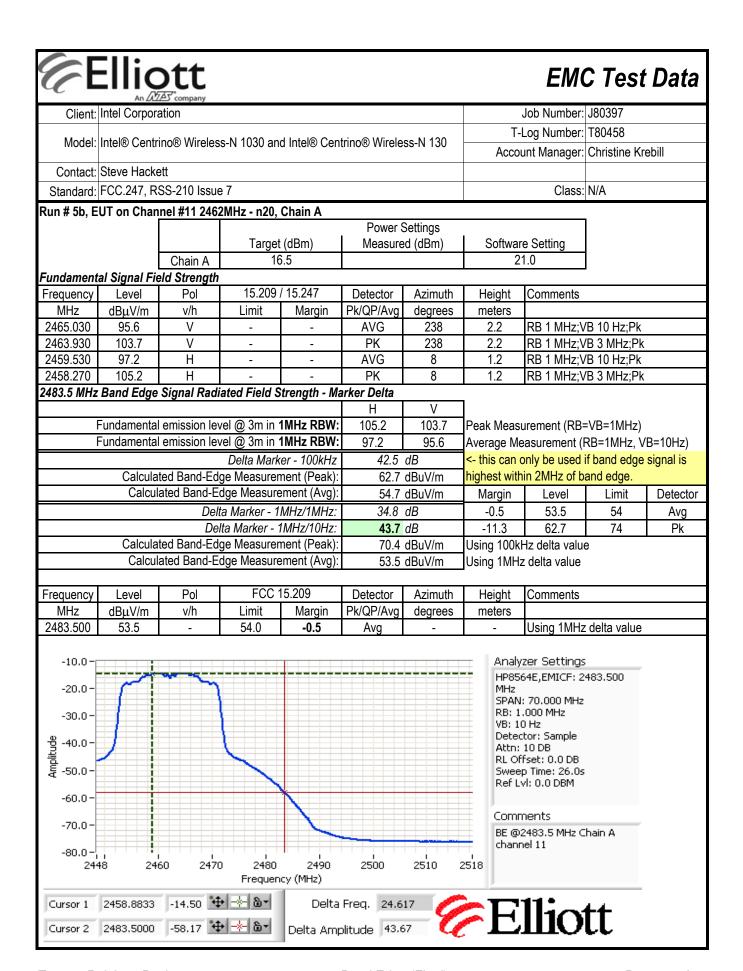
-53.67 💠 → 🏜 ▼

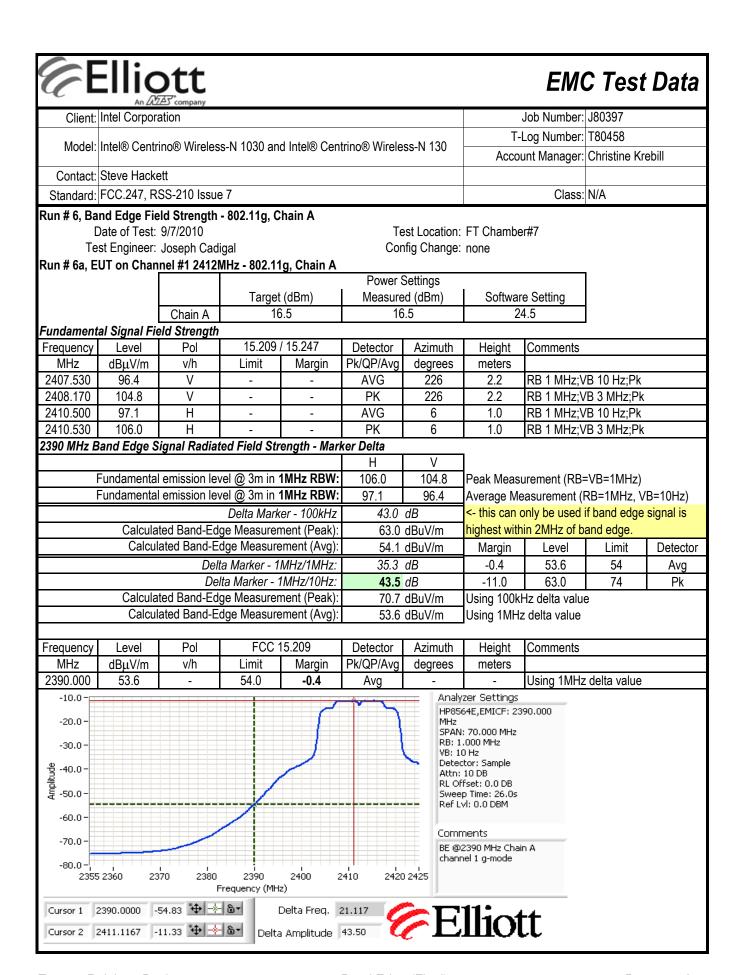
-11.67 💠 📥 🖫

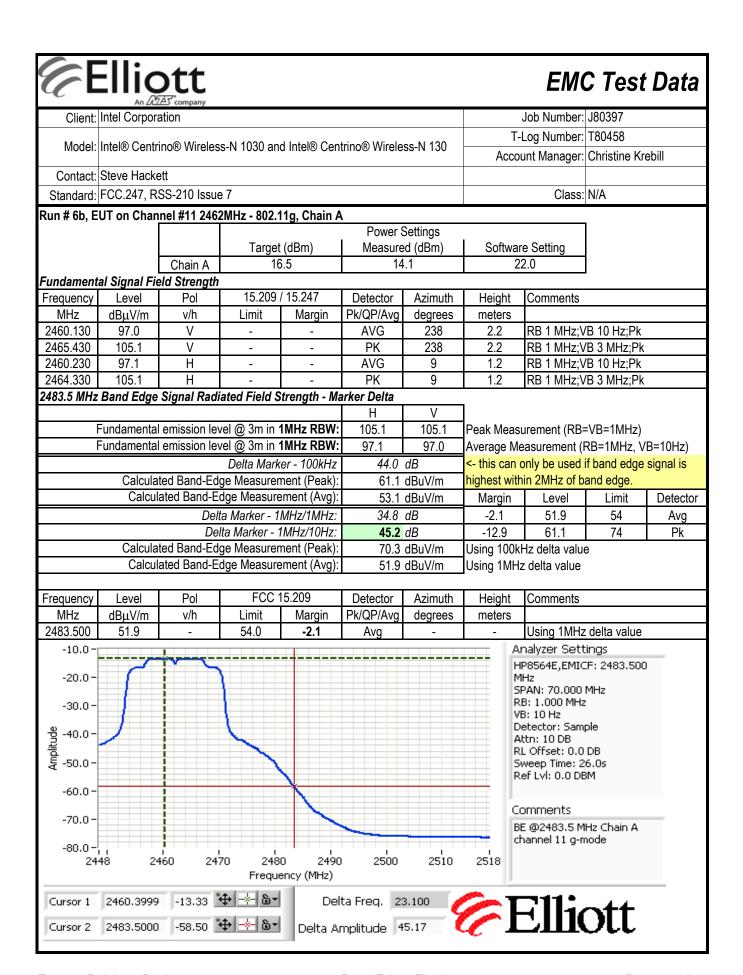
Elliott EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A Run # 5, Band Edge Field Strength - n20, Chain A Date of Test: 9/7/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none Run # 5a, EUT on Channel #1 2412MHz - n20, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 14.1 22.0 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2408.830 92.0 ٧ AVG 190 1.9 RB 1 MHz;VB 10 Hz;Pk -٧ PK 1.9 2408.130 100.0 190 RB 1 MHz;VB 3 MHz;Pk 2407.770 95.6 Η **AVG** 6 1.0 RB 1 MHz;VB 10 Hz;Pk 2408.200 103.6 Н PΚ 6 1.0 RB 1 MHz;VB 3 MHz;Pk 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 103.6 100.0 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 95.6 92.0 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 43.2 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 60.4 dBuV/m Calculated Band-Edge Measurement (Avg): 52.4 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 35.0 dB -2.2 51.8 54 Avg Delta Marker - 1MHz/10Hz: 43.8 dB -13.6 60.4 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 68.6 dBuV/m Calculated Band-Edge Measurement (Avg): 51.8 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Comments Height MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 51.8 54.0 -2.2 Using 1MHz delta value Avq -10.0 Analyzer Settings HP8564E,EMICF: 2390.000 -20.0 MHz. SPAN: 70,000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB -50.0 Sweep Time: 26.0s Ref Lvl: 0.0 DBM -60.0 Comments -70.0 BE @2390 MHz Chain A channel 1 -80.0 -2420 2425 2355 2360 2370 2380 2400 2410 2390 Frequency (MHz)

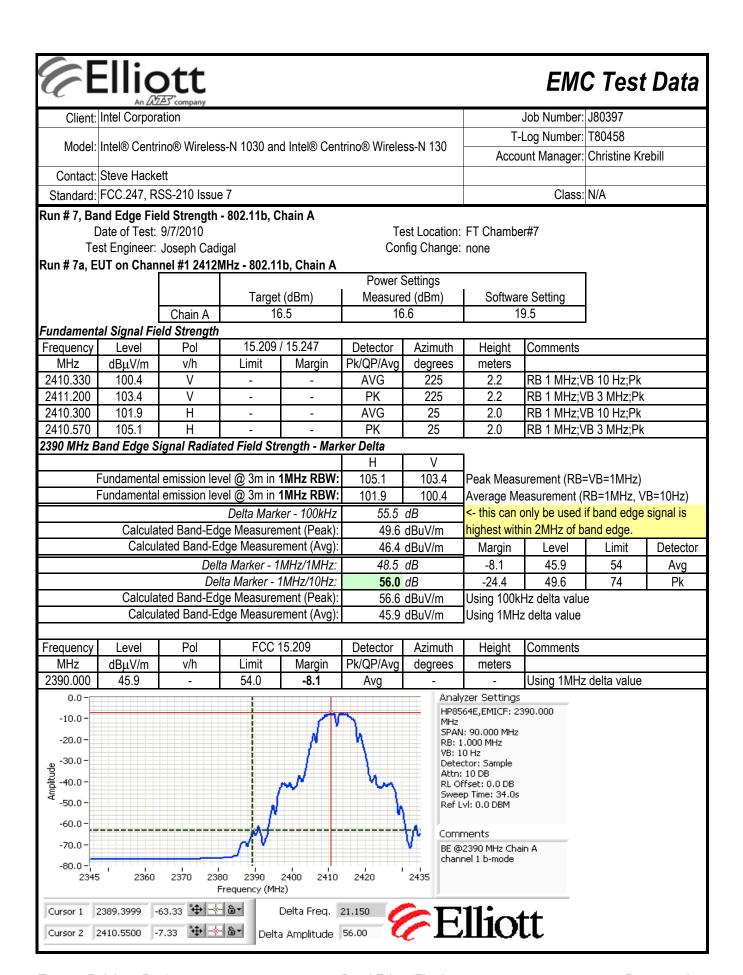
Cursor 1 2390.0000

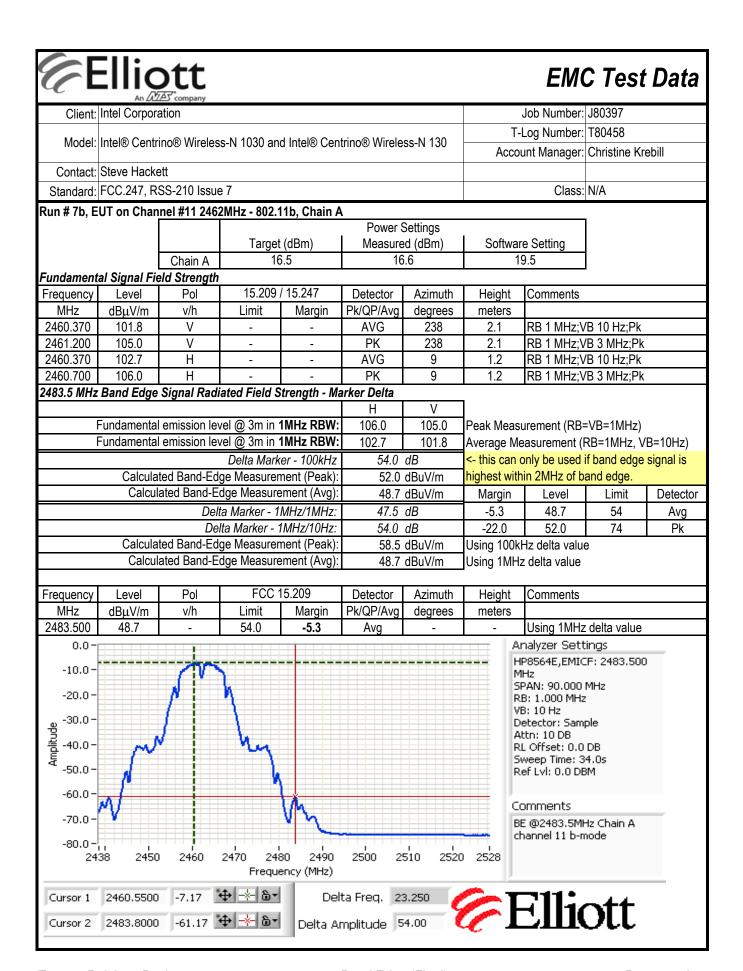
Cursor 2 2409.0166


-57.67 💠 → 🏖


-13.83 💠 🛧 🖫


Delta Freq. 19.017


Delta Amplitude 43.83


Elliott

	Elliott An MAS company	EMC Test Data		
Client:	Intel Corporation	Job Number:	J80397	
Madalı	Intel® Contring® Wireless N 1030 and Intel® Contring® Wireless N 130	T-Log Number:	T80458	
Model.	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	Account Manager:	Christine Krebill	
Contact:	Steve Hackett			

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

Summary of Results

Standard: FCC.247, RSS-210 Issue 7

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

MIAC Address. 00130073COBF DKTO 1001 Version 1.2.2-0177 Driver Version 14.0.0.35								
Run#	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin	
		#1 2412MHz		16.8			45.2dBµV/m @ 4824.0MHz (-8.8dB)	
Run #1	802.11b Chain A	#6 2437MHz		16.7	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	48.6dBµV/m @ 4874.0MHz (-5.4dB)	
		#11 2462MHz		16.8			50.3dBµV/m @ 4924.0MHz (-3.7dB)	
Scans on ce	nter channel	in all three (DFDM modes	to determin	e the worst case			
	802.11g	#6		40.0		FCC 15.209 / 15.247	43.2dBµV/m @	
	Chain A	2437MHz		16.6			7500.1MHz (-10.8dB)	
D # 0	802.11n20	#6		16.5	Radiated Emissions, 1 - 26 GHz		43.0dBµV/m @	
Run # 2	Chain A	2437MHz		10.5			7500.0MHz (-11.0dB)	
	802.11n40	#6		4C F			43.2dBµV/m @	
	Chain A	2437MHz		16.5			7500.0MHz (-10.8dB)	
Top and bott	tom channels	s in worst cas	se OFDM mo	de:				
		#1		16.6			44.1dBµV/m @	
Run # 3	802.11g	2412MHz		10.0	Radiated Emissions,	FCC 15.209 / 15.247	7500.1MHz (-9.9dB)	
IXuII#3	Chain A	#11		16.7	1 - 26 GHz	1 00 13.2097 13.247	42.7dBµV/m @	
		2462MHz		10.7			7500.0MHz (-11.3dB)	
Receiver Sp	urious Emi	ssions						
Run # 4	Receive	#6 Chain A			Radiated Emissions,	RSS 210	43.5dBµV/m @	
IXuII # 4		#6, Chain A	-	-	1 - 7.5 GHz	1100 210	7500.1MHz (-10.5dB)	

Note - the measured powers are the average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Rel. Humidity: 15 - 55 %

> Temperature: 18 - 25 °C

Class: N/A

	An ZAZES company		
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
wouei.	Intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

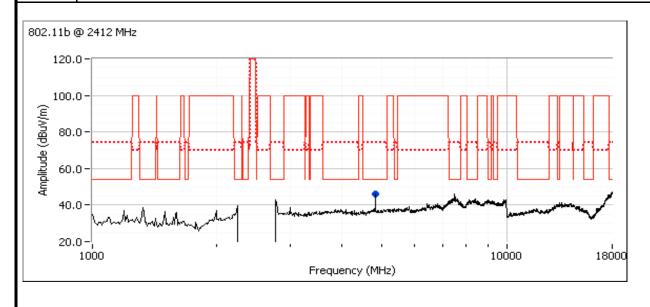
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Chain A


Date of Test: 9/13/2010 Test Location: FT Chamber #7
Test Engineer: Rafael Varelas Config Change: none

Run #1a, EUT on Channel #1 2412MHz - 802.11b. Chain A

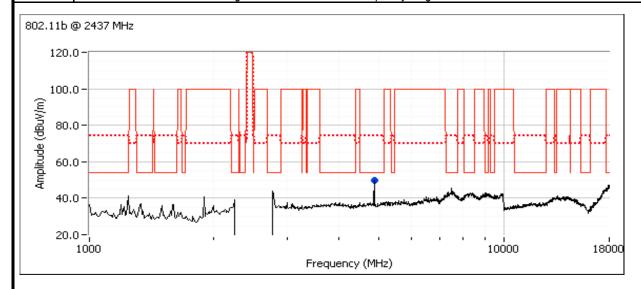
•••	ICI # I Z-TIZIVII	iz ouzilib, oliulii A							
			Power Settings						
		Target (dBm)	Measured (dBm)	Software Setting					
	Chain A	16.5	16.8	20.0					

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.990	45.2	V	54.0	-8.8	AVG	349	1.0	RB 1 MHz;VB 10 Hz;Pk
4823.990	49.6	V	74.0	-24.4	PK	349	1.0	RB 1 MHz;VB 3 MHz;Pk

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run #1b: , EUT on Channel #6 2437MHz - 802.11b, Chain A

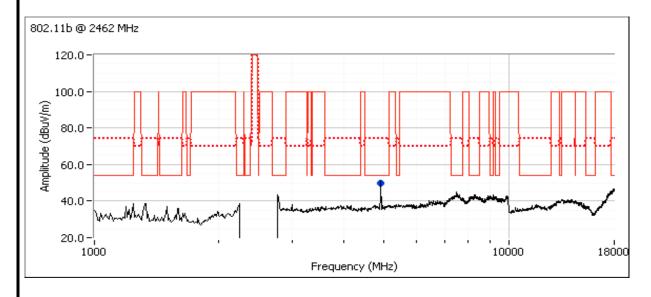

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.7	20.0					

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209/15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.990	48.6	V	54.0	-5.4	AVG	154	1.0	RB 1 MHz;VB 10 Hz;Pk
4874.020	51.8	V	74.0	-22.2	PK	154	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range


	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run #1c: , EUT on Channel #11 2462MHz - 802.11b, Chain A

Ī		Power Settings						
		Target (dBm)	Measured (dBm)	Software Setting				
	Chain A	16.5	16.8	20.0				

Spurious Radiated Emissions:

000000000000000000000000000000000000000									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4923.980	50.3	V	54.0	-3.7	AVG	150	1.8	RB 1 MHz;VB 10 Hz;Pk	
4924.080	52.8	V	74.0	-21.2	PK	150	1.8	RB 1 MHz;VB 3 MHz;Pk	

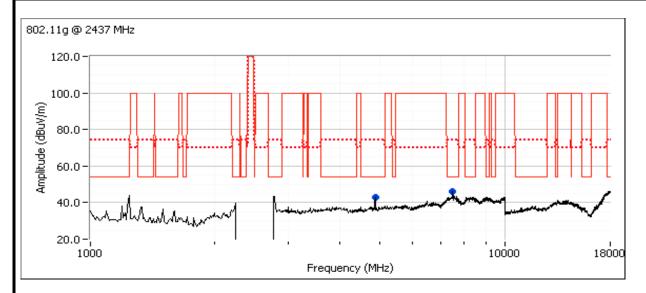
	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run # 2, Radiated Spurious Emissions, 1-26GHz, 802.11g, n20 and n40, Chain A

Date of Test: 9/13/2010 Test Location: FT Chamber #7

Test Engineer: Rafael Varelas Config Change: none

Run # 2a, EUT on Channel #6 2437MHz - 802.11g Chain A

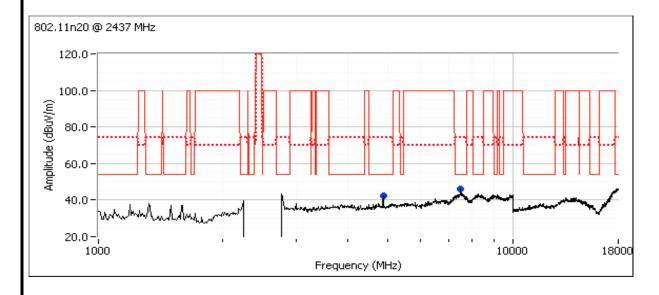

		Power Settings			
	Target (dBm)	Measured (dBm)	Software Setting		
Chain A	16.5	16.6	25.0		

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7500.090	43.2	V	54.0	-10.8	AVG	260	1.1	RB 1 MHz;VB 10 Hz;Pk
7500.370	51.0	V	74.0	-23.0	PK	260	1.1	RB 1 MHz;VB 3 MHz;Pk
4876.010	37.6	V	54.0	-16.4	AVG	240	1.0	RB 1 MHz;VB 10 Hz;Pk
4876.230	51.3	V	74.0	-22.7	PK	240	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

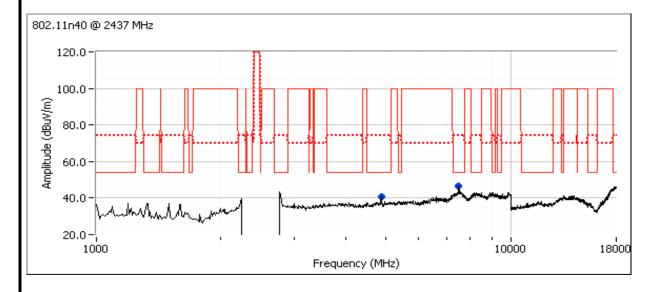

	All 2023 Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run # 2b: , EUT on Channel #6 2437MHz - 802.11n20, Chain A

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.5	25.0					

Spurious Radiated Emissions:

oparious it	pariodo Nadiatod Elificolorio.									
Frequency	Level	Pol	15.209/	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7499.950	43.0	V	54.0	-11.0	AVG	86	1.1	RB 1 MHz;VB 10 Hz;Pk		
7500.210	50.6	V	74.0	-23.4	PK	86	1.1	RB 1 MHz;VB 3 MHz;Pk		
4874.000	38.2	V	54.0	-15.8	AVG	152	1.0	RB 1 MHz;VB 10 Hz;Pk		
4873.200	52.0	V	74.0	-22.0	PK	152	1.0	RB 1 MHz;VB 3 MHz;Pk		


	All Dates Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run # 2c: , EUT on Channel #6 2437MHz - 802.11n40, Chain A

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	16.5	25.0				

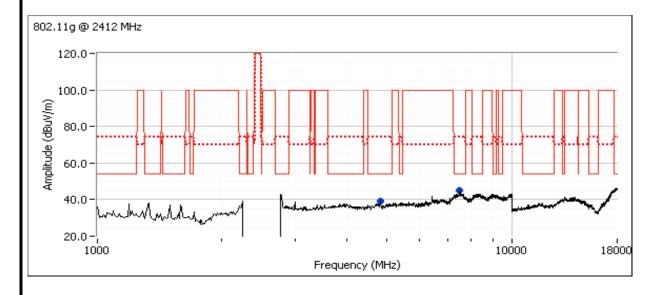
Spurious Radiated Emissions:

oparious no	purious radiated Emissions								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7499.990	43.2	V	54.0	-10.8	AVG	85	1.1	RB 1 MHz;VB 10 Hz;Pk	
7500.170	50.5	V	74.0	-23.5	PK	85	1.1	RB 1 MHz;VB 3 MHz;Pk	
4874.030	36.3	V	54.0	-17.7	AVG	153	1.0	RB 1 MHz;VB 10 Hz;Pk	
4873.840	47.6	V	74.0	-26.4	PK	153	1.0	RB 1 MHz;VB 3 MHz;Pk	

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1050 and intel® Centinio® Wheless-14 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run # 3, Radiated Spurious Emissions, 1-26GHz, 802.11g, Chain A

Date of Test: 9/13/2010 Test Location: FT Chamber #7

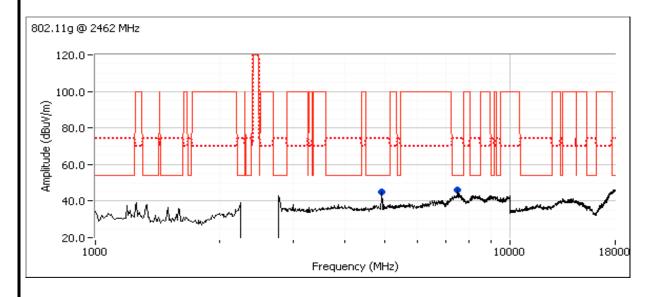

Test Engineer: Rafael Varelas Config Change: none

Run # 3a, EUT on Channel #1 2412MHz - 802.11g, Chain A

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.6	25.0					

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7500.100	44.1	V	54.0	-9.9	AVG	125	1.1	RB 1 MHz;VB 10 Hz;Pk
7499.970	51.0	V	74.0	-23.0	PK	125	1.1	RB 1 MHz;VB 3 MHz;Pk
4824.090	35.2	V	54.0	-18.8	AVG	155	1.0	RB 1 MHz;VB 10 Hz;Pk
4826.410	48.6	V	74.0	-25.4	PK	155	1.0	RB 1 MHz;VB 3 MHz;Pk


	All Dates Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

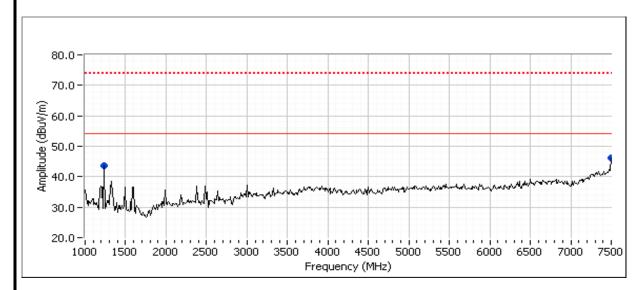
Run # 3b: , EUT on Channel #11 2462MHz - 802.11g, Chain A

•		<u></u>	7.1	
			Power Settings	
		Target (dBm)	Measured (dBm)	Software Setting
	Chain A	16.5	16.7	25.0

Spurious Radiated Emissions:

opanione rannation Emilionion									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7500.040	42.7	V	54.0	-11.3	AVG	85	1.0	RB 1 MHz;VB 10 Hz;Pk	
7500.310	50.8	V	74.0	-23.2	PK	85	1.0	RB 1 MHz;VB 3 MHz;Pk	
4923.980	40.5	V	54.0	-13.5	AVG	150	1.8	RB 1 MHz;VB 10 Hz;Pk	
4926.060	52.9	V	74.0	-21.1	PK	150	1.8	RB 1 MHz;VB 3 MHz;Pk	

	An ZAZE) company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A


Run # 4, Radiated Spurious Emissions, 1-26GHz, Receive, Chain A

Date of Test: 9/13/2010 Test Location: FT Chamber #7

Test Engineer: Rafael Varelas Config Change: none

Run # 4a, EUT on Channel #6 2437MHz - Receive, Chain A

Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
43.5	V	54.0	-10.5	AVG	125	1.1	RB 1 MHz;VB 10 Hz;Pk
50.2	V	74.0	-23.8	PK	125	1.1	RB 1 MHz;VB 3 MHz;Pk
28.5	V	54.0	-25.5	AVG	152	1.0	RB 1 MHz;VB 10 Hz;Pk
41.5	V	74.0	-32.5	PK	152	1.0	RB 1 MHz;VB 3 MHz;Pk
	dBμV/m 43.5 50.2 28.5	dBμV/m v/h 43.5 V 50.2 V 28.5 V	dBμV/m v/h Limit 43.5 V 54.0 50.2 V 74.0 28.5 V 54.0	dBμV/m v/h Limit Margin 43.5 V 54.0 -10.5 50.2 V 74.0 -23.8 28.5 V 54.0 -25.5	dBμV/m v/h Limit Margin Pk/QP/Avg 43.5 V 54.0 -10.5 AVG 50.2 V 74.0 -23.8 PK 28.5 V 54.0 -25.5 AVG	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 43.5 V 54.0 -10.5 AVG 125 50.2 V 74.0 -23.8 PK 125 28.5 V 54.0 -25.5 AVG 152	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 43.5 V 54.0 -10.5 AVG 125 1.1 50.2 V 74.0 -23.8 PK 125 1.1 28.5 V 54.0 -25.5 AVG 152 1.0

	Ellott An AZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80397
Madalı	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centimo® Wireless-IN 1030 and intel® Centimo® Wireless-IN 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

— — — —

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/14/2010 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: none Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 20.8 °C Rel. Humidity: 38 %

Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

INO Address: 0010001300B1 BR10 1001 Version 1.2.2 0111 Briver Version 14.0.0.05									
Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin			
						802.11b (0.063 W)			
4	20	46.0	Output Power	15 247/h\	Dana	802.11g (0.118 W)			
ı	20	16.8	Output Power	Output Power 15.247(b) Pa	Pass	n20 (0.123 W)			
						n40 (0.035 W)			
2	25.5	16.7	Power spectral Density (PSD)	15.247(d)	Pass	-5.3 dBm/3kHz			
3	20	16.8	Minimum 6dB Bandwidth	15.247(a)	Pass	10.2 MHz			
						802.11b 13.6 MHz			
3	23	14.7	99% Bandwidth	RSS GEN		802.11g 18.4 MHz			
S	23	14.7	99% Danuwiutii	KSS GEN	-	n20 19.7 MHz			
						n40 36.6 MHz			
1			Spurious emissions	15.247(b)	Pass	Complies with -20dBc			
4	-	-	Spurious erriissions	13.247(b)	FdSS	limit			

Modifications Made During Testing

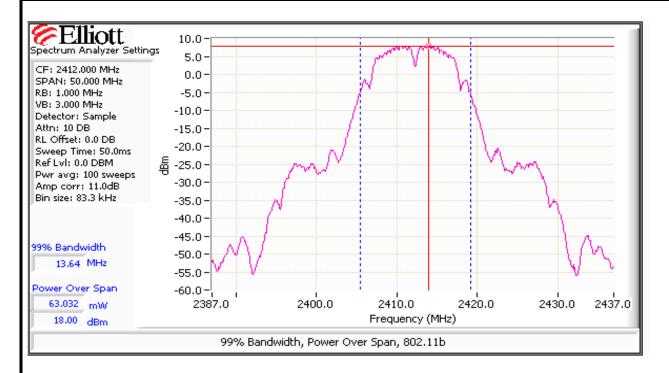
No modifications were made to the EUT during testing

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Output Power


802.11b

Power	Fragueray (MIII-)	Output	Power	Antenna	Dogult	EIRP Note 2		Output Power	
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20	2412	18.0	63.1	3.2	Pass	21.2	0.132	16.8	47.9
20	2437	18.0	63.1	3.2	Pass	21.2	0.132	16.8	47.9
20	2462	17.5	56.2	3.2	Pass	20.7	0.117	16.8	47.9

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **40 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

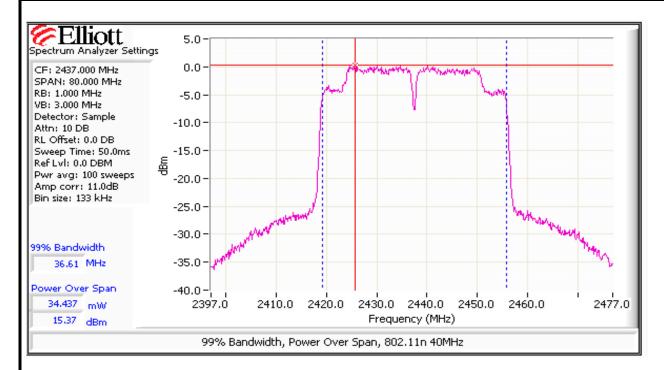
Note 3: Power measured using average power meter and is included for reference only.

E E	Elliott An (XZA)* company						EM	C Test	Data	
Client:	: Intel Corporation				-	,	Job Number:	J80397		
Madalı	Lital® Caratrina® Window	N 4020 and	Listal® Con	· · Nirola	- N 420	T-L	og Number:	T80458		
Modei.	: Intel® Centrino® Wireles	S-IN TUSU and	Intel® Cent	TINOW WITEIE:	\$\$-IN 130	Accou	nt Manager:	Christine Kre	bill	
Contact:	: Steve Hackett									
Standard:	: FCC.247, RSS-210 Issue	e 7		-			Class: N/A			
Power Setting ²	Frequency (MHz)	Output I	Power mW	Antenna Gain (dBi)	Result	EIRP dBm	Note 2	Output (dBm) ³	Power mW	
	Frequency (MHz)				Result					
Setting 25	2412	(dBm) 20.6	114.8	` ′	Pass	23.8	0.240	(dBm) 16.7	46.8	
25	2437	20.0	117.5		Pass	23.9	0.245	16.7	46.8	
22	2462	19.1	81.3		Pass	22.3	0.170	14.1	25.7	
Note 1:	Output power measured Power setting - the software						 lv.			
Note 3:	Power measured using a									
n20		-					No.			
Power	Frequency (MHz)	Output I		Antenna	Result	EIRP		Output		
Setting ²	, , ,	(dBm) ¹	mW	Gain (dBi)		dBm	W	(dBm) ³	mW	
22.5	2412	19.2	83.2		Pass	22.4	0.174	14.2	26.3	
25.5	2437	20.9	123.0		Pass	24.1	0.257	16.7	46.8	
22	2462	19.1	81.3	3.2	Pass	22.3	0.170	13.8	24.0	
Note 1:	Output power measured	using a peak	power mete	r. spurious lir	mit is -20dB e	 C.				
Note 2:	Power setting - the softwa						lv.			
Nata 2	Davier management value a						<i>J</i> -			

Power measured using average power meter and is included for reference only.

Note 3:

Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

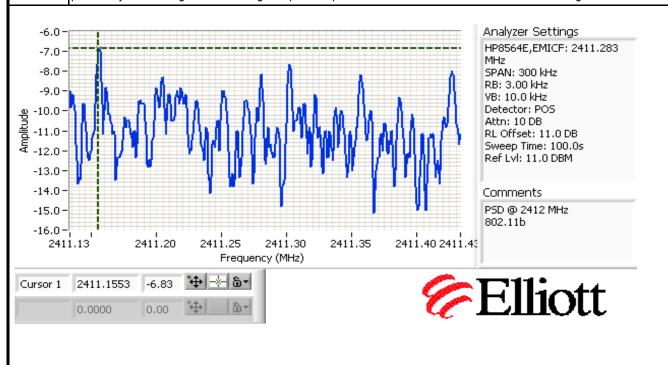

n40

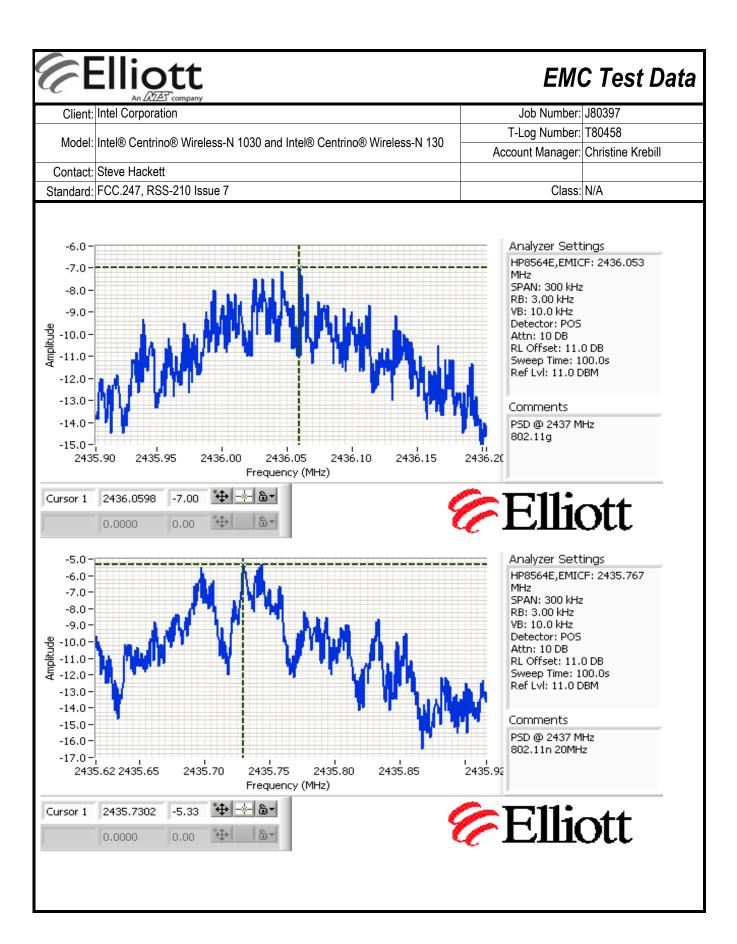
Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRF	Note 2	Output	Power
Setting ²		(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
20	2422	13.0	20.0	3.2	Pass	16.2	0.042	12.2	16.6
23	2437	15.4	34.7	3.2	Pass	18.6	0.072	14.7	29.5
20	2452	12.7	18.6	3.2	Pass	15.9	0.039	12.3	17.0

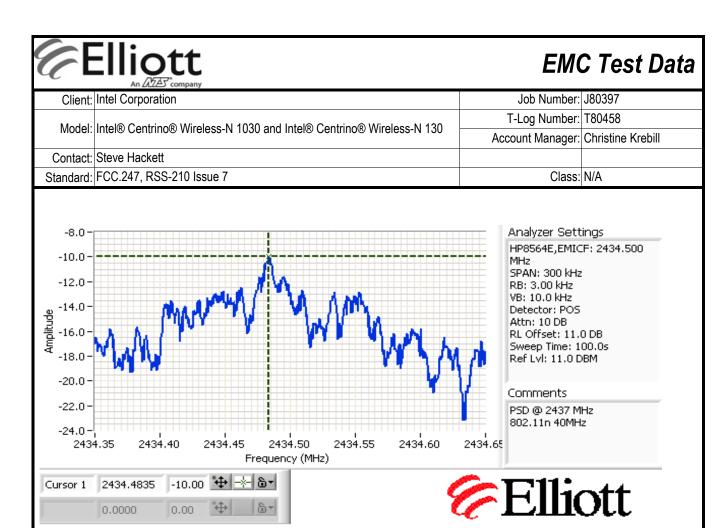
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **80 MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc.**

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

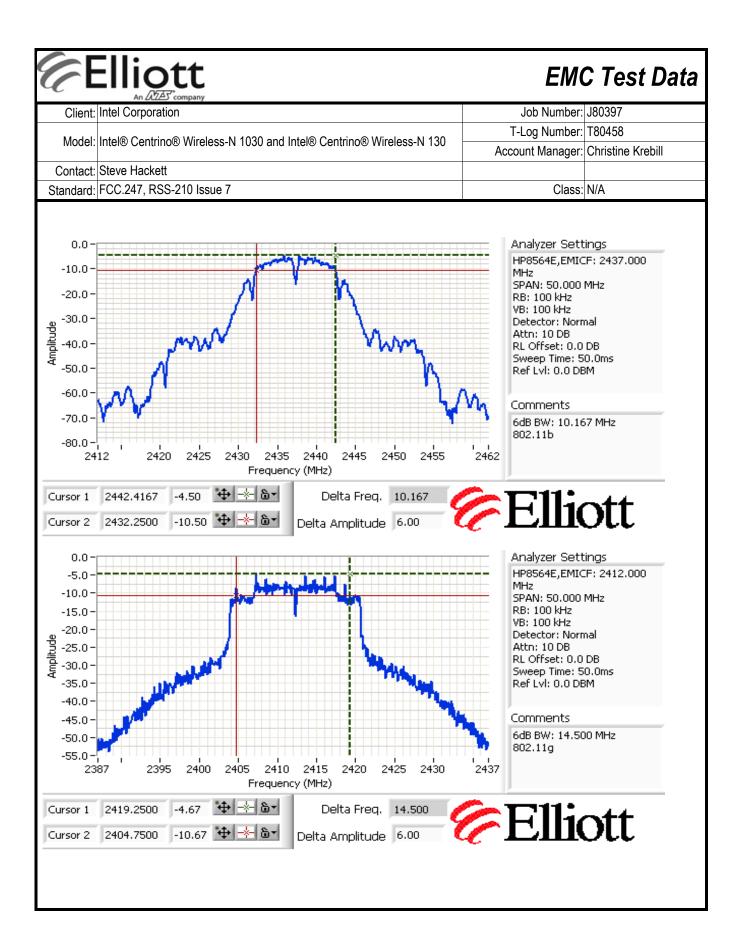

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

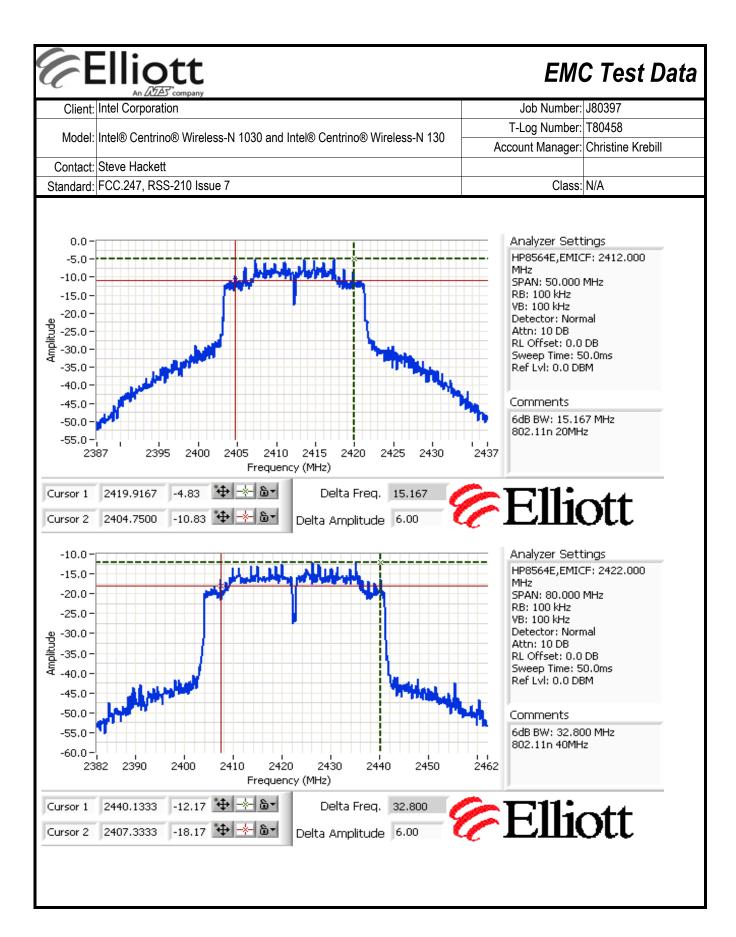

Run #2: Power spectral Density


Mode	Power		PSD	Limit	Result
Wood	Setting	Frequency (MHz)	(dBm/3kHz) Note 1	dBm/3kHz	rtooun
	20	2412	-6.8	8.0	Pass
802.11b	20	2437	-7.0	8.0	Pass
	20	2462	-8.0	8.0	Pass
	25	2412	-7.2	8.0	Pass
802.11g	25	2437	-7.0	8.0	Pass
	22	2462	-9.7	8.0	Pass
	22.5	2412	-7.3	8.0	Pass
n20	25.5	2437	-5.3	8.0	Pass
	22	2462	-8.8	8.0	Pass
	20	2422	-12.3	8.0	Pass
n40	23	2437	-10.0	8.0	Pass
	20	2452	-12.2	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

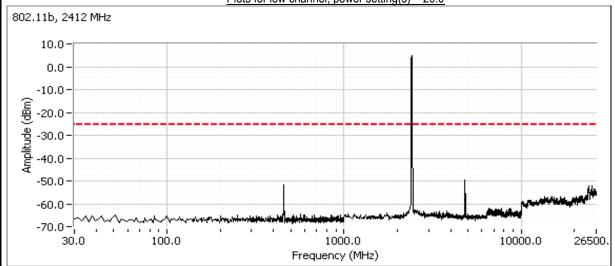




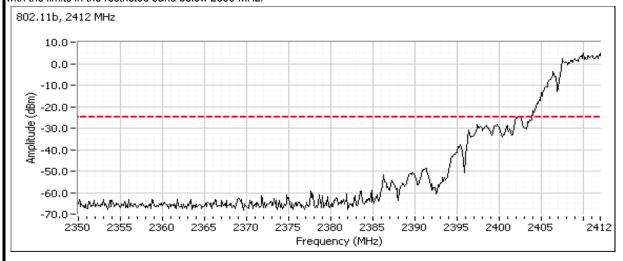
Run #3: Signal Bandwidth

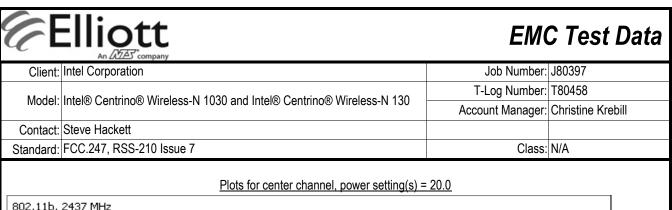
Mode	Power	Eroguanay (MHz)	Resolution	Bandwid	th (MHz)
	Setting	Frequency (MHz)	Bandwidth	6dB	99%
	20	2412	100kHz	10.2	13.6
802.11b	20	2437	100kHz	10.2	13.6
	20	2462	100kHz	10.2	13.6
	25	2412	100kHz	14.5	18.4
802.11g	25	2437	100kHz	15.1	18.3
	22	2462	100kHz	15.8	18.3
	22.5	2412	100kHz	15.2	19.7
n20	25.5	2437	100kHz	15.3	19.4
	22	2462	100kHz	15.2	19.3
	20	2422	100kHz	32.8	36.5
n40	23	2437	100kHz	35.5	36.6
	20	2452	100kHz	35.3	36.6

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

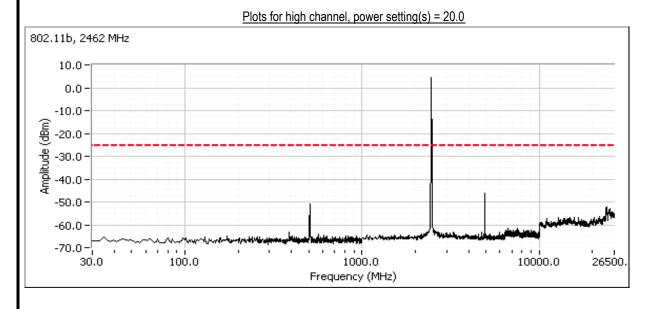

All DEES Company			
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Run #4: Out of Band Spurious Emissions


802.11b

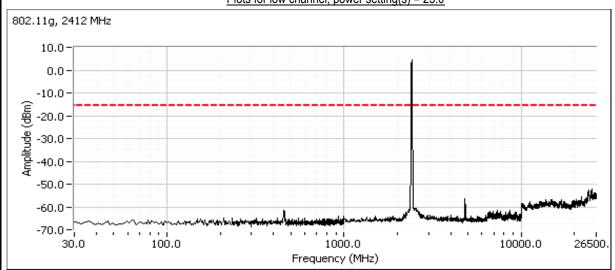

Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass

Plots for low channel, power setting(s) = 20.0

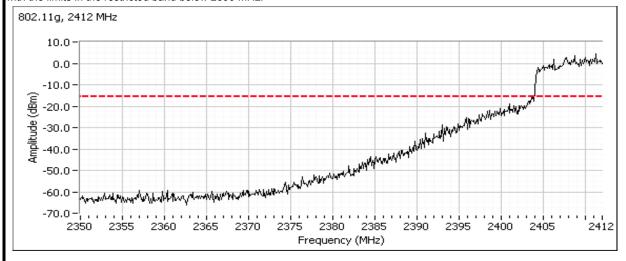


Additional plot showing compliance with **-30dBc** limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

802.11b, 2437 MHz 10.0 0.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -¦ 1000.0 100.0 30.0 10000.0 26500. Frequency (MHz)



All DEED company			
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A


802.11g

Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel, power setting(s) = 25.0

Additional plot showing compliance with **-20dBc** limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Elliott	EMC Test L
Client: Intel Corporation	Job Number: J80397
Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N	T-Log Number: T80458
	Account Manager: Christine Krebi
Contact: Steve Hackett	2
standard: FCC.247, RSS-210 Issue 7	Class: N/A
Plots for center channel, power set	ting(s) = 25.0
02.11g, 2437 MHz	
10.0-	
0.0 -	
-10.0 -	
원 -30.0 -	
-20.0	
-	
-50.0	Lamberton marks
-60.0 -	Market Ma
-70.0 - 70.0 100.0 1000.0 Frequency (MHz)	10000.0 26500.
Plots for high channel, power setti	<u>ng(s) = 22.0</u>
02.11g, 2462 MHz	
0.0-	
-10.0 -	
<u></u>	
-20.0	
9 40.0	
<u>2</u> -40.0 -	
4 -50.0-	u.
-60.0 -	A STATE OF THE PARTY OF THE PAR

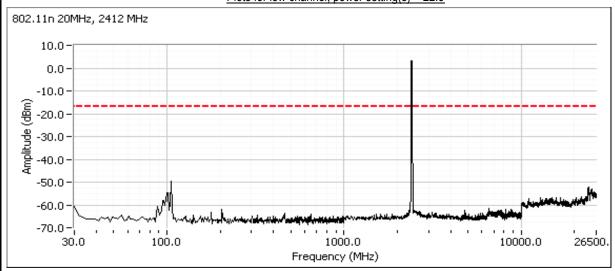
1000.0

Frequency (MHz)

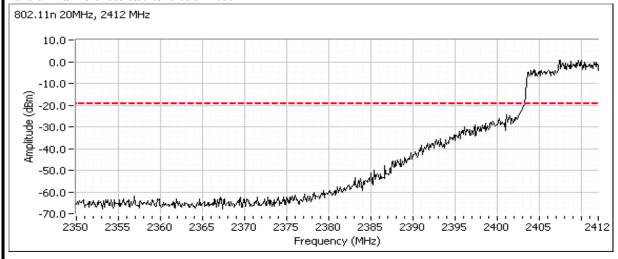
26500.

10000.0

Client: Intel Corporation

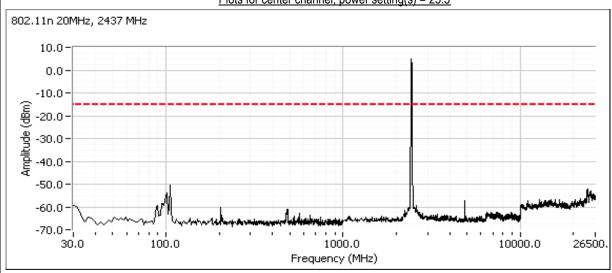

EMC Test Data

All DEES Company			
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

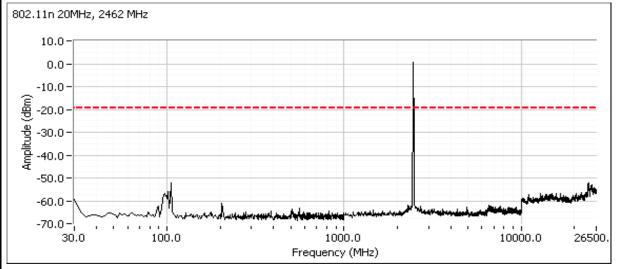

n20

Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel, power setting(s) = 22.5

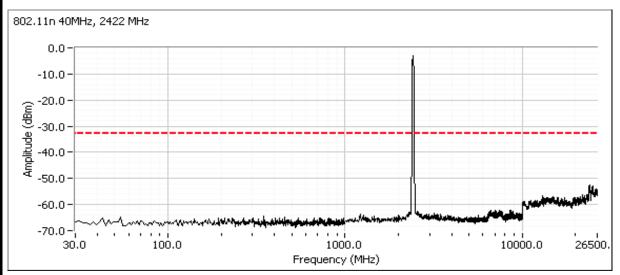


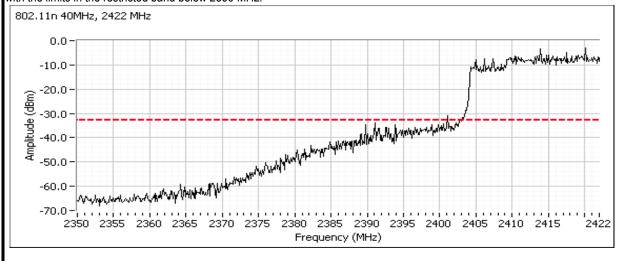
Additional plot showing compliance with **-20dBc** limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

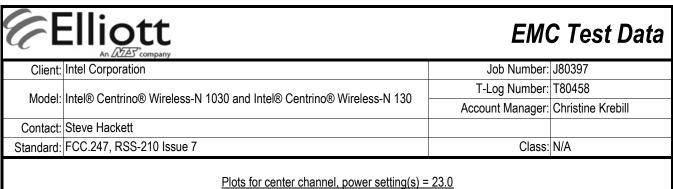


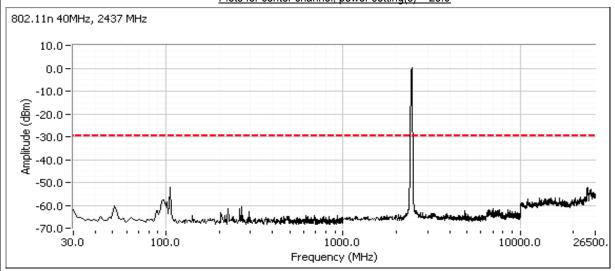
Elliott An ATAS company		EMO	C Test Data
	Intel Corporation	Job Number:	J80397
Madalı	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

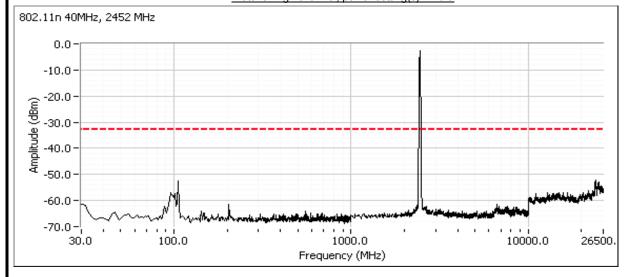
Plots for center channel, power setting(s) = 25.5


Plots for high channel, power setting(s) = 22.0


EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A n40


Frequency (MHz)	Limit	Result
2422	-30dBc	Pass
2437	-30dBc	Pass
2452	-30dBc	Pass


Plots for low channel, power setting(s) = 20.0


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Plots for high channel, power setting(s) = 20.0

	Elliott	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80397
Madal	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	Intel® Centinio® Wheless-IV 1000 and intel® Centinio® Wheless-IV 100	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bg and Bluetooth - Transmitter Mode

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For conduted emissions testing the measurement antenna port.

Summary of Results

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit.

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

MAC Address: 00130075C0DI DKTO 1001 Version 1.2.2-0177 Driver version 14.0.0.35										
Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin			
1	BT 1Mb/s	2402MHz		6.4		FCC 15.247	48.8dBµV/m @			
	802.11b	2412MHz		16.8		1 00 13.247	2282.0MHz (-5.2dB)			
2	BT 1Mb/s	2480MHz		6.9		FCC 15.247	51.0dBµV/m @			
2	802.11b	2462MHz		16.8	Radiated emissions	1 00 13.247	2496.2MHz (-3.0dB)			
3	BT 1Mb/s	2402MHz		6.4	1- 10 GHz	FCC 15.247	50.1dBµV/m @			
3	802.11g	2412MHz		16.7		FGG 15.241	2282.0MHz (-3.9dB)			
4	BT 1Mb/s	2480MHz		6.9		FCC 15.247	50.7dBµV/m @			
•	802.11g	2462MHz		16.8		FGG 15.247	2360.0MHz (-3.3dB)			
WiFi mode t	WiFi mode for the following runs based on worst case mode from runs 1 through 4									
_	BT 1Mb/s	2402MHz		6.4		FCC 15.247	49.0dBµV/m @			
5	802.11b	2437MHz		16.7	Radiated emissions	FUU 15.247	2368.9MHz (-5.0dB)			
	BT 1Mb/s	2440MHz		7.0	1- 10 GHz	F00 45 047	50.0dBµV/m @			
6	802.11b	2412MHz		16.8		FCC 15.247	2320.0MHz (-4.0dB)			
	BT 1Mb/s	2440MHz		7.0			49.8dBµV/m @			
7	802.11b	2462MHz		16.8	Radiated emissions	FCC 15.247	2320.0MHz (-4.2dB)			
	BT 1Mb/s	2480MHz		6.9	1- 10 GHz		50.5dBµV/m @			
8					1 10 0112	FCC 15.247	2360.0MHz (-3.5dB)			
\ <i>\\!</i> :\:\:\:\:\:\\	802.11b	2437MHz	h ahammal !	16.7		1 there were 0	2300.0IVII12 (-3.30D)			
vviri mode	and channel a	and Biuetooti	n channel ba	sea on the w	orst case mode from runs	i i inrough 8				
0	BT 3Mb/s	2440MHz		1.5	Radiated emissions 1-	FOO 4F 047	46.1dBµV/m @			
9	802.11b	2462MHz		16.8	10 GHz	FCC 15.247	2320.0MHz (-7.9dB)			
							, , ,			

Modifications Made During Testing

No modifications were made to the EUT during testing

	上川 のtt An 次本でcompany	EMC Test Data			
Client:	Intel Corporation	Job Number:	J80397		
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458		
Model.	intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill		
Contact:	Steve Hackett				
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A		

Deviations From The Standard

No deviations were made from the requirements of the standard.

Average Correction Factor Calculation - Bluetooth

Bluetooth uses a frequency hopping algorithm that means that the device, during normal operation, is only on a specific channel for a short period of time. The average correction factor is calculated as follows:

A maximum length packet has a duration of 5 time slots.

The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.

With a minimum of 20 hopping channels a channel will not be used more than 4 times in any 100ms period.

The maximum dwell time in a 100m period is 4×3.125 ms = 12.5ms.

The average correction factor is, therefore, 20log(12.5/100) =-18dB

As this is a hopping radio the correction factor can be applied to the average value of the signal provided the average value was measured with the device continuously transmitting. DA 00-0705 permits the use of the average correction on the **measured average** value for frequency hopping radios.

As the measured average value was below the average limit the correction factor was not used for measurements in this data sheet.

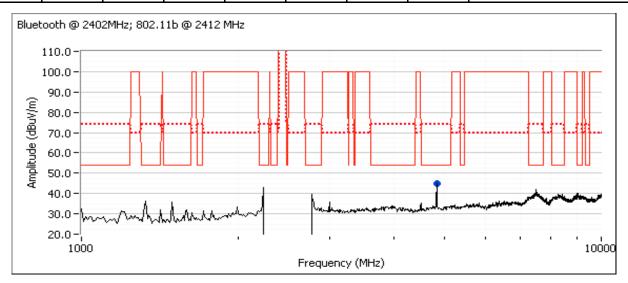
Device Information: WFM: 00150079C6BF

 DRTU Version:
 1.2.2-0177

 Driver Version:
 14.0.0.39

 Board Voltage:
 3.31VDC

Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-IV 1050 and intel® Centinio® Wheless-IV 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

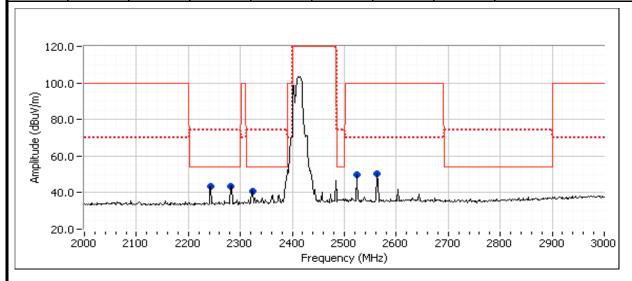

Run # 1, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2412MHz Chain A, BT Basic Rate @ 2402MHz Chain B

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	20.0	16.8						
Chain B	7.0	8.0	6.4						

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
4822.500	44.7	V	54.0	-9.3	Peak	150	2.2	


Client:	Intel Corporation	Job Number:	J80397
Model:	1 1 1 2 0 1 1 2 M/ 1 2 M 4000 1 1 1 1 1 2 0 1 1 2 M/ 1 2 M 400	T-Log Number:	T80458
	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

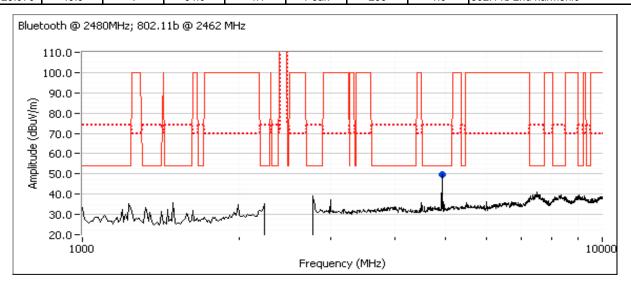
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2243.330	43.2	Н	54.0	-10.8	Peak	204	1.0	
2281.670	43.6	Н	54.0	-10.4	Peak	204	1.0	
2323.330	40.6	Н	54.0	-13.4	Peak	204	1.0	
2523.330	49.8	Н	70.0	-20.2	Peak	204	1.0	
2563.330	50.3	Н	70.0	-19.7	Peak	204	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2281.990	48.8	Н	54.0	-5.2	AVG	205	1.0	RB 1MHz;VB 10 Hz;Pk
2281.840	56.3	Н	74.0	-17.7	PK	205	1.0	RB 1MHz;VB 3MHz;Pk
4824.000	45.5	V	54.0	-8.5	AVG	138	1.3	
4824.090	49.1	V	74.0	-24.9	PK	138	1.3	
2241.980	47.8	Н	54.0	-6.2	AVG	202	1.0	RB 1MHz;VB 10 Hz;Pk
2241.930	56.7	Н	74.0	-17.3	PK	202	1.0	RB 1MHz;VB 3MHz;Pk
2321.960	48.5	Н	54.0	-5.5	AVG	206	1.0	RB 1MHz;VB 10 Hz;Pk
2321.810	56.4	Н	74.0	-17.6	PK	206	1.0	RB 1MHz;VB 3MHz;Pk

Note 1:

Client:	Intel Corporation	Job Number:	J80397
Madali	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centino® Wireless-IN 1050 and intel® Centino® Wireless-IN 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

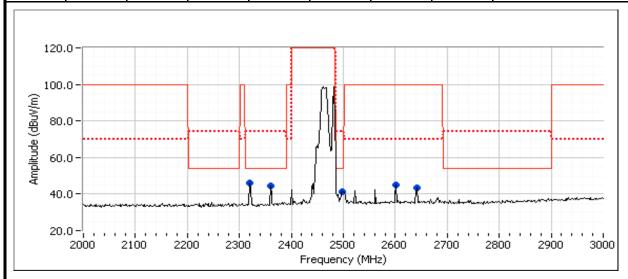

Run # 2, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2462MHz Chain A, BT Basic Rate @ 2480MHz Chain B

	Power Settings									
	Target (dBm)	Measured (dBm)	Software Setting							
Chain A	16.5	20.0	16.8							
Chain B	7.0	8.0	6.9							

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

				,				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.970	49.9	V	54.0	-4.1	Peak	233	1.6	802.11b 2nd harmonic


	An 2/12=3 company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
woder.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)
Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

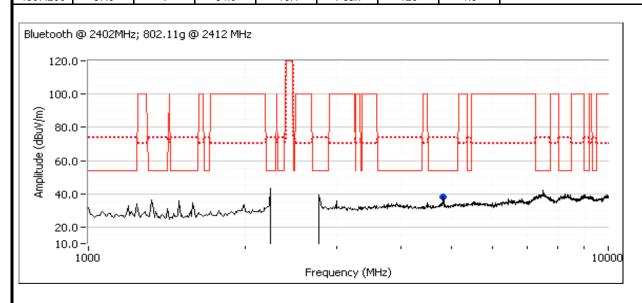
Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

	111040410111	iouddi differentia de l'actioni (12 millia) 12 millia (12 millia)										
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments				
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters					
2320.000	46.0	Н	54.0	-8.0	Peak	206	1.0					
2360.000	44.5	Н	54.0	-9.5	Peak	206	1.0					
2601.670	44.8	Н	70.0	-25.2	Peak	206	1.0					
2498.330	41.2	Н	54.0	-12.8	Peak	206	1.0					
2641.670	43.2	Н	70.0	-26.8	Peak	206	1.0					

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2496.210	51.0	Н	54.0	-3.0	AVG	72	1.2	RB 1MHz;VB 10 Hz;Pk
2497.310	59.6	Н	74.0	-14.4	PK	72	1.2	RB 1MHz;VB 3MHz;Pk
4923.990	50.9	V	54.0	-3.1	AVG	199	1.0	
4923.940	53.0	V	74.0	-21.0	PK	199	1.0	
2320.000	50.8	Н	54.0	-3.2	AVG	208	1.0	RB 1MHz;VB 10 Hz;Pk
2319.950	57.6	Н	74.0	-16.4	PK	208	1.0	RB 1MHz;VB 3MHz;Pk
2360.030	49.8	Н	54.0	-4.2	AVG	71	1.3	RB 1MHz;VB 10 Hz;Pk
2360.130	57.2	Н	74.0	-16.8	PK	71	1.3	RB 1MHz;VB 3MHz;Pk

Client:	Intel Corporation	Job Number:	J80397
M. L.	11 19 0 1' 9 W 1 - N 4000 - 11 1 19 0 1' 9 W 1 - N 400	T-Log Number:	T80458
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

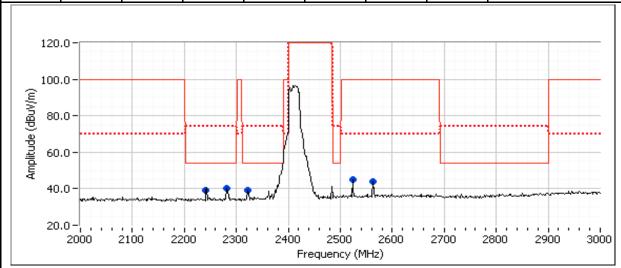

Run # 3, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11g @ 2412MHz Chain A, BT Basic Rate @ 2402MHz Chain B

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	25.0	16.7						
Chain B	7.0	8.0	6.4						

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

•				,				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
4807.200	37.9	V	54.0	-16.1	Peak	126	1.9	


	An 2/12=3 company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
woder.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

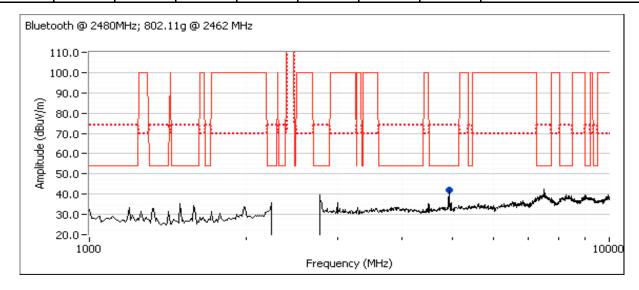
Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

,											
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
2241.670	39.2	Н	54.0	-14.8	Peak	207	1.0				
2281.670	40.0	Н	54.0	-14.0	Peak	207	1.0				
2321.670	39.0	Н	54.0	-15.0	Peak	207	1.0				
2523.330	44.8	Н	70.0	-25.2	Peak	207	1.0				
2563.330	44.1	Н	70.0	-25.9	Peak	207	1.0				

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2282.040	50.1	Н	54.0	-3.9	AVG	242	1.0	RB 1MHz;VB 10 Hz;Pk
2282.020	56.5	Н	74.0	-17.5	PK	242	1.0	RB 1MHz;VB 3MHz;Pk
4803.930	37.4	V	54.0	-16.6	AVG	207	1.1	RB 1MHz;VB 10 Hz;Pk
4804.300	45.0	V	74.0	-29.0	PK	207	1.1	RB 1MHz;VB 3MHz;Pk
2241.970	47.5	Н	54.0	-6.5	AVG	199	1.1	RB 1MHz;VB 10 Hz;Pk
2241.840	56.7	Н	74.0	-17.3	PK	199	1.1	RB 1MHz;VB 3MHz;Pk
2241.960	45.8	V	54.0	-8.2	AVG	161	1.6	RB 1MHz;VB 10 Hz;Pk
2241.640	55.4	V	74.0	-18.6	PK	161	1.6	RB 1MHz;VB 3MHz;Pk
2321.970	48.2	Н	54.0	-5.8	AVG	205	1.0	RB 1MHz;VB 10 Hz;Pk
2322.140	56.5	Н	74.0	-17.5	PK	205	1.0	RB 1MHz;VB 3MHz;Pk

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

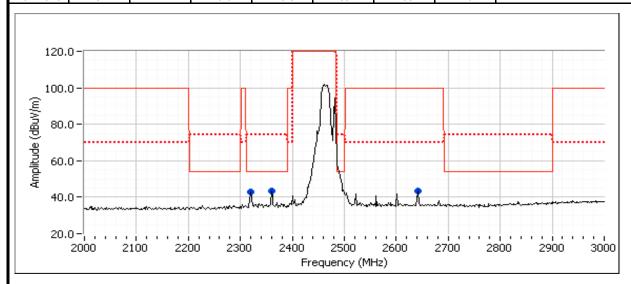

Run # 4, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11g @ 2462MHz Chain A, BT Basic Rate @ 2480MHz Chain B

	•								
	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	25.0	16.8						
Chain B	7.0	8.0	6.9						

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
4922.870	41.9	V	54.0	-12.1	Peak	157	1.9	



	All DEED Company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
wodei.	intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

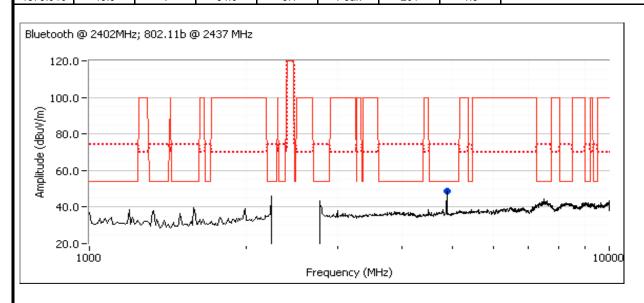
Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)
Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	42.8	Н	54.0	-11.2	Peak	205	1.0	
2360.000	43.3	Н	54.0	-10.7	Peak	205	1.0	
2641.670	43.2	Н	70.0	-26.8	Peak	205	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2359.970	50.7	Н	54.0	-3.3	AVG	75	1.2	RB 1MHz;VB 10 Hz;Pk
2359.700	57.6	Н	74.0	-16.4	PK	75	1.2	RB 1MHz;VB 3MHz;Pk
4924.270	40.2	V	54.0	-13.8	AVG	165	1.0	RB 1MHz;VB 10 Hz;Pk
4919.420	52.7	V	74.0	-21.3	PK	165	1.0	RB 1MHz;VB 3MHz;Pk
2320.000	50.5	Η	54.0	-3.5	AVG	204	1.0	RB 1MHz;VB 10 Hz;Pk
2319.950	57.7	Н	74.0	-16.3	PK	204	1.0	RB 1MHz;VB 3MHz;Pk

Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

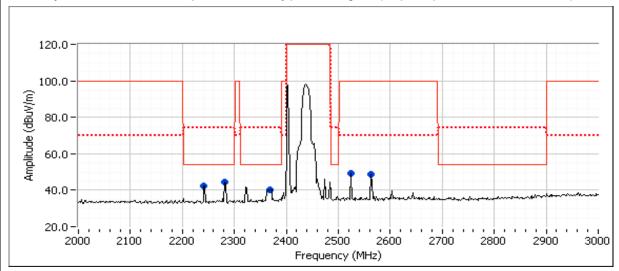

Run # 5, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2437MHz Chain A, BT Basic Rate @ 2402MHz Chain B

	Power Settings								
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.7	20.0						
Chain B	7.0	6.4	8.0						

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

•				,				
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.910	48.9	V	54.0	-5.1	Peak	201	1.3	



	An 2/12=3 company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

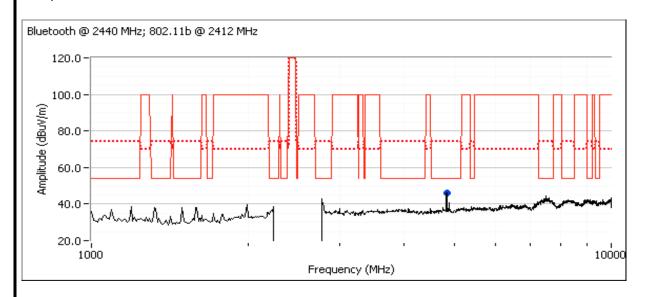
Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2241.670	42.2	Н	54.0	-11.8	Peak	206	1.0	
2281.670	44.3	Н	54.0	-9.7	Peak	206	1.0	
2368.330	40.4	Η	54.0	-13.6	Peak	206	1.0	
2523.330	49.5	Н	70.0	-20.5	Peak	206	1.0	
2563.330	48.8	Н	70.0	-21.2	Peak	206	1.0	

Final measurements at 3m

Frequency Level Pol 15.209/15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters Setting 2368.860 49.0 H 54.0 -5.0 AVG 85 1.0 RB 1MHz;VB 10 Hz;Pk 2368.300 57.6 H 74.0 -16.4 PK 85 1.0 RB 1MHz;VB 3MHz;Pk 2241.940 48.2 H 54.0 -5.8 AVG 75 1.1 RB 1MHz;VB 10 Hz;Pk 2241.770 56.3 H 74.0 -17.7 PK 75 1.1 RB 1MHz;VB 3MHz;Pk 2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 3MHz;Pk </th <th></th> <th colspan="8"></th>									
2368.860 49.0 H 54.0 -5.0 AVG 85 1.0 RB 1MHz;VB 10 Hz;Pk 2368.300 57.6 H 74.0 -16.4 PK 85 1.0 RB 1MHz;VB 3MHz;Pk 2241.940 48.2 H 54.0 -5.8 AVG 75 1.1 RB 1MHz;VB 10 Hz;Pk 2241.770 56.3 H 74.0 -17.7 PK 75 1.1 RB 1MHz;VB 3MHz;Pk 2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
2368.300 57.6 H 74.0 -16.4 PK 85 1.0 RB 1MHz;VB 3MHz;Pk 2241.940 48.2 H 54.0 -5.8 AVG 75 1.1 RB 1MHz;VB 10 Hz;Pk 2241.770 56.3 H 74.0 -17.7 PK 75 1.1 RB 1MHz;VB 3MHz;Pk 2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2241.940 48.2 H 54.0 -5.8 AVG 75 1.1 RB 1MHz;VB 10 Hz;Pk 2241.770 56.3 H 74.0 -17.7 PK 75 1.1 RB 1MHz;VB 3MHz;Pk 2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	2368.860	49.0	Н	54.0	-5.0	AVG	85	1.0	RB 1MHz;VB 10 Hz;Pk
2241.770 56.3 H 74.0 -17.7 PK 75 1.1 RB 1MHz;VB 3MHz;Pk 2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	2368.300	57.6	Н	74.0	-16.4	PK	85	1.0	RB 1MHz;VB 3MHz;Pk
2281.940 48.0 H 54.0 -6.0 AVG 207 1.0 RB 1MHz;VB 10 Hz;Pk 2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	2241.940	48.2	Н	54.0	-5.8	AVG	75	1.1	RB 1MHz;VB 10 Hz;Pk
2282.000 56.0 H 74.0 -18.0 PK 207 1.0 RB 1MHz;VB 3MHz;Pk 4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	2241.770	56.3	Η	74.0	-17.7	PK	75	1.1	RB 1MHz;VB 3MHz;Pk
4873.970 47.6 V 54.0 -6.4 AVG 225 1.7 RB 1MHz;VB 10 Hz;Pk	2281.940	48.0	Η	54.0	-6.0	AVG	207	1.0	RB 1MHz;VB 10 Hz;Pk
	2282.000	56.0	Η	74.0	-18.0	PK	207	1.0	RB 1MHz;VB 3MHz;Pk
4874.070 50.4 V 74.0 -23.6 PK 225 1.7 RB 1MHz;VB 3MHz;Pk	4873.970	47.6	V	54.0	-6.4	AVG	225	1.7	RB 1MHz;VB 10 Hz;Pk
	4874.070	50.4	V	74.0	-23.6	PK	225	1.7	RB 1MHz;VB 3MHz;Pk


Note 2:

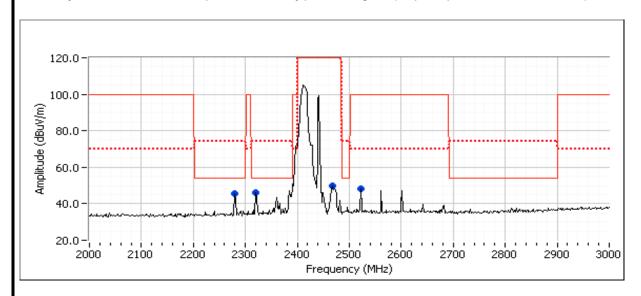
	Elliott An OZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	III.Lei & Ceritiii lo & Wireless-IV 1030 and III.Lei & Ceritiii lo & Wireless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Ctandard:	ECC 2/17 DSS 210 leggs 7	Class:	NI/A

Run # 6, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2412MHz Chain A, BT Basic Rate @ 2440MHz Chain B

	Power Settings							
	Software Setting							
Chain A	16.5	16.8	20.0					
Chain B	7.0	7.0	8.0					

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band: Preamplifer and notch filter used for these scans

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.060	45.9	V	54.0	-8.1	Peak	138	1.3	



Page 65 of 71

	An 2/12=3 company		
Client:	Intel Corporation	Job Number:	J80397
Madali	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1050 and intel® Centinio® Wheless-IV 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

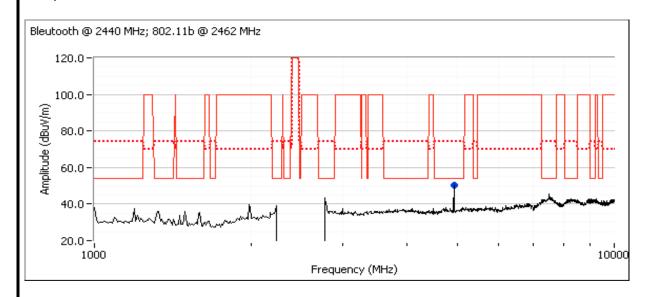
Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2280.000	45.5	Н	54.0	-8.5	Peak	206	1.0	6
2320.000	46.1	Н	54.0	-7.9	Peak	206	1.0	6
2466.670	49.6	Н	120.0	-70.4	Peak	206	1.0	6
2521.670	48.2	Н	70.0	-21.8	Peak	206	1.0	6

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2320.030	50.0	Н	54.0	-4.0	AVG	207	1.0	RB 1MHz;VB 10 Hz;Pk
2319.650	57.7	Н	74.0	-16.3	PK	207	1.0	RB 1MHz;VB 3MHz;Pk
2280.050	48.7	Н	54.0	-5.3	AVG	93	1.3	RB 1MHz;VB 10 Hz;Pk
2279.550	56.7	Η	74.0	-17.3	PK	93	1.3	RB 1MHz;VB 3MHz;Pk
4823.980	45.8	V	54.0	-8.2	AVG	133	1.1	RB 1MHz;VB 10 Hz;Pk
4823.900	49.1	V	74.0	-24.9	PK	133	1.1	RB 1MHz;VB 3MHz;Pk


	Elliott An AZET company
Client:	Intel Corporation
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130

Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
	intel® Centinio® Wheless-14 1030 and intel® Centinio® Wheless-14 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

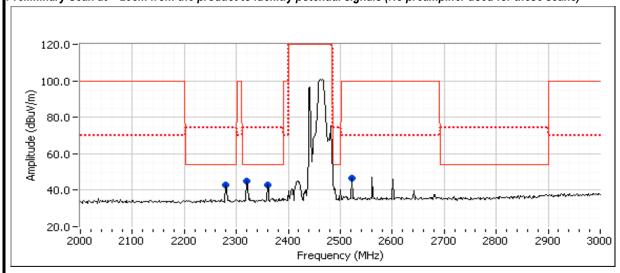
Run # 7, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2462MHz Chain A, BT Basic Rate @ 2440MHz Chain B

	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.8	20.0					
Chain B	7.0	7.0	8.0					

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band: Preamplifer and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.810	50.3	V	54.0	-3.7	Peak	108	1.6	


This is the second harmonic of the 802.11b signal and not an intermodulaiton product. Measurement of harmonics directly Note 1: related to the 802.11 transmitter are provided in the 802.11 radiated spurious emissions test data.

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80397
Madali	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

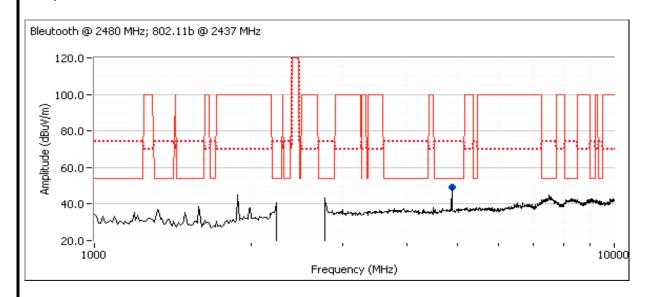
Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2280.000	42.8	Η	54.0	-11.2	Peak	200	1.0	
2320.000	45.0	Н	54.0	-9.0	Peak	200	1.0	
2360.000	43.0	Н	54.0	-11.0	Peak	200	1.0	
2521.670	46.7	Н	70.0	-23.3	Peak	200	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2320.000	49.8	Н	54.0	-4.2	AVG	26	1.0	RB 1MHz;VB 10 Hz;Pk
2359.980	48.4	Н	54.0	-5.6	AVG	62	1.0	RB 1MHz;VB 10 Hz;Pk
2279.970	48.1	Н	54.0	-5.9	AVG	23	1.0	RB 1MHz;VB 10 Hz;Pk
2279.590	58.1	Н	74.0	-15.9	PK	23	1.0	RB 1MHz;VB 3MHz;Pk
2320.080	56.9	Η	74.0	-17.1	PK	26	1.0	RB 1MHz;VB 3MHz;Pk
2359.920	56.9	Н	74.0	-17.1	PK	62	1.0	RB 1MHz;VB 3MHz;Pk


	Elliott An AZAS company
Client:	Intel Corporation
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 13

Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1030 and intel® Centinio® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

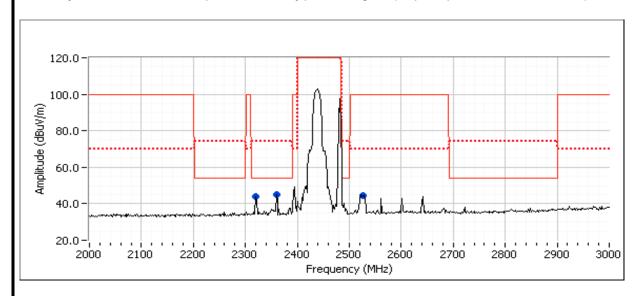
Run # 8, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b @ 2437MHz Chain A, BT Basic Rate @ 2480MHz Chain B

		Power Settings					
	Target (dBm) Measured (dBm) Software Sett						
Chain A	16.5	16.7	20.0				
Chain B	7.0	6.9	8.0				

Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band: Preamplifer and notch filter used for these scans

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol		15.209/	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	1	Limit	Margin	Pk/QP/Avg	degrees	meters	
4873.820	49.5	V		54.0	-4.5	Peak	120	1.3	Note 1


Note 1: This is the second harmonic of the 802.11b signal and not an intermodulaiton product. Measurement of harmonics directly related to the 802.11 transmitter are provided in the 802.11 radiated spurious emissions test data.

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1050 and intel® Centinio® Wheless-IV 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

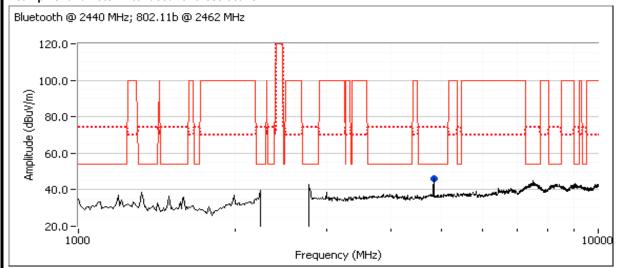
Frequency	Level	Pol	15.209	15.209/15.247		Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2320.000	44.0	Н	54.0	-10.0	Peak	150	1.0	
2360.000	45.0	Н	54.0	-9.0	Peak	150	1.0	
2526.670	44.6	Н	70.0	-25.4	Peak	150	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2360.030	50.5	Н	54.0	-3.5	AVG	62	1.0	RB 1MHz;VB 10 Hz;Pk
2320.030	48.7	Н	54.0	-5.3	AVG	26	1.0	RB 1MHz;VB 10 Hz;Pk
2359.750	57.5	Н	74.0	-16.5	PK	62	1.0	RB 1MHz;VB 3MHz;Pk
2319.630	56.7	Н	74.0	-17.3	PK	26	1.0	RB 1MHz;VB 3MHz;Pk

	Elliott	EMO	C Test Data
	Intel Corporation	Job Number:	J80397
Madal	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centino® Wheless-IV 1030 and intel® Centino® Wheless-IV 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		

Run # 9, Bluetooth/802.11bgn simultaneously: 1-10GHz, 802.11b mode @ 2462MHz Chain A, BT EDR @ 2440MHz Chain B


	Power Settings								
	Target (dBm) Measured (dBm) Software Setti								
Chain A	16.5	16.8	20.0						
Chain B	7.0	1.5	8.0						

Class: N/A

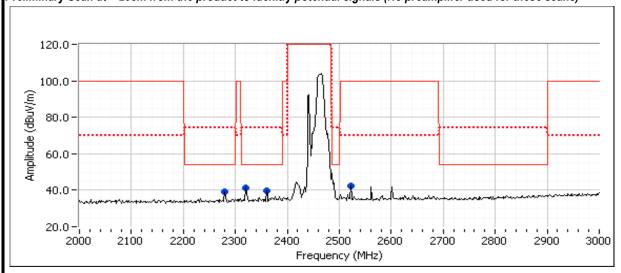
Spurious Radiated Emissions, 1 - 10GHz exlcuding the allocated band:

Preamplifer and notch filter used for these scans

Standard: FCC.247, RSS-210 Issue 7

Preliminary Measurements (Peak versus average limit)

Frequency	Level	Pol	ol	15.209/	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.810	50.5	V	'	54.0	-3.5	Peak	110	1.6	Note 1


Note 1: This is the second harmonic of the 802.11b signal and not an intermodulaiton product. Measurement of harmonics directly related to the 802.11 transmitter are provided in the 802.11 radiated spurious emissions test data.

	An 2/12=3 company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
Model.	intel® Centinio® Wheless-IV 1050 and intel® Centinio® Wheless-IV 150	Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Spurious Radiated Emissions, 2 - 3GHz

Preliminary Scan at ~ 20cm from the product to idenitfy potential signals (No preamplifer used for these scans)

Preliminary measurements at ~ 20cm, RB=1MHz, VB=100kHz

Frequency	Level	Pol	15.209/	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2280.000	39.1	Н	54.0	-14.9	Peak	199	1.0	
2320.000	41.5	Н	54.0	-12.5	Peak	199	1.0	
2360.000	39.5	Н	54.0	-14.5	Peak	199	1.0	
2521.670	42.6	Н	70.0	-27.4	Peak	199	1.0	

Final measurements at 3m

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Setting
2320.000	46.1	Н	54.0	-7.9	AVG	118	1.0	RB 1MHz;VB 10 Hz;Pk
2360.000	45.0	Н	54.0	-9.0	AVG	360	1.0	RB 1MHz;VB 10 Hz;Pk
2280.050	44.9	Н	54.0	-9.1	AVG	58	1.0	RB 1MHz;VB 10 Hz;Pk
2320.580	55.7	Н	74.0	-18.3	PK	118	1.0	RB 1MHz;VB 3MHz;Pk
2360.120	55.6	Н	74.0	-18.4	PK	360	1.0	RB 1MHz;VB 3MHz;Pk
2280.220	55.4	Н	74.0	-18.6	PK	58	1.0	RB 1MHz;VB 3MHz;Pk