

FCC OET BULLETIN 65 SUPPLEMENT C IC RSS-102 ISSUE 3

SAR EVALUATION REPORT

For

Intel 1000 Series WiFi card (Tested inside of HP Notebook PC, Gucci 2.0)

FCC ID: PD9112BNHU IC: 1000M-112BNHU

FCC MODEL: 112BNHMW IC MODEL: 112BNHU

REPORT NUMBER: 09U12903-1, Revision A

ISSUE DATE: November 16, 2009

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

REPORT NO: 09U12903-1A FCC ID: PD9112BNHU

Revision History

Rev.	Issue Date	Revisions	Revised By
	November 11, 2009	Initial Issue	
Α	November 16, 2009	Revised EUT description.	A. Zaffar

DATE: November 16, 2009 IC: 1000M-112BNHU

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	6
4	4.1. MEASURING INSTRUMENT CALIBRATION	6
4	4.2. MEASUREMENT UNCERTAINTY	7
5.	EQUIPMENT UNDER TEST	9
6.	SYSTEM SPECIFICATIONS	10
7.	COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	11
8.	LIQUID PARAMETERS CHECK	12
8	8.1. LIQUID CHECK RESULTS FOR 2450 MHZ	13
9.	SYSTEM CHECK	14
S	9.1. SYSTEM CHECK RESULTS FOR D2450V2	15
10.	OUTPUT POWER VERIFICATION	16
11.	. SUMMARY OF TEST RESULTS	16
1	11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND	16
12.	Enhanced Energy Coupling (KDB 447498)	17
13.	. WORST-CASE SAR TEST PLOTS	18
14.	ATTACHMENTS	20
15.	TEST SETUP PHOTO	21
16	HOST DEVICE PHOTO	22

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: INTEL CORPORATION

2111 N.E. 25TH AVENUE

HILLSBORO, OR 97124, USA

 FCC ID:
 PD9112BNHU

 MODEL:
 112BNHMW

 IC:
 1000M-112BNHU

MODEL: 112BNHU

DEVICE CATEGORY: Portable

EXPOSURE CATEGORY: General Population/Uncontrolled Exposure

DATE TESTED: November 10 - 11, 2009

THE HIGHEST SAR VALUES:

FCC / IC Rule Parts	Frequency Range [MHz]	The Highest SAR Values (1g_mW/g)	Limit (mW/g)
15.247 / RSS-102	2400 – 2483.5	0.00892	1.6

APPLICABLE STANDARDS AND TEST PROCEDURES:

711 1 210 / D22 0 17 11 120 7 11 120 1 1 1 1 1 0 0 2 D 0 1 1 2 0 1	
STANDARD	TEST
	RESULTS
FCC OET BULLETIN 65 SUPPLEMENT C and the following specific Test Procedure: o KDB 248227 SAR measurement procedures for 802.11 a/b/g transmitters o KDB 447498 RF Exposure Requirements and Procedures for mobile and portable devices	Pass
RSS-102 ISSUE 3	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

v

SUNNY SHIH

ENGINEERING SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

Chaopen Un

CHAO YEN LIN
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

Page 4 of 22

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 820.11abg Transmitters, 447498_RF Exposure Requirements and Procedures for mobile and portable devices and IC RSS 102 Issue 3.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

		T (04))	0 : 111	Cal. Due date		
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Electronic Probe kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010
E-Field Probe	SPEAG	EX3DV4	3686	3	23	1010
Data Acquisition Electronics	SPEAG	DAE3 V1	500	9	15	2010
System Validation Dipole	SPEAG	D900V2	108	1	21	2010
System Validation Dipole	SPEAG	D1800V2	294	1	29	2010
System Validation Dipole	SPEAG	D1900V2	5d043	1	29	2010
System Validation Dipole	SPEAG	D2450V2	748	4	14	2010
System Validation Dipole	SPEAG	D5GHzV2	1003	11	21	2009
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010
Power Meter	Giga-tronics	8651A	8651404	1	11	2010
Power Sensor	Giga-tronics	80701A	1834588	1	11	2010
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A
Simulating Liquid	SPAEG	H2450	N/A	Within 24 hrs of first test		rs of first test
Simulating Liquid	SPAEG	M2450	N/A	Within 24 hrs of first test		rs of first test
Simulating Liquid	SPAEG	M5800	N/A	Withir	24 h	rs of first test

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz – 3000 MHz

Uncertainty component	Tol. (±%)	Probe Dist.	Div.	Ci (1g)	Ci (10g)	Std. Ur	nc.(±%)
oncertainty component	101. (±70)	Trobe Dist.	Div.	Or (19)	Of (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
algorithms for max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.44	10.49
Expanded Uncertainty (95% Confidence Interval) Notesfor table			K=2			22.87	20.98

^{1.} Tol. - tolerance in influence quaitity

^{2.} N - Nomal

^{3.} R - Rectangular

^{4.} Div. - Divisor used to obtain standard uncertainty

^{5.} Ci - is te sensitivity coefficient

Measurement uncertainty for 3 GHz - 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci (1g)	Ci (10g)	Std. Un	c.(±%)
Oncertainty component	101. (± /0)	Dist.	DIV.	Or (19)	Or (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	N	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	N	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46

Notesfor table

- 1. Tol. tolerance in influence quaitity
- 2. N Nomal
- 3. R Rectangular
- 4. Div. Divisor used to obtain standard uncertainty
- 5. Ci is te sensitivity coefficient

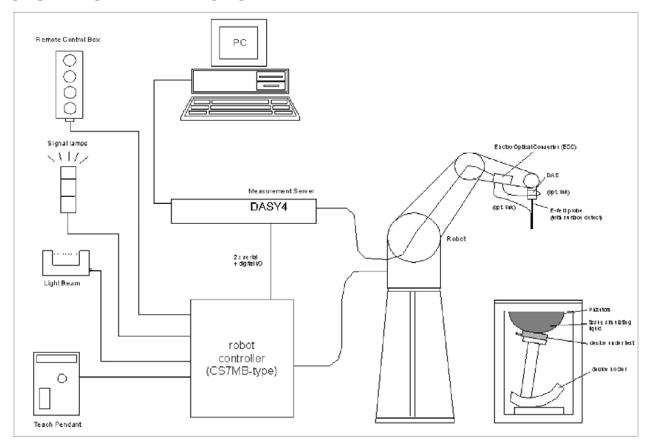
DATE: November 16, 2009

5. EQUIPMENT UNDER TEST

Intel 1000 Series WiFi card

(Tested inside of HP Notebook PC, Gucci 2.0)

Normal Lap-held only


operation: Note: SAR test with display open at 90° to the keyboard

Antenna tested: <u>Manufactured</u> <u>Model Number</u>

Yageo 6036B0055102 (Main)

Power supply: Power supplied through laptop computer (host device)

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

DATE: November 16, 2009

REPORT NO: 09U12903-1A

DATE: November 16, 2009 FCC ID: PD9112BNHU IC: 1000M-112BNHU

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	4	50	83	35	9	15	19	00	24	50		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

REPORT NO: 09U12903-1A FCC ID: PD9112BNHU

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Body		
raiget Frequency (Miriz)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

DATE: November 16, 2009

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameters for Muscle 2450 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chao Lin

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2450	e'	51.53	Relative Permittivity (ε_r):	51.527	52.7	-2.23	± 5
2450	e"	13.92	Conductivity (σ):	1.898	1.95	-2.68	± 5

e: 23 deg. C	
9 11:52 AM	
e'	e"
51.6235	13.6757
51.6114	13.7491
51.5968	13.8143
51.5932	13.8578
51.5793	13.884
51.5747	13.9022
51.5804	13.8955
51.5646	13.9016
51.5602	13.9161
51.5312	13.9438
51.5273	13.9229
51.4583	13.8995
51.4222	13.8714
51.3584	13.8342
51.343	13.7866
51.3279	13.7624
51.3357	13.7695
51.3289	13.7886
51.3313	13.8459
51.3332	13.9197
51.3283	14.0226
	51.6235 51.6114 51.5968 51.5932 51.5747 51.5804 51.5646 51.5602 51.5312 51.5273 51.4583 51.4222 51.3584 51.3279 51.3279 51.3289 51.3313 51.3332

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

DATE: November 16, 2009

9. SYSTEM CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

IEEE Standard 1528-2003 Numerical reference SAR values (W/kg) for reference dipole and flat phantom

Frequency (MHz)	Distance (mm)	1g SAR [W/kg]	10g SAR [W/kg]	Local SAR at surface (above feed-point)
300	15	3	2	4.4
450	15	4.9	3.3	7.2
835	15	9.5	6.2	4.1
900	15	10.8	6.9	16.4
1450	10	29	16	5.02
1800	10	38.1	19.8	69.5
1900	10	39.7	20.5	72.1
2000	10	41.1	21.1	74.6
2450	10	52.4	24	104.2
3000	10	63.8	25.7	104.2

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG. Certificate no: D2450V2-748_April 14, 2008

f (MHz)	Head	Tissue	Body Tissue	
	SAR _{1g}	SAR _{10g}	SAR _{1g}	SAR _{10g}
2450			49.5	23.3

9.1. SYSTEM CHECK RESULTS FOR D2450V2

System Validation Dipole: D2450V2 SN: 748

Date: November 10, 2009

Ambient Temperature = 24°C; Relative humidity = 40% Measured by: Chaoyen Lin

Medium	CW Signal (MHz)	Forward power (mW)	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
Rody	2450	250	1g SAR:	53.6	49.5	8.28	±10
Body	2450	250	10g SAR:	25.2	23.3	8.15	±10

10. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, CRTU v5.15.36.0, which enable a user to control the frequency and output power of the module.

The modes with highest output power channel were chosen for the conducted output power measurement.

Results

			Average Output	Duty Cycle
Mode	Channel	f (MHz)	Power (dBm)	(%)
802.11b	6	2437	16.9	100
802.11n 20 MHz	6	2437	16.7	99

11. SUMMARY OF TEST RESULTS

11.1. SAR TEST RESULT FOR THE 2.4 GHZ BAND

Mode	Channel	f (MHz)	Antenna	Measured SAR 1g (mW/g)	Limit
802.11b	6	2437 (M)	Main	0.00892	1.6
802.11n 20 MHz	6	2437 (M)	Main	0.00847	1.0

12. Enhanced Energy Coupling (KDB 447498)

According to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

Band	Antenna-to-person distance (cm)		Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
	Initial	16.38	0.005	1.52	
2.4 GHz	1	16.88	0.003	1.25	67.6%
	2	17.38	0.002	0.87	32.8%

13. WORST-CASE SAR TEST PLOTS

WORST-CASE SAR PLOT for 802.11b

Date/Time: 11/11/2009 10:07:50 AM

Test Laboratory: Compliance Certification Services

802.11bgn for Lapheld

DUT: HP; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.89 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³

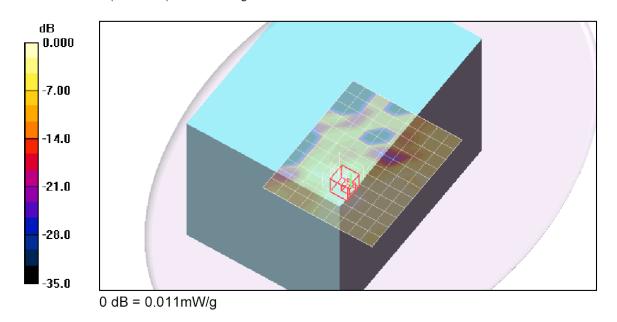
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Laptop, 802.11b M-ch/Area Scan (10x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.010 mW/g

Laptop, 802.11b M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 0.907 V/m: Power Drift = -0.456 dB

Peak SAR (extrapolated) = 0.018 W/kg

SAR(1 g) = 0.00892 mW/g; SAR(10 g) = 0.00491 mW/g

Maximum value of SAR (measured) = 0.011 mW/g

WORST-CASE SAR PLOT for 802.11n 20MHz

Date/Time: 11/11/2009 10:40:12 AM

DATE: November 16, 2009

IC: 1000M-112BNHU

Test Laboratory: Compliance Certification Services

802.11bgn for Lapheld

DUT: HP; Type: NA; Serial: NA

Communication System: 802.11bgn; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.89 \text{ mho/m}$; $\epsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

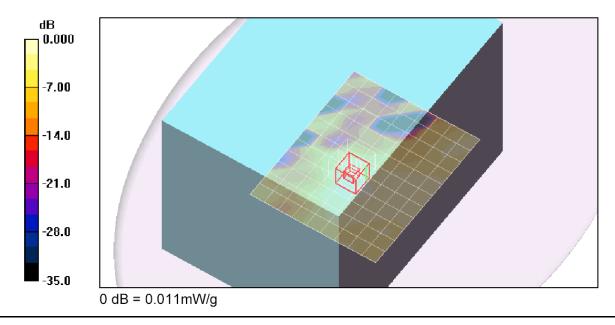
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.48, 6.48, 6.48); Calibrated: 3/23/2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn500; Calibrated: 9/15/2009
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Laptop, 802.11n 20MHz M-ch/Area Scan (10x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.009 mW/g

Laptop, 802.11n 20MHz M-ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=3mm

Reference Value = 1.68 V/m; Power Drift = -4.35 dB

Peak SAR (extrapolated) = 0.017 W/kg

SAR(1 g) = 0.00847 mW/g; SAR(10 g) = 0.0048 mW/g

Maximum value of SAR (measured) = 0.011 mW/g

REPORT NO: 09U12903-1A FCC ID: PD9112BNHU

14. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	2
3	Certificate of E-Field Probe – EX3DV4 SN 3686	10
4	Certificate of System Validation Dipole - D2450V2 SN:748	6

DATE: November 16, 2009 IC: 1000M-112BNHU