

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel[®] Centrino[®] Wireless-N 1030 (model 11230BNHMW)

IC CERTIFICATION #:	1000M-11230BNH and 1000M-11230BNHU
FCC ID:	PD911230BNH and PD911230BNHU
	Intel Corneration

APPLICANT: Intel Corporation 100 Center Point Circle Suite 200 Columbia, SC 29210

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4, 2845B-5, 2845B-7

REPORT DATE: October 1, 2010

FINAL TEST DATES: September 2, 7, 13, 14, and 15, 2010

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer Elliott Laboratories

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-01-2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	0
ADDITIONAL MEASUREMENTS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ANTENNA SYSTEM	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	10
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	2

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Wireless-N 1030 (model 11230BNHMW), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

```
ANSI C63.4:2003
```

FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Wireless-N 1030 (model 11230BNHMW) complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Wireless-N 1030 (model 11230BNHMW) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	10.2 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power	802.11b: 0.063 W 802.11g: 0.118 W n20: 0.123 W n40: 0.035 W	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-5.3 dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	802.11g and n20MHz: more than -20dBc 802.11b and n40MHz: more than -30dBc	< -20dBc or < -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.8dBµV/m @ 2483.5MHz	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies (-0.2dB)
Note 1: EIRP calculated using antenna gain of 3.2 dBi Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique	Integral or unique connector required	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	43.5dBµV/m @ 7500.1MHz	Refer to page 18	Complies (-10.5dB))
15.207	RSS GEN Table 2	AC Conducted Emissions	41.7dBµV @ 15.505MHz	Refer to page 17	Complies (-8.3dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual page 8	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to pages 11 and 12 of the user's manual	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	Complies
_	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 13.6 MHz 802.11g: 18.4 MHz n20: 19.7 MHz n40: 36.6 MHz	Information only	N/A

ADDITIONAL MEASUREMENTS

As both Bluetooth and 802.11 transmissions can occur simultaneously, radiated spurious measurements were made with both Bluetooth and 802.11 devices transmitting simultaneously.

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.2109	RSS 210	Receiver spurious emissions	51.0dBµV/m @ 2496.2MHz	15.209 in restricted bands, all others < -20dBc	Complies (-3.0dB)

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Wireless-N 1030 is a PCIe Half Mini Card form factor Bluetooth / IEEE 802.11b/g/n wireless network adapter that supports 802.11bgn and Bluetooth operation. 802.11bgn modes operate in a 1x2 mode (2 receive chains and 1 transmit chain) and the Bluetooth transceiver operates in a 1x1 mode. Both modes can operate simultaneously, but when Bluetooth is enabled 802.11 modes only support 1x1.

The Intel® Centrino® Wireless-N 1030 is sold under model numbers 11230BNHMW and 11230BNHU Model numbers with FCC ID: PD911230BNHU and IC: 1000M-11230BNHU are intended for end user installation and operate with a BiOS lock feature to ensure they can only be used in the appropriate host systems to prevent unauthorized operation. Other models are only intended for OEM factory installation.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 2, 2010 and tested on September 2, 7, 13, 14, and 15, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Mac Address	FCC ID
Intel	11230BNHMW	PCIe Half Mini Card form factor Bluetooth / IEEE		PD911230BNH PD911230BNHU 1000M-11230BNH
Corporation	11230BNHU	802.11b/g/n wireless network adapter		1000M-11230BNHU

ANTENNA SYSTEM

The EUT antenna is a a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

Company	Model	Description	Serial Number	FCC ID
Intel Corporation	Shiloh Motherboard	Test Fixture	-	N/A
Dell	-	Laptop PC	Prototype	N/A
Agilent	E3610A	DC Supply	-	N/A

The following equipment was used as support equipment for testing:

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)			
FOIL	То	Description	Shielded or Unshielded	Length(m)	
Laptop USB	Fixture USB	USB cable	Shielded	1	
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	0.5	
DC Power	Fixture DC power	2-wire	unshielded	0.5	

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth), Bluetooth 1Mb/s and Bluetooth 3Mb/s. In addition radiated spurious tests were repeated with the device operating in both Bluetooth and 802.11 modes to determine if any spurious emissions due to inter-modulation products were created.

The data rates used for all tests were the lowest data rates for each 802.11 mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate (this was confirmed through separate measurements). Bluetooth operation was evaluated at both 1Mb/s and 3Mb/s data rates. 2Mb/s data rate was found, through preliminary testing, to produce emissions similar to those for 3Mb/s and had a slightly lower output power than the 3Mb/s data rate.

The PC was using the Intel test utility DRTU Version 1.2.2-0177 and the driver version 14.0.0.39.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41020 Power Road
Chamber 5	211948	2845B-5	41039 Boyce Road Fremont,
Chamber 7	A2LA accreditation	2845B-7	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

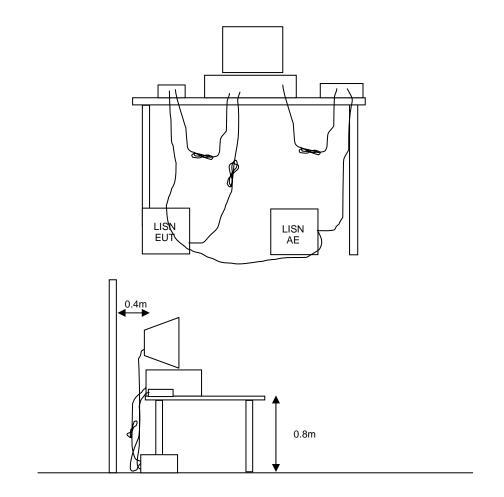
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

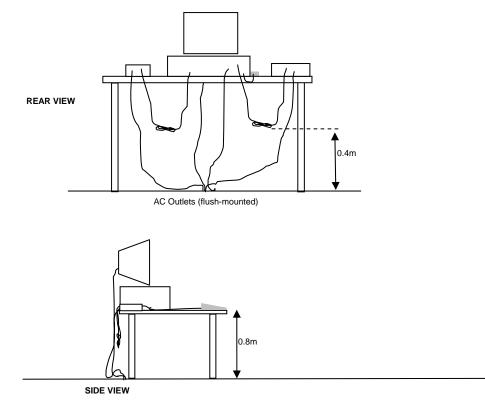

TEST PROCEDURES

EUT AND CABLE PLACEMENT

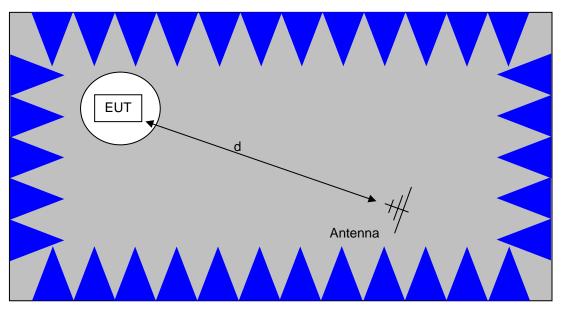
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

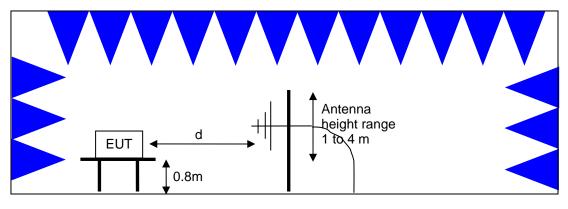

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

	Power and Spurious Emissions), (02-03-Sep-10		
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz SpecAn 9 kHz - 40 GHz, (SA40)	3115 8564E (84125C)	487 1771	7/6/2012 6/30/2011
newieu rackaru	Purple	8504E (84125C)	1771	0/30/2011
	ver and Spurious Emissions), 07-		A 1 //	
<u>Manufacturer</u> EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz	<u>Model</u> 3115	<u>Asset #</u> 487	<u>Cal Due</u> 7/6/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue			
	1000 - 26,500 MHz, 13,14-Sep-10		• • •	0 I D
Manufacturer	Description Missource Decomplifier 1	Model	<u>Asset #</u>	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/4/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1731	11/4/2010
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011
Radio Antenna Port, 1	14,15-Sep-10			
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	10/22/2010
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	9/13/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	1771	8/26/2011
	30 - 1,000 MHz, 15-Sep-10			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7GHz	ESIB7	1538	10/15/2010
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	5/27/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
	s - AC Power Ports, 15-Sep-10			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
EMCO Robdo & Sobworz	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Rohde & Schwarz Fischer Custom	EMI Test Receiver, 20 Hz-7GHz LISN, 50uH, 25 Amps, Dual Line	ESIB7 FCC-LISN-50/250-	1538 1575	10/15/2010 4/19/2011
Comm.	LIGIN, JUULI, 25 AMPS, DUAI LINE	25-2-01	1373	+/13/2011
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1593	5/27/2011

Appendix B Test Data

T80458 75 Pages

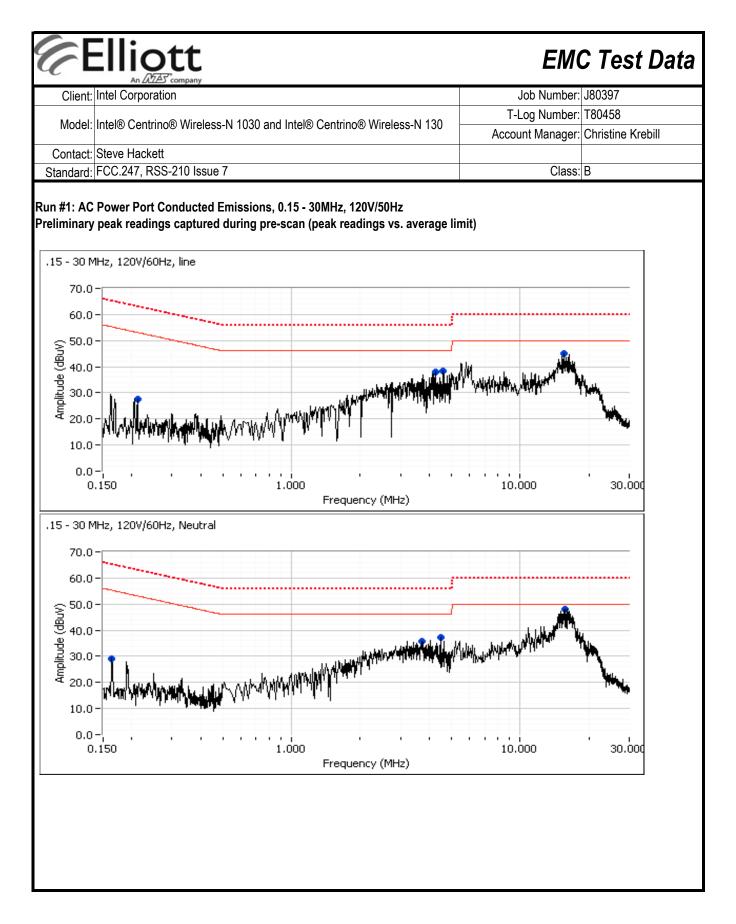
©Elliott

EMC Test Data

	3 company		
Client:	Intel Corporation	Job Number:	J80397
Model:	Intel® Centrino® Wireless-N 1030 and Intel®	T-Log Number:	T80458
	Centrino® Wireless-N 130	Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC.247, RSS-210 Issue 7	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Intel Corporation

Model

Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130

Date of Last Test: 9/15/2010

Client: Intel® Corporation Job Number: J80397 Client: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 T-Log Number: T80458 Account Manager: Christine Krebill Contact: Steve Hackett Client: Standard: FCC 247, RSS-210 Issue 7 Class: B Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafeel Varelas Config. Used: Modular Test Test Engineer: Rafeel Varelas Config. Used: Modular Test Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm fro the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity		Ellic	ott			EMC Test Data
Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 T-Log Number: T80458 Account Manager: Christine Krebill Standard: FCC 247, RSS-210 Issue 7 Class: B Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafael Varelas Config Change: The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Test Performed Limit Result MAC Address: 0150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Mark Mark Margin 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c Wodifications Made During Testing Accel Acdress: 20150079C6BF DRTU Tool Version 1.2.2-017		An LAZ	白 company			
Model: Intel® Centimol® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett					1	
Class: B Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config: Used: Modular Test Test Engineer: Rafael Varelas Config: Used: Modular Test Test Engineer: Rafael Varelas Config: Used: Modular Test Test Engineer: Rafael Varelas Config: Used: Config: Used:	Model:	Intel® Centri	no® Wireless-N 1030 and Intel®	B Centrino® Wireless-N 130		_
Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm fro he LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit Result Margin 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c) Wodifications Made During Testing None List None Standard						
(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from he LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Modifications Made During Testing No modifications Made During Testing Notifications were made to the EUT during testing Deviations From The Standard	Standard:	FCC.247, RS	SS-210 Issue 7			Class: B
specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm fro the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit Result Margin 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard					-	ber)
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 9/15/2010 Config. Used: Modular Test Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results Margin MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit Result Margin 1 CE, AC Power, 120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard Deviations From The Standard	Test Spe	cific Detail	S			
Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration Interview was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit No Exercise X1.7dBµV @ 15.505MHz (-8.3c) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard Deviations From The Standard	•	Objective:	The objective of this test sessio	n is to perform final qualifica	tion testing of	the EUT with respect to the
Test Location: FT Chamber #4 Host Unit Voltage 120V/60Hz General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	I	Date of Test:	9/15/2010			est
General Test Configuration The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard						
The test fixture was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm fro the LISN. A second LISN was used for all local support equipment. Ambient Conditions: Temperature: 21.6 °C Rel. Humidity: 37 % Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit Result Margin 1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	I	est Location:	FI Chamber #4	Host Unit Volta	ige 120V/60H	Z
Summary of Results MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39 Run # Test Performed Limit Result Margin 1 CE, AC Power, 120V/60Hz RSS 210 / 15.207 Pass 41.7dBµV @ 15.505MHz (-8.3c Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard						
				21.0		
1 CE, AC Power,120V/60Hz RSS 210 / 15.207 Pass 41.7dBμV @ 15.505MHz (-8.3c Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard						
Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard			Rel. Hun	nidity: 37 %	.0.0.39	
No modifications were made to the EUT during testing Deviations From The Standard	MAC Addre	ess: 0015007	Rel. Hun S 9C6BF DRTU Tool Version 1. Test Performed	nidity: 37 % 2.2-0177 Driver version 14 Limit	Result	
	MAC Addre Ru	ess: 0015007 in # 1	Rel. Hun S <u>9C6BF DRTU Tool Version 1.</u> <u>Test Performed</u> CE, AC Power,120V/60Hz	nidity: 37 % 2.2-0177 Driver version 14 Limit	Result	Margin 41.7dBµV @ 15.505MHz (-8.3dB)
	MAC Addre Ru Modificat No modifica Deviation	ess: 0015007 in # 1 ions Made tions were ma ns From Th	Rel. Hun S <u>9C6BF DRTU Tool Version 1.</u> <u>Test Performed</u> <u>CE, AC Power,120V/60Hz</u> During Testing ade to the EUT during testing te Standard	nidity: 37 % 2.2-0177 Driver version 14 Limit z RSS 210 / 15.207	Result	
	MAC Addre Ru Modificat No modifica Deviation	ess: 0015007 in # 1 ions Made tions were ma ns From Th	Rel. Hun S <u>9C6BF DRTU Tool Version 1.</u> <u>Test Performed</u> <u>CE, AC Power,120V/60Hz</u> During Testing ade to the EUT during testing te Standard	nidity: 37 % 2.2-0177 Driver version 14 Limit z RSS 210 / 15.207	Result	

		D tt					EM	C Test Dat
Client:	Intel Corpor	ation					Job Number:	J80397
							T-Log Number:	
Model:	Intel® Cent	rino® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirel	ess-N 130	Account Manager:	
Contact:	Steve Hack	ett					, locoant manager	
		SS-210 Issue	e 7				Class:	В
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	 		
0.213	27.4	Line 1	53.1	-25.7	Peak			
4.229	38.1	Line 1	46.0	-7.9	Peak			
4.617	38.4	Line 1	46.0	-7.6	Peak			
15.408 0.164	45.1 29.2	Line 1	50.0 55.3	-4.9 -26.1	Peak			
4.468	37.3	Neutral Neutral	46.0	-20.1	Peak Peak			
3.731	37.5	Neutral	46.0	-0.7	Peak			
15.505	48.1	Neutral	50.0	-10.4	Peak			
-in al avea i								
Frequency	Level	AC	Cla	ss B	Detector	Comments		
Frequency MHz	Level dBµV	AC Line	Cla Limit	Margin	QP/Ave			
Frequency MHz 15.505	Level dBμV 41.7	AC Line Neutral	Cla Limit 50.0	Margin -8.3	QP/Ave AVG	AVG (0.10s)		
Frequency MHz 15.505 15.408	Level dBµV 41.7 38.0	AC Line Neutral Line 1	Cla Limit 50.0 50.0	Margin -8.3 -12.0	QP/Ave AVG AVG	AVG (0.10s) AVG (0.10s)		
Frequency MHz 15.505 15.408 15.505	Level dBµV 41.7 38.0 46.4	AC Line Neutral Line 1 Neutral	Cla Limit 50.0 50.0 60.0	Margin -8.3 -12.0 -13.6	QP/Ave AVG AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s)		
Frequency MHz 15.505 15.408 15.505 15.408	Level dBµV 41.7 38.0 46.4 42.8	AC Line Neutral Line 1 Neutral Line 1	Cla Limit 50.0 50.0 60.0 60.0	Margin -8.3 -12.0 -13.6 -17.2	QP/Ave AVG AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 15.505 15.408 15.505	Level dBµV 41.7 38.0 46.4 42.8 31.4	AC Line Neutral Line 1 Neutral	Cla Limit 50.0 50.0 60.0 60.0 56.0	Margin -8.3 -12.0 -13.6 -17.2 -24.6	QP/Ave AVG AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 15.505 15.408 15.408 15.408 3.731	Level dBµV 41.7 38.0 46.4 42.8	AC Line Neutral Line 1 Neutral Neutral	Cla Limit 50.0 50.0 60.0 60.0	Margin -8.3 -12.0 -13.6 -17.2	QP/Ave AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Frequency MHz 15.505 15.408 15.505 15.408 3.731 4.229	Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6	AC Line Neutral Line 1 Neutral Line 1 Line 1	Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0	Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4	QP/Ave AVG AVG QP QP QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731	Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4	AC Line Neutral Neutral Line 1 Neutral Line 1 Line 1	Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 56.0	Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6	QP/Ave AVG QP QP QP QP QP QP QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
Frequency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731 4.229	Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4 18.7	AC Line Neutral Line 1 Neutral Line 1 Line 1 Line 1 Neutral	Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 56.0	Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6 -27.3	QP/Ave AVG QP QP QP QP QP QP QP QP AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 15.505 15.408 15.505 15.408 3.731 4.229 4.617 4.468 3.731	Level dBµV 41.7 38.0 46.4 42.8 31.4 30.6 29.7 29.6 19.4	AC Line Neutral Line 1 Neutral Line 1 Line 1 Line 1 Neutral Neutral	Cla Limit 50.0 50.0 60.0 60.0 56.0 56.0 56.0 56.0	Margin -8.3 -12.0 -13.6 -17.2 -24.6 -25.4 -26.3 -26.4 -26.6	QP/Ave AVG QP QP QP QP QP QP QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		

EMC Test Data

	An Deep company		
Client:	Intel Corporation	Job Number:	J80397
Madal	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
wouer.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/15/2010 Test Engineer: Rafael Varelas Test Location: FT Chamber #4 Config. Used: Modular Test Config Change: None Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21.6 °C
Rel. Humidity:	37 %

Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	30.2dBµV/m @ 200.01MHz (-13.3dB)

Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the **device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode and max power (7dBm) on the top channel in Bluetooth mode (1Mb/s data rate).**

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

<i>c</i> -	An AZ	∕ds company							
Client:	Intel Corpora	ation						Job Number:	
Model:	Intel® Centri	ino® Wirel	ess-N 1030 a	and Intel® Ce	entrino® Wire	less-N 130		Log Number:	
Contact	Steve Hacke	stt					Acco	unt Manager:	Christine Krebill
	FCC.247, R		aue 7					Class:	B
stanuaru:	1 00.247, K	00-210188	סעס ו					01055.	
	eliminary Ra								
onfigured		11b 16.5d quency Ra			ngs 20.0) on istance	channel 6, I Limit D		dBm, 1Mb/s Extrapolat	(settings 8.0) ion Factor
) - 1000 M			3	3		0.	
Run #1: 3	30 - 1000 MH	lz							
60.0	-								
F0 0									Г
50.0 ਵ									
중 급 40.0									
₽ ^{+0.0}					T		I		
- 면 고 30.0						*			
	_				, I. I	• · · · •	//		
별 30.0	-		۶	halm 1	WAR W	Juli din	MAN 1		
Ampl	-	۵.	1	harm wat	Willyway	1.	IN MARY		مىللى الماليا
20.0		Л.,М	y	many	WITHUN	lul Mi			مسلليد لللا
20.0	m	A.M	n	many	WWW WWW	hah Mi		understeller	لسلليد العليل
20.0		A.M.	yme · · · ·	100.0	WW WWW				
20.0	m	Ay M	ymd · · · ·	100.0	requency (M	HI2)	undar" 1	under widder	ioo'o.c
20.0 10.0	30.0	Ay M	Y	F	requency (M	HIZ)	MARAN.		
20.0 10.0 3 reliminary	peak readir			F re-scan			Height		
20.0 10.0 3 eliminary requency	peak readir	Pol	FCC 15.209	F re-scan 9 / RSS 210	Detector	Azimuth	Height	Comments	
20.0 10.0 3 eliminary requency MHz	peak readir Level dBµV/m	Pol v/h	FCC 15.209 Limit	F re-scan 9 / RSS 210 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
20.0 10.0 3 eliminary requency MHz 89.727	peak readir	Pol	FCC 15.209	F re-scan 9 / RSS 210	Detector	Azimuth	2		
20.0 10.0 3 eliminary requency MHz 89.727 133.637	peak readir Level dBµV/m 29.4	Pol v/h H	FCC 15.209 Limit 40.0	F re-scan 9 / RSS 210 Margin -10.6	Detector Pk/QP/Avg Peak	Azimuth degrees 52	meters 2.0	Comments	
20.0 10.0 3 eliminary requency MHz 89.727 133.637 160.029	peak readir ΔΕνεί ΔΒμV/m 29.4 30.5	Pol v/h H V	FCC 15.209 Limit 40.0 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 52 175	meters 2.0 2.0	Comments	
20.0 10.0 3 reliminary requency MHz 89.727 133.637 160.029 200.008	peak readir Level dBμV/m 29.4 30.5 33.8	Pol v/h H V H	FCC 15.209 Limit 40.0 43.5 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 52 175 217	meters 2.0 2.0 2.0	Comments	
20.0 10.0 3 eliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274	peak readir Level dBμV/m 29.4 30.5 33.8 39.6 34.7 31.5	Pol V/h H H H H V	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5	Detector Pk/QP/Avg Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0		
20.0 10.0 3 eliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274	- - - - - - - - - -	Pol v/h H V H H H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238	meters 2.0 2.0 2.0 1.5 2.0	Comments	
20.0 10.0 3 reliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274 391.699	peak readir Δ B B C B C B C B C B C B C B C B C B C B C B C B C <t< td=""><td>Pol v/h H V H H V H H</td><td>FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0</td><td>F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0</td><td>Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak</td><td>Azimuth degrees 52 175 217 218 238 95 188</td><td>meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0</td><td></td><td></td></t<>	Pol v/h H V H H V H H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0		
20.0 10.0 20.0 10.0 20.00 20.008 200.008 216.011 285.274 391.699 20.008 200.008 2	peak readir Level dBμV/m 29.4 30.5 33.8 39.6 34.7 31.5 40.0 quasi-peak	Pol v/h H H H V H readings (FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188 ace cables)	meters 2.0 2.0 2.0 1.5 2.0 1.0 1.0		
20.0 10.0 3 eliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274 391.699 aximized requency	peak readir Δ 30.0 peak readir Δ <t< td=""><td>Pol v/h H H H V H readings (</td><td>FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 includes ma FCC 15.209</td><td>F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210</td><td>Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak</td><td>Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth</td><td>meters 2.0 2.0 1.5 2.0 1.0 1.0 Height</td><td>Comments</td><td></td></t<>	Pol v/h H H H V H readings (FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 includes ma FCC 15.209	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth	meters 2.0 2.0 1.5 2.0 1.0 1.0 Height	Comments	
20.0 10.0 20.0 20.00 20.008 200.008 200.008 216.011 285.274 391.699 201.009 200.008 216.011 285.274 391.699 201.008 200.00	peak readin B0.0 BμV/m 29.4 30.5 33.8 39.6 34.7 31.5 40.0 quasi-peak n Level dBμV/m	Pol v/h H V H V H readings (Pol v/h	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters	Comments	
20.0 10.0 20.0 20.0 20.0 20.0 20.0 20.0 200.008 216.011 285.274 391.699 205.274 391.699 200.008 200.008	peak readin B0.0 peak readin Level dBμV/m 29.4 30.5 33.8 39.6 34.7 31.5 40.0 quasi-peak Level dBμV/m 30.2	Pol v/h H V H H V H readings (Pol v/h H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin -13.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees 218	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters 1.5	Comments QP (1.00s)	
20.0 10.0 eliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274 391.699 aximized requency MHz 200.008 160.029	peak readir Level dBμV/m 29.4 30.5 33.8 39.6 34.7 31.5 40.0 quasi-peak readir Level dBμV/m 30.2 29.2	Pol v/h H H H H V H readings (Pol v/h H H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit 43.5 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin -13.3 -14.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak of EUT interfa Detector Pk/QP/Avg QP QP	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees 218 205	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters 1.5 1.6	Comments QP (1.00s) QP (1.00s)	
20.0 10.0 20.0 10.0 20.008 20.008 200.008 200.008 216.011 285.274 391.699 200.008	peak readir Δ 30.0 peak readir Δ <t< td=""><td>Pol v/h H V H H V H readings (Pol v/h H H H H</td><td>FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit 43.5 43.5 43.5</td><td>F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin -13.3 -14.3 -14.3 -16.0</td><td>Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak</td><td>Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees 218 205 75</td><td>meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters 1.5 1.6 2.2</td><td>Comments QP (1.00s) QP (1.00s) QP (1.00s)</td><td></td></t<>	Pol v/h H V H H V H readings (Pol v/h H H H H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit 43.5 43.5 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin -13.3 -14.3 -14.3 -16.0	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees 218 205 75	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters 1.5 1.6 2.2	Comments QP (1.00s) QP (1.00s) QP (1.00s)	
20.0 10.0 3 reliminary requency MHz 89.727 133.637 160.029 200.008 216.011 285.274 391.699 aximized requency	peak readir Level dBμV/m 29.4 30.5 33.8 39.6 34.7 31.5 40.0 quasi-peak readir Level dBμV/m 30.2 29.2	Pol v/h H H H H V H readings (Pol v/h H H	FCC 15.209 Limit 40.0 43.5 43.5 43.5 43.5 43.5 43.5 46.0 46.0 46.0 FCC 15.209 Limit 43.5 43.5	F re-scan 9 / RSS 210 Margin -10.6 -13.0 -9.7 -3.9 -8.8 -14.5 -6.0 mipulation c 9 / RSS 210 Margin -13.3 -14.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak of EUT interfa Detector Pk/QP/Avg QP QP	Azimuth degrees 52 175 217 218 238 95 188 ace cables) Azimuth degrees 218 205	meters 2.0 2.0 2.0 1.5 2.0 1.5 2.0 1.0 1.0 Height meters 1.5 1.6	Comments QP (1.00s) QP (1.00s)	

EMC Test Data

(F	Elliott An DES company	EM	C Test Data
Client:	Intel Corporation	Job Number:	J80397
Madal	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
woder.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Addre	ss: 0015007	9C6BF DR	TU Tool Vers	sion 1.2.2-01	77 Driver version 14.0.	0.39	
Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
Run # 1	n40	#3 2422MHz		12.0	Restricted Band Edge at 2400 MHz	15.209	53.7dBµV/m @ 2390.0MHz (-0.3dB)
run# 1	Chain A	#9 2452MHz		11.8	Restricted Band Edge at 2483.5 MHz	15.209	53.8dBµV/m @ 2483.5MHz (-0.2dB)
Run # 2	n40	#4 2427MHz		12.0	Restricted Band Edge at 2400 MHz	15.209	52.0dBµV/m @ 2390.0MHz (-2.0dB)
Rull # 2	Chain A	#8 2447MHz		13.0	Restricted Band Edge at 2483.5 MHz	15.209	53.4dBµV/m @ 2483.5MHz (-0.6dB)
Run # 3	n40	#5 2432MHz		13.8	Restricted Band Edge at 2400 MHz	15.209	51.6dBµV/m @ 2390.0MHz (-2.4dB)
Rull # 3	Chain A	#7 2442MHz		13.1	Restricted Band Edge at 2483.5 MHz	15.209	51.3dBµV/m @ 2483.5MHz (-2.7dB)
Run #4	n40	#6		15.4	Restricted Band Edge at 2400 MHz	15.209	53.1dBµV/m @ 2390.0MHz (-0.9dB)
Kull # 4	Chain A	2437MHz		14.5	Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.5MHz (-1.7dB)
Run # 5	n20	#1 2412MHz		14.1	Restricted Band Edge at 2400 MHz	15.209	51.8dBµV/m @ 2390.0MHz (-2.2dB)
Run # 5	Chain A	#11 2462MHz		13.5	Restricted Band Edge at 2483.5 MHz	15.209	53.5dBµV/m @ 2483.5MHz (-0.5dB)
Run # 6	802.11g	#1 2412MHz		16.5	Restricted Band Edge at 2400 MHz	15.209	53.6dBµV/m @ 2390.0MHz (-0.4dB)
Null # 0	Chain A	#11 2462MHz		14.1	Restricted Band Edge at 2483.5 MHz	15.209	51.9dBµV/m @ 2483.5MHz (-2.1dB)
Run # 7	802.11b	#1 2412MHz		16.6	Restricted Band Edge at 2400 MHz	15.209	45.9dBµV/m @ 2390.0MHz (-8.1dB)
	Chain A	#11 2462MHz		16.6	Restricted Band Edge at 2483.5 MHz	15.209	48.7dBµV/m @ 2483.5MHz (-5.3dB)

CPE DDTH Teel Version 4.2.2.0477 Driver version 44.0.0.20

Note - the measured powers are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Elliott

EMC Test Data

	An (ALA) company		
Client:	Intel Corporation	Job Number:	J80397
Model	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
wouer.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

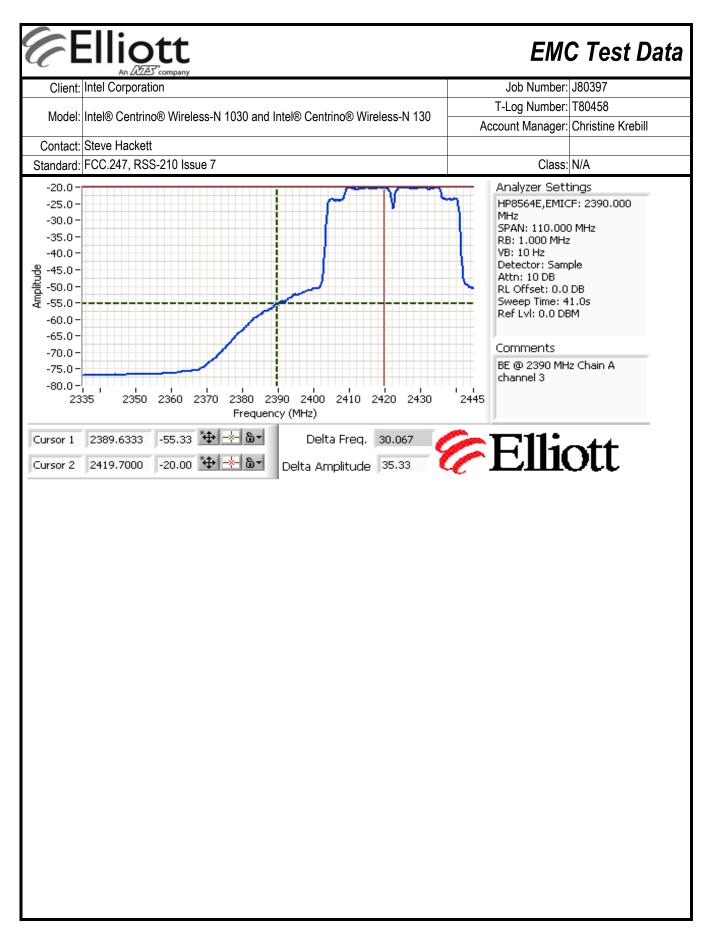
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

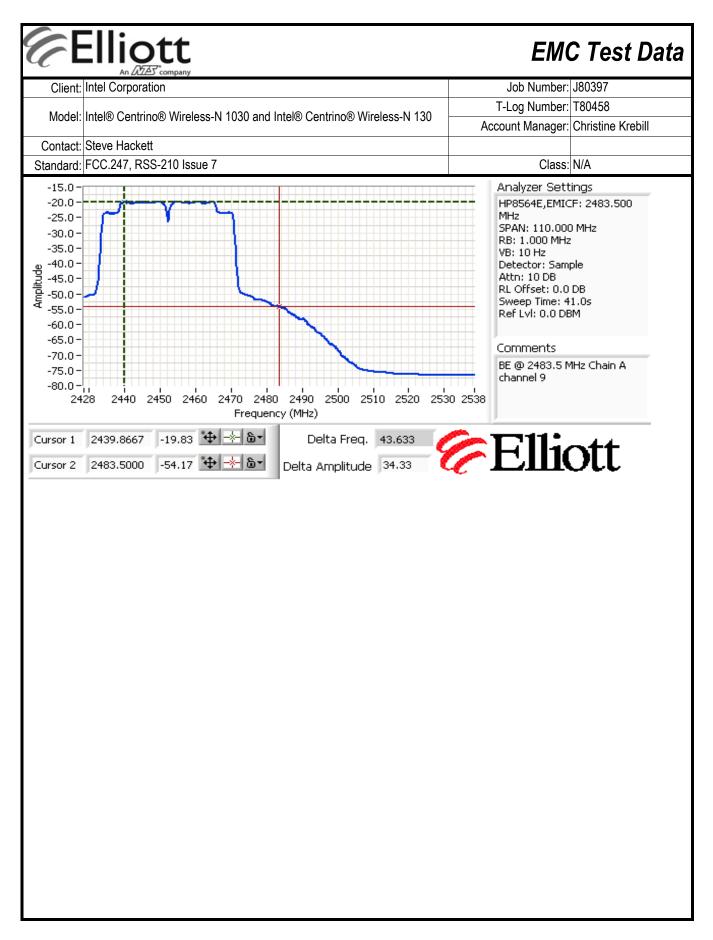
Rel. Humidity:	15 - 55	%
Temperature:	18 - 25	°C

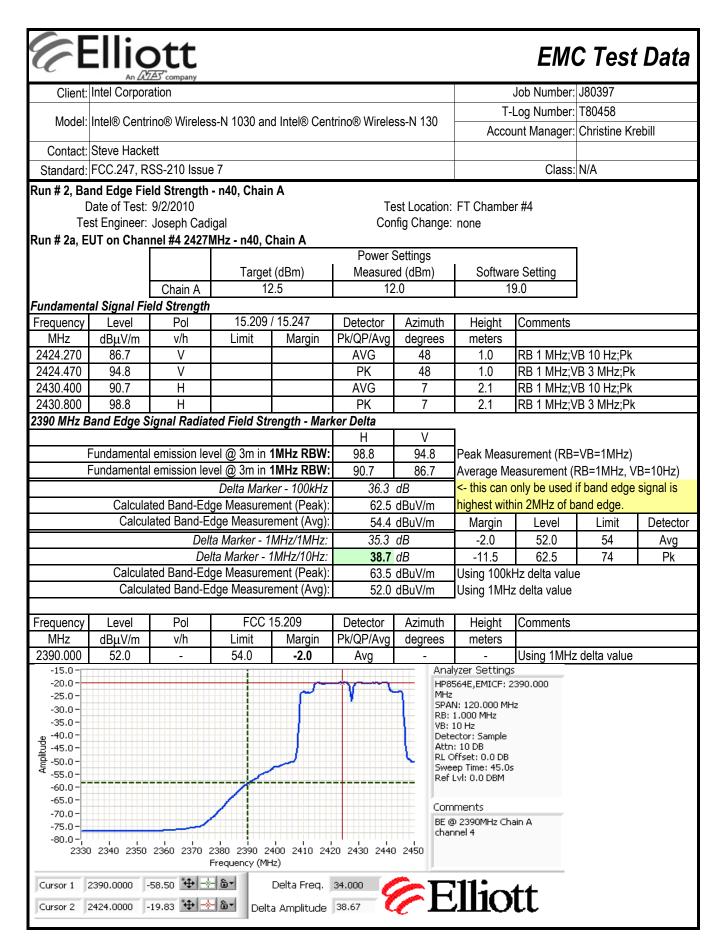
Modifications Made During Testing

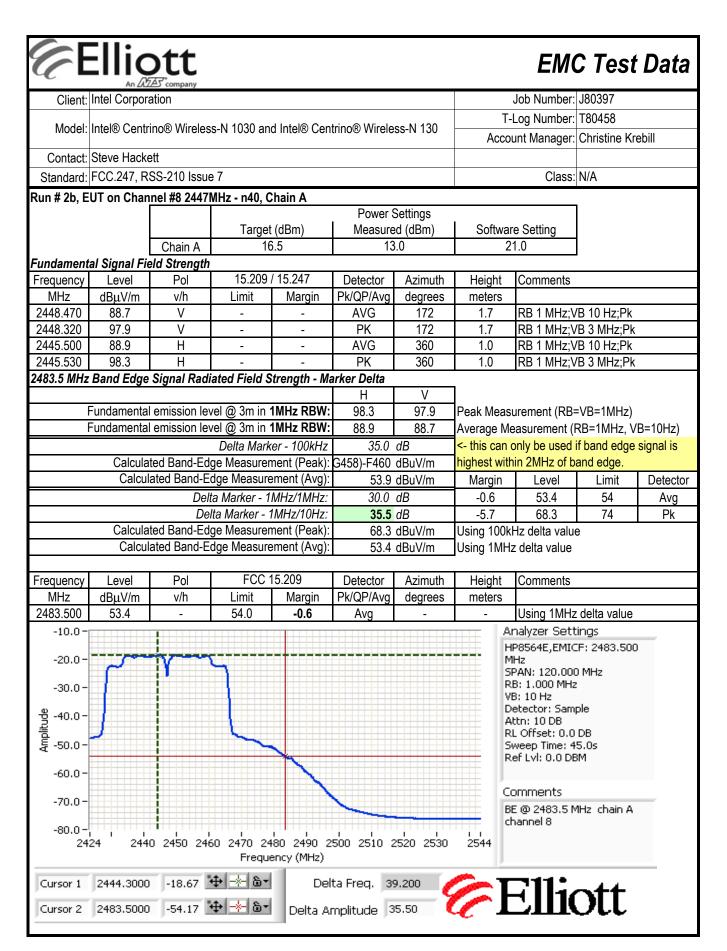
No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

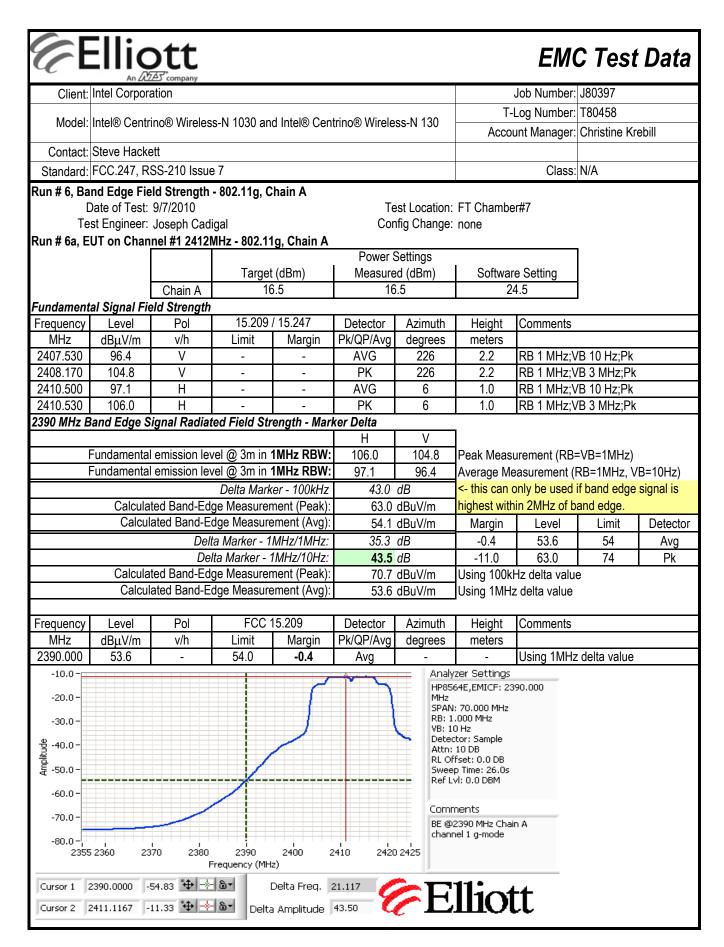

Marker Delta Measurements

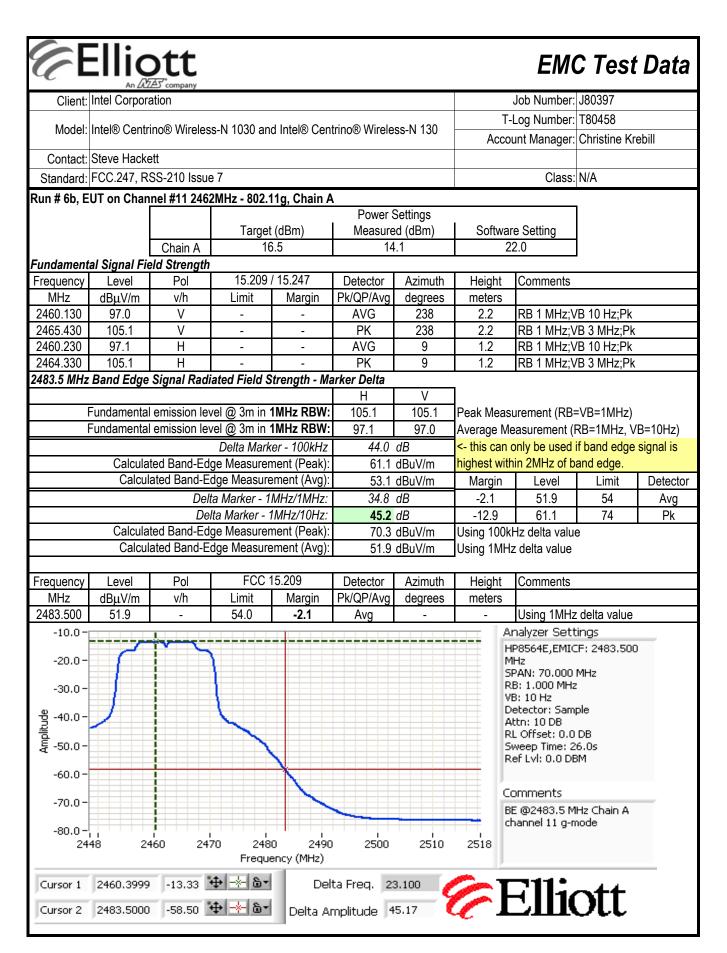

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. The fundamental field strength is always measured at a 3m test distance.

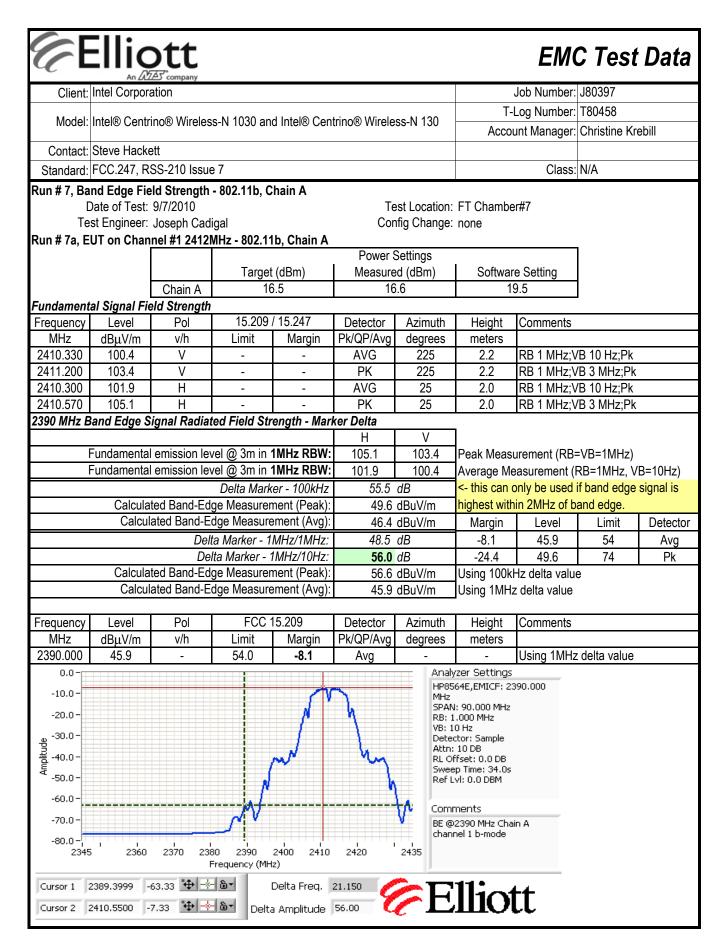

Elliott EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A Run # 1, Band Edge Field Strength - n40, Chain A Date of Test: 9/2/2010 Test Location: FT Chamber #4 Test Engineer: Joseph Cadigal Config Change: none Run # 1a, EUT on Channel #3 2422MHz - n40, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.0 19.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2430.400 87.2 V AVG 183 RB 1 MHz;VB 10 Hz;Pk -1.7 -2432.600 V 95.6 ΡK 183 1.7 RB 1 MHz;VB 3 MHz;Pk --360 2423.480 89.0 Н AVG 1.0 RB 1 MHz;VB 10 Hz;Pk --2423.470 98.2 Н PK 360 1.0 RB 1 MHz;VB 3 MHz;Pk --2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Н Fundamental emission level @ 3m in 1MHz RBW: 98.2 95.6 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 89.0 87.2 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 32.7 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 65.5 dBuV/m Calculated Band-Edge Measurement (Avg): 56.3 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 31.2 dB 53.7 54 -0.3 Avq Delta Marker - 1MHz/10Hz: 35.3 dB -8.5 65.5 74 Pk Calculated Band-Edge Measurement (Peak): 67.0 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): Using 1MHz delta value 53.7 dBuV/m Level Pol FCC 15.209 Detector Comments Frequency Azimuth Height MHz dBµV/m Limit Margin Pk/QP/Avg meters v/h degrees 2390.000 54.0 -0.3 Using 1MHz delta value 53.7 -Avg --

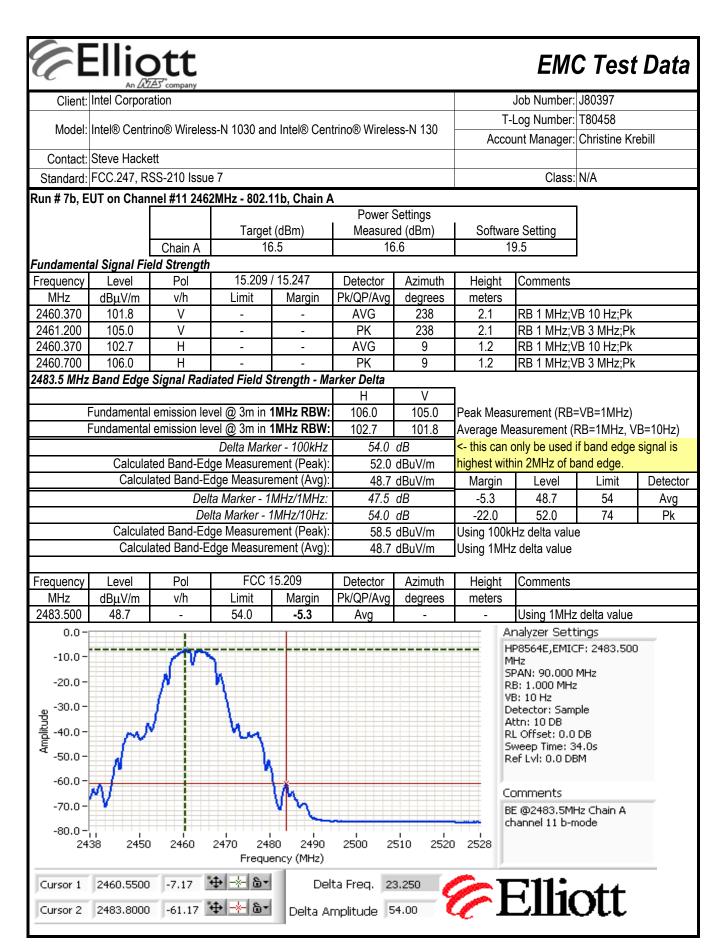
Model: Ir		ation						Job Number	J80397	
	ntel® Centri	no® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirele	ss-N 130		Log Number:		
							Acco	unt Manager:	Christine Kr	ebill
	Steve Hacke									
Standard: F	-CC.247, R	SS-210 Issue	e 7					Class	N/A	
lun # 1b, EU	IT on Chan	nel #9 2452	MHz - n40, C	Chain A					1	
			Tarrad	h (dDae)		Settings	Cottour	o Cottine		
		Chain A		t (dBm) 6.5	Measure 11	()		e Setting 9.0		
	L	Chain A		5.5		.0	<u> </u>	9.0	J	
undamental	l Signal Fie	ld Strenath								
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2449.270	88.0	V	-	-	AVG	261	1.0		/B 10 Hz;Pk	
2448.330	96.4	V	-	-	PK	261	1.0		/B 3 MHz;Pk	
2460.070	88.1	Н	-	-	AVG	342	1.2		/B 10 Hz;Pk	
459.730	98.9	Н	-	-	PK	342	1.2	RB 1 MHz;\	/B 3 MHz;Pk	
83.5 MHz B Fu	Band Edge	Signal Radi	rel @ 3m in	1MHz RBW:	H 98.9	V 96.4 88.0		urement (RB	=VB=1MHz)	/B=10Hz)
483.5 MHz Β Fι	Band Edge	Signal Radi	vel @ 3m in vel @ 3m in	1MHz RBW:	Н	96.4 88.0	Average Me	urement (RB easurement (=VB=1MHz) RB=1MHz, V	,
483.5 MHz Β Fι	Band Edge undamental undamental Calculat	Signal Radi emission lev emission lev ied Band-Edg	rel @ 3m in rel @ 3m in Delta Mark ge Measurer	1MHz RBW: 1MHz RBW: ker - 100kHz ment (Peak):	H 98.9 88.1 31.7	96.4 88.0	Average Me <- this can o	urement (RB	=VB=1MHz) RB=1MHz, \ <mark>if band edge</mark>	,
483.5 MHz Β Fι	Band Edge undamental undamental Calculat	Signal Radia emission lev emission lev	rel @ 3m in rel @ 3m in Delta Mark ge Measurer	1MHz RBW: 1MHz RBW: ker - 100kHz ment (Peak):	H 98.9 88.1 31.7 67.2	96.4 88.0 dB	Average Me <- this can o	urement (RB easurement (only be used	=VB=1MHz) RB=1MHz, \ <mark>if band edge</mark>	,
183.5 MHz Β Fι	Band Edge undamental undamental Calculat	Signal Radi emission lev emission lev ted Band-Ed ated Band-Ed	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measure	1MHz RBW: 1MHz RBW: ker - 100kHz ment (Peak):	H 98.9 88.1 31.7 67.2	96.4 88.0 dB dBuV/m dBuV/m	Average Me <- this can of highest with Margin -0.2	urement (RB easurement (only be used in 2MHz of b Level 53.8	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54	signal is
183.5 MHz Β Fι	Band Edge undamental undamental Calculat Calcula	Signal Radi emission lev emission lev ted Band-Ed ated Band-Ed Delt Del	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measure a Marker - 1 ta Marker -	1MHz RBW: 1MHz RBW: ter - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz:	H 98.9 88.1 31.7 67.2 56.4 30.2 34.3	96.4 88.0 dBuV/m dBuV/m dB dB	Average Me <- this can of highest with Margin -0.2 -6.8	urement (RB easurement (only be used in 2MHz of to Level 53.8 67.2	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54 74	signal is Detect
183.5 MHz Β Fι	Band Edge undamental undamental Calculat Calculat	Signal Radi emission lev emission lev ted Band-Edg ated Band-Edg Delt Del ted Band-Edg	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measurer a Marker - 1 ta Marker - ge Measurer	1MHz RBW: 1MHz RBW: ter - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	H 98.9 88.1 31.7 67.2 56.4 30.2 34.3 68.7	96.4 88.0 dBuV/m dBuV/m dB dB dBuV/m	Average Me <- this can of highest with Margin -0.2 -6.8 Using 100k	urement (RB easurement (only be used in 2MHz of b Level 53.8 67.2 Hz delta valu	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54 74	Detect
483.5 MHz Β Fι	Band Edge undamental undamental Calculat Calculat	Signal Radi emission lev emission lev ted Band-Ed ated Band-Ed Delt Del	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measurer a Marker - 1 ta Marker - ge Measurer	1MHz RBW: 1MHz RBW: ter - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	H 98.9 88.1 31.7 67.2 56.4 30.2 34.3 68.7	96.4 88.0 dBuV/m dBuV/m dB dB	Average Me <- this can of highest with Margin -0.2 -6.8 Using 100k	urement (RB easurement (only be used in 2MHz of to Level 53.8 67.2	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54 74	Detector Avg
483.5 MHz B	Band Edge undamental undamental Calculat Calculat Calculat	Signal Radi emission lev emission lev ted Band-Ed ated Band-Ed Delt Del ted Band-Ed ated Band-Ed ated Band-Ed	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measurer a Marker - 1 ta Marker - ge Measurer dge Measurer	1MHz RBW: 1MHz RBW: MHz RBW: ment (Peak): ment (Peak): MHz/1MHz: 1MHz/10Hz: ment (Peak): ement (Avg):	H 98.9 88.1 31.7 67.2 56.4 30.2 34.3 68.7 53.8	96.4 88.0 dBuV/m dBuV/m dB dBuV/m dBuV/m	Average Me <- this can of highest with Margin -0.2 -6.8 Using 100k Using 1MH:	urement (RB easurement (only be used in 2MHz of b Level 53.8 67.2 Hz delta value	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54 74	Detector Avg
183.5 MHz B	Band Edge undamental undamental Calculat Calculat	Signal Radi emission lev emission lev ted Band-Edg ated Band-Edg Delt Del ted Band-Edg	rel @ 3m in rel @ 3m in Delta Mark ge Measurer dge Measurer a Marker - 1 ta Marker - ge Measurer dge Measurer	1MHz RBW: 1MHz RBW: ter - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak):	H 98.9 88.1 31.7 67.2 56.4 30.2 34.3 68.7	96.4 88.0 dBuV/m dBuV/m dB dB dBuV/m	Average Me <- this can of highest with Margin -0.2 -6.8 Using 100k	urement (RB easurement (only be used in 2MHz of b Level 53.8 67.2 Hz delta valu	=VB=1MHz) RB=1MHz, V <mark>if band edge</mark> and edge. Limit 54 74	Detector Avg

		A company							100	
Client:	Intel Corpora	ation						Job Number:		
Model [.]	Intel® Centr	ino® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirele	ss-N 130		Log Number:		
							Acco	unt Manager:	Christine Ki	ebill
	Steve Hacke									
		SS-210 Issue						Class:	N/A	
	nd Edge Fie Date of Test:	eld Strength	- n40, Chain	n A	т	at Lagation.				
		Joseph Cad	inal			nfig Change:	FT Chambe	;#/		
	-	nel #5 24321	•	hain A	001	ing ondinge.	none			
					Power	Settings				
			•	(dBm)	Measure	ed (dBm)	Softwar	re Setting		
		Chain A	16	6.5	13	3.8	2	1.5	J	
1		eld Strength	15 200	/ 15.247	Detector	مان مورند ۸	Linicht	Comments		
requency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments		
429.800	овµv/ш 90.9	V		-	AVG	350	2.1	RB 1 MHz;\	/B 10 Hz:Pk	
430.200	99.2	V	-	-	PK	350	2.1	RB 1 MHz;\		[
435.400	92.1	Н	-	-	AVG	6	2.0	RB 1 MHz;\	/B 10 Hz;Pk	
433.800	100.0	Н	-	-	PK	6	2.0	RB 1 MHz;\	/B 3 MHz;Pk	
F	undamental	ignal Radiat	/el @ 3m in <i>'</i>	1MHz RBW:	H 100.0	V 99.2		urement (RB	,	(D-4011-)
F	Fundamental Fundamental	l emission lev l emission lev	vel @ 3m in * vel @ 3m in * Delta Mark	1MHz RBW: 1MHz RBW: er - 100kHz	H 100.0 92.1 40.5	99.2 90.9 dB	Average Me <- this can o	easurement (l only be used	RB=1MHz, \ <mark>if band edge</mark>	
F	undamental undamental Calcula	l emission lev l emission lev ted Band-Ed	vel @ 3m in <i>*</i> vel @ 3m in <i>*</i> Delta Mark ge Measurer	1MHz RBW: 1MHz RBW: 100kHz nent (Peak):	H 100.0 92.1 40.5 59.5	99.2 90.9 dB dBuV/m	Average Me <- this can on highest with	easurement (l only be used hin 2MHz of b	RB=1MHz, \ if band edge and edge.	signal is
F	undamental undamental Calcula	l emission lev l emission lev ted Band-Ed ated Band-Ed	vel @ 3m in [,] vel @ 3m in [,] Delta Mark ge Measurer dge Measure	1MHz RBW: 1MHz RBW: ter - 100kHz nent (Peak): ement (Avg):	H 100.0 92.1 40.5 59.5 51.6	99.2 90.9 dB dBuV/m dBuV/m	Average Me <- this can o highest with Margin	easurement (only be used nin 2MHz of b Level	RB=1MHz, \ <mark>if band edge</mark> and edge. Limit	signal is Detect
F	undamental undamental Calcula	l emission lev I emission lev ted Band-Ed ated Band-E	vel @ 3m in <i>*</i> vel @ 3m in <i>*</i> Delta Mark ge Measurer	1MHz RBW: 1MHz RBW: er - 100kHz ment (Peak): ement (Avg): MHz/1MHz:	H 100.0 92.1 40.5 59.5	99.2 90.9 dB dBuV/m dBuV/m dB	Average Me <- this can on highest with	easurement (l only be used hin 2MHz of b	RB=1MHz, \ if band edge and edge.	signal is
F	undamental undamental Calcula Calcul Calcul	l emission lev l emission lev ted Band-Ed ated Band-E Den Den ted Band-Ed	vel @ 3m in ' vel @ 3m in ' Delta Mark ge Measurer dge Measurer dge Measurer ta Marker - 1 ge Measurer	1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak):	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8	99.2 90.9 dBuV/m dBuV/m dB dB dB dBuV/m	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect
F	undamental undamental Calcula Calcul Calcul	l emission lev l emission lev ted Band-Ed ated Band-E Deli Deli	vel @ 3m in ' vel @ 3m in ' Delta Mark ge Measurer dge Measurer dge Measurer ta Marker - 1 ge Measurer	1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak):	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8	99.2 90.9 dB dBuV/m dBuV/m dB dB	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k	easurement (only be used in 2MHz of b Level 51.6 59.5	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg
F F	undamental undamental Calcula Calcul Calcula Calcula	l emission lev l emission lev ted Band-Ed ated Band-E Delt Delt ded Band-Ed ated Band-Ed	vel @ 3m in <u>vel @ 3m in </u> <u>Delta Mark</u> ge Measurer dge Measure ta Marker - 1 Ita Marker - 1 ge Measurer dge Measurer	1MHz RBW: 1MHz RBW: eer - 100kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: ment (Peak): ement (Avg):	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg
F F	undamental undamental Calcula Calcul Calcul	l emission lev l emission lev ted Band-Ed ated Band-E Den Den ted Band-Ed	vel @ 3m in <u>vel @ 3m in </u> <u>Delta Mark</u> ge Measurer dge Measure ta Marker - 1 Ita Marker - 1 ge Measurer dge Measurer	1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak):	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8	99.2 90.9 dBuV/m dBuV/m dB dB dB dBuV/m	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg
F F requency MHz	undamental undamental Calcula Calcul Calcula Calcul	l emission lev l emission lev ted Band-Ed ated Band-E Delt Delt ded Band-Ed ated Band-Ed	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer	1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg): 15.209	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F requency MHz	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height meters - tings	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F F MHz 390.000	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: er - 100kHz nent (Peak): ment (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg): 15.209 Margin	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett HP8564E,EMIG MHz	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height meters - tings F: 2390.000	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F P P P P P P P P P P P P P P P P P P	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett HP8564E,EMIC MHz SPAN: 130.00 RB: 100 kHz	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height meters - tings F: 2390.000	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F F F F F F F F F F F F F F F F F F	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett HP8564E,EMIG MHz SPAN: 130.00 RB: 100 kHz VB: 100 kHz Detector: POS	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height meters 	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F F F F F F F F F F F F F F F F F F	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett HP8564E,EMI0 MH2 SPAN: 130.00 RB: 100 kHz VB: 100 kHz Detector: POS Attn: 10 DB RL Offset: 0.0	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Height meters - tings -F: 2390.000 0 MHz B	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
F F F F F F F F F F F F F F F F F F F	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett H8564E,EMIC MHz SPAN: 130.00 RB: 100 kHz VB: 100 kHz VB: 100 kHz VB: 100 kHz VB: 100 kHz	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Using 100k Height meters - tings F: 2390.000 0 MHz DB '2.0ms	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk
requency MHz 390.000 -10.0 - -20.0 - -30.0 -	undamental Fundamental Calcula Calcul Calcula Calcul Level dBµV/m	l emission lev l emission lev ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed ated Band-Ed v/h	vel @ 3m in vel @ 3m in Delta Mark ge Measurer dge Measurer ta Marker - 1 ta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit	1MHz RBW: 1MHz RBW: 1MHz RBW: 100kHz	H 100.0 92.1 40.5 59.5 51.6 34.2 40.0 65.8 52.1 Detector Pk/QP/Avg Avg	99.2 90.9 dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Analyzer Sett H98564E,EMIC MHz SPAN: 130.00 RB: 100 KHz Detector: POS Attn: 10 DB RL Offset: 0.0 Sweep Time: 7	Average Me <- this can of highest with Margin -2.4 -14.5 Using 100k Using 100k Using 100k Height meters - tings F: 2390.000 0 MHz DB '2.0ms	easurement (only be used in 2MHz of b Level 51.6 59.5 Hz delta valu Hz delta valu Comments	RB=1MHz, V if band edge and edge. Limit 54 74 e	Detect Avg Pk


Æ		Dtt Articompany						EMO	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J80397	
Model:	Intel® Centri	ino® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirele	ss-N 130		Log Number: unt Manager:		ebill
Contact:	Steve Hacke	ett								
Standard:	FCC.247, R	SS-210 Issue	e 7					Class:	N/A	
un # 3b, E	UT on Chan	nel #7 2442	MHz - n40, C	hain A					L	
					Power S	Settings				
			Target	· /	Measure	· · /		e Setting		
		Chain A		5.5	13	5.1	2	0.5		
		eld Strength		145 047		A ' ''				
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz 2454.800	dBµV/m 90.1	v/h V	Limit	Margin	Pk/QP/Avg AVG	degrees 350	meters 1.8	RB 1 MHz;V	/B 10 HDI-	
2454.800	90.1	V	-	-	PK	350	1.0	RB 1 MHz;V		
2443.420	91.0	H	-	-	AVG	10	1.0	RB 1 MHz;V		
2443.290	99.4	H	-	-	PK	10	1.0	RB 1 MHz;V	,	
		Signal Radi			Н	V]			
		emission lev			99.4	98.2		urement (RB=	,	
ľ	-undamental	emission lev			91.0	90.1	U U	easurement (l		,
	Calcula	ted Band-Ed		er - 100kHz	38.8	dBuV/m		only be used ain 2MHz of b	-	signal is
		ated Band-Eu				dBuV/m	Margin	Level	Limit	Detecto
	00.000		ta Marker - 1	, e /	35.0		-2.7	51.3	54	Avg
			Ita Marker - 1		39.7		-13.4	60.6	74	Pk
	Calculat	ted Band-Ed	ge Measurer	nent (Peak):	64.4	dBuV/m	Using 100k	Hz delta valu	e	
	Calcul	ated Band-E		•	51.3	dBuV/m	Using 1MH:	z delta value		
requency	Level	Pol		5.209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Lising 1ML		
2483.500 -10.0-	51.3	-	54.0	-2.7	Avg	-	- 0 mahurany	Using 1MHz Settings	delta value	
-20.0 - -30.0 - - 							MHz SPAN: 13 RB: 1.00 VB: 10 H: Detector Attn: 10 RL Offsel Sweep Ti Ref Lvl: 0	z : Sample DB t: 0.0 DB me: 49.0s 0.0 DBM		
-80.0- 11 241		0 2460) 2480 Frequency	2500 / (MHz)	2520	2540254	channel 7			
Cursor 1	2445.1499	-18.50 💠	-*- &-	Delta Fr	req. 38.350		ה מיייד א	liot	L	
COLOCI 1										


								EMO	C Test	Data
Client:	Intel Corpor	ation						Job Number:	J80397	
Model:	Intel® Centr	ino® Wireles	s-N 1030 an	d Intel® Cen	trino® Wirele	ess-N 130		Log Number: unt Manager:		ehill
Contact:	Steve Hacke	ett					7,000			0011
		SS-210 Issue	e 7					Class:	N/A	
Run # 4, Ba	nd Edge Fie	eld Strength	- n40, Chair	A						
Te	-	9/7/2010 Joseph Cad 3 7MHz - n40 ,	•			est Location: nfig Change:		er#7		
			onun /		Power	Settings				
			Target		Measure	ed (dBm)		e Setting		
		Chain A		6.5	1	5.4	2	3.5		
		eld Strength		/ 15.247	Detector	۸	لام: والم	Commercia		
Frequency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments		
2449.600	<u>υ</u> 95.1	H	-	-	AVG	5	1.2	RB 1 MHz;V	B 10 Hz·Pk	
2446.330	104.1	H	-	-	PK	5	1.2	RB 1 MHz;V		
2433.870	93.4	V	-	-	AVG	351	1.8	RB 1 MHz;V		
2429.600	102.1	V	-	-	PK	351	1.8	RB 1 MHz;V	B 3 MHz;Pk	
	Fundamenta Fundamenta	ignal Radiat emission lev emission lev ted Band-Ed	vel @ 3m in [.] vel @ 3m in [.] Delta Mark	1MHz RBW: 1MHz RBW: er - 100kHz	H 104.1 95.1 42.0	V 102.1 93.4 dB dBuV/m	Average Me <- this can o	urement (RB= easurement (F only be used i in 2MHz of be	RB=1MHz, V <mark>f band edge</mark>	
	Calcul	ated Band-E	dge Measure	ement (Avg):	53.1	dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		38.3		-0.9	53.1	54	Avg
	0.1.1.		lta Marker - 1		41.7		-11.9	62.1	74	Pk
		ted Band-Ed ated Band-E				dBuV/m dBuV/m		Hz delta value Hz delta value		
Frequency	Level	Pol	FCC 2	15.209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2390.000	53.1	-	54.0	-0.9	Avg	-	-	Using 100k	Iz delta valu	9
-10.0 - -20.0 - -30.0 - -9p -40.0 - -100 - -00.0 - -70.0 - -80.0 -	2340	2360 2380	2400	2420 244		Analyzer Settin HP8564E,EMICF: MH2 SPAN: 140.000 N R8: 100 kH2 VB: 100 kH2 Detector: POS Attn: 10 DB RL Offset: 0.0 DI Sweep Time: 77. Ref LvI: 0.0 DBM Comments BE @2390 MH2 C channel 6	: 2390.000 4Hz B Oms			


C E		D tt						EMO	C Test	Data
Client:	Intel Corpora							Job Number:	J80397	
							T-l	_og Number:	T80458	
Model:	Intel® Centri	ino® Wireles	s-N 1030 ar	nd Intel® Cen	trino® Wirele	ss-N 130	-	int Manager:		ebill
Contact:	Steve Hacke	ett								
Standard:	FCC.247, R	SS-210 Issue	e 7					Class:	N/A	
					Power S	Settings				
				t (dBm)	Measure			e Setting		
		Chain A	1	6.5	14	.5	22	2.5		
Fundament	al Signal Eig	Id Ctronath								
Frequency	al Signal Fie Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	55		
2434.130	92.1	V	-	-	AVG	351	1.8	RB 1 MHz;V	'B 10 Hz:Pk	
2429.530	100.5	V	-	-	PK	351	1.8	RB 1 MHz;V		
2433.870	94.3	Н	-	-	AVG	5	1.2	RB 1 MHz;V	'B 10 Hz;Pk	
2435.130	102.6	Н	-	-	PK	5	1.2	RB 1 MHz;V	'B 3 MHz;Pk	
2483.5 MHz	Band Edge	Signal Rad	iated Field S	Strength - Ma	arker Delta H	V	1			
I	Fundamental	emission lev	vel @ 3m in	1MHz RBW:	102.6	100.5	Peak Measu	urement (RB=	=VB=1MHz)	
ł	Fundamental	emission lev	vel @ 3m in	1MHz RBW:	94.3	92.1		erage Measurement (RB=1MHz, VB=10Hz)		
			Delta Marl	ker - 100kHz	41.3	dB	<- this can c	only be used	f band edge	signal is
				ment (Peak):	61.3	dBuV/m	highest with	in 2MHz of b	and edge.	
	Calcul	ated Band-E	dge Measur	ement (Avg):	53.0	dBuV/m	Margin	Level	Limit	Detector
		Del	ta Marker - 1	MHz/1MHz:	36.3	dB	-1.7	52.3	54	Avg
				1MHz/10Hz:	42.0		-12.7	61.3	74	Pk
			-	ment (Peak):		dBuV/m	-	Iz delta value	Ð	
	Calcul			ement (Avg):	52.3	dBuV/m	Using 1MHz			
Frequency	Level	Pol		15.209	Detector	Azimuth	Ŭ.	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		1 10 1	
2483.500	52.3	-	54.0	-1.7	Avg	-	-	Using 1MHz	delta value	
-10.0 - -20.0 - -30.0 - ph -40.0 - -40.0 - -60.0 - -70.0 -	۸						Analyzer Set HP8564E,EMI MHz SPAN: 140.00 RB: 1.000 MH VB: 10 Hz Detector: San Attn: 10 DB RL Offset: 0.1 Sweep Time: Ref LvI: 0.0 D Comments BE @2483.5 I channel 6	CF: 2483.500)0 MHz Iz nple 0 DB 52.0s 18M		


^r est Data	ЕМС									Œ
97	umber: J	Jo						ation	ntel Corpora	Client:
158	umber: T	-Lo	T-I	N 400			N 4000			Martal
stine Krebill	nager: (unt	Αссоι	ss-in 130	trino® Wirele	a Intel® Cen	s-N 1030 an	no® wireles	ntel® Centri	Wodel:
	5						ett	Steve Hacke	Contact:	
	Class: N						e 7	SS-210 Issue	-CC.247, RS	Standard:
						Δ		ld Strength		
		er#	FT Chambe	st Location:	Te		1120, Ollai		ate of Test:	
				fig Change:			igal	Joseph Cadi		
						hain A	-	nel #1 2412 I	-	
				-	Power S					
	ng		Softwar	d (dBm)	Measure	(dBm)				
		2.0	22	.1	14	5.5	16	Chain A	[_
		12		A		45.047	45 000	d Strength		
	ments	C	Height	Azimuth	Detector	15.247		Pol	Level	Frequency
		-	meters	degrees	Pk/QP/Avg	Margin	Limit	v/h V	dBµV/m 92.0	MHz 2408.830
	MHz;VE MHz;VE	_	1.9 1.9	<u>190</u> 190	AVG PK	-	-	V	92.0	2408.830
	MHz;VE		1.0	6	AVG	-	-	H	95.6	2407.770
	MHz;VE		1.0	6	PK	-	-	H	103.6	2408.200
MHz, VB=10Hz) d edge signal is	ment (Ri used if	eas <mark>onl</mark>		100.0 92.0 dB dBuV/m	103.6 95.6 43.2 60.4	IMHz RBW: er - 100kHz	vel @ 3m in [.] Delta Mark	emission lev emission lev ted Band-Edg	undamental	
imit Detecto	evel		Margin	dBuV/m	52.4	ement (Avg):	dge Measure	ated Band-E	Calcula	
54 Avg	1.8		-2.2	dB	35.0	MHz/1MHz:	ta Marker - 1	Delt		
74 Pk	0.4		-13.6		43.8		lta Marker - 1			
			Using 100kl	dBuV/m				ed Band-Ed		
	value	z d	Using 1MHz	dBuV/m	51.8	ement (Avg):	dge Measure	ated Band-E	Calcula	
	nents	С	Height	Azimuth	Detector	5.209	FCC ²	Pol	Level	Frequency
			meters	degrees	Pk/QP/Avg	Margin	Limit	v/h	dBµV/m	MHz
a value) 1MHz (U	-	-	Avg	-2.2	54.0	-	51.8	2390.000
			(CF: 2390.000	MHz	~~					-10.0 - -20.0 -
			łz	SPAN: 70.000 RB: 1.000 MH VB: 10 Hz		1				-30.0 -
				Detector: San Attn: 10 DB		ノ				əp -40.0 - hild Wg -50.0 -
			26.0s	RL Offset: 0.0 Sweep Time: 2						₩ ₩ -50.0-
			юм	Ref Lvl: 0.0 D			-/			-60.0-
				Comments			/			-70.0-
			Iz Chain A	BE @2390 MH channel 1	2420 2425	00 2410	2390 24 juency (MHz)		360 2370	-80.0 - 2355 ;
			off	Elli	6	a Freq. 19.01 plitude 43.83	▪ Delt	.67 💠 -*- 💩		Cursor 1 23 Cursor 2 24

C E		D tt						EMO	C Test	Data
Client:	Intel Corpora	ation						Job Number:	J80397	
							T-I	Log Number:	T80458	
Model:	Intel® Centri	ino® Wireles	s-N 1030 and	d Intel® Cen	trino® Wirele	ss-N 130		unt Manager:		ebill
Contact:	Steve Hacke	ett								
	FCC.247, R		7 د					Class:	N/A	
Run # 5b, E				Chain A				01000.	10/7	
Ruii # 50, ∟		1101 #11 2402	211112 - 1120,		Power	Settings				
			Target	(dBm)	Measure	-	Softwar	e Setting		
		Chain A	16			X /		1.0		
Fundament	al Signal Fie	eld Strength								
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2465.030	95.6	V	-	-	AVG	238	2.2	RB 1 MHz;V		
2463.930	103.7	V H	-	-	PK	238	2.2	RB 1 MHz;V		
2459.530 2458.270	97.2 105.2	H H	-	-	AVG PK	8	1.2 1.2	RB 1 MHz;V RB 1 MHz;V		
	Band Edge		- atod Fiold S	- tronath - Ma		0	Ι.Ζ	rd i ivinz,v		
2403.0 11112	Dana Luge	olgilal Naul		a cirgai - me	H	V	1			
	undamental	emission lev	/el @ 3m in '	MHz RBW:		103.7	Peak Measu	urement (RB=	=VB=1MHz)	
	undamental				97.2	95.6		asurement (I	,	B=10Hz)
			Delta Mark	er - 100kHz	42.5	dB	-	only be used i		,
	Calculat	ted Band-Ed	ge Measuren	nent (Peak):	62.7	dBuV/m	highest with	in 2MHz of b	and edge.	-
	Calcula	ated Band-E	dge Measure	ment (Avg):	54.7	dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		34.8	dB	-0.5	53.5	54	Avg
			lta Marker - 1		43.7		-11.3	62.7	74	Pk
			ge Measuren			dBuV/m	· · ·	Iz delta value	Э	
	Calcula	ated Band-E	dge Measure	ment (Avg):	53.5	dBuV/m	Using 1MHz	delta value		
Frequency	Level	Pol	FCC 1	5 209	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
2483.500	53.5	-	54.0	-0.5	Ava	-	-	Using 1MHz	delta value	
-10.0-p							Analy	zer Settings		
		A						64E,EMICF: 2	483.500	
-20.0-	1						MHz SPAN	: 70.000 MHz		
-30.0-							RB: 1 VB: 10	.000 MHz		
- - - - - - - - - - - - - - - - - - -							Detec	tor: Sample		
əp -40.0 - hild y -50.0 -								10 DB fset: 0.0 DB		
ਊ -50.0-							Swee	o Time: 26.0s		
							Ref Lv	/l: 0.0 DBM		
-60.0-				\mathbf{N}			C	ooto		
-70.0-							Comn BE @2 chann	2483.5 MHz C	hain A	
-80.0 - 244		50 2470) 2480 Frequen	2490 cy (MHz)	2500	2510	2518			
Cursor 1	2458.8833	-14.50		Delta	Freq. 24.6	17 💋		11:~	+ +	
Cursor 2	2483.5000	-58.17	÷ <mark>-*-</mark> 6-	Delta Amp	litude 43.6	57 🟹	\mathbf{C}	llio	u	

Client: Intel Corporation Job Number: J80397 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 T-Log Number: T80458 Contact: Steve Hackett Account Manager: Christine Krebill Standard: FCC.247, RSS-210 Issue 7 Class: N/A

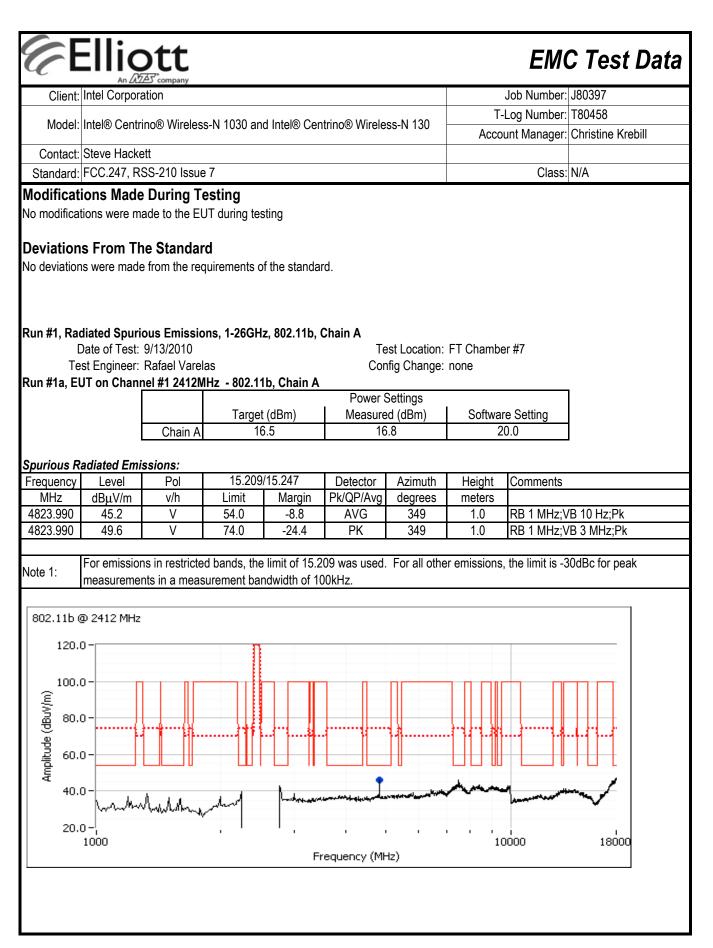
RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

Summary of Results

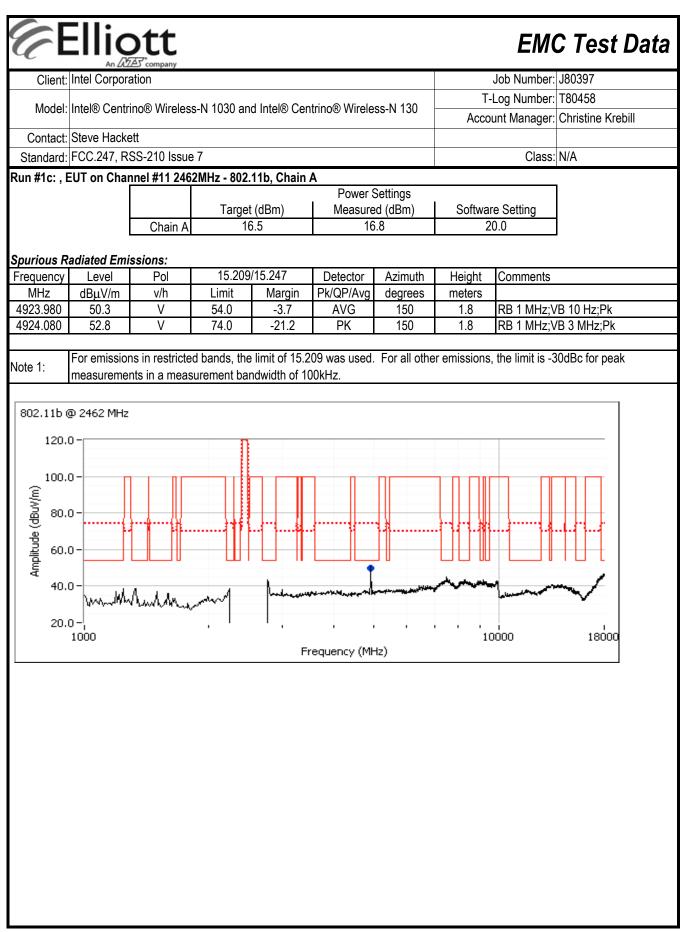
MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

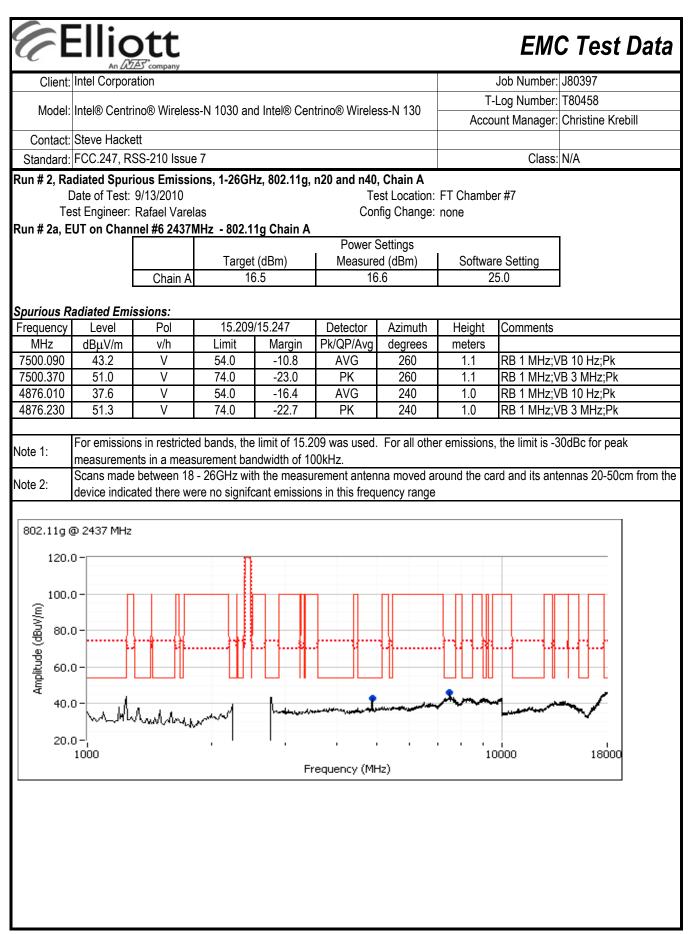
	55. 0013001	SCODE DK			II DIIVEI VEISIOII 14.0.0	0.39	
Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
		#1 2412MHz		16.8			45.2dBµV/m @ 4824.0MHz (-8.8dB)
Run #1	802.11b Chain A	#6 2437MHz		16.7	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	48.6dBµV/m @ 4874.0MHz (-5.4dB)
		#11 2462MHz		16.8			50.3dBµV/m @ 4924.0MHz (-3.7dB)
Scans on ce	enter channel	in all three (OFDM modes	s to determin	e the worst case	•	
	802.11g	#6		40.0			43.2dBµV/m @
	Chain A	2437MHz		16.6			7500.1MHz (-10.8dB)
	802.11n20	#6		40.5	Radiated Emissions,	F00 45 000 / 45 047	43.0dBµV/m @
Run # 2	Chain A	2437MHz		16.5	1 - 26 GHz	FCC 15.209 / 15.247	7500.0MHz (-11.0dB)
	802.11n40	#6		40.5			43.2dBµV/m @
	Chain A	2437MHz		16.5			7500.0MHz (-10.8dB)
Top and bot	tom channels	s in worst cas	se OFDM mo	de:			
		#1		40.0			44.1dBµV/m @
Due # 2	802.11g	2412MHz		16.6	Radiated Emissions,	FOO 45 000 / 45 047	7500.1MHz (-9.9dB)
Run # 3	Chain A	#11		40.7	1 - 26 GHz	FCC 15.209 / 15.247	42.7dBµV/m @
		2462MHz		16.7			7500.0MHz (-11.3dB)
Receiver S	ourious Emi	ssions					
Run # 4	Receive	#6 Chain A			Radiated Emissions,	RSS 210	43.5dBµV/m @
Kull # 4		#6, Chain A	-	-	1 - 7.5 GHz	R00 2 10	7500.1MHz (-10.5dB)

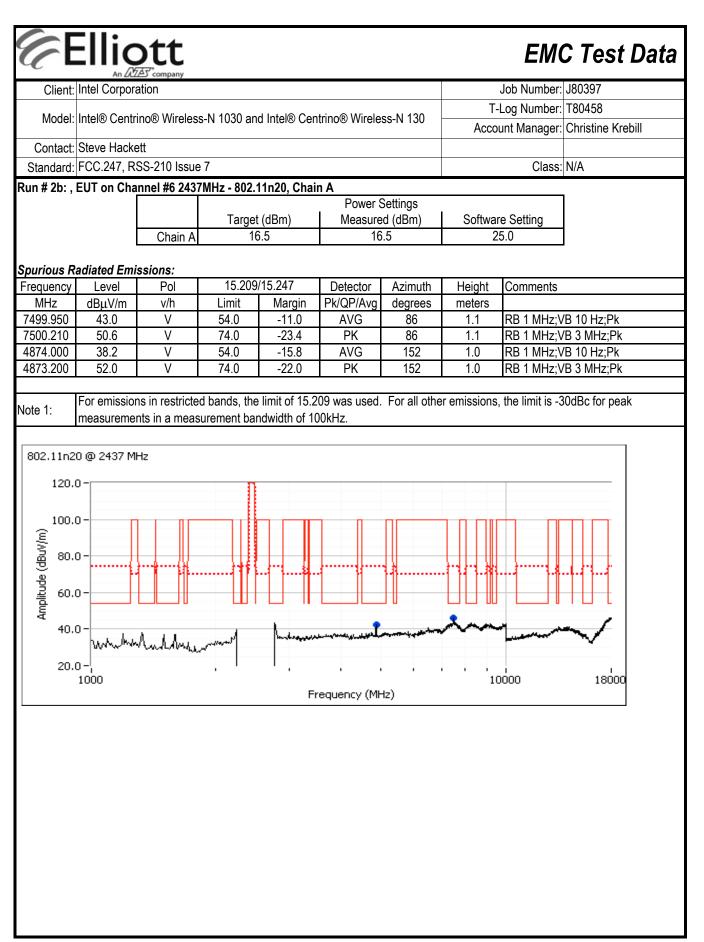
Note - the measured powers are the average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

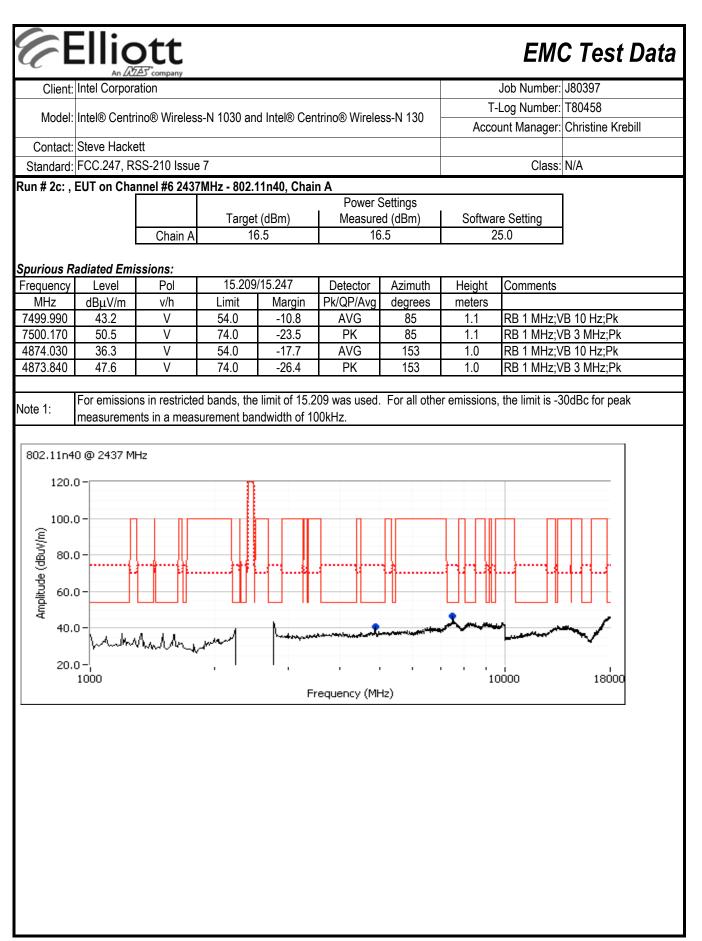

Test Specific Details

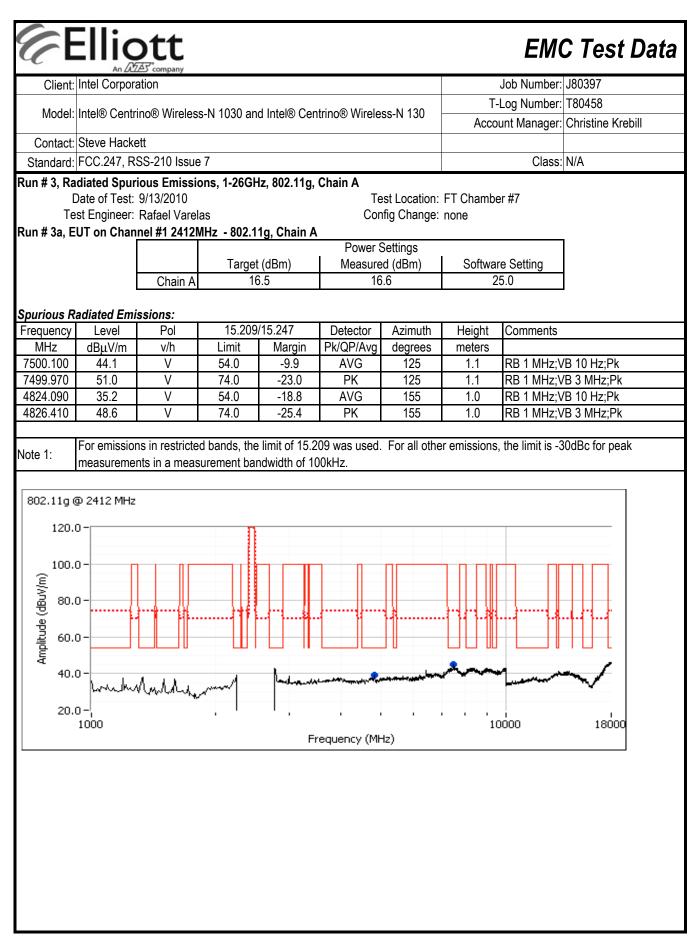
Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.


General Test Configuration

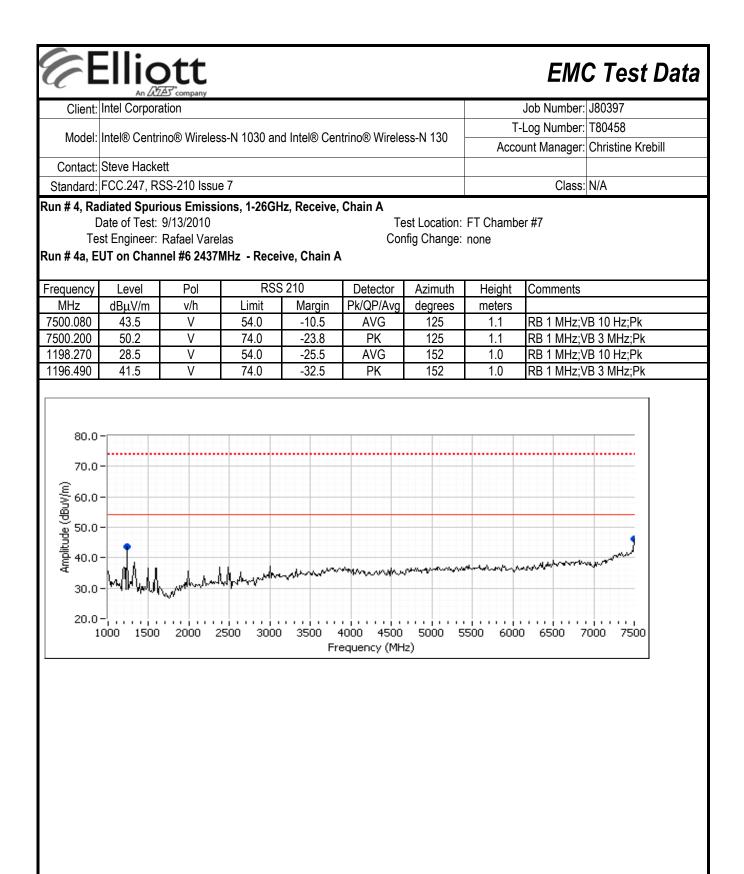

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.


Ambient Conditions:	Rel. Humidity:	15 - 55 %
	Temperature:	18 - 25 °C




Model: In Contact: S	ntel Corporat	company						EMO	C Test Data
Contact: S		tion						Job Number:	J80397
Contact: S	ntel® Centrin	no® Wireless	s-N 1030 an	h Intel® Cen	trino® Wirele	ss-N 130		Log Number:	
			5-11 1000 an			55-IN 100	Accou	unt Manager:	Christine Krebill
Char de la l	Steve Hacket								
	FCC.247, RS							Class:	N/A
un #1b: , El	UT on Chan	nel #6 2437	MHz - 802.1	1b, Chain A		N 112			I
			Target	(dBm)	Power S Measure	· ·	Softwar	e Setting	
	F	Chain A	16		16	. ,		0.0	
	L								
	diated Emis	1	1= 000					1	
requency MHz	Level	Pol v/b	15.209		Detector	Azimuth	Height	Comments	
MHZ 1873.990	dBµV/m 48.6	v/h V	Limit 54.0	Margin -5.4	Pk/QP/Avg AVG	degrees 154	meters 1.0	RB 1 MHz;V	/B 10 Hz·Pk
1874.020	51.8	V	74.0	-22.2	PK	154	1.0		/B 3 MHz;Pk
100.0 (m/\mg) 80.0 60.0 40.0				{38					
40.0	mille	Indaw	June	hidde	ىر ا نەردۇرىيەدە مىرىن				\sim
20.0									1
1	1000			F,	requency (MH	(7)	10	000	18000





Elliott EMC Test Data Client: Intel Corporation

Job Number: J80397

	1		1
Model:	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
MOUEI.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

Summary of Results

MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin
Receiver Space	ourious Emi	ssions					
		#6, Chain A					43.5dBµV/m @
	Receive	#0, Chain A	-	-			7500.1MHz (-10.5dB)
Run # 4		#6, Chain B			Radiated Emissions,	RSS 210	42.8dBµV/m @
Null # 4	A+B	#0, Chain D	-	-	1 - 7.5 GHz	N00 2 10	7500.1MHz (-11.2dB)
	A+D	#6, Chain					42.0dBµV/m @
		A+B	-	-			7500.0MHz (-12.0dB)

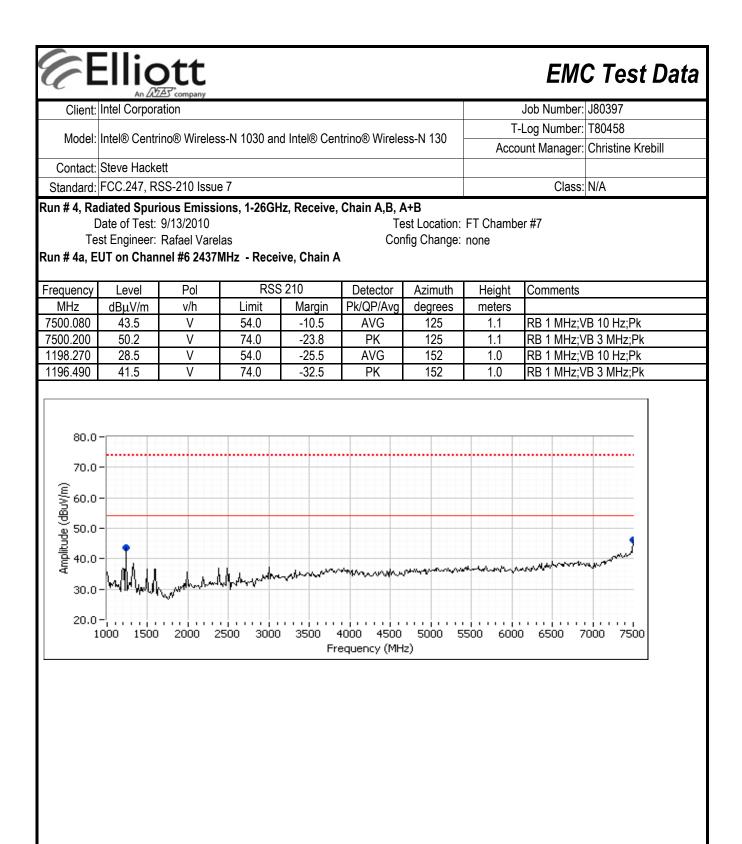
Note - the measured powers are the average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

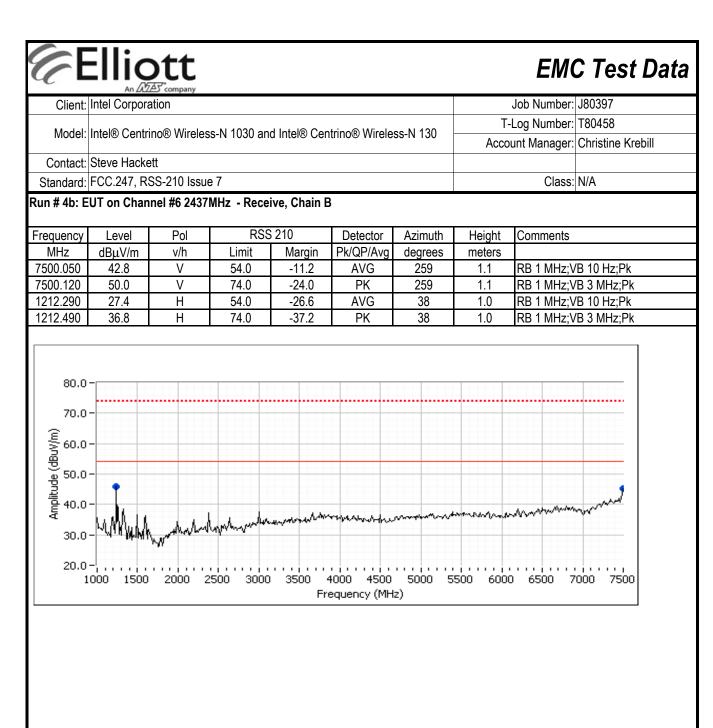
Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.


Ambient Conditions:	Rel. Humidity:	15 - 55 %
	Temperature:	18 - 25 °C


Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80397 T-Log Number: T80458 Model: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130 Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC.247, RSS-210 Issue 7 Class: N/A Run # 4c: EUT on Channel #6 2437MHz - Receive, Chain A+B Pol RSS 210 Level Detector Comments Frequency Azimuth Height Pk/QP/Avg MHz dBµV/m v/h Limit Margin meters degrees 7500.010 42.0 V 54.0 -12.0 AVG 84 1.2 RB 1 MHz;VB 10 Hz;Pk 7499.920 49.9 V 74.0 -24.1 ΡK 84 1.2 RB 1 MHz;VB 3 MHz;Pk

-16.7

1334.290 48.6 V 74.0 -25.4 PK 269 1.1 RB 1 MHz;VB 3 MHz;Pk 80.0 70.0 Whitinde (dBuv/m) 50.0 -40.0 -30.0 -20.0 10.0-Frequency (MHz)

AVG

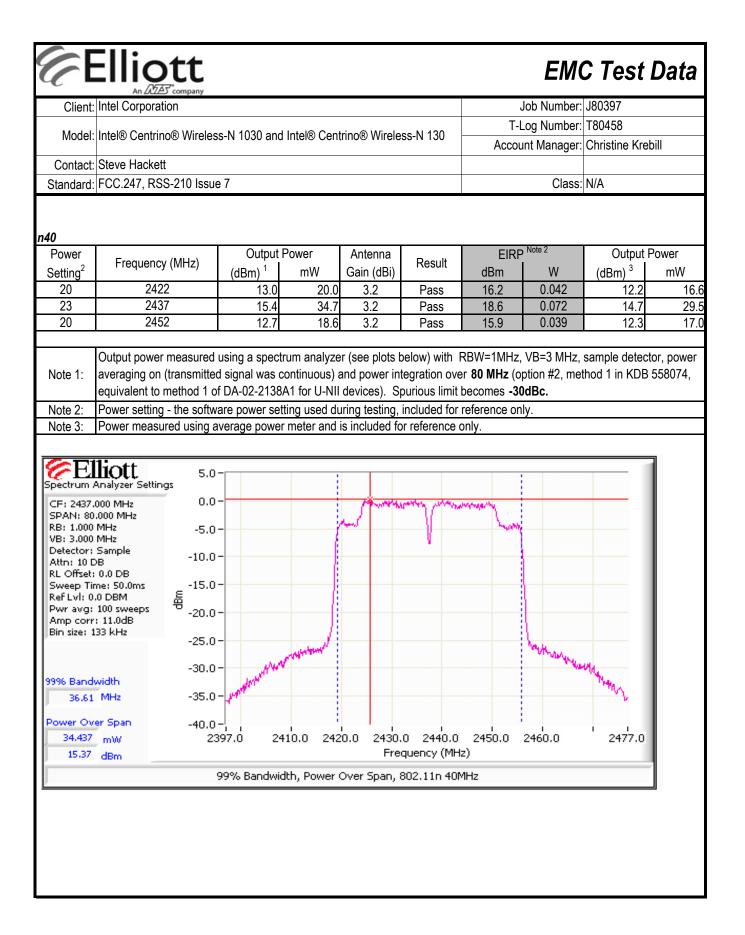
269

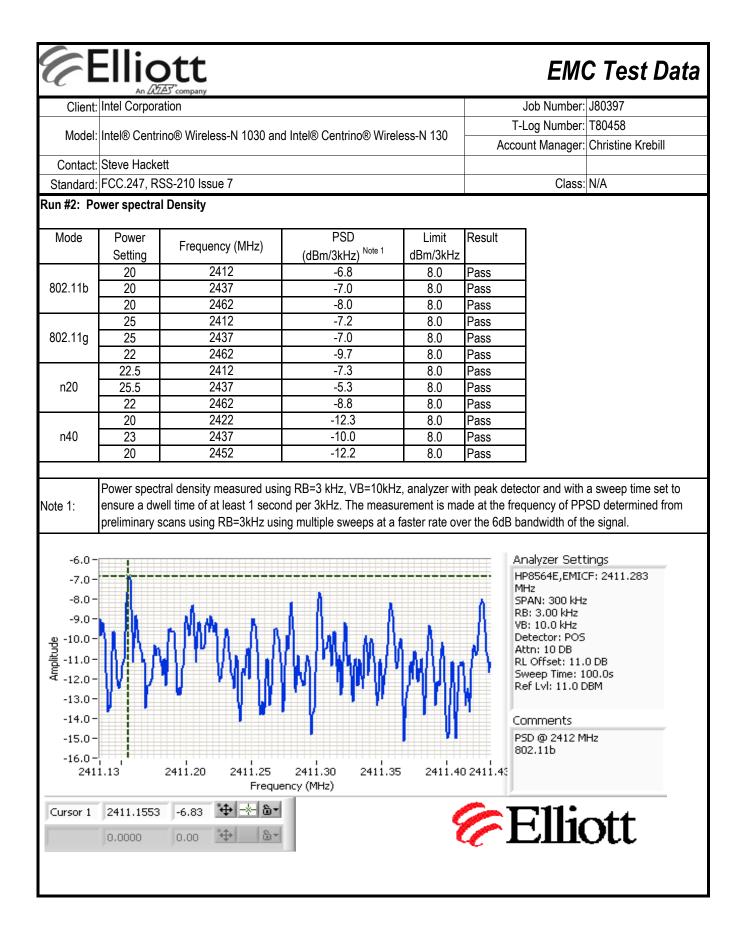
1.1

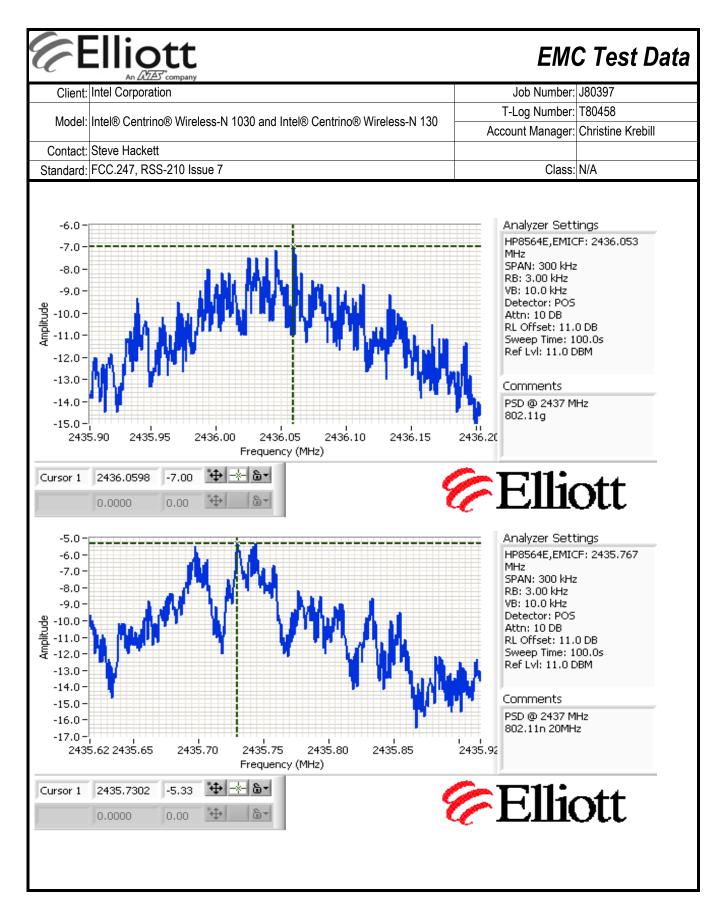
RB 1 MHz;VB 10 Hz;Pk

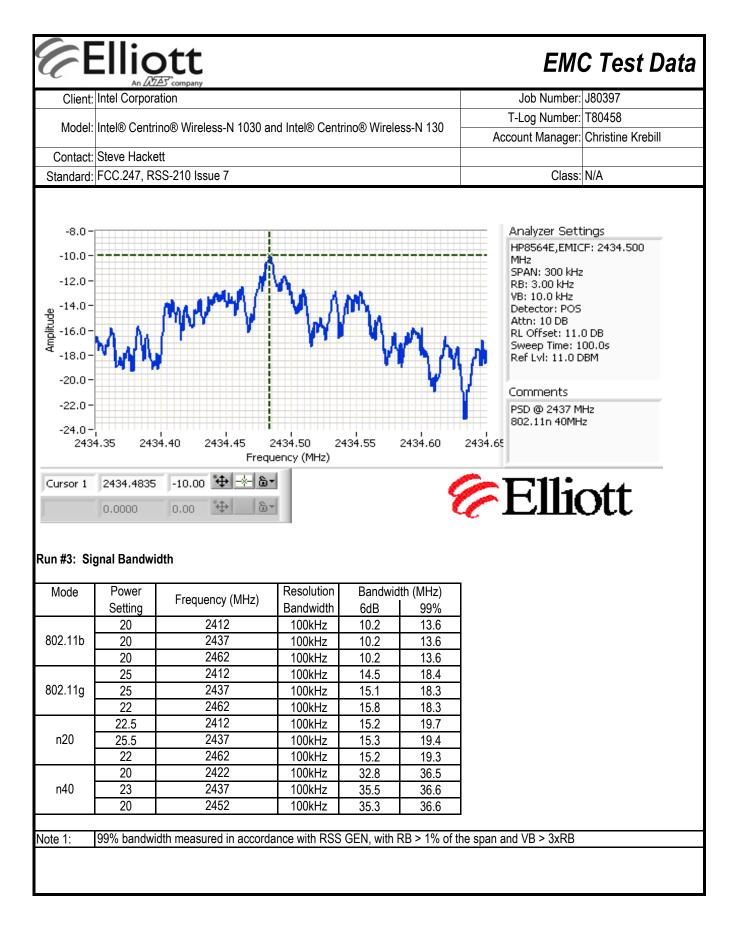
37.3

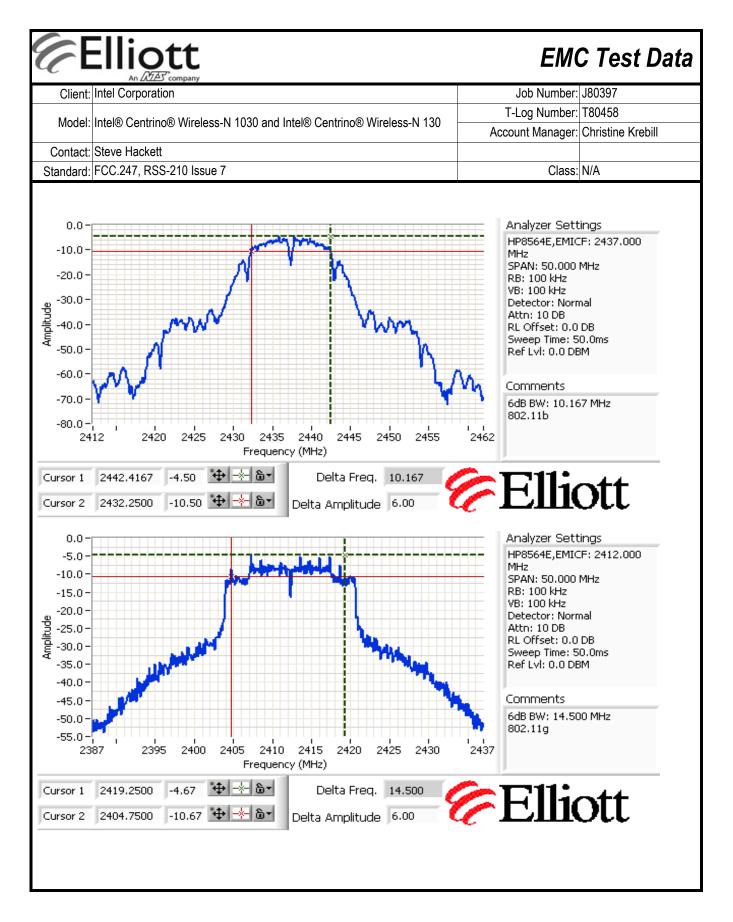
1328.540

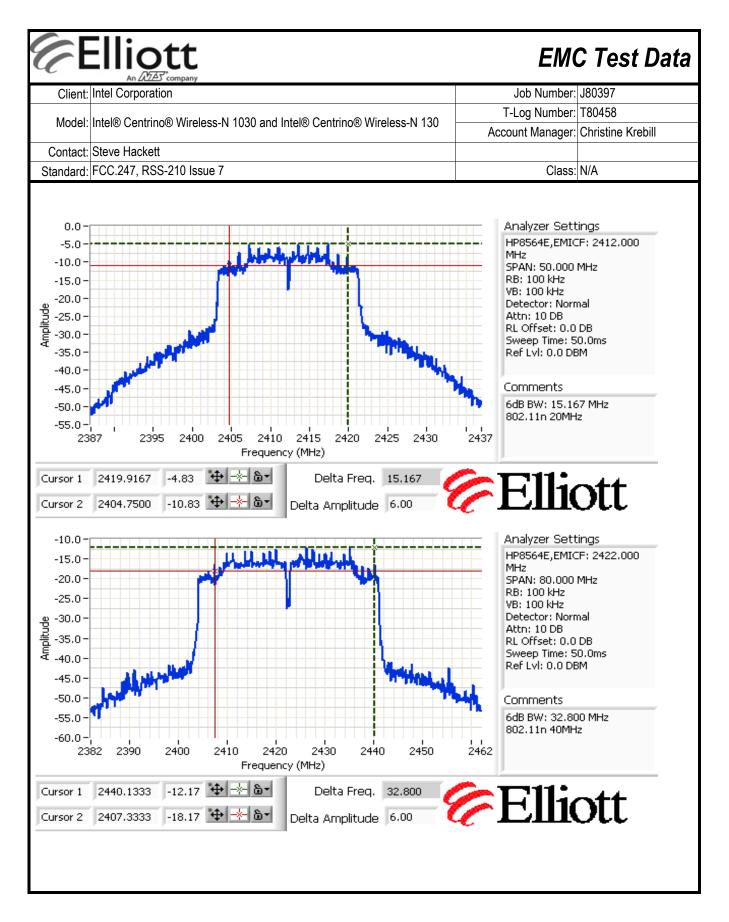

V

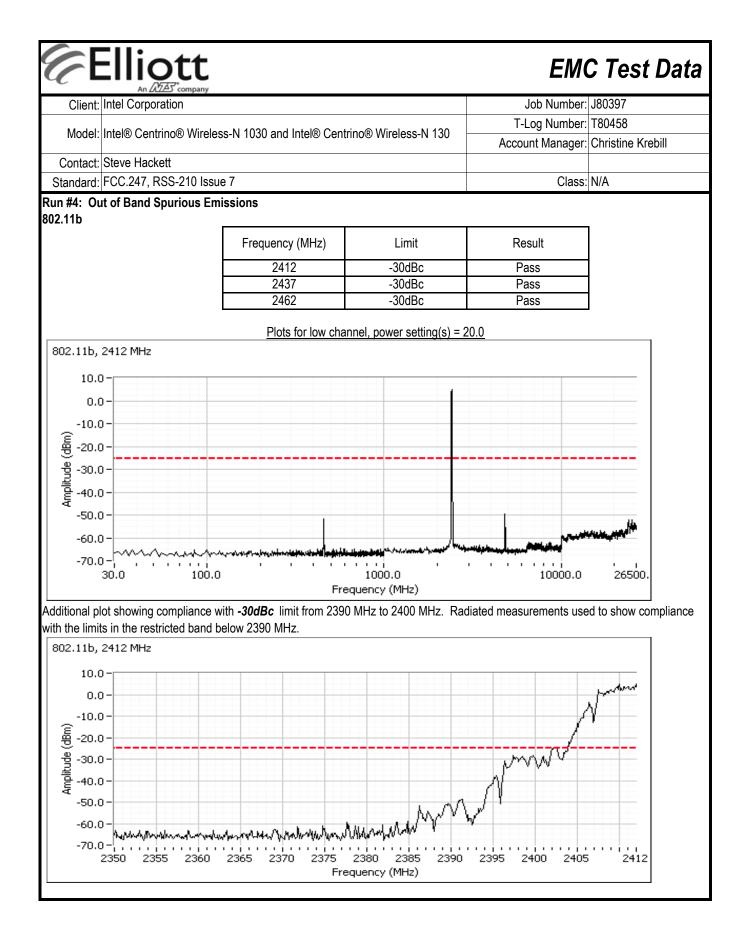

54.0

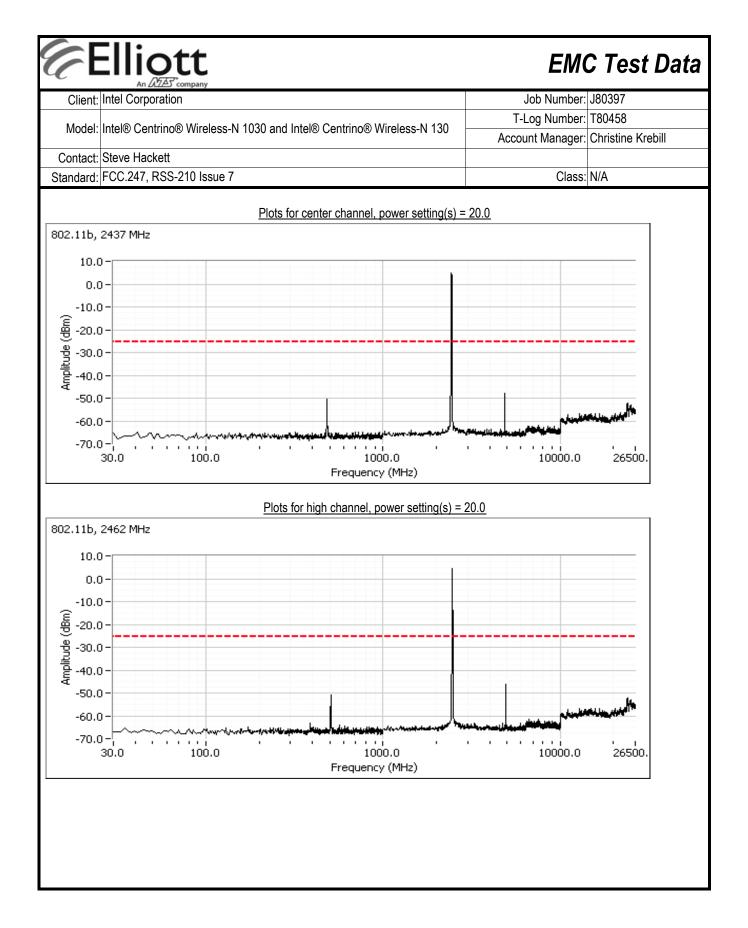

		JJC		EMC Test Data					
	Intel Corpora			Job Number: J80397					
M			. NI 400	T-Log Number: T80458					
Model	: Intel® Centri	no® Wireles	s-N 130 Ac	count Manager:	Christine Krebill				
	: Steve Hacke								
Standard	: FCC.247, RS	SS-210 Issue	?7		Class:	N/A			
	F		and FCC 15.247 (DTS) Ant Power, PSD, Bandwidth and Sp			S			
est Spe	cific Detail	s							
			e of this test session is to perform final of listed above.	qualification testing c	of the EUT with r	espect to the			
1	Date of Test:	9/14/2010		nfig. Used: 1					
	est Engineer:			g Change: none	none				
Т	est Location:	FT Chamber	#4 Host U	nit Voltage 120V/60	Hz				
mbient	Conditions		emperature: 20.8 °C						
Summary	v of Result		el. Humidity: 38 %						
-	y of Result	S	•	rsion 14.0.0.39					
-		S 9C6BF DRT	el. Humidity: 38 %	rsion 14.0.0.39 Limit	Pass / Fail	Result / Margin			
IAC Addre	ess: 0015007	S 9C6BF DRT	el. Humidity: 38 % U Tool Version 1.2.2-0177 Driver ver		Pass / Fail Pass	802.11b (0.063 W 802.11g (0.118 W n20 (0.123 W)			
IAC Addre Run # 1	Pwr setting	S 9C6BF DRT Avg Pwr 16.8 16.7	el. Humidity: 38 % TU Tool Version 1.2.2-0177 Driver ver Test Performed Output Power Power spectral Density (PSD)	Limit 15.247(b) 15.247(d)		802.11b (0.063 W 802.11g (0.118 W n20 (0.123 W) n40 (0.035 W) -5.3 dBm/3kHz			
IAC Addre Run # 1	ess: 0015007 Pwr setting 20	S 9C6BF DRT Avg Pwr 16.8	el. Humidity: 38 % <u>U Tool Version 1.2.2-0177 Driver ver</u> Test Performed Output Power	Limit 15.247(b)	Pass	802.11b (0.063 W 802.11g (0.118 W n20 (0.123 W) n40 (0.035 W) -5.3 dBm/3kHz 10.2 MHz			
IAC Addre Run # 1	25.5	S 9C6BF DRT Avg Pwr 16.8 16.7	el. Humidity: 38 % TU Tool Version 1.2.2-0177 Driver ver Test Performed Output Power Power spectral Density (PSD)	Limit 15.247(b) 15.247(d)	Pass	802.11b (0.063 W 802.11g (0.118 W n20 (0.123 W) n40 (0.035 W) -5.3 dBm/3kHz			

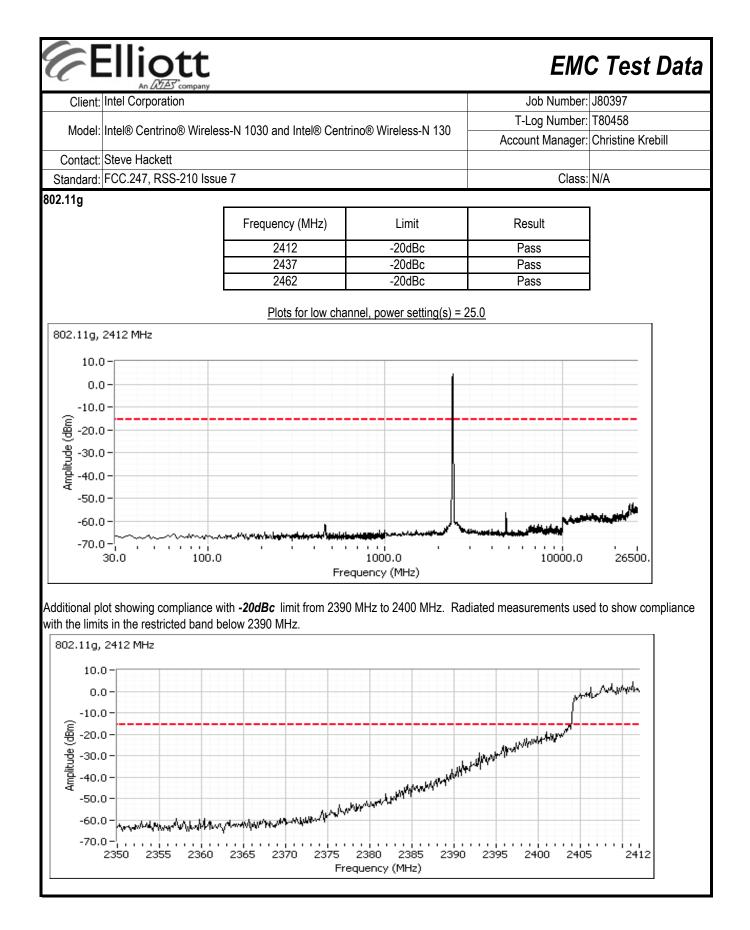

		Company					1		C Test	Data	
Client:	Client: Intel Corporation							Job Number:			
Model:	I: Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130							Log Number:			
0	04						Accou	unt Manager:	Christine Kre	bill	
	Steve Hackett FCC.247, RS		7					Class:	NI/A		
	s From The							Class.	N/A		
	s were made f		-	f the standar	d.						
Power	_		Output Power		Antenna	D "	EIRP Note 2		Output Power		
Setting ²	Frequency (MHz)		(dBm) ¹	mW	Res	Result	dBm	W	(dBm) ³	mW	
20	241		18.0		3.2	Pass	21.2	0.132	16.8	47.9	
20	243		18.0		3.2	Pass	21.2	0.132	16.8	47.9	
20	2462	2	17.5	56.2	3.2	Pass	20.7	0.117	16.8	47.9	
Spectrum A CF: 2412.0 SPAN: 50. RB: 1.000 VB: 3.000 Detector: Attn: 10 D RL Offset: Sweep Tin Ref Lv1: 0.	000 MHz MHz Sample B 0.0 DB ne: 50.0ms 0 DBM 100 sweeps 11.0dB	10.0 5.0 -5.0 -10.0 -15.0 -15.0 -20.0 -25.0 -30.0 -35.0						m			
99% Bandv 13.64 Power Ove 63.032 18.00	MHz er Span mW	-40.0 -45.0 -50.0 -55.0 -60.0 23	\sim	2400.		+10.0 quency (MF	2420.0 Iz)	2430.	<u>М</u> 0 2437.0		
			99% Bar	ndwidth, Pov	ver Over Spa	an, 802.11b					

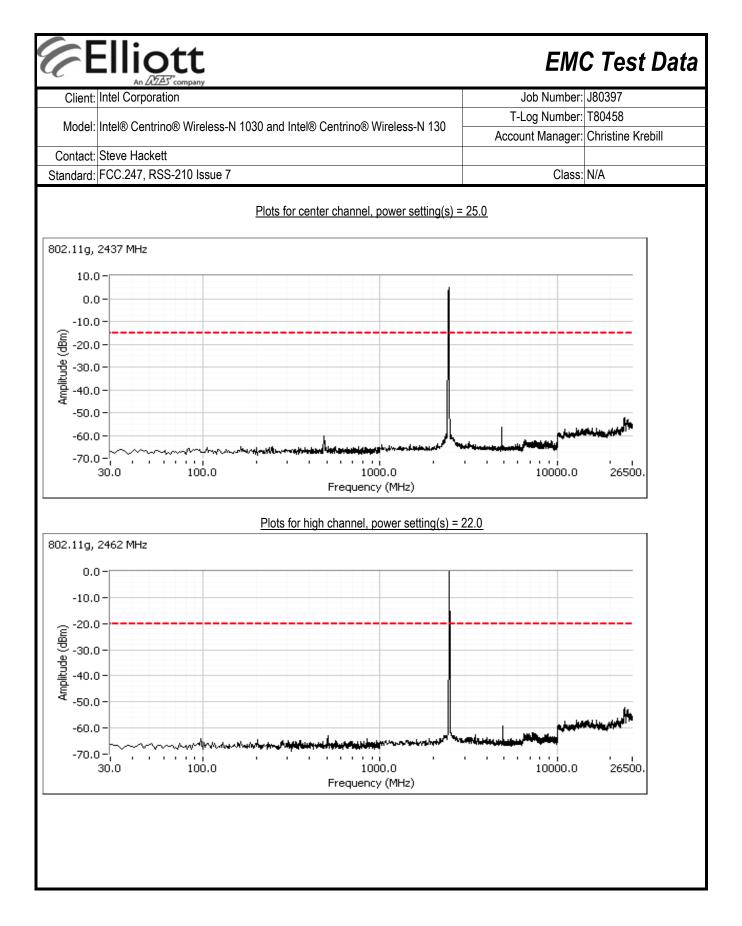

Contact: St		s-N 1030 and	I Intel® Cen	trino® Wirele	N 400	T-L	.og Number:	T80458		
Contact: St	teve Hackett			Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130						
									bill	
Standard: F(CC 2/17 RSS_210 lesue	t: Steve Hackett								
	00.247, 100-210 13300	e 7					Class:	N/A		
)2.11g Power		Output	Power	Antenna		EIRP	Note 2	Output Power		
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW	
25	2412	20.6	114.8	()	Pass	23.8	0.240	16.7	46	
25	2437	20.7	117.5		Pass	23.9	0.245	16.7	46	
22	2462	19.1	81.3	3.2	Pass	22.3	0.170	14.1	25	
		<u> </u>		<u> </u>						
	Output power measured using a peak power meter, spurious limit is -20dBc . Power setting - the software power setting used during testing, included for reference only.									
	ower setting - the softwa						ly.			
NOLE J.	ower measured using a	verage powe				Jilly.				
20										
Power	Fraguenov (MHz)	Output	Power	Antenna	Result	EIRP Note 2		Output Power		
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW	
22.5	2412	19.2	83.2		Pass	22.4	0.174	14.2	26	
25.5	2437	20.9	123.0		Pass	24.1	0.257	16.7	46	
22	2462	19.1	81.3	3.2	Pass	22.3	0.170	13.8	24	
Note 1: 0	Output power measured	usina a neak	nower mete	r enurious lir	nit is -20dB	<u>,</u>				
	ower setting - the softwa						V			
	ower measured using a									
NOLE 5. FO	ower measured using a	verage powe				Jilly.				

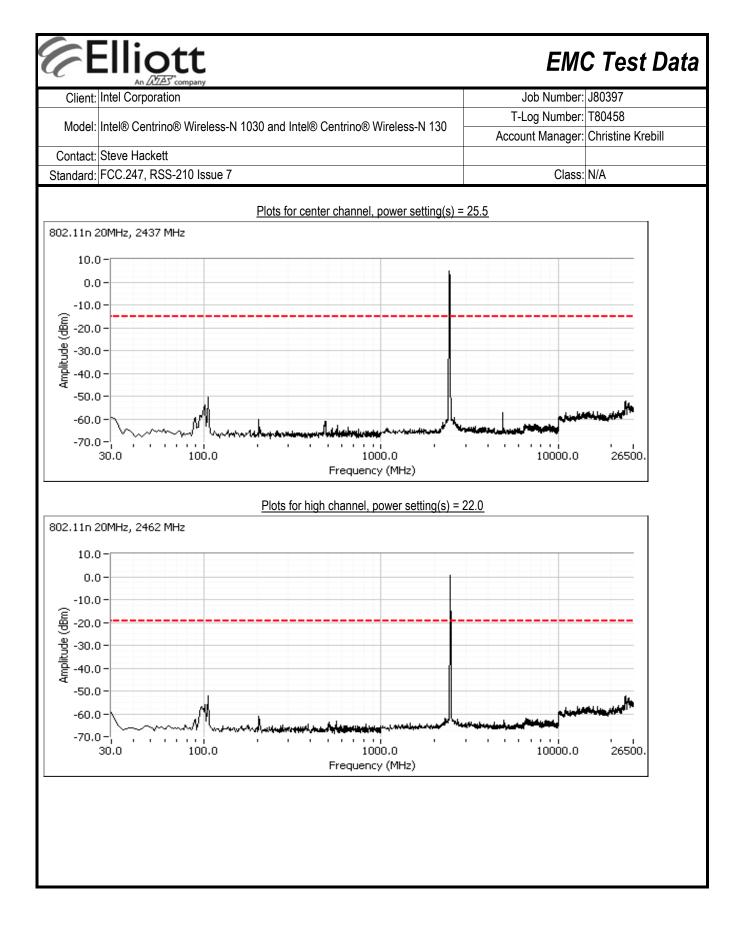


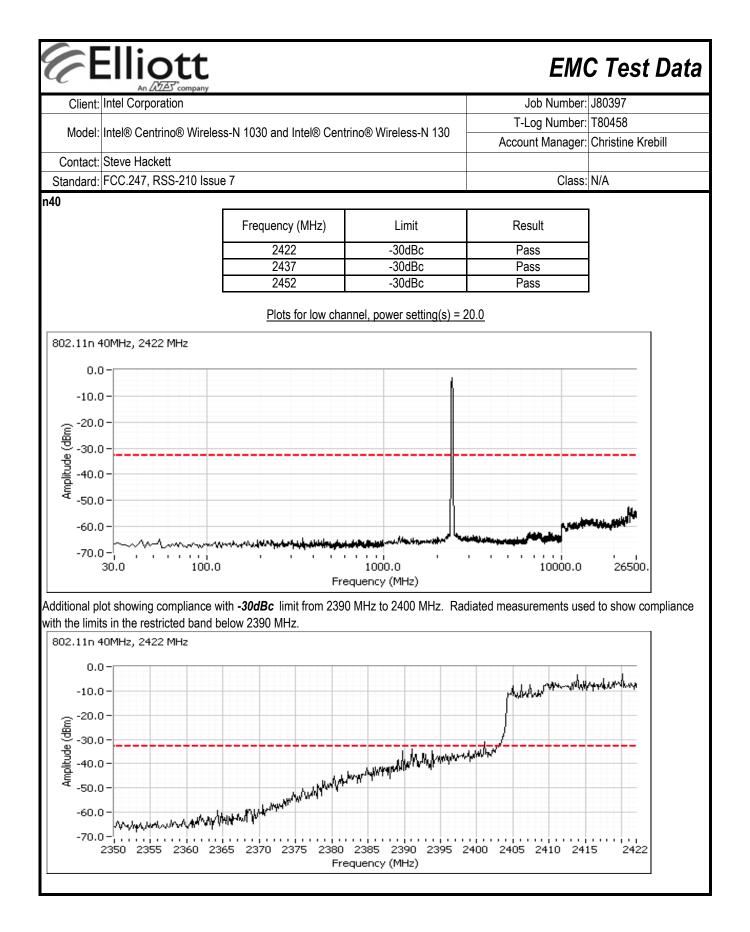


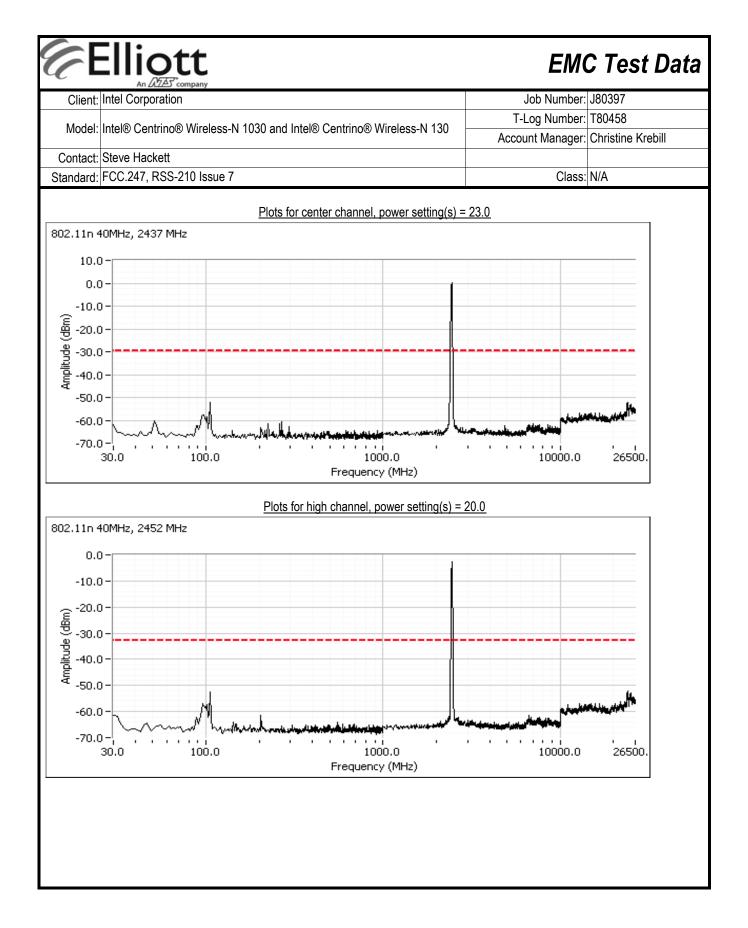












EMC Test Data

	An ZAZZAS company		
Client:	Intel Corporation	Job Number:	J80397
Madal	Intel® Centrino® Wireless-N 1030 and Intel® Centrino® Wireless-N 130	T-Log Number:	T80458
MOUEI.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC.247, RSS-210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DSS) Radiated Spurious Emissions 802.11bg and Bluetooth - Transmitter Mode

Test Specific Details

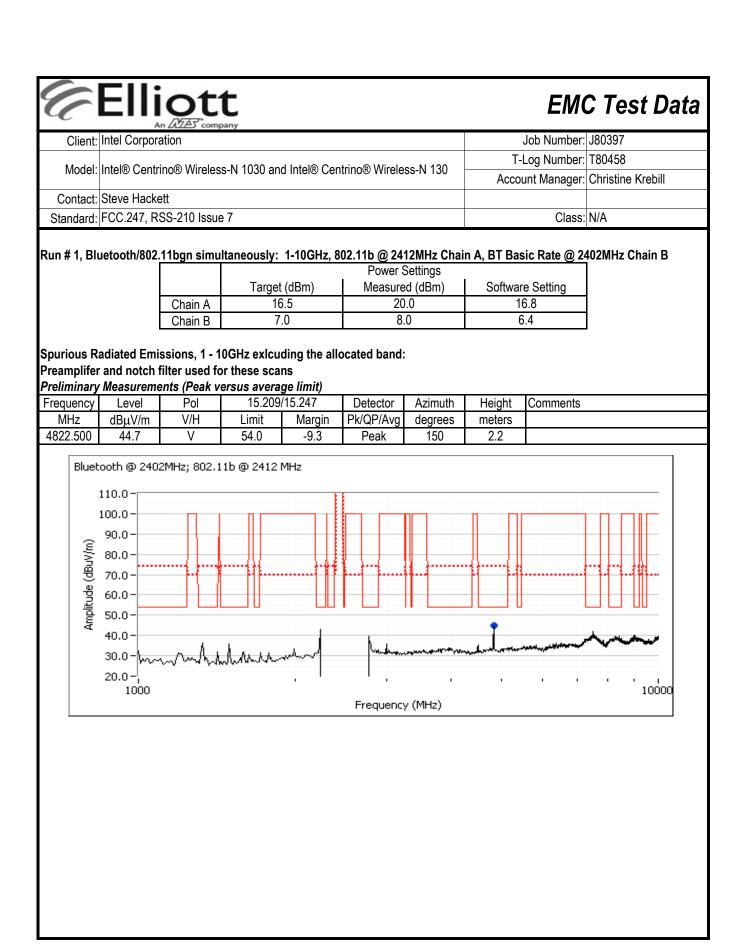
Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

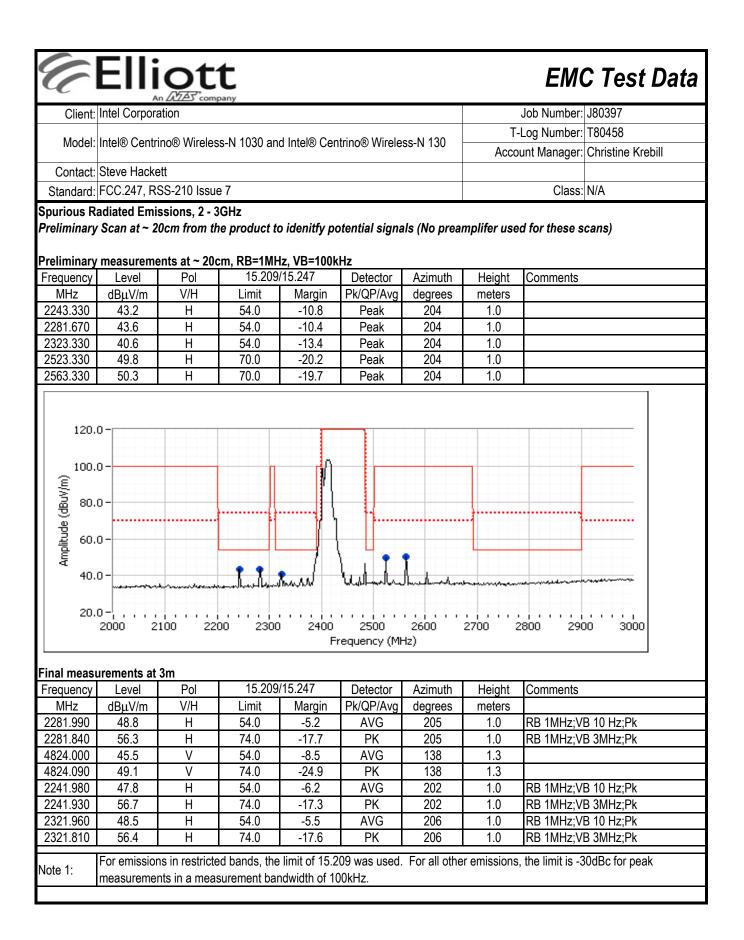
General Test Configuration

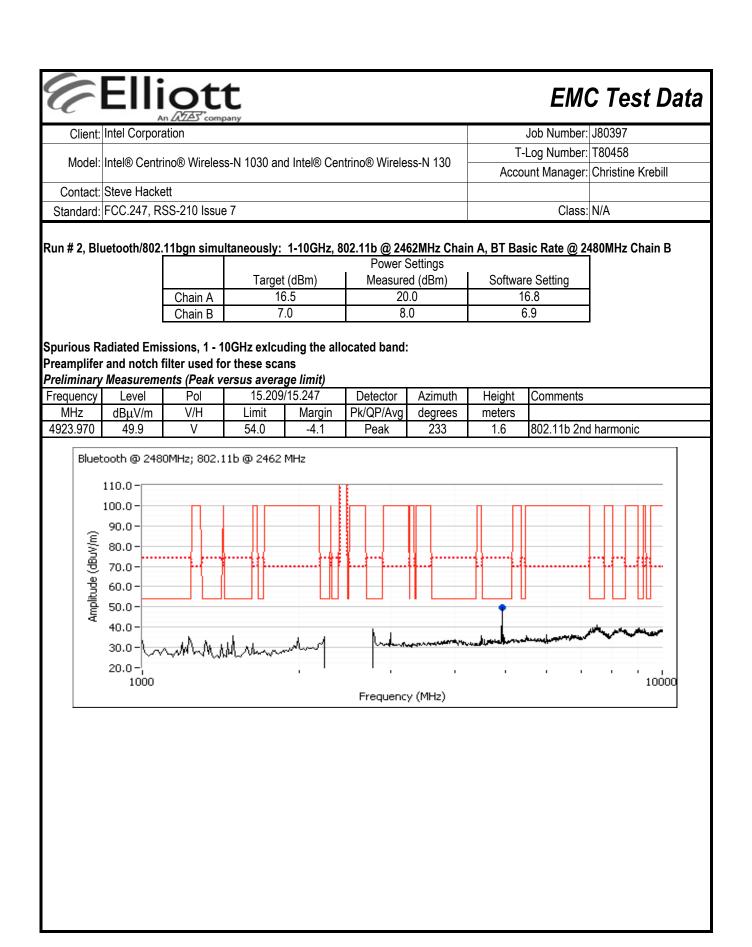
Elliott

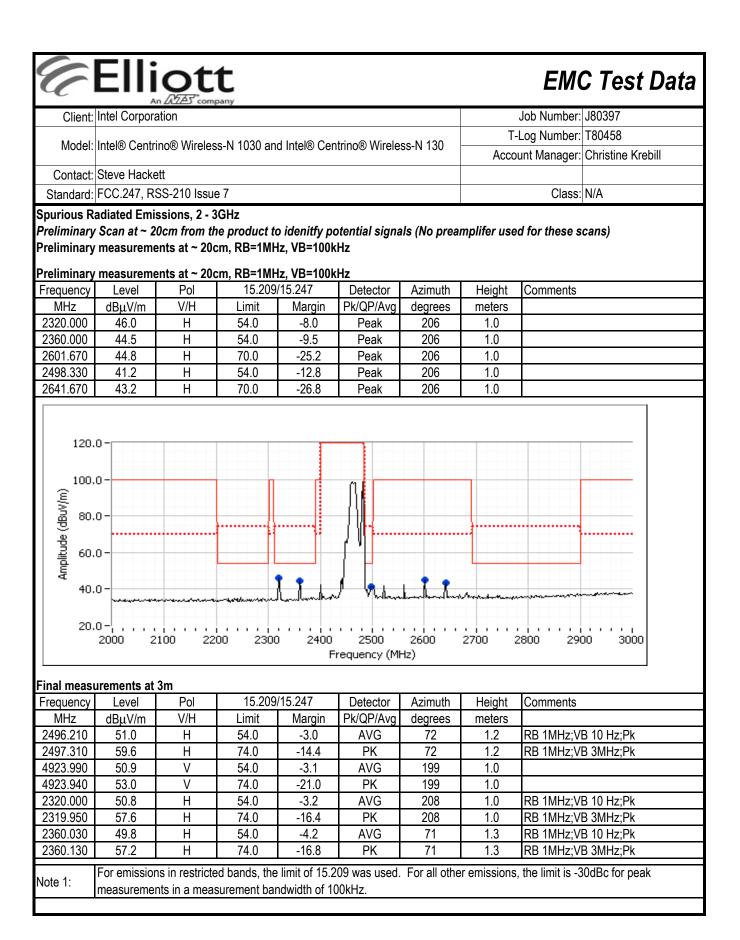
The EUT was installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For conduted emissions testing the measurement antenna port.

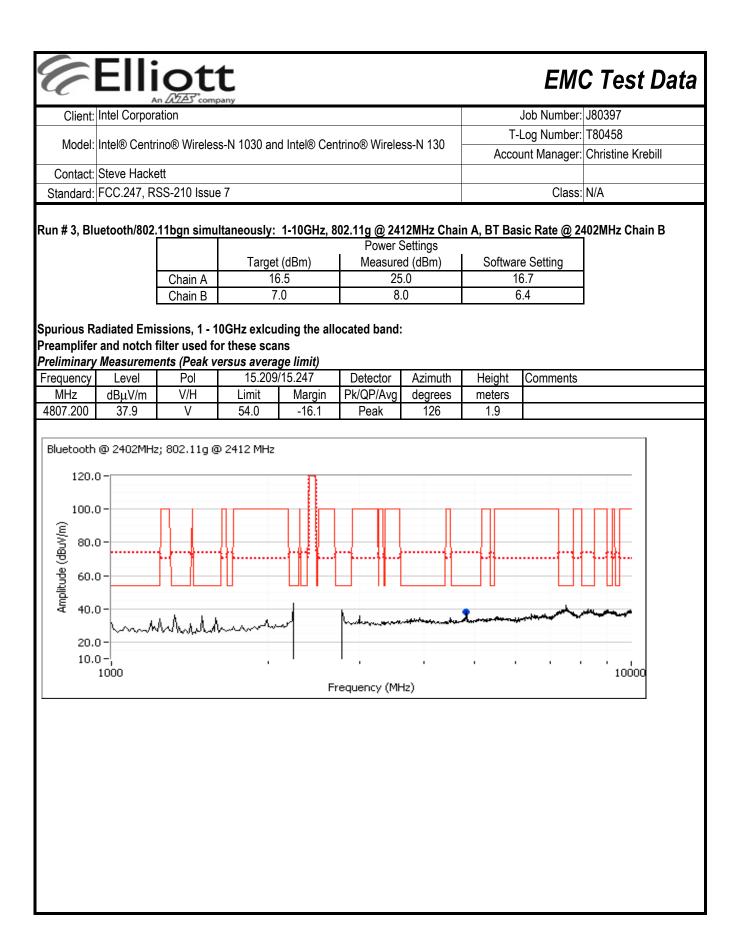
Summary of Results

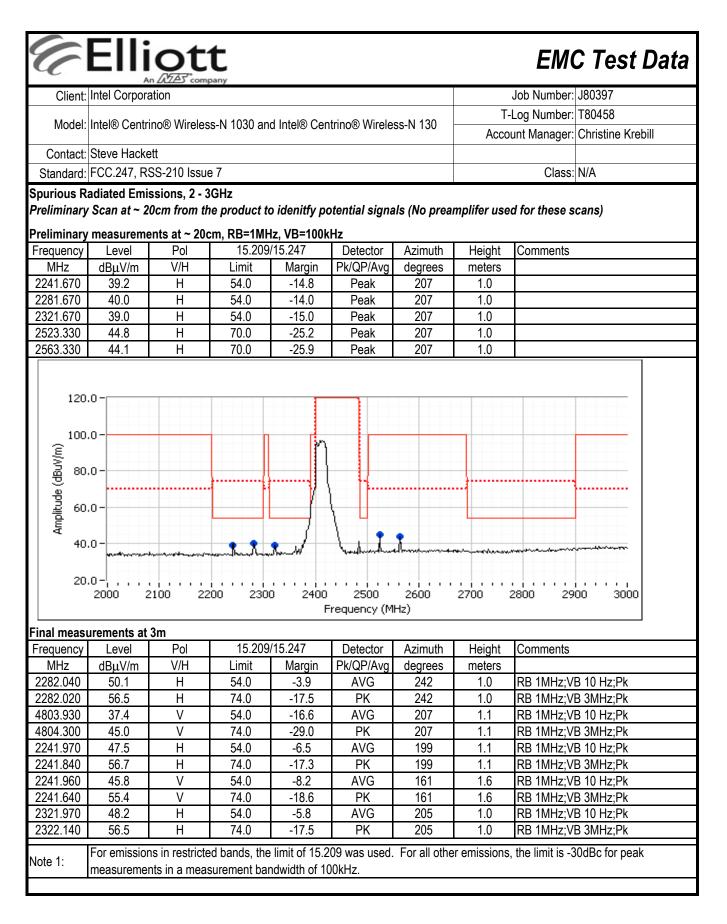

For Bluetooth: Tx is chain B, Rx is chain B. For WiFi, only Chain A is used for transmit. MAC Address: 00150079C6BF DRTU Tool Version 1.2.2-0177 Driver version 14.0.0.39

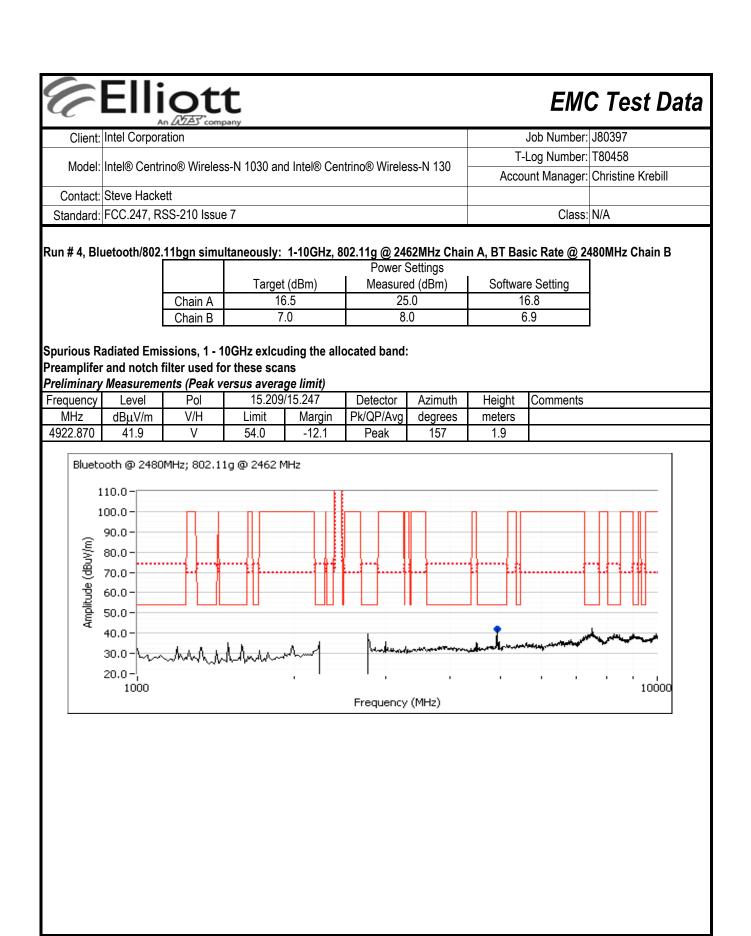

		COOD! DIG								
Run #	Mode	Channel		Measured Power	Test Performed	Limit	Result / Margin			
4	BT 1Mb/s	2402MHz		6.4			48.8dBµV/m @			
1	802.11b	2412MHz		16.8		FCC 15.247	2282.0MHz (-5.2dB)			
2	BT 1Mb/s	2480MHz		6.9		FCC 15.247	51.0dBµV/m @			
2	802.11b	2462MHz		16.8	Radiated emissions	FUU 15.247	2496.2MHz (-3.0dB)			
3	BT 1Mb/s	2402MHz		6.4	1- 10 GHz	FCC 15.247	50.1dBµV/m @			
3	802.11g	2412MHz		16.7		FUU 15.247	2282.0MHz (-3.9dB)			
4	BT 1Mb/s	2480MHz		6.9		FCC 15.247	50.7dBµV/m @			
	802.11g	2462MHz		16.8		F00 15.247	2360.0MHz (-3.3dB)			
WiFi mode for the following runs based on worst case mode from runs 1 through 4										
F	BT 1Mb/s	2402MHz		6.4		FCC 15.247	49.0dBµV/m @			
5	802.11b	2437MHz		16.7	Radiated emissions	FGC 15.247	2368.9MHz (-5.0dB)			
0	BT 1Mb/s	2440MHz		7.0	1- 10 GHz	F00 45 047	50.0dBµV/m @			
6	802.11b	2412MHz		16.8		FCC 15.247	2320.0MHz (-4.0dB)			
_	BT 1Mb/s	2440MHz		7.0			49.8dBµV/m @			
7	802.11b	2462MHz		16.8	Radiated emissions	FCC 15.247	2320.0MHz (-4.2dB)			
	BT 1Mb/s	2480MHz		6.9	1- 10 GHz		50.5dBµV/m @			
8	802.11b	2437MHz		16.7		FCC 15.247	2360.0MHz (-3.5dB)			
WiFi mode a			n channel ha		orst case mode from runs	1 through 8	(0.00D)			
9	BT 3Mb/s	2440MHz		1.5	Radiated emissions 1	FCC 15.247	46.1dBµV/m @			
Ŭ	802.11b	2462MHz		16.8	10 GHz	100 10.211	2320.0MHz (-7.9dB)			

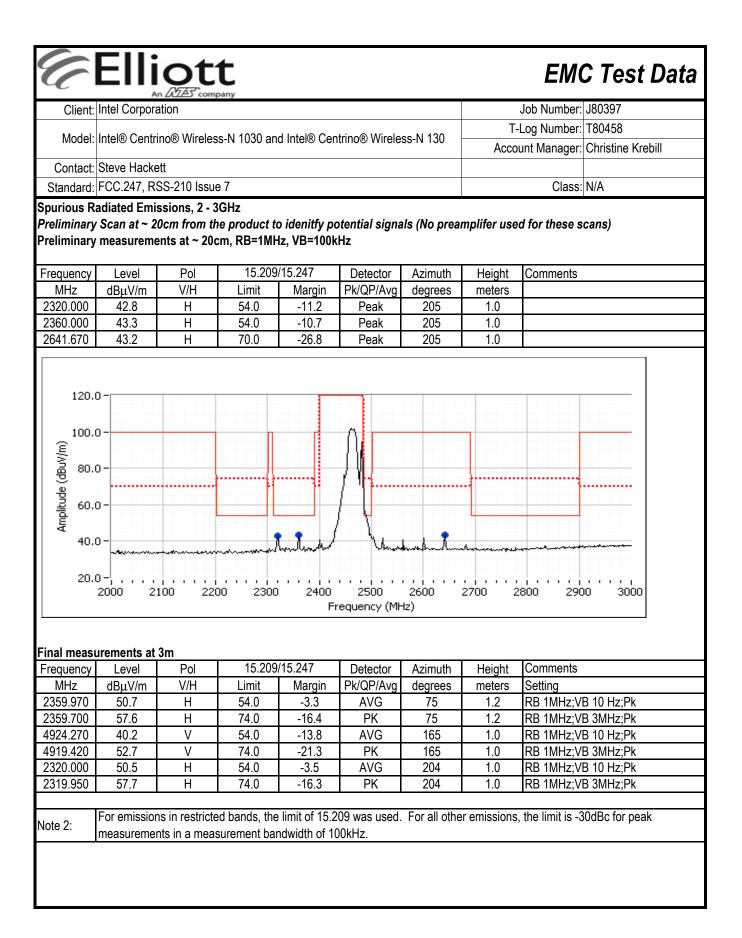

Modifications Made During Testing

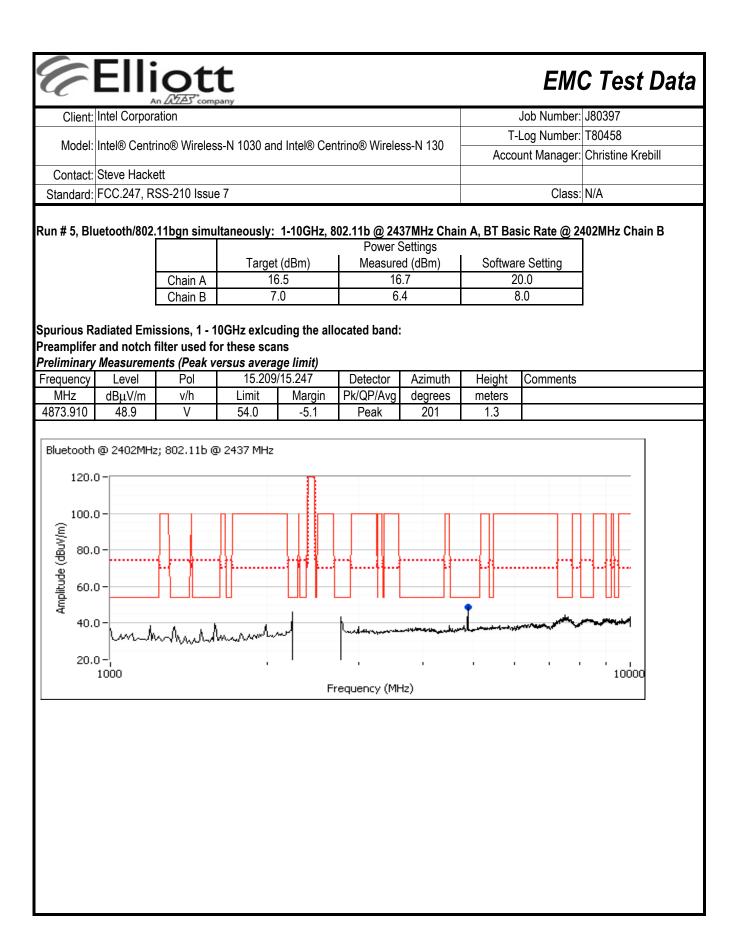

No modifications were made to the EUT during testing

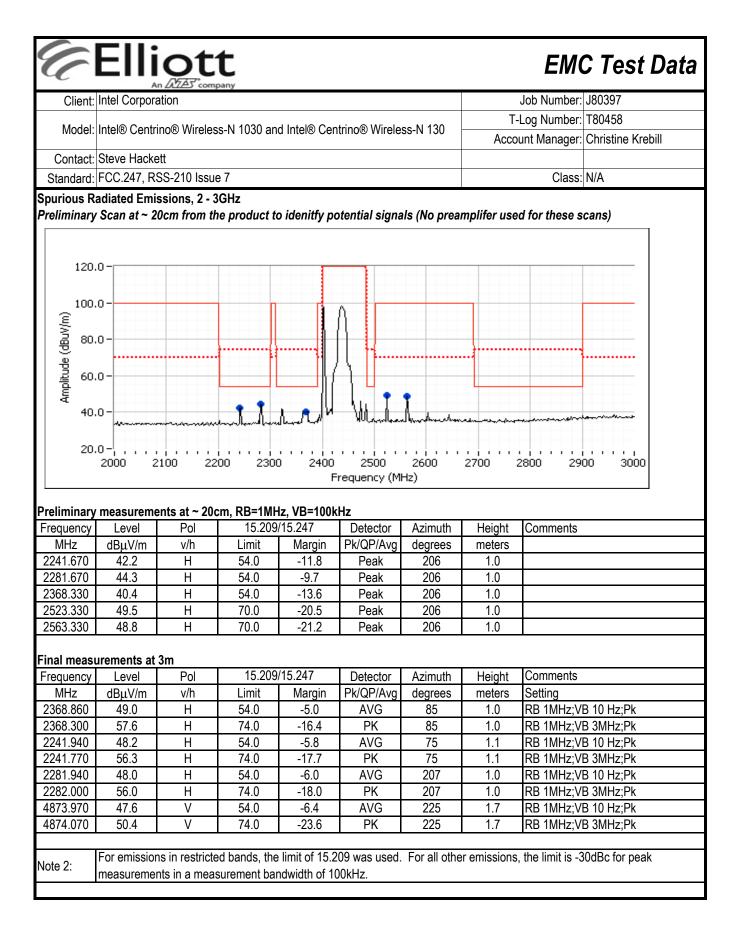

		ny	1		C Test Data
Client:	Intel Corporation			Job Number:	
Model:	Intel® Centrino® Wireless	-N 1030 and Intel® Centrir	no® Wireless-N 130	T-Log Number: Account Manager:	
Contact:	Steve Hackett			Account Manager.	
Standard:	FCC.247, RSS-210 Issue	7		Class:	N/A
Bluetooth us hort period	Correction Factor Ca ses a frequency hopping alg of time. The average corre	gorithm that means that the ection factor is calculated a	e device, during normal	operation, is only on a s	pecific channel for a
The hop With a n The ma	num length packet has a du ping rate is 1600 hops/seco ninimum of 20 hopping cha ximum dwell time in a 100r erage correction factor is, th	ond so the maximum dwell nnels a channel will not be n period is 4 x 3.125ms =	e used more than 4 times 12.5ms.		
The hop With a n The ma The ave s this is a l	ping rate is 1600 hops/secon ninimum of 20 hopping char ximum dwell time in a 100r prage correction factor is, the hopping radio the correction	ond so the maximum dwell nnels a channel will not be n period is 4 x 3.125ms = nerefore, 20log(12.5/100) = n factor can be applied to t	e used more than 4 times 12.5ms. =-18dB the average value of the	in any 100ms period. signal provided the aver	•
The hop With a n The ma The ave this is a l neasured w	ping rate is 1600 hops/secon ninimum of 20 hopping char ximum dwell time in a 100r erage correction factor is, the nopping radio the correction with the device continuously	ond so the maximum dwell nnels a channel will not be n period is 4 x 3.125ms = nerefore, 20log(12.5/100) = n factor can be applied to t	e used more than 4 times 12.5ms. =-18dB the average value of the	in any 100ms period. signal provided the aver	•
The hop With a n The ma The ave this is a l neasured w alue for fre	ping rate is 1600 hops/secon ninimum of 20 hopping char ximum dwell time in a 100r prage correction factor is, the hopping radio the correction	and so the maximum dwell nnels a channel will not be n period is 4×3.125 ms = herefore, $20\log(12.5/100)$ = h factor can be applied to t transmitting. DA 00-0705	e used more than 4 times 12.5ms. =-18dB the average value of the permits the use of the a	in any 100ms period. signal provided the aver verage correction on the	e measured average
The hop With a n The ma The ave this is a l neasured w alue for fre the meas	ping rate is 1600 hops/secon ninimum of 20 hopping char ximum dwell time in a 100r erage correction factor is, the hopping radio the correction with the device continuously quency hopping radios.	and so the maximum dwell nnels a channel will not be n period is 4×3.125 ms = herefore, $20\log(12.5/100)$ = h factor can be applied to t transmitting. DA 00-0705	e used more than 4 times 12.5ms. =-18dB the average value of the permits the use of the a	in any 100ms period. signal provided the aver verage correction on the	e measured average

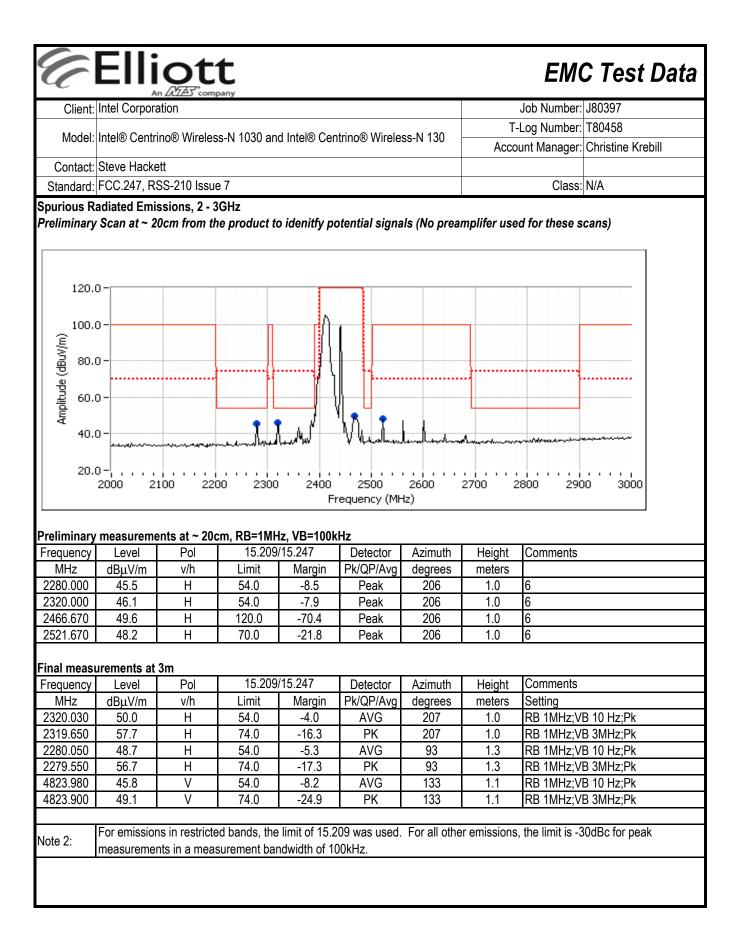


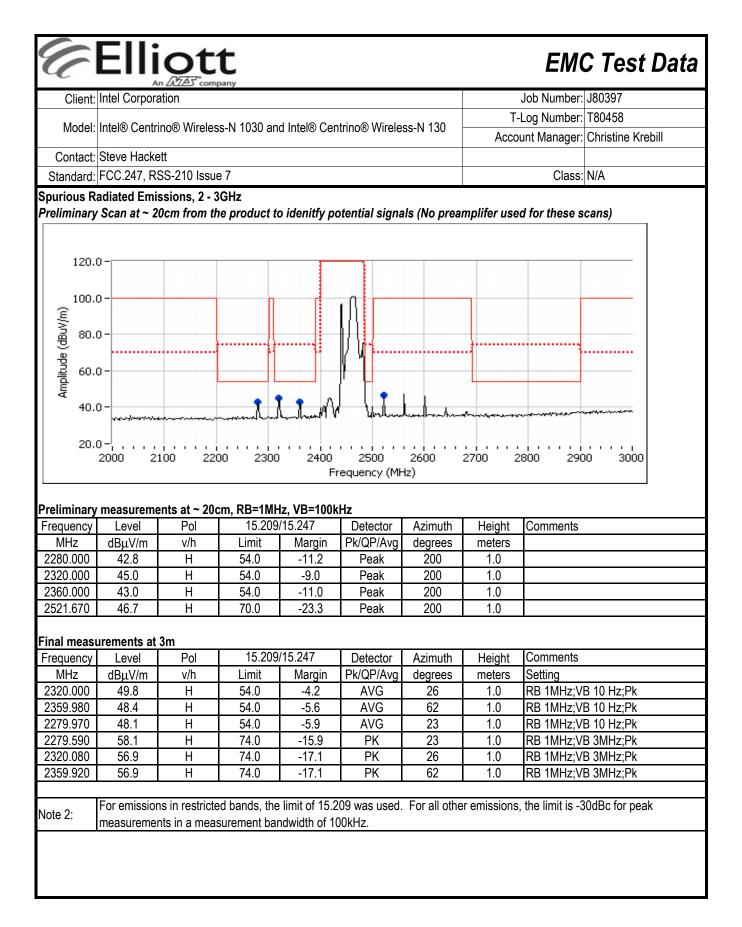


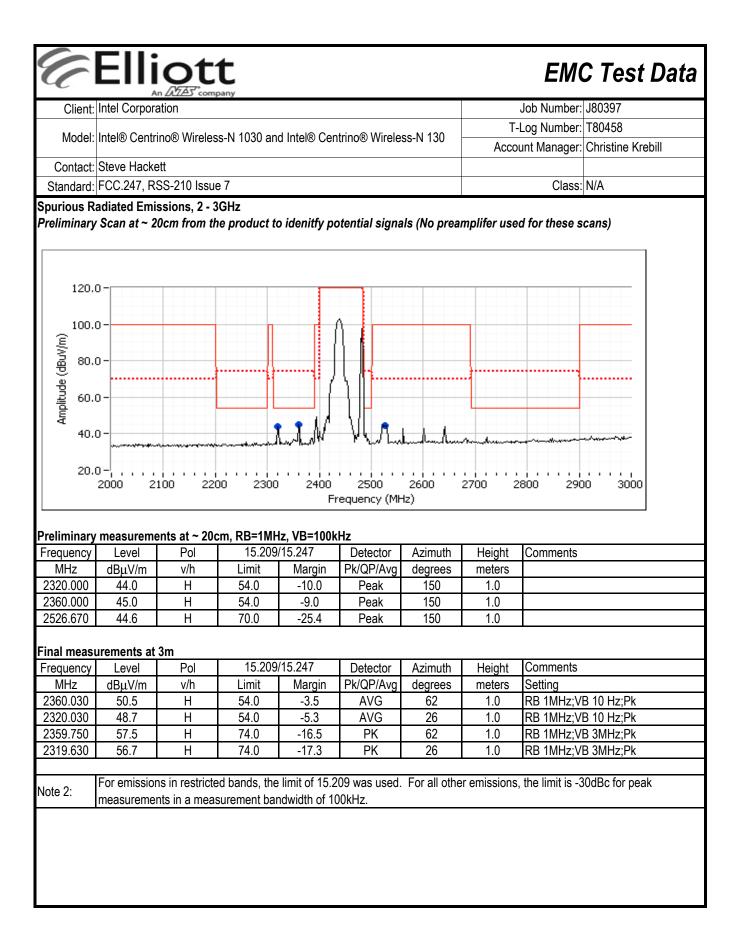


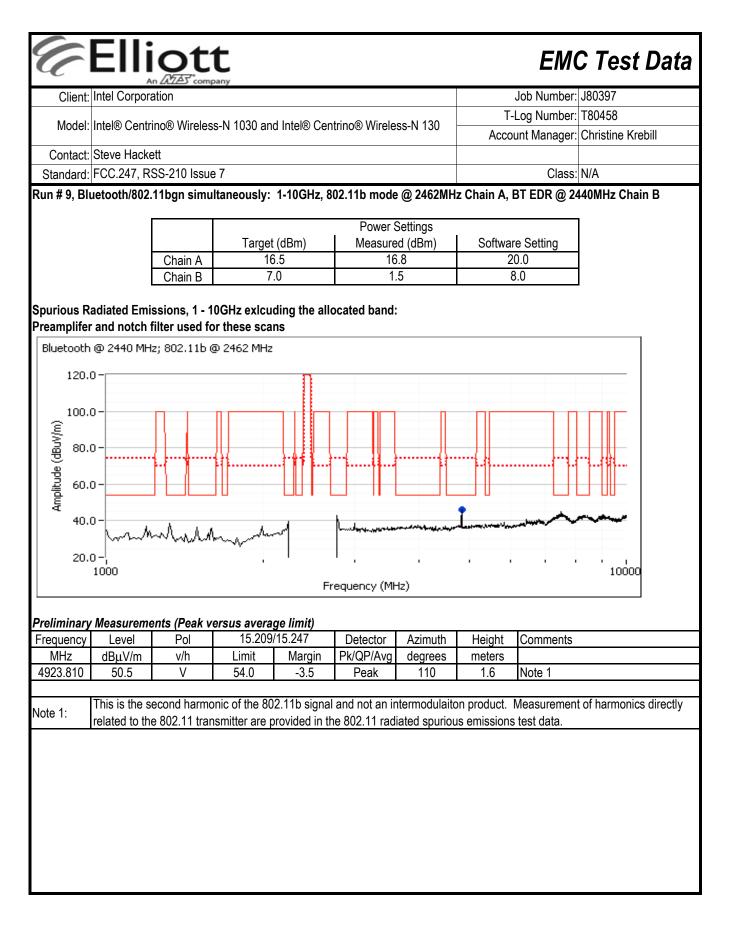


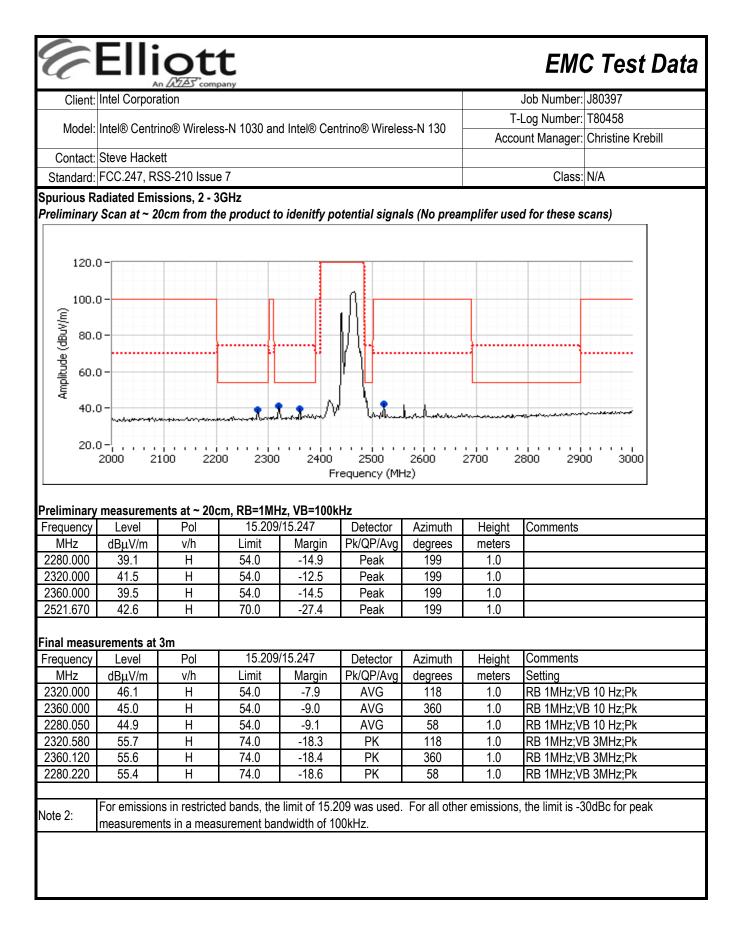







Client	Intel Corpor	n <u>AZAS</u> comp ation	any				Job Number:	J80397
							og Number:	
Model	Intel® Centr	ino® Wireless	s-N 1030 and	I Intel® Cent	rino® Wireless-N 130		•	Christine Krebi
Contact	Steve Hack	ətt						
tandard	FCC.247, R	SS-210 Issue	e 7				Class:	N/A
n # 6, Bl	uetooth/802	.11bgn simul	Itaneously:	1-10GHz, 80	2.11b @ 2412MHz Cha	in A, BT Bas	ic Rate @ 24	440MHz Chain
					Power Settings			1
			Target	(dBm)	Measured (dBm)	Software	e Setting	
		Chain A	16		16.8	20).0	
		Chain B	7.	0	7.0	8	.0	
.100 .08 (ggn/)(m) .09 (ggn/)(m)	o-							•••••••••••••••
40.	hand	mhall	manuha	~	لمرحط ومربو ومربو مستجمع ومحمد ومحمد ومحمد ومحمد ومحمد ومربو ومحمد ومربو ومحمد ومربو ومحمد ومحمد ومحمد ومحمد وم			
40.	0- 0- 1000	mhadh	marmohim	~	لىرەر بارىپۇرىمىلىد ئىيدىمەنىيە يەرەپىيە			10000
40.	o-	what	ndermalin	رم Fre	equency (MHz)			10000
40. 20.	0- 1000		hulurundun		equency (MHz)			10000
40. 20.	0- 1000	ents (Peak ve	ersus averag	ge limit)		Height	Comments	10000
40. 20.	0	ents (Peak ve		ge limit)	Detector Azimuth Pk/QP/Avg degrees Peak 138	Height meters 1.3	Comments	10000




Client:		n 4745 comp	Dany					EMC Test Data
		rino® Wireles	a NI 1020 an	aa N 120		Log Number: T80458		
			S-IN 1050 an	SS-IN 150	Accou	unt Manager: Christine Krebill		
	Steve Hack		_					
		SS-210 Issue						Class: N/A
in # 7, Bl	uetooth/802	.11bgn simu	Itaneously:	1-10GHz, 8	802.11b @ 240	62MHz Chai	n A, BT Bas	sic Rate @ 2440MHz Chain B
					Power S	Settings		
				: (dBm)	Measure	· /	Softwar	e Setting
		Chain A		6.5	16			0.0
		Chain B	7	.0	7.	U	8	3.0
100. (m/\nge (dgn/\m) 80. 60. 40.	0-		n	~1		****		
20.	0-							
	1000			Fi	requency (MH	łz)		10000
						r		
		ents (Peak v						
	Level	Pol		/15.247	Detector	Azimuth	Height	Comments
equency	dBµV/m	v/h V	Limit 54.0	Margin -3.7	Pk/QP/Avg Peak	degrees 108	meters 1.6	
equency MHz		v	0 1.0	0.1	i oun	100	1.0	1
equency MHz	50.3						n product	Maaau waxaa ah af bawaa ah aa diwaatiy
equency MHz 923.810	50.3 This is the s			-			•	
equency MHz 923.810	50.3 This is the s			-	l and not an ir ne 802.11 radi		•	Measurement of harmonics directly test data.
equency MHz 923.810	50.3 This is the s			-			•	•
requency	50.3 This is the s			-			•	•
equency MHz 923.810	50.3 This is the s			-			•	
equency MHz 923.810	50.3 This is the s			-			•	
equency MHz 923.810	50.3 This is the s			-			•	

6 EI							EM	C Test Data
Client: Intel Co	poration						Job Number:	J80397
Model: Intel® C	ntrino® Wirele	ss-N 1030 and	l Intel® Cer	trino® Wirele	ss-N 130	T-I	Log Number:	T80458
		33-IN 1000 and			33-14 100	Αссοι	unt Manager:	Christine Krebill
Contact: Steve H								
Standard: FCC.24							Class:	
Run # 8, Bluetooth/	302.11bgn sim	ultaneously:	1-10GHz, 8	802.11b @ 243	37MHz Chai	n A, BT Bas	sic Rate @ 24	480MHz Chain B
]					
		Target		Measure	· · /		e Setting	
	Chain A	16		16			0.0	
	Chain B	7.	0	6.	9	8	8.0	J
Spurious Radiated Preamplifer and no	ch filter used f	or these scar	-	ocated band:				
Bleutooth @ 2480	MHz; 802.11b	@ 2437 MHz						
120.0-			n					
100.0-								
4mplitude (dBuV/m)								
Щ осло — — — — — — — — — — — — — — — — — — —		*##						
Amp						•		
40.0-	6 A 8	1 hours	1	Lindermore	ميلىدور	J.+-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0		With Maria	[*]					
20.0 -¦ 1000				· .				10000
			Fi	requency (MH	łz)			
Proliminary Manager	manta /Deel-		no lim:4)					
Preliminary Measur Frequency Leve		15.209/		Detector	Azimuth	Height	Comments	
MHz dBµV/		Limit	Margin	Pk/QP/Avg	degrees	meters		
4873.820 49.5	V	54.0	-4.5	Peak	120	1.3	Note 1	
This is t	a second harm	onic of the 80	2 11h signs	and not an in	termodulaita	n product	Massuramon	t of harmonics directly
	the 802.11 tra		-			•		
		F			,			

