

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Intel Centrino Wireless-N 105, models 105BNHMW and 105BNHU

IC CERTIFICATION #: FCC ID:	1000M-105BNH and 1000M-105BNHU PD9105BNH and PD9105BNHU
APPLICANT:	Intel Corporation 100 Center Point Circle Suite 200 Columbia, SC 29210
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-4 & 2845B-5
REPORT DATE:	October 13, 2011
FINAL TEST DATES:	September 6, 7, 8, 9, 13 and 14, 2011
TOTAL NUMBER OF PAGES:	76

PROGRAM MGR / TECHNICAL REVIEWER:

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-04-2011	First release	
1	10-13-2011	Revised band edge spurious emissions results due to a change in power used on Channel 7 in HT40 mode	Dave Guidotti David Bare

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
TEST SITE GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	11
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	14
CONDUCTED EMISSIONS FROM ANTENNA PORT BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	19
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS.	20
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	23
END OF REPORT	76

SCOPE

An electromagnetic emissions test has been performed on the Intel Centrino Wireless-N 105, models 105BNHW and 105BNHU, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Centrino Wireless-N 105, models 105BNHMW and 105BNHU complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel Centrino Wireless-N 105, models 105BNHMW and 105BNHU and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	12.4 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 39.5mW 802.11g: 138mW HT20: 126mW HT40: 18.6mW EIRP = 0.288 W ^{Note 1}	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-6.1 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions below the limit	< -20dBc or < -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.9dBµV/m @ 2483.5MHz (-0.1dB)	15.207 in restricted bands, all others <-20dBc or <-30dBc ^{Note 2}	Complies
Note 1: EIRP calculated using antenna gain of 3.2 dBi for the highest EIRP system. Note 2: Limit of -20dBc or -30dBc used because the power was measured using a peak detector or the UNII test procedure (maximum power averaged over a transmission burst) depending on operating mode.					

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique connector	Unique or integral antenna required	Complies
15.207	RSS GEN Table 4	AC Conducted Emissions	16.7dBµV @ 4.809MHz	Refer to page 17	Complies (-29.3dB)
15.109	RSS GEN 6.1 Table 2	Receiver spurious emissions	44.4dBµV/m @ 480.0MHz	Refer to page 18	Complies (-1.6dB)
15.247 (b) (5) 15.407 (f)	RSS-GEN 5.6 RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1	User Manual	Refer to page 11 of the user's manual	Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1	User Manual	Not applicable, antenna is integral to host systems.	Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.6.1	99% Bandwidth	802.11b: 15.2 MHz 802.11g: 18.1 MHz HT20: 19.1 MHz HT40: 36.8 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel Centrino Wireless-N 105, models 105BNHMW and 105BNHU are PCIe Half Mini Card form factor IEEE 802.11b/g/n wireless network adapters that supports 1x1 (SISO).

The device is sold under model numbers 105BNHMW and 105BNHU

Model numbers with FCC ID: PD9105BNHU and IC: 1000M-105BNHU are intended for end user installation and operate with a BiOS lock feature to ensure they can only be used in the appropriate host systems to prevent unauthorized operation. Other models are only intended for OEM factory installation.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 7, 2011 and tested on September 6, 7, 8, 9, 13 and 14, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
		PCIe Half Mini		PD9105BNH
	105BNHMW	Card form factor	JBP:	PD9105BNHU
Intel		IEEE	001500937030	1000M-
Corporation		802.11b/g/n	DTS:	105BNH
	105BNHU	wireless	001500937004	1000M-
	IUSDINHU	network adapter		105BNHU

ANTENNA SYSTEM

The EUT antenna is a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd for both chains for receive diversity.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

Band	Antenna Gain	
	PiFA	-
2400-2483.5	3.2 dBi	-

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel	-	Test Fixture		N/A
Corporation				
Dell	PP17L	Laptop PC	CN-ONF743-	N/A
			48643-7B6-	
			0727	
Agilent	E3610A	DC Supply	100708	N/A

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Polt	То	Description	Shielded or Unshielded	Length(m)
Laptop USB	Fixture USB	USB cable	Shielded	1.5
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	0.7
DC Power	Fixture DC power	2-wire	unshielded	0.7

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes - 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth).

The data rates used for all tests were the lowest data rates for each $802.11 \mod -1 Mb/s$ for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate.

The PC was using the Intel test utility DRTU Version 1.5.3-0320 and the device driver was version 15.0.0.51.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

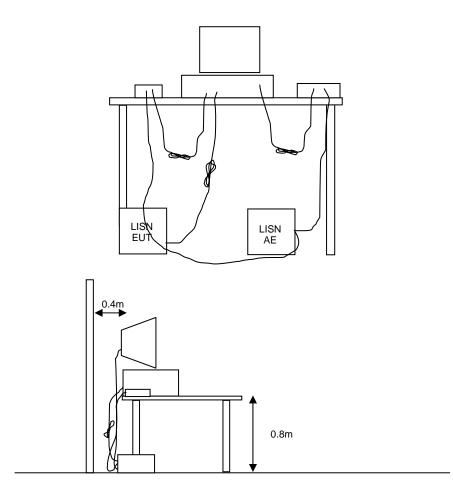
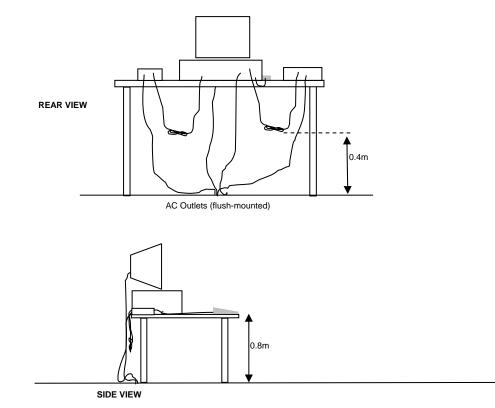
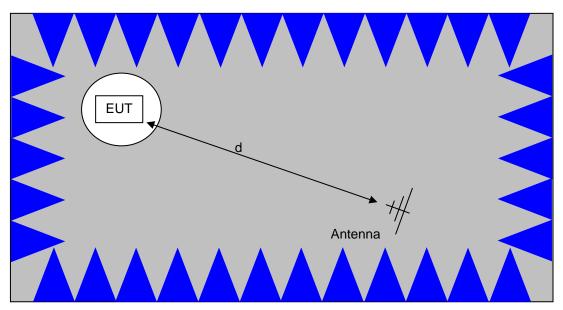


Figure 1 Typical Conducted Emissions Test Configuration

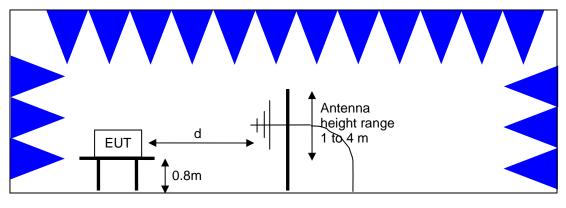

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

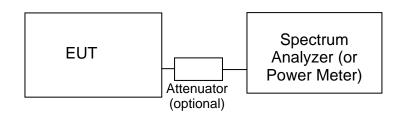
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 3 <u>Manufacturer</u> EMCO Hewlett Packard	30 - 6,500 MHz, 07-Sep-11 <u>Description</u> Antenna, Horn, 1-18 GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	<u>Model</u> 3115 8564E (84125C)	<u>Asset #</u> 487 1393	<u>Cal Due</u> 7/6/2012 8/9/2012
Radiated Emissions, 3 <u>Manufacturer</u> EMCO Hewlett Packard	30 - 6,500 MHz, 08-Sep-11 <u>Description</u> Antenna, Horn, 1-18 GHz SpecAn 30 Hz -40 GHz	<u>Model</u> 3115 8564E (84125C)	<u>Asset #</u> 1142 1148	<u>Cal Due</u> 8/2/2012 8/15/2012
Radiated Emissions, Manufacturer EMCO Hewlett Packard Micro-Tronics	1000 - 40,000MHz, 09-Sep-11 <u>Description</u> Antenna, Horn, 1-18 GHz SpecAn 30 Hz -40 GHz Band Reject Filter, 2400-2500 MHz	<u>Model</u> 3115 8564E (84125C) BRM50702-02	<u>Asset #</u> 1142 1148 2249	<u>Cal Due</u> 8/2/2012 8/15/2012 10/11/2011
Radiated Emissions, 3 <u>Manufacturer</u> Rohde & Schwarz Hewlett Packard Sunol Sciences	30 - 1,000 MHz, 13-Sep-11 <u>Description</u> EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 100 kHz - 1.3 GHz Biconilog, 30-3000 MHz	<u>Model</u> ESIB7 8447D OPT 010 JB3	<u>Asset #</u> 1538 1826 2197	<u>Cal Due</u> 11/2/2011 5/17/2012 12/29/2011
Radiated Emissions, 3 <u>Manufacturer</u> Rohde & Schwarz Hewlett Packard Sunol Sciences	30 - 1,000 MHz, 14-Sep-11 <u>Description</u> EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 100 kHz - 1.3 GHz Biconilog, 30-3000 MHz	<u>Model</u> ESIB7 8447D OPT 010 JB3	<u>Asset #</u> 1538 1826 2197	<u>Cal Due</u> 11/2/2011 5/17/2012 12/29/2011
Conducted Emissions <u>Manufacturer</u> EMCO EMCO Rohde & Schwarz Rohde & Schwarz	S - AC Power Ports, 14-Sep-11 <u>Description</u> LISN, 10 kHz-100 MHz, 25A LISN, 10 kHz-100 MHz EMI Test Receiver, 20 Hz-7 GHz Pulse Limiter	<u>Model</u> 3825/2 3825/2 ESIB7 ESH3 Z2	<u>Asset #</u> 1292 1293 1538 1401	<u>Cal Due</u> 3/1/2012 3/1/2012 11/2/2011 4/21/2012
Conducted Emissions <u>Manufacturer</u> EMCO EMCO Rohde & Schwarz Rohde & Schwarz	s - AC Power Ports, 15-Sep-11 <u>Description</u> LISN, 10 kHz-100 MHz, 25A LISN, 10 kHz-100 MHz Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	<u>Model</u> 3825/2 3825/2 ESH3 Z2 ESIB7	<u>Asset #</u> 1292 1293 1401 1756	<u>Cal Due</u> 3/1/2012 3/1/2012 4/21/2012 4/6/2012
Radiated Emissions, <u>Manufacturer</u> Hewlett Packard EMCO Hewlett Packard	1000 - 10,000MHz, 10-Oct-11 <u>Description</u> Microwave Preamplifier, 1- 26.5GHz Antenna, Horn, 1-18 GHz SpecAn 30 Hz -40 GHz	<u>Model #</u> 8449B 3115 8564E (84125C)	<u>Asset #</u> 263 1142 1148	<u>Cal Due</u> 08-Dec-11 02-Aug-12 15-Aug-12

Appendix B Test Data

T84530 Pages 24 - 75

	•
	liott
	ΠΟΓΓ
ч —	to RTAS company

EMC Test Data

An DCLA	5 company		
Client:	Intel Corporation	Job Number:	J84263
Model:	105BNHMW and 105BNHU	T-Log Number:	T84530
		Account Manager:	Christine Krebill
Contact:	Steve Hackett		-
Emissions Standard(s):	FCC Part 15, RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	Radio

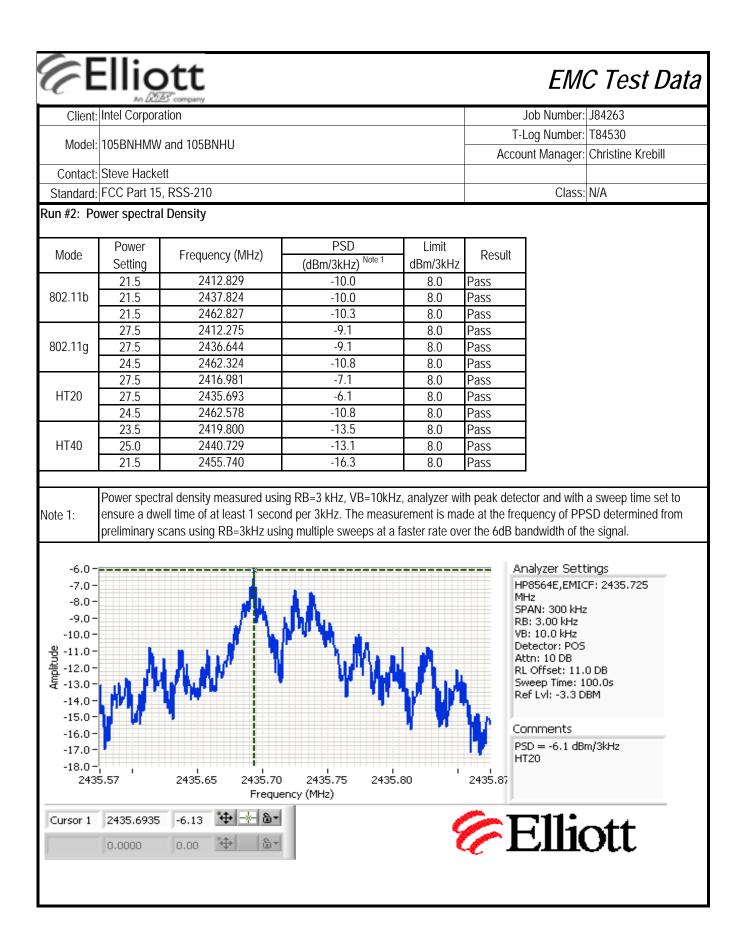
EMC Test Data

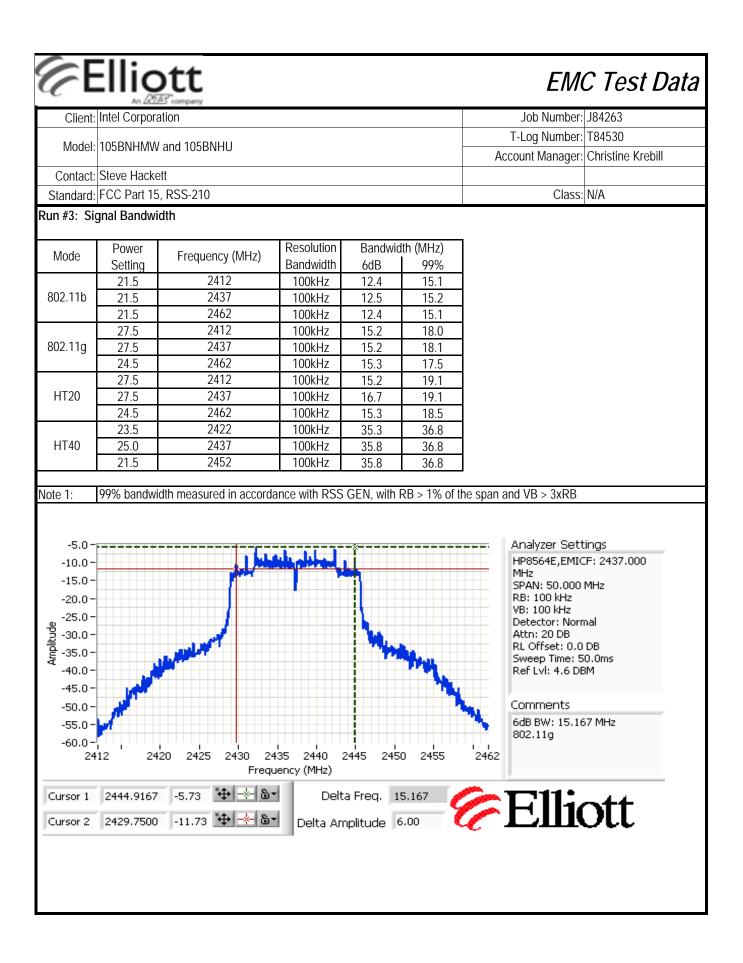
For The

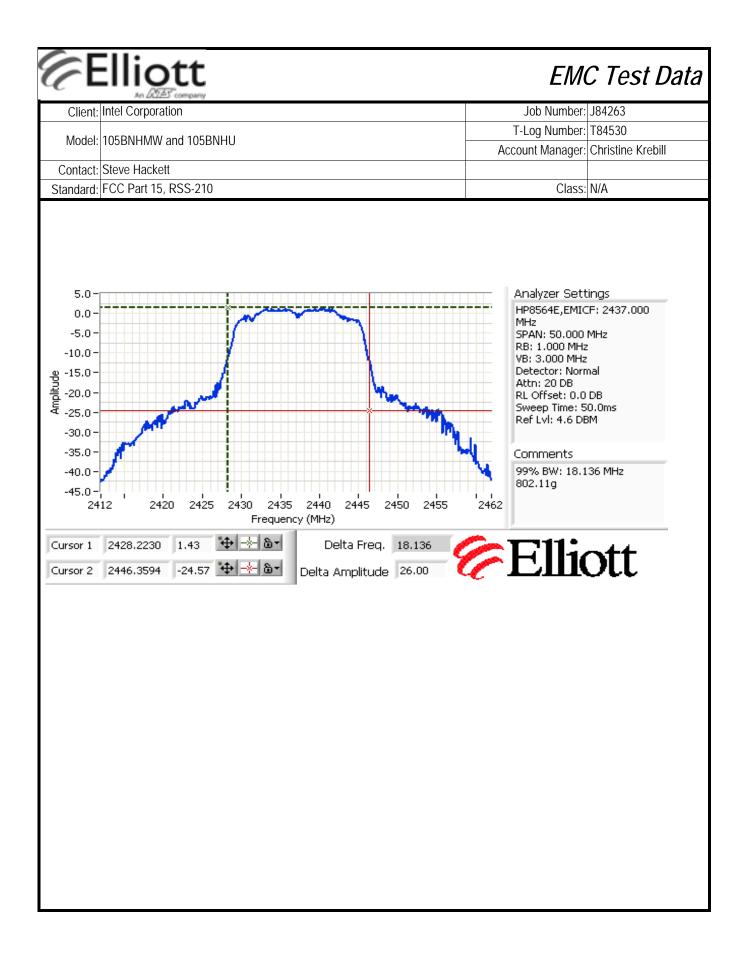
Intel Corporation

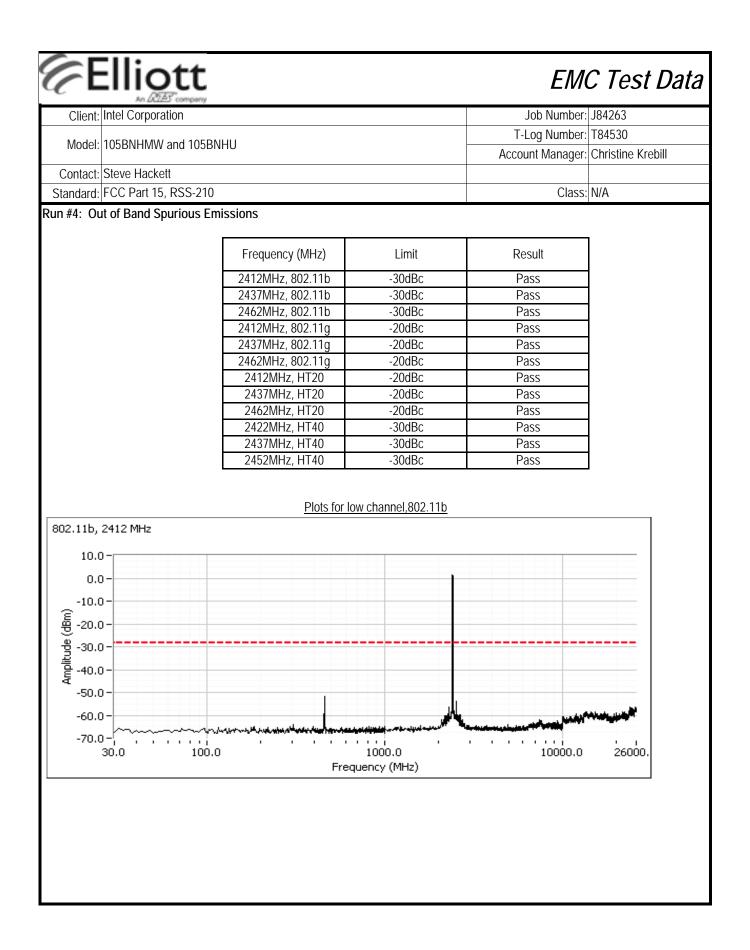
Model

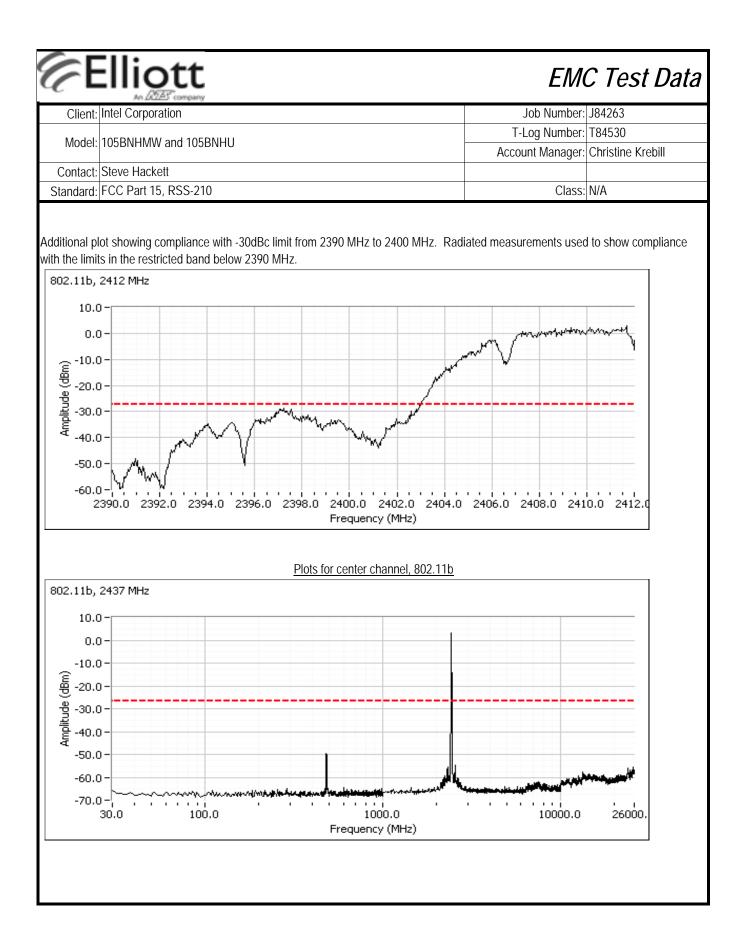
105BNHMW and 105BNHU

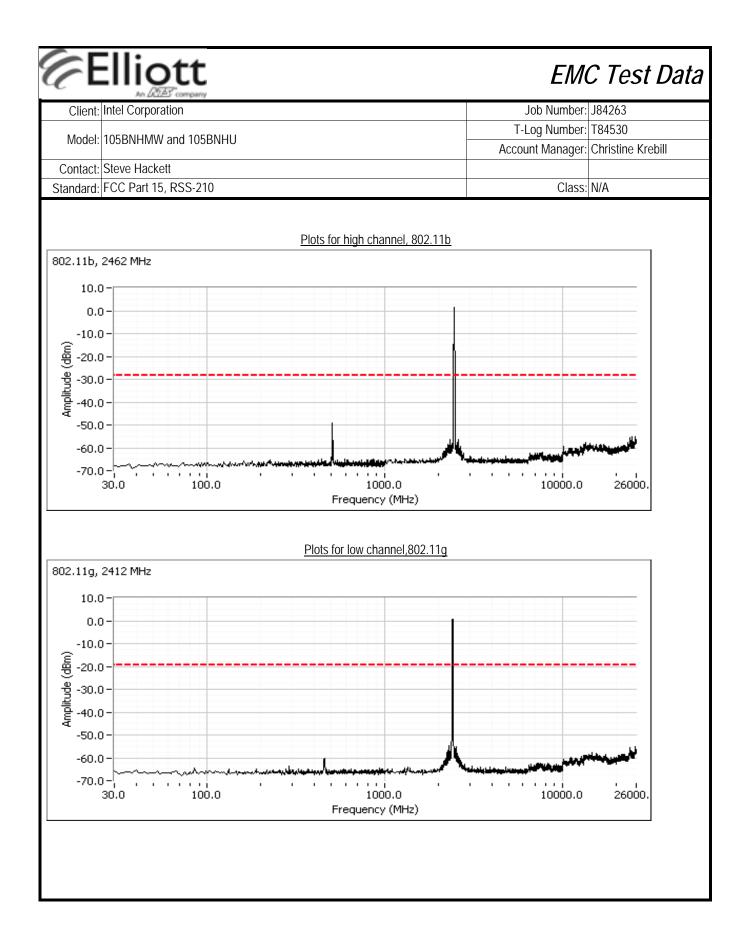

Date of Last Test: 10/10/2011

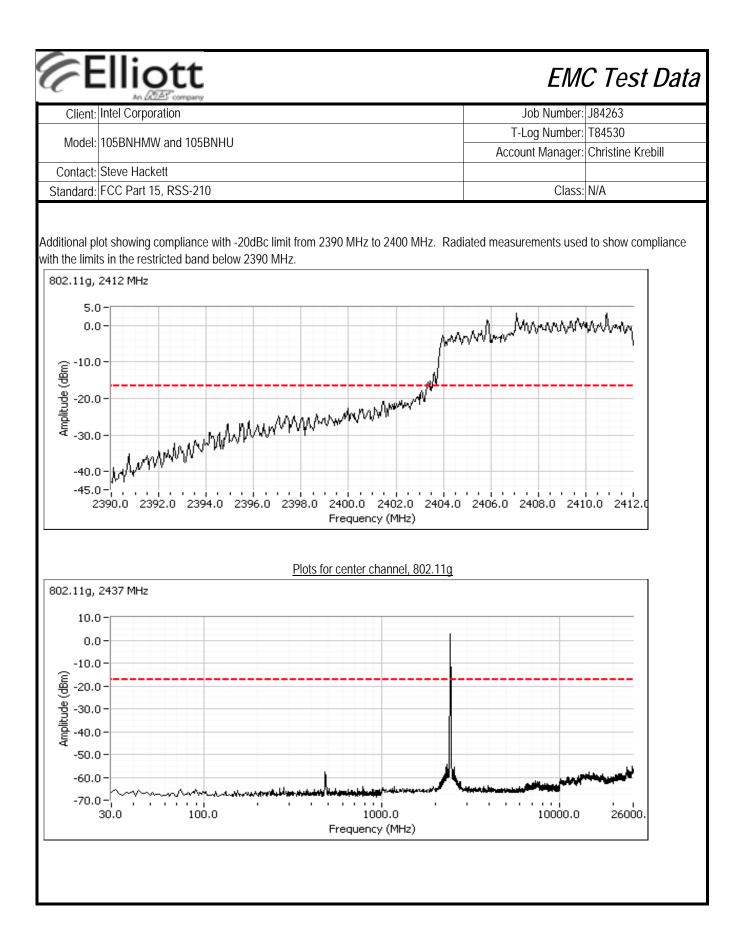

105BNHU S-210 210 and FCC 15.247 (DTS) An Power, PSD, Bandwidth and S	tenna Port Mea	Class:	T84530 Christine Krebill N/A
⁵⁻²¹⁰ 210 and FCC 15.247 (DTS) An	tenna Port Mea	Class:	Christine Krebill N/A
⁵⁻²¹⁰ 210 and FCC 15.247 (DTS) An	tenna Port Mea	Class:	N/A
210 and FCC 15.247 (DTS) An		surement	l
210 and FCC 15.247 (DTS) An		surement	l
			c
		12	3
bbjective of this test session is to perform fina fication listed above.	qualification testing of	the EUT with r	espect to the
el Varelas / Joseph Cadigal Cor	onfig. Used: 1 fig Change: None Jnit Voltage 120V/60H	lz	
tion e spectrum analyzer or power meter via a suit	able attenuator. All me	easurements we	ere made on a single
corrected to allow for the external attenuators	used.		
Temperature: 22.3 °C Rel. Humidity: 39 %			
Test Performed	Limit	Pass / Fail	Result / Margin
le Output Power	15.247(b)	Pass	802.11b: 39.5mW 802.11g: 138mW HT20: 126mW HT40: 18.6mW
Power spectral Density (PSD)	15.247(d)	Pass	-6.1 dBm/3kHz
I UNEL SPECILAL DELISILY (FOD)	15.247(a)	Pass	12.4 MHz
Minimum 6dB Bandwidth	RSS GEN	-	802.11b: 15.2 MHz 802.11g: 18.1 MHz HT20: 19.1 MHz
		Pass	HT40: 36.8 MHz All emissions below the limit
•	99% Bandwidth	99% BandwidthRSS GENSpurious emissions15.247(b)	

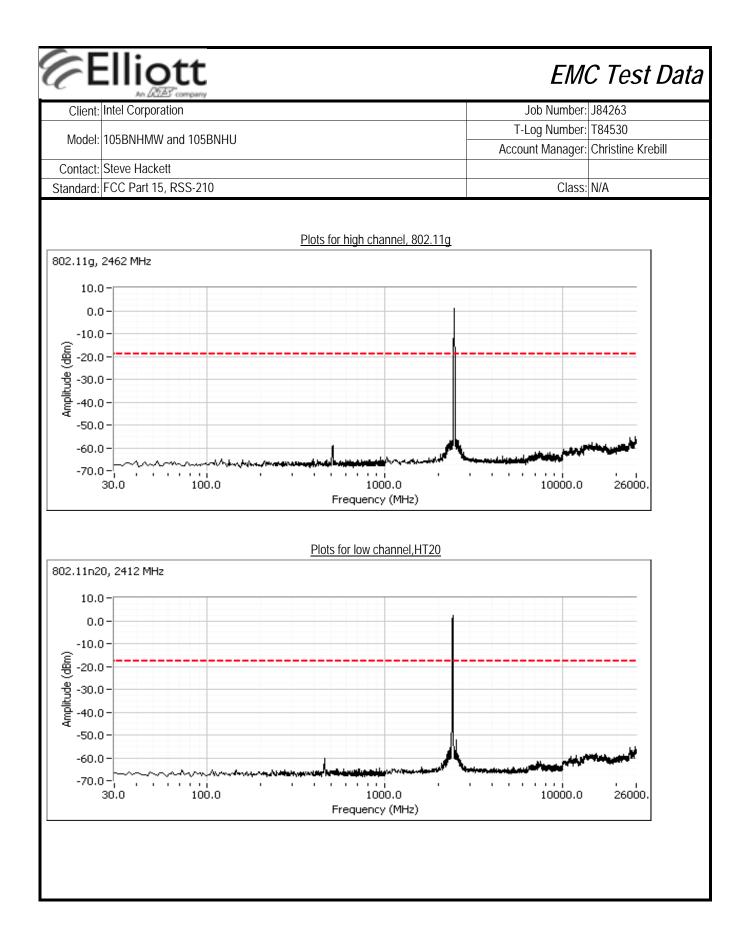

		<u></u>
	-1110	тт
	llio	LL
~ -	000	
	An (17/A1	CONTRACTOR AND A

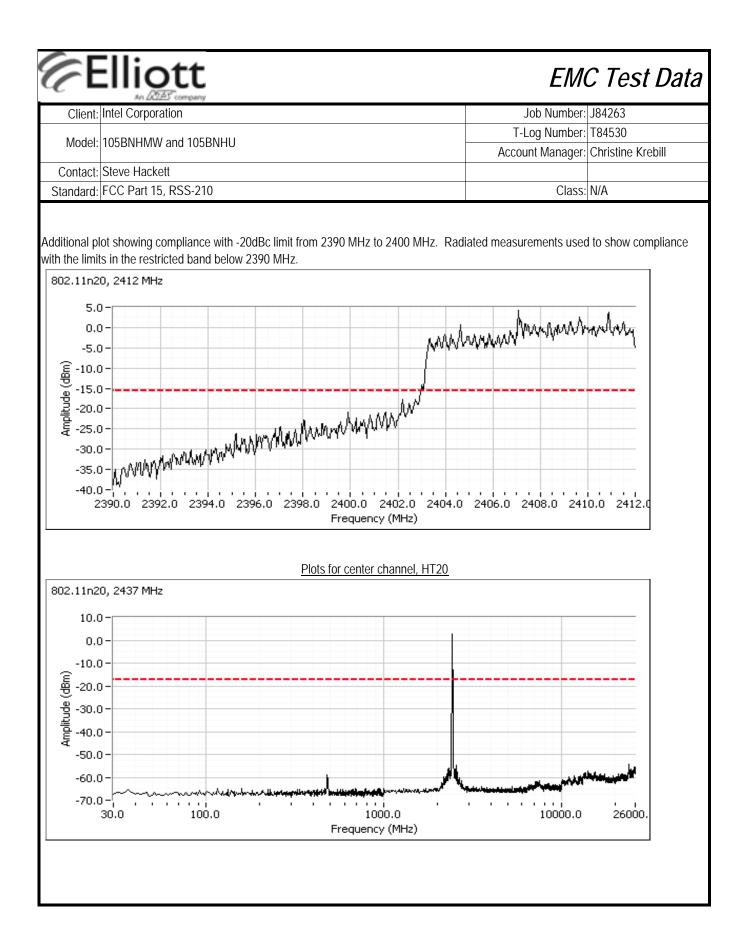

EMC Test Data

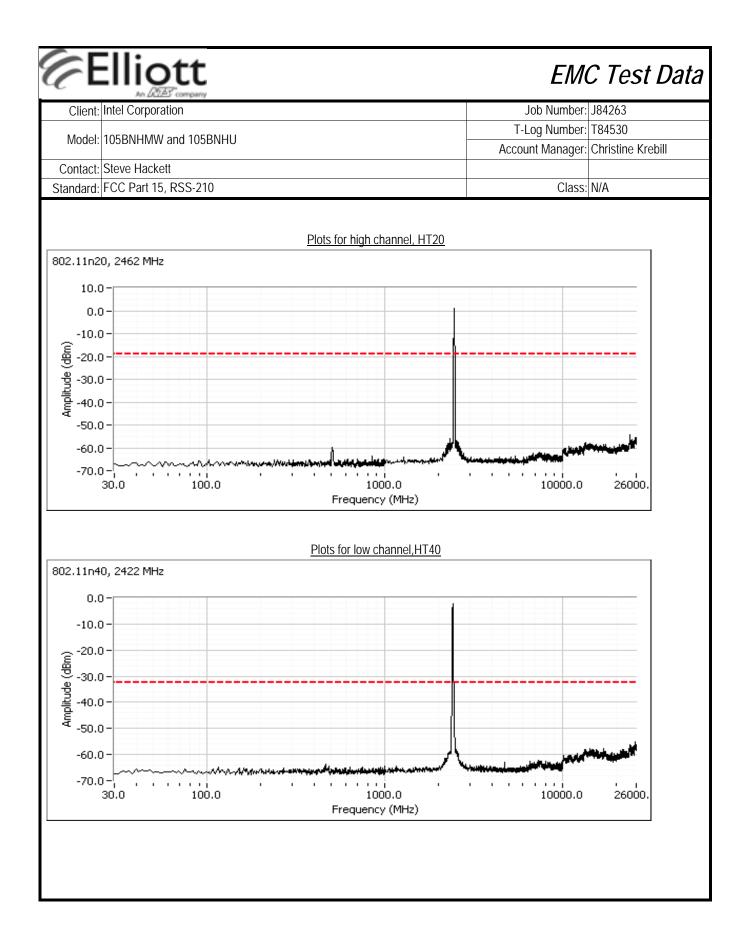

	An DEE company								
Client:	Intel Corporation						Job Number:		
Model	105BNHMW and 105BN	нп				T-I	_og Number:	T84530	
MOUCI.		ΠŪ				Αссοι	Int Manager:	Christine Kr	ebill
Contact:	Steve Hackett								
Standard:	FCC Part 15, RSS-210						Class:	N/A	
No modifica Deviatior	tions Made During T tions were made to the E Ins From The Standar Ins were made from the re	UT during tes r d	J.	rd.					
Use -30dBo	utput Power c <i>Limit for spurious</i>			1			Note 2		Deserve
Power	Frequency (MHz)		Power	Antenna	Result		Note 2		Power
Setting ² 302.11b Mo		(dBm) ¹	mW	Gain (dBi)		dBm	W	(dBm) ³	mW
	2412	15.7	27.2	3.2	Dace	10.0	0.070		
21.5 21.5	2412	15.7	37.2	3.2	Pass	18.9 19.2	0.078 0.083		
21.5	2462	16.0 15.5	39.5 35.5	3.2	Pass	19.2	0.083		
	2402	10.0	30.0	3.Z	Pass	10.7	0.074		
23.5	2422	11 /	13.7	3.2	Decc	114	0.029		
25.0	2422	11.4 12.7	13.7	3.2	Pass	14.6 15.9	0.029		
23.0	2452	9.7	9.3	3.2	Pass Pass	13.9	0.039		
Z1.J	2432	9.1	9.5	3.Z	E 455	12.7	0.017		
	•								
Note 1:	Output power measured averaging on (transmitte equivalent to method 1 c	d signal was If DA-02-2138	continuous) 3A1 for U-NI	er (see plots b and power int I devices). Sp	elow) with f egration ove purious limit	RBW=1MHz, er 50 MHz (o becomes - 3(ption #2, met)dBc.	•	
Note 1: Note 2:	averaging on (transmitte	d signal was If DA-02-2138	continuous) 3A1 for U-NI	er (see plots b and power int I devices). Sp	elow) with f egration ove purious limit	RBW=1MHz, er 50 MHz (o becomes - 3(ption #2, met)dBc.	•	
Note 2:	averaging on (transmitte equivalent to method 1 c Power setting - the softw	d signal was If DA-02-2138	continuous) 3A1 for U-NI	er (see plots b and power int I devices). Sp	elow) with f egration ove purious limit	RBW=1MHz, er 50 MHz (o becomes - 3(ption #2, met)dBc.	•	
Note 2: <i>Use -20dBd</i>	averaging on (transmitte equivalent to method 1 o	d signal was f DA-02-2138 vare power se	continuous) 3A1 for U-NI etting used d	er (see plots b and power int I devices). Sp uring testing,	elow) with f egration ove purious limit	RBW=1MHz, er 50 MHz (o becomes -30 reference on	ption #2, met)dBc. ly.	hod 1 in KDI	3 55807
Note 2: <i>Use -20dBo</i> Power	averaging on (transmitte equivalent to method 1 c Power setting - the softw c Limit for Spurious	d signal was f DA-02-2138 rare power se Output	continuous) BA1 for U-NI etting used d	er (see plots b and power int I devices). Sp uring testing, Antenna	elow) with f egration ove purious limit	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF	ption #2, met DdBc. ly.	hod 1 in KDI	3 55807
Note 2: Use -20dBo Power Setting ²	averaging on (transmitte equivalent to method 1 o Power setting - the softw c Limit for Spurious Frequency (MHz)	d signal was f DA-02-2138 vare power se	continuous) BA1 for U-NI etting used d	er (see plots b and power int I devices). Sp uring testing,	elow) with f egration ove purious limit included for	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF	ption #2, met DdBc. ly.	hod 1 in KDI	3 55807
Note 2: Use -20dBo Power Setting ² 302.11g Mo	averaging on (transmitte equivalent to method 1 c Power setting - the softw c Limit for Spurious Frequency (MHz)	d signal was if DA-02-2138 vare power se Output (dBm) ¹	continuous) 3A1 for U-NI etting used d Power mW	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi)	elow) with T egration ove purious limit included for Result	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm	ption #2, met DdBc. ly. Note 2 W	hod 1 in KDI	3 55807
Note 2: Use -20dBo Power Setting ² 302.11g Mo 27.5	averaging on (transmitte equivalent to method 1 c Power setting - the softw c <i>Limit for Spurious</i> Frequency (MHz) ode 2412	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3	continuous) 3A1 for U-NI etting used d Power mW 134.9	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi) 3.2	elow) with F egration ove purious limit included for Result Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5	ption #2, met DdBc. Iy. Note 2 W 0.282	hod 1 in KDI	3 55807
Note 2: <i>Use -20dBa</i> Power Setting ² 302.11g Ma 27.5 27.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4	continuous) 3A1 for U-NI etting used d Power mW 134.9 138.0	er (see plots b and power int I devices). Sp uring testing, Antenna Gain (dBi) 3.2 3.2	eelow) with T egration ove purious limit included for Result Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6	ption #2, met DdBc. ly. Note 2 W 0.282 0.288	hod 1 in KDI	3 55807
Note 2: <i>Use -20dBa</i> Power Setting ² 302.11g Ma 27.5 27.5 24.5	averaging on (transmitte equivalent to method 1 c Power setting - the softw c <i>Limit for Spurious</i> Frequency (MHz) ode 2412	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3	continuous) 3A1 for U-NI etting used d Power mW 134.9	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi) 3.2	elow) with F egration ove purious limit included for Result Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5	ption #2, met DdBc. Iy. Note 2 W 0.282	hod 1 in KDI	3 55807
Note 2: <i>Use -20dBo</i> Power Setting ² 302.11g Mo 27.5 27.5 24.5 HT20	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4	continuous) 3A1 for U-NI etting used d Power mW 134.9 138.0 87.1	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi) 3.2 3.2 3.2	elow) with F egration ove purious limit included for Result Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6	ption #2, met OdBc. ly. Note 2 W 0.282 0.288 0.182	hod 1 in KDI	3 55807
Note 2: Use -20dBo Power Setting ² 302.11g Mo 27.5 27.5 24.5 HT20 27.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462 2412	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4 21.0	continuous) BA1 for U-NI etting used d Power mW 134.9 138.0 87.1 125.9	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi) 3.2 3.2 3.2 3.2	elow) with T egration ove purious limit included for Result Pass Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6 24.2	ption #2, met odBc. ly. Note 2 W 0.282 0.288 0.182 0.263	hod 1 in KDI	3 55807
Note 2: Use -20dBo Power Setting ² 802.11g Mo 27.5 27.5 24.5 HT20 27.5 27.5 27.5 27.5 27.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462 2412 2437	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4 21.0 21.0	continuous) 3A1 for U-NI etting used d Power mW 134.9 138.0 87.1 125.9 125.9	er (see plots b and power int I devices). Sp uring testing, Antenna Gain (dBi) 3.2 3.2 3.2 3.2 3.2 3.2 3.2	eelow) with F egration ove purious limit included for Result Pass Pass Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6 24.2 24.2	ption #2, met odBc. ly. Note 2 W 0.282 0.288 0.288 0.182 0.263 0.263	hod 1 in KDI	3 558074
Note 2: Use -20dBo Power Setting ² 802.11g Mo 27.5 27.5 24.5 HT20 27.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462 2412	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4 21.0	continuous) BA1 for U-NI etting used d Power mW 134.9 138.0 87.1 125.9	er (see plots b and power int I devices). Sp luring testing, Antenna Gain (dBi) 3.2 3.2 3.2 3.2	elow) with T egration ove purious limit included for Result Pass Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6 24.2	ption #2, met odBc. ly. Note 2 W 0.282 0.288 0.182 0.263	hod 1 in KDI	3 558074
Note 2: Power Setting ² 802.11g Mc 27.5 27.5 24.5 HT20 27.5 27.5 24.5 HT20 27.5 24.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462 2412 2437 2462	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4 21.0 21.0 19.6	continuous) 3A1 for U-NI etting used d Power mW 134.9 138.0 87.1 125.9 125.9 91.2	er (see plots b and power int I devices). Sp uring testing, Antenna Gain (dBi) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	Pass Pass Pass Pass Pass Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6 24.2 24.2 24.2 24.2 22.8	ption #2, met odBc. ly. Note 2 W 0.282 0.288 0.288 0.182 0.263 0.263	hod 1 in KDI	3 558074
Note 2: Use -20dBo Power Setting ² 802.11g Mo 27.5 27.5 24.5 HT20 27.5 27.5 27.5 27.5 27.5	averaging on (transmitte equivalent to method 1 of Power setting - the softw c Limit for Spurious Frequency (MHz) ode 2412 2437 2462 2412 2437	d signal was f DA-02-2138 vare power se Output (dBm) ¹ 21.3 21.4 19.4 21.0 21.0 19.6 using a peak	continuous) 3A1 for U-NI etting used d Power mW 134.9 138.0 87.1 125.9 125.9 91.2 c power meter	er (see plots b and power int I devices). Sp uring testing, Antenna Gain (dBi) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	elow) with F egration ove purious limit included for Result Pass Pass Pass Pass Pass Pass Pass	RBW=1MHz, er 50 MHz (o becomes - 30 reference on EIRF dBm 24.5 24.6 22.6 24.2 24.2 24.2 24.2 22.8	ption #2, met OdBc. ly. Note 2 W 0.282 0.288 0.288 0.182 0.263 0.263 0.263 0.191	hod 1 in KDI	3 558074

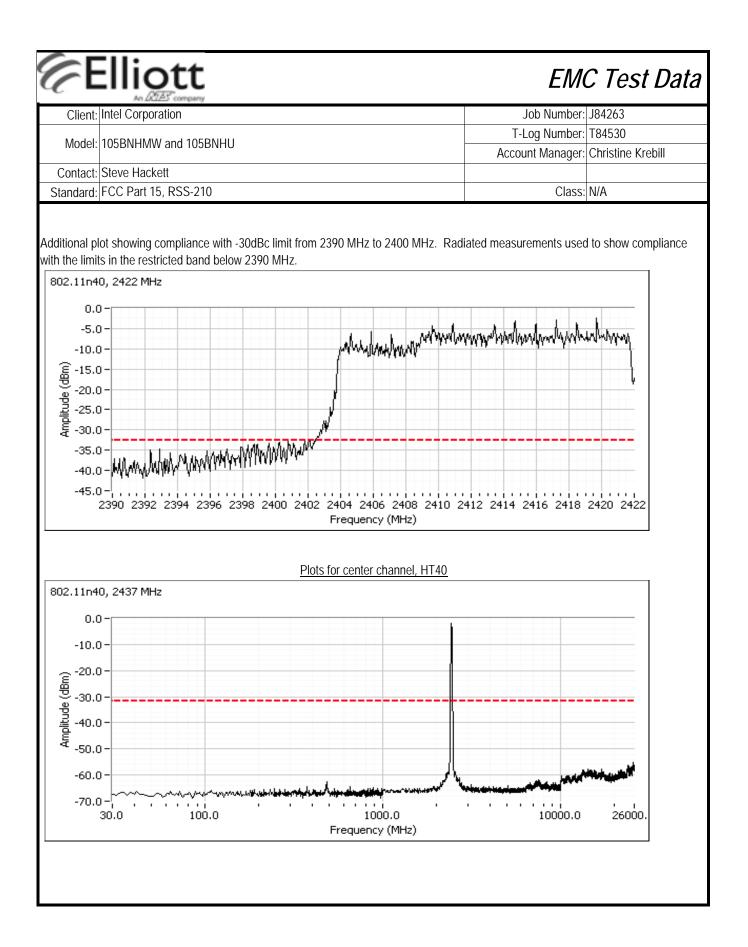


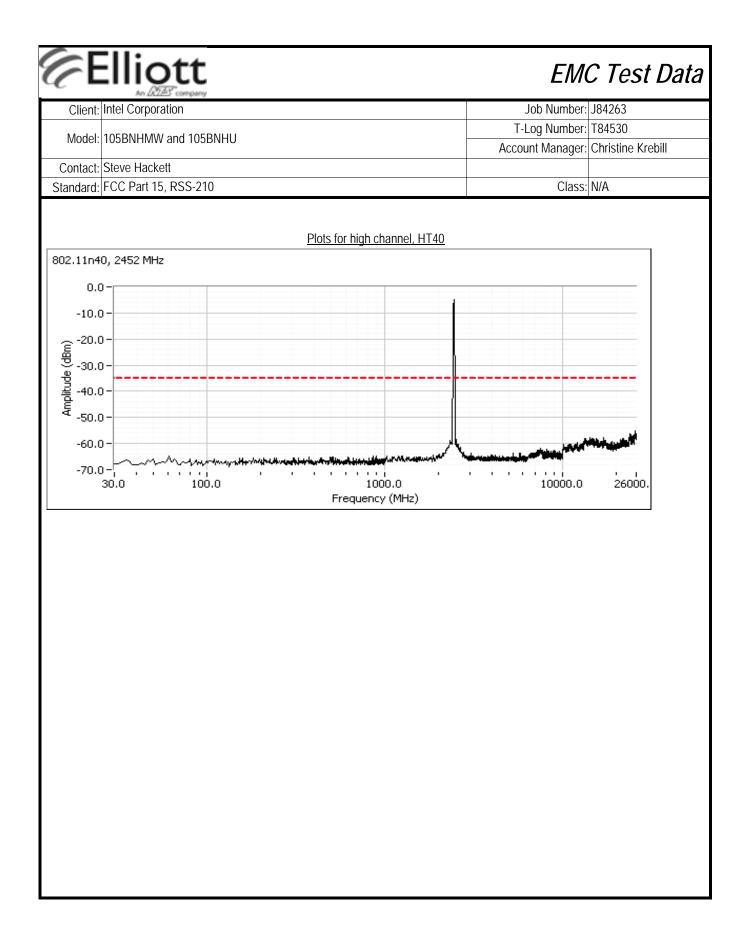












EMC Test Data

 Client:
 Intel Corporation
 Job Number:
 J84263

 Model:
 105BNHMW and 105BNHU
 T-Log Number:
 T84530

 Contact:
 Steve Hackett
 Christine Krebill

 Standard:
 FCC Part 15, RSS-210
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

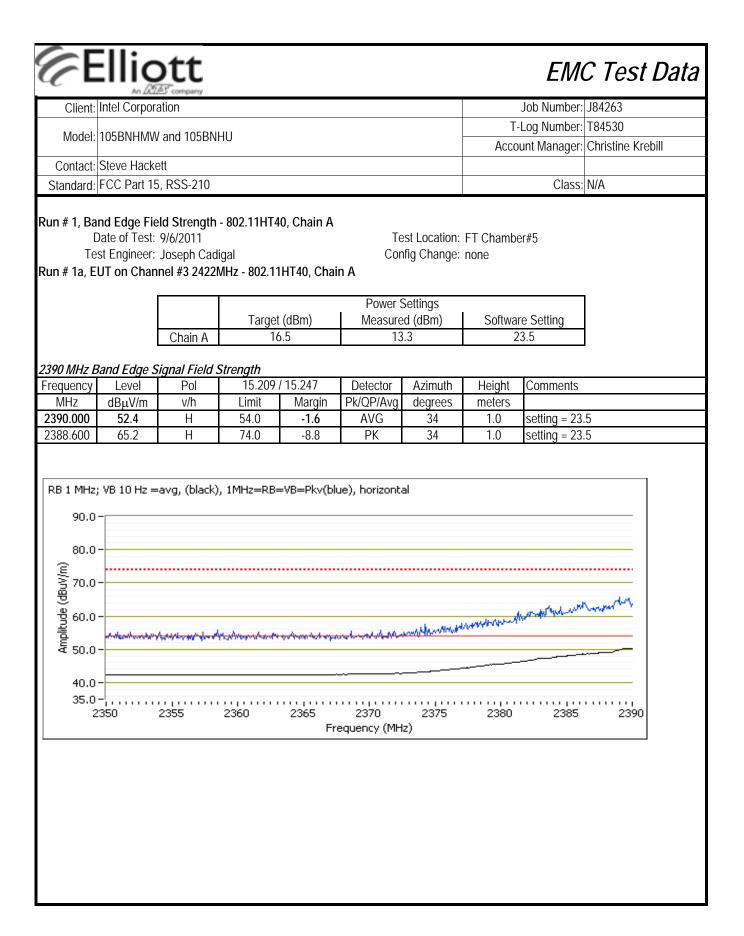
MAC Address: 001500937004 DRTU Tool Version 1.5.3-320 Driver version 15.0.0.51

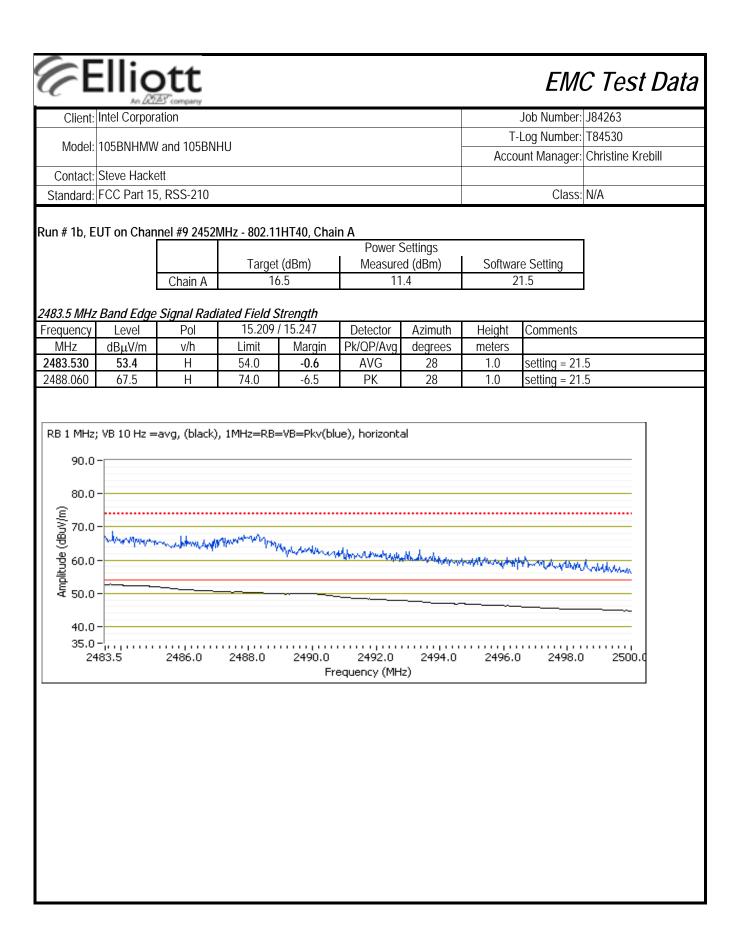
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Riun #1	802.11HT4 0	#3 2422MHz	16.5	13.3	Restricted Band Edge at 2400 MHz	15.209	52.4dBµV/m @ 2390.0MHz (-1.6dB)
RIUIT#1	Chain A	#9 2452MHz	16.5	11.4	Restricted Band Edge at 2483.5 MHz	15.209	53.4dBµV/m @ 2483.5MHz (-0.6dB)
Run # 2	802.11HT2 0	#1 2412MHz	16.5	16.6	Restricted Band Edge at 2400 MHz	15.209	53.5dBµV/m @ 2390.0MHz (-0.5dB)
Ruit# Z	Chain A	#11 2462MHz	16.5	13.9	Restricted Band Edge at 2483.5 MHz	15.209	53.0dBµV/m @ 2483.5MHz (-1.0dB)
Run # 3	802.11G	#1 2412MHz	16.5	16.7	Restricted Band Edge at 2400 MHz	15.209	52.7dBµV/m @ 2390.0MHz (-1.3dB)
Kun # 3	Chain A	#11 2462MHz	16.5	14.2	Restricted Band Edge at 2483.5 MHz	15.209	53.9dBµV/m @ 2483.5MHz (-0.1dB)
Run # 4	802.11B	#1 2412MHz	16.5	16.7	Restricted Band Edge at 2400 MHz	15.209	47.7dBµV/m @ 2390.0MHz (-6.3dB)
Rull # 4	Chain A	#11 2462MHz	16.5	16.7	Restricted Band Edge at 2483.5 MHz	15.209	49.8dBµV/m @ 2483.5MHz (-4.2dB)
Run #5	802.11HT4 0	#4 2427MHz	16.5	12.6	Restricted Band Edge at 2400 MHz	15.209	51.6dBµV/m @ 2389.9MHz (-2.4dB)
Kull#3	Chain A	#8 2447MHz	16.5	11.5	Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2484.7MHz (-1.7dB)
Run #6	802.11HT4 0	#5 2432MHz	16.5	13.8	Restricted Band Edge at 2400 MHz	15.209	52.4dBµV/m @ 2390.0MHz (-1.6dB)
IXUI1#0	Chain A	#7 2442MHz	16.5	12.5	Restricted Band Edge at 2483.5 MHz	15.209	52.0dBµV/m @ 2483.5MHz (-2.0dB)

Æ)tt				EM	C Test Data
Client:	Intel Corpora	ation				Job Number:	J84263
Madalı		and 10EDNI		T-Log Number:	T84530		
woder:	105BNHMW		HU			Account Manager:	Christine Krebill
Contact:	Steve Hacke	ett					
Standard:	FCC Part 15	, RSS-210				Class:	N/A
Run #	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 7	802.11HT2 0	#2 2417MHz	16.5	16.5	Restricted Band Edge at 2400 MHz	15.209	49.5dBµV/m @ 2389.9MHz (-4.5dB)
Rull#7	Chain A	#10 2457MHz	16.5	16.5	Restricted Band Edge at 2483.5 MHz	15.209	53.5dBµV/m @ 2483.5MHz (-0.5dB)
Dup # 9	HT40	#6	16.5	16.5	Restricted Band Edge at 2400 MHz	15.209	53.8dBµV/m @ 2390.0MHz (-0.2dB)
Run # 8	Chain A	2437MHz	16.5	12.8	Restricted Band Edge at 2483.5 MHz	15.209	52.1dBµV/m @ 2483.5MHz (-1.9dB)

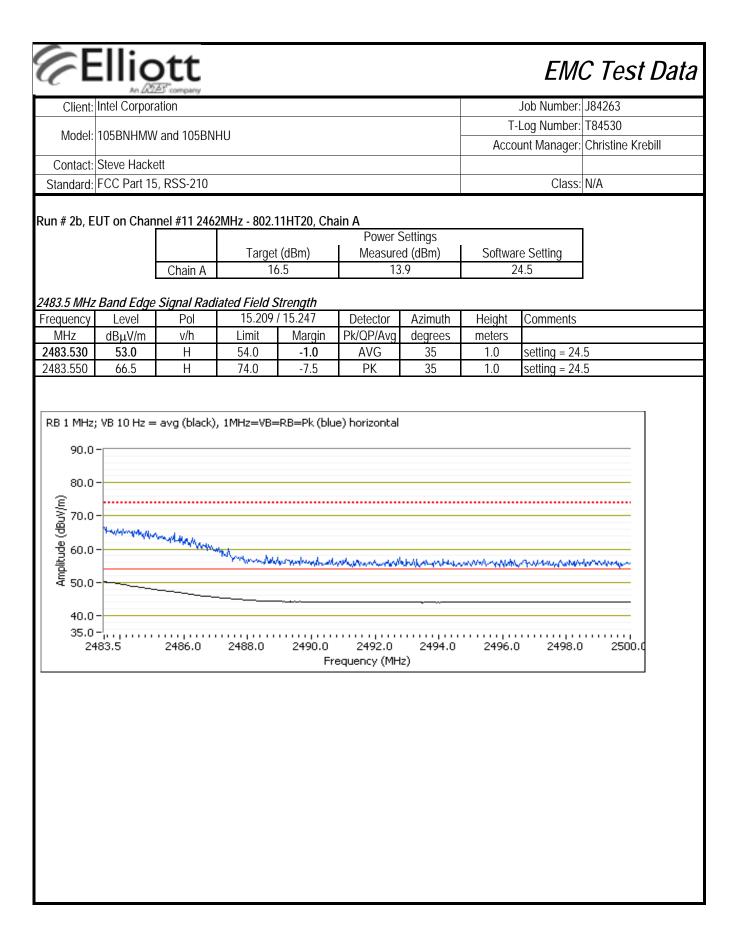
Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only.

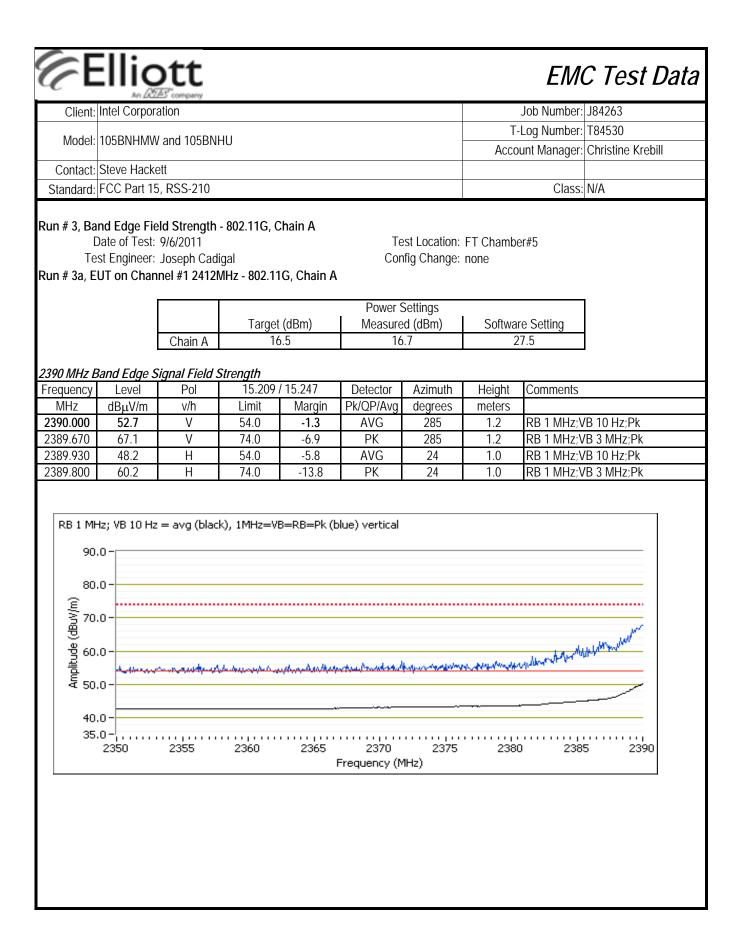
Ambient Conditions:

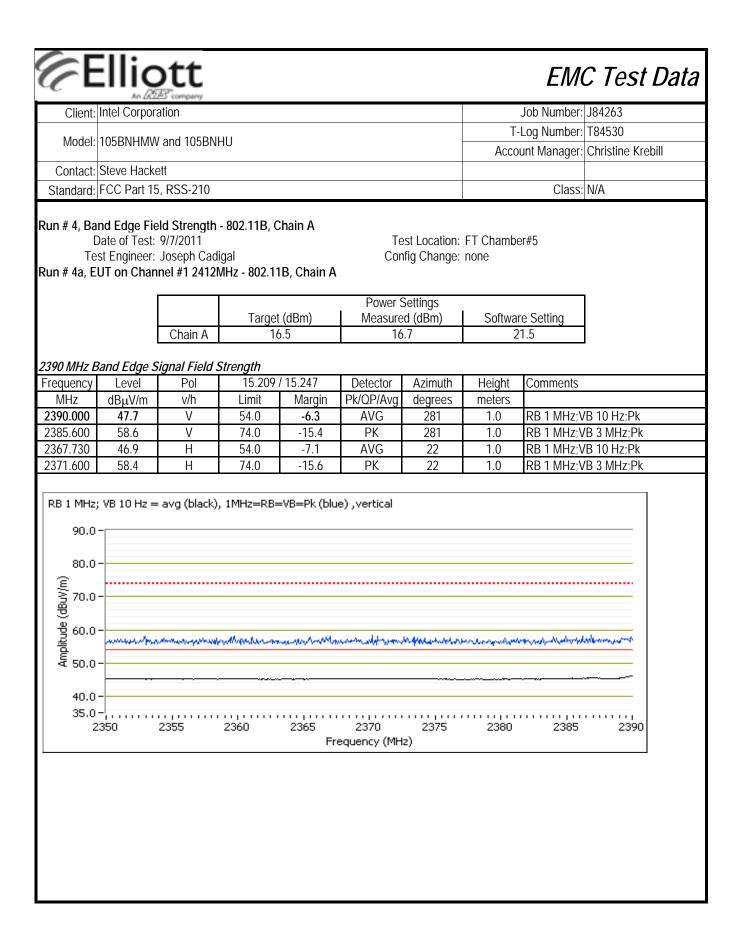

Rel. Humidity:	15 - 55	%
Temperature:	18 - 25	°C

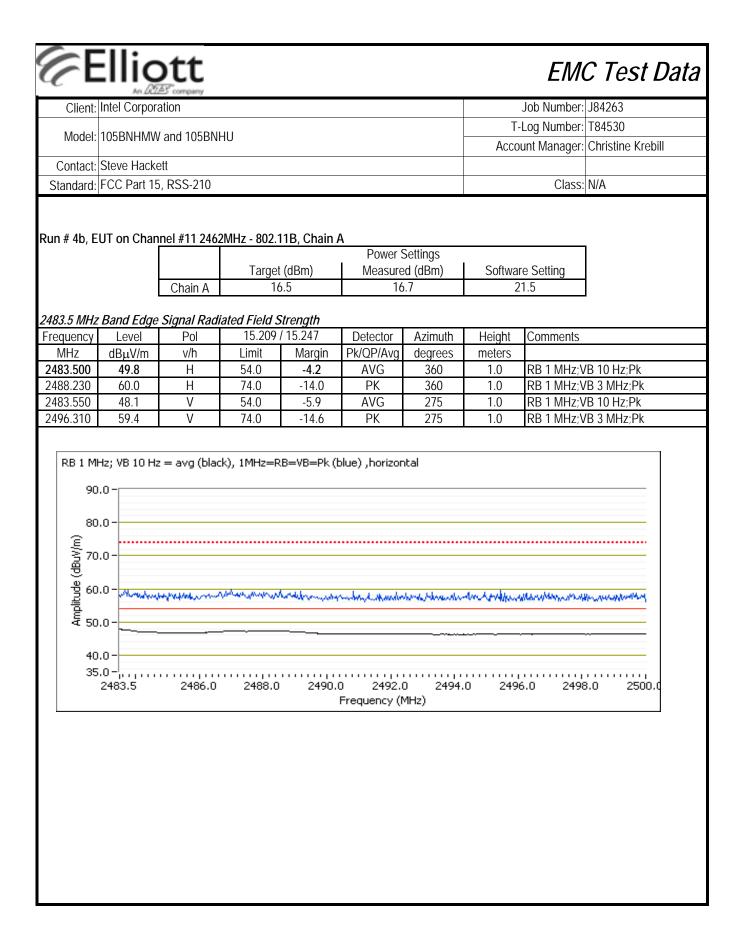

Modifications Made During Testing

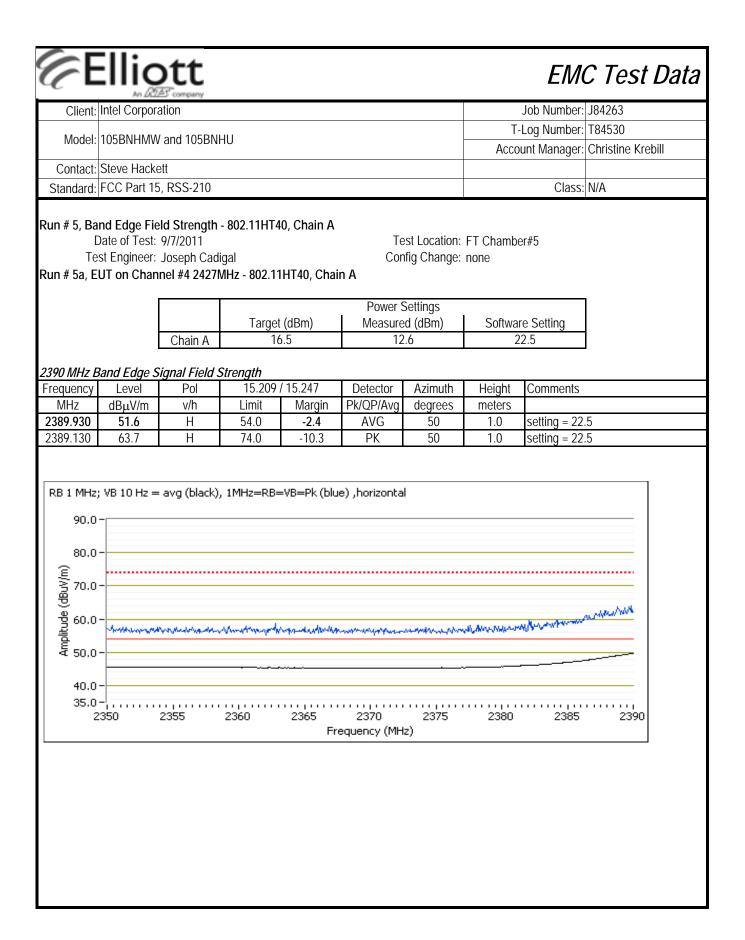

No modifications were made to the EUT during testing

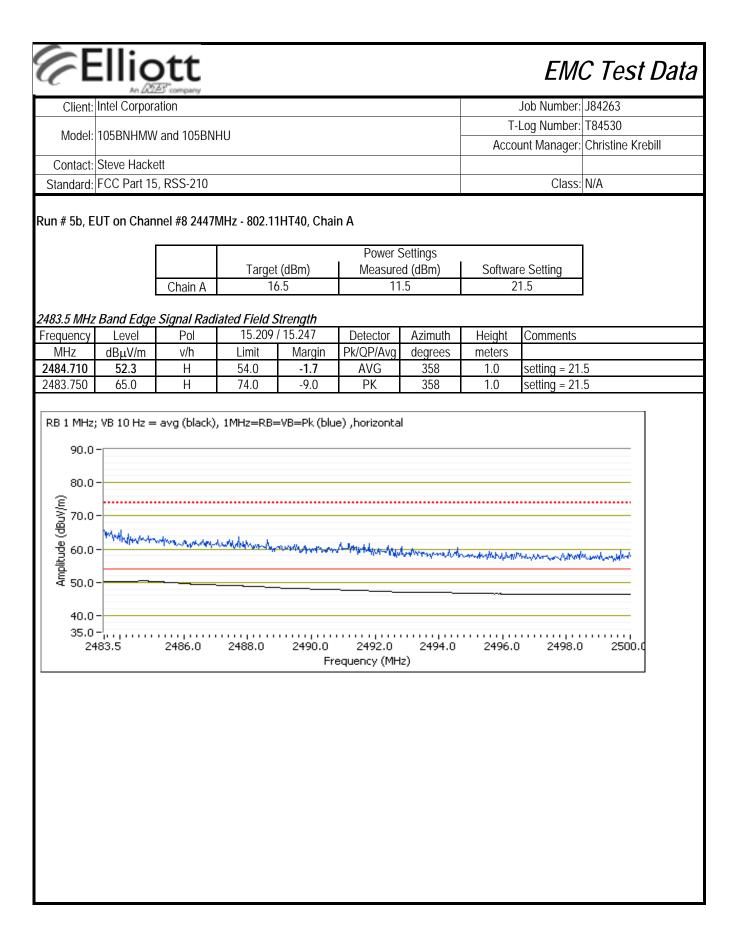

Deviations From The Standard

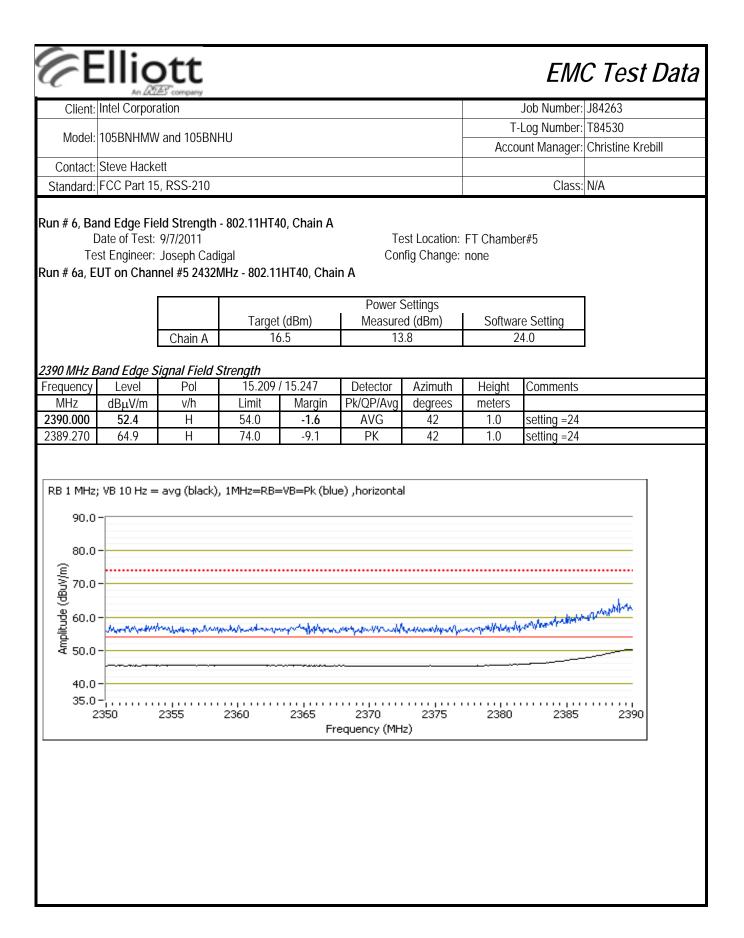

No deviations were made from the requirements of the standard.

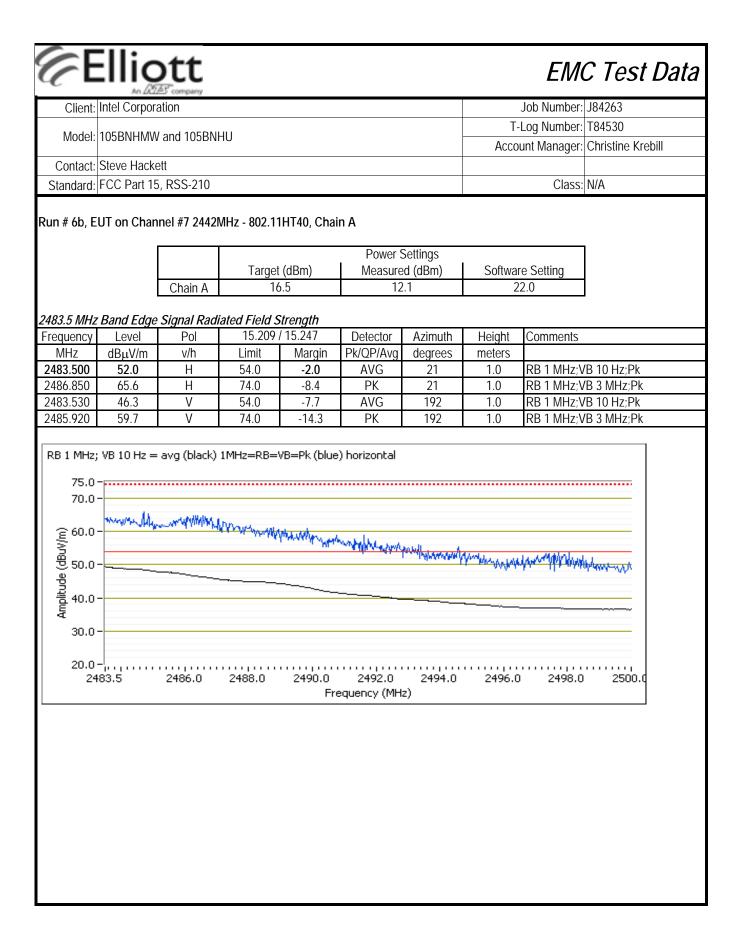


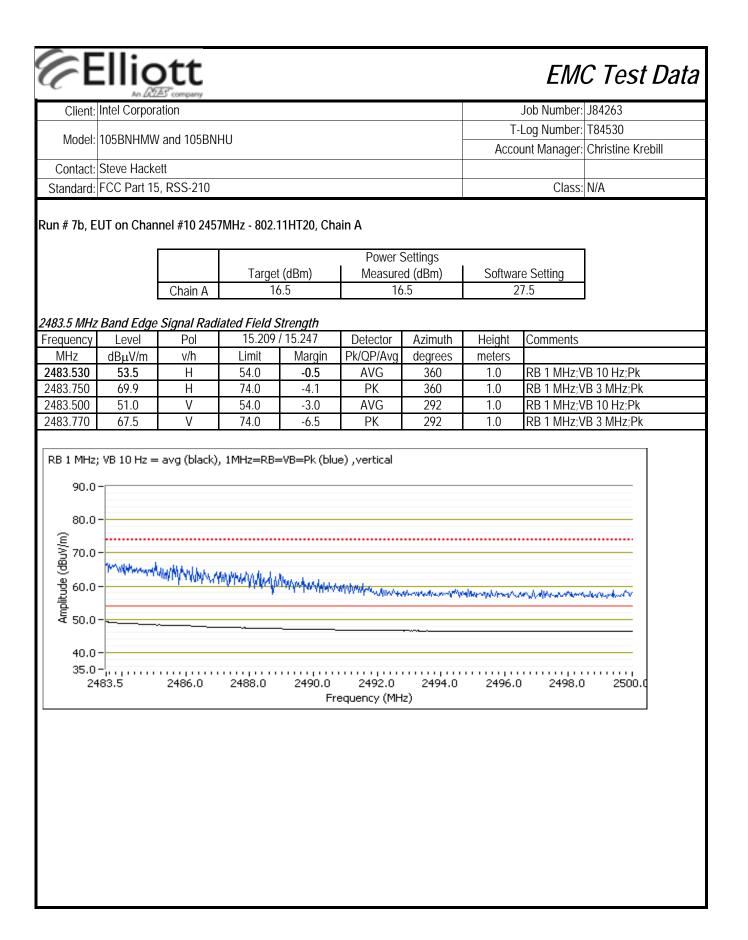


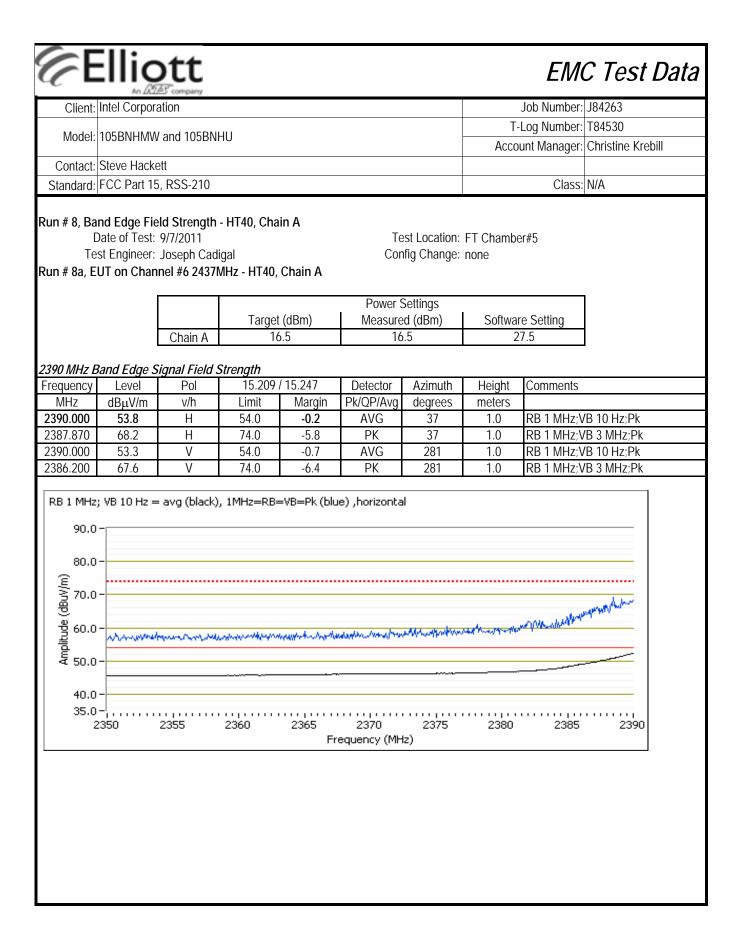


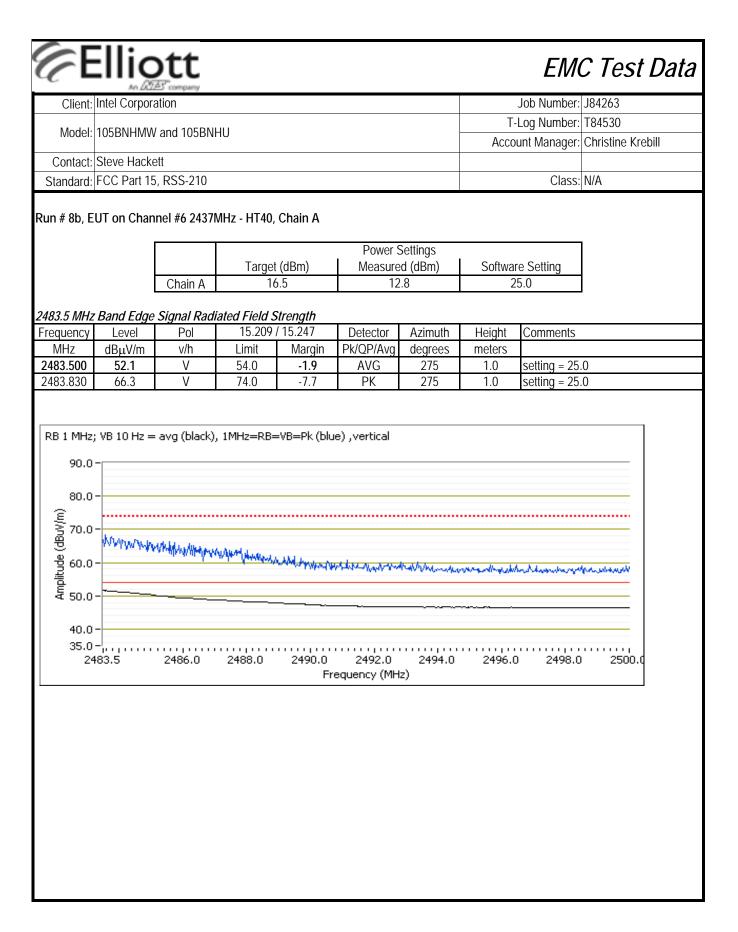


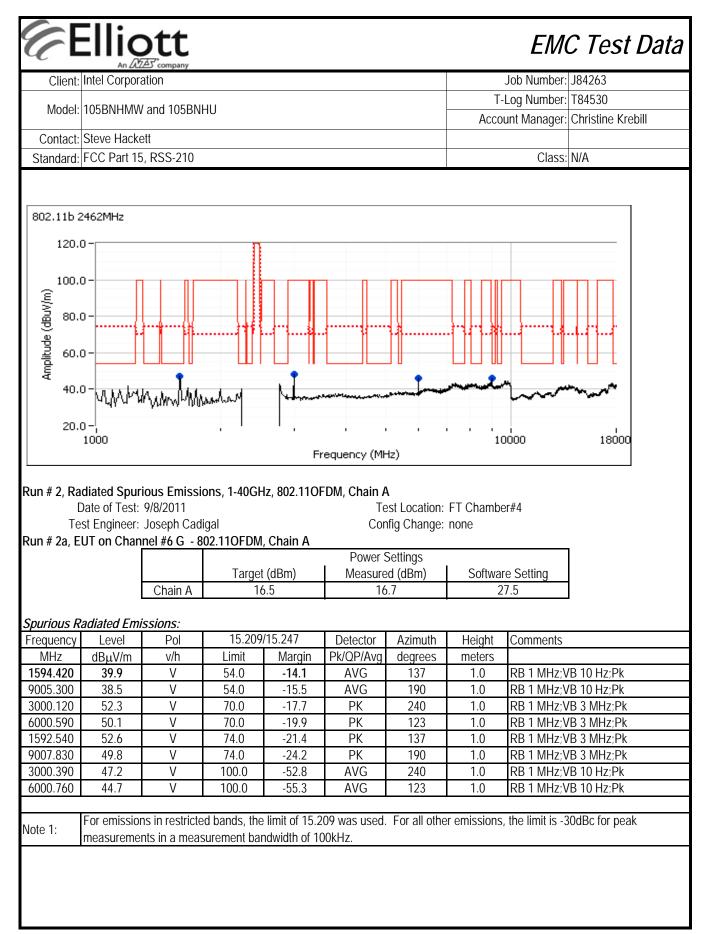




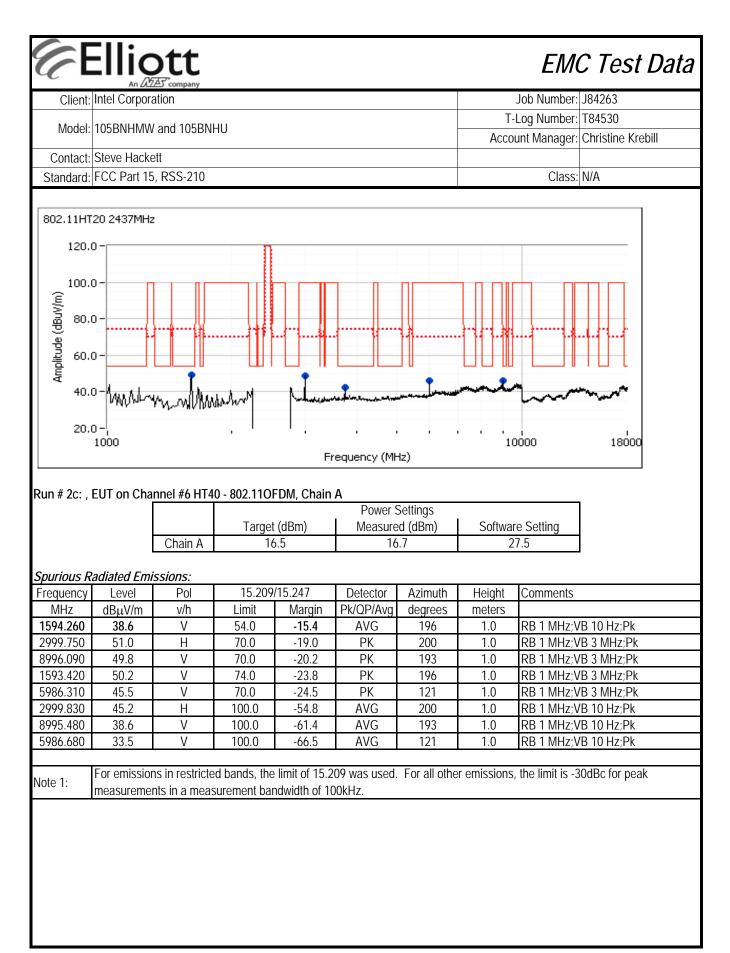


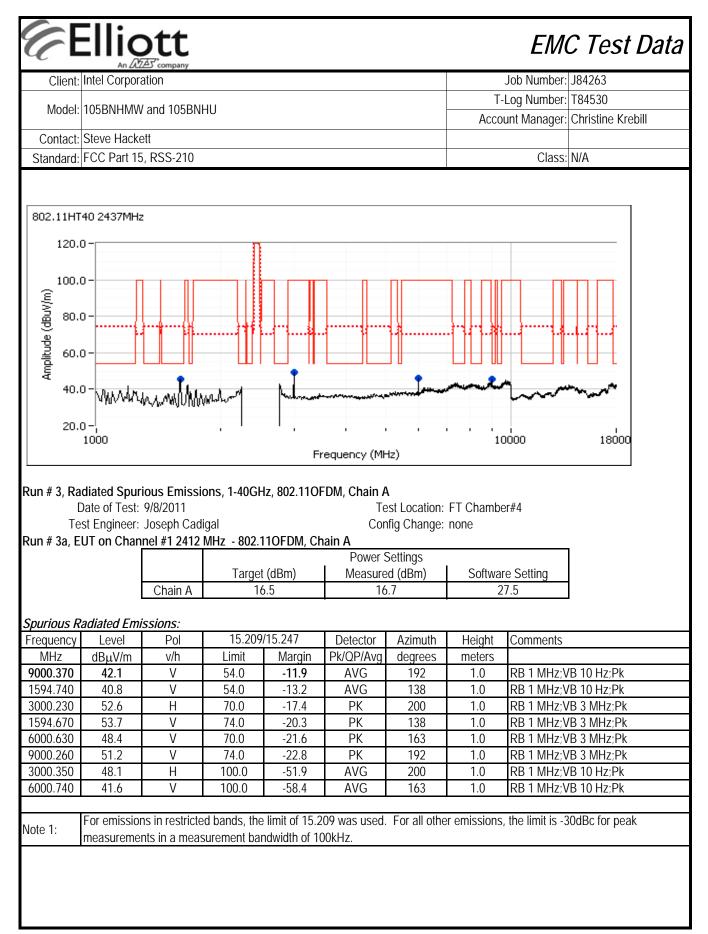


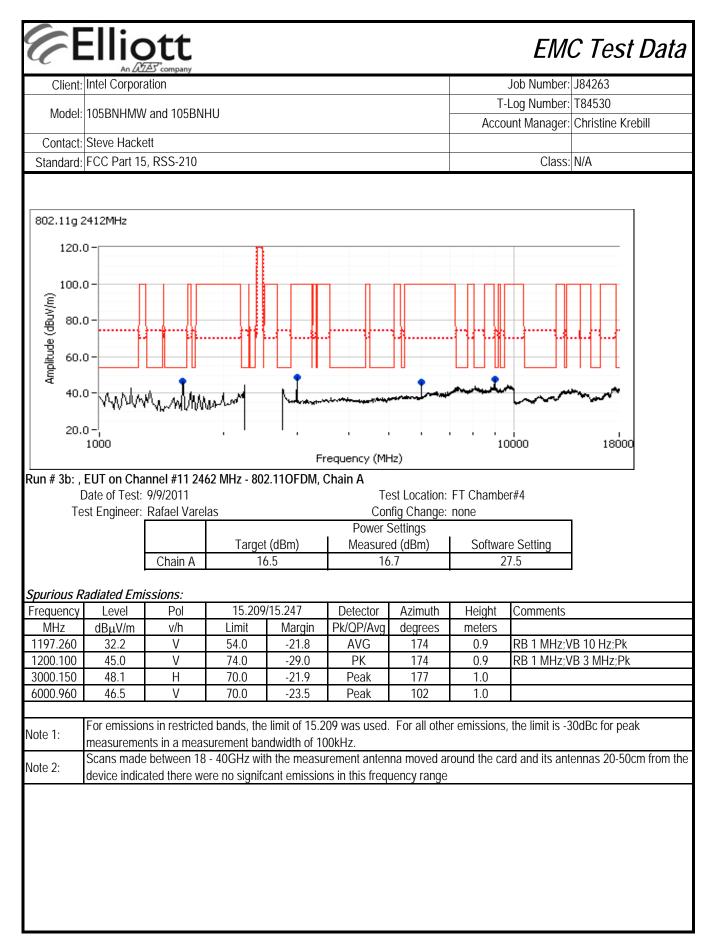


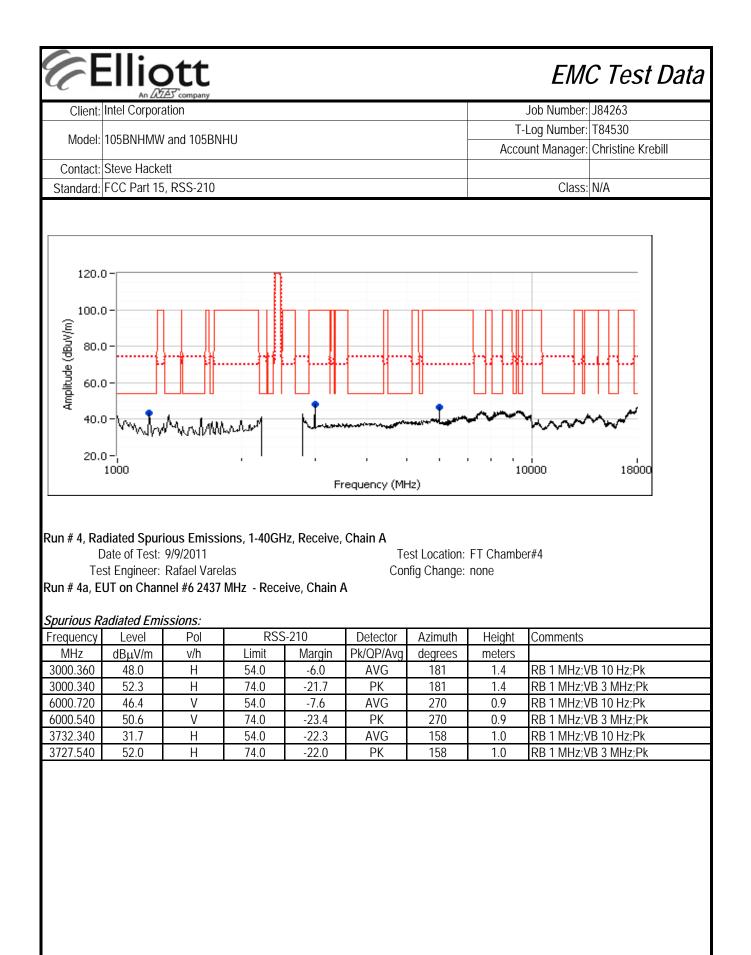


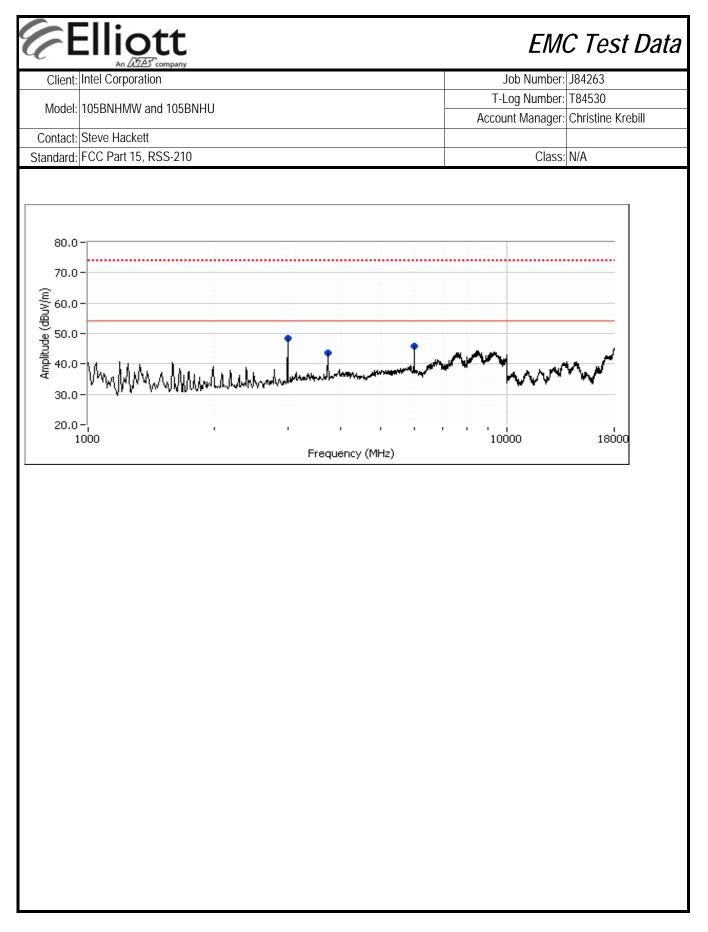
Elliott EMC Test Data Client: Intel Corporation Job Number: J84263 T-Log Number: T84530 Model: 105BNHMW and 105BNHU Account Manager: Christine Krebill Contact: Steve Hackett Standard: FCC Part 15, RSS-210 Class: N/A RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Summary of Results MAC Address: 001500937004 DRTU Tool Version 1.5.3-320 Driver version 15.0.0.51 Target Measured Test Performed Limit Run # Mode Channel Result / Margin Power Power 46.2dBuV/m @ #1 16.5 16.7 2412MHz 9001.1MHz (-7.8dB) 802.11b #6 Radiated Emissions, 38.6dBµV/m @ 16.6 FCC 15.209 / 15.247 Run #1 16.5 9004.0MHz (-15.4dB) Chain A 2437MHz 1 - 40 GHz 52.4dBµV/m @ #11 16.7 16.5 2462MHz 3000.3MHz (-17.6dB) Preliminary measurements on center channel 39.9dBµV/m @ #6 G 16.5 16.7 1594.4MHz (-14.1dB) 38.6dBµV/m @ OFDM Radiated Emissions, FCC 15.209 / 15.247 Run # 2 #6 HT20 16.5 16.7 Chain A 1 - 40 GHz 9002.7MHz (-15.4dB) 38.6dBµV/m @ #6 HT40 16.5 16.7 1594.3MHz (-15.4dB) Measurements on low and high channels in worst-case OFDM mode. 42.1dBuV/m @ #1 2412 16.5 16.7 OFDM MHz Radiated Emissions, 9000.4MHz (-11.9dB) Run # 3 FCC 15.209 / 15.247 32.2dBµV/m @ Chain A #11 2462 1 - 40 GHz 16.5 16.7 1197.3MHz (-21.8dB) MHz Receive #6 2437 Radiated Emissions, 48.0dBµV/m @ FCC 15.209 / 15.247 Run # 4 Chain A 1 - 40 GHz 3000.4MHz (-6.0dB) MHz Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool. Use the Gain Control mode of adjusting power. Set power to within +/-0.2dB of target. Ambient Conditions: Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

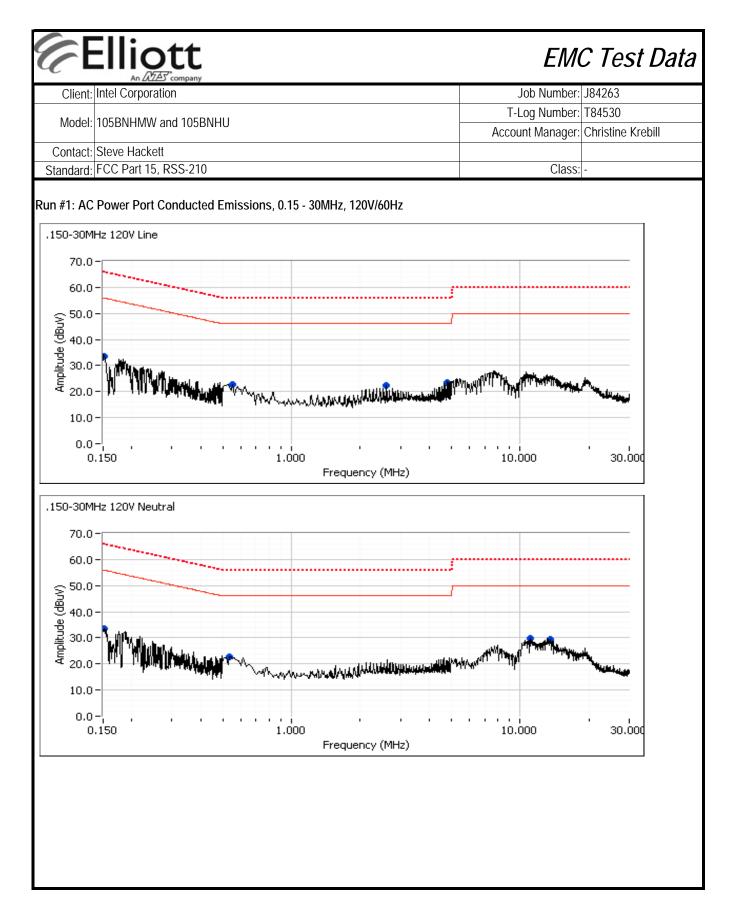

6	Ellig	ott						EMO	C Test Data
Client:	Intel Corpora	ation						Job Number:	J84263
							T-	Log Number:	T84530
Model:	105BNHMW	and 105BNI	HU					0	Christine Krebill
Contact:	Steve Hacke	ett						-	
Standard:	FCC Part 15	5, RSS-210						Class:	N/A
lo modifica Deviation	tions were m I S From Th	e During Te ade to the EL ne Standar e from the rec	JT during te: d	-	ırd.				
Three sets of Aarker delta of ~ 50cm) f	as are made for MIMO mo	tas are meas conducted (a	nalyzer coni	nected to EU	JT rf port a 200				B=1MHz, VB=10Hz. radiated (at a distance
ngle/height A <i>nalyzer" to</i> s below 45o Also measu o verify the	t to the in-bar o give both the dBuV/m (aver re the fundan transmitter's	nd signal). Se e delta and th rage). nental field st field strength	e sample pl <i>he field stren</i> rength as a h is where w	ot for band e <i>ngth value for</i> reference po e would exp	edge measure <i>r the band edg</i> pint (so we hav ect it to be).	ment> <i>[us ge]</i> . Make si	<i>se the band</i> ure the noise	<i>edge marker</i> e floor field st	y be at a different feature of the "Capture rength at the band edgo untenna connection and
[Te	Date of Test: est Engineer:	ous Emissio 9/8/2011 Joseph Cadi nel #1 2412 N	gal		Te Con	est Location: ofig Change:		er#4	
			Τ	L (JDm)	Power S	· ·	Ceffred		
		Chain A	Ū.	t (dBm) 6.5	Measure 16			e Setting 1.5	
				5.5	10	. /	Ζ.	1.0	
Spurious R	Radiated Emi	issions:							
requency	Level	Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9001.100	46.2	V	54.0	-7.8	AVG	192	1.0	RB 1 MHz;V	
1598.610	35.2	V	54.0	-18.8	AVG	218	1.0	RB 1 MHz;V	
9000.900	54.0	V H	74.0	-20.0	PK	192	1.0		B 3 MHz;Pk
3000.480	49.6 31.9	H V	70.0	-20.4	PK	190 152	1.0 1.3	RB 1 MHz;V	
3742.360 5989.650		V V	54.0	-22.1 -24.9	AVG PK	152 124	1.3	RB 1 MHz;V	
1202 070	45.1	V	70.0		PK PK			RB 1 MHz;V	
	48.5 42.6	V	74.0 74.0	-25.5 -31.4	PK PK	218 152	1.0 1.3		'B 3 MHz;Pk 'B 3 MHz;Pk
1598.410	42.0		100.0	-31.4	AVG	152	1.3	RB 1 MHZ;V	
1598.410 3743.520	12 F		100.0	-00.0	AVU				
1598.410 3743.520 3000.330	43.5 33.5	H V	100.0	-66.5	AVG	124	1.0	RB 1 MHz:V	'B 10 Hz;Pk
1598.410 3743.520 3000.330 5989.530	43.5 33.5		100.0	-66.5	AVG	124	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1598.410 3743.520 3000.330	33.5 For emission	V	d bands, the	e limit of 15.2	209 was used.				B 10 Hz;Pk OdBc for peak


	An A	Company						Jak Ni wakaz	1042/2
Client	Intel Corpora	ation						Job Number:	
Model	105BNHMW	and 105BNI	HU					Log Number:	
							Acco	unt Manager:	Christine Krebill
	Steve Hacke							01	N1/A
Standard	FCC Part 15	o, RSS-210						Class:	N/A
802.11b	241200								
002.110	2412002								
120.	0-		п						
100.	0-								
Amplitude (dBuV/m) 0.08	0-								
	(.	Ì- ∳ ∰				11	http://		
관 60.	n-								
ild w	ਁ ├──┘								I LJ L
	o-Wwwhy	h i Îta		_ h I	• • • • • • • • • • • • • • • • • • •	ويبيسه ليستدون	your for	7.000	man of the second se
	TWOV V	የሚኮላአሥልያ	alle want	-				~~~	
20.	0-¦								
20.	0 -¦ 1000			, 			10	0000	18000
	1000				requency (MF	lz)	10	000	18000
		nnel #6 2437	MHz - 802.1			-	10	000	18000
	1000	nnel #6 2437		1b, Chain A	Power S	Settings			18000
	1000	nnel #6 2437 Chain A	Targe			Settings ed (dBm)	Softwa	re Setting 1.5	18000
ในท #1b: ,	1000 EUT on Char	Chain A	Targe	1b, Chain A t (dBm)	Power S Measure	Settings ed (dBm)	Softwa	re Setting	18000
Run #1b: , Spurious K	1000 EUT on Char Padiated Emi	Chain A	Targel 10	1b, Chain A t (dBm) 5.5	Power S Measure 16	Settings ed (dBm) 9.6	Softwai 2	re Setting 1.5	18000
Run #1b: , Spurious K Frequency	1000 EUT on Char Radiated Emi Level	Chain A issions: Pol	Targel 10 15.209	1b, Chain A t (dBm) 5.5 /15.247	Power S Measure 16 Detector	Settings ed (dBm) 0.6 Azimuth	Softwar 2 Height	re Setting	18000
Run #1b: , S <i>purious K</i> Frequency MHz	1000 EUT on Char Radiated Emi Level dBµV/m	Chain A issions: Pol v/h	Targei 10 15.209 Limit	1b, Chain A (dBm) 5.5 /15.247 Margin	Power S Measure 16 Detector Pk/QP/Avg	Settings ed (dBm) 0.6 Azimuth degrees	Softwar 2 Height meters	re Setting 1.5 Comments	
Run #1b: , Spurious K Frequency MHz 9003.970	1000 EUT on Char Radiated Emi Level	Chain A issions: Pol	Targel 10 15.209	1b, Chain A t (dBm) 5.5 /15.247	Power S Measure 16 Detector	Settings ed (dBm) 0.6 Azimuth	Softwar 2 Height	re Setting 1.5 Comments RB 1 MHz;V	/B 10 Hz;Pk
Run #1b: , Spurious K Frequency MHz 9003.970 1594.100	1000 EUT on Char Radiated Emi Level dBµV/m 38.6	Chain A issions: Pol v/h V	Target 10 15.209 Limit 54.0	1b, Chain A (dBm) 5.5 /15.247 Margin - 15.4	Power S Measure 16 Detector Pk/QP/Avg AVG	Settings ed (dBm) o.6 Azimuth degrees 192	Softwar 2 Height meters 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk
Cun #1b: , <u>Spurious K</u> Trequency <u>MHz</u> 9003.970 1594.100 3000.390	1000 EUT on Char Radiated Emi Level dBμV/m 38.6 38.3	Chain A issions: Pol v/h V V	Target 16 15.209 Limit 54.0 54.0	1b, Chain A t (dBm) 5.5 /15.247 Margin -15.4 -15.7	Power S Measure 16 Detector Pk/QP/Avg AVG AVG	Settings ed (dBm) 5.6 Azimuth degrees 192 190	Softwar 2 Height meters 1.0 1.3	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk
Run #1b: , Spurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650	1000 EUT on Char Cadiated Emi Level dBμV/m 38.6 38.3 52.6	Chain A issions: Pol V/h V V V	Target 16 15.209 Limit 54.0 54.0 70.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244	Softwar 2 Height meters 1.0 1.3 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
Eun #1b: , Epurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6	Chain A Fol V/h V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162	Softwar 2 Height meters 1.0 1.3 1.0 1.0 1.0	re Setting 1.5 RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
Eun #1b: , Epurious R Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0	Chain A Fol V/h V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK AVG	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199	Softwar 2 Height meters 1.0 1.3 1.0 1.0 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
Spurious F Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0	Chain A issions: Pol V/h V V V V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK AVG PK AVG PK	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190	Softwar 2 Height meters 1.0 1.3 1.0 1.0 1.0 1.0 1.3	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
Eun #1b: , Eun #1b: , Erequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0	Chain A issions: Pol V/h V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 54.0 70.0 54.0 74.0 74.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0	Power S Measure 16 Detector Pk/QP/Avg AVG AVG AVG PK PK AVG PK PK PK	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 190 192	Softwar 2 Height neters 1.0 1.3 1.0 1.0 1.0 1.3 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
Spurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940 3000.400	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0 43.8	Chain A issions: Pol V/h V V V V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0 74.0 74.0 74.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0 -30.2	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK PK PK PK PK PK	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 192 199	Softwar 2 Height neters 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.3 1.0 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
Spurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940 3000.400	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0 43.8 47.9 42.9	Chain A ssions: Pol V/h V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 70.0 70.0 70.0 70.0 74.0 74.0 74.0 7	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0 -24.0 -30.2 -52.1 -57.1	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK PK PK PK PK PK AVG AVG AVG AVG	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 192 199 244 162	Softwar 2 Height meters 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
Run #1b: , Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940 3000.400 6000.750	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0 43.8 47.9 42.9 For emission	Chain A issions: Pol V/h V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 54.0 70.0 54.0 74.0 74.0 74.0 74.0 100.0 100.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0 -23.0 -24.0 -30.2 -52.1 -57.1 e limit of 15.2	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 192 199 244 162	Softwar 2 Height meters 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
Spurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940	1000 EUT on Char Level dBμV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0 43.8 47.9 42.9 For emission measureme	Chain A issions: Pol V/h V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 54.0 70.0 54.0 74.0 74.0 74.0 100.0 100.0 100.0	1b, Chain A (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0 -23.0 -24.0 -30.2 -52.1 -57.1 e limit of 15.2 ndwidth of 10	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK PK PK PK PK PK PK AVG AVG O9 was used. 009 was used.	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 192 199 244 162 For all othe	Softwar 2 Height neters 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk
Spurious K Frequency MHz 9003.970 1594.100 3000.390 6000.650 4875.070 1592.990 9006.330 4876.940 3000.400 6000.750	1000 EUT on Char Level dBµV/m 38.6 38.3 52.6 49.6 32.0 51.0 50.0 43.8 47.9 42.9 For emissior measureme Scans made	Chain A issions: Pol V/h V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 74.0 74.0 74.0 74.0 74.0 100.0 100.0 100.0 100.0	1b, Chain A t (dBm) 5.5 /15.247 Margin -15.4 -15.7 -17.4 -20.4 -22.0 -23.0 -24.0 -30.2 -52.1 -57.1 e limit of 15.2 ndwidth of 10 h the measu	Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK PK PK PK PK PK PK AVG AVG O9 was used. 009 was used.	Settings ed (dBm) 5.6 Azimuth degrees 192 190 244 162 199 190 192 199 244 162 For all othe	Softwar 1.0 1.3 1.0 1.3 1.0	re Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 10 Hz;Pk


	Intel Corpor	ation						Job Number:	
Model:	105BNHMW	and 105BNI	HU					Log Number:	T84530 Christine Krebill
Contact	Steve Hacke	-tt					ALLO	unt manager:	
	FCC Part 15							Class:	N/A
802.11b	2437MHz								
120	.0								
100 寛	.0-								
Amplitude (dBuV/m) 00 00	.0-								
, de					-1 1	11	-111-1		
00 mplit.	.0								
	0-1-1-64	t with	the section of the	- Kilina	للمور	and the second second	بمسره	1~~~	and the second s
	WWWW	ብ እር _ጥ ለበበ በህ	Albah ana.	1.44					
	.0-	«•••\{ ₂ ,4\{1,1,1,1}	Mbus and					οήοο	18000
		ª vvvVVVD0	, Mhan an a	F	Frequency (MI	 Hz)		0000	18000
20	.0 - 1000					 Hz)		0000	18000
20	.0 - 1000	ት የሚያ መጠር	2MHz - 802.	11b, Chain		-		0000	18000
20	.0 - 1000	nnel #11 246		11b, Chain t (dBm)	A Power S Measure	Settings d (dBm)	Softwar	re Setting	18000
20	.0 - 1000			11b, Chain	A Power S	Settings d (dBm)	Softwar		18000
20 In #1c: , I	.0 - 1000	nnel #11 246 Chain A		11b, Chain t (dBm)	A Power S Measure	Settings d (dBm)	Softwar	re Setting	18000
20 In #1c: , I Durious R requency	EUT on Char adiated Emi	nnel #11 246 Chain A issions: Pol	2MHz - 802. Target 10 15.209	11b, Chain t (dBm) 5.5 /15.247	A Power S Measure 16 Detector	Settings d (dBm) .7 Azimuth	Softwar 2 Height	re Setting	18000
20 un #1c: , l p <u>urious R</u> requency MHz	.0 - 1000 EUT on Char adiated Emi Level dBμV/m	nnel #11 246 Chain A issions: Pol v/h	2MHz - 802. Target 10 15.209 Limit	11b, Chain t (dBm) 5.5 /15.247 Margin	A Power S Measure 16 Detector Pk/QP/Avg	Settings d (dBm) .7 Azimuth degrees	Softwar 2 Height meters	e Setting 1.5 Comments	
20 n #1c: , l <u>ourious R</u> equency <u>MHz</u> 000.330	adiated Emi Level 622.4	nnel #11 246 Chain A issions: Pol V/h V	2MHz - 802. Targel 10 15.209 Limit 70.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6	A Power S Measure 16 Detector Pk/QP/Avg PK	Settings d (dBm) .7 Azimuth degrees 240	Softwar 2 Height meters 1.0	re Setting 1.5 Comments RB 1 MHz;V	/B 3 MHz;Pk
20 n #1c: , l <u>urious R</u> equency MHz <u>000.330</u> 000.800	0 - 1000 EUT on Char Level dBμV/m 52.4 50.9	nnel #11 246 Chain A issions: Pol V/h V V	2MHz - 802. Target 16 15.209 Limit 70.0 70.0	11b, Chain t (dBm) 5.5 /15.247 Margin -17.6 -19.1	A Power S Measure 16 Detector Pk/QP/Avg PK PK	Settings d (dBm) .7 Azimuth degrees 240 123	Softwar 2 Height meters 1.0 1.0	Te Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/ <u>B 3 MHz;Pk</u> /B 3 MHz;Pk
20 n #1c: , l equency MHz)00.330)00.800)99.290	20 - 1 1000 EUT on Char Level dBμV/m 52.4 50.9 50.8	nnel #11 246 Chain A issions: Pol V/h V V V	2MHz - 802. Target 10 15.209 Limit 70.0 70.0 70.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2	A Power S Measure 16 Detector Pk/QP/Avg PK PK PK PK	Settings d (dBm) .7 Azimuth degrees 240 123 204	Softwar 2 Height meters 1.0 1.0 1.0	Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
20 In #1c: , I Purious R equency MHz 000.330 000.800 999.290 587.980	20 - 1 1000 EUT on Char Level dBμV/m 52.4 50.9 50.8 29.3	nnel #11 246 Chain A issions: Pol V/h V V	2MHz - 802. Targel 10 15.209 Limit 70.0 70.0 70.0 54.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2 -24.7	A Power S Measure 16 Detector Pk/QP/Avg PK PK PK AVG	Settings d (dBm) .7 Azimuth degrees 240 123	Softwar 2 Height meters 1.0 1.0	e Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
20 In #1c: , I Durious R requency	20 - 1 1000 EUT on Char Level dBμV/m 52.4 50.9 50.8	nnel #11 246 Chain A issions: Pol V/h V V V V	2MHz - 802. Target 10 15.209 Limit 70.0 70.0 70.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2	A Power S Measure 16 Detector Pk/QP/Avg PK PK PK PK	Settings d (dBm) .7 Azimuth degrees 240 123 204 174	Softwar 2 Height meters 1.0 1.0 1.0 1.0 1.0	e Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
20 In #1c: , I Purious R equency MHz 000.330 000.800 999.290 587.980 587.620 000.370	adiated Emi 2000 EUT on Char Level dBµV/m 52.4 50.9 50.8 29.3 40.6	nnel #11 246 Chain A Ssions: Pol V/h V V V V V V V V V V V V V	2MHz - 802. Target 10 15.209 Limit 70.0 70.0 70.0 54.0 74.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2 -24.7 -33.4	A Power S Measure 16 Detector PK/QP/Avg PK PK PK AVG PK	Settings d (dBm) .7 Azimuth degrees 240 123 204 174 174	Softwar 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0	e Setting 1.5 RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk
20 n #1c: , m #1c: , m #1c: , mHz 000.330 000.800 000.300 000.800 000.370 000.370 000.720	adiated Emi EUT on Char Level dBμV/m 52.4 50.9 50.8 29.3 40.6 47.6	nnel #11 246 Chain A Sissions: Pol V/h V V V V V V V V V V	2MHz - 802. Targel 16 15.209 Limit 70.0 70.0 70.0 54.0 74.0 100.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2 -24.7 -33.4 -52.4	A Power S Measure 16 Detector PK/QP/Avg PK PK PK AVG PK AVG AVG	Settings d (dBm) .7 Azimuth degrees 240 123 204 174 174 174 240	Softwar 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0	e Setting 1.5 RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk
20 In #1c: , I ourious R equency MHz 000.330 000.800 999.290 587.980 587.620 000.370 000.720	20 - 1 1000 EUT on Char 2adiated Emi Level dBμV/m 52.4 50.9 50.8 29.3 40.6 47.6 44.9 39.0	nnel #11 246 Chain A issions: Pol V/h V V V V V V V V V V V V V V V V	2MHz - 802. Target 10 15.209 Limit 70.0 70.0 70.0 54.0 74.0 100.0 100.0 100.0	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2 -24.7 -33.4 -52.4 -55.1 -61.0	A Power S Measure 16 Detector Pk/QP/Avg PK PK PK AVG AVG AVG AVG AVG	Settings d (dBm) .7 Azimuth degrees 240 123 204 174 174 174 240 123 204	Softwar 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	e Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk
20 In #1c: , I <u>ourious R</u> requency <u>MHz</u> 000.330 000.800 999.290 587.980 587.620	adiated Emi EUT on Char Level dBμV/m 52.4 50.9 50.8 29.3 40.6 47.6 44.9 39.0 For emission	nnel #11 246 Chain A issions: Pol V/h V V V V V V V V V V V V V V V V	2MHz - 802. Target 10 15.209 Limit 70.0 70.0 70.0 70.0 70.0 70.0 70.0 100.0 100.0 100.0 d bands, the	11b, Chain (dBm) 5.5 /15.247 Margin -17.6 -19.1 -19.2 -24.7 -33.4 -52.4 -55.1 -61.0 e limit of 15.2	A Power S Measure 16 Detector Pk/QP/Avg PK PK PK AVG AVG AVG AVG AVG AVG	Settings d (dBm) .7 Azimuth degrees 240 123 204 174 174 174 240 123 204	Softwar 2 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	e Setting 1.5 Comments RB 1 MHz;V RB 1 MHz;V	/B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk




	Ellic	AT comments							
Client	Intel Corpora	tion						Job Number:	J84263
	10551111111						T-	Log Number:	T84530
Model	105BNHMW	and 105BNF	HU				Ассо	ount Manager:	Christine Krebill
Contact	Steve Hacke	tt						-	
Standard	FCC Part 15,	RSS-210						Class:	N/A
120. 100. (m/\nge (dBr\/m) 80. 60.	0-	t the second	handread	Law Place	4,cp	3. 			
20.	0-1		,	I Į Fi	requency (Mł			0000	18000
			Target	FDM, Chain	A Power S Measure	Settings ed (dBm)	Softwa	re Setting	18000
	1000	nnel #6 HT2 Chain A	Target	FDM, Chain	A Power S	Settings ed (dBm)	Softwa		18000
ın # 2b: ,	EUT on Char	Chain A	Target 16	FDM, Chain t (dBm) 5.5	A Power S Measure 16	Settings ed (dBm) 5.7	Softwa 2	re Setting 27.5	18000
ın # 2b: , p <u>urious k</u> equency	EUT on Char	Chain A ssions: Pol	Target 16 15.209	FDM, Chain (dBm) 5.5 /15.247	A Power S Measure 16 Detector	Settings ed (dBm) 5.7 Azimuth	Softwar 2 Height	re Setting	18000
n # 2b: , <i>urious K</i> equency MHz	1000 EUT on Char Cadiated Emiss Level dBμV/m	Chain A ssions: Pol v/h	Target 16 15.209 Limit	FDM, Chain (dBm) 5.5 /15.247 Margin	A Power S Measure 16 Detector Pk/QP/Avg	Settings ed (dBm) 5.7 Azimuth degrees	Softwar 2 Height meters	re Setting 7.5 Comments	
n # 2b: , <u>urious R</u> equency <u>MHz</u> 002.690	EUT on Char EUT on Char Cadiated Emis Level dBµV/m 38.6	Chain A ssions: Pol v/h V	Target 16 15.209 Limit 54.0	FDM, Chain 6.5 /15.247 Margin -15.4	A Power S Measure 16 Detector Pk/QP/Avg AVG	Settings ed (dBm) 5.7 Azimuth degrees 191	Softwa 2 Height meters 1.0	re Setting 27.5 Comments RB 1 MHz;\	/B 10 Hz;Pk
n # 2b: , urious K equency MHz D02.690 593.970	1000 EUT on Char Padiated Emis Level dBμV/m 38.6 38.1	Chain A ssions: Pol V/h V V	Target 16 15.209 Limit 54.0 54.0	FDM, Chain 6.5 /15.247 Margin -15.4 -15.9	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG	Settings ed (dBm) 5.7 Azimuth degrees 191 136	Softwa 2 Height meters 1.0 1.0	re Setting 27.5 Comments RB 1 MHz;V RB 1 MHz;V	/ <u>B 10 Hz;Pk</u> /B 10 Hz;Pk
n # 2b : , n # 2b : , quency MHz 02.690 93.970 00.430	1000 EUT on Char Eadiated Emiss Level dBμV/m 38.6 38.1 50.9	Chain A Ssions: Pol V/h V V V V	Target 16 15.209 Limit 54.0 54.0 70.0	FDM, Chain (dBm) 5.5 /15.247 Margin -15.4 -15.9 -19.1	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG AVG PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268	Softwar 2 Height meters 1.0 1.0 1.3	re Setting 27.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk
n # 2b: , <i>urious R</i> equency MHz 002.690 593.970 000.430 000.380	1000 EUT on Char Cadiated Emiss Level dBμV/m 38.6 38.1 50.9 48.6	Chain A ssions: Pol V/h V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0	FDM, Chain (dBm) 5.5 /15.247 /15.247 Margin -15.4 -15.9 -19.1 -21.4	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191	Softwar 2 Height meters 1.0 1.0 1.3 1.0	re Setting 27.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
n # 2b : , <u>urious F</u> equency <u>MHz</u> 002.690 593.970 000.430 000.380 '41.210	1000 EUT on Char Cadiated Emis Level dBμV/m 38.6 38.1 50.9 48.6 32.1	Chain A ssions: Pol v/h V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0	FDM, Chain (dBm) 5.5 /15.247 Margin -15.4 -15.9 -19.1 -21.4 -21.9	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK AVG	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191 172	Softwar 2 Height meters 1.0 1.0 1.3 1.0 1.6	re Setting 27.5 Comments RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk
n # 2b : , equency MHz 02.690 93.970 00.430 00.380 41.210 94.060	1000 EUT on Char Cadiated Emis Level dBμV/m 38.6 38.1 50.9 48.6 32.1 50.5	Chain A Ssions: Pol v/h V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0	FDM, Chain (dBm) 5.5 /15.247 Margin -15.4 -15.9 -19.1 -21.4 -21.9 -23.5	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG PK PK AVG PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191 172 136	Softwa 2 Height meters 1.0 1.0 1.3 1.0 1.6 1.0	re Setting 27.5 RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
n # 2b: , equency MHz 02.690 93.970 00.430 00.380 41.210 94.060 02.820	1000 EUT on Char Padiated Emis Level dBμV/m 38.6 38.1 50.9 48.6 32.1 50.5 50.4	Chain A ssions: Pol V/h V V V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0 74.0 74.0	FDM, Chain (dBm) 5.5 /15.247 Margin -15.4 -15.9 -19.1 -21.4 -21.9 -23.5 -23.6	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191 172 136 191	Softwar 2 Height meters 1.0 1.0 1.3 1.0 1.6 1.0 1.0 1.0	re Setting 27.5 RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
n # 2b: , equency MHz 002.690 00.430 000.380 741.210 002.820 742.280	1000 EUT on Char Padiated Emiss Level dBμV/m 38.6 38.1 50.9 48.6 32.1 50.5 50.4 43.1	Chain A ssions: Pol v/h V V V V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0 74.0 74.0 74.0	FDM, Chain 6.5 715.247 Margin -15.4 -15.9 -19.1 -21.4 -21.9 -23.5 -23.6 -30.9	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK PK PK PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191 172 136 191 172	Softwar 2 Height meters 1.0 1.0 1.3 1.0 1.6 1.0 1.0 1.6	re Setting 27.5 RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk
n # 2b: , <u>urious R</u> equency <u>MHz</u> J02.690	1000 EUT on Char Padiated Emis Level dBμV/m 38.6 38.1 50.9 48.6 32.1 50.5 50.4	Chain A ssions: Pol V/h V V V V V V V V V V V V V V V	Target 16 15.209 Limit 54.0 54.0 70.0 70.0 54.0 74.0 74.0 74.0	FDM, Chain (dBm) 5.5 /15.247 Margin -15.4 -15.9 -19.1 -21.4 -21.9 -23.5 -23.6	A Power S Measure 16 Detector Pk/QP/Avg AVG AVG AVG PK PK PK PK	Settings ed (dBm) 5.7 Azimuth degrees 191 136 268 191 172 136 191	Softwar 2 Height meters 1.0 1.0 1.3 1.0 1.6 1.0 1.0 1.0	re Setting 27.5 RB 1 MHz;V RB 1 MHz;V	/B 10 Hz;Pk /B 10 Hz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 10 Hz;Pk /B 3 MHz;Pk /B 3 MHz;Pk /B 3 MHz;Pk



Client: Ir	lliot	- 4			
	AD ATAT				EMC Test Data
	ntel Corporation	in porty			Job Number: J84263
Model: 1	05BNHMW and	105BNHU			-Log Number: T84530
				Ассо	ount Manager: Christine Krebill
	Steve Hackett CC Part 15, RS	S-210			Class: -
				l	
			ted Emissions	abaia Chamb	harl
		(Elliott Laboratories Fremo	ni raciiity, Seini-Anec	MUIC CHAINL	Jer)
Fest Specif	fic Details				
		objective of this test session is to p cification listed above.	perform final qualification	on testing of t	he EUT with respect to the
24	ate of Test: 9/14	2011	Config. Used		
	Engineer: Jose t Location: FT (1 0	Config Change Host Unit Voltage		,
105			These office voltage	1201100112	-
Ambient Co	onditions:	Temperature: Rel. Humidity:	15 - 55 °C 18 - 25 %		
_	of Results				
Summary o					
Summary o	r	Test Performed	Limit	Result	Margin
Run 1	#	Test Performed CE, AC Power,120V/60Hz	Limit Class B	Result Pass	Margin 16.7dBµV @ 4.809MHz (-29.3dB)

	Ellig	Dtt					EM	C Test L
Client	Intel Corpor	ation					Job Number:	J84263
							T-Log Number:	T84530
Model	105BNHMV	V and 105BN	HU				Account Manager:	
	Steve Hack							
Standard	FCC Part 1	5, RSS-210					Class:	-
						s. average limit)		
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
2.608	22.3	Line 1	46.0	-23.7	Peak			
4.809	23.3	Line 1	46.0	-22.7	Peak			
0.550 0.152	22.8 33.4	Line 1 Line 1	46.0 55.9	-23.2 -22.5	Peak Peak			
0.152	33.4 33.5	Neutral	<u> </u>	-22.5 -22.4	Peak	+		
13.578	33.5 29.5	Neutral	55.9	-22.4	Peak	+		
11.139	29.5 29.7	Neutral	50.0	-20.5	Peak			
11.137	27.1	Neuliai	50.0	-20.3	FEAK			
inal quasi	-peak and a	verage readi	nas					
requency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	e en line line		
4.809	16.7	Line 1	46.0	-29.3	AVG	AVG (0.10s)		
11.139	19.8	Neutral	50.0	-30.2	AVG	AVG (0.10s)		
	13.9	Line 1	46.0	-32.1	AVG	AVG (0.10s)		
2.608		Maximal	60.0	-34.7	QP	QP (1.00s)		
	25.3	Neutral	00.0					
2.608	25.3 19.8	Line 1	56.0	-36.2	QP	QP (1.00s)		
2.608 11.139				-36.2 -37.0	QP AVG	QP (1.00s) AVG (0.10s)		
2.608 11.139 4.809	19.8	Line 1	56.0			· · · · ·		
2.608 11.139 4.809 13.578	19.8 13.0	Line 1 Neutral	56.0 50.0	-37.0	AVG	AVG (0.10s)		
2.608 11.139 4.809 13.578 13.578	19.8 13.0 21.6	Line 1 Neutral Neutral	56.0 50.0 60.0	-37.0 -38.4	AVG QP	AVG (0.10s) QP (1.00s)		
2.608 11.139 4.809 13.578 13.578 0.152	19.8 13.0 21.6 26.7	Line 1 Neutral Neutral Line 1	56.0 50.0 60.0 65.9	-37.0 -38.4 -39.2	AVG QP QP	AVG (0.10s) QP (1.00s) QP (1.00s)		
2.608 11.139 4.809 13.578 13.578 0.152 2.608	19.8 13.0 21.6 26.7 16.7	Line 1 Neutral Neutral Line 1 Line 1	56.0 50.0 60.0 65.9 56.0	-37.0 -38.4 -39.2 -39.3	AVG QP QP QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
2.608 11.139 4.809 13.578 13.578 0.152 2.608 0.152 0.550 0.550	19.8 13.0 21.6 26.7 16.7 25.1 5.1 13.4	Line 1 Neutral Neutral Line 1 Line 1 Neutral	56.0 50.0 60.0 65.9 56.0 65.9 46.0 56.0	-37.0 -38.4 -39.2 -39.3 -40.8 -40.9 -42.6	AVG QP QP QP QP AVG QP	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
2.608 11.139 4.809 13.578 13.578 0.152 2.608 0.152 0.152 0.550	19.8 13.0 21.6 26.7 16.7 25.1 5.1	Line 1 Neutral Neutral Line 1 Neutral Line 1	56.0 50.0 60.0 65.9 56.0 65.9 46.0	-37.0 -38.4 -39.2 -39.3 -40.8 -40.9	AVG QP QP QP QP AVG	AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		

EMC Test Data

	An ZLES company		
Client:	Intel Corporation	Job Number:	J84263
Madal	105BNHMW and 105BNHU	T-Log Number:	T84530
wouer.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15, RSS-210	Class:	-

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/13/2011 Test Engineer: Joseph Cadigal Test Location: FT Chamber#4 Config. Used: 1 Config Change: none EUT Voltage: 120V / 60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

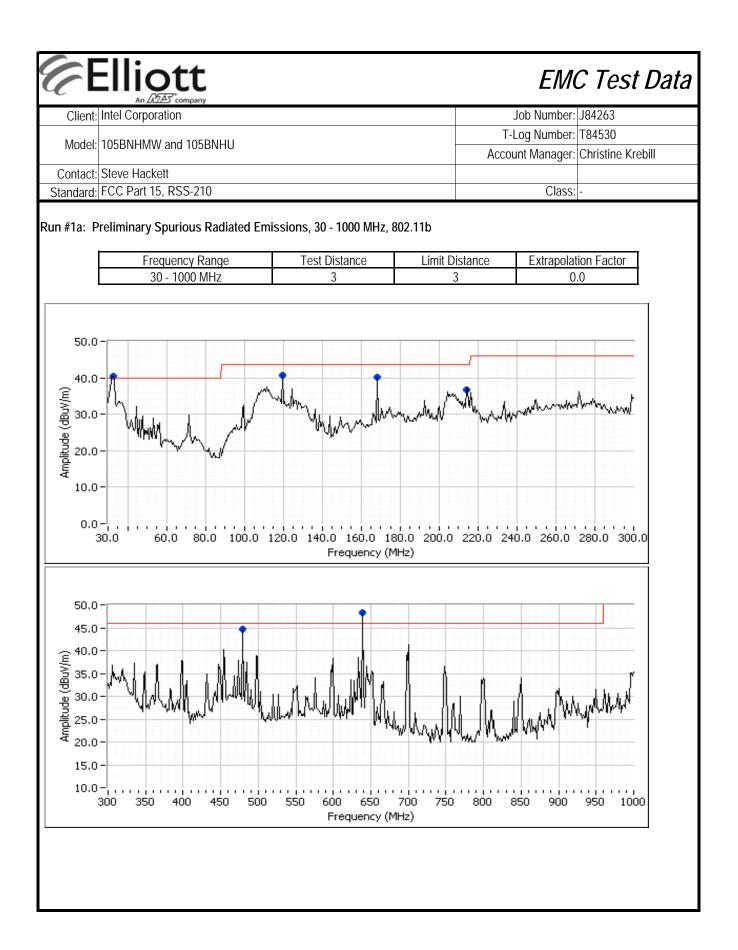
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	15 - 55 °C
Rel. Humidity:	18 - 25 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions	15.209 / 15.247	Eval	Refer to individual runs
	30 - 1000 MHz, Preliminary	RSS 210	EVal	
C	Radiated Emissions	15.209 / 15.247	Dace	44.4dBµV/m @ 480.00MHz (-1.6dB)
Z	30 - 1000 MHz, Maximized	RSS 210	Pass	44.40Bµ V/III @ 460.00MHZ (-1.60B)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client		Company						Job Number:	184263	
							Ţ.	Log Number:		
Model	105BNHMW	and 105B	NHU					0	Christine Krebill	
Contact	: Steve Hacke	ett						5		
Standard	FCC Part 15	, RSS-210)					Class:	-	
-	y peak readir	× · · ·		re-scan / 15.247	Detector	۸	l la la la la	Commonte		
requency	Level	Pol			Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
120.003	40.6 44.7	H H	43.5	-2.9 -1.3	Peak Peak	90 217	3.0 1.0	+		
479.999 168.005	44.7	H V	46.0 43.5	-1.3 -3.3	Peak	217	1.0	+		
640.005	40.2	H	43.5 46.0	-3.3	Peak	221	1.0	+		
213.538	48.3 36.8	H	46.0	-6.7	Peak	232	1.0	+		
33.232	40.3	н V	43.5	-0.7	Peak	325	1.5			
JJ.ZJZ	40.5	v	40.0	0.5	Γτακ	JZJ	1.0			
eliminar	v quasi-peak	readings	(no manipul	ation of FU	T interface c	ables)				
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oommento		
120.003	33.6	H	43.5	-9.9	QP	91	3.0	QP (1.00s)		
479.999	44.4	H	46.0	-1.6	QP	218	1.0	QP (1.00s)		
168.005	37.1	V	43.5	-6.4	QP	223	1.0	QP (1.00s)		
540.082	41.9	Ĥ	46.0	-4.1	QP	234	1.0	QP (1.00s)		
213.538	29.3	H	43.5	-14.2	QP	254	1.5	QP (1.00s)		
33.232	35.7	V	40.0	-4.3	QP	327	1.0	QP (1.00s)		
ın #1b: I		Spurious R		-	- 1000 MHz, 8 Distance	302.11g Limit D	istance	Extrapola	ion Factor	
	30) - 1000 Mł	Hz	3			3 (0.0	
									<u> </u>	
802.11g										
50.0)									
							_			
)-			+						
45.0)-				•	_				
45.(M			ji ji	My Mary			
45.(1- <u>Å</u>		$-\lambda H$	W 13.	1 minute		YV. WAL	Andrewskippe	the first of the second	
45.(1 5 162	- 1 / 1	L . L . A . [We'	www.l.m		44	. why	
45.(N VP	NZ 1.4						
45.(n Ma	N √W	w w	NA N					
45.((w/\ngp) 35.(30.(25.(s-1444	m	/ \/*	w w	W1 W1					
45.(s-1444	ndin	∕~ Vr	w w	M M					
45.((#/\ngp) 35.(apnjitud 25.(n/h	μ VIII 	w w	ht ht					

						1			10.10.10
Model:	Intel Corpora	ation						Job Number:	
	105BNHMW	and 105B	NHU					-Log Number:	
							Ассо	unt Manager:	Christine Krebill
	Steve Hacke								
Standard:	FCC Part 15	6, RSS-210)					Class:	-
									1
802.11g									
60.0	-								
50.0	-								
Amplitude (dBuV/m) 30'0 30'0	-	•	• •			•			
e (q	11.	11	14 61		1 1 .		н		1
로 30.0	-14.1 1 1.4		1 July	Art	l µMA I	<u> </u>		the A	LL Karkated
ld w	in the first state of the second state of the	"WIND"	" "W	MANY LIWING	A MY WW	1 []	d A I	III and M	Mr. Chr. M.
< 20.0	_					w www. w	MW/ MW	N MALA.	
2010									
10.0	_								
10.0		400	450 500		00 650	700 750		850 900	950 1000
				I	Frequency (M	IHz)			
					Frequency (M	lHz)			
reliminarv	peak readir	ngs captur	red durina p		Frequency (M	IHz)			
reliminary requency	peak readir	ngs captur Pol			Frequency (M	IHz) Azimuth	Height	Comments	
				re-scan			Height meters	Comments	
requency MHz	Level	Pol	15.209	re-scan / 15.247	Detector	Azimuth	<u>u</u>	Comments	
requency MHz 168.001	Level dBµV/m	Pol v/h	15.209 Limit	re-scan / 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
requency MHz 168.001 120.005 33.226	Level dBµV/m 40.4	Pol v/h V H V	15.209 Limit 43.5 43.5 40.0	re-scan / 15.247 Margin -3.1	Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 231 240 317	meters 1.0 2.5 1.0	Comments	
requency MHz 168.001 120.005 33.226 498.152	Level dBµV/m 40.4 43.3 38.7 41.4	Pol v/h V H V H	15.209 Limit 43.5 43.5	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6	Detector Pk/QP/Avg Peak Peak	Azimuth degrees 231 240 317 205	meters 1.0 2.5 1.0 1.5	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999	Level dBµV/m 40.4 43.3 38.7 41.4 40.7	Pol v/h V H V H H H	15.209 Limit 43.5 43.5 40.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210	meters 1.0 2.5 1.0 1.5 1.5	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3	Pol v/h V H V H H H	15.209 Limit 43.5 43.5 40.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190	meters 1.0 2.5 1.0 1.5 1.5 1.0	Comments	
requency MHz 168.001 120.005 33.226 498.152	Level dBµV/m 40.4 43.3 38.7 41.4 40.7	Pol v/h V H V H H H	15.209 Limit 43.5 43.5 40.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3	Detector Pk/QP/Avg Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210	meters 1.0 2.5 1.0 1.5 1.5	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2	Pol v/h V H V H H H H	15.209 Limit 43.5 43.5 40.0 46.0 46.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190 153	meters 1.0 2.5 1.0 1.5 1.5 1.0	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak	Pol V/h V H V H H H H readings	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 (no manipul	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Tinterface c	Azimuth degrees 231 240 317 205 210 190 153 ables)	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.0 1.0		
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary requency	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level	Pol v/h V H V H H H H readings Pol	15.209 Limit 43.5 43.5 40.0 46.0 46.0 46.0 46.0 46.0 46.0 (no manipul 15.209	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Tinterface c: Detector	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.0 Height	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary requency MHz	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m	Pol v/h V H V H H H H readings Pol v/h	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak T interface ca Detector Pk/QP/Avg	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees	meters 1.0 2.5 1.0 1.5 1.5 1.0 Height meters	Comments	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary Frequency MHz 697.996	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3	Pol v/h V H V H H H H readings Pol v/h H	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 46.0 (no manipul 15.209 Limit 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Tinterface c Detector Pk/QP/Avg QP	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.0 Height meters 1.0	Comments QP (1.00s)	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary frequency MHz 697.996 398.575	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3 36.2	Pol v/h V H V H H H H Pol v/h H H	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 (no manipul 15.209 Limit 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7 -9.8	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154 192	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.0 Height meters 1.0 1.0	Comments QP (1.00s) QP (1.00s)	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary requency MHz 697.996 398.575 498.152	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3 36.2 36.5	Pol v/h V H V H H H H Pol v/h H H H H	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 (no manipul 15.209 Limit 46.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7 -9.8 -9.5	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Tinterface ca Detector Pk/QP/Avg QP QP	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154 192 207	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.0 Height meters 1.0 1.0	Comments QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary requency MHz 697.996 398.575 498.152 479.999	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3 36.2 36.5 43.3	Pol v/h V H V H H H H Pol v/h H H H H H H	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 15.209 Limit 46.0 46.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7 -9.8 -9.5 -2.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154 192 207 212	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	Comments QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary reliminary MHz 697.996 398.575 498.152 479.999 168.001	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3 36.2 36.5 43.3 38.3	Pol v/h V H V H H H Pol v/h H H H H V V	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 (no manipul 15.209 Limit 46.0 43.5	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7 -9.8 -9.5 -2.7 -5.2	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154 192 207 212 233	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.0	Comments QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 168.001 120.005 33.226 498.152 479.999 398.575 697.996 reliminary requency MHz 697.996 398.575 498.152 479.999	Level dBµV/m 40.4 43.3 38.7 41.4 40.7 40.3 40.2 quasi-peak Level dBµV/m 34.3 36.2 36.5 43.3	Pol v/h V H V H H H H Pol v/h H H H H H H	15.209 Limit 43.5 40.0 46.0 46.0 46.0 46.0 46.0 15.209 Limit 46.0 46.0 46.0 46.0 46.0	re-scan / 15.247 Margin -3.1 -0.2 -1.3 -4.6 -5.3 -5.7 -5.8 ation of EU / 15.247 Margin -11.7 -9.8 -9.5 -2.7	Detector Pk/QP/Avg Peak Peak Peak Peak Peak Peak Peak Peak	Azimuth degrees 231 240 317 205 210 190 153 ables) Azimuth degrees 154 192 207 212	meters 1.0 2.5 1.0 1.5 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	Comments QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	

Elliott

EMC Test Data

Client:	Intel Corporation	Job Number:	J84263
Model	105BNHMW and 105BNHU	T-Log Number:	T84530
would.		Account Manager:	Christine Krebill
Contact:	Steve Hackett		
Standard:	FCC Part 15, RSS-210	Class:	-
Contact:	Steve Hackett		

Run #2: Maximized Readings From Run #1 Worst Case Mode Maximized quasi-peak readings (includes manipulation of EUT interface cables)

	Frequency Range			Test Distance 3		Limit Distance 3		Extrapolation Factor 0.0
	30 - 1000 MHz							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
479.999	44.4	Н	46.0	-1.6	QP	218	1.0	QP (1.00s)
640.082	41.9	Н	46.0	-4.1	QP	234	1.0	QP (1.00s)
33.232	35.7	V	40.0	-4.3	QP	327	1.0	QP (1.00s)
168.005	37.1	V	43.5	-6.4	QP	223	1.0	QP (1.00s)
120.003	33.6	Н	43.5	-9.9	QP	91	3.0	QP (1.00s)
213.538	29.3	Н	43.5	-14.2	OP	254	1.5	QP (1.00s)

End of Report

This page is intentionally blank and marks the last page of this test report.