

FCC OET BULLETIN 65 SUPPLEMENT C IEEE STD 1528:2003 IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

Intel Centrino Wireless-N 100, 802.11bgn 1x1

MODEL: 100BNHMW & 100BNHU

FCC ID: PD9100BNH & PD9100BNHU IC: 1000M-100BNH & 1000M-100BNHU

REPORT NUMBER: 11U13699-1A

ISSUE DATE: April 20, 2011

Prepared for

INTEL CORPORATION 2111 N.E. 25TH AVENUE HILLSBORO, OR 97124, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	March 16, 2011	Initial Issue	
Α	April 20, 2011	Additional testing for Antenna vertical down and horizontal back test configurations.	Sunny Shih

TABLE OF CONTENTS

1. /	ATTESTATION OF TEST RESULTS					
2. 7	TEST METHODOLOGY	5				
3. F	FACILITIES AND ACCREDITATION	5				
4. (CALIBRATION AND UNCERTAINTY	6				
4.1	1. MEASURING INSTRUMENT CALIBRATION	6				
4.2	2. MEASUREMENT UNCERTAINTY	7				
5. E	EQUIPMENT UNDER TEST	8				
6.	ANTENNA LOCATIONS AND SEPARATION DISTANCES	9				
6.1	1. ANTENNA POSITIONED VERTICALLY	9				
6.2	2. ANTENNA POSITIONED HORIZONTALLY	10				
7. \$	SYSTEM SPECIFICATIONS	11				
8. (COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	12				
9. 1	TISSUE DIELECTRIC PARAMETERS	13				
9.1	1. TISSUE PARAMETERS CHECK RESULTS	14				
10.	SYSTEM VERIFICATION	16				
10.	.1. SYSTEM CHECK RESULTS	16				
11.	SAR MEASUREMENT PROCEDURES	17				
12.	OUTPUT POWER VERIFICATION	18				
13.	SUMMARY OF SAR TEST RESULTS	19				
13.	.1. Antenna Vertical Up	19				
13.	.2. Antenna Vertical Down	20				
13.	.3. Antenna Horizontal Up	21				
13.	.4. Antenna Horizontal Down (Worst-case)	22				
13.	.5. Antenna Horizontal Front	23				
13.	.6. Antenna Horizontal Back	24				
14.	WORST CASE SAR TEST PLOTS	25				
15.	ENHANCED ENERGY COUPLING	27				
16.	ATTACHMENTS	28				
17.	EXTERNAL PHOTOS	29				

1. ATTESTATION OF TEST RESULTS

	T						
Company name:	INTEL CORPORATION						
	2111 N.E. 25TH AVI	2111 N.E. 25TH AVENUE					
	HILLSBORO, OR 97	′124, USA					
EUT Description:	Intel Centrino Wireles	s-N 100, 802.11bgn 1x1					
Model number:	100BNHMW & 100B	NHU					
Device Category:	Portable	Portable					
Exposure category:	General Population/Uncontrolled Exposure						
Date of tested:	February 28 – April 19, 2011						
FCC / IC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR mW/g)	Limit (mW/g)				
15.247 / RSS-102	2412 - 2462	0.351 W/kg (Antenna Horizontal Down)	1.6				
The most conservative ante	nna-to-user	0.9 cm					
separation distances used d	(refer to setup diagram in section 6.7	1and 6.2)					
	Test Results						
FCC OET Bulletin 65 Supplement C 01-01							
IEEE STD 1528: 2003,	Pass						
IC RSS 102 Issue 4	·						

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Suray Shih

Sunny Shih Engineering Team Leader

Compliance Certification Services (UL CCS)

Tested By:

Devin Chang EMC Engineer

Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528-2003, IC RSS 102 Issue 4 and the following specific FCC Test Procedures.

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- KDB 616217 Appendix Configuring Conservative SAR Test Conditions

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

N 65 1		T (0.4))	0 : 111	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A			
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Robot - Six Axes	Stäubli	TX90	C01209			N/A	
Robot Remote Control	Stäubli	CS8C	N/A			N/A	
DASY5 Measurement Server	SPEAG	SEUMS014AA	1064			N/A	
Probe Alignment Unit	SPEAG	LB5 / 80	N/A			N/A	
SAM Phantom	SPEAG	QP 000 P40 CC	1602	N/A			
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 BB	1099	N/A			
Dielectronic Probe kit	HP	85070C	N/A			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
E-Field Probe	SPEAG	EX3DV3	3686	1	24	2012	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Data Acquisition Electronics	SPEAG	DAE3 V4	1239	11	17	2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
Power Meter	Giga-tronics	8651A	8651404	3	3 13 2012		
Power Sensor	Giga-tronics	80701A	1834588	3	3 13 2012		
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A			
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A			
Simulating Liquid	SPEAG	M2450	N/A	Within 24 hrs of first test			

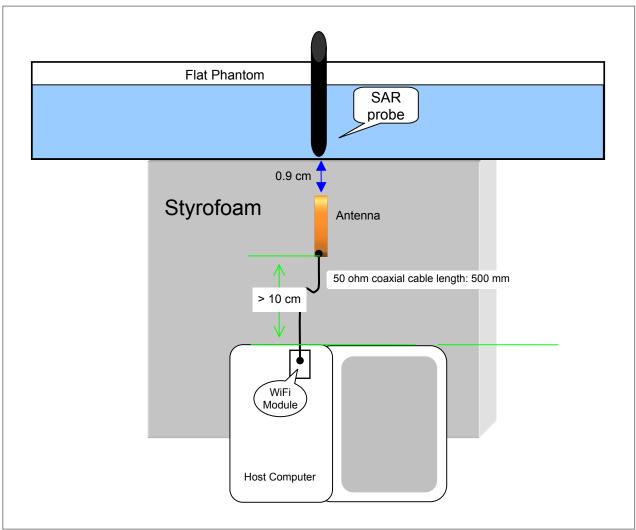
Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

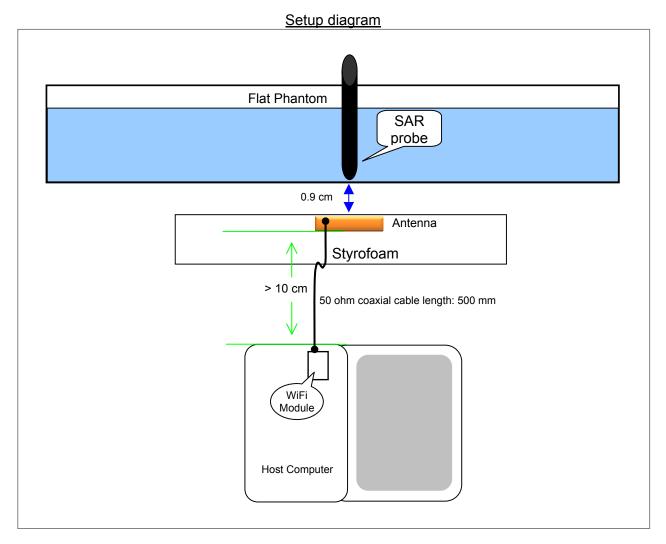
Weasarement uncertainty for 300 Will to 3 GHz averaged over 1 grain							
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %		
Measurement System							
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50		
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47		
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94		
Boundary Effect	0.90	Rectangular	1.732	1	0.52		
Probe Linearity	3.45	Rectangular	1.732	1	1.99		
System Detection Limits	1.00	Rectangular	1.732	1	0.58		
Readout Electronics	0.30	Normal	1	1	0.30		
Response Time		Rectangular	1.732	1	0.46		
Integration Time	2.60	Rectangular	1.732	1	1.50		
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73		
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73		
Probe Positioner Mechanical Tolerance		Rectangular	1.732	1	0.23		
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67		
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58		
Test Sample Related							
Test Sample Positioning	2.90	Normal	1	1	2.90		
Device Holder Uncertainty	3.60	Normal	1	1	3.60		
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89		
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31		
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85		
Liquid Conductivity - measurement	-0.64	Normal	1	0.64	-0.41		
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73		
Liquid Permittivity - measurement	1.03		1	0.6	0.62		
Combined Standard Uncertainty Uc(y) = 9.47							
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 18.94 %							
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 1.51 dB							


5. EQUIPMENT UNDER TEST

Intel Centrino Wireless-N 100, 802.11bgn	1x1			
Antenna tested:	Manufactured Shanghai Universe Communication Electron Co.,Ltd	Part number IntelWiMax/WLAN Reference Antenna		
The most conservative antenna-to-user separation distances used during the test:	0.9 cm from antenna-to-user (refer to setup diagram in section 6.1 and 6.2)			
Antenna-to-antenna physical separation distances used during the test with Vertical placement:	Only one antenna provided.			
Antenna-to-antenna physical separation distances used during the test with Horizontal placement:	Only one antenna provided.			
The most conservative physical separation distance between Main/Aux antennas to avoid SAR distribution overlap:	Only one antenna provided.			

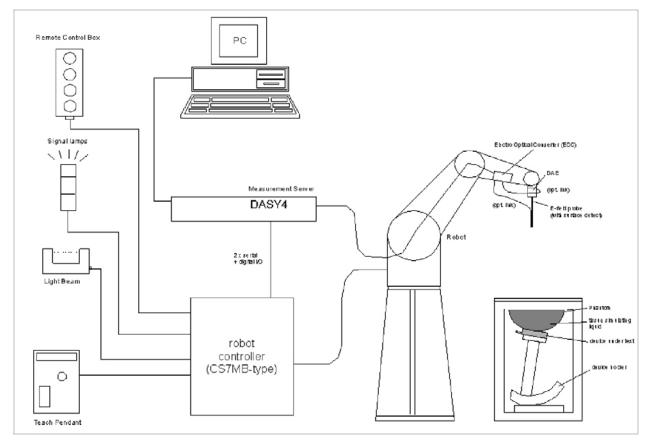
6. ANTENNA LOCATIONS AND SEPARATION DISTANCES

6.1. ANTENNA POSITIONED VERTICALLY


Setup diagram

Test setup: The WiFi module is installed in a host laptop computer during the tests. Test software exercised the radio card.

Test software: DRTU, Version 1.2.12-0197


6.2. ANTENNA POSITIONED HORIZONTALLY

Test setup: The WiFi module is installed in a host laptop computer during the tests. Test software exercised the radio card.

Test software: DRTU, Version 1.2.12-0197

7. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 11 of 30

8. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	450		83	835		900		1800 - 1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

9. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Body		
raiget i requeitcy (ivii iz)	٤r	σ (S/m)	εr	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz) In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired ±5% for the whole 5 to 5.8 GHz range.

f (MHz)	Body	Reference						
1 (IVII 12)	rel. permitivity	conductivity	Reference					
3000	52.0	2.73	Standard					
5100	49.1	5.18	Interpolated					
5200	49.0	5.30	Interpolated					
5300	48.9	5.42	Interpolated					
5400	48.7	5.53	Interpolated					
5500	48.6	5.65	Interpolated					
5600	48.5	5.77	Interpolated					
5700	48.3	5.88	Interpolated					
5800	48.2	6.00	Standard					

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

9.1. TISSUE PARAMETERS CHECK RESULTS

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
02/28/2011	Body 2450	e'	52.3620	Relative Permittivity (ε_r):	52.36	52.70	-0.64	5
02/28/2011 Body 2450	e"	14.4623	Conductivity (σ):	1.97	1.95	1.03	5	

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

February 28, 2011 12:34 PM

Frequency	e'	e"
2410000000.	52.4756	14.2973
2415000000.	52.4577	14.3143
2420000000.	52.4445	14.3368
2425000000.	52.4356	14.3569
2430000000.	52.4170	14.3786
2435000000.	52.4022	14.3995
2440000000.	52.3871	14.4199
2445000000.	52.3761	14.4388
2450000000.	52.3620	14.4623
2455000000.	52.3482	14.4846
2460000000.	52.3309	14.5073
2465000000.	52.3160	14.5297
2470000000.	52.3026	14.5522
2475000000.	52.2862	14.5757
2480000000.	52.2697	14.5959
2485000000.	52.2526	14.6186

The conductivity (σ) can be given as:

$$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi f \varepsilon_{\theta} e''$$

where
$$f = target f * 10^6$$

 $\epsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)
4/192011	Body 2450	e'	51.5817	Relative Permittivity (ε_r) :	51.58	52.70	-2.12	5
4/192011		e"	14.4965	Conductivity (σ):	1.97	1.95	1.27	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

April 19, 2011 09:52 AM

Frequency	e'	e"
2410000000.	51.7152	14.3421
2415000000.	51.6965	14.3622
2420000000.	51.6850	14.3828
2425000000.	51.6671	14.4033
2430000000.	51.6503	14.4231
2435000000.	51.6342	14.4434
2440000000.	51.6180	14.4600
2445000000.	51.5983	14.4785
2450000000.	51.5817	14.4965
2455000000.	51.5631	14.5132
2460000000.	51.5464	14.5317
2465000000.	51.5266	14.5484
2470000000.	51.5079	14.5686
2475000000.	51.4906	14.5833
2480000000.	51.4676	14.6036
2485000000.	51.4515	14.6224

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

10. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal. date	SAR Avg (mW/g)			
validation dipole	Cai. Certificate #	Cal. date	Tissue:	Head	Body	
D0450V0	D2450V2-706 Apr10	04/19/10	1g SAR:	51.6	52.4	
D2450V2	D2450V2-706_Aprilo	04/19/10	10g SAR:	24.4	24.5	

10.1. SYSTEM CHECK RESULTS

System	Date Tested	Measured (No	ormalized to 1 W)	Torget	Delta (%)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Target	Della (%)	(%)
D2450\/0	02/28/11	1g SAR:	52.8	52.4	0.76	.10
D2450V2		10g SAR:	23.8	24.5	-2.86	±10
D2450\/2	04/19/11	1g SAR:	52.8	52.4	0.76	±10
D2450V2		10g SAR:	24.4	24.5	-0.41	±10

DATE: April 20, 2011 IC: 1000M-100BNH & 1000M-100BNHU

11. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

12. OUTPUT POWER VERIFICATION

Measurement Results

Modo	Channal #	From (MILT)	Conducted	Avg Power
Mode	Channel #	Freq. (MHz)	(dBm)	(mW)
	1	2412	16.6	45.7
802.11b	6	2437	16.8	47.9
	11	2462	16.7	46.8
	1	2412	12.7	18.6
802.11g	6	2437	16.7	46.8
	11	2462	11.6	14.5
	1	2412	12.5	17.8
802.11n HT20	6	2437	14.9	30.9
	11	2462	11.3	13.5
802.11n HT40	3	2422	11.1	12.9
	6	2437	13.5	22.4
	9	2452	11.0	12.6

Note(s):

- 1. SAR tested on the highest output power channel.
- 2. According to KDB 248227, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

13. SUMMARY OF SAR TEST RESULTS

13.1. Antenna Vertical Up

Test result

Mode	Channal	f (MALIT)	Avg Pwr	Results	(mW/g)
Mode	Channel	f (MHz)	(dBm)	1g-SAR	10g-SAR
802.11b	1	2412	16.6		
(1x1)	6	2437	16.8	0.338	0.161
(1/1)	11	2462	16.7		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 19 of 30

13.2. Antenna Vertical Down

Test result

Mode	Channal	f (MHz)	Avg Pwr	Results (mW/g)	
Mode	Mode Channel	i (ivinz)	(dBm)	1g-SAR	10g-SAR
002 11h	1	2412	16.6		
802.11b (1x1)	6	2437	16.8	0.120	0.067
	11	2462	16.7		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 20 of 30

13.3. Antenna Horizontal Up

Test result

Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
Mode	Charmer	i (ivi⊓∠)	(dBm)	1g-SAR	10g-SAR
000 11h	1	2412	16.6		
802.11b (1x1)	6	2437	16.8	0.267	0.143
	11	2462	16.7		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 21 of 30

13.4. Antenna Horizontal Down (Worst-case)

Test result

Mode	Channal	f (MHz)	Avg Pwr	Results	(mW/g)
Mode	Channel	i (ivi⊓∠)	(dBm)	1g-SAR	10g-SAR
000 445	1	2412	16.6		
802.11b (1x1)	6	2437	16.8	0.351	0.186
(1/1)	11	2462	16.7		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

13.5. Antenna Horizontal Front

Test result

Mode	Channal	f /\/ L -\	Avg Pwr	Results (mW/g)	
Mode	Channel	f (MHz)	(dBm)	1g-SAR	10g-SAR
000 11h	1	2412	16.6		
802.11b (1x1)	6	2437	16.8	0.098	0.051
	11	2462	16.7		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 23 of 30

13.6. Antenna Horizontal Back

Test result

Mode	Channal	f (MHz)	Avg Pwr	Results (mW/g)		
Mode	Mode Channel	i (ivinz)	(dBm)	1g-SAR	10g-SAR	
002 11h	1	2412	16.6			
802.11b (1x1)	6	2437	16.8	0.110	0.059	
	11	2462	16.7			

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 24 of 30

14. WORST CASE SAR TEST PLOTS

Date/Time: 2/28/2011 9:11:12 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Antenna Horizonta Down

DUT: Intel; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.95 mho/m; ε, = 52.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

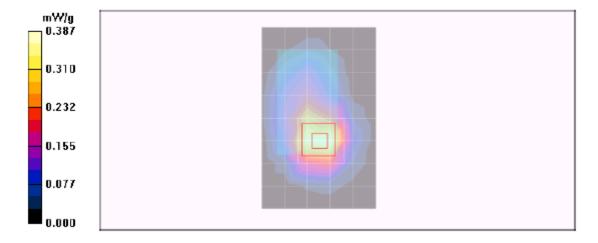
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (6x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.387 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 14.1 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.650 W/kg

SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.186 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

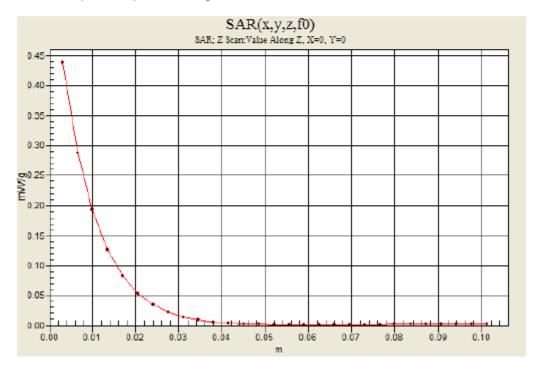
Maximum value of SAR (measured) = 0.435 mW/g

DATE: April 20, 2011 IC: 1000M-100BNH & 1000M-100BNHU

Date/Time: 2/28/2011 9:30:58 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Antenna Horizonta Down


DUT: Intel; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.439 mW/g

15. ENHANCED ENERGY COUPLING

According to KDB 616217 in referencing to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

Worst-case test configuration	Band		na-to-person tance (cm)	Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
		Initial	0.9	0.338	14.33	
Vertical Up	2.4 GHz	1	1	0.29	13.32	86.4%
		2	1.5	0.15	9.39	43.0%
		Initial	0.9	0.120	8.66	
Vertical Down	2.4 GHz	1	1	0.10	7.85	82.1%
V EITICAI DOWII	2.4 GHZ	2	1.5	0.06	6.28	52.6%
		3	2	0.05	5.38	38.6%
	2.4 GHz	Initial	0.9	0.267	12.36	
Horizontal Up		1	1	0.24	11.81	91.3%
		2	1.5	0.13	8.65	49.0%
		Initial	0.9	0.351	14.75	
Horizontal Down	2.4 GHz	1	1	0.28	13.26	80.8%
		2	1.5	0.17	10.38	49.5%
		Initial	0.9	0.098	7.66	
Horizontal Front	2.4 GHz	1	1	0.08	7.00	83.5%
		2	1.5	0.05	5.33	48.4%
		Initial	0.9	0.110	8.27	
Horizontal Back	2.4 GHz	1	1	0.08	6.88	69.1%
		2	1.5	0.05	5.50	44.2%

16. ATTACHMENTS

<u>No.</u>	Contents	No. of page (s)
1	System Check Plots	4
2	SAR Test Plots for 2.4 GHz band	7
3	Certificate of E-Field Probe - EX3DV3 SN 3531	11
4	Certificate of System Validation Dipole - D2450 SN:706	9

REPORT NO: 11U13699-1A DATE: April 20, 2011 FCC ID: PD9100BNH & PD9100BNHU IC: 1000M-100BNHU

17. EXTERNAL PHOTOS

PIFA Antenna Front side

PIFA Antenna Back side

Page 29 of 30

REPORT NO: 11U13699-1A DATE: April 20, 2011 FCC ID: PD9100BNH & PD9100BNHU IC: 1000M-100BNH & 1000M-100BNHU

PIFA Antenna

50 ohm coaxial cable length: 500 mm

END OF REPORT

Page 30 of 30