

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: Intel® Centrino® Wireless-N 100 (model *100BNHMW)*

IC CERTIFICATION #: 1000M-100BNH and 1000M-100BNHU

> PD9100BNH and PD9100BNHU FCC ID:

APPLICANT: **Intel Corporation**

100 Center Point Circle Suite 200

Columbia, SC 29210

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

> REPORT DATE: October 19, 2010

FINAL TEST DATES: September 21, 22, 23, 24, 27 and 28, 2010

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer **Elliott Laboratories**

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R80787 Rev 1 Page 1 of 21

Test Report Report Date: October 19, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	10-06-2010	First release	
1	10-19-2010	Reissued to correct the EUT description table.	Dave Guidotti

File: R80787 Rev 1 Page 2 of 21

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	6
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	19
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	19
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	19
SAMPLE CALCULATIONS - RADIATED EMISSIONS	20
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	21
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	1
APPENDIX B TEST DATA	3

SCOPE

An electromagnetic emissions test has been performed on the Intel Corporation model Intel® Centrino® Wireless-N 100 (model 100BNHMW), pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R80787 Rev 1 Page 4 of 21

Test Report Report Date: October 19, 2010

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Intel Corporation model Intel® Centrino® Wireless-N 100 (model 100BNHMW) complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All

Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Intel Corporation model Intel® Centrino® Wireless-N 100 (model 100BNHMW) and therefore apply only to the tested sample. The sample was selected and prepared by Steve Hackett of Intel Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R80787 Rev 1 Page 5 of 21

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	9.7 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 43 mW 802.11g: 35.3 mW n20: 34.8 mW n40: 16.4 mW EIRP = 0.09 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-18.7 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious below -30dBc	< -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	52.9dBμV/m @ 2483.5MHz	15.207 in restricted bands, all others <-30dBc Note 2	Complies (1.1dB margin)

Note 1: EIRP calculated using antenna gain of 3.2dBi for the highest EIRP system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unique connector	Device must use a unique or integral connector	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	43.6dBμV/m @ 7500.0MHz	Refer to page 18	Complies (-10.4 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	44.5dBμV @ 14.055MHz	Refer to page 17	Complies (-15.5dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual (page 20, 22)	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Page 20	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	The host system antenna is intended to be integral to the host	Statement for products with detachable antenna	N/A
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 13.14 MHz 802.11g: 17.39 MHz n20: 18.64 MHz n40: 36.77 MHz	Information only	N/A

File: R80787 Rev 1 Page 6 of 21

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

File: R80787 Rev 1 Page 7 of 21

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Intel Corporation model Intel® Centrino® Wireless-N 100 (model 100BNHMW) is a PCIe Half Mini Card form factor IEEE 802.11b/g/n wireless network adapter that supports 1x1 (SISO).

The Intel® Centrino® Wireless-N 100 is sold under model numbers 100BNHMW and 100BNHU. Model numbers with FCC ID: PD9100BNHU and IC: 1000M-100BNHU are intended for end user installation and operate with a BiOS lock feature to ensure they can only be used in the appropriate host systems to prevent unauthorized operation. Other models are only intended for OEM factory installation.

For radio testing purposes the card was installed in a test fixture that exposed all sides of the card. For digital device testing for certification under equipment code JBP the card was installed inside a laptop PC.

The sample was received on September 21, 2010 and tested on September 21, 22, 23, 24, 27 and 28, 2010. The EUT consisted of the following component(s):

Company	Model	Description	MAC	FCC ID IC UPN
Intel	100BNHMW	PCIe Half Mini Card form factor Bluetooth / IEEE	78929C0023FA	PD9100BNH PD9100BNHU 1000M-100BNH
Corporation	100BNHU	802.11b/g/n wireless network adapter	, 0, 2, 00023111	1000M-100BNHU

ANTENNA SYSTEM

The EUT antenna is a a two-antenna PIFA antenna system – Shanghai Universe Communication Electron Co., Ltd. The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203..

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

File: R80787 Rev 1 Page 8 of 21

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Intel Corporation	Shiloh (1543)	Test Fixture	-	N/A
Dell	-	Laptop PC	-	N/A
Agilent		DC Supply	-	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port		Cable(s)		
From	То	Description	Shielded/Unshielded	Length(m)
Laptop Mini PCI	Fixture PCIe	Ribbon	unshielded	1
DC Power	Fixture DC power	2-wire	unshielded	1

EUT OPERATION

The EUT was installed into a test fixture that exposed all sides of the card. The test fixture interfaced to a laptop computer and dc power supply. The laptop computer was used to configure the EUT to continuously transmit at a specified output power or continuously receive on the channel specified in the test data. For transmit mode measurements the system was configured to operate in each of the available operating modes – 802.11b, 802.11g, 802.11n (20 MHz channel bandwidth) and 802.11n (40MHz channel bandwidth).

The data rates used for all tests were the lowest data rates for each 802.11 mode – 1Mb/s for 802.11b, 6Mb/s for 802.11a and 802.11g, 6.5MB/s for 802.11n (20MHz), and 13 Mb/s for 802.11n (40MHz). The device operates at its maximum output power at the lowest data rate as shown in the table on the following page which was obtained using the test utility to control power via the on-board EEPROM settings.

File: R80787 Rev 1 Page 9 of 21

Po	Power versus Data Rate				
Mode	Data Rate	Power			
	1	13.4dBm			
802.11b	2	13.4dBm			
802.110	5.5	13.3dBm			
	11	13.2dBm			
	6	12.8dBm			
	12	12.7dBm			
	18	12.6dBm			
802.11g	24	12.4dBm			
	36	12.3dBm			
	48	12.2dBm			
	54	11.0dBm			
	6.5	12.4dBm			
	13	12.2dBm			
	19.5	11.7dBm			
802.11n	26	12.2dBm			
20MHz	39	11.6dBm			
	52	11.5dBm			
	58.5	10.8dBm			
	65	9.2dBm			
	13.5	10.5dBm			
	27	10.4dBm			
	40.5	10.3dBm			
802.11n	54	10.2dBm			
40MHz	81	10.1dBm			
	108	10.0dBm			
	121.5	10.0dBm			
	135	8.5dBm			

Receiver spurious emissions were evaluated by using the test utility to enable the receiver on the center channel.

The PC was using the Intel test utility DRTU Version 1.2.12.0197 Driver version 14.0.0.39.

File: R80787 Rev 1 Page 10 of 21

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 4	211948	2845B-4	41020 Dayras Band
Chamber 5	211948	2845B-5	41039 Boyce Road Fremont,
Chamber 7	A2LA accreditation	2845B-7	CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R80787 Rev 1 Page 11 of 21

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R80787 Rev 1 Page 12 of 21

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

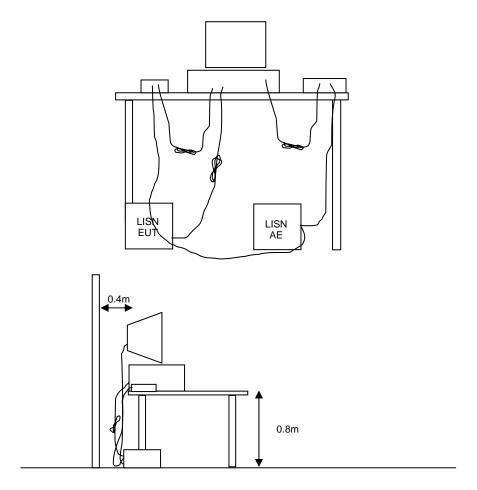
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R80787 Rev 1 Page 13 of 21


TEST PROCEDURES

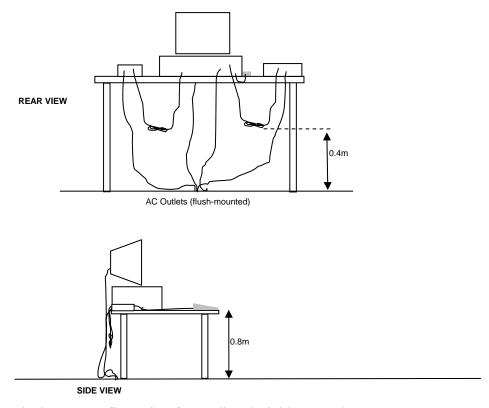
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

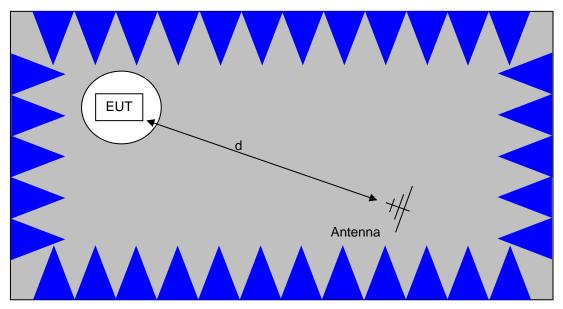
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R80787 Rev 1 Page 14 of 21

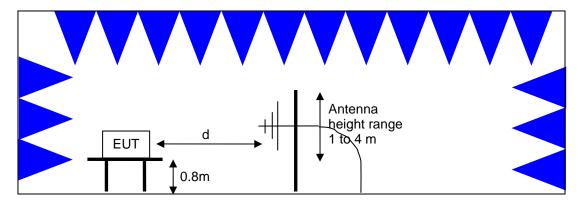

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

File: R80787 Rev 1 Page 15 of 21

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R80787 Rev 1 Page 16 of 21

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R80787 Rev 1 Page 17 of 21

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R80787 Rev 1 Page 18 of 21

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density		
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz		
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz		
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz		

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R80787 Rev 1 Page 19 of 21

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R80787 Rev 1 Page 20 of 21

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

File: R80787 Rev 1 Page 21 of 21

Test Report Report Date: October 19, 2010

Appendix A Test Equipment Calibration Data

Radio (Band Edge), 2				
Manufacturer 5 Manufacturer	<u>Description</u>	Model 2445	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115 NDV 752	487 4 <i>555</i>	7/6/2012
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm,	20dB, 10W, Type N	1556	2/5/2011
	10W, DC-18 GHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1787	12/4/2010
Radio Antenna Port (Bandedge), 24-Sep-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Radio Antenna Port (Bandedge and Spurious), 24-Sep-	10		
Manufacturer	<u>Description</u>	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	870	6/25/2011
	26.5GHz			
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
EMCO	(SA40) Blue Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
LIVIOO	Antenna, Florii, 1-10 OHZ	3113	1301	0/22/2012
Radio (Band Edges),				
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
	<u>Description</u> Antenna, Horn, 1-18 GHz	<u>Model</u> 3115	Asset # 1142	<u>Cal Due</u> 8/2/2012
Manufacturer EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
<u>Manufacturer</u>	<u>Description</u> Antenna, Horn, 1-18 GHz			
Manufacturer EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40)	3115	1142	8/2/2012
Manufacturer EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18	3115 8564E (84125C)	1142	8/2/2012 8/26/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel	3115 8564E (84125C) NRVD	1142 1771 1787	8/2/2012 8/26/2011 12/4/2010
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz	3115 8564E (84125C) NRVD 20dB, 10W, Type N	1771 1787 1795	8/2/2012 8/26/2011 12/4/2010 6/2/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts	3115 8564E (84125C) NRVD 20dB, 10W, Type N	1771 1787 1795	8/2/2012 8/26/2011 12/4/2010 6/2/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53	1771 1787 1795 1796	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53	1142 1771 1787 1795 1796	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53	1771 1787 1795 1796	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115	1142 1771 1787 1795 1796 Asset # 487	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due 7/6/2012
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer EMCO	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz SpecAn 9 kHz - 40 GHz, FT	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115	1142 1771 1787 1795 1796 Asset # 487	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due 7/6/2012
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115 8449B	1771 1787 1795 1796 Asset # 487 870	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due 7/6/2012 6/25/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer EMCO Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115 8449B 8564E (84125C)	1771 1787 1795 1796 Asset # 487 870	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due 7/6/2012 6/25/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz Radiated Emissions, Manufacturer EMCO Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power and Spurious Emissions), 2	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115 8449B 8564E (84125C)	1142 1771 1787 1795 1796 Asset # 487 870 1393	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 6/2/2011 Cal Due 7/6/2012 6/25/2011 4/14/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Radiated Emissions, Manufacturer EMCO Hewlett Packard Hewlett Packard Radio Antenna Port (Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115 8449B 8564E (84125C) 29-30-Sep-10	1771 1787 1795 1796 Asset # 487 870	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 Cal Due 7/6/2012 6/25/2011
Manufacturer EMCO Hewlett Packard Rohde & Schwarz Radiated Emissions, Manufacturer EMCO Hewlett Packard Hewlett Packard Radio Antenna Port (Manufacturer	Description Antenna, Horn, 1-18 GHz (SA40-Red) SpecAn 9 kHz - 40 GHz, (SA40) Purple Power Meter, Dual Channel Attenuator, 20 dB, 10W, DC-18 GHz Power Sensor 100 uW - 10 Watts 30 - 26,500 MHz, 29-Sep-10 Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1- 26.5GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue Power and Spurious Emissions), 2 Description	3115 8564E (84125C) NRVD 20dB, 10W, Type N NRV-Z53 Model 3115 8449B 8564E (84125C) 29-30-Sep-10 Model	1142 1771 1787 1795 1796 Asset # 487 870 1393	8/2/2012 8/26/2011 12/4/2010 6/2/2011 6/2/2011 6/2/2011 Cal Due 7/6/2012 6/25/2011 4/14/2011

File: R80787 Rev 1 Appendix Page 1 of 3

Test Report Report Date: October 19, 2010

Radiated Emissions, 3	0 - 1000 MHz, 30-Sep-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Conducted Emissions	- AC Power Ports, 30-Sep-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
	2.0.1, .0.11.12	3023/2	1292	3/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
Fischer Custom	•	ESIB7 FCC-LISN-50/250-		-, -, -,
	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010

File: R80787 Rev 1 Appendix Page 2 of 3

Appendix B Test Data

T80637 55 Pages

File: R80787 Rev 1 Appendix Page 3 of 3

Ellio		El	MC Test Data
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models	T-Log Number:	T80637
	100BNHMW and 100BNHU)	Account Manager:	Christine Krebill
Contact:	-		-
Emissions Standard(s):	FCC 15.247, RSS 210, FCC 15 B	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Intel Corporation

Model

Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)

Date of Last Test: 9/30/2010

	An AZAS company	EMC Test Data		
Client:	Intel Corporation	Job Number:	J80617	
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637	
Model.	III. (Wodels Toobinhin and Toobinho)	Account Manager:	Christine Krebill	
Contact:	-			
Standard:	FCC 15 247 RSS 210 FCC 15 B	Class:	Ν/Δ	

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 78929C0023D2 DRTU Tool Version 1.2.12.0197 Driver version 14.0.0.39

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
Run # 1 Chain A		#3 2422MHz	16.5	11.0	Restricted Band Edge at 2400 MHz	15.209	52.7dBµV/m @ 2389.8MHz (-1.3dB)
		#9 2452MHz	16.5	10.8	Restricted Band Edge at 2483.5 MHz	15.209	52.8dBµV/m @ 2483.5MHz (-1.2dB)
Dun # 2	n40	#4 2427MHz	16.5	11.3	Restricted Band Edge at 2400 MHz	15.209	52.3dBµV/m @ 2389.8MHz (-1.7dB)
Run # 2	Chain A	Chain A #8 16.5	11.5	Restricted Band Edge at 2483.5 MHz	15.209	52.9dBµV/m @ 2483.5MHz (-1.1dB)	
Dun # 2	n40	#5 2432MHz	16.5	12.6	Restricted Band Edge at 2400 MHz	15.209	52.9dBµV/m @ 2390.0MHz (-1.1dB)
Run # 3 Chain A	Chain A	#7 2442MHz	16.5	11.5	Restricted Band Edge at 2483.5 MHz	15.209	52.2dBµV/m @ 2483.5MHz (-1.8dB)
D # 4 n4	n40	#6	16.5	13.2	Restricted Band Edge at 2400 MHz	15.209	49.2dBµV/m @ 2389.6MHz (-4.8dB)
Run # 4	Chain A	2437MHz	10.5	13.2	Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.5MHz (-1.7dB)

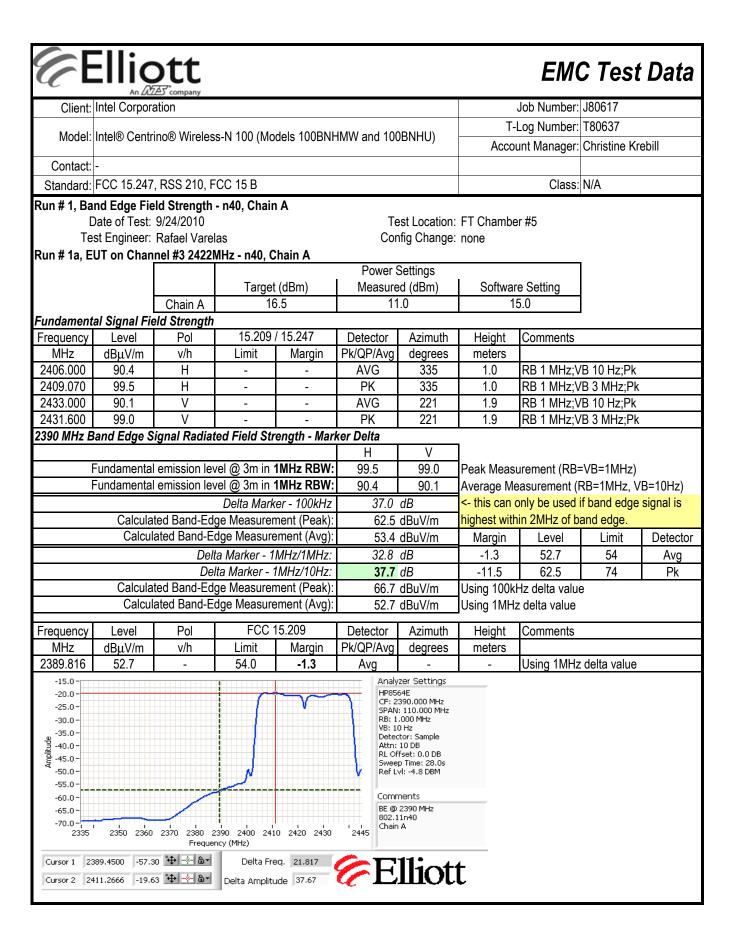
Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

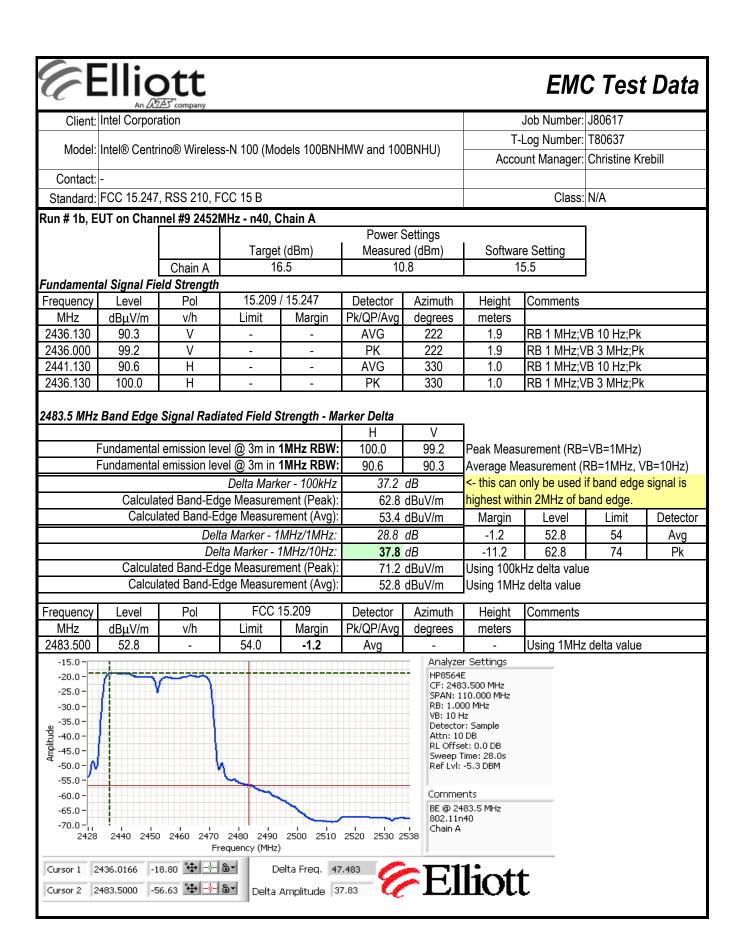
Test Specific Details

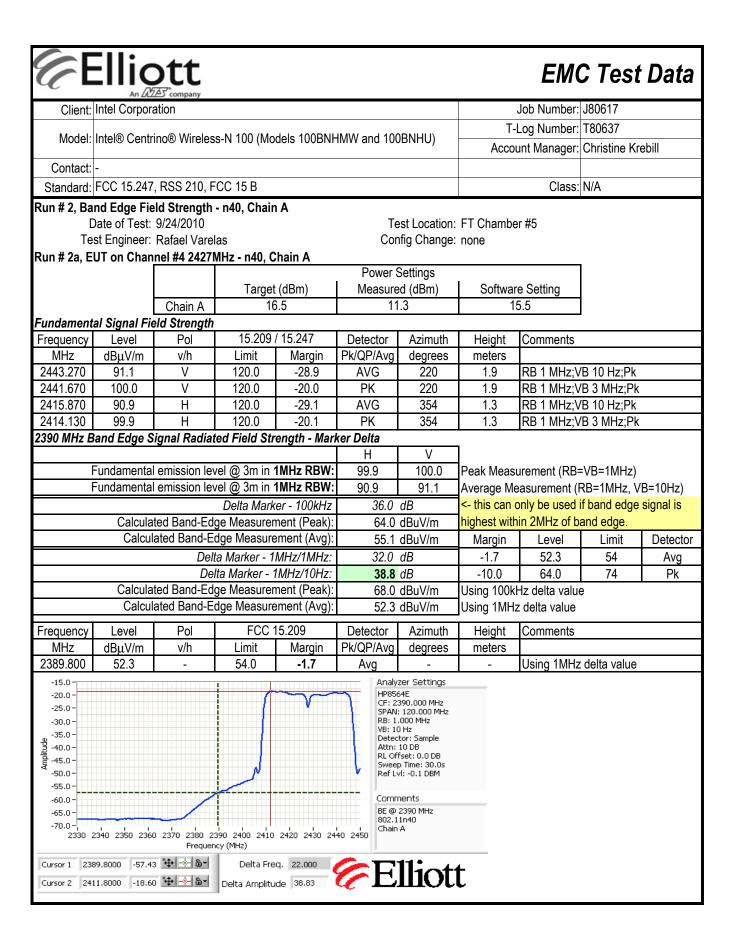
Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

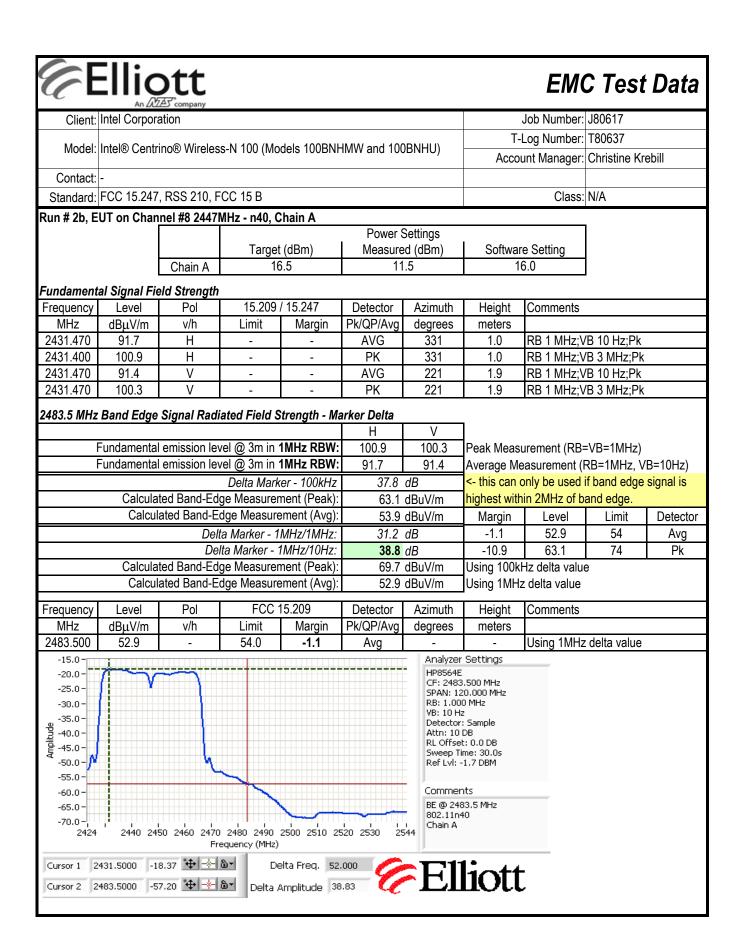
General Test Configuration

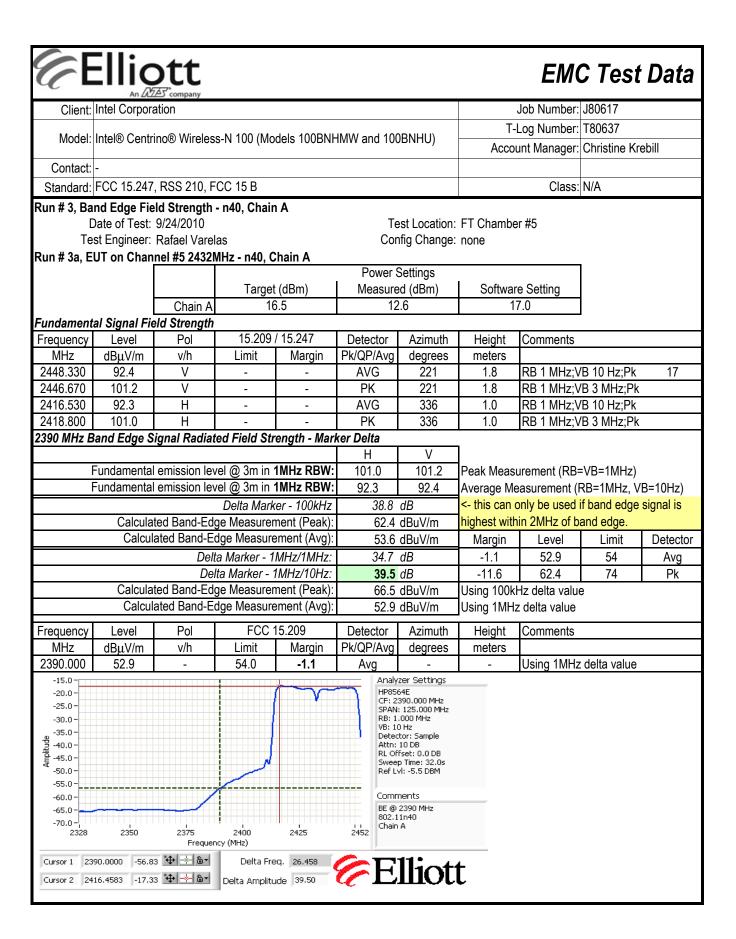
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

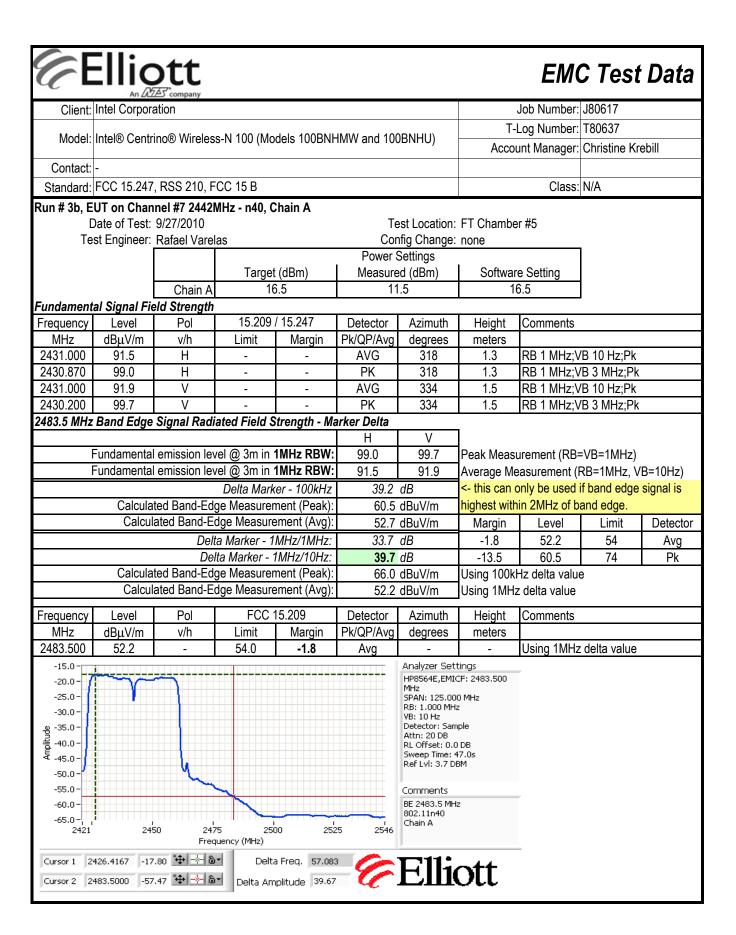

Ambient Conditions:

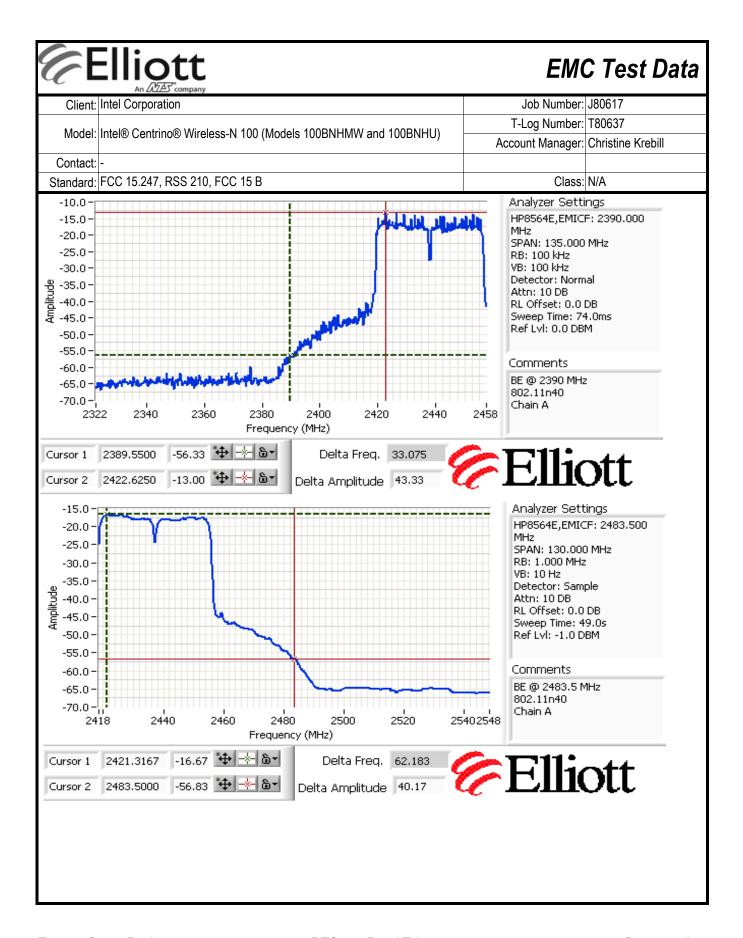

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C


Modifications Made During Testing


No modifications were made to the EUT during testing


Elliott Company	EMC Test Data
Client: Intel Corporation	Job Number: J80617
Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number: T80637
, , ,	Account Manager: Christine Krebill
Contact: - Standard: FCC 15.247, RSS 210, FCC 15 B	Class: N/A
Standard: PCC 15.247, RSS 210, PCC 15 B	Class. N/A
Deviations From The Standard No deviations were made from the requirements of the standard. Marker Delta Measurements Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for sin The fundamental field strength is always measured at a 3m test distance.	





E E	Ellig	ott						EM	C Test	Data
	Intel Corpora	company						Job Number:	J80617	
	·						T-	Log Number:	T80637	
Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)							unt Manager:		ebill	
Contact: -										
Standard: FCC 15.247, RSS 210, FCC 15 B								Class:	N/A	
Run # 4, Ba	nd Edge Fie	ld Strength	- n40, Chain	Α			1		l'	
	Date of Test:						FT Chambe	er #5		
	•	Rafael Vare			Cor	nfig Change:	none			
EUT on Cha	annel #6 243	7MHz - n40,	Chain A			2 "			1	
			T	(alD)		Settings	0-4-	Calli		
		Chain A	Target 16		Measure	ed (dBm) 3.2		e Setting 8.0		
Fundament	al Signal Ei	Chain A eld Strength		1.0	13). <u>L</u>	1	0.0	J	
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	301111101110		
2426.130	92.5	V	-	-	AVG	337	1.5	RB 1 MHz:\	/B 10 Hz;Pk	
2425.730	101.3	V	-	-	PK	337	1.5	<u> </u>	/B 3 MHz;Pk	
2390 MHz B	and Edge S	ignal Radia	ted Field Str	ength - Mari	ker Delta		•			
					Н	V				
			vel @ 3m in 1		100.0	101.3	Peak Measurement (RB=VB=1MHz)			
F	Fundamenta	l emission lev	vel @ 3m in 1	IMHz RBW:	92.0	92.5		easurement (
				er - 100kHz	43.3			only be used		signal is
			ge Measuren			dBuV/m	highest within 2MHz of band edge.			
	Calcul		dge Measure	, ,,		dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 11		35.7		-4.8	49.2	54	Avg
			lta Marker - 1		42.3					Pk
			ge Measuren			dBuV/m	Using 100kHz delta value			
	Calcul	ated Band-E	dge Measure	ment (Avg):	50.2	dBuV/m	Using 100kHz delta value			
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2389.550	49.2	-	54.0	-4.8	Avg	-	-	Using 100kl	Iz delta value	9
2483.5 MHz	Band Edge	Signal Radi	iated Field S	trength - Ma	arker Delta					
					Н	V				
			vel @ 3m in 1		100.0	101.3	-1	urement (RB:	,	
	Fundamenta	l emission lev	vel @ 3m in 1		92.0	92.5	Average Measurement (RB=1MHz, VB=10Hz)			
				er - 100kHz	39.7			only be used		signal is
			ge Measuren			dBuV/m		nin 2MHz of b	T T	
	Calcul		dge Measure	, ,,		dBuV/m	Margin	Level	Limit	Detector
			ta Marker - 1		34.5		-1.7	52.3	54	Avg
	0-1-1		lta Marker - 1		40.2		-12.4	61.6	74	Pk
			ge Measuren	, ,		dBuV/m	_	Hz delta value	е	
	Caicui		dge Measure		52.3	dBuV/m		z delta value		
Frequency	Level	Pol	FCC 1		Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.500	52.3	-	54.0	-1.7	Avg	-	-	Using 1MHz	delta value	

EMC Test Data

	All Dazzo Company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	ilitel® Certtillio® Wileless-IV 100 (Wodels 100BIVI IVIV and 100BIVI IO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (Band Edge)

Summary of Results

MAC Address: 78929C0023FE DRTU Tool Version 1.2.12.0197 Driver version 14.0.0.39

Run#	Mode	Channel	Measured Power	Test Performed	Limit	Result / Margin	
Run # 5	n20	#1 2412MHz	12.2	Restricted Band Edge at 2400 MHz	15.209	52.4dBµV/m @ 2390.0MHz (-1.6dB)	
Ruii # 5	Chain A	#11 2462MHz	12.5	Restricted Band Edge at 2483.5 MHz	15.209	52.9dBµV/m @ 2483.5MHz (-1.1dB)	
Run # 6	802.11g	#1 2412MHz	12.7	Restricted Band Edge at 2400 MHz	15.209	51.3dBµV/m @ 2390.0MHz (-2.7dB)	
Rull#0	**		Chain A #11 2462MHz	11.5	Restricted Band Edge at 2483.5 MHz	15.209	50.8dBµV/m @ 2483.5MHz (-3.2dB)
Run # 7	802.11b	#1 2412MHz	16.6	Restricted Band Edge at 2400 MHz	15.209	44.1dBµV/m @ 2390.0MHz (-9.9dB)	
Null#1	Chain A	#11 2462MHz	16.8	Restricted Band Edge at 2483.5 MHz	15.209	45.3dBµV/m @ 2483.5MHz (-8.7dB)	
Run # 8	n20	#2 2417MHz	15.7	Restricted Band Edge at 2400 MHz	15.209	52.8dBµV/m @ 2390.0MHz (-1.2dB)	
IXuII#0	Chain A	#10 2457MHz	15.4	Restricted Band Edge at 2483.5 MHz	15.209	52.7dBµV/m @ 2483.5MHz (-1.3dB)	
Run # 9	802.11g	#2 2417MHz	16.0	Restricted Band Edge at 2400 MHz	15.209	52.9dBµV/m @ 2390.0MHz (-1.1dB)	
Null # 9	Chain A	#10 2457MHz	15.9	Restricted Band Edge at 2483.5 MHz	15.209	52.8dBµV/m @ 2483.5MHz (-1.2dB)	

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " GAIN CONTROL" mode in the DRTU tool.

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

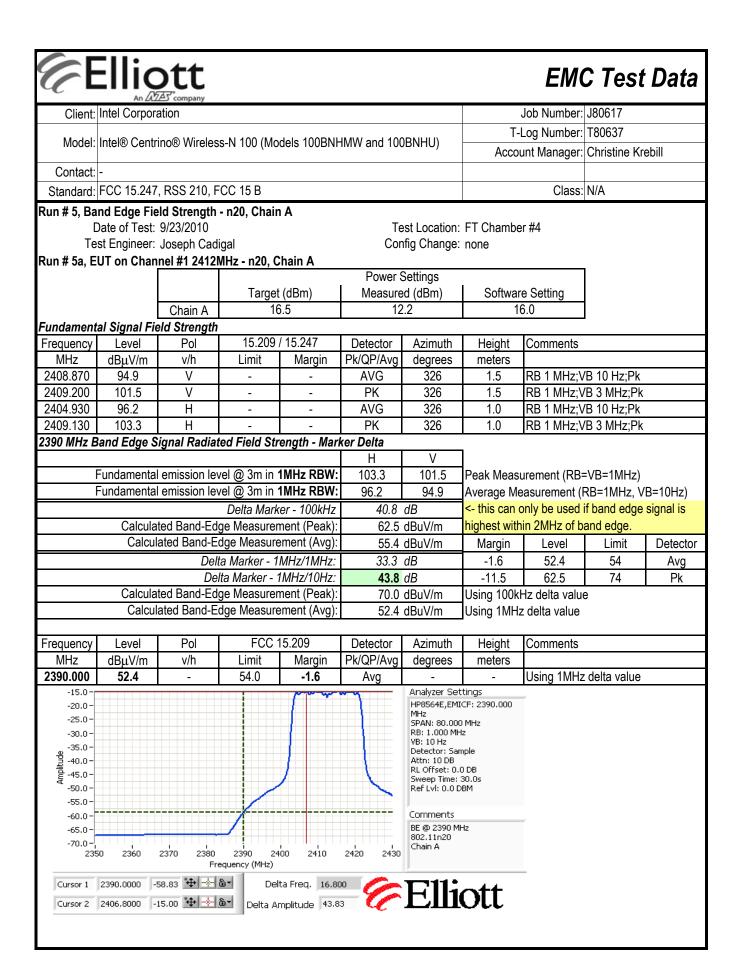
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

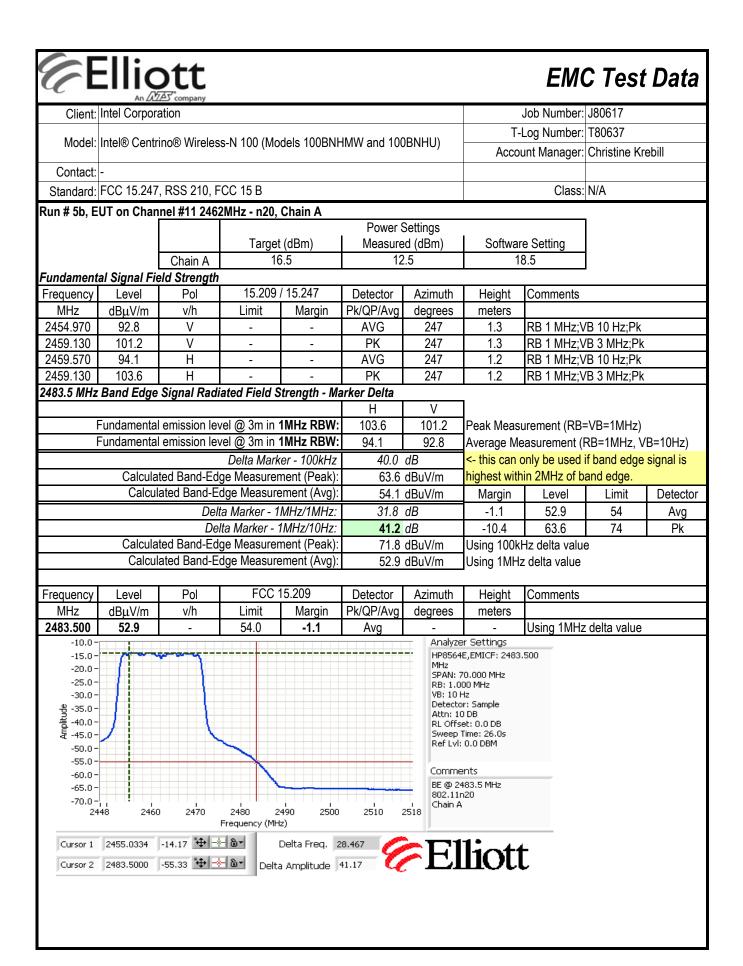
Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
woder.	IIILEN CETILITION WITELESS-IN 100 (WIDGES 100DINTIVIVI AND 100DINTIO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Marker Delta Measurements

Three sets of marker deltas are measured using the following settings: RB=VB=100kHz; RB=1MHz,VB=1MHz; RB=1MHz, VB=10Hz. Marker deltas are made conducted (analyzer connected to EUT rf port a 20dB pad) for single chain operation. The fundamental field strength is always measured at a 3m test distance.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A Run # 6, Band Edge Field Strength - 802.11g, Chain A Date of Test: 9/23/2010 Test Location: FT Chamber#7 Test Engineer: Joseph Cadigal Config Change: none Run # 6a, EUT on Channel #1 2412MHz - 802.11g, Chain A Power Settings Target (dBm) Measured (dBm) Software Setting 16.5 12.7 17.0 Chain A Fundamental Signal Field Strength Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 2418.830 87.5 ٧ AVG 338 1.7 RB 1 MHz;VB 10 Hz;Pk -٧ PK 1.7 2417.630 95.4 338 RB 1 MHz;VB 3 MHz;Pk 2405.000 96.6 Η **AVG** 353 1.0 RB 1 MHz;VB 10 Hz;Pk 2405.730 104.7 Н PΚ 353 1.0 RB 1 MHz;VB 3 MHz;Pk 2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 104.7 95.4 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.6 87.5 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 44.5 dB Calculated Band-Edge Measurement (Peak): highest within 2MHz of band edge. 60.2 dBuV/m Calculated Band-Edge Measurement (Avg): 52.1 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 35.5 dB -2.7 51.3 54 Avg Delta Marker - 1MHz/10Hz: 45.3 dB -13.8 60.2 74 Pk Calculated Band-Edge Measurement (Peak) Using 100kHz delta value 69.2 dBuV/m Calculated Band-Edge Measurement (Avg): 51.3 dBuV/m Using 1MHz delta value FCC 15.209 Pol Detector Frequency Level Azimuth Comments Height MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2390.000 51.3 54.0 -2.7 Using 1MHz delta value Avq -10.0 Analyzer Settings HP8564E,EMICF: 2390.000 -15.0 MHz -20.0 SPAN: 70.000 MHz RB: 1.000 MHz -25.0 VB: 10 Hz -30.0 Detector: Sample Attn: 10 DB RL Offset: 0.0 DB -35.0 -40.0 Sweep Time: 26.0s -45.0 Ref Lvl: 0.0 DBM -50.0 Comments -55.0 BE @ 2390 MHz -60.0 802.11a -65.0 -Chain A 2380 2355 2360 2390 2420 2425 2400 2410

Cursor 1 2390,0000 -59,17 💠 🔆 🖫

Cursor 2 2405.3999 -13.83 💠 🐣 🖫

Elliott

Frequency (MHz)

Delta Freq. 15.400

Delta Amplitude 45.33

Elliott EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A Run # 6b, EUT on Channel #11 2462MHz - 802.11g, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 17.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 2468.670 90.7 ٧ 120.0 -29.3 **AVG** 248 1.2 RB 1 MHz;VB 10 Hz;Pk ٧ PΚ 1.2 2467.730 98.7 120.0 -21.3 248 RB 1 MHz;VB 3 MHz;Pk 2464.670 96.5 Η 120.0 -23.5 **AVG** 248 1.3 RB 1 MHz;VB 10 Hz;Pk 2465.100 104.3 Н 120.0 -15.7PK 248 1.3 RB 1 MHz;VB 3 MHz;Pk 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 104.3 98.7 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 96.5 90.7 Average Measurement (RB=1MHz, VB=10Hz) <- this can only be used if band edge signal is Delta Marker - 100kHz 44.2 dB Calculated Band-Edge Measurement (Peak) highest within 2MHz of band edge. 60.1 dBuV/m Calculated Band-Edge Measurement (Avg): 52.3 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: 50.8 36.8 dB -3.2 54 Avq Delta Marker - 1MHz/10Hz: -13.9 60.1 74 45.7 dB Pk Calculated Band-Edge Measurement (Peak): 67.5 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 50.8 dBuV/m Using 1MHz delta value FCC 15.209 Comments Frequency Level Pol Detector Azimuth Height dBμV/m Pk/QP/Avg MHz v/h Limit Margin degrees meters 2483.500 50.8 54.0 Using 1MHz delta value -3.2 Avg Analyzer Settings -15.0HP8564E,EMICF: 2483.500 -20.0 MHz -25.0 SPAN: 70,000 MHz RB: 1.000 MHz -30.0 VB: 10 Hz -35.0 Detector: Sample -40.0 Attn: 10 DB RL Offset: 0.0 DB 45.0 Sweep Time: 26.0s -50.0 Ref Lvl: 0.0 DBM -55.0 -60.0 Comments BE @ 2483.5 MHz -65.0 -70.0 Chain A 2480 2490 2460 2470 2500 2510 Frequency (MHz)

Cursor 2 2483,5000

Cursor 1 2454,8000 -15.50 ↔ 🛧 💩

-61.17 **+** -* &

Delta Freq. 28.700

Delta Amplitude 45.67

	An ZAZZEO company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	intel® Centino® Wheless-IV 100 (Wodels 100biviniviW and 100bivino)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run # 7, Band Edge Field Strength - 802.11b, Chain A

Date of Test: 9/23/2010 Test Location: FT Chamber#7
Test Engineer: Joseph Cadigal Config Change: none

Run # 7a, EUT on Channel #1 2412MHz - 802.11b, Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.6	16.5

Fundamental Signal Field Strength

· amaamone	andamentar eighar riora ea engar										
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2410.330	100.6	V	-	-	AVG	341	1.7	RB 1 MHz;VB 10 Hz;Pk			
2411.230	104.0	V	-	-	PK	341	1.7	RB 1 MHz;VB 3 MHz;Pk			
2410.330	103.8	Н	-	-	AVG	341	1.1	RB 1 MHz;VB 10 Hz;Pk			
2411.200	107.1	Н	-	-	PK	341	1.1	RB 1 MHz;VB 3 MHz;Pk			

2390 MHz Band Edge Signal Radiated Field Strength - Marker Delta

	Н	V				
Fundamental emission level @ 3m in 1MHz RBW:		104.0	Peak Measurement (RB=VB=1MHz)			
Fundamental emission level @ 3m in 1MHz RBW:	103.8	100.6	Average Me	asurement (I	RB=1MHz, V	B=10Hz)
Delta Marker - 100kHz	52.8		<- this can only be used if band edge signal is			
Calculated Band-Edge Measurement (Peak):	54.3	dBuV/m	highest within 2MHz of band edge.			
Calculated Band-Edge Measurement (Avg):	51.0	dBuV/m	Margin	Level	Limit	Detector
Delta Marker - 1MHz/1MHz:	40.2	dB	-9.9	44.1	54	Avg
Delta Marker - 1MHz/10Hz:	59.7	dB	-19.7	54.3	74	Pk
Calculated Band-Edge Measurement (Peak):	66.9	dBuV/m	Using 100kl	Iz delta valu	е	
Calculated Band-Edge Measurement (Avg):	44.1	.1 dBuV/m Using 1MHz delta value				

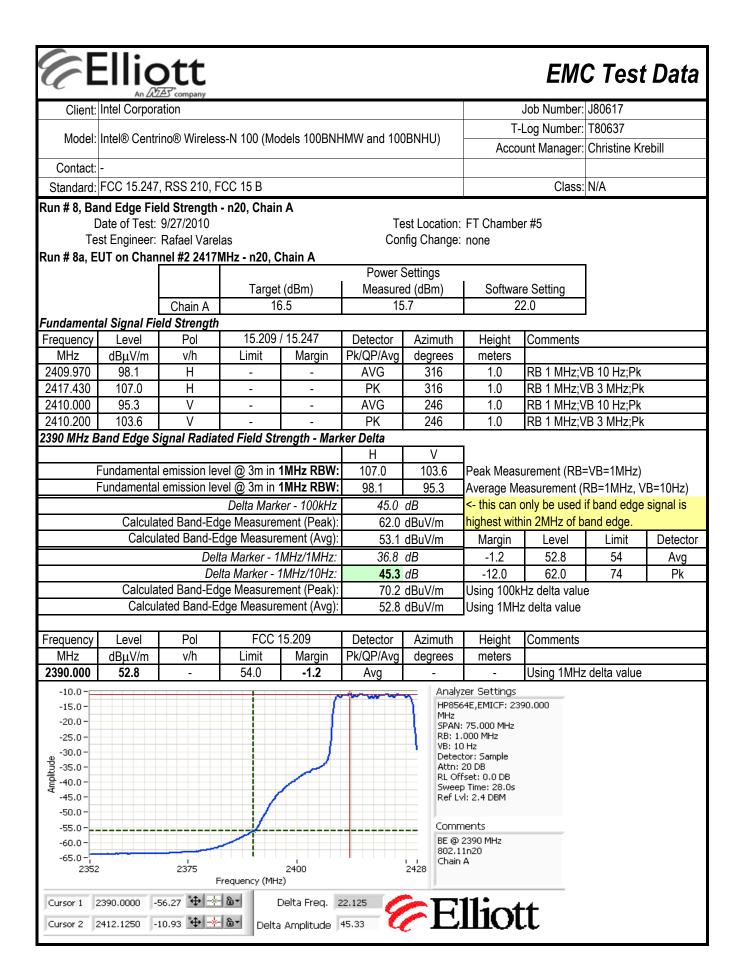
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	44.1	-	54.0	-9.9	Avg	-		Using 1MHz delta value
-10.0 - -20.0 - -20.0 - -30.0 - -50.0 - -50.0 - -70.0 - 23	-	2370 2380	2390 240	0 2410 2	H M M S S R V U D A R R S R R C G R	nalyzer Settings P8564E,EMICF: 2: Hz PAN: 80.000 MHz B: 1.000 MHz B: 10 Hz etector: Sample ttn: 10 DB L Offset: 0.0 DB weep Time: 30.0s ef Lvl: 0.0 DBM DMM DMM DMM DMM DMM DMM DMM DMM DMM		
Cursor 1	2389.3333	64.83		a Freq. 21.333	6 I	Filio	+ +	
Cursor 2	2410.6667	5.17 💠 🛧	🖭 🛮 Delta Am	plitude 59.67		эшО	LL	

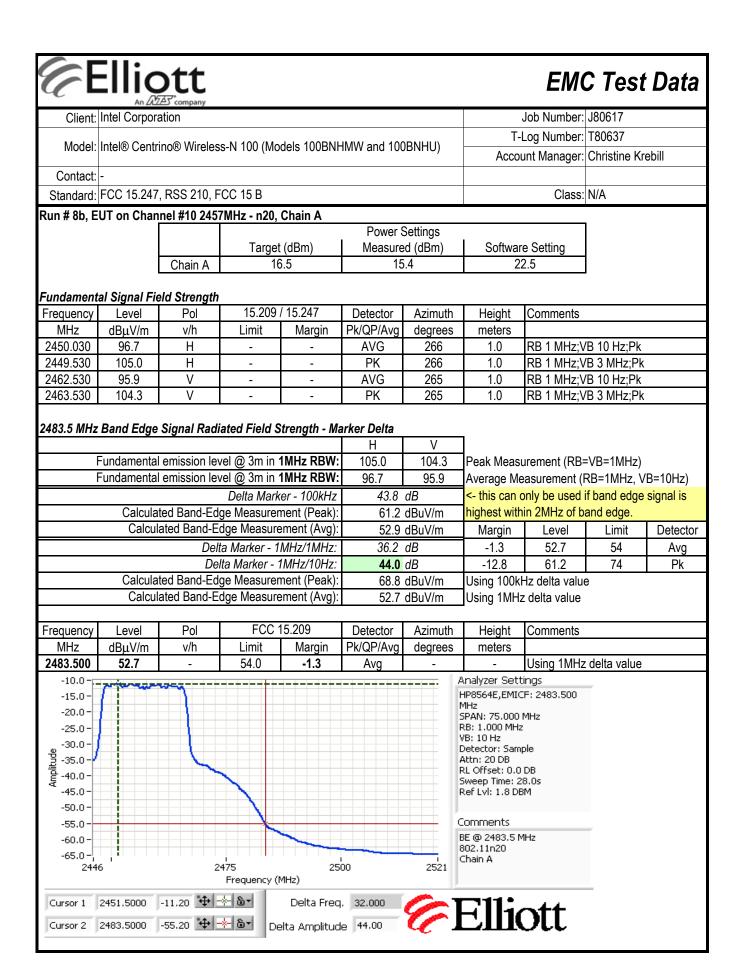
Elliott EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A Run # 7b, EUT on Channel #11 2462MHz - 802.11b, Chain A **Power Settings** Target (dBm) Measured (dBm) Software Setting 16.5 16.8 18.0 Chain A Fundamental Signal Field Strength 15.209 / 15.247 Frequency Pol Detector Azimuth Comments Level Height MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avg degrees meters 2463.830 102.8 Н **AVG** 255 1.0 RB 1 MHz;VB 10 Hz;Pk PK 2463.100 106.2 Η 255 1.0 RB 1 MHz;VB 3 MHz;Pk -٧ 2463.800 101.7 **AVG** 243 1.0 RB 1 MHz;VB 10 Hz;Pk 2463.170 105.2 V PK 243 1.0 RB 1 MHz;VB 3 MHz;Pk 2483.5 MHz Band Edge Signal Radiated Field Strength - Marker Delta ٧ Fundamental emission level @ 3m in 1MHz RBW: 105.2 106.2 Peak Measurement (RB=VB=1MHz) Fundamental emission level @ 3m in 1MHz RBW: 101.7 102.8 Average Measurement (RB=1MHz, VB=10Hz) Delta Marker - 100kHz <- this can only be used if band edge signal is 52.8 dB Calculated Band-Edge Measurement (Peak) highest within 2MHz of band edge. 53.4 dBuV/m Calculated Band-Edge Measurement (Avg): 50.0 dBuV/m Margin Level Limit Detector Delta Marker - 1MHz/1MHz: -8.7 45.3 41.7 dB 54 Avq Delta Marker - 1MHz/10Hz: 53.4 -20.6 74 **57.5** dB Pk Calculated Band-Edge Measurement (Peak): 64.5 dBuV/m Using 100kHz delta value Calculated Band-Edge Measurement (Avg): 45.3 dBuV/m Using 1MHz delta value FCC 15.209 Pol Comments Frequency Level Detector Azimuth Height dBμV/m Pk/QP/Avg MHz v/h Limit Margin degrees meters 2483.500 45.3 54.0 -8.7 Using 1MHz delta value Avg 0.0 Analyzer Settings HP8564E,EMICF: 2483.500 -10.0 SPAN: 80.000 MHz RB: 1,000 MHz -20.0 VB: 10 Hz Detector: Sample 출 -30.0 Attn: 10 DB RL Offset: 0.0 DB -40.0 Sweep Time: 30.0s Ref Lvl: 0.0 DBM -50.0 Comments -60.0 BE @ 2483.5 MHz 802.11b -70.0 Chain A 2444 2450 2480 2490 2500 2510 2460

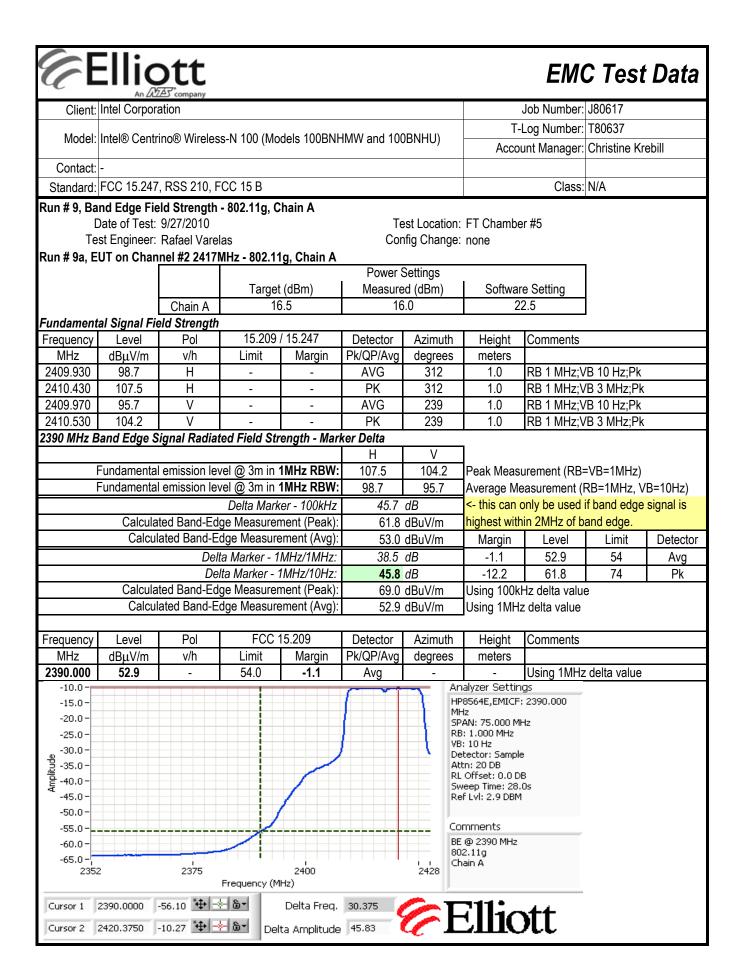
Cursor 1 2460.4333

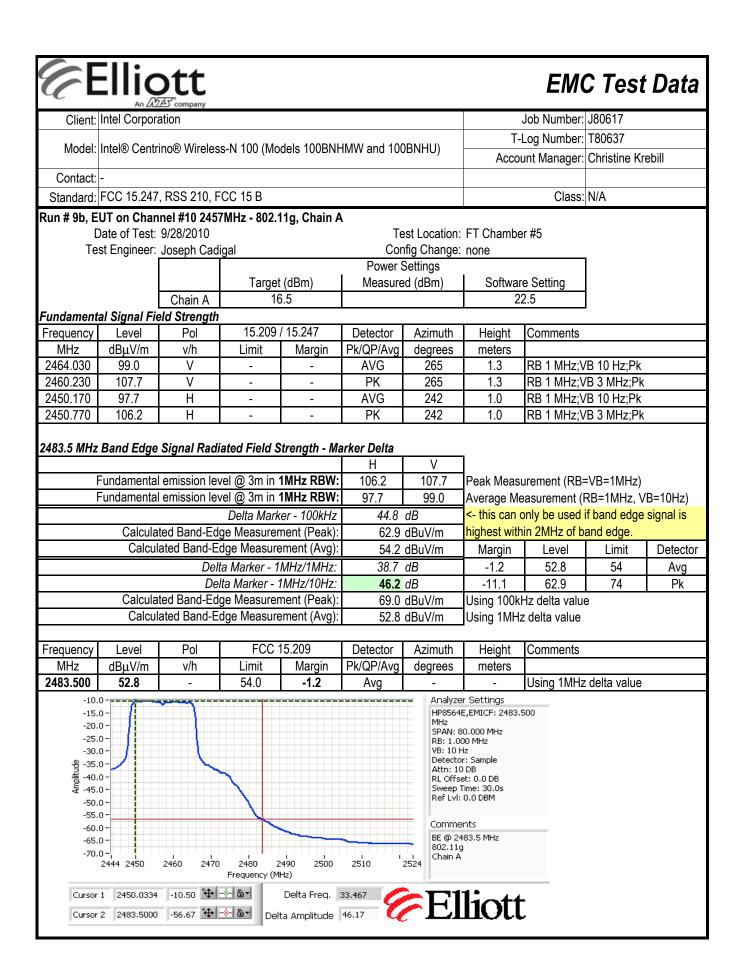
Cursor 2 2483,5000

Delta Freq. 23.067


Delta Amplitude 57.50


Frequency (MHz)


+ -*- 6-


-62.50 💠 🛧 🖫

-5.00

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	IIILEN CETILITION WITELESS-IN 100 (WIDGES 100DINTIVIVI AND 100DINTIO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions (1-26GHz)

Summary of Results

MAC Address: 78929C0023FE DRTU Tool Version 1.2.12.0197 Driver version 14.0.0.39

Run#	Mode	Channel	Target Power	Measured Power	Test Performed	Limit	Result / Margin
	#1 2412MH:		16.5	16.6			43.2dBµV/m @ 4824.0MHz (-10.8dB)
Run #1	802.11b Chain A	#6 2437MHz	16.5	16.8	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	50.6dBµV/m @ 3249.3MHz (-19.4dB)
		#11 2462MHz	16.5	16.8			40.0dBµV/m @ 4924.0MHz (-14.0dB)

Scans on center channel in all three OFDM modes to determine the worst case. Note that for n20 and n40 mode the output power was set to 16.5dBm per chain, the maximum power per chain in MIMO mode would be 13.5dBm, however as the single chain power could be 16.5dBm the scans were run at the higher single-chain power level but with both chains active.

			<u> </u>				
Run # 2	802.11g Chain A	#6 2437MHz	16.5	16.8			43.6dBµV/m @ 7500.0MHz (-10.4dB)
	802.11n20		16.5	16.7	Radiated Emissions,	FCC 15.209 / 15.247	38.3dBµV/m @
	Chain A 2	2437MHz	16.5	10.7	1 - 26 GHz	FCC 15.209 / 15.247	7505.3MHz (-15.7dB)
	802.11n40	#6	16.5	16.8			38.1dBµV/m @
	Chain A	2437MHz	10.5	10.0			7504.3MHz (-15.9dB)
Top and bot	tom channels	s in worst cas	se OFDM mo	ode:			
	802.11g	#1	16.5	16.5 16.7	Radiated Emissions,		38.1dBµV/m @
Run # 3		2412MHz	10.5	10.7		FCC 15.209 / 15.247	7505.2MHz (-15.9dB)
IXuII#3	Chain A	#11	16.5	16.6	1 - 26 GHz	1 00 13.203 / 13.247	39.7dBµV/m @
		2462MHz	10.5	10.0			7385.1MHz (-14.3dB)
Receiver Sp	ourious Emi	ssions					
Dup # 1	Receive	#6, Chain A			Radiated Emissions,	RSS 210	46.9dBµV/m @
Run # 4	Chain A	#0, Chain A	-	-	1 - 7 5 GHz	1100 210	3249 5MHz (-7 1dB)

Note - the target and measured power are average powers (measured with average power sensor) and are used for reference purposes only. Power is set using " **GAIN CONTROL**" mode in the DRTU tool.

Before disconnecting the power meter, EUT antennas or spectrum analyzer from the device please click on **Power Down** to stop the transmitter. Once the rf port is connected back up to the antenna, power meter or analyzer click on "**Start TX**". This prevents the feedback circuit on the EUT from dropping power while there is nothing connected and then ramping it back up when it sees a load.

Use the Gain Control mode of adjusting power. Set power to within +/-0.2dB of target.

	An ZAZZEO company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	intel® Centino® Wheless-IV 100 (Wodels 100biviniviW and 100bivino)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity: 15 - 55 % Temperature: 18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

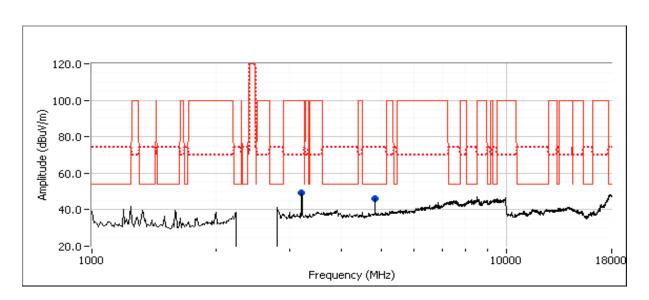
No deviations were made from the requirements of the standard.

Run #1, Radiated Spurious Emissions, 1-26GHz, 802.11b, Chain A

Date of Test: 9/23/2010 Test Location: FT Chamber #4
Test Engineer: Joseph Cadigal Config Change: none

Run #1a, EUT on Channel #1 2412MHz - 802.11b, Chain A

• • •	inci #1 2412mil2 002.11b, Onani A									
Power Settings										
		Target (dBm)	Measured (dBm)	Software Setting						
	Chain A	16.5	16.6	16.5						


Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4824.010	43.2	V	54.0	-10.8	AVG	117	1.0	RB 1 MHz;VB 10 Hz;Pk
3216.010	50.4	Н	70.0	-19.6	PK	175	1.3	RB 1 MHz;VB 3 MHz;Pk
4824.060	48.5	V	74.0	-25.5	PK	117	1.0	RB 1 MHz;VB 3 MHz;Pk
3216.030	46.6	Н	100.0	-53.4	AVG	175	1.3	RB 1 MHz;VB 10 Hz;Pk

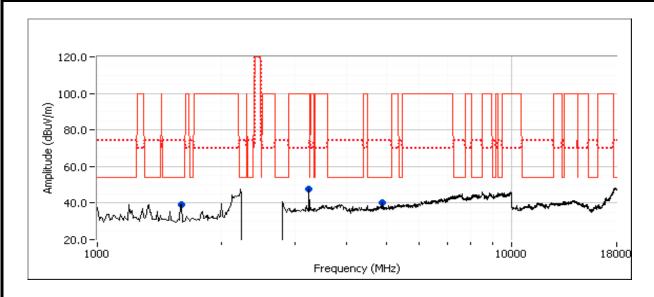
Note 1:	For emissions in restricted bands, the limit of 15.209 was used.	For all other emissions, the limit is -30dBc for peak
Note 1:	measurements in a measurement handwidth of 100kHz	

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
	III. Let & Certifino & Mileless-IN 100 (Models 100 bin nivi Wand 100 bin no)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run #1b: , EUT on Channel #6 2437MHz - 802.11b, Chain A

	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.8	17.5

Spurious Radiated Emissions:

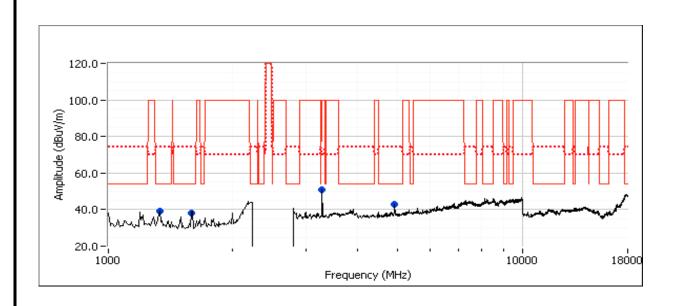

opanious no	- barrodo radiacoa Emissionor									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
3249.280	50.6	V	70.0	-19.4	PK	201	1.2	RB 1 MHz;VB 3 MHz;Pk		
4855.720	32.3	V	54.0	-21.7	AVG	173	1.9	RB 1 MHz;VB 10 Hz;Pk		
1593.680	31.1	V	54.0	-22.9	AVG	97	1.0	RB 1 MHz;VB 10 Hz;Pk		
1593.280	45.4	V	74.0	-28.6	PK	97	1.0	RB 1 MHz;VB 3 MHz;Pk		
4857.610	43.7	V	74.0	-30.3	PK	173	1.9	RB 1 MHz;VB 3 MHz;Pk		
3249.350	48.0	V	100.0	-52.0	AVG	201	1.2	RB 1 MHz;VB 10 Hz;Pk		

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak
Note 1:	measurements in a measurement bandwidth of 100kHz

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

	An ZCZES company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
	III.Let & Certifilio & Miletess-IN 100 (Models 100BINHIMW and 100BINHO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run #1c: , EUT on Channel #11 2462MHz - 802.11b, Chain A


- 1		•							
		Power Settings							
		Target (dBm)	Measured (dBm)	Software Setting					
	Chain A	16.5	16.8	18.0					

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.990	40.0	٧	54.0	-14.0	AVG	83	1.9	RB 1 MHz;VB 10 Hz;Pk
1331.980	35.9	V	54.0	-18.1	AVG	107	1.9	RB 1 MHz;VB 10 Hz;Pk
3282.570	50.7	V	70.0	-19.3	PK	206	1.5	RB 1 MHz;VB 3 MHz;Pk
1332.130	52.5	V	74.0	-21.5	PK	107	1.9	RB 1 MHz;VB 3 MHz;Pk
1598.350	31.7	٧	54.0	-22.3	AVG	96	1.0	RB 1 MHz;VB 10 Hz;Pk
4924.220	46.4	٧	74.0	-27.6	PK	83	1.9	RB 1 MHz;VB 3 MHz;Pk
1597.750	45.7	V	74.0	-28.3	PK	96	1.0	RB 1 MHz;VB 3 MHz;Pk
3282.700	47.3	V	100.0	-52.7	AVG	206	1.5	RB 1 MHz;VB 10 Hz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

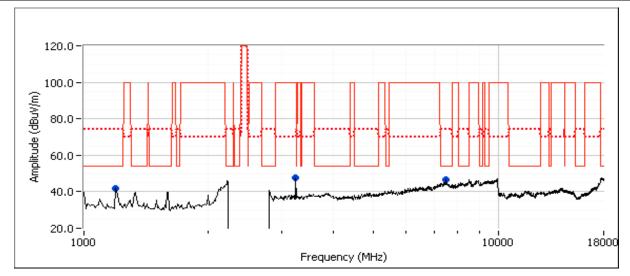
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
	intel® Centino® Wheless-IV 100 (woders 100bivinivity and 100bivino)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run # 2, Radiated Spurious Emissions, 1-26GHz, 802.11g, n20 and n40, Chain A

Date of Test: 9/28/2010 Test Location: FT Chamber#5

Test Engineer: Joseph Cadigal Config Change: none

Run # 2a, EUT on Channel #6 2437MHz - 802.11g Chain A


	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.8	23.0					

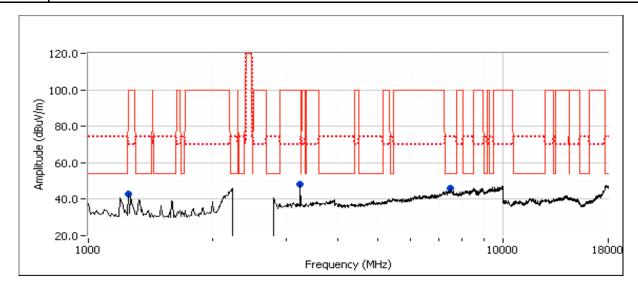
Spurious Radiated Emissions:

Opanious no	- barroad radiated Emissioner									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7500.040	43.6	V	54.0	-10.4	AVG	235	1.3	RB 1 MHz;VB 10 Hz;Pk		
1198.380	34.0	V	54.0	-20.0	AVG	77	1.3	RB 1 MHz;VB 10 Hz;Pk		
3249.350	47.7	V	70.0	-22.3	PK	204	1.3	RB 1 MHz;VB 3 MHz;Pk		
7500.000	51.6	V	74.0	-22.4	PK	235	1.3	RB 1 MHz;VB 3 MHz;Pk		
1197.990	46.3	V	74.0	-27.7	PK	77	1.3	RB 1 MHz;VB 3 MHz;Pk		
3249.350	42.2	V	100.0	-57.8	AVG	204	1.3	RB 1 MHz;VB 10 Hz;Pk		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80617
Model:	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
	IIILEN CETILITION WITELESS-IN 100 (WIDGES 100DINTIVIVI AND 100DINTIO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A


Run # 2b, EUT on Channel #6 2437MHz - 802.11n 20 Chain A

	Power Settings						
	Target (dBm)	Measured (dBm)	Software Setting				
Chain A	16.5	16.7	23.0				

Spurious Radiated Emissions:

	, parious r. universal								
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7505.250	38.3	V	54.0	-15.7	AVG	261	1.3	RB 1 MHz;VB 10 Hz;Pk	
3249.370	47.3	Н	70.0	-22.7	PK	186	1.9	RB 1 MHz;VB 3 MHz;Pk	
7503.620	49.9	V	74.0	-24.1	PK	261	1.3	RB 1 MHz;VB 3 MHz;Pk	
1257.780	37.4	Н	70.0	-32.6	PK	323	1.9	RB 1 MHz;VB 3 MHz;Pk	
3249.350	42.2	Н	100.0	-57.8	AVG	186	1.9	RB 1 MHz;VB 10 Hz;Pk	
1255.030	26.2	Н	100.0	-73.8	AVG	323	1.9	RB 1 MHz;VB 10 Hz;Pk	
								-	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

	All Diff. Company		
Client:	Intel Corporation	Job Number:	J80617
Madal	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	lintel® Centinio® Wheless-IN 100 (woders 100bin liviW and 100bin io)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run # 2c, EUT on Channel #6 2437MHz - 802.11n 40 Chain A


		Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting						
Chain A	16.5	16.8	23.0						

Spurious Radiated Emissions:

oparious it	opurious Rudiated Emissions:									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7504.310	38.1	V	54.0	-15.9	AVG	246	1.3	RB 1 MHz;VB 10 Hz;Pk		
1198.590	32.5	Н	54.0	-21.5	AVG	179	1.3	RB 1 MHz;VB 10 Hz;Pk		
3249.320	47.3	Н	70.0	-22.7	PK	186	1.9	RB 1 MHz;VB 3 MHz;Pk		
7503.850	49.6	V	74.0	-24.4	PK	246	1.3	RB 1 MHz;VB 3 MHz;Pk		
1198.450	45.5	Н	74.0	-28.5	PK	179	1.3	RB 1 MHz;VB 3 MHz;Pk		
3249.370	41.4	Н	100.0	-58.6	AVG	186	1.9	RB 1 MHz;VB 10 Hz;Pk		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

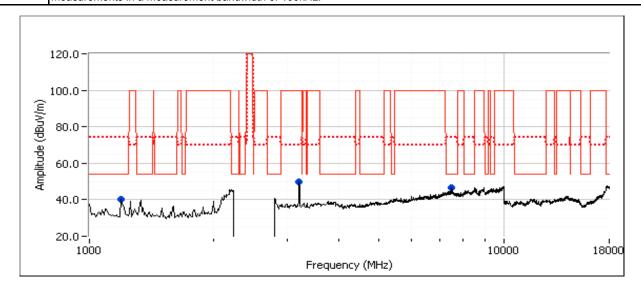
Note 2: Scans made between 18 - 26GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range

	An 2022 Company		
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	ilitel® Certifillo® Wileless-IV 100 (Models 100BIVI IVIV and 100BIVI IO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run # 3, Radiated Spurious Emissions, 1-26GHz, 802.11g, Chain A

Date of Test: 9/28/2010 Test Location: FT Chamber#5

Test Engineer: Joseph Cadigal Config Change: none


Run # 3a, EUT on Channel #1 2412MHz - 802.11g, Chain A

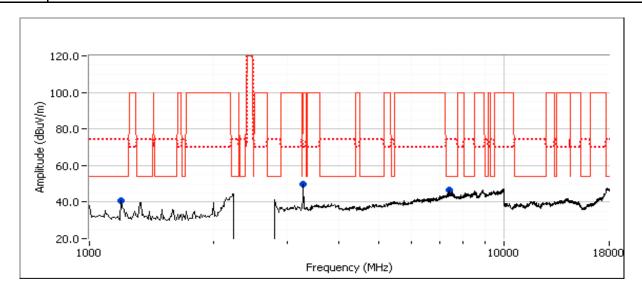
	Power Settings							
	Target (dBm)	Measured (dBm)	Software Setting					
Chain A	16.5	16.7	22.5					

Spurious Radiated Emissions:

oparious m	Spanous Radiated Emissions.									
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7505.230	38.1	V	54.0	-15.9	AVG	74	1.3	RB 1 MHz;VB 10 Hz;Pk		
3216.000	50.6	V	70.0	-19.4	PK	202	1.3	RB 1 MHz;VB 3 MHz;Pk		
1198.690	30.5	Н	54.0	-23.5	AVG	187	1.3	RB 1 MHz;VB 10 Hz;Pk		
7505.040	49.3	V	74.0	-24.7	PK	74	1.3	RB 1 MHz;VB 3 MHz;Pk		
1198.170	43.1	Н	74.0	-30.9	PK	187	1.3	RB 1 MHz;VB 3 MHz;Pk		
3216.000	47.6	V	100.0	-52.4	AVG	202	1.3	RB 1 MHz;VB 10 Hz;Pk		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.

	All Dates Company		
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	intel® Centino® Wheless-IV 100 (woders 100bivinivity and 100bivino)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

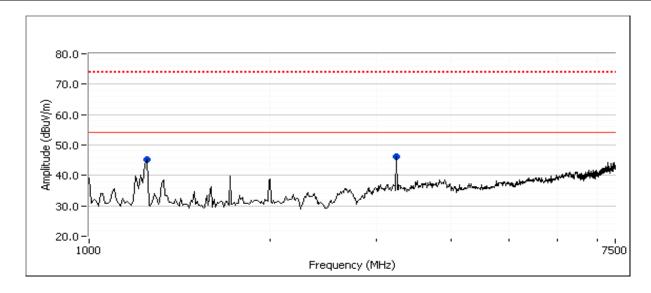

Run # 3b: , EUT on Channel #11 2462MHz - Chain A

		Power Settings	
	Target (dBm)	Measured (dBm)	Software Setting
Chain A	16.5	16.6	23.5

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7385.060	39.7	V	54.0	-14.3	AVG	156	1.6	RB 1 MHz;VB 10 Hz;Pk
3282.750	51.0	V	70.0	-19.0	PK	200	1.6	RB 1 MHz;VB 3 MHz;Pk
1198.550	31.7	Η	54.0	-22.3	AVG	179	1.0	RB 1 MHz;VB 10 Hz;Pk
7387.150	51.5	V	74.0	-22.5	PK	156	1.6	RB 1 MHz;VB 3 MHz;Pk
1198.720	43.7	Η	74.0	-30.3	PK	179	1.0	RB 1 MHz;VB 3 MHz;Pk
3282.670	48.1	V	100.0	-51.9	AVG	200	1.6	RB 1 MHz;VB 10 Hz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -30dBc for peak measurements in a measurement bandwidth of 100kHz.



	All Diffe Company		
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	intel® Centino® Wheless-IV 100 (woders 100bivinivity and 100bivino)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

Run # 4, Radiated Spurious Emissions, 1-26GHz, EUT on Channel #6 2437MHz - Receive

Date of Test: 9/28/2010 Test Location: FT Chamber#5
Test Engineer: Joseph Cadigal Config Change: none

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3249.500	46.9	V	54.0	-7.1	AVG	248	1.3	RB 1 MHz;VB 10 Hz;Pk
3249.370	49.4	V	74.0	-24.6	PK	248	1.3	RB 1 MHz;VB 3 MHz;Pk
1256.200	25.5	V	54.0	-28.5	AVG	290	1.0	RB 1 MHz;VB 10 Hz;Pk
1254.510	37.3	V	74.0	-36.7	PK	290	1.0	RB 1 MHz;VB 3 MHz;Pk

	Elliott An OZAT company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	Intel® Centino® Wheless-IN 100 (Models 100BINFINIW and 100BINFIO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/29/2010 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: FT Chamber#4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 15 - 55 °C Rel. Humidity: 18 - 25 %

Summary of Results

Run#	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin	
						802.11b: 43 mW	
4			Outrot Device	45 047/h)	D	802.11g: 35.3 mW	
1	-	-	Output Power	15.247(b)	Pass	n20: 34.8 mW	
					n40: 16.4 mW		
2	-	-	Power spectral Density (PSD)	15.247(d)	Pass	-18.7 dBm/3kHz	
3	-	-	Minimum 6dB Bandwidth	15.247(a)	Pass	9.7 MHz	
							802.11b: 13.14 MHz
_			ماندان المال ا	D00 0EN	-	802.11g: 17.39 MHz	
3	-	-	99% Bandwidth	RSS GEN		n20: 18.64 MHz	
						n40: 36.77 MHz	
4	-	-	Spurious emissions	15.247(b)	Pass	See graphs below	

Modifications Made During Testing

No modifications were made to the EUT during testing

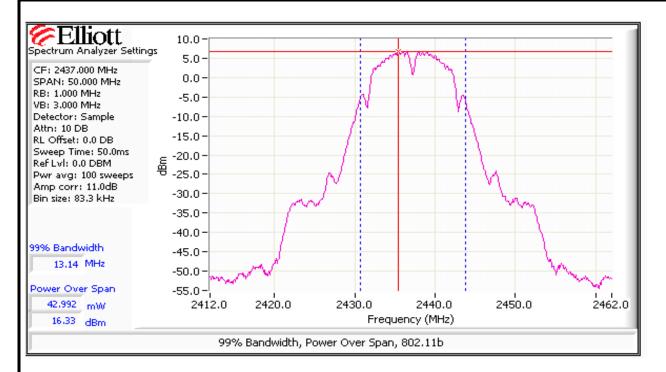
	An ATAS company	EMC Test Data			
Client:	Intel Corporation	Job Number:	J80617		
Madal	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637		
Model.	IIILENS CETILITIOS WITELESS-IN 100 (MODELS 100DINTIVIW AND 100DINTIO)	Account Manager:	Christine Krebill		
Contact:	-				
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A		

Deviations From The Standard

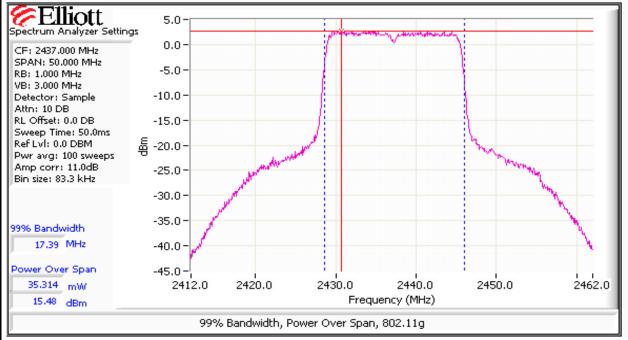
No deviations were made from the requirements of the standard.

Run #1: Output Power

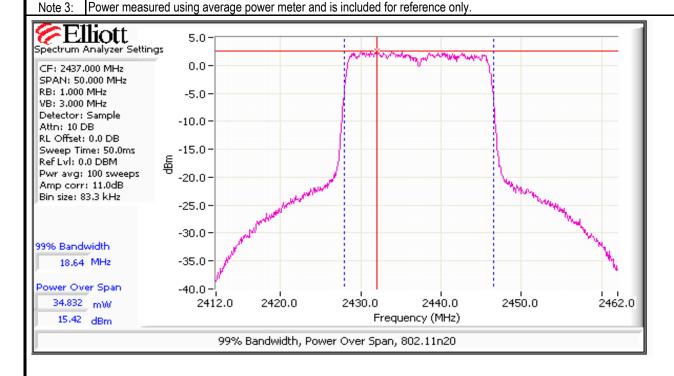
← □ □ □


802	11	h
8UZ.	11	D

Power	- (MIL)	Output	Power	Antenna	Б. 11	EIRF	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) 1	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
17.5	2412	16.1	40.6	3.2	Pass	19.3	0.085	16.6	45.7
18	2437	16.3	43.0	3.2	Pass	19.5	0.090	16.7	46.8
18	2462	15.9	39.0	3.2	Pass	19.1	0.081	16.6	45.7


Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50MHz (option #2, method 1 in KDB 558074, Note 1: equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc.

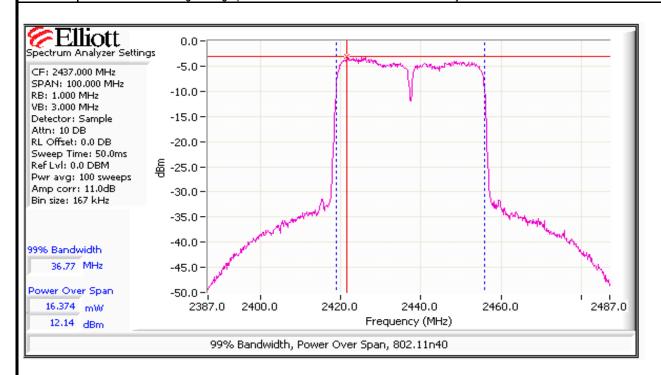
Power setting - the software power setting used during testing, included for reference only. Note 2:

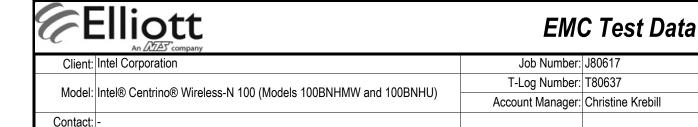

Note 3: Power measured using average power meter and is included for reference only.

Elliott EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Contact: Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A 802.11g EIRP Note 2 Output Power **Output Power** Power Antenna Frequency (MHz) Result (dBm) 1 (dBm)³ Setting² mW Gain (dBi) dBm W 17.5 2412 0.030 11.5 14.1 3.2 Pass 14.7 12.7 18.6 2437 0.074 23 15.5 35.3 16.7 47.2 3.2 **Pass** 18.7 16.5 2462 3.2 0.019 14.5 9.6 9.2 **Pass** 12.8 11.6 Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power Note 1: averaging on (transmitted signal was continuous) and power integration over 50MHz (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Power setting - the software power setting used during testing, included for reference only. Note 3: Power measured using average power meter and is included for reference only

Elliott EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Contact: Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A 802.11n 20MHz EIRP Note 2 Output Power **Output Power** Power Antenna Frequency (MHz) Result (dBm) 1 (dBm)³ Setting² mW Gain (dBi) dBm W 17 2412 0.026 11.0 12.5 3.2 Pass 14.2 12.2 16.6 23 2437 0.073 15.4 34.8 16.6 45.7 3.2 **Pass** 18.6 17.5 2462 10.2 3.2 0.022 12.5 17.8 10.4 **Pass** 13.4 Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power Note 1: averaging on (transmitted signal was continuous) and power integration over 50MHz (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Power setting - the software power setting used during testing, included for reference only.

	All Dates Company		
Client:	Intel Corporation	Job Number:	J80617
Madal	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
woder.	ilitel® Certtillo® Wileless-IV 100 (Wodels 100BIVI IVIV and 100BIVI IO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

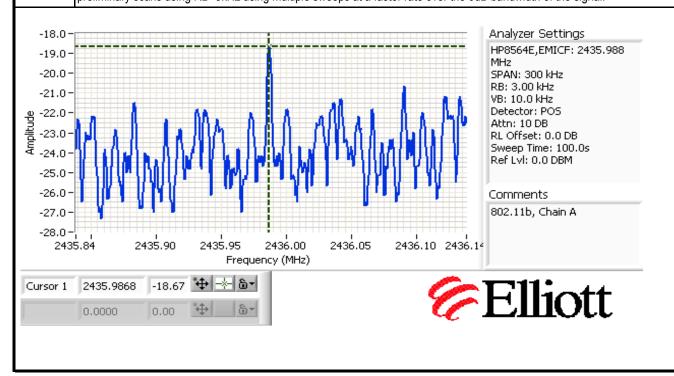

802.11n 40MHz


Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRF	Note 2	Output	Power
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
15.5	2422	10.1	10.1	3.2	Pass	13.3	0.021	11.1	12.9
18.5	2437	12.1	16.4	3.2	Pass	15.3	0.034	13.5	22.4
15.5	2452	9.2	8.3	3.2	Pass	12.4	0.017	11.0	12.6

Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over **100MHz** (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes **-30dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Power measured using average power meter and is included for reference only.

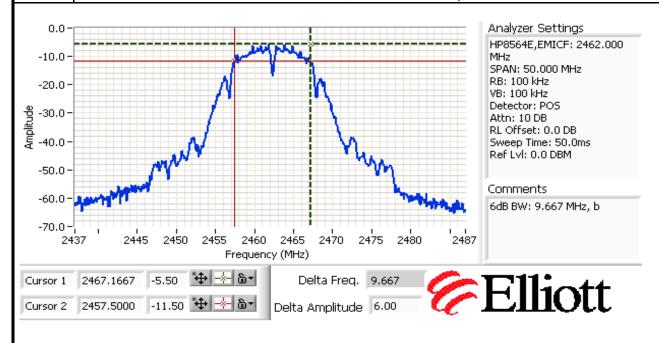

Class: N/A

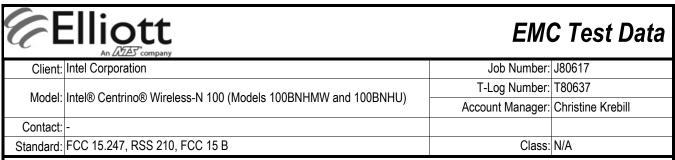
Run #2: Power spectral Density

Standard: FCC 15.247, RSS 210, FCC 15 B

Mode	Power Setting	Frequency (MHz)	PSD (dBm/3kHz) Note 1	Limit dBm/3kHz	Result
	17.5	2412	-19.3	8.0	Pass
802.11b	18	2437	-18.7	8.0	Pass
	18	2462	-21.3	8.0	Pass
	17.5	2412	-23.2	8.0	Pass
802.11g	23	2437	-19.0	8.0	Pass
	16.5	2462	-26.0	8.0	Pass
802.11n	17	2412	-23.0	8.0	Pass
20MHz	23	2437	-20.7	8.0	Pass
ZUIVII IZ	17.5	2462	-27.2	8.0	Pass
802.11n	15.5	2422	-29.3	8.0	Pass
40MHz	18.5	2437	-24.7	8.0	Pass
	15.5	2452	-29.5	8.0	Pass

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

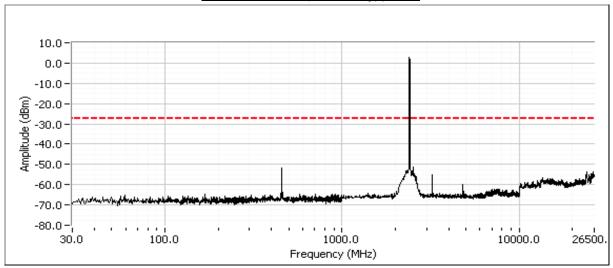



	All 2022 Company		
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	III. Let & Certifino & Mileless-IN 100 (Models 100 bin nivi Wand 100 bin no)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	N/A

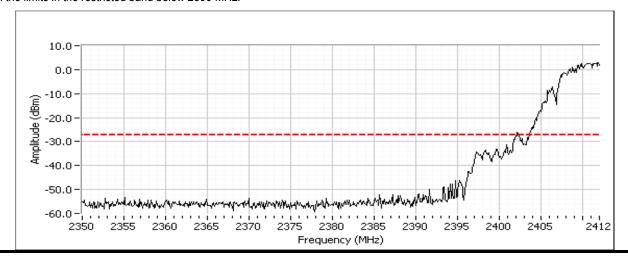
Run #3: Signal Bandwidth

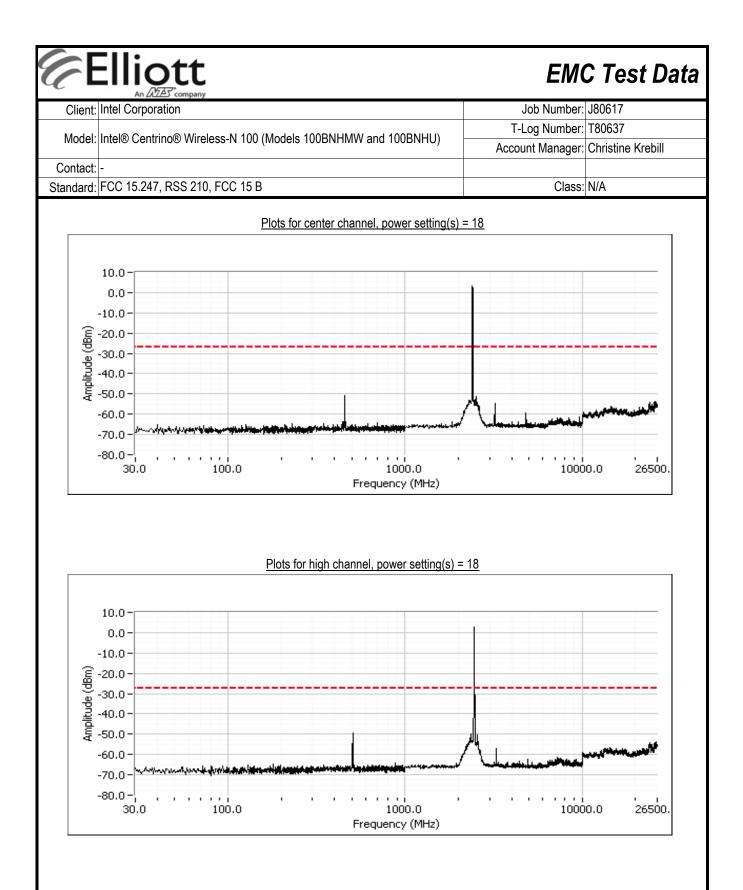
Mode	Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Mode	Setting	riequency (Min2)	Bandwidth	6dB	99%
	17.5	2412	100kHz	10.2	13.06
802.11b	18	2437	100kHz	10.0	13.14
	18	2462	100kHz	9.7	12.98
	17.5	2412	100kHz	16.5	17.14
802.11g	23	2437	100kHz	16.5	17.39
	16.5	2462	100kHz	16.5	17.14
802.11n	17	2412	100kHz	17.8	18.30
20MHz	23	2437	100kHz	17.8	18.64
ZUIVINZ	17.5	2462	100kHz	17.8	18.30
802.11n	15.5	2422	100kHz	35.8	36.61
40MHz	18.5	2437	100kHz	35.7	36.77
4UIVIHZ	15.5	2452	100kHz	36.0	36.61

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB



Run #4: Out of Band Spurious Emissions

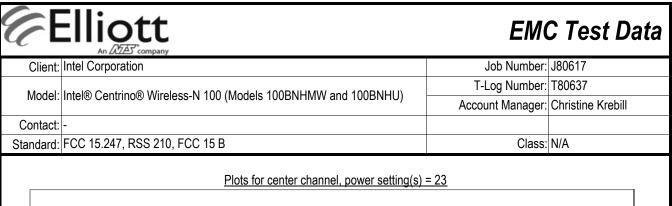

802.11b Mode

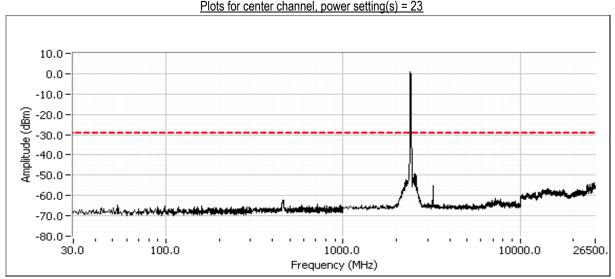

Frequency (MHz)	Limit	Result
2412	-30dBc	Pass
2437	-30dBc	Pass
2462	-30dBc	Pass

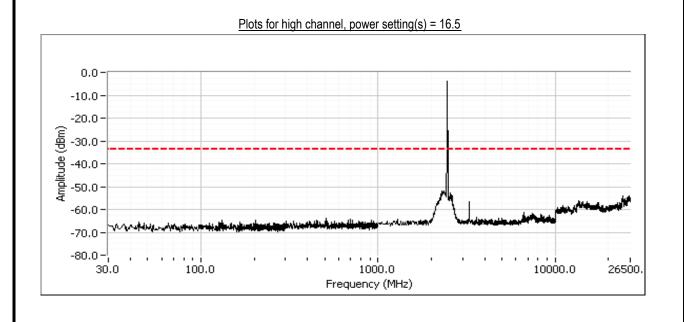
Plots for low channel, power setting(s) = 17.5

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Contact: Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A 802.11g Mode Frequency (MHz) Limit Result 2412 -30dBc Pass 2437 -30dBc Pass 2462 -30dBc Pass Plots for low channel, power setting(s) = 17.50.0 -10.0 $-20.0 \cdot$ Amplitude (dBm) -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 . 26500. 30.0 100.0 1000.0 10000.0 Frequency (MHz) Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz. 0.0 Mountain -10.0 Amplitude (dBm) -20.0 And the second second -30.0 -40.0 -60.0 -¦


Frequency (MHz)


2360


2365

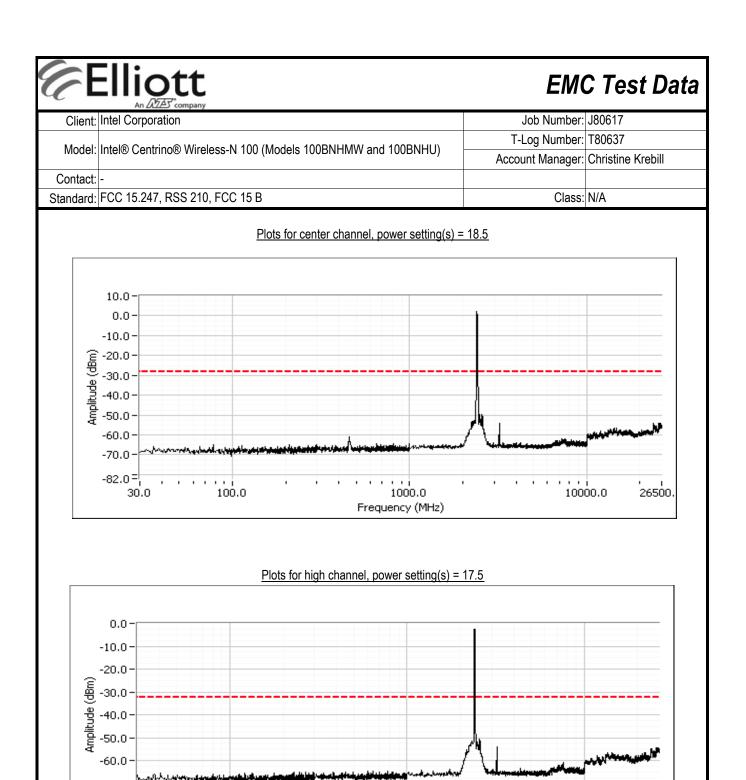
2395

2400

EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Contact: Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A 802.11n 20MHz Mode Frequency (MHz) Limit Result 2412 -30dBc Pass 2437 -30dBc Pass 2462 -30dBc Pass Plots for low channel, power setting(s) = 17 0.0 -10.0-20.0 Amplitude (dBm) -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 1000.0 265<u>0</u>0 30.0 100.0 10000.0 Frequency (MHz) Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz. 0.0 yaalaada oo laasa kalkaadaad -10.0 Amplitude (dBm) -20.0 -30.0 made the All of well and with full of the forest -40.0 -50.0

Frequency (MHz)

2350


2355

2390

2395

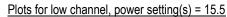
2400

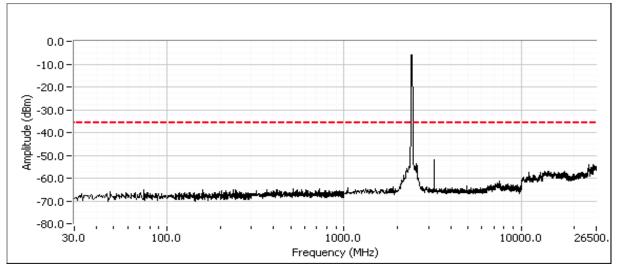
2412

1000.0

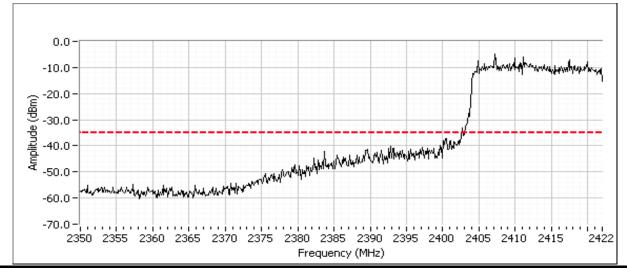
Frequency (MHz)

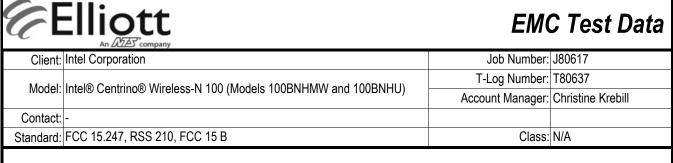
26500.

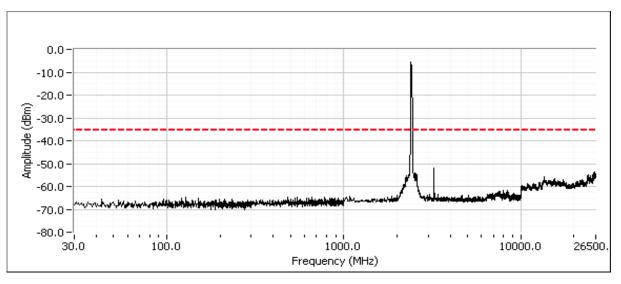

10000.0


-80.0 -¦

30.0


100.0


EMC Test Data Client: Intel Corporation Job Number: J80617 T-Log Number: T80637 Model: Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU) Account Manager: Christine Krebill Contact: Standard: FCC 15.247, RSS 210, FCC 15 B Class: N/A 802.11n 40MHz Mode Frequency (MHz) Limit Result 2422 -30dBc Pass 2437 -30dBc Pass 2452 -30dBc Pass


Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

Plots for center channel, power setting(s) = 18.5 0.0 -10.0 -20.0 Amplitude (dBm) -30.0 -40.0 -50.0 -60.0 · -80.0 -¦ 10000.0 26500. 30.0 100.0 1000.0 Frequency (MHz)

Plots for high channel, power setting(s) = 15.5

	· · · · · · · · · · · · · · · · · · ·		
Client:	Intel Corporation	Job Number:	J80617
Madal	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	IIIIele Celitiilo Wileless-N 100 (Models 100bNHMW and 100bNHO)	Account Manager:	Christine Krebill
Contact:	-		
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	В

Radiated Emissions 30-1000 MHz, Wireless Module (FCC 15.247/RSS 210)

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/30/2010 Config. Used: Modular Test
Test Engineer: Riaz Momand Config Change: None
Test Location: Fremont Chamber # 4 Host Unit Voltage 120V / 60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 44 %

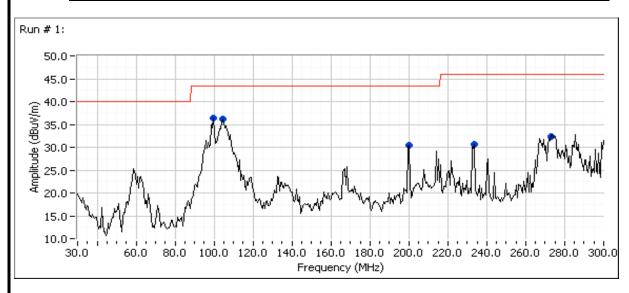
Summary of Results

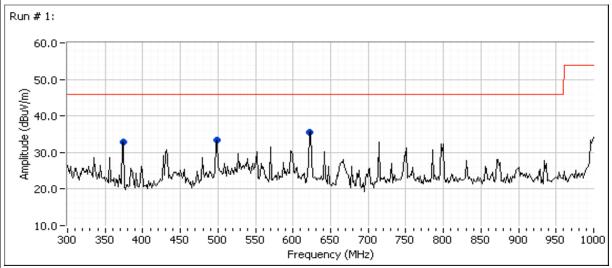
MAC Address: 78929C0023FE; DRTU Tool Version 1.2.12.0197; Driver version 14.0.0.39

Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz	FCC 15.209 / RSS 210	Pass	32.5dBµV/m @ 622.33MHz (-13.5dB)

Note - preliminary measurements indicated that the radiated emissions from the combination of test fixture and EUT were not affected by the modules operating frequency or mode (transmit versus receive mode). The system was therefore evaluated against the most stringent set of limits from FCC 15.247, FCC 15E and RSS 210 with the **device operating at max power (16.5dBm) on Chain A at 2437MHz, 802.11b mode.**

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Run # 1: Preliminary Radiated Emissions, 30 - 1000 MHz Configured to TX , 802.11b 16.5dBm on chain A (setting 17.5)

,	<u> </u>		
Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Run # 1 Continued on Next Page

Fequency Level Pol FCC 15.209 / RSS 210 Detector Azimuth Height Comments	equency	ı peak readı	ngs captu	red during p	re-scan				
374.742 32.9 H 46.0 -13.1 Peak 10 1.0 233.103 30.6 H 46.0 -15.4 Peak 180 1.5 103.543 36.1 V 43.5 -7.4 Peak 304 1.9 99.735 36.4 V 43.5 -7.1 Peak 229 2.0 271.242 32.3 V 46.0 -13.7 Peak 300 1.0 499.210 33.5 H 46.0 -12.5 Peak 350 1.5 200.003 30.4 V 43.5 -13.1 Peak 360 2.0 aximized quasi-peak readings (includes manipulation of EUT interface cables) requency Level Pol FCC 15.209 / RSS 210 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 622.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 103.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 99.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 374.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 499.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 200.003 21.1 V 43.5 -22.4 QP 168 1.5 QP (1.00s) 200.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)	MHz					Detector	Azimuth	Height	Comments
233.103	IVII IZ	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
3.543 36.1 V 43.5 -7.4 Peak 304 1.9 3.735 36.4 V 43.5 -7.1 Peak 229 2.0 32.3 V 46.0 -13.7 Peak 283 2.5 2.331 35.4 V 46.0 -10.6 Peak 300 1.0 9.210 33.5 H 46.0 -12.5 Peak 350 1.5 0.003 30.4 V 43.5 -13.1 Peak 360 2.0	4.742	32.9	Н	46.0	-13.1	Peak		1.0	
9.735 36.4 V 43.5 -7.1 Peak 229 2.0	33.103	30.6	Н		-15.4	Peak	180	1.5	
1.242 32.3	3.543	36.1		43.5	-7.4	Peak	304	1.9	
2.331 35.4 V 46.0 -10.6 Peak 300 1.0 9.210 33.5 H 46.0 -12.5 Peak 350 1.5 0.003 30.4 V 43.5 -13.1 Peak 360 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	9.735	36.4		43.5	-7.1	Peak	229	2.0	
9.210 33.5 H 46.0 -12.5 Peak 350 1.5						Peak			
No.003 30.4 V 43.5 -13.1 Peak 360 2.0	22.331			-		Peak		1.0	
timized quasi-peak readings (includes manipulation of EUT interface cables) quency Level Pol FCC 15.209 / RSS 210 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 12.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 13.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 9.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 44.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 19.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 13.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 10.003 21.1 V 43.5 -22.4 QP 348 1.				-					
quency Level Pol FCC 15.209 / RSS 210 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 22.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 93.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 9.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 74.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 99.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 33.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 10.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)	0.003	30.4	V	43.5	-13.1	Peak	360	2.0	
quency Level Pol FCC 15.209 / RSS 210 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 3.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 9.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 4.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 9.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 3.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 3.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 9.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 4.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 9.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 3.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)		 							
2.331 32.5 V 46.0 -13.5 QP 335 1.0 QP (1.00s) 3.543 30.0 V 43.5 -13.5 QP 306 2.4 QP (1.00s) 9.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 4.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 9.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 3.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									Comments
3.543 30.0									
0.735 29.2 V 43.5 -14.3 QP 308 2.1 QP (1.00s) 4.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 9.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 3.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									
74.742 31.4 H 46.0 -14.6 QP 14 1.2 QP (1.00s) 99.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 33.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 00.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									. ,
99.538 30.3 H 46.0 -15.7 QP 18 1.5 QP (1.00s) 33.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 00.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									
3.103 29.5 H 46.0 -16.5 QP 168 1.5 QP (1.00s) 0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									. ,
0.003 21.1 V 43.5 -22.4 QP 348 1.0 QP (1.00s)									
									. ,
71.242 17.7 V 46.0 -28.3 QP 355 1.0 QP (1.00s)									
	1.242	17.7	V	46.0	-28.3	QP	355	1.0	QP (1.00s)

	An AZAS company	EMO	C Test Data
Client:	Intel Corporation	Job Number:	J80617
Model	Intel® Centrino® Wireless-N 100 (Models 100BNHMW and 100BNHU)	T-Log Number:	T80637
Model.	IIILE © CETILITIO® WITE ESS-IN 100 (WOULDS 100 DIN THINW ALLA 100 DIN THO)	Account Manager:	Christine Krebill
Contact:			
Standard:	FCC 15.247, RSS 210, FCC 15 B	Class:	В

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/30/2010 Config. Used: Modular Test
Test Engineer: Riaz Momand Config Change: None
Test Location: Fremont Chamber # 4 Host Unit Voltage 120V / 60Hz

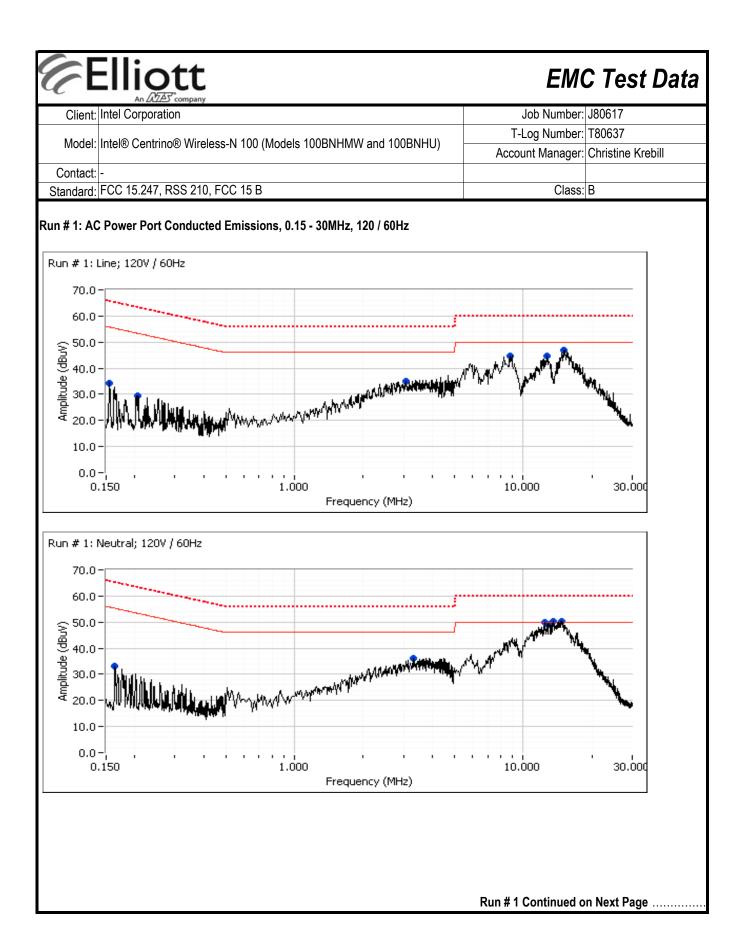
General Test Configuration

The host laptop was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 22 °C

Rel. Humidity: 44 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V / 60Hz	FCC Class B	Pass	44.5dBµV @ 14.055MHz (-15.5dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Ellic	ott					EMO	C Test Da
Client:	Intel Corpor	ation					Job Number:	J80617
							T-Log Number:	T80637
Model:	Intel® Centr	rino® Wireles	s-N 100 (Mo	dels 100BNI	HMW and 10	0BNHU)	Account Manager:	
Contact:								
Standard:	FCC 15.247	', RSS 210, F	CC 15 B				Class:	В
	Run # 1 Con	tinued						
reliminary	peak readi	ngs capture	d during pre	-scan (peak	readings v	s. average limit)	
requency	Level	AC		Class B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.156	34.3	Line	55.7	-21.4	Peak			
0.206	29.4	Line	53.3	-23.9	Peak			
2.974	35.1	Line	46.0	-10.9	Peak			
14.692	46.9	Line	50.0	-3.1	Peak			
8.883	44.5	Line	50.0	-5.5	Peak			
12.802	44.6	Line	50.0	-5.4	Peak			
0.157	33.2	Neutral	55.3	-22.1	Peak			
3.308	36.1	Neutral	46.0	-9.9	Peak			
14.287	50.1	Neutral	50.0	0.1	Peak			
14.055	50.3	Neutral	50.0	0.3	Peak			
12.887	50.0	Neutral	50.0	0.0	Peak			
12.528	49.2	Neutral	50.0	-0.8	Peak			
		verage readi		=	T _	1-		
requency	Level	AC		class B	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave			
14.055	44.5	Neutral	60.0	-15.5	QP	QP (1.00s)		
12.887	42.9	Neutral	60.0	-17.1	QP	QP (1.00s)		
14.055	22.0	Moutral	50 N	179				
	32.8	Neutral	50.0	-17.2	AVG	AVG (0.10s)		
12.887	32.3	Neutral	50.0	-17.7	AVG	AVG (0.10s)		
12.887 14.287	32.3 32.2	Neutral Neutral	50.0 50.0	-17.7 -17.8	AVG AVG	AVG (0.10s) AVG (0.10s)		
12.887 14.287 12.528	32.3 32.2 42.0	Neutral Neutral Neutral	50.0 50.0 60.0	-17.7 -17.8 -18.0	AVG AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287	32.3 32.2 42.0 42.0	Neutral Neutral Neutral Neutral	50.0 50.0 60.0 60.0	-17.7 -17.8 -18.0 -18.0	AVG AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528	32.3 32.2 42.0 42.0 30.6	Neutral Neutral Neutral Neutral Neutral	50.0 50.0 60.0 60.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4	AVG AVG QP QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692	32.3 32.2 42.0 42.0 30.6 39.6	Neutral Neutral Neutral Neutral Neutral Line	50.0 50.0 60.0 60.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4	AVG AVG QP QP AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883	32.3 32.2 42.0 42.0 30.6 39.6 39.5	Neutral Neutral Neutral Neutral Neutral Line Line	50.0 50.0 60.0 60.0 50.0 60.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5	AVG AVG QP QP AVG QP QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2	Neutral Neutral Neutral Neutral Neutral Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 60.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8	AVG AVG QP QP AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9	Neutral Neutral Neutral Neutral Neutral Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 60.0 50.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1	AVG AVG QP QP AVG QP QP AVG AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 60.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2	AVG AVG QP QP AVG QP QP AVG QP AVG AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3	AVG AVG QP QP AVG QP AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2	AVG AVG QP QP AVG QP AVG AVG AVG AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 60.0 50.0 46.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7	AVG AVG QP QP AVG QP AVG AVG AVG QP AVG AVG QP AVG AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 46.0 56.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8	AVG AVG QP QP AVG QP AVG AVG AVG AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308 3.308	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2 16.1	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Neutral Neutral	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 46.0	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8 -29.9	AVG AVG QP QP AVG QP AVG AVG AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308 3.308 0.155	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2 16.1 28.6	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 46.0 46.0 65.7	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8 -29.9 -37.1	AVG AVG QP QP AVG QP AVG AVG AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308 0.155 0.157	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2 16.1 28.6 28.0	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 46.0 46.0 65.7 65.6	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8 -29.9 -37.1 -37.6	AVG AVG QP QP AVG QP AVG AVG AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308 3.308 0.155 0.206	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2 16.1 28.6 28.0 23.0	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 56.0 46.0 56.0 46.0 65.7 65.6 63.4	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8 -29.9 -37.1 -37.6 -40.4	AVG AVG QP QP AVG QP AVG AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
12.887 14.287 12.528 14.287 12.528 14.692 8.883 14.692 8.883 12.802 12.802 2.974 2.974 3.308 3.308 0.155 0.157	32.3 32.2 42.0 42.0 30.6 39.6 39.5 29.2 28.9 37.8 27.7 29.8 19.3 28.2 16.1 28.6 28.0	Neutral Neutral Neutral Neutral Neutral Line Line Line Line Line Line Line Line	50.0 50.0 60.0 60.0 50.0 60.0 50.0 50.0 50.0 50.0 50.0 46.0 46.0 65.7 65.6	-17.7 -17.8 -18.0 -18.0 -19.4 -20.4 -20.5 -20.8 -21.1 -22.2 -22.3 -26.2 -26.7 -27.8 -29.9 -37.1 -37.6	AVG AVG QP QP AVG QP AVG AVG AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)		