

FCC Test Report (Co-Located)

Report No.: RFBHJS-WTW-P21050503-2

FCC ID: PD5-LM-WESA04OR

Test Model: LM-WESA0440A-OR

Received Date: May 13. 2021

Test Date: May 28, 2021

Issued Date: Jun. 21, 2021

Applicant: Delta Electronics, Inc.

Address: 31-1 Shien Pan Rd., Kuei San Industrial Zone, Taoyuan City, 333 Taiwan

- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN

FCC Registration / 788550 / TW0003 Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	eleas	e Control Record	. 3
1		Certificate of Conformity	. 4
2	:	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty Modification Record	
3		General Information	. 6
	3.1 3.2 3.2.1 3.3 3.3.1	Description of Support Units Configuration of System under Test	. 9 .11 12 12
	3.4	General Description of Applied Standards	12
4	-	General Description of Applied Standards	
4	4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6	Test Types and Results Radiated Emission and Bandedge Measurement.	13 13 14 15 15 16 17
-	4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7	Test Types and Results Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement . Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions.	13 13 14 15 15 16 17 18
-	4.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 nnex	Test Types and Results Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results	 13 13 14 15 16 17 18 21

Release Control Record

Issue No.	Description	Date Issued
RFBHJS-WTW-P21050503-2	Original release	Jun. 21, 2021

Certificate of Conformity 1

Product: 802.11 b/g/n/ac WIFI AP Test Model: LM-WESA0440A-OR Sample Status: Engineering sample Applicant: Delta Electronics, Inc. Test Date: May 28, 2021 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

U0

Celine Chou / Senior Specialist

Jun. 21, 2021

Date:

Approved by :

Jun. 21, 2021 Date:

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

Applied Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407)			
FCC	47 CFR FCC Part 15, Subpart E (Section 15.407)			
Clause	Test Item Result Remarks			
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -0.2dB at 2390.00MHz.	

Note:

- For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.86 dB
	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	802.11 b/g/n/ac WIFI AP
Test Model	LM-WESA0440A-OR
Sample Status	Engineering sample
Power Supply Rating	55Vdc from POE
Madulatian Tima	CCK, DQPSK, DBPSK for DSSS
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM
	802.11b: 11.0/ 5.5/ 2.0/ 1.0Mbps
	802.11g: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps
Transfer Rate	802.11a: 54/48/36/24/18/12/9/6Mbps
	802.11n: up to 800Mbps (For 2.4G Band)
	802.11n: up to 600Mbps (For 5G Band)
	802.11ac: up to 1300Mbps (For 5G Band)
	2.4GHz: 2412 ~ 2462MHz
Operating Frequency	5.0GHz: 5180 ~ 5240MHz, 5260 ~ 5320MHz, 5500 ~ 5700MHz,
	5745 ~ 5825MHz
	2412 ~ 2462MHz:
	802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20): 11
	802.11n (HT40), 802.11n (VHT40): 7
	5180 ~ 5240MHz:
	802.11a, 802.11n (HT20), 802.11ac (VHT20): 4
	802.11n (HT40), 802.11ac (VHT40): 2
	802.11ac (VHT80), 802.11ac (VHT80+VHT80): 1
	5260 ~ 5320MHz:
	802.11a, 802.11n (HT20), 802.11ac (VHT20): 4
Number of Channel	802.11n (HT40), 802.11ac (VHT40): 2
	802.11ac (VHT80), 802.11ac (VHT80+VHT80): 1
	5500 ~ 5700MHz:
	802.11a, 802.11n (HT20), 802.11ac (VHT20): 11
	802.11n (HT40), 802.11ac (VHT40): 5
	802.11ac (VHT80), 802.11ac (VHT80+VHT80): 3
	5745 ~ 5825MHz:
	802.11a, 802.11n (HT20), 802.11ac (VHT20): 5
	802.11n (HT40), 802.11ac (VHT40): 2
	802.11ac (VHT80), 802.11ac (VHT80+VHT80): 1

	CDD Mode:
	2412 ~ 2462MHz: 885.473mW
	5180 ~ 5240MHz: 55.219mW
	5260 ~ 5320MHz: 190.088mW
	5500 ~ 5700MHz: 250.167mW
Output Dowor	5745 ~ 5825MHz: 891.549mW
Output Power	Beamforming Mode:
	2412 ~ 2462MHz: 498.738mW
	5180 ~ 5240MHz: 24.024mW
	5260 ~ 5320MHz: 106.894mW
	5500 ~ 5700MHz: 118.301mW
	5745 ~ 5825MHz: 397.306mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	NA
Cable Supplied	NA

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides 4 completed transmitters and 4 receivers.

Band	Modulation Mode	Beamforming Mode	TX Function
	802.11b	Not Support	4TX
	802.11g	Not Support	4TX
	802.11n (HT20)	Support (CDD / Nss=1 / NSS=2)	4TX
2.4GHz Band	802.11n (HT40)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11n (VHT20)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11n (VHT40)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11a	Not Support	4TX
	802.11n (HT20)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11n (HT40)	Support (CDD / Nss=1 / NSS=2)	4TX
5GHz Band	802.11ac (VHT20)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11ac (VHT40)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11ac (VHT80)	Support (CDD / Nss=1 / NSS=2)	4TX
	802.11ac (VHT80+VHT80)	Support (CDD / Nss=1)	2TX+2TX

* The bandwidth and modulation are similar for HT20/HT40 on 802.11n mode and VHT20/VHT40 on 802.11ac mode. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1)

* For 802.11n and 802.11ac, after pre-tested two modes (with beamforming mode Nss=1 / 2 and CDDmode) found CDD mode was the worst and chosen for final test, Beamforming mode only presented in power output test item.

2. The EUT consumes power from the following POE. (for support unit only)					
POE					
	ҮАМАНА				
	YPS-POE-AT				
	100-240Vac, 5	0/60Hz, 0.6A			
	55Vdc, 30W fo	r LAN+POE por	t		
antennas v	vere provided to	the EUT.			
Туре	PCB PIFA				
nnector	I-PEX				
00MHz	2450MHz	2500MHz	5150MHz	5550MHz	5850MHz
-0.03	1.36	1.41	3.45	3.11	3.44
2 0.11 1.32 1.47 3.55 3.16 3.64					
0.43	1.16	1.65	3.35	3.26	3.43
0.26	1.15	1.54	3.45	3.42	3.45
	antennas v ype nector 00MHz -0.03 0.11 0.43	YAMAHA YPS-POE-AT 100-240Vac, 5 55Vdc, 30W fo antennas were provided to ype PCB PIFA nector I-PEX 00MHz 2450MHz -0.03 1.36 0.11 1.32 0.43 1.16	YAMAHA YPS-POE-AT 100-240Vac, 50/60Hz, 0.6A 55Vdc, 30W for LAN+POE por antennas were provided to the EUT. ype PCB PIFA nnector I-PEX 00MHz 2450MHz 2500MHz -0.03 1.36 1.41 0.11 1.32 1.47 0.43 1.16 1.65	YAMAHA YPS-POE-AT 100-240Vac, 50/60Hz, 0.6A 55Vdc, 30W for LAN+POE port antennas were provided to the EUT. ype PCB PIFA nnector I-PEX 00MHz 2450MHz 2500MHz -0.03 1.36 1.41 0.11 1.32 1.47 0.43 1.16 1.65	YAMAHA YPS-POE-AT 100-240Vac, 50/60Hz, 0.6A 55Vdc, 30W for LAN+POE port antennas were provided to the EUT. ype PCB PIFA nnector I-PEX 00MHz 2450MHz 2500MHz 5150MHz -0.03 1.36 1.41 3.45 3.11 0.11 1.32 1.47 3.55 3.16 0.43 1.16 1.65 3.35 3.26

* The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

4. 2.4GHz & 5GHz technology can transmit at same time.

3.2 Description of Test Modes

For 2412 ~ 2462MHz:

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	3 2422MHz		2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40), 802.11n (VHT40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

For 5180 ~ 5240MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel Frequency		Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Channel Frequency		Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ac (VHT80+VHT80):

Channel	Frequency
42	5210MHz

For 5260 ~ 5320MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ac (VHT80+VHT80):

Channel	Frequency
58	5290MHz

For 5500 ~ 5700MHz:

11 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz		

5 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz		

3 channels are provided for 802.11ac (VHT80), 802.11ac (VHT80+VHT80):

Channel	Frequency	Channel	Frequency
106	5530 MHz	138	5690 MHz
122	5610 MHz		

For 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (VHT80), 802.11ac (VHT80+VHT80):

Channel	Frequency
155	5775MHz

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applica	able to	Description				
Mode	RE≥1G	RE<1G		Description			
-	\checkmark	√ -					
vvnere	/here RE≥1G: Radiated Emission above 1GHz & Bandedge RE<1G: Radiated Emission below 1GHz Measurement						
OB:	Conducted Out-Band Em	ission Measurement					
Note: The EUT I	nad been pre-tested on the	e positioned of each 3 axi	s. The worst case was f	ound when positioned	on Y-plane .		
	Radiated Emission Test (Above 1GHz):						
adiated Em	<u>iission Test (Above</u>	<u>1GHz):</u>					
			vorst-case mode fro	om all possible cor	nbinations		
Pre-Sca	n has been conducte n available modulatio	ed to determine the v					
Pre-Sca betweer architec	n has been conducte available modulatio ture).	ed to determine the v ns, data rates and a	ntenna ports (if EU ⁻	T with antenna dive			
 Pre-Sca betweer architec Followir 	n has been conducte a available modulatio	ed to determine the v ns, data rates and a	ntenna ports (if EU ⁻	T with antenna dive			
Pre-Sca betweer architec	n has been conducte available modulatio ture).	ed to determine the v ns, data rates and a	ntenna ports (if EU ⁻	T with antenna dive			
 Pre-Sca betweer architec Followir EUT Configure 	n has been conducte n available modulatio ture). ng channel(s) was (w	ed to determine the v ns, data rates and a ere) selected for the Freq. Range	ntenna ports (if EU final test as listed l	T with antenna dive	ersity Modulation		
 Pre-Sca betweer architec Followir EUT Configure 	n has been conducte n available modulatio ture). ng channel(s) was (w	ed to determine the v ns, data rates and an ere) selected for the Freq. Range (MHz)	ntenna ports (if EU final test as listed l Available Channel	T with antenna dive	ersity Modulation Technology		
 Pre-Sca betweer architec Followir EUT Configure 	n has been conducte n available modulatio ture). ng channel(s) was (w	ed to determine the v ns, data rates and an ere) selected for the Freq. Range (MHz) 2412-2462	ntenna ports (if EU final test as listed t Available Channel	T with antenna dive	ersity Modulation Technology DBPSK		
 Pre-Sca betweer architec Followir EUT Configure 	n has been conducte n available modulatio ture). ng channel(s) was (w Mode	ed to determine the v ns, data rates and an ere) selected for the Freq. Range (MHz) 2412-2462 5180-5240	final test as listed I Available Channel 1 to 11 36 to 48	T with antenna dive below. Tested Channel	ersity Modulation Technology DBPSK OFDM		

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Freq. Range (MHz)	Available Channel	Tested Channel	Modulation Technology
		2412-2462	1 to 11	6 + 149	DBPSK
		5180-5240	36 to 48		OFDM
-	802.11b + 802.11a	5260-5320	52 to 64		OFDM
		5500-5700	100 to 140		OFDM
		5745-5825	149 to 165		OFDM

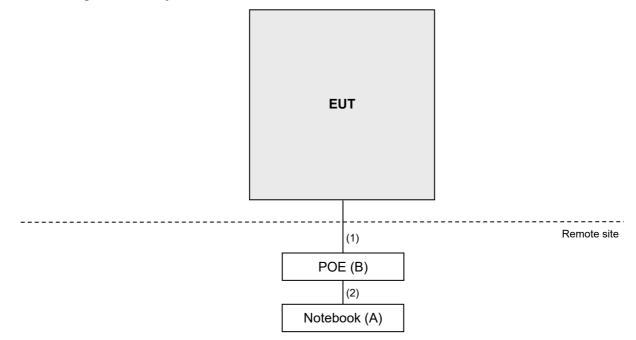
Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by	
RE≥1G	24 deg. C, 66% RH	55Vdc	Adair Peng	
RE<1G	24 deg. C, 66% RH	55Vdc	Adair Peng	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	E5410	1HC2XM1	FCC DoC Approved	-
В.	POE	YAMAHA	YPS-POE-AT	NA	NA	Provided by manufacturer


Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Items A acted as communication partner to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN	1	6.0	Ν	0	RJ45, Cat5e
2.	LAN	3	1.5	Ν	0	RJ45, Cat5e

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

FCC Part 15, Subpart E (15.407)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To			Limit				
789033 D02 Genera	al UN	II Test Procedure	Field Strength at 3m				
New Ru	les v()2r01	PK: 74 (dBμV/m)	AV: 54 (dBµV/m)			
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m			
5150~5250 MHz		15.407(b)(1)					
5250~5350 MHz		15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2(dBµV/m)			
5470~5725 MHz	15.407(b)(3)						
5725~5850 MHz	15.407(b)(4)(i)		PK: -27 (dBm/MHz) ^{*1} PK: 10 (dBm/MHz) ^{*2} PK: 15.6 (dBm/MHz) ^{*3} PK: 27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK: 105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK: 122.2 (dBµV/m) ^{*4}			
^{*3} below the band ed	 *1 beyond 75 MHz or more above of the band edge. *3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. *4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. 						
Note: The following for	rmula	is used to convert	the equipment isotropic radiated	d power (eirp) to field strength:			
$E = \frac{1000000\sqrt{30P}}{3} \mu V/m, \text{ where P is the eirp (Watts).}$							

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due	
Test Receiver					
ROHDE & SCHWARZ	ESR3	102579	Jul. 07, 2020	Jul. 06, 2021	
BILOG Antenna	VULB9168	9168-171	Nov. 04, 2020	Nov. 03, 2021	
SCHWARZBECK	VULD9100	9100-171	1000. 04, 2020	1000. 03, 2021	
HORN Antenna	9120D	209	Nov. 22, 2020	Nov. 21, 2021	
SCHWARZBECK			,		
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 22, 2020	Nov. 21, 2021	
Loop Antenna					
TESEQ	HLA 6121	45745	Jul. 06, 2020	Jul. 05, 2021	
Preamplifier					
Agilent	8447D	2944A10738	Aug. 16, 2020	Aug. 15, 2021	
(Below 1GHz)			-	-	
Preamplifier					
Agilent	8449B	3008A02465	Mar. 22, 2021	Mar. 21, 2022	
(Above 1GHz)					
RF Coaxial Cable					
WOKEN	8D-FB	Cable-CH3-01	Aug. 16, 2020	Aug. 15, 2021	
With 5dB PAD					
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 16, 2020	Aug. 15, 2021	
RF signal cable	SUCOFLEX	· · · · · ·			
HUBER+SUHNER&	104&EMC104-SM-S	Cable-CH3-03	Aug. 16, 2020	Aug. 15, 2021	
EMCI	M-8000	(309224+170907)	7 ag. 10, 2020	7 lug. 10, 2021	
Software	ADT_Radiated_				
BV ADT	V7.6.15.9.5	NA	NA	NA	
Antenna Tower	MA 4000	013303	NA	NA	
inn-co GmbH	IMA 4000	013303	INA	NA	
Antenna Tower Controller	AT100	AT93021702	NA	NA	
BV ADT		71100021102			
Turn Table	TT100	TT93021702	NA	NA	
BV ADT Turn Table Controller					
BV ADT	SC100	SC93021702	NA	NA	
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	
Pre-amplifier (18GHz-40GHz)					
EMC	EMC184045B	980175	Sep. 04, 2020	Sep. 03, 2021	
		MY55050005/MY5519			
USB Wideband Power Sensor	U2021XA	0004/MY55190007/MY	Jul. 13, 2020	Jul. 12, 2021	
KEYSIGHT		55210005			

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

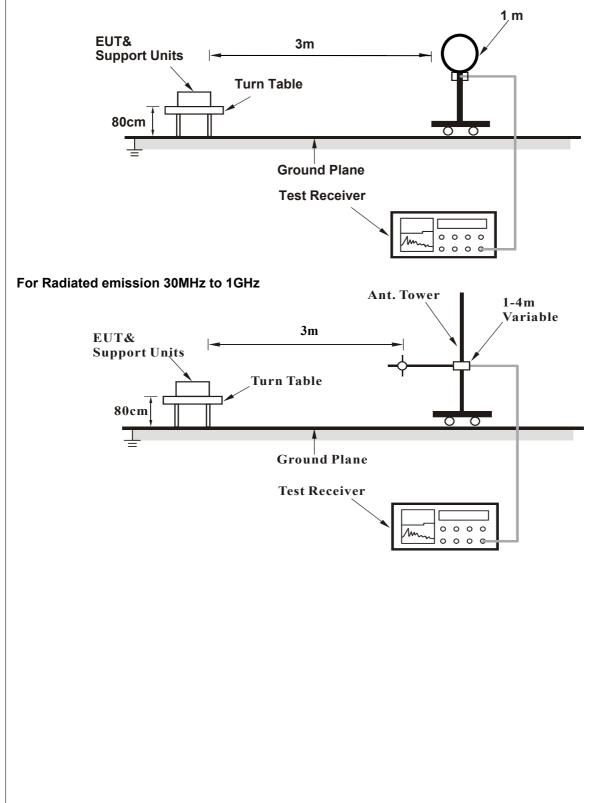
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (RBW = 1MHz, VBW = 1kHz)
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command.

4.1.7 Test Results

Above 1GHz Data:

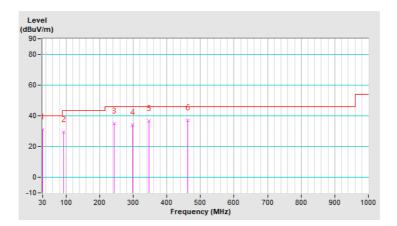
RF Mode	TX 802.11b + 802.11a	Channel	CH 6:2437MHz + CH 149:5745MHz
Frequency Range	1GHz ~ 40GHz	Defector Function	Peak (PK) Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	62.8 PK	74.0	-11.2	1.11 H	13	28.4	34.4	
2	2390.00	50.4 AV	54.0	-3.6	1.11 H	13	16.0	34.4	
3	*2437.00	122.0 PK			1.13 H	13	87.7	34.3	
4	*2437.00	119.3 AV			1.13 H	13	85.0	34.3	
5	2486.00	61.8 PK	74.0	-12.2	1.11 H	13	27.4	34.4	
6	2486.00	51.8 AV	54.0	-2.2	1.11 H	13	17.4	34.4	
7	4874.00	52.4 PK	74.0	-21.6	1.31 H	319	46.6	5.8	
8	4874.00	47.3 AV	54.0	-6.7	1.31 H	319	41.5	5.8	
9	#5648.00	62.9 PK	68.2	-5.3	1.32 H	340	56.7	6.2	
10	*5745.00	128.0 PK			1.32 H	340	85.8	42.2	
11	*5745.00	118.4 AV			1.32 H	340	76.2	42.2	
12	#5942.00	59.9 PK	68.2	-8.3	1.32 H	340	52.6	7.3	
13	11490.00	59.7 PK	74.0	-14.3	1.58 H	66	41.1	18.6	
14	11490.00	46.7 AV	54.0	-7.3	1.58 H	66	28.1	18.6	
		ANTEN	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	66.7 PK	74.0	-7.3	1.42 V	45	32.3	34.4	
2	2390.00	53.8 AV	54.0	-0.2	1.42 V	45	19.4	34.4	
3	*2437.00	123.2 PK			1.42 V	45	88.9	34.3	
4	*2437.00	119.8 AV			1.42 V	45	85.5	34.3	
5	2486.00	66.2 PK	74.0	-7.8	1.42 V	45	31.8	34.4	
6	2486.00	53.6 AV	54.0	-0.4	1.42 V	45	19.2	34.4	
7	4874.00	50.7 PK	74.0	-23.3	2.55 V	329	44.9	5.8	
8	4874.00	44.9 AV	54.0	-9.1	2.55 V	329	39.1	5.8	
9	#5650.00	65.9 PK	68.2	-2.3	1.85 V	22	59.7	6.2	
10	*5745.00	128.4 PK			1.85 V	22	86.2	42.2	
11	*5745.00	118.6 AV			1.85 V	22	76.4	42.2	
12	#5944.80	61.0 PK	68.2	-7.2	1.85 V	22	53.7	7.3	
13	11490.00	60.6 PK	74.0	-13.4	2.07 V	333	42.0	18.6	
14	11490.00	47.6 AV	54.0	-6.4	2.07 V	333	29.0	18.6	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. Margin value = Emission Level Limit value.
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

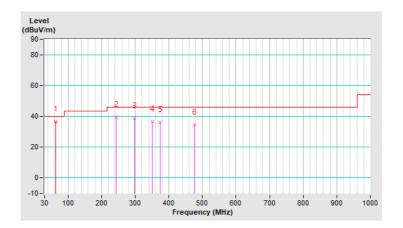

Below 1GHz data

RF Mode	TX 802.11b + 802.11a	Channel	CH 6:2437MHz + CH 149:5745MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

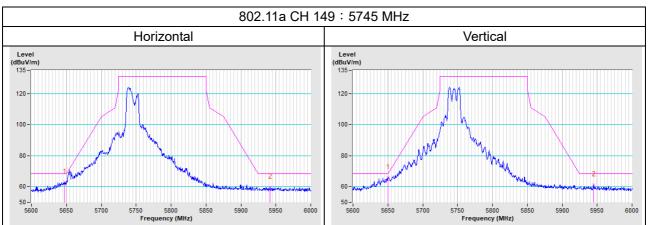
	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	30.00	31.0 QP	40.0	-9.0	1.49 H	274	41.9	-10.9		
2	91.86	29.4 QP	43.5	-14.1	1.99 H	108	43.6	-14.2		
3	242.28	35.1 QP	46.0	-10.9	1.00 H	259	44.1	-9.0		
4	297.10	33.9 QP	46.0	-12.1	1.00 H	124	40.5	-6.6		
5	347.71	36.5 QP	46.0	-9.5	1.99 H	340	42.2	-5.7		
6	461.58	37.2 QP	46.0	-8.8	1.49 H	339	40.2	-3.0		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX 802.11b + 802.11a	Channel	CH 6:2437MHz + CH 149:5745MHz
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)


	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	62.50	36.5 QP	40.0	-3.5	1.00 V	7	46.1	-9.6		
2	242.28	39.6 QP	46.0	-6.4	1.99 V	357	48.6	-9.0		
3	298.51	38.6 QP	46.0	-7.4	1.49 V	6	45.2	-6.6		
4	350.52	36.6 QP	46.0	-9.4	1.49 V	6	42.2	-5.6		
5	374.42	36.3 QP	46.0	-9.7	1.49 V	6	41.4	-5.1		
6	475.64	34.4 QP	46.0	-11.6	1.00 V	6	37.1	-2.7		

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Annex A - Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---