1 FCC Rules and Regulations Part 1.1307, 1.1310, 2.1091, 2.1093: RF EXPOSURES

The manufacturer does not specify or sale any antenna with the radio identified in this report.

The manufacturer applies for the Occupational/Control Exposure environment.

The maximum distance, from the antenna at which MPE is met or exceeded, is calculated from the equation relating field strength E in V/m, transmit power P in Watts, transmit antenna numeric gain G, and separation distance in meters:

$$E(V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$

Power density:
$$P_d (mW/cm^2) = \frac{E^2}{3770}$$

The limit for general population/uncontrolled exposure applicable to Bystanders (at 806 MHz) = f(MHz)/1500 mW/cm^2 is applicable to bystanders.

2 MPE Calculation

Antennae: Typical SMR antenna available on the market and commonly chosen by end-users for vehicle application.

Frequency A 806 MHz

Limit for General Population/Uncontrolled Environment (Bystanders): $0.537 \, mW / cm^2$

SEPARATION DISTANCE:

Power ^B	(dBd) Antenna Gain ^C		(dBd) Antenna Gain ^C	
	3		5	
(Watt)	(in)	(cm)	(in)	(cm)
4	17	44	22	55
4 (50%)	12	31	15	39

Notes

Instructions will be placed in the user manual instructing installers and users to maintain the MPE distances during operation of the EUT.

 $[\]frac{\text{Notes.}}{A}$ = Distances are calculated for the largest (worst-case) separation distance

B = Conducted Output Power delivered to the antenna

^C = Gains are compared to an ideal 1/2-wave dipole (0 dBd = 2.15 dBi)