

www.nemko.com

Compliance test report ID

209749-1TRFWL

Date of issue
November 29, 2012

FCC 47 CFR Part 15 Subpart C, §15.247

Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5850 MHz
and

RSS-210, Issue 8 Annex 8

Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–
2483.5 MHz, and 5725–5850 MHz Bands

Applicant **Alternatives Technologie Pharma Inc.**

Product **xTag2**

Model **xTag2**

FCC ID **PBXXTAG**

IC Reg # **10568A-XTAG2**

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

Test location

Nemko Canada Inc.
303 River Road
Ottawa, ON, K1V 1H2
Canada
Test site FCC ID: 176392 and IC ID: 2040A-4 (3 m semi anechoic chamber)

Telephone +1 613 737 9680
Facsimile +1 613 737 9691
Toll free +1 800 563 6336
Website www.nemko.com

Tested by Andrey Adelberg, Senior Wireless/EMC Specialist

Reviewed by

November 29, 2012

Kevin Rose, Wireless/EMC Specialist

Date

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of Contents

Section 1 Report summary.....	4
1.1 Applicant and manufacturer	4
1.2 Test specifications	4
1.3 Statement of compliance.....	4
1.4 Exclusions.....	4
1.5 Test report revision history	4
Section 2 Summary of test results.....	5
2.1 FCC Part 15 Subpart C – general requirements, test results	5
2.2 FCC Part 15 Subpart C – Intentional Radiators, test results	5
2.3 IC RSS-GEN, Issue 3, test results.....	5
2.4 IC RSS-210, Issue 8, test results	6
Section 3 Equipment under test (EUT) details	7
3.1 Sample information	7
3.2 EUT information	7
3.3 Technical information.....	7
3.4 Product description and theory of operation	7
3.5 EUT exercise details	7
3.6 EUT setup diagram	7
3.7 EUT sub assemblies	7
Section 4 Engineering considerations	8
4.1 Modifications incorporated in the EUT.....	8
4.2 Technical judgment.....	8
4.3 Deviations from laboratory tests procedures	8
Section 5 Test conditions.....	9
5.1 Atmospheric conditions	9
5.2 Power supply range	9
Section 6 Measurement uncertainty	10
6.1 Uncertainty of measurement	10
Section 7 Test equipment.....	11
7.1 Test equipment list.....	11
Section 8 Testing data	12
8.1 AC power line conducted emissions	12
8.2 Minimum 6 dB bandwidth for systems using digital modulation techniques	15
8.3 RSS-Gen Clause 4.6.1 Occupied bandwidth	17
8.4 Transmitter output power and EIRP requirements for digital systems.....	19
8.5 Spurious (out-of-band) emissions.....	22
8.6 Power spectral density for digitally modulated devices	31
Section 9 Block diagrams of test set-ups.....	33
9.1 Radiated emissions set-up	33
9.2 Conducted emissions set-up	33

Section 1 Report summary

1.1 Applicant and manufacturer

Alternatives Technologie Pharma Inc.
6818 Jarry Street East/Est
St-Léonard, Quebec H1P 1W3
Canada

1.2 Test specifications

Standard	Description
FCC 47 CFR Part 15, Subpart C, Chapter 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, 5725–5850 MHz
RSS-210, Issue 8 Annex 8	Frequency Hopping and Digital Modulation Systems Operating in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz Bands

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Exclusions

None

1.5 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C – general requirements, test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass

Notes:

¹ Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

2.2 FCC Part 15 Subpart C – Intentional Radiators, test results

Part	Test description	Verdict
§15.247(a)(1)	Frequency hopping systems	
§15.247(a)(1)(i)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(a)(1)(ii)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
§15.247(a)(2)	Minimum 6 dB bandwidth for systems using digital modulation techniques	Pass
§15.247(b)	Maximum conducted peak output power and EIRP	
§15.247(b)(1)	Maximum peak output power of frequency hopping systems operating in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power of frequency hopping systems operating in the 902–928 MHz band	Not applicable
§15.247(b)(3)	Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Pass
§15.247(b)(4)	Conducted peak output power limitations	
§15.247(b)(4)(i)	Maximum peak output power for systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations.	Not applicable
§15.247(b)(4)(ii)	Maximum peak output power for systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations.	Not applicable
§15.247(c)(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(e)	Power spectral density for digitally modulated devices	Pass
§15.247(f)	Time of occupancy and power spectral density for hybrid systems	Not applicable

2.3 IC RSS-GEN, Issue 3, test results

Part	Test description	Verdict
4.6.1	Occupied bandwidth	Pass
6.1	Receiver spurious emissions limits (radiated)	Not applicable
6.2	Receiver spurious emissions limits (antenna conducted)	Not applicable
7.2.4	AC power lines conducted emission limits	Pass

Notes: ¹ According to Notice 2012-DRS0126 (from January 2012) section 2.2 of RSS-Gen, Issue 3 has been revised. The EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

2.4 IC RSS-210, Issue 8, test results

Part	Test description	Verdict
A8.1	Frequency hopping systems	
A8.1 (a)	Bandwidth of a frequency hopping channel	Not applicable
A8.1 (b)	Minimum channel spacing for frequency hopping systems	Not applicable
A8.1 (c)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.1 (d)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.1 (e)	Frequency hopping systems operating in the 5725–5850 MHz band	Not applicable
A8.2	Digital modulation systems	
A8.2 (a)	Minimum 6 dB bandwidth	Pass
A8.2 (b)	Maximum power spectral density	Pass
A8.3	Hybrid systems	
A8.3 (1)	Digital modulation turned off	Not applicable
A8.3 (2)	Frequency hopping turned off	Not applicable
A8.4	Transmitter output power and e.i.r.p. requirements	
A8.4 (1)	Frequency hopping systems operating in the 902–928 MHz band	Not applicable
A8.4 (2)	Frequency hopping systems operating in the 2400–2483.5 MHz band	Not applicable
A8.4 (3)	Frequency hopping systems operating in the 5725–5850 MHz	Not applicable
A8.4 (4)	Systems employing digital modulation techniques	Pass
A8.4 (5)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
A8.4 (6)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable
A8.5	Out-of-band emissions	Pass

Notes: None

Section 3 Equipment under test (EUT) details

3.1 Sample information

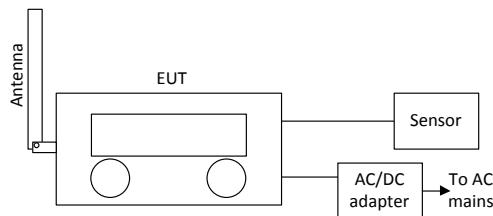
Receipt date May 29, 2012
Nemko sample ID number 1

3.2 EUT information

Product name xTag2
Model xTag2
Serial number 4001
Part number 4001

3.3 Technical information

Operating band 2400–2483.5 MHz
Operating frequency 2405–2475 MHz
Modulation type 250 kbps O-QPSK
Occupied bandwidth (99 %) 2.65 MHz
Emission designator 2M65G1D
Power requirements 120 V_{AC}, 60 Hz
Antenna information Pulse Electronics Corporation, whip antenna P/N: W1030, 2 dBi
 The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.


3.4 Product description and theory of operation

Wireless Real Time monitoring system (for temperature, humidity...). xTag2 is coupled with xTagDisplay (reader) to collect data and forward to server.

3.5 EUT exercise details

EUT was programmed to transmit continuously on the low, mid and high channel of operation.

3.6 EUT setup diagram

Diagram 3.6-1: Setup diagram

3.7 EUT sub assemblies

Description	Brand name	Model/Part number	Serial number
Power supply	V-Infinity	EPS120050	N/A
Sensor	Alternatives-tech	N/A	N/A

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

The following modifications were performed by client: in order to comply with conducted emissions on AC line the following modifications were done:

C14 from 22 pF to 1 pF

C3 from 22 pF to 10 pF

C12 from 10 pF to 1.5 pF

Remove C5

Replace 10 pF capacitor by FL1 (2450LP14B100)

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature: 15–30 °C

Relative humidity: 20–75 %

Air pressure: 86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Section 7 Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Mar. 09/13
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	—	NCR
Antenna mast	Sunol	TLT2	FA002061	—	NCR
LISN	Rohde & Schwarz	ENV216	FA002023	1 year	Nov. 18/12
Power supply	California Inst.	3001I	FA001021	1 year	Feb 08/13
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	May 16/13
Bilog antenna	Sunol	JB3	FA002108	1 year	Feb. 07/13
Horn antenna #2	EMCO	3115	FA000825	1 year	Feb. 24/13
1–18 GHz pre-amplifier	JCA	JCA118-503	FA002091	1 year	Aug. 15/12
Horn antenna 18–26.5 GHz	Electro-metrics	SH-50/60-1	FA000479	—	VOU
18–26 GHz pre-amplifier	Narda	BBS-1826N612	FA001550	—	VOU

Note: NCR - no calibration required

Section 8 Testing data

8.1 AC power line conducted emissions

8.1.1 Definitions and limits

FCC Clause 15.207(a): Conducted limits

RSS-Gen Clause 7.2.4: AC power line conducted emissions limits

FCC:

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 0.15–30 MHz, shall not exceed the limits in the **Table 8.1-1**, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

IC:

The purpose of this test is to measure unwanted radio frequency currents induced in any AC conductor external to the equipment which could conduct interference to other equipment via the AC electrical network.

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radiocommunication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15–30 MHz shall not exceed the limits shown in **Table 8.1-1**. The tighter limit applies at the frequency range boundaries.

The conducted emissions shall be measured with a 50 Ω /50 μ H line impedance stabilization network.

Table 8.1-1: Conducted emissions limit

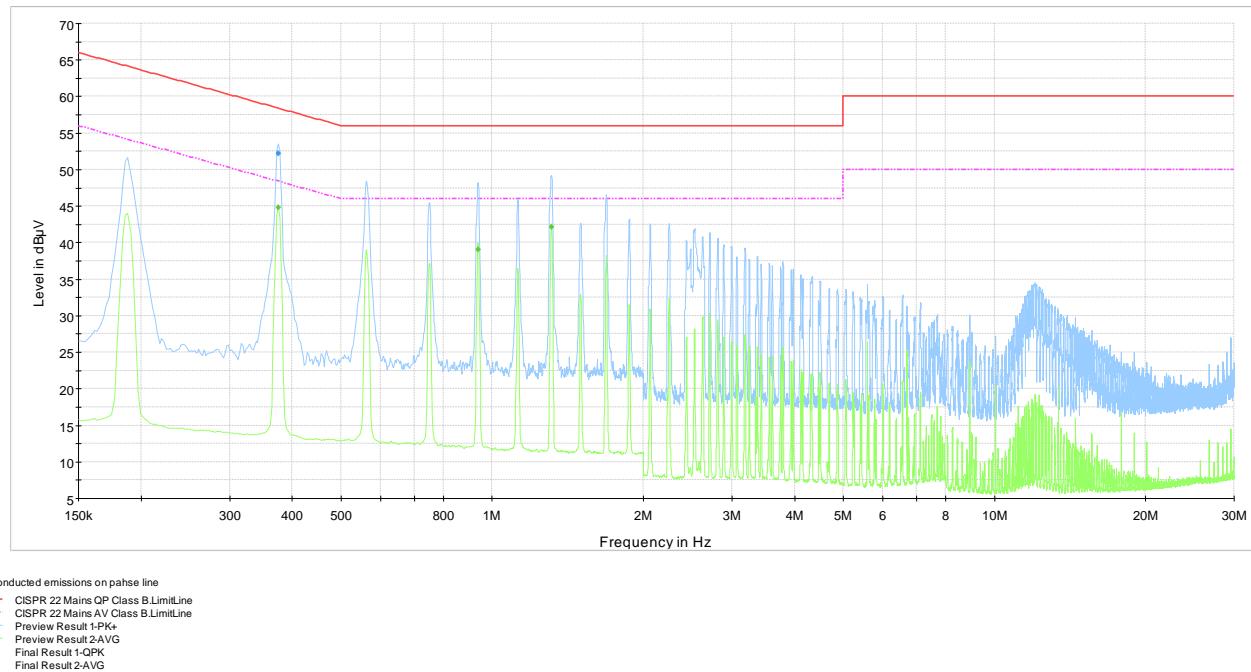
Frequency of emission (MHz)	Quasi-peak	Conducted limit (dB μ V)	Average
0.15–0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

* - Decreases with the logarithm of the frequency.

8.1.2 Test summary

Test date	June 6, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	23 °C	Air pressure	1004 mbar	Relative humidity	33 %

8.1.3 Observations/special notes


The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

Receiver/spectrum analyzer settings Preview measurements – Receiver:
Peak and Average detector (Max hold), RBW = 9 kHz, VBW = 30 kHz, Measurement time = 100 ms
Final measurements – Receiver:
Q-Peak and Average detector, RBW = 9 kHz, VBW = 30 kHz, Measurement time = 100 ms

Measurement details A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

8.1.4 Test data

Plot 8.1-1: Conducted emissions on phase line

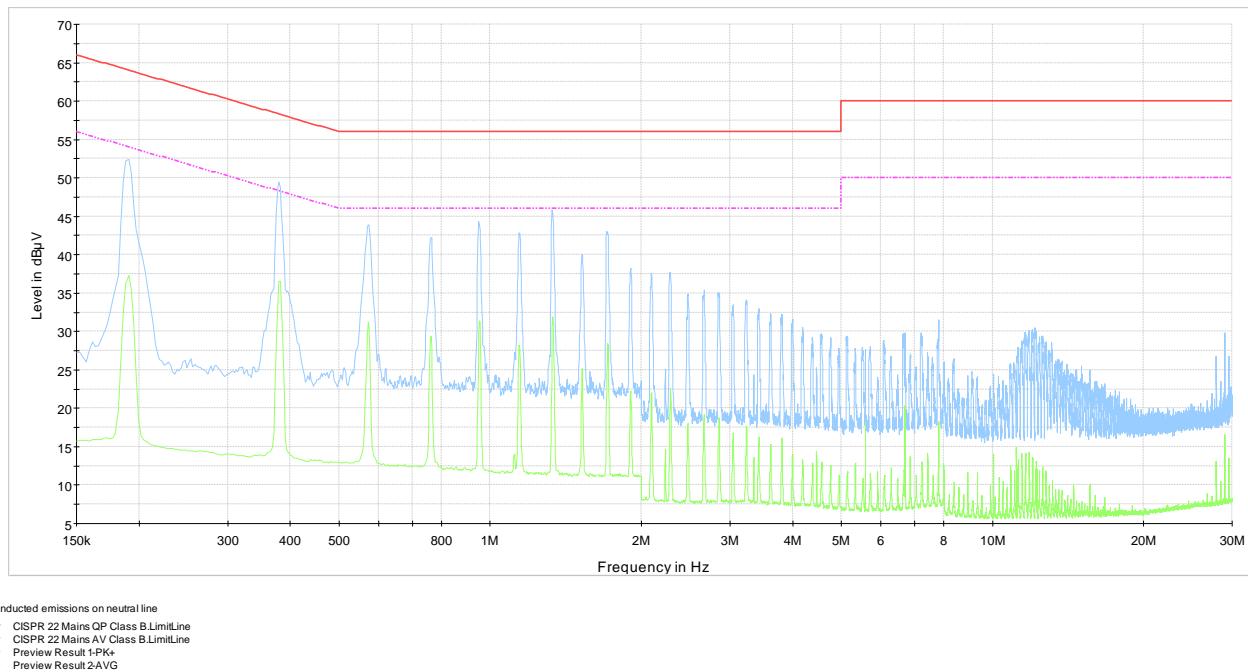
Table 8.1-2: Quasi-Peak conducted emissions results

Frequency (MHz)	Q-Peak result (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Conductor	Correction (dB)	Margin (dB)	Limit (dBμV)
0.375000	52.2	100.0	9.000	On	Phase	10.0	6.2	58.4

Table 8.1-3: Average conducted emissions results

Frequency (MHz)	Average result (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Conductor	Correction (dB)	Margin (dB)	Limit (dBμV)
0.375000	44.8	100.0	9.000	On	Phase	10.0	3.6	48.4
0.937500	39.0	100.0	9.000	On	Phase	10.1	7.0	46.0
1.311000	42.1	100.0	9.000	On	Phase	10.0	3.9	46.0

Sample calculation:


Correction factor (dB) = XX dB (LISN factor IL) + XX dB (cable loss) + XX dB (attenuator)

Result (dBμV) = XX dBμV (reading from receiver) + XX dB (Correction factor)

Example:

44.8 dBμV = 24.5 dBμV (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

8.1.4 Test data, continued

Plot 8.1-2: Conducted emissions on neutral line

8.2 Minimum 6 dB bandwidth for systems using digital modulation techniques

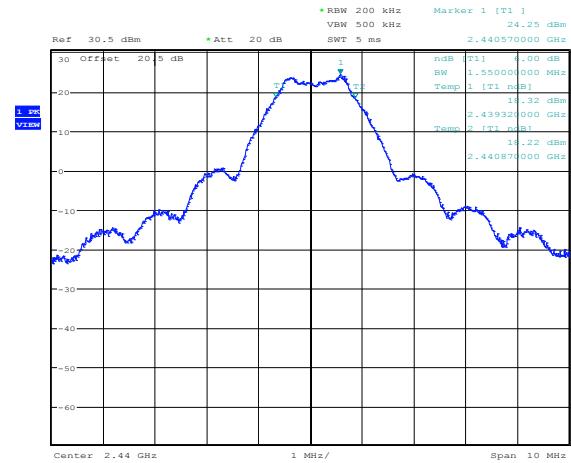
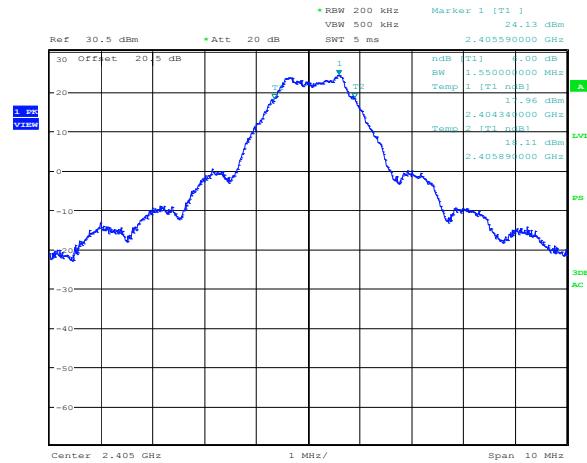
8.2.1 Definitions and limits

FCC Clause 15.247(a)(2) and RSS-210 Clause A8.2(a) Minimum 6 dB bandwidth for systems using digital modulation techniques

FCC and IC:

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

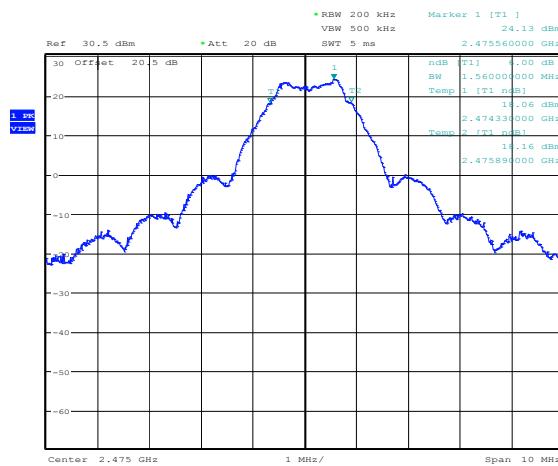
(2) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.



8.2.2 Test summary

Test date	June 1, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	22 °C	Air pressure	1010 mbar	Relative humidity	60 %

8.2.3 Observations/special notes and procedures

1. Set resolution bandwidth (RBW) = 1–5 % of the emission bandwidth (EBW).
2. Set the video bandwidth (VBW) \geq RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


8.2.4 Test data

Date: 1.JUN.2012 14:46:15

Date: 1.JUN.2012 14:49:41

8.2.4 Test data, continued

Date: 1.JUN.2012 14:51:42

Plot 8.2-3: 6 dB bandwidth – High channel

Table 8.2-1: 6 dB bandwidth results

Frequency (MHz)	6 dB bandwidth (MHz)	Limit (MHz)	Margin (MHz)
2405	1.55	> 0.5	1.05
2440	1.55	> 0.5	1.05
2475	1.56	> 0.5	1.06

8.3 RSS-Gen Clause 4.6.1 Occupied bandwidth

8.3.1 Definitions and limits

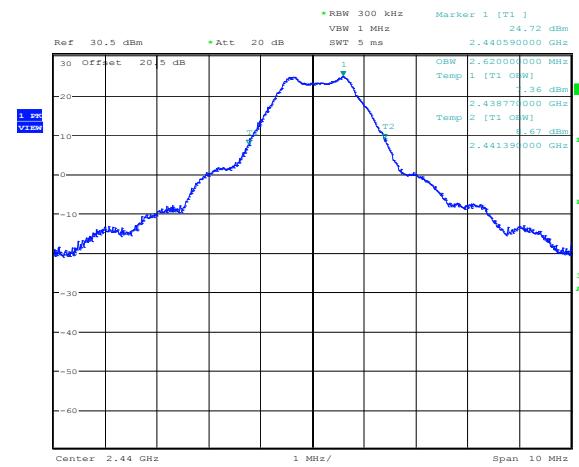
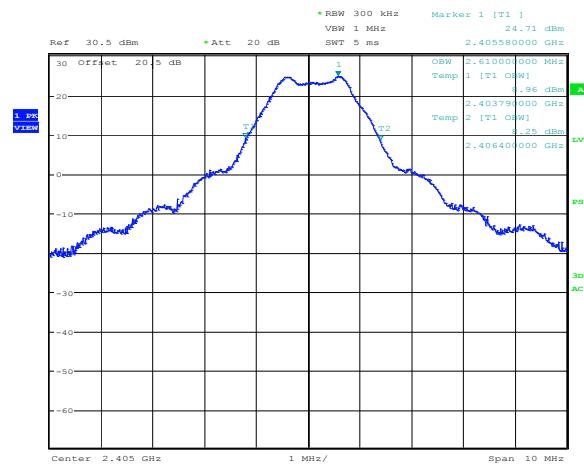
When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 percent emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

The span between the two recorded frequencies is the occupied bandwidth.

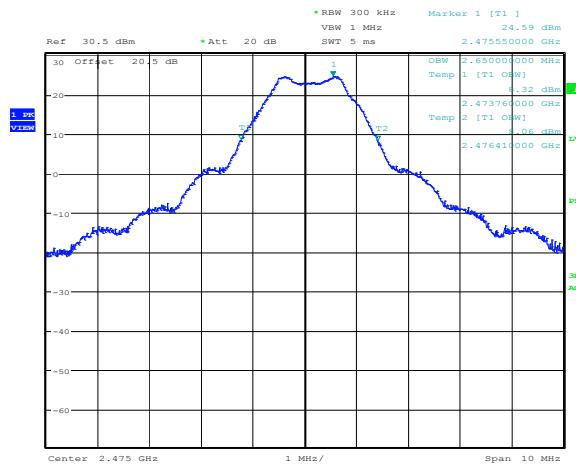


8.3.2 Test summary

Test date	June 1, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	22 °C	Air pressure	1010 mbar	Relative humidity	60 %

8.3.3 Observations/special notes

Measurements were performed with peak detector using RBW = 1–5 % of span. VBW was set wider than RBW.

8.3.4 Test data



Date: 1.JUN.2012 14:53:40

Date: 1.JUN.2012 14:52:58

Plot 8.3-1: 99 % bandwidth – Low channel

Plot 8.3-2: 99 % bandwidth – Mid channel

Date: 1.JUN.2012 14:52:21

Plot 8.3-3: 99 % bandwidth – High channel

Table 8.3-1: 99 % bandwidth results

Frequency (MHz)	99 % bandwidth (MHz)
2405	2.61
2440	2.62
2475	2.65

8.4 Transmitter output power and EIRP requirements for digital systems

8.4.1 Definitions and limits

FCC Clause 15.247(b) and RSS-210 Clause A8.4 (4) Transmitter output power and e.i.r.p. requirements

FCC:

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC:

With the digital modulation operation of the hybrid system turned off, the frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

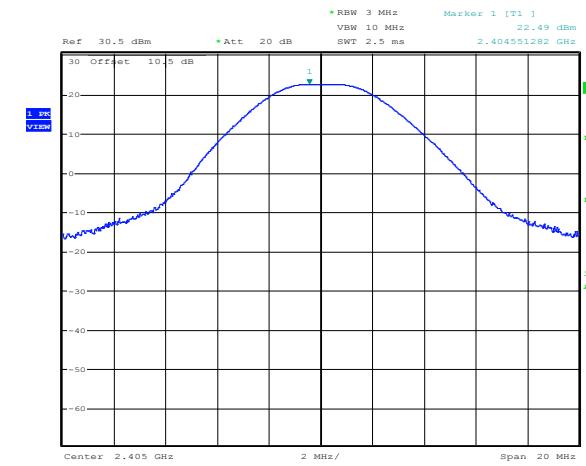
A8.4 (4) Transmitter Output Power and e.i.r.p. Requirements for systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz bands

For systems employing digital modulation techniques operating in the bands 902–928 MHz, 2400–2483.5 MHz and 5725–5850 MHz, the maximum peak conducted output power shall not exceed 1 W (30 dBm). Except as provided in Section A8.4(5), the e.i.r.p. shall not exceed 4 W (36 dBm). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power (see RSS-Gen).

8.4.2 Test summary

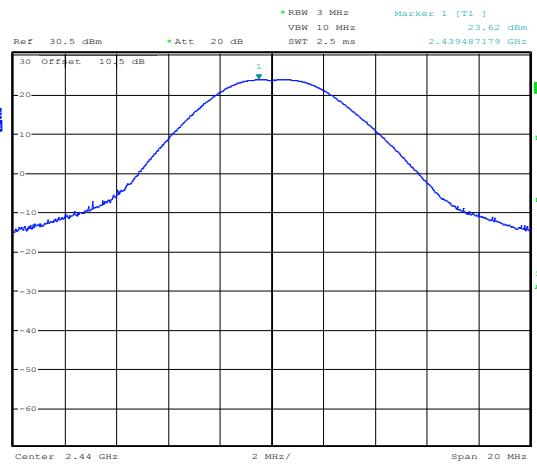
Test date	June 25, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	22 °C	Air pressure	1005 mbar	Relative humidity	32 %

8.4.3 Observations/special notes and procedures

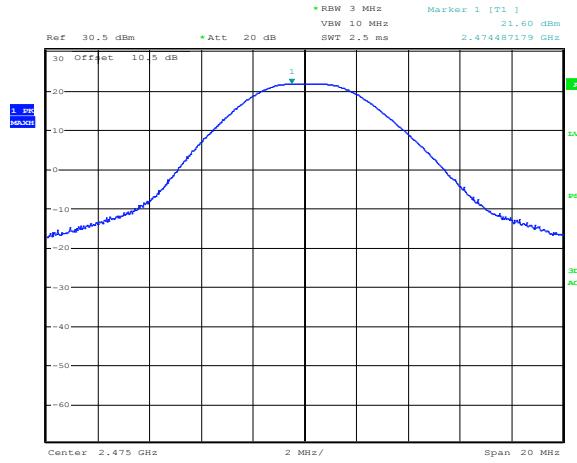

Measurement Procedure PK1:

1. This procedure requires availability of a spectrum analyzer resolution bandwidth that is \geq EBW.
2. Set the RBW \geq EBW.
3. Set VBW $\geq 3 \times$ RBW.
4. Set span = EBW.
5. Sweep time = auto couple.
6. Detector = peak.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use peak marker function to determine the peak amplitude level within the fundamental emission.

8.4.4 Test data

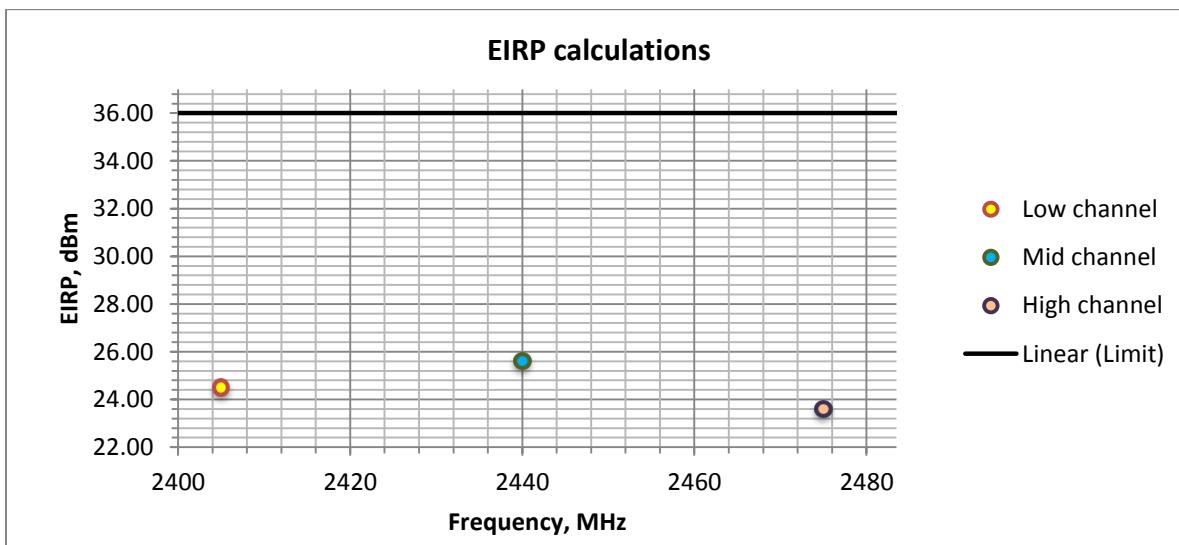
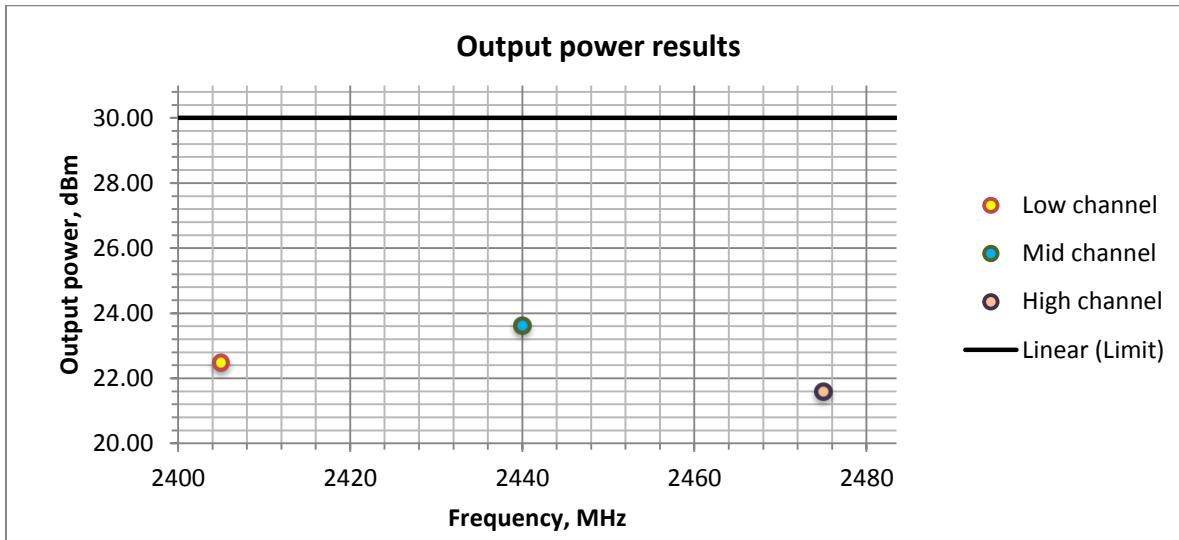

Table 8.4-1: Output power results

Frequency (MHz)	Conducted output power			Antenna gain (dBi)	Equivalent isotropically radiated power		
	Measured value (dBm)	Limit (dBm)	Margin (dB)		Calculated value (dBm)	Limit (dBm)	Margin (dB)
2405	22.49	30.00	7.51	2.00	24.49	36.00	11.51
2440	23.62	30.00	6.38	2.00	25.62	36.00	10.38
2475	21.60	30.00	8.40	2.00	23.60	36.00	12.40


Date: 25.JUN.2012 16:29:34

Plot 8.4-1: Peak output power on low channel

Date: 25.JUN.2012 16:30:26



Plot 8.4-2: Peak output power on mid channel

Date: 25.JUN.2012 16:31:51

Plot 8.4-3: Peak output power on high channel

8.4.4 Test data, continued

8.5 Spurious (out-of-band) emissions

8.5.1 Definitions and limits

FCC Clause 15.247(d): Spurious emissions
RSS-210 Clause A8.5 Out-of-band emissions

FCC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under Section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Table 8.5-1 is not required.

Table 8.5-1: FCC §15.209 and RSS-Gen – Radiated emission limits

Frequency (MHz)	(μ V/m)	Field strength (dB μ V/m)	Measurement distance (m)
0.009–0.490*	2400/F	67.6–20 \times log ₁₀ (F)	300
0.490–1.705*	24000/F	87.6–20 \times log ₁₀ (F)	30
1.705–30.0*	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

* – applicable only to FCC requirements

Table 8.5-2: FCC Restricted bands of operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.5.1 Definitions and limits, continued

Table 8.5-3: IC Restricted bands of operation

MHz	MHz	MHz	GHz
0.090–0.110	12.51975–12.52025	399.9–410	5.35–5.46
2.1735–2.1905	12.57675–12.57725	608–614	7.25–7.75
3.020–3.026	13.36–13.41	960–1427	8.025–8.5
4.125–4.128	16.42–16.423	1435–1626.5	9.0–9.2
4.17725–4.17775	16.69475–16.69525	1645.5–1646.5	9.3–9.5
4.20725–4.20775	16.80425–16.80475	1660–1710	10.6–12.7
5.677–5.683	25.5–25.67	1718.8–1722.2	13.25–13.4
6.215–6.218	37.5–38.25	2200–2300	14.47–14.5
6.26775–6.26825	73–74.6	2310–2390	15.35–16.2
6.31175–6.31225	74.8–75.2	2655–2900	17.7–21.4
8.291–8.294	108–138	3260–3267	22.01–23.12
8.362–8.366	156.52475–156.52525	3332–3339	23.6–24.0
8.37625–8.38675	156.7–156.9	3345.8–3358	31.2–31.8
8.41425–8.41475	240–285	3500–4400	36.43–36.5
12.29–12.293	322–335.4	4500–5150	Above 38.6

Note: Certain frequency bands listed in Table 8.5-3 above and above 38.6 GHz are designated for low-power licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in this Standard

8.5.2 Test summary

Test date	June 25, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	22 °C	Air pressure	1005 mbar	Relative humidity	32 %

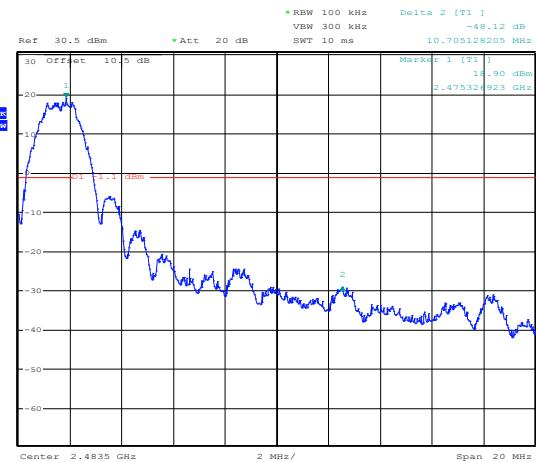
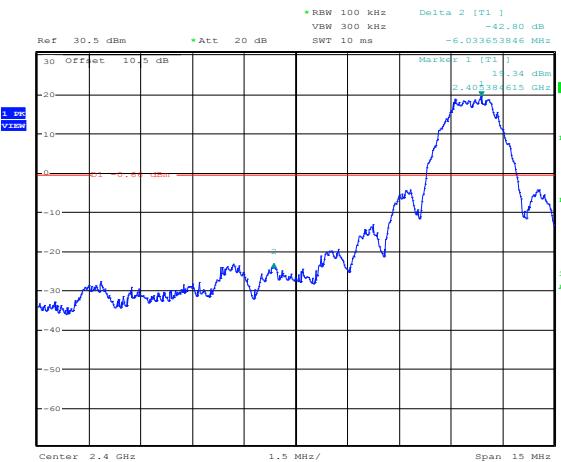
8.5.3 Observations/special notes and procedures

Unwanted Emissions into Non-Restricted Frequency Bands

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

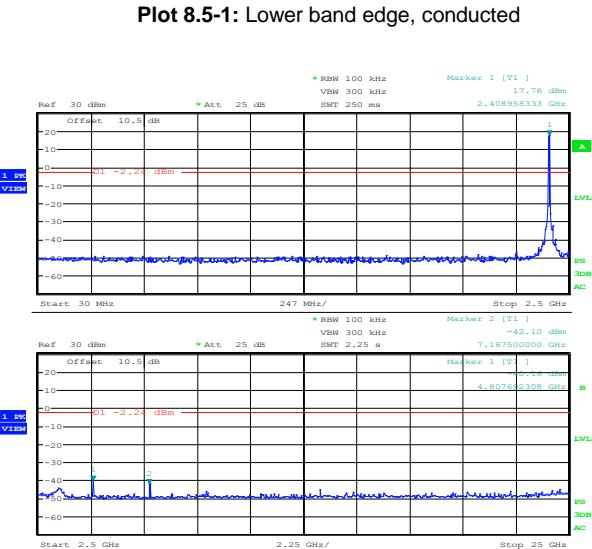
If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

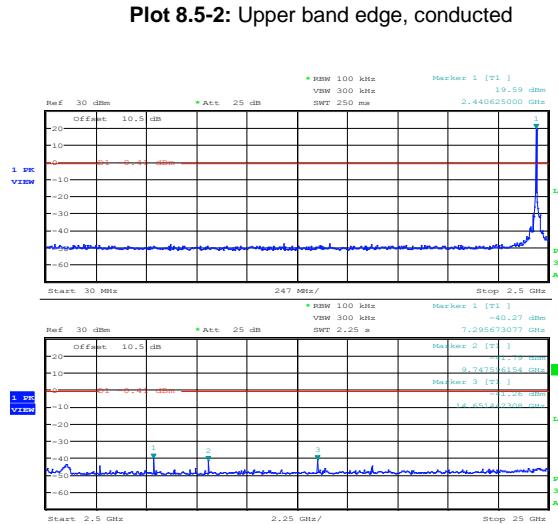


The following procedures can be utilized to demonstrate compliance to these limits:

Measurement Procedure - Unwanted Emissions

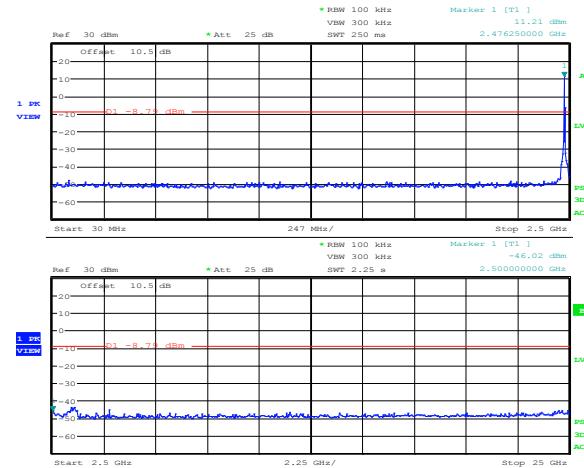
1. Set RBW = 100 kHz.
2. Set VBW \geq 300 kHz.
3. Set span to encompass the spectrum to be examined.
4. Detector = peak.
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

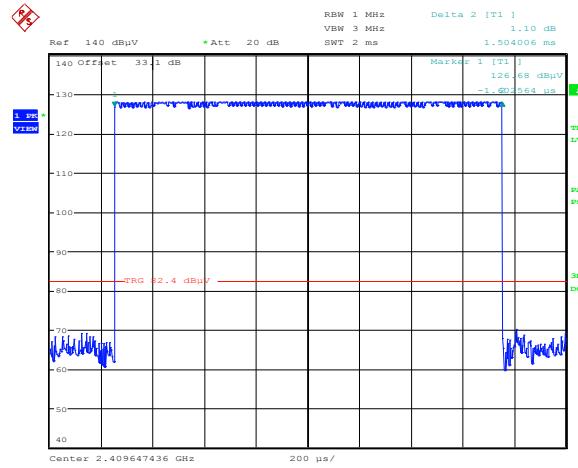
8.5.4 Test data



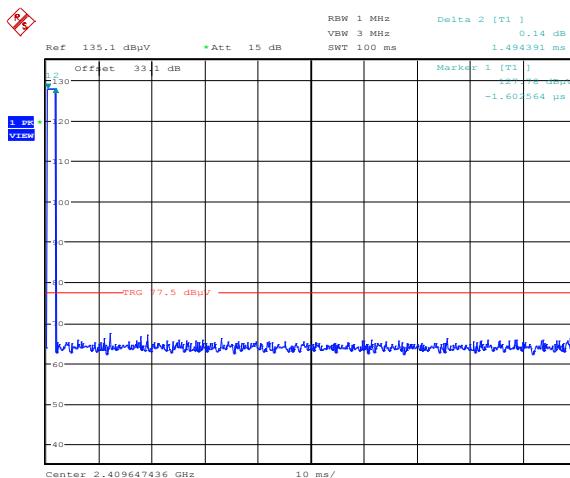
Date: 25.JUN.2012 16:36:22


Date: 25.JUN.2012 16:37:41

Date: 25.JUN.2012 16:52:25



8.5.4 Test data, continued

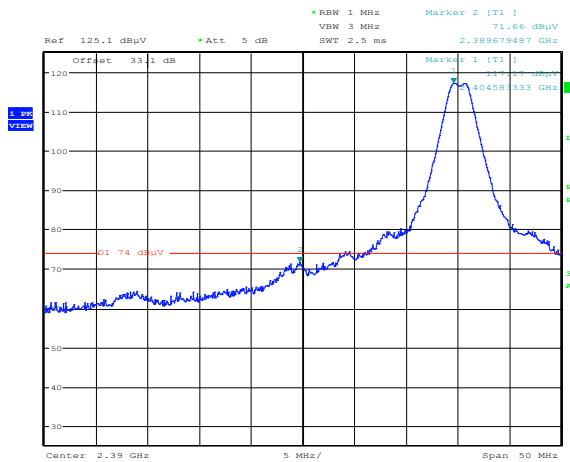

Date: 25.JUN.2012 16:50:41

Plot 8.5-5: Conducted spurious emissions, high channel

Date: 6.JUN.2012 10:06:25

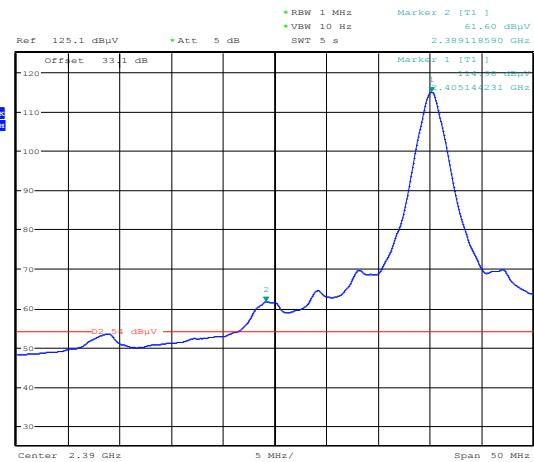
Plot 8.5-6: Pulse duration

Date: 6.JUN.2012 10:05:36

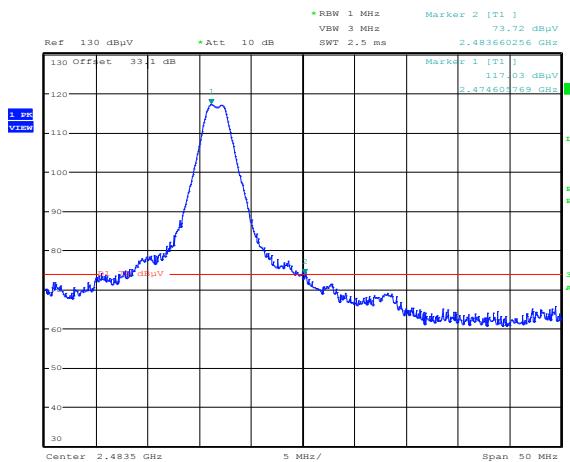

Plot 8.5-7: Pulse period within 100 ms

Duty cycle/average factor calculation:

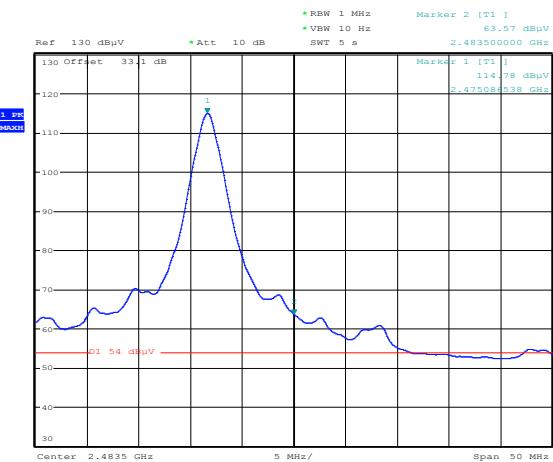
$$\text{Duty cycle factor} = 20 \times \log_{10} \left(\frac{T_{x_{ON} 100 ms}}{100 ms} \right)$$


$$\text{Duty cycle factor} = 20 \times \log_{10} \left(\frac{1.504 ms}{100 ms} \right) = -36.45 dB$$

8.5.4 Test data, continued

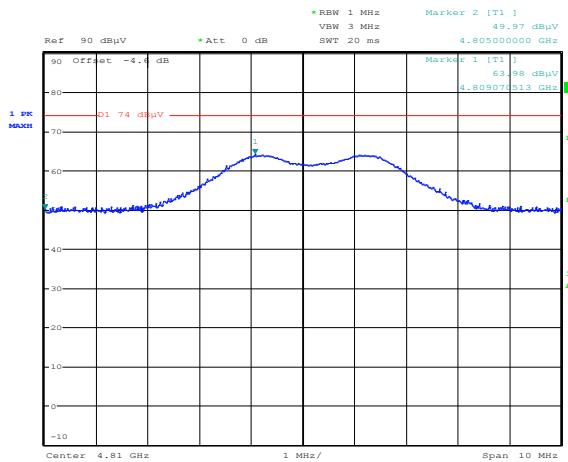

Date: 25.JUN.2012 15:28:37

Plot 8.5-8: Radiated lower band edge, peak

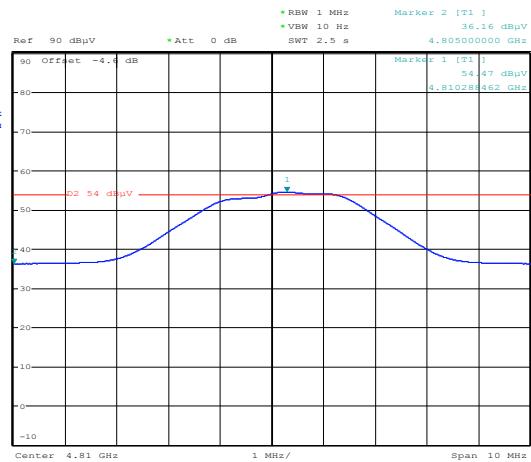

Date: 25.JUN.2012 15:29:07

Plot 8.5-9: Radiated lower band edge, average

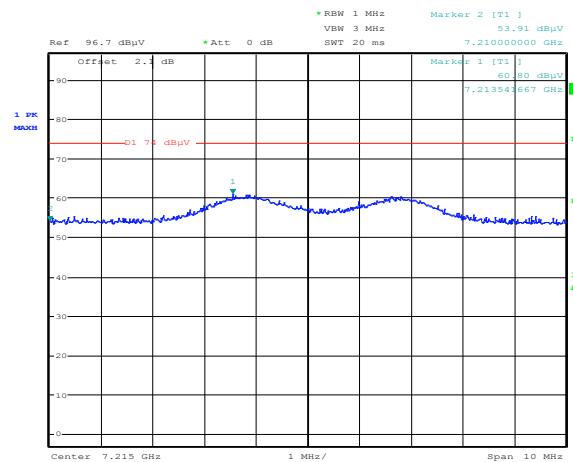
Date: 25.JUN.2012 15:59:23


Plot 8.5-10: Radiated upper band edge, peak

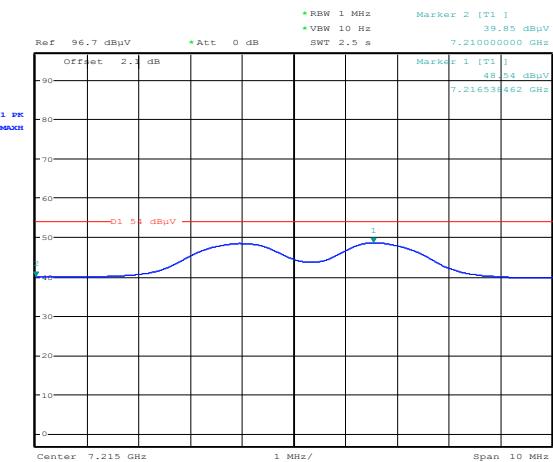
Date: 25.JUN.2012 16:00:03


Plot 8.5-11: Radiated upper band edge, average

8.5.4 Test data, continued

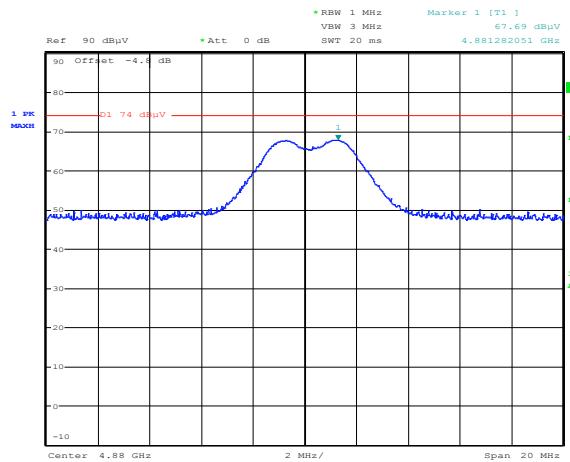

Date: 25.JUN.2012 15:34:12

Plot 8.5-12: Radiated second harmonic on low channel, peak

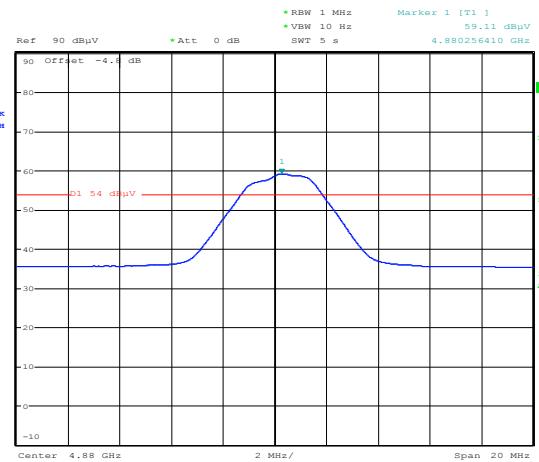

Date: 25.JUN.2012 15:34:58

Plot 8.5-13: Radiated second harmonic on low channel, average

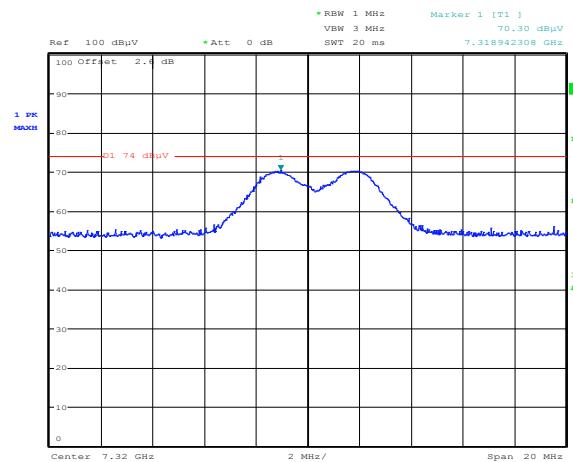
Date: 25.JUN.2012 15:40:57


Plot 8.5-14: Radiated third harmonic on low channel, peak

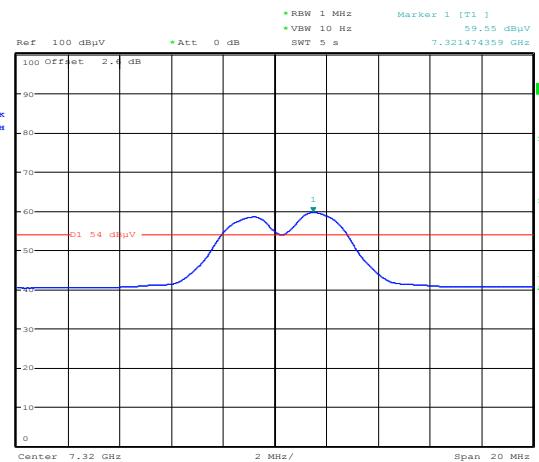
Date: 25.JUN.2012 15:41:22


Plot 8.5-15: Radiated third harmonic on low channel, average

8.5.4 Test data, continued

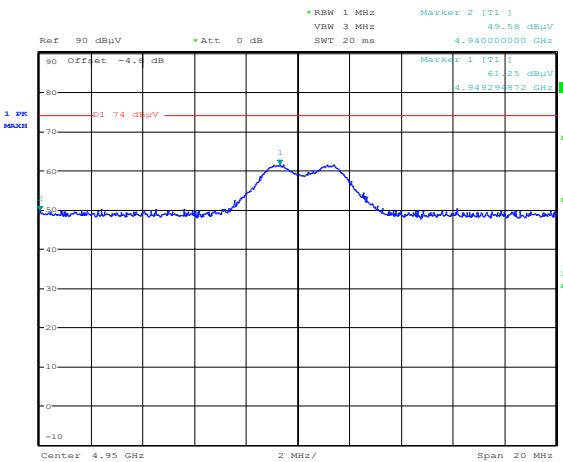

Date: 25.JUN.2012 16:16:38

Plot 8.5-16: Radiated second harmonic on mid channel, peak

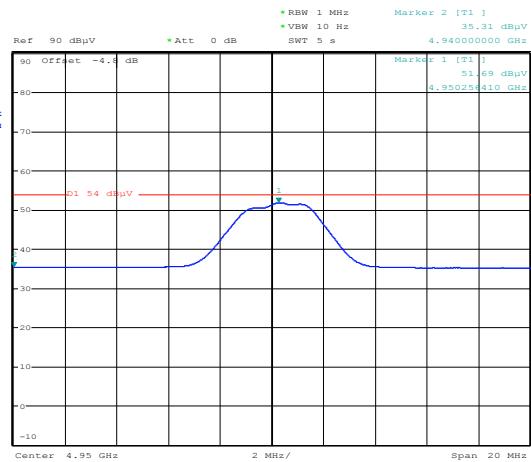

Date: 25.JUN.2012 16:16:20

Plot 8.5-17: Radiated second harmonic on mid channel, average

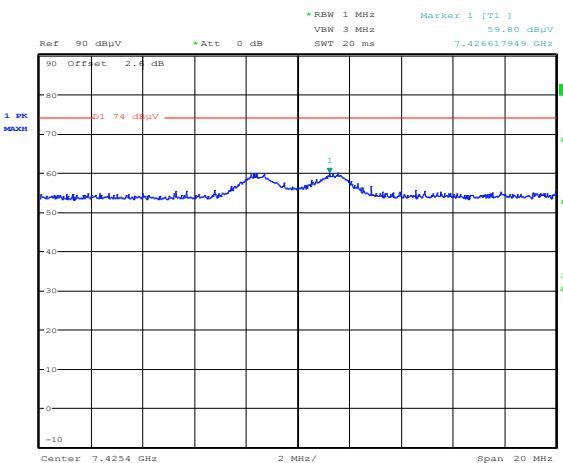
Date: 25.JUN.2012 16:14:53


Plot 8.5-18: Radiated third harmonic on mid channel, peak

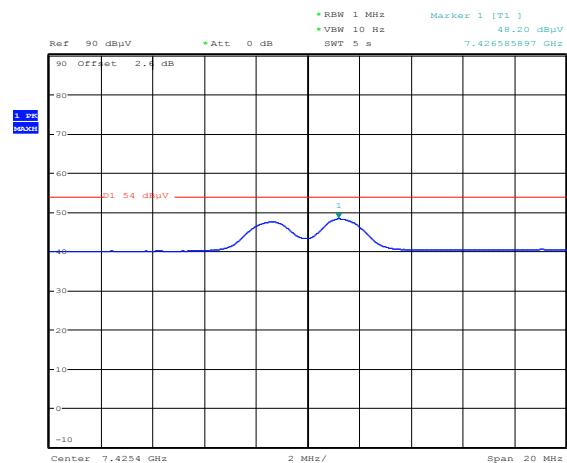
Date: 25.JUN.2012 16:15:17


Plot 8.5-19: Radiated third harmonic on mid channel, average

8.5.4 Test data, continued


Date: 25.JUN.2012 16:03:09

Plot 8.5-20: Radiated second harmonic on high channel, peak


Date: 25.JUN.2012 16:03:48

Plot 8.5-21: Radiated second harmonic on high channel, average

Date: 25.JUN.2012 16:07:10

Plot 8.5-22: Radiated third harmonic on high channel, peak

Date: 25.JUN.2012 16:07:49

Plot 8.5-23: Radiated third harmonic on high channel, average

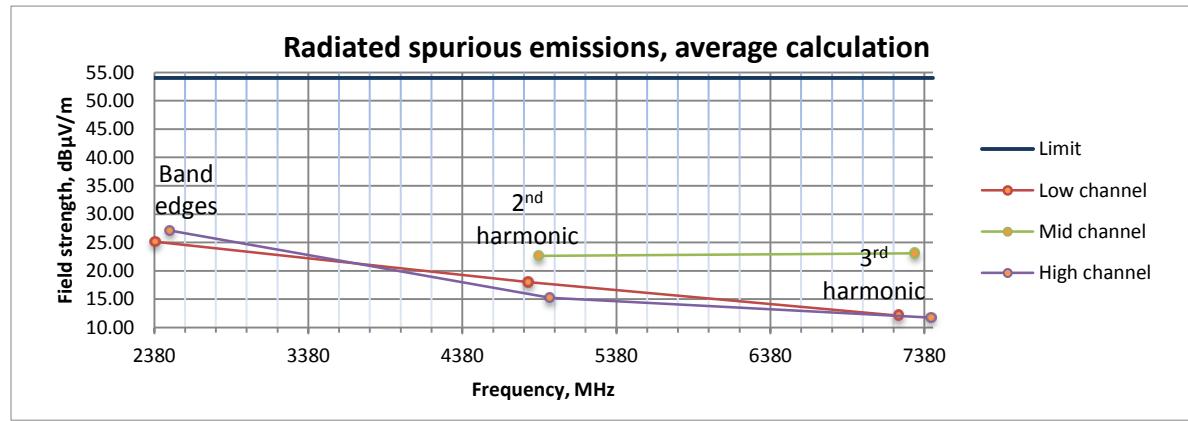
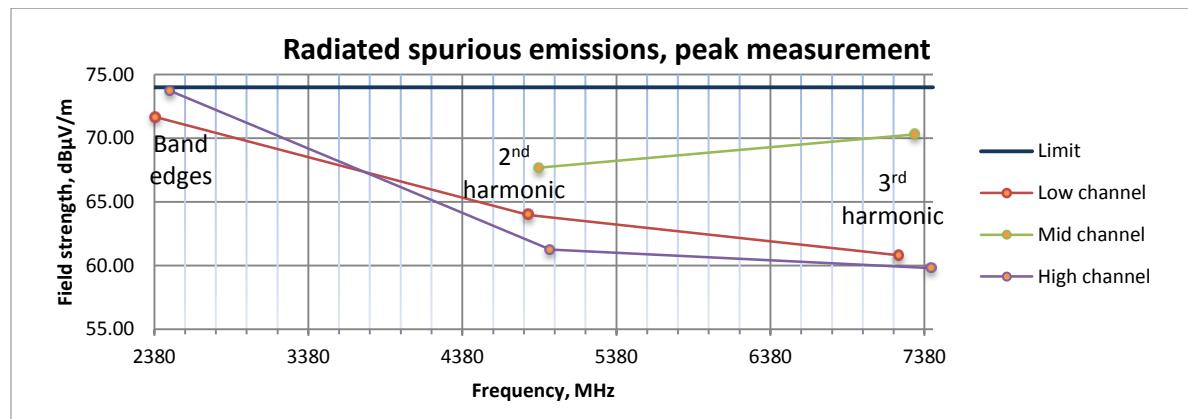


8.5.4 Test data, continued

Table 8.5-4: Radiated spurious emissions results

Channel / Frequency, MHz	Peak			Average				
	Level, dB μ V/m	Limit, dB μ V/m	Margin, dB	Level, dB μ V/m	Average factor, dB	Final average, dB μ V/m	Limit, dB μ V/m	Margin, dB
Low, 2390	71.66	74.00	2.34	61.60	-36.45	25.15	54.00	28.85
Low, 4810	63.98	74.00	10.02	54.47	-36.45	18.02	54.00	35.98
Low, 7215	60.80	74.00	13.20	48.54	-36.45	12.09	54.00	41.91
Mid, 4880	67.69	74.00	6.31	59.11	-36.45	22.66	54.00	31.34
Mid, 7320	70.30	74.00	3.70	59.55	-36.45	23.10	54.00	30.90
High, 2483.5	73.72	74.00	0.28	63.57	-36.45	27.12	54.00	26.88
High, 4950	61.25	74.00	12.75	51.69	-36.45	15.24	54.00	38.76
High, 7425	59.80	74.00	14.20	48.20	-36.45	11.75	54.00	42.25

Notes: Final average level is calculated as follows: Average measured level + average factor.

Although third harmonic of the low channel falls outside restricted band it still complies with the restricted band limits which are more stringent than the conducted ones

8.6 Power spectral density for digitally modulated devices

8.6.1 Definitions and limits

FCC Clause 15.247(e) and RSS-210 Clause A8.2(b) Power spectral density for digitally modulated devices

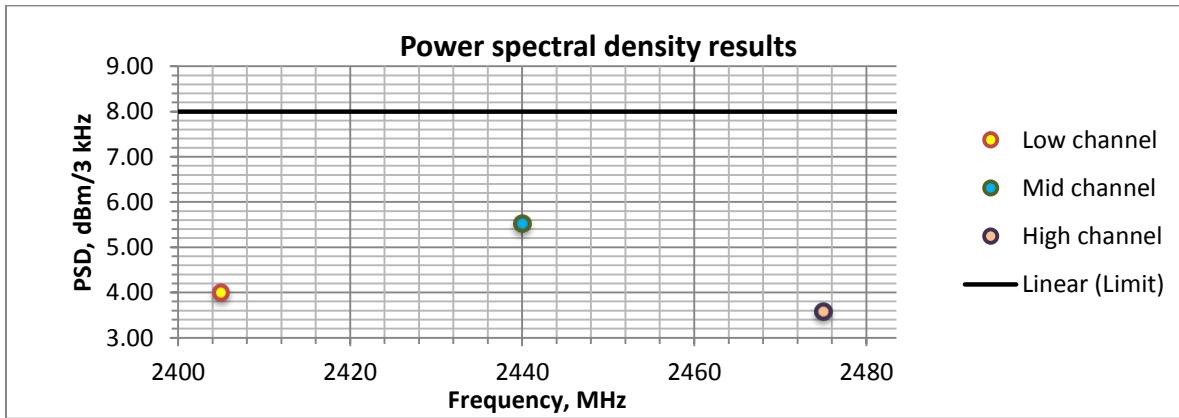
FCC:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

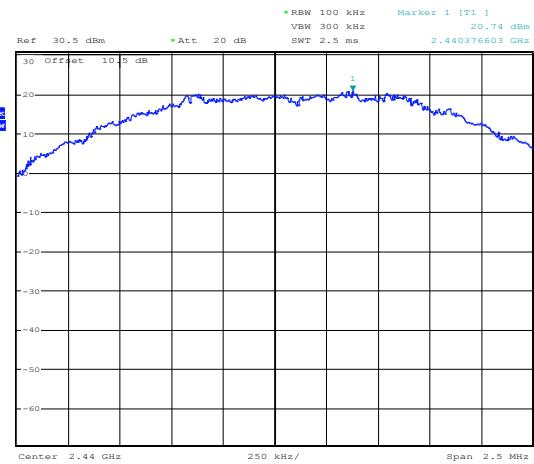
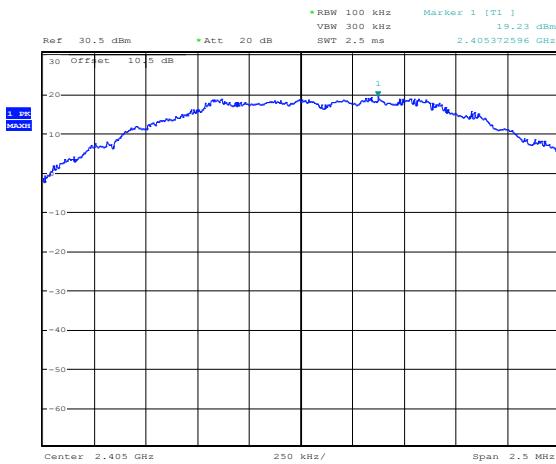
IC:

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration. This power spectral density shall be determined in accordance with the provisions of Section A8.4(4); (i.e. the power spectral density shall be determined using the same method for determining the conducted output power).

8.6.2 Test summary


Test date	June 25, 2012	Test engineer	Andrey Adelberg	Verdict	Pass
Temperature	22 °C	Air pressure	1005 mbar	Relative humidity	32 %

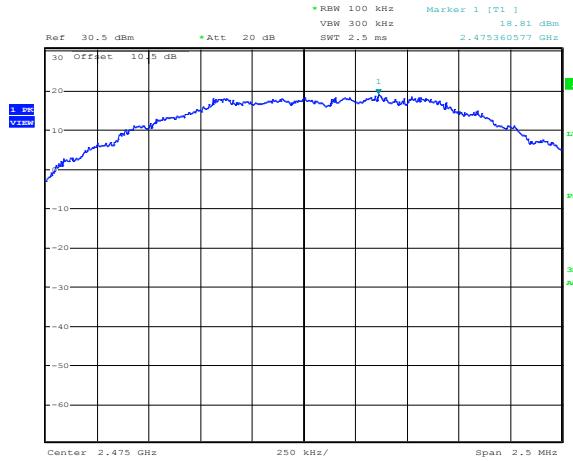
8.6.3 Observations/special notes



Measurement Procedure PKPSD:

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
2. Set the RBW = 100 kHz.
3. Set the VBW \geq 300 kHz.
4. Set the span to 5–30 % greater than the EBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
10. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10 \times \log_{10} (3 \text{ kHz} / 100 \text{ kHz}) = -15.23 \text{ dB}$.
11. The resulting peak PSD level must be $\leq 8 \text{ dBm}$.

8.6.4 Test data

8.6.4 Test data, continued



Date: 25.JUN.2012 16:35:24

Date: 25.JUN.2012 16:33:42

Plot 8.6-1: PSD low channel

Plot 8.6-2: PSD mid channel

Date: 25.JUN.2012 16:32:51

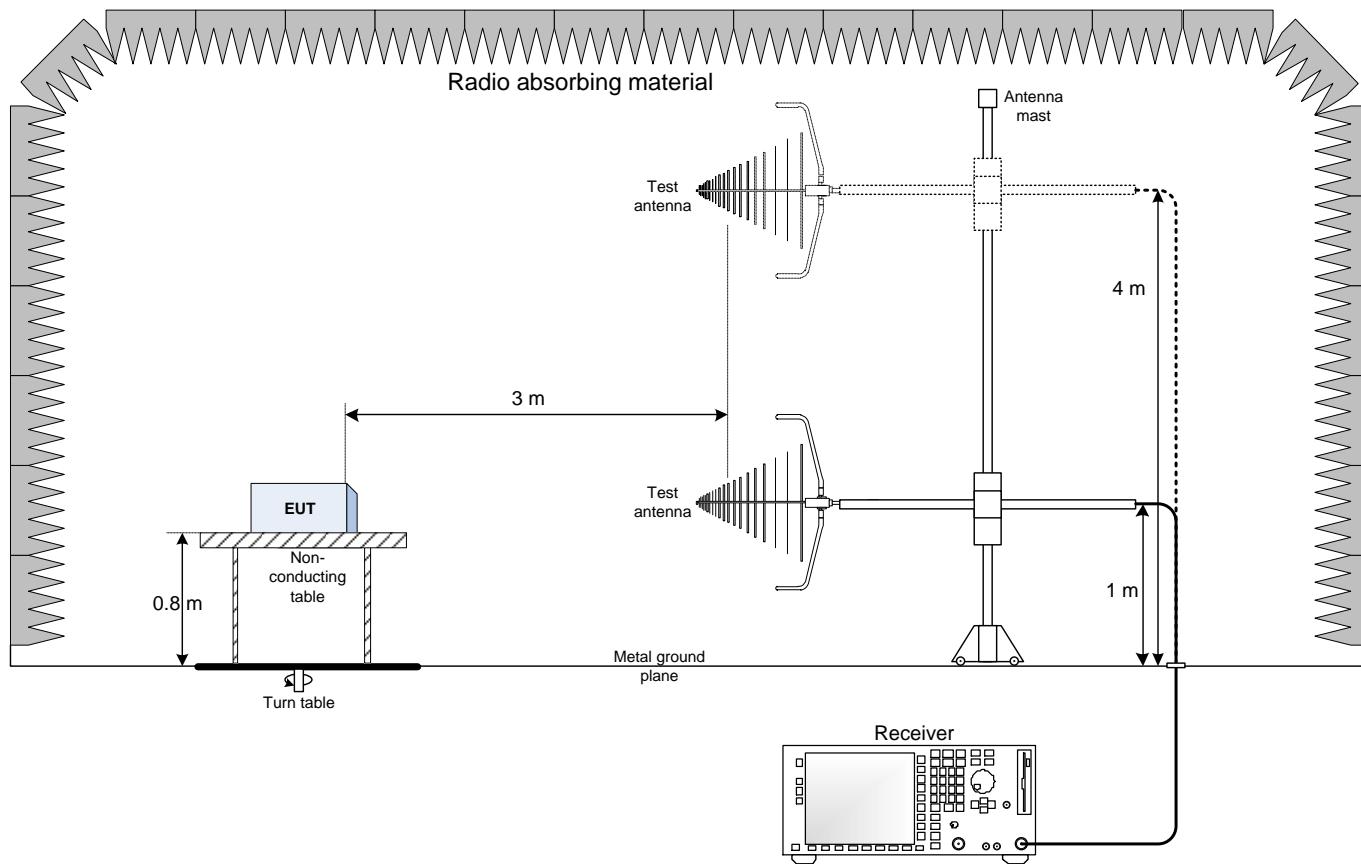
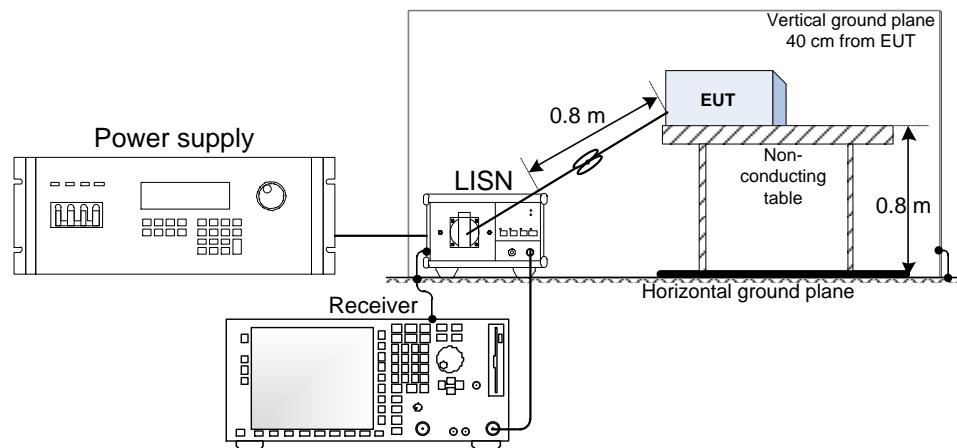

Plot 8.6-3: PSD high channel

Table 8.6-1: PSD results


Frequency (MHz)	PSD (dBm/100 kHz)	BW factor (dB)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Margin (dB)
2405	19.23	-15.23	4.00	8.00	4.00
2440	20.74	-15.23	5.51	8.00	2.49
2475	18.81	-15.23	3.58	8.00	4.42

Section 9 Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

