

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

> Dates of Tests: November 26~ December 21, 2012 Test Report S/N: LR500111212I Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID

PBN-EX23DTH

APPLICANT

ENTER TECH CO.,LTD.

Equipment Class	:	Part 15 S
Manufacturing Description	:	HD MUL
Manufacturer	:	ENTER 1
Model name	:	EX23DTH
Test Device Serial No.:	:	Identical
Rule Part(s)	:	FCC Part
Frequency Range	:	2406 ~ 24'
RF power	:	Max 7.74
Data of issue	:	December

Part 15 Spread Spectrum Transmitter (DSS)
HD MULTIMEDIA KARAOKE (Wireless MIC)
ENTER TECH CO.,LTD.
EX23DTH
Identical prototype
FCC Part 15.247 Subpart C; ANSI C-63.4-2003
2406 ~ 2474MHz
Max 7.74 dBm – Conducted
December 26, 2012

This test report is issued under the authority of:

Kyu-Hyun Lee, Manager

The test was supervised by:

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS	6
3.3 TECHNICAL CHARACTERISTICS TEST	7
3.3.1 CARRIER FREQUENCY SEPARATION	7
3.3.2 NUMBER OF HOPPING FREQUENCIES	9
3.3.3 20 dB BANDWIDTH	11
3.3.4 TIME OF OCCUPANCY (Dwell Time)	14
3.3.5 TRANSMITTER OUTPUT POWER	16
3.3.6 BAND – EDGE & SPURIOUS	20
3.3.7 FIELD STRENGTH OF HARMONICS	26
3.3.8 AC CONDUCTED EMISSIONS	30

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS	 31
AFFENDIA	TEST EQUIFIMENT USED FOR TESTS	 51

1. General information's

<u>1-1 Test Performed</u>

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	OREA KR0049 2013-04-24		EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client

Company name	:	ENTER TECH CO.,LTD.
Address	:	156-7, Ojeong-dong, Ojeong-gu, Bucheon-city, Kyunggi-do, KOREA
Telephone / Facsimile	:	+82-32-680-9072 / +82-32-678-0818

2-2 Manufacturer

Company name	:	ENTER TECH CO.,LTD.
Address(Factory in Korea)	:	156-7, Ojeong-dong, Ojeong-gu, Bucheon-city, Kyunggi-do, KOREA
Address(Factory in China)		Baolai Area, 46 Xinhe Road, Shangmugu-Cun, Pinghu-Zhen,
		Longgang-Qu, Shenzhen, China
Telephone / Facsimile	:	+82-32-680-9072 / +82-32-678-0818

<u>2-3 Equipment Under Test (EUT)</u>

Trade name	:	MAGICSING
Model name	:	EX23DTH
Serial number	:	Identical prototype
Date of receipt	:	November 22, 2012
EUT condition	:	Pre-production, not damaged
Antenna type	:	PIFA antenna, Max Gain 3.63 dBi
Frequency Range	:	2406 ~ 2474MHz
RF output power	:	Max. 7.74 dBm - Conducted
Number of channels	:	18
Channel spacing	:	4MHz
Channel Access Protocol	:	Frequency Hopping Spread Spectrum (FHSS)
Power Source	:	3.0 Vdc by Battery (AA*2ea)
Firmware Version	:	V1.0.0

2-4 Tested frequency

Bluetooth	LOW	MID	HIGH
Frequency (MHz)	2406	2442	2474

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)		
15.247(a)	Carrier Frequency Separation	> 25 kHz		С		
15.247(a)	Number of Hopping Frequencies	> 15 hops		С		
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz		С		
15.247(a)	Dwell Time	< 0.4 seconds	Conducted	С		
15.247(b)	Transmitter Output Power	< 250 mWatt		С		
15.247(d)	Conducted Spurious emission	> 20 dBc		С		
15.247(d)	Band Edge	> 20 dBc		С		
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)	Dellated	С		
15.109	Field Strength	-	Kadiated	С		
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	N/A		
15.203	Antenna requirement	-	-	С		
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable						

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The ENTER TECH CO.,LTD. FCC ID:PBN-EX23DTH unit complies with the

requirement of §15.203.

The antenna type is PIFA antenna.

- Note 2: This Product is operated by battery.
- Note 3: The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

Note 4: TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the ENTER TECH CO.,LTD. FCC ID: PBN-EX23DTH

3.2 Information about the FHSS characteristics:

3.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 18 RF channels. The hopping sequence is unique for the piconet and is determined by this device address of the master; the phase in the hopping sequence is determined by the RF Chip clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies.

3.2.2 Equal Hopping Frequency Use

All units participating in the piconet are time and hop-synchronized to the channel.

3.2.3 System Receiver Input Bandwidth

Each channel bandwidth is 4MHz

3.2.4 Equipment Description

15.247(a)(1):

The hopping sequence must be pseudorandom all Channels are used equally on average the receiver input bandwidth is approximately equal to the transmit bandwidth the receiver hops in sequence with the transmitted signal

15.247(g):

The system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information)

15.247(h):

The system does not coordinate its channel selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

3.3 Transmitter requirements

3.3.1 Carrier Frequency Separation

Procedure:

The test follows DA000705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 15 MHz (wide enough to capture the period of the second se	eaks of two adjacent channels)
RBW = 30 kHz	Sweep = auto
VBW = 30 kHz	Detector function = peak
Trace = max hold	

Measurement Data:

Test Results		
Carrier Frequency Separation (MHz)	Result	
3.994	Complies	

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Carrier Frequency Separation

3.3.2 Number of Hopping Frequencies

Procedure:

The test follows DA000705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the $2400 \sim 2483.5$ MHz FH band were examined.

The spectrum analyzer is set to:Frequency rangeStart = 2400.0MHz,Stop = 2483.5 MHzRBW = 300 kHzSweep = autoVBW = 300 kHz (VBW \geq RBW)Detector function = peakTrace = max holdTrace = max hold

Measurement Data : Complies

Total number of Hopping Channels	18

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest in band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analy	yzer is set to	(Bluetooth):

RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW \geq RBW)Detector function = peakTrace = max holdTrace = max hold

Measurement Data :

Frequency	Channel No.	Test Results(MHz)
(MHz)	Channel No.	20dB Bandwidth
2406	1	3.81
2442	10	3.86
2474	18	3.80

- See next pages for actual measured spectrum plots.

Minimum Standard:

N/A

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Channel 1 of basic mode

<u>Channel 2 of basic mode</u> <u>20 dB Bandwidth</u>

<u>Channel 3 of basic mode</u> 20 dB Bandwidth

3.3.4 Time of Occupancy (Dwell Time)

Procedure:

The test follows DA000705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :	
Center frequency = 2438 MHz	Span = zero
RBW = 1 MHz	$VBW = 1 \text{ MHz} (VBW \geq RBW)$
Trace = single sweep	Detector function = peak

Measurement Data:

Number of transmission in a	Length of Transmission	Result	Limit
7.2s (18 Hopping*0.4)	Time (msec)	(msec)	(msec)
(Times / 7.2sec) = 41	0.326	13.366	400

- See next pages for actual measured spectrum plots.
- dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms

Minimum Standard:

0.4 seconds within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Time of Occupancy for PACKET

3.3.5 Transmitter Output Power

Procedure:

The test follows DA000705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Center frequency = the highest, middle and the lowest channels					
Span = 10 MHz (approximately 5 times of the 20 dB bandwidth)					
RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)					
VBW = 3 MHz (VBW \geq RBW)	Detector function = peak				
Trace = max hold	Sweep = auto				

Measurement Data :

Frequency	Ch	Test Results				
(MHz)	Cn.	dBm	mW	Result		
2406	1	7.74	5.94	Complies		
2442	10	2.92	1.96	Complies		
2474	18	3.33	2.15	Complies		

- See next pages for actual measured spectrum plots.

Minimum Standard:	< 250 mW
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Channel 1

Spectrun	n Sp	ectrum 2	2 🗴 5	pectrum 3	×	Spectrum 4	1 X		
Ref Level	15.00 dBm	Offset	1.00 dB 🕌 R	BW 3 MHz	Mada Au				
1Pk Max	30 UB	3991	1.9 µS ¥		MODE AU				
10 dBm					N	11[1]		2.40	7.74 dBm 71870 GHz
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.406 (GHz			691	pts			Span	10.0 MHz
(][]					Measuri	ng 🔳		

<u>Channel 2</u>

Spectrum	n Sp	ectrum 2	🗴 St	ectrum 3	x	Spectrum 4	4 🗴		
Ref Level	15.00 dBm	Offset 1.	.00 dB 🔵 RE	W 3 MHz					
Att	30 dB	SWI	1.9 µs VE	SW 3 MHz	Mode A	uto FFT			
●тык мах			I						0.00 dp
10 dBm						MILI		2 44	2.92 aBm 07990 GHz
			M1			1		1	07990 0112
0 dBm									
o doni								-	
10 10									
-10 gBm-									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm						_			
-60 dBm									
00 00.00									
70 dBm									
-70 uBill									
-80 dBm									
CF 2.442 0	GHz		I	691	pts			Span	10.0 MHz
)[Measuri	ng 🚺		

Channel 3

Ref Level 15.00 dBm Offset 1.00 dB RBW 3 MHz Mode Auto FFT 1Pk Max 0 dBm M1[1] 3.33 dBm 10 dBm M1[1] 2.4741740 GHz 0 dBm M1 M1 2.4741740 GHz -20 dBm M1 M1 0.40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -691 pts Span 10.0 MHz M4z	Spectrun	n Sp	ectrum 2	× s	pectrum 3	X	Spectrum	4 🗴		
Att 30 db Swill 1.9 ps VBW 3 MH2 Mode Auto FFT 1Pk Max	Ref Level	15.00 dBm	Offset 1	.00 dB 🔵 RI	BW 3 MHz					
10 dBm M1[1] 3.33 dBm 10 dBm M1 2.4741740 GHz 0 dBm M1 0 -10 dBm M1 0 -20 dBm 0 0 -30 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 -70 dBm 0 0 -80 dBm 0 0 -80 dBm 0 0 -80 dBm 0 0 -70 dBm 0 0 -80 dBm	Att	30 dB	SWI	1.9 µs V	BW 3 MHz	Mode Au	uto FFT			
10 dBm M11 2.4741740 GHz 0 dBm M1 2.4741740 GHz -10 dBm -0 -0 -20 dBm -0 -0 -30 dBm -0 -0 -40 dBm -0 -0 -50 dBm -0 -0 -70 dBm -0 -0 -70 dBm -0 -0 -20 dBm -0 -0	●1PK Max	1	1	1	1					0.00 40
0 dBm 1 20 dBm -10 dBm 1 1 -20 dBm 1 1 -30 dBm 1 1 -40 dBm 1 1 -50 dBm 1 1 -60 dBm 1 1 -70 dBm 1 1 -80 dBm 1 1 -80 dBm 1 1	10 dBm						MILI		2 47	3.33 dBm
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -60 dBm -70 dBm -70 dBm -80 d						M1	1		1	
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -60 dBm -70 dBm -70 dBm -80	0 dBm									
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -60 dBm -60 dBm -70 dBm -70 dBm -80	o ubiii									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -8	10.10									
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -80 dBm -60 dBm -70 dBm -80	-10 dBm-									
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80										
-30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80	-20 dBm—									
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80										
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm CF 2.474 GHz 691 pts Span 10.0 MHz	-30 dBm						+			
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -80 dBm -70										
-50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80	-40 dBm									
-50 dBm										
-60 dBm -60 dBm -70 dBm -80 dBm -80 dBm CF 2.474 GHz 691 pts Span 10.0 MHz Measuring	-50 dBm									
-60 dBm70 dB										
-70 dBm -70 dBm -80 dBm CF 2.474 GHz 691 pts Span 10.0 MHz	-60 dBm									
-70 dBm70 dB	-00 0011									
-70 dBm -80 dBm CF 2.474 GHz 691 pts Span 10.0 MHz Measuring	70 10									
-80 dBm 691 pts Span 10.0 MHz Measuring Measuring	-/U dBm									
-80 dBm 691 pts Span 10.0 MHz										
CF 2.474 GHz 691 pts Span 10.0 MHz	-80 dBm									
Measuring	CF 2.474 (GHz			691	pts		I	Span	10.0 MHz
		Υ					Measur	ng 🔳		

3.3.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:						
Center frequency = the highest, middle and the lowest channels						
RBW = 100 kHz	VBW = 100 kHz					
Span = 30-50 MHz	Detector function = peak					
Trace = max hold	Sweep = auto					

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>Band – edge</u>

Upper edge

Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/m] AV / Peak			Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		Margin	
			Del							[dB]	
[MHz]			P01.	Antenna	Amp. Gain + Cable Loss	AV /	' Peak	AV /	Peak	AV /	Peak
2386.4	45.6	58.1	V	27.9	33.4	54.0	74.0	40.1	52.6	13.9	21.4

Band-edges in the restricted band 2483.5-2500 MHz measurement

Fraguanay		Rea	Reading		Correction		Limits		Result		Margin	
Frequency	[dBuV/m]		Dol	Factor		[dBuV/m]		[dBuV/m]		[dB]		
	[MHz]	AV / Peak		P01.	Antenna	Amp. Gain + Cable Loss	AV /	' Peak	AV /	Peak	AV /	Peak
	2483.5	51.2	62.8	V	27.9	33.4	54.0	74.0	45.7	57.3	8.3	16.7

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

<u> Unwanted Emission – Low channel</u>

Spectrum	n Sp	ectrum 2	2 🗴 S	pectrum 3	× 5	pectrum 4	4 🗷		
Ref Level	10.00 dBm	Offset	1.00 dB 😑 RI	BW 100 kHz			-		
Att	25 dB	SWT	265 ms 🛛 🗸	BW 100 kHz	Mode A	uto Sweep			
●1Pk Max									
M1					D	2[1]			-59.37 dB
Ţ								4	1.5200 GHz
0 dBm					M	1[1]			2.70 dBm
						1	I	1	2.4240 GHZ
-10 dBm									
-20 dBm									
00 d 0									
-30 aBm									
-40 dBm									
-50 dBm			_						
		D2							
-60 dBm		M							
a sea and the	million	the has	moural threader	whenne	manner	arander	when the	mapronom	ry run aller
WWW WWW									
-70 dBm-									
-80 dBm									
Start 20.0	MUa			601	nte			Ston	26 5 CHz
atar 30.0	1			091	prs			atup	20.3 GHZ
						Measuri	ng		• ///

<u>Unwanted Emission – Middle channel</u>

Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – High channel</u>

Frequency Range = 30 MHz ~ 26.5 GHz

3.3.7 Field Strength of Harmonics

Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA000705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

The spectrum analyzer is set to:

below 30MHz

Center frequency = the worst channel Frequency Range = 30 MHz ~ 10th harmonic. RBW = 100 kHz (30MHz ~ 1 GHz) = 1 MHz (1 GHz ~ 10th harmonic) Span = 100 MHz Trace = max hold

Peak: VBW ≥ RBW Average: VBW=10Hz Detector function = peak Sweep = auto

below 1GHz (30MHz to 1GHz)

above 1GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit.

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency	Reading [dBuV/m]			(Limits		Result		Margin		
Frequency			Pol.	. Factor			[dBuV/m]		[dBuV/m]		[dB]
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable	AV/Peak		AV/Peak		AV / Peak	
4808.3	52.8 61.4		V	29.8	32.4	54.0	74.0	50.2	58.8	3.8	15.2
Frequency	Reading			Correction		Limits		Result		Margin	
ricqueriey	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
4880.4	53.0	63.9	V	29.8	32.4	54.0	74.0	50.4	61.3	3.6	12.7
Frequency	Reading			Correction		Limits		Result		Mar	gin
	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBu	V/m]	[d	В]
[MHz]	AV / Peak			Antenna	Amp.Gain+Cable	AV/	Peak	AV/	Peak	AV /	Peak
4950.1	52.4	62.1	V	29.8	32.4	54.0	74.0	49.8	59.5	4.2	14.5

Measurement Data :

- No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – Wireless mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.3.8 AC Conducted Emissions

Procedure:

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Not Applicable

(This Product is operated by battery.)

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

Minimum Standard: FCC Part 15.207(a)/EN 55022

* Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2012-01-10
2	Spectrum Analyzer (~2.9GHz)	8594E	3649A03649	HP	2 year	2012-03-26
3	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	1 year	2012-03-26
4	Signal Generator (1~20GHz)	83711B	US34490456	HP	1 year	2012-03-26
5	Attenuator (3dB)	8491A	37822	HP	2 year	2012-09-22
6	Attenuator (10dB)	8491A	63196	HP	2 year	2012-09-22
7	Attenuator (30dB)	8498A	3318A10929	HP	2 year	2011-01-05
8	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2012-03-26
9	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2012-09-22
10	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2 year	2012-09-22
11	RF Amplifier (1~18GHz)	8449B	3008A02126	HP	2 year	2012-03-26
12	Horn Antenna (1~18GHz)	3115	114105	ETS	2 year	2012-01-26
13	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2012-11-24
14	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2012-11-24
15	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2012-09-20
16	Hygro-Thermograph	THB-36	0041557-01	ISUZU	1 year	2012-09-26
17	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
18	Power Divider	11636A	6243	HP	2 year	2012-09-22
19	DC Power Supply	6622A	3448A03079	HP	-	-
20	Frequency Counter	5342A	2826A12411	HP	1 year	2012-03-26
21	Power Meter	EPM-441A	GB32481702	HP	1 year	2012-03-26
22	Power Sensor	8481A	US41030291	HP	1 year	2012-09-22
23	Audio Analyzer	8903B	3729A18901	HP	1 year	2012-09-22
24	Modulation Analyzer	8901B	3749A05878	HP	1 year	2012-09-22
25	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2012-09-22
26	Stop Watch	HS-3	601Q09R	CASIO	2 year	2012-03-26
27	LISN	ENV216	100408	R&S	1 year	2012-09-22
28	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2012-06-27
29	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
30	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-