

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

> Dates of Tests: Sep 03~ 14, 2012 Test Report S/N: LR500111209E Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID

PBN-EX23DT

APPLICANT

ENTER TECH CO.,LTD.

Equipment Class	:
Manufacturing Description	:
Manufacturer	:
Model name	:
Test Device Serial No.:	:
Rule Part(s)	:
Frequency Range	:
RF power	:
Data of issue	:

]	Part 15 Spread Spectrum Transmitter (DSS)
I	MAGICSING Karaoke (Wireless Microphone)
]	ENTER TECH CO.,LTD.
]	EX23DT
]	dentical prototype
]	FCC Part 15.247 Subpart C; ANSI C-63.4-2003
	2403 ~ 2477MHz
I	Max 9.07 dBm – Conducted
S	September 14, 2012

This test report is issued under the authority of:

Kyu-Hyun Lee, Manager

The test was supervised by:

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS	6
3.3 TECHNICAL CHARACTERISTICS TEST	7
3.3.1 CARRIER FREQUENCY SEPARATION	7
3.3.2 NUMBER OF HOPPING FREQUENCIES	9
3.3.3 20 dB BANDWIDTH	11
3.3.4 TIME OF OCCUPANCY (Dwell Time)	14
3.3.5 TRANSMITTER OUTPUT POWER	16
3.3.6 BAND – EDGE & SPURIOUS	20
3.3.7 FIELD STRENGTH OF HARMONICS	26
3.3.8 AC CONDUCTED EMISSIONS	30

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS	 31

1. General information's

<u>1-1 Test Performed</u>

Company name	LTA Co., Ltd.	
Address	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, K	orea. 449-822
Web site	http://www.ltalab.com	
E-mail	hahn@ltalab.com	
Telephone	-82-31-323-6008	
Facsimile	-82-31-323-6010	

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	KR0049 2013-04-24 EMC a	
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name	:	ENTER TECH CO.,LTD.
Address	:	156-7, Ojeong-dong, Ojeong-gu, Bucheon-city, Kyunggi-do, KOREA
Telephone / Facsimile	:	+82-32-680-9072 / +82-32-678-0818

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	:	MAGICSING
Model name	:	EX23DT
Serial number	:	Identical prototype
Date of receipt	:	September 3, 2012
EUT condition	:	Pre-production, not damaged
Antenna type	:	Planar Monopole antenna, Max Gain 3.423 dBi
Frequency Range	:	$2403 \sim 2477 MHz$
RF output power	:	Max. 9.07 dBm - Conducted
Number of channels	:	16
Channel spacing	:	5.2MHz
Channel Access Protocol	:	Frequency Hopping Spread Spectrum (FHSS)
Power Source	:	3.0 Vdc by battery (AA * 2ea)
Firmware Version	:	2.1.16

2-4 Tested frequency

Bluetooth	LOW	MID	HIGH	
Frequency (MHz)	2403	2443	2477	

2-5 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	
-	-	-	-	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	Carrier Frequency Separation	> 25 kHz		С
15.247(a)	Number of Hopping Frequencies	> 15 hops		С
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz		С
15.247(a)	Dwell Time	< 0.4 seconds	Conducted	С
15.247(b)	Transmitter Output Power	< 250 mWatt		С
15.247(d)	Conducted Spurious emission	> 20 dBc		С
15.247(d)	Band Edge	> 20 dBc		С
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)		С
15.109	Field Strength	-	– Radiated	С
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	N/A
15.203	Antenna requirement		-	С
<u>Note 1</u> : C=Complies	NC=Not Complies NT=Not Tester	d NA=Not Applicable	1	<u> </u>

<u>Note 2</u>: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The ENTER TECH CO.,LTD. FCC ID:PBN-EX23DT unit complies with the

requirement of §15.203.

The antenna type is **Planar Monopole antenna**.

Note 2: The sample was tested according to the following specification: FCC Parts 15.247; ANSI C-63.4-2003

Note3: TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the ENTER TECH CO.,LTD. FCC ID: PBN-EX23DT

3.2 Information about the FHSS characteristics:

3.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 16 RF channels. The hopping sequence is unique for the piconet and is determined by this device address of the master; the phase in the hopping sequence is determined by the RF Chip clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies.

3.2.2 Equal Hopping Frequency Use

All units participating in the piconet are time and hop-synchronized to the channel.

3.2.3 System Receiver Input Bandwidth

Each channel bandwidth is 5MHz

3.2.4 Equipment Description

15.247(a)(1):

The hopping sequence must be pseudorandom all Channels are used equally on average the receiver input bandwidth is approximately equal to the transmit bandwidth the receiver hops in sequence with the transmitted signal

15.247(g):

The system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information)

15.247(h):

The system does not coordinate its channel selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

3.3 Transmitter requirements

3.3.1 Carrier Frequency Separation

Procedure:

The test follows DA000705. The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

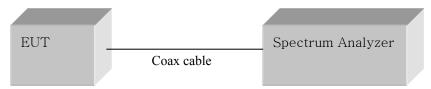
After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

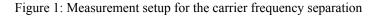
The spectrum analyzer is set to:

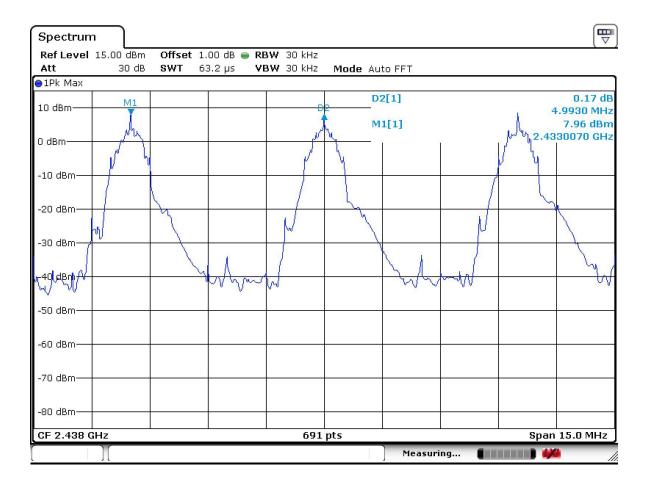
Span = 15 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 30 kHzSweep = autoVBW = 30 kHzDetector function = peak

Trace = max hold

Measurement Data:


Test Results			
Carrier Frequency Separation (MHz) Result			
4.993	Complies		


- See next pages for actual measured spectrum plots.


Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Carrier Frequency Separation

3.3.2 Number of Hopping Frequencies

Procedure:

The test follows DA000705. The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the $2400 \sim 2483.5$ MHz FH band were examined.

The spectrum analyzer is set to:Frequency rangeStart = 2400.0MHz,Stop = 2483.5 MHzRBW = 300 kHzSweep = autoVBW = 300 kHz (VBW \geq RBW)Detector function = peakTrace = max holdTrace = max hold

Measurement Data : Complies

Total numb	er of Hoppir	ng Channels		16	
			_		

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.3.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest in band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum an	nalyzer is	set to (B	luetooth):

RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW \geq RBW)Detector function = peakTrace = max holdTrace = max hold

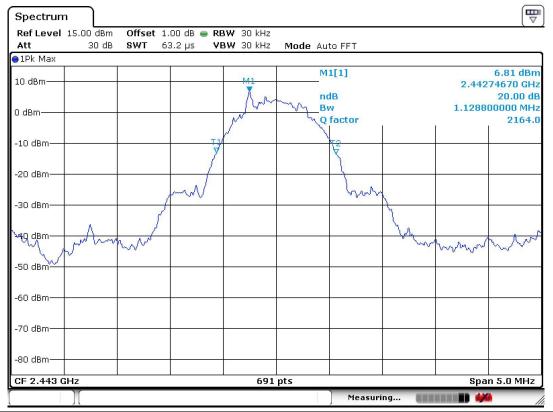
Measurement Data :

Frequency	Channel No.	Test Results(MHz)				
(MHz)	Channel No.	20dB Bandwidth				
2403	1	1.129				
2443	9	1.129				
2477	16	1.122				

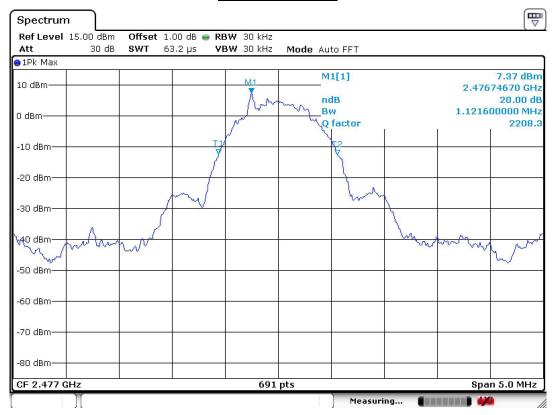
- See next pages for actual measured spectrum plots.

Minimum Standard:

N/A


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


<u>Channel 1 of basic mode</u> <u>20 dB Bandwidth</u>

Ref Level 1 Att	30 dB		00 dB 🥌 RE 3.2 μs 🛛 VE	SW 30 kHz SW 30 kHz	Mode Au	to FFT			
∋1Pk Max									
10 dBm				M1		1[1]		2.402	6.82 dBr 74670 GH
0 dBm				Arr	my B	dB w factor		1.1288	20.00 d 00000 MH 2128.
-10 dBm			τy	Ĵ	Z	142-01 T2			2120.
-20 dBm			y y			Y			
		r	mm			how	N		
-30 dBm	٨	}					La		
L40 dBm	w true	who have					hu	wow	m
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.403 GH	17			691	nts			Sna	n 5.0 MHz

<u>Channel 2 of basic mode</u> <u>20 dB Bandwidth</u>

<u>Channel 3 of basic mode</u> <u>20 dB Bandwidth</u>

3.3.4 Time of Occupancy (Dwell Time)

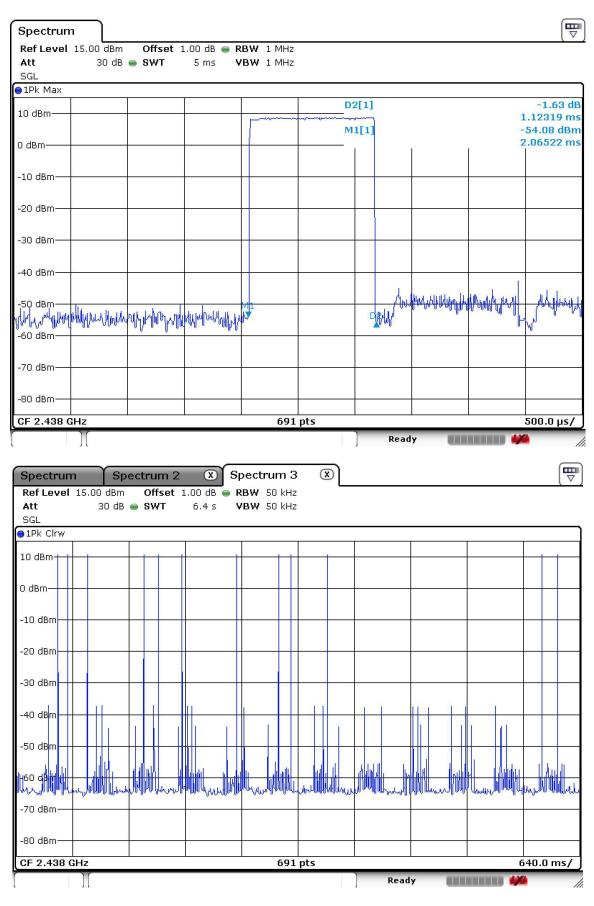
Procedure:

The test follows DA000705. The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :Center frequency = 2438 MHzSpan = zeroRBW = 1 MHzVBW = 1 MHz (VBW \geq RBW)Trace = single sweepDetector function = peak

Measurement Data:

Number of transmission in a	Length of Transmission	Result	Limit
6.4s (16 Hopping*0.4)	Time (msec)	(msec)	(msec)
(Times / 6.4sec) = 12	1.123	13.476	400


- See next pages for actual measured spectrum plots.
- dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms

Minimum Standard:

0.4 seconds within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Time of Occupancy for PACKET

3.3.5 Transmitter Output Power

Procedure:

The test follows DA000705. The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.. After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The

indicated level is the peak output power.

The spectrum analyzer is set to :

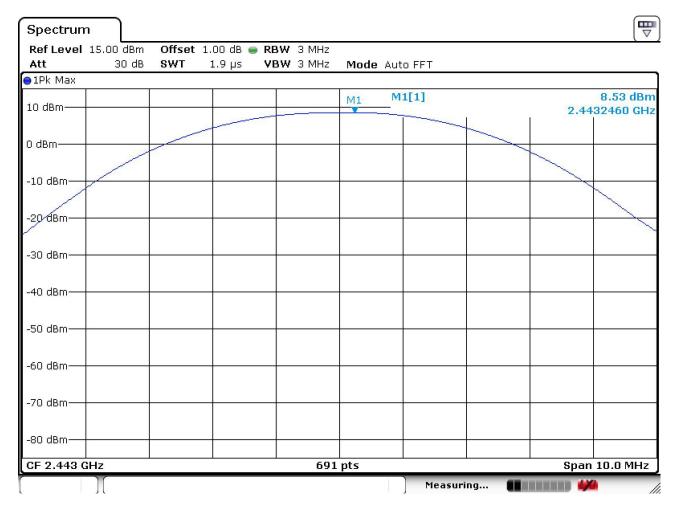
Center frequency = the highest, middle and the lowest channelsSpan = 10 MHz (approximately 5 times of the 20 dB bandwidth)RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)VBW = 3 MHz (VBW \geq RBW)Detector function = peakTrace = max holdSweep = auto

Measurement Data :

Frequency	Ch.	Test Results					
(MHz)	CII.	dBm	mW	Result			
2403	1	8.45	7.00	Complies			
2443	9	8.53	7.13	Complies			
2477	16	9.07	8.07	Complies			

- See next pages for actual measured spectrum plots.

Minimum Standard:	< 250 mW
-------------------	----------


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Channel 1

Spectrun	n								
	15.00 dBm			RBW 3 MHz					
Att	30 dB	SWT	1.9 µs	VBW 3 MHz	Mode Auto	D FFT			
10 dBm					M1 M1	l[1]		2.40	8.45 dBm 32170 GHz
0 dBm			-						
-10 dBm—									
-28 dBm-									
-30 dBm									
-50 dBm				_					
-60 dBm									
-70 dBm—			_						
-80 dBm									
CF 2.403 (GHz			691	pts				10.0 MHz
	Д				[Measuri	ng 🚺) //

Channel 2

Channel 3

Spectrun	n								
	15.00 dBm			RBW 3 MHz					
Att	30 dB	SWT	1.9 µs	VBW 3 MHz	Mode Aut	O FFT			
⊖1Pk Max	1 1				Tana and				
10 dBm					M1 M	1[1]		2.47	9.07 dBm 71880 GHz
				_					
0 dBm								_	
-10 dBm									
-20 dBm—									
-30 dBm—									
-40 dBm									
10 dbin									
-50 dBm			_						
-60 dBm									
-70 dBm—									
-80 dBm									
CF 2.477 (GHz			691	pts	I	·	Span	10.0 MHz
	Υ					Measur	ing 🚺		

3.3.6 Band Edge

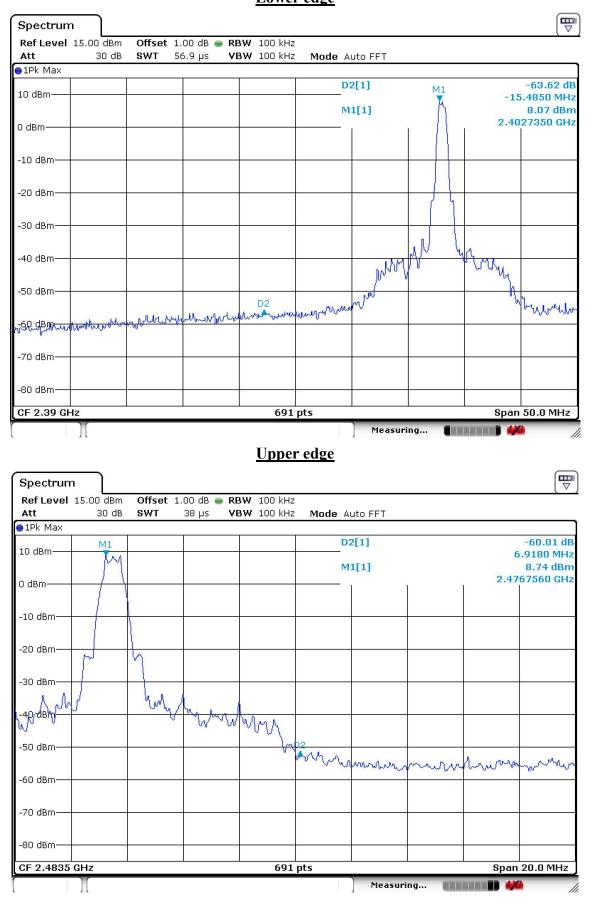
Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:					
Center frequency = the highest, middle and the lowest channels					
RBW = 100 kHz	VBW = 100 kHz				
Span = 2~30 MHz	Detector function = peak				
Trace = max hold	Sweep = auto				

Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

|--|

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>Band – edge</u> Lower edge

Band-edges in the restricted band 2310-2390 MHz measurement

Frequency	Reading [dBuV/m]		Pol.	Correction Factor		Limits [dBuV/m]		Res [dBu	sult V/m]	Maı [d	-
[MHz]	AV /	' Peak	P01.	Antenna	Amp. Gain + Cable Loss	AV / Peak		AV / Peak		AV /	Peak
2384.3	35.79	48.51	V	25.4	33.1	54.0	74.0	28.0	40.8	26.0	33.2

Band-edges in the restricted band 2483.5-2500 MHz measurement

Frequency	Reading [dBuV/m] AV / Peak		cy [dBuV/m] Factor		Limits [dBuV/m]	Result [dBuV/m]	Margin [dB]	
[MHz]			P01.	Antenna	Amp. Gain + Cable Loss	AV / Peak	AV / Peak	AV / Peak
2483.5	45	56.4	V	25.4	33.1	54.0 74.0	37.3 48.7	16.8 25.4

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

Spectrum									
Ref Level	10.00 dBm	Offset 1	.00 dB 🔵 RE	3W 100 kHz					
Att	25 dB	SWT 2	65 ms VE	3W 100 kHz	Mode A	uto Sweep			1
⊖1Pk Max									
Ţ	M1				D	2[1]			-51.31 dB
0 dBm	1000				D.I.	1[1]		-	2.4130 GHz 6.26 dBm
					171	TTT		-	2.3860 GHz
					6				
-10 dBm									0
-20 dBm									
-30 dBm					-				9 0
-40 dBm									
	D2								
-50 dBm	1								
		D3							
-60 dBm-	70,000	, my							
	pertrantice and	your your	mutury	war her which	um hor during	Month	WWWW.H.A.	muruhun	manyme
penerophills			1.00	••••••••••••••••••••••••••••••••••••••	NUCLEON PROCESSION AND ADDRESS		an broad a second second	•	
-70 dBm—									
-80 dBm									
Start 30.0	MHz	1		691	pts	1	1	Stop	26.5 GHz
						Measuri	ng 🚺		

<u>Unwanted Emission – Low channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

Spectrum									
Ref Level	10.00 dBm	Offset 1	.00 dB 🔵 RE	3W 100 kHz					
Att	25 dB	SWT 2	65 ms 🛛 🛛 🛛	3W 100 kHz	Mode A	uto Sweep			
⊖1Pk Max									
Ť	M1				D	2[1]			-50.46 dB 2.4520 GHz
0 dBm					M	1[1]			6.27 dBm
						1	Ĩ	1 2	2.4240 GHz
-10 dBm——									
-20 dBm—-									
-30 dBm—-									
-40 dBm—-	D2								
-50 dBm——		D3							
-60 dBm		- mar with		14 11					
-60 dBm-	within	w w	whenderthere	well more Mad	www.www.	Allaman	howard out	Mantrashipupa	Hur And Van
-70 dBm									
-80 dBm									
Start 30.0	MHz		1	691	pts	1		Stop	26.5 GHz
)[Measuri	ng 🚺		

<u>Unwanted Emission – Middle channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

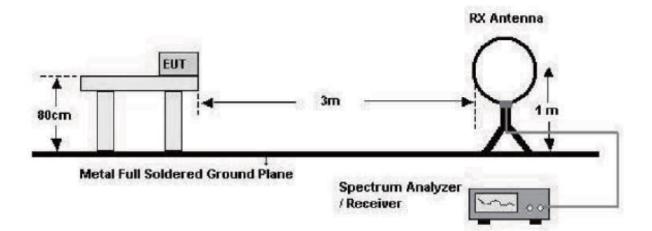
Spectrun	n								
Ref Level	10.00 dBm	Offset 1	.00 dB 🔵 R	BW 100 kHz					
Att	25 dB	SWT 2	265 ms 🛛 🗸	BW 100 kHz	Mode A	uto Sweep			1
⊖1Pk Max									
Ĭ	M1				D	2[1]			-53.74 dB 2.4900 GHz
0 dBm					M	1[1]	ĩ		7.21 dBm 2.4620 GHz
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	D2								
-50 dBm—-	1	D3							
-60 dBm-	when where	work My	-	wwww	1.00 A 14 (24) 16	J. J. J. Mar. N	11.4 July	. Mashailla	1. N. W. S. W. M.
-70 dBm	·V·	- bully	and the second of	WWWWW	ar Charan.	A 1 2 9 9 1 2	in wondryd	for an one	p (n 0 .
-80 dBm									
Start 30.0	MHz			691	pts			Stop	26.5 GHz
[Measuri	ng 🔳		

<u>Unwanted Emission – High channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

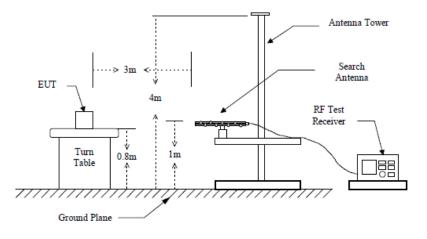
3.3.7 Field Strength of Harmonics

Procedure:

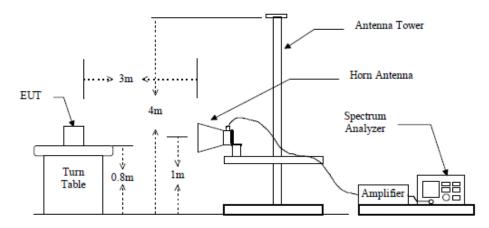
Radiated emissions from the EUT were measured according to the dictates of DA000705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.


- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

The spectrum analyzer is set to:


below 30MHz

Center frequency = the worst channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic. RBW = $100 \text{ kHz} (10 \text{ MHz} \sim 1 \text{ GHz})$ = $1 \text{ MHz} (1 \text{ GHz} \sim 10^{\text{th}}$ harmonic) Span = 100 MHzTrace = max hold


Peak: VBW ≥ RBW Average: VBW=10Hz Detector function = peak Sweep = auto

below 1GHz (30MHz to 1GHz)

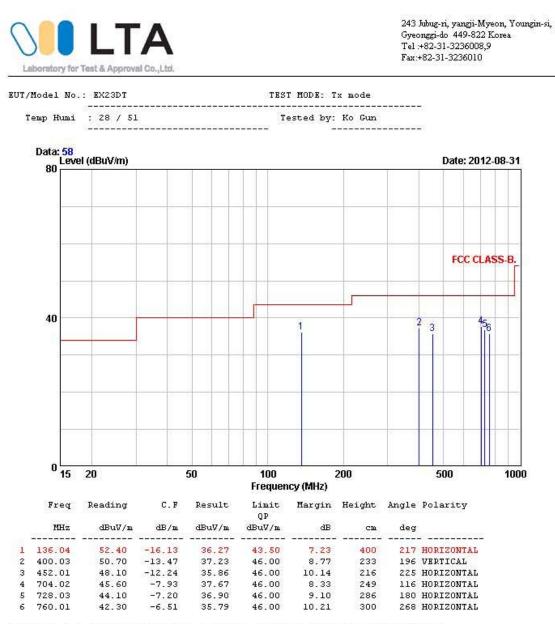
above 1GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit include from 9KHz to 30MHz.

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88~216	150 **
216~960	200 **
Above 960	500

Minimum Standard: FCC Part 15.209(a)


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency	Rea	ding		Correction		Limits		Result		Ма	rgin
riequency	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
4806.5	51.0	55.1	V	31.4 30.8 5		54.0	74.0	51.7	55.8	2.3	18.2
Frequency	Rea	ding		-	Correction	Lin	Limits Result		sult	Margin	
	[dBu	V/m]	Pol.		[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable	AV/Peak		AV/Peak		AV / Peak	
4876.5	50.5	55.5	V	31.4	30.8	54.0	74.0	51.2	56.2	2.9	17.8
										_	
										_	
Frequency	Rea	ding		•	Correction	Limits		Result		Ма	rgin
,	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[d	В]
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable	AV/	Peak	AV/	Peak	AV /	Peak
4954.5	51.2	58.4	V	31.4	30.8	54.0	74.0	51.8	59.1	2.2	14.9
										_	

Measurement Data :

- No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – Tx mode

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.3.8 AC Conducted Emissions

Procedure:

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Not Applicable

(This Product is operated by battery.)

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5~30	60	50				

Minimum Standard: FCC Part 15.207(a)/EN 55022

* Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	MadalNa	C	Manager	T	LACIDA
1	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2012-01-10
2	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	1 year	2012-03-26
3	Signal Generator (1~20GHz)	83711B	US34490456	HP	1 year	2012-03-26
4	Attenuator (3dB)	8491A	37822	HP	2 year	2010-10-08
5	Attenuator (10dB)	8491A	63196	HP	2 year	2010-10-08
6	Attenuator (30dB)	8498A	3318A10929	HP	2 year	2011-01-05
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2012-03-26
8	EMI Test Receiver (~1GHz)	ESCI7	100722	R&S	1 year	2011-10-07
9	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2 year	2010-10-08
10	RF Amplifier (1~18GHz)	8449B	3008A02126	HP	2 year	2012-03-26
11	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
12	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
13	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
14	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2010-10-07
15	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
16	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
19	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2 year	2012-04-11
20	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
21	Power Divider	11636A	6243	HP	2 year	2010-10-08
22	DC Power Supply	6622A	3448A03079	HP	-	-
23	Frequency Counter	5342A	2826A12411	HP	1 year	2012-03-26
24	Power Meter	EPM-441A	GB32481702	HP	1 year	2012-03-26
25	Power Sensor	8481A	US41030291	HP	1 year	2011-10-07
26	Audio Analyzer	8903B	3729A18901	HP	1 year	2011-10-07
27	Modulation Analyzer	8901B	3749A05878	НР	1 year	2011-10-07
28	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2011-10-07
29	Stop Watch	HS-3	601Q09R	CASIO	2 year	2012-03-26
30	LISN	ENV216	100408	R&S	1 year	2011-10-07
31	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2012-06-27
32	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
33	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
34	Loop Antenna	FMZB 1516	151602/94	SCHWARZBECK	2 year	2011-04-05