

FCC 47 CFR PART 15 SUBPART C: 2008 AND ANSI C63.4: 2003

TEST REPORT

For

WAVE

Model Number: PN:911400200-07A-G

Brand Name: FOXCONN

Issued for

Advance Multimedia Internet Technology Inc.

No.28, Lane 31, Sec. 1, Huandong Rd., Sinshih Township, Tainan County 741, Taiwan

Issued by

Compliance Certification Services Inc. Tainan Lab. No. 8, Jiu Cheng Ling, Jiaokeng Village,Sinhua Township, Tainan Hsien 712, Taiwan R.O.C. TEL: 886-6-580-2201 FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Total Page: 80

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 25, 2008	Initial Issue	ALL	Leah Peng

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION 4	ł
2. EUT DESCRIPTION	;
2.1 DESCRIPTION OF EUT & POWER	
3. DESCRIPTION OF TEST MODES)
4. TEST METHODOLOGY	'
5. FACILITIES AND ACCREDITATIONS	,
5.1 FACILITIES	/
5.2 EQUIPMENT	,
5.3 LABORATORY ACCREDITATIONS LISTINGS7	'
5.4 TABLE OF ACCREDITATIONS AND LISTINGS8	,
6. CALIBRATION AND UNCERTAINTY	,
6.1 MEASURING INSTRUMENT CALIBRATION9	,
7. SETUP OF EQUIPMENT UNDER TEST 1	.0
7.1 SETUP CONFIGURATION OF EUT1	0
7.2 SUPPORT EQUIPMENT1	0
7.3 EUT OPERATING CONDITION1	
8. APPLICABLE LIMITS AND TEST RESULTS 1	2
8.1 6DB BANDWIDTH	2
8.2 99% BANDWIDTH1	8
8.3 MAXIMUM PEAK OUTPUT POWER2	4
8.4 MAXIMUM PERMISSIBLE EXPOSURE	1
8.5 POWER SPECTRAL DENSITY	3
8.6 CONDUCTED SPURIOUS EMISSION	9
8.7 RADIATED EMISSIONS	6
8.8 POWERLINE CONDUCTED EMISSIONS	2
9. ANTENNA REQUIREMENT	6
9.1 STANDARD APPLICABLE	6
9.2 ANTENNA CONNECTED CONSTRUCTION	6
APPENDIX SETUP PHOTOS	7

1. TEST REPORT CERTIFICATION

Applicant	: Advance Multimedia Internet Technology Inc.		
Address	No.28, Lane 31, Sec. 1, Huandong Rd., Sinshih Township, Tainan County 741, Taiwan		
Manufacture	: Advance Multimedia Internet Technology Inc.		
Address	No.28, Lane 31, Sec. 1, Huandong Rd., Sinshih Township, Tainan County 741, Taiwan		
Equipment Under Test	: WAVE		
Model Number	: PN:911400200-07A-G		
Brand Name	: FOXCONN		
Date of Test	: September 8, 2008 ~ September 17, 2008		

APPLICABLE STANDARD			
STANDARD TEST RESULT			
FCC Part 15 Subpart C : 2008 AND ANSI C63.4 : 2003	No non-compliance noted		

Approved by:

54

Jeter Wu Section Manager Compliance Certification Services Inc.

Reviewed by:

and

Eric Yang Senior Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	WAVE
Model Number	PN:911400200-07A-G
Brand Name	FOXCONN
Frequency Range	IEEE 802.11b/g (DTS Band):2412MHz~2462MHz
Transmit Power	IEEE 802.11b Mode : 18.63dBm (DTS Band) (72.946 mW) IEEE 802.11g Mode : 19.95dBm (DTS Band) (98.855 mW)
Channel Spacing	IEEE 802.11b/g : 5MHz
Channel Number	IEEE 802.11b/g :11 Channels
Transmit Data Rate	IEEE 802.11b :11, 5.5, 2, 1Mbps
i ransmit Data Kate	IEEE 802.11g : 54, 48 ,36, 24, 18, 12, 6Mbps
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	By software / firmware
Antenna Type	One antenna Model: C381-540136-A Connector: SMA Straight Plug Reverse Antenna Gain: 5.0 dBi
Power Source	Powered from host device or Notebook.
Temperature Range	$0 \sim +55^{\circ}C$

REMARK : 1. The sample selected for test was engineering sample that approximated to product on product and was provided by manufacturer.

2. This submittal(s) (test report) is intended for FCC ID: <u>**PBLWAVE**</u> filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

The EUT is a LAN card.

The RF chipset is manufactured by Airoha Technology Corp.

The antenna peak gain 5.0dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b mode: 11Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

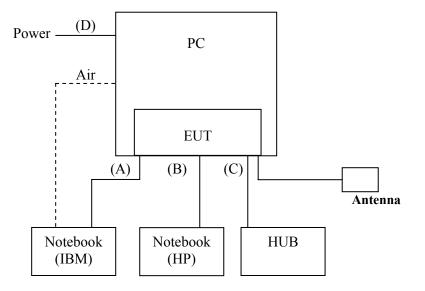
5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037 and 455173).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FFC 455173 TW-1037
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI C-2882 R-2635
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 386 ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 300 440-2/-1 ETSI EN 300 440-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	Testing Laboratory 1109
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-I

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.


6. CALIBRATION AND UNCERTAINTY 6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

7.2 SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	FCC ID	Signal Cable
1	PC	HP	D330uT	DoC	Power cable, unshd, 1.5m
2	HUB	LEMEL	LM-S5M4C	DoC	Power cable, unshd, 1.6m
3	Note Book	HP	CNC 6000	CNTPP2090	Power cable, unshd, 1.6m
4	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m

No.	Signal cable description	
А	Lan cable	Unshielded, 6m, 1pcs.
В	Lan cable	Unshielded, 6m, 1pcs.
С	Lancable	Unshielded, 2m, 1pcs.
D	Power cable	Unshielded, 1.8m, 1pcs.
E	Antenna cable	Shielded, 1m, 1pcs.

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. Through gateway 192.168.123.254/wlape.htm into internal program.
- 3. Set b/g mode. Com TX/RX, channel, bandwidth, data rate, transmit power
 - (1) TX Mode:
 - ⇒ Tx Mode:CCK 、 OFDM (Bandwidth: 20)

⇒ **Tx Data Rate: 11Mbps long** (IEEE 802.11b mode TX)

6Mbps (IEEE 802.11g mode TX)

Power control mode

 Target Power: IEEE 802.11b Channel Low (2412MHz) = 100%
 IEEE 802.11b Channel Middle (2437MHz) = 100%

 IEEE 802.11b Channel High (2462MHz) = 100%
 IEEE 802.11g Channel Low (2412MHz) = 100%

 IEEE 802.11g Channel Middle (2437MHz) = 100%
 IEEE 802.11g Channel Middle (2437MHz) = 100%

 IEEE 802.11g Channel Middle (2437MHz) = 100%
 IEEE 802.11g Channel Middle (2437MHz) = 100%

(2) RX Mode:

Start RX

- 5. All of the function are under run.
- 6. Start test.

Normal Link Setup

- 1. Setup whole system for test as shown on setup diagram.
- 2. Both notebooks transmit data through EUT.
- 3. Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

LIMIT

§ 15.207(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEM	829054/017	APR. 14, 2009

TEST SETUP

FUT	SPECTRUM
	ANALYZER

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

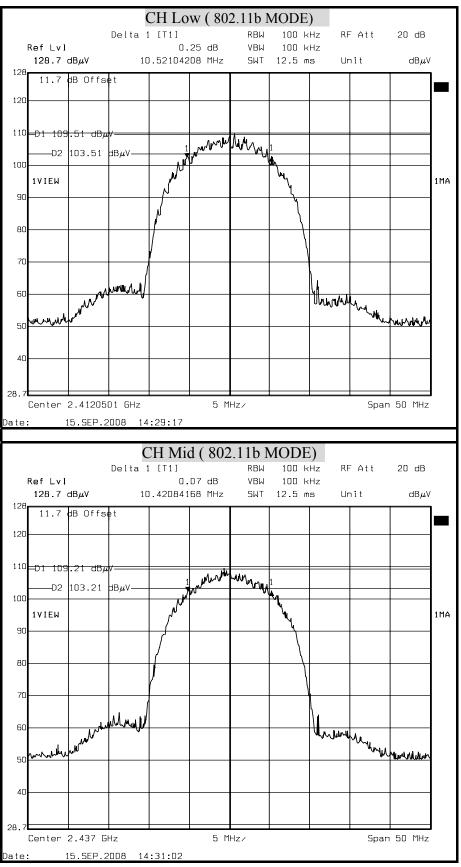
IEEE 802.11b mode (One TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10521	500	PASS
Middle	2437	10420	500	PASS
High	2462	10220	500	PASS

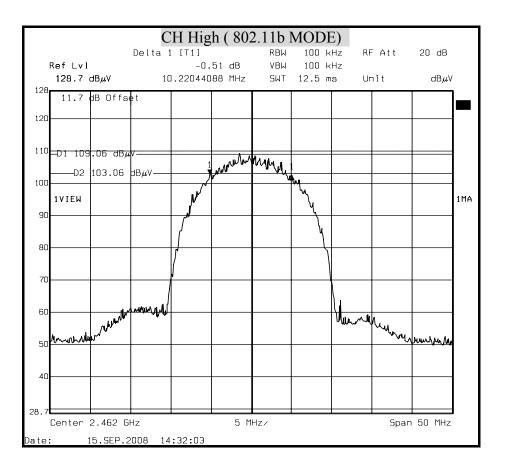
NOTE : 1. At finial test to get the worst-case emission at11Mbps.

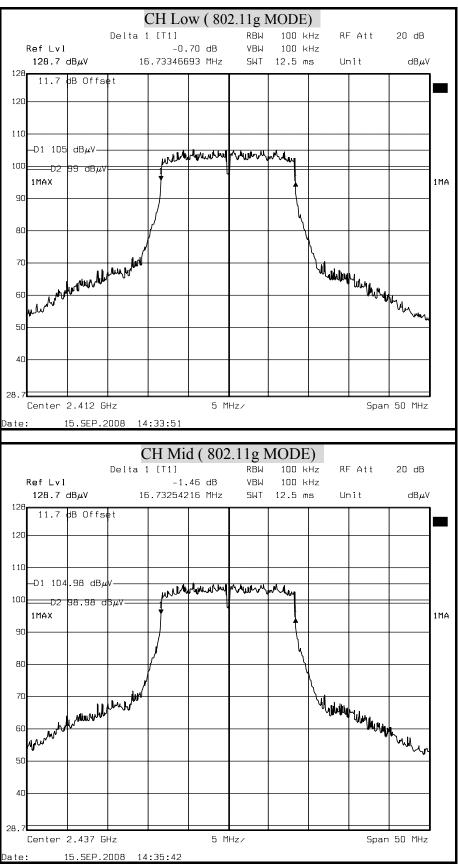
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

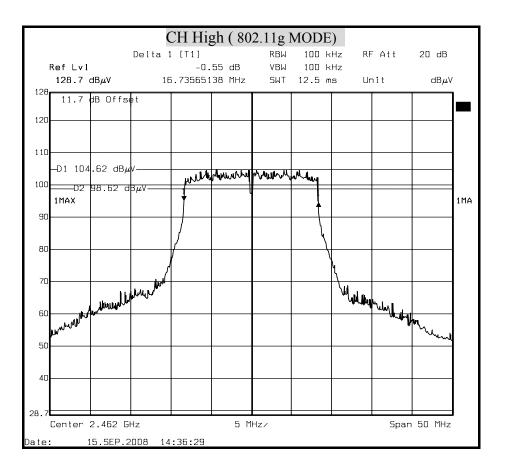
Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16733	500	PASS
Middle	2437	16732	500	PASS
High	2462	16735	500	PASS


IEEE 802.11g mode (One TX)

NOTE : 1. At finial test to get the worst-case emission at 6Mbps.


2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


6dB BANDWIDTH (802.11b MODE)



6dB BANDWIDTH (802.11g MODE)

8.2 99% BANDWIDTH

LIMIT

None for reporting purposes only.

TEST EQUIPMENTS

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSEM	829054/017	APR. 14, 2009	

TEST SETUP

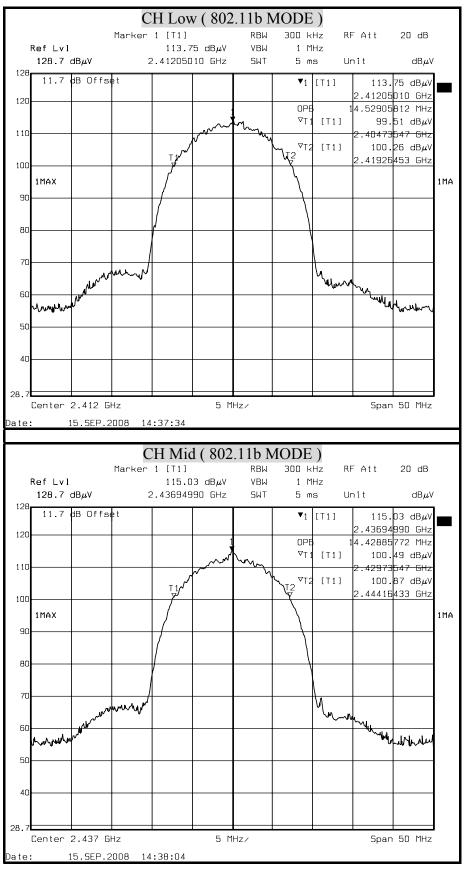
TEST PROCEDURE

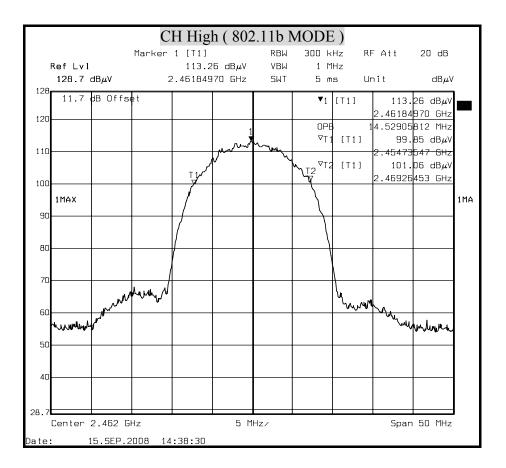
- The spectrum shall be set as follows : Span : The minimum span to fully display the emission and approximately 20dB below peak level. RBW : The set to 1% to 3% of the approximate emission width.
- 2. Compute the combined power of all signal responses contained in the trace by covering all the data points.
- 3. For 99% occupied BW, place the markers at the frequency at which 0.5% of the power lies to the right of the right marker and 0.5% of the power lies to the left of the left marker.
- 4. The 99% BW is the bandwidth between the right and left markers.

TEST RESULTS

No non-compliance noted

IEEE 802.11b mode


Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	14.52
Middle	2437	14.42
High	2462	14.52


IEEE 802.11g mode

Channel	Channel Frequency (MHz)	99% Occupied power bandwidth (MHz)
Low	2412	16.73
Middle	2437	16.73
High	2462	16.73

99% BANDWIDTH (802.11b MODE)

CH Low (802.11g MODE) 300 kHz Marker 1 [T1] RBW RF Att 20 dB Ref Lvl 110.98 dBµV VBW 1 MHz 128.7 dBµV 2.41255110 GHz SWT 5 ms Unit dBµV 128 11.7 dB Offset ▼1 110**.**98 dBμV [T1] 2.41255110 GHz 120 16.73346693 MHz OPE ∇Ţ [T1] 102.07 dBµV 110 40363327 GHz www. А. (**2**1: 103.47 dBµV тĥ [T1] 2.42036673 GHz 100 1MAX 1MA 90 80 hum mound 70 60 MM 50 40 28.7 5 MHz/ Span 50 MHz Center 2.412 GHz 15.SEP.2008 14:39:06 Date: CH Mid (802.11g MODE) 300 kHz RF Att 20 dB Marker 1 [T1] RBW Ref Lvl 111.00 dBµV ٧ВЫ 1 MHz 128.7 dBµV 2.43755110 GHz SWT 5 ms Unit dBµV 128 11.7 dB Offset ▼1 111.00 dBµV [T1] 2.43755110 GHz 120 16.73346693 MHz ΟP VΤ 102.24 dBµV [T1] 110 handren 42863<mark>327 GHz</mark> ¶2⊺: [T1] 103.59 dBµV Ţſ 2.44536673 GHz 100 1MA 1MAX 90 80 in Muran fruit - Mart Marter Martin M 70 60**4**A 50 40 28.7 Span 50 MHz Center 2,437 GHz 5 MHz/ 15.SEP.2008 14:39:51 ate:

99% BANDWIDTH (802.11g MODE)

CH High (802.11g MODE)					
	Marker 1 [T1]	RBW		RF Att	20 dB
Ref Lvl	110.5	7 dBµV VB₩			
128.7 dBµV	2.462551	10 GHz SWT	5 ms	Unit	dBµV
128 11.7 dB Offe	e t		▼1 [T1]	110.5	7 dBμV
120				2.462551	
120			ОРВ	16.733466	93 MHz
		1	VT1 [T1]		5 dBµV
110	June 1	month	WM [212 [T1]	2.453633	
				2.470366	5 dBμV 73 GHz
100					
1MAX					1MA
90	/		$+$ \cdot		
			1 1		
80			$+$ \wedge		
20 70 60 the second			l lu		
				www.	
60 WWW					MK MALL
					v vivin
50					
40			ļ		
20.7					
28.7 Center 2.462 GHz 5 MHz/ Span 50 MHz					
Date: 15.SEP.:	2008 14:40:23			·	

8.3 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSEM	829054/017	APR. 14, 2009	

TEST SETUP

TEST PROCEDURE

Connect the EUT to spectrum analyzer, set the center frequency of the spectrum analyzer to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Measurement of Digital Transmission Systems Operating under Section 15.247

Power Output Option 2

Method #1

Peak power is measured using the spectrum analyzer's internal channel power integration function. Power is integrated over a bandwidth greater than or equal to the 99% bandwidth.

TEST RESULTS

No non-compliance noted

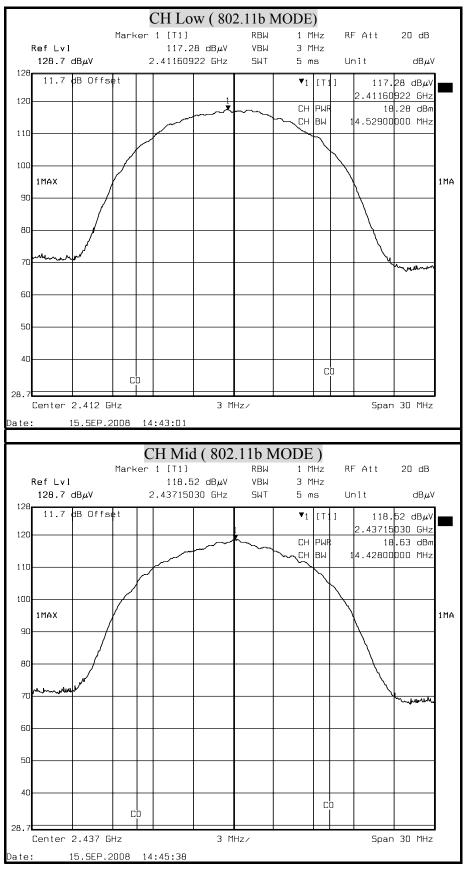
Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Total (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	18.28	18.28	30	PASS
Middle	2437	18.63	18.63	30	PASS
High	2462	18.05	18.05	30	PASS

IEEE 802.11b mode (One TX)

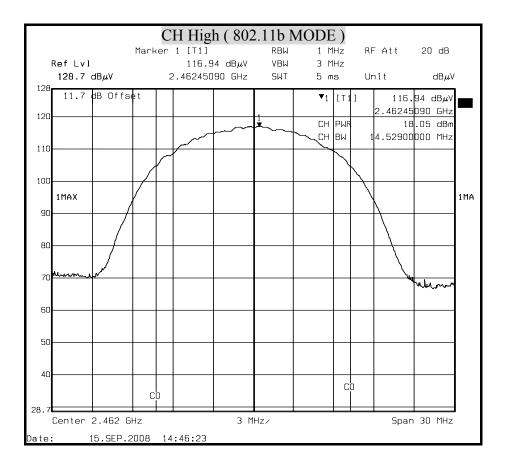
NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

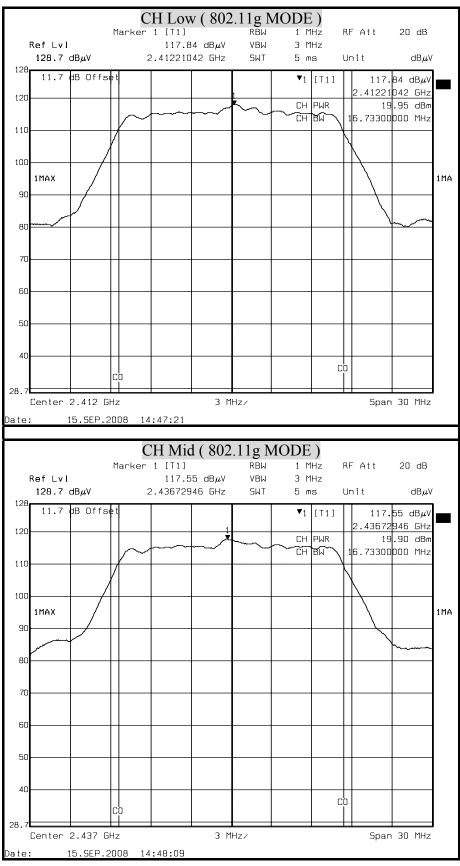
IEEE 802.11g mode (One TX)

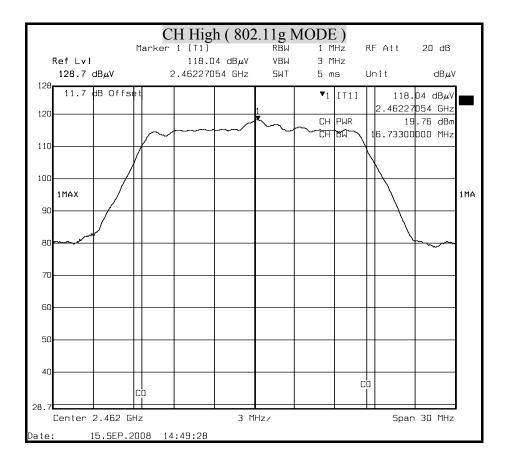

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Total (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	19.95	19.95	30	PASS
Middle	2437	19.90	19.90	30	PASS
High	2462	19.76	19.76	30	PASS

NOTE : 1.At finial test to get the worst-case emission at 6Mbps.


2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

MAXIMUM PEAK OUTPUT POWER (802.11b MODE)





MAXIMUM PEAK OUTPUT POWER (802.11g MODE)

8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	8		Average Time			
	(A) Limits for Occupational / Control Exposures						
300-1,500			F/300	6			
1,500-100,000			5	6			
	(B) Limits for Genera	al Population / Unco	ontrol Exposures				
300-1,500			F/1500	6			
1,500-100,000			1	30			

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = *Power density in milliwatts / square centimeter*

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm²

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted. $S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$

G=5.0dBi=3.162278 dB

IEEE 80211b = 0.0796 * 72.94575 * 3.162278 / 400 = 0.045904

IEEE 80211g = 0.0796 * 98.85531 * 3.162278 / 400 = 0.062209

Mode	Minimum separation distance (cm)	Output Power (dBm)	Output Power (mw)	Antenna Gain (dBi)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	20.0	18.63	72.94575	5.0	1	0.045904
IEEE 802.11g	20.0	19.95	98.85531	5.0	1	0.062209

REMARK: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.5 POWER SPECTRAL DENSITY

LIMIT

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSEM	829054/017	APR. 14, 2009	

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW \ge RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

No non-compliance noted.

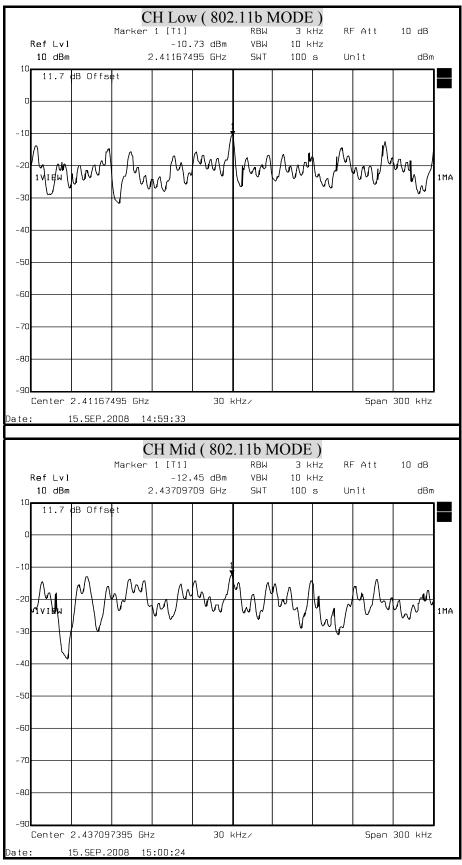
IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	PPSD Total (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-10.73	-10.73	8	PASS
Middle	2437	-12.45	-12.45	8	PASS
High	2462	-11.57	-11.57	8	PASS

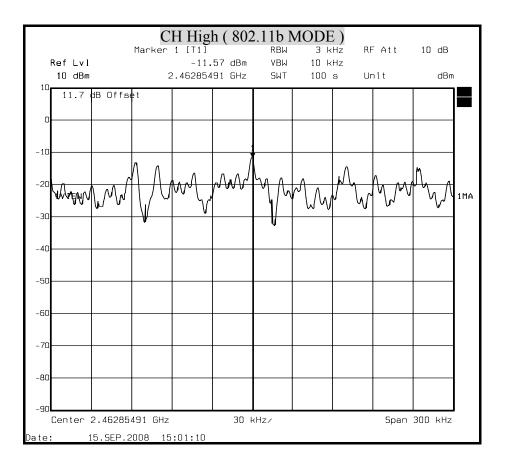
NOTE : 1. At finial test to get the worst-case emission at 11Mbps.

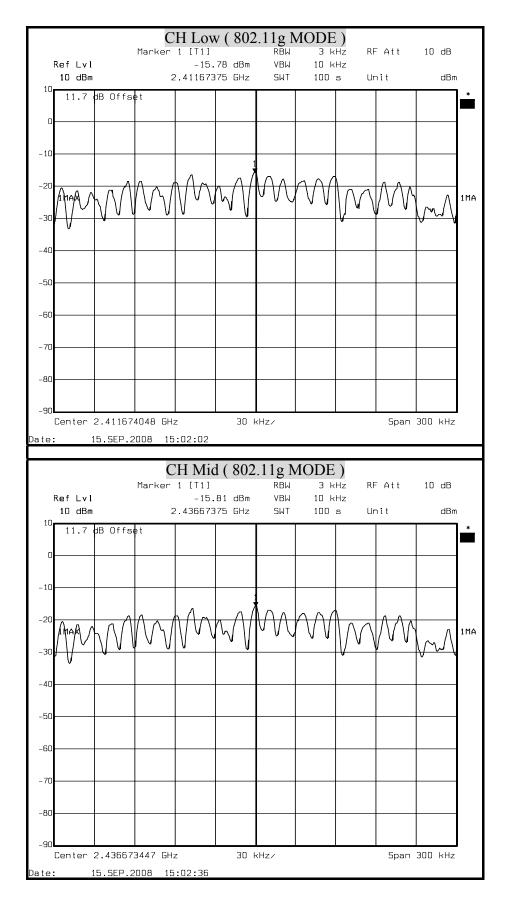
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

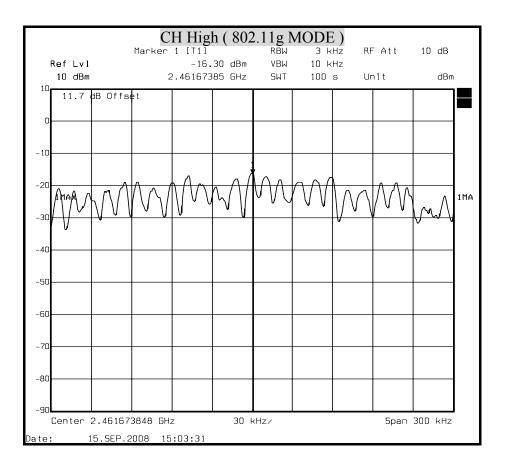
IEEE 802.11g mode


Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	PPSD Total (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412		-15.78	8	PASS
Middle	2437	-15.81	-15.81	8	PASS
High	2462	-16.30	-16.30	8	PASS

NOTE : 1. At finial test to get the worst-case emission at 6Mbps.


2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.





POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

8.6 CONDUCTED SPURIOUS EMISSION

LIMITS


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

TEST DATA

IEEE 802.11b mode

Low

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2412.3226	11.7	97.36	109.06	N/A	N/A	
772.6452	11.7	41.62	53.32	89.06	-35.74	PASS
4804.1483	11.7	45.52	57.22	89.06	-31.84	PASS
6872.9458	11.7	45.64	57.34	89.06	-31.72	PASS

Mid

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2437.5426	11.7	96.35	108.05	N/A	N/A	
984.8296	11.7	40.86	52.56	88.05	-35.49	PASS
4857.1943	11.7	47.72	59.42	88.05	-28.63	PASS
6872.9458	11.7	44.69	56.39	88.05	-31.66	PASS

High

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2462.5426	11.7	97.03	108.73	N/A	N/A	
1037.8757	11.7	40.13	51.83	88.73	-36.9	PASS
4910.2404	11.7	49.61	61.31	88.73	-27.42	PASS
6872.9458	11.7	43.93	55.63	88.73	-33.1	PASS

IEEE 802.11g mode

Low

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2412.3546	11.7	92.34	104.04	N/A	N/A	
1037.8757	11.7	40.67	52.37	84.04	-31.67	PASS
4804.1483	11.7	44.39	56.09	84.04	-27.95	PASS
6872.9458	11.7	45.79	57.49	84.04	-26.55	PASS

Mid

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2437.3525	11.7	93.71	105.41	N/A	N/A	
1037.8757	11.7	40.12	51.82	85.41	-33.59	PASS
4857.1943	11.7	45.35	57.05	85.41	-28.36	PASS
6607.7154	11.7	44.5	56.2	85.41	-29.21	PASS

High

Frequency	Offset	Reading	Level	Limit	Margin	
(MHz)	(dB)	(dBµV)	(dBµV)	(dBµV)	(dB)	Pass/Fail
2462.5835	11.7	94.79	106.49	N/A	N/A	
825.6913	11.7	40.54	52.24	86.49	-34.25	PASS
4910.2404	11.7	47.42	59.12	86.49	-27.37	PASS
6607.7154	11.7	44.49	56.19	86.49	-30.3	PASS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

	CHI	ow (3	0MHz	~26.50	GHz) (802.1	lb N	IOD	DE)		
	CII L	Marker		20.50	RBW	100 k		RF 6		20 dB	
Ref Lvl				6 dBµV	VBW	100 k					
128.7 dE	BμV	2	2.412322		SWT		5	Unit	ł	dBµ∖	/
8				04 0112		0.0					
11.7 dE	B Offse	et				▼ 1	[T1]		109.	06 dBµV	
								2.	41232	264 GHz	
0						⊽2	[T1]			.32 dBµV	1
								772		3058 MHz	L
0 1						¥2	1.7.4.1	112.			
						- '3	[71]			<u>22 dB</u> µ∀	
1 11						_		4.		1830 GHz	
0						⊽4	[T1]	_		34 dBµV	
I II								6.	87294	1589 GHz	I
1MAX											1M
0-01-89.01	6 dBuV										1
	/										L
1 1											L
0								-			ł
											1
											1
0											1
1 II											1
0	3	4									1
2	Ϋ́	J.M									1
1×	المام	when here	unon	m	run	percelo	mone	m	ww	from	1
	And the	- ••									1
											1
											1
0											1
											1
											1
7						1				1	1
Start 30	MHz			2.647	GHz/			5	itop 2	26.5 GHz	
. 10											
		008 15		~26.50	GHz) (802.11	lb M	[OD	E)		
			0MHz 1 [T1]		RBW	100 k	Hz			20 dB	
Ref Lvl	CH N	Aid (30 Marker	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF 6	àt t		
Ref Lvl 128.7 dE	CH N	Aid (30 Marker	0MHz 1 [T1]	5 dBµV	RBW	100 k	Hz Hz	RF 6	àt t		/
Ref Lvl 128.7 df	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8	Hz Hz s	RF 6	att t	dBµV	, 1
Ref Lvl 128.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8	Hz Hz	RF 6 Unit	htt t 108.	dBμV	/]
Ref Lvl 128.7 df	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1	Hz Hz s [T1]	RF 6 Unit	108. 43754	dBμV .05 dBμV 269 GHz	-
Ref Lvl 128.7 dE 11.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8	Hz Hz s	RF A	108. 43754 52.	dBμV 05 dBμV 269 GHz 56 dBμV	
Ref Lvl 128.7 dE 11.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1	Hz Hz s [T1]	RF A	108. 43754 52.	dBμV .05 dBμV 269 GHz	
Ref Lvl 128.7 dE 11.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1	Hz Hz s [T1]	RF A	108. 43754 52. 82965	dBμV 05 dBμV 269 GHz 56 dBμV	
Ref Lvl 128.7 df 11.7 df	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 108. 43754 52. 82965 59.	dBμV 05 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV	
Ref Lvl 128.7 dE 11.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719	dBμV 05 dBμV 2 <u>69 GHz</u> 56 dBμV 932 MHz 42 dBμV 439 GHz	
Ref Lvl 128.7 df 11.7 df	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE	СН № ^{ВµV}	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 05 dBμV 2 <u>69 GHz</u> 56 dBμV 932 MHz 42 dBμV 439 GHz	
Ref Lvl 128.7 dB 11.7 dB 0 11.7 dE	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dB 11.7 dB 0 11.7 dE	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE 0 11.7 dE 0 1 1 1 1 1 1 1 1 1 8 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dB 11.7 dB 0 11.7 dE	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE 0 11.7 dE 0 1 1 1 1 1 1 1 1 1 8 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE 0 11.7 dE 0 1 1 1 1 1 1 1 1 1 8 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CH Ν Βμν Β Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 11 10 1 10 1 10 1 10 1 10 1 10 1 10	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 11 10 1 10 1 10 1 10 1 10 1 10 1 10	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lv1 128.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 0 11.7	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lvl 128.7 df 11.7 df 11.7 df 11.7 df 11.7 df 0 11 10 1 10 1 10 1 10 1 10 1 10 1 10	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lv1 128.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 0 11.7	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lv1 128.7 dE 11.7 dE	CH N BµV B Offse 5 dBµV	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF 4 Unit 2. 984.	108. 43754 52. 82965 59. 85719 56.	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	
Ref Lv1 128.7 dE 11.7 dE 11.7 dE 11.7 dE 11.7 dE 0 11.7	CH N B Offse	Aid (3 Marker 2	0MHz [,] 1 [T1] 108.0	5 dBµV		100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF f 1	108.4 43754 52.82965 59.8 85715 56.8 87294	dBμV 269 dBμV 269 GHz 56 dBμV 932 MHz 42 dBμV 439 GHz 39 dBμV	1 M

(IEEE 802.11b MODE)

CH F	ligh (30M	Hz~26.50	GHz) (802.1	1b M	ODE)		
	Marker 1 [T		RBW		Hz F	RF Att	20 dB	
Ref Lvl		8.73 dBµV						
,	2.462	54269 GHz	SWT	6.8	s l	Jnit	dBµV	
128 11.7 dB Offs	e t			▼1	[T1]	108.	73 dBµV	
100				-			1269 GHz	
120				⊽2	[T1]		83 dBµV	
						1.03787	575 GHz	
110 1				3	[71]	61.	. 31 dBµ∀	
						4.91024	1048 GHz	
100				⊽4	[T1]	55.	63 dBµV	
						6.87294	1589 GHz	
1MAX								1MA
⁹⁰ —D1 88 73 dBμV		_						
80								
20								
70								
3								
60 Y								
2								
50 Nr. May mark	how have	mydmentice	MM	unnuh	un	mun	marin	
40								
28.7								
Start 30 MHz		2.647	GHz/			Stop 2	26.5 GHz	
Date: 15.SEP.2	008 15.42.0							

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

		_									
		CH L			~26.50		802.1	lg M	IODE)		
	Ref Lvl		Marker		I4 dBμV	RBW VBW	100 k 100 k		RF Att	20 dB	
	128.7		2			SWT			Unit	dBµV	
128		dB Offs									1
	11.7		εı				•1	[T1]		04 dBµV 6463 GHz	
120							⊽2	[T1]		.37 dBµV	
									1.03787	575 GHz	
110	1						7	[71]		.09 dBµ∀	
	Ιİ							[T1]		1830 GHz	
100							*4	1111		49 dBµV 1589 GHz	
	1MAX								010.20	000 0.12	1MA
90									_		
	-D1 84.	04 dBµV							_		
80									_		
70											
60		3	4						_		
	2	Ī	mert		.	Maria		م ال ال	manne	munny	
50	M. W. W.	hund	pri un	www.www			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	www.ww	4.000	
40									_		
28.7											
	Start 3	0 MHz			2.647	GHz/			Stop 2	26.5 GHz	
Date	: :	15.SEP.2	2008 15	:43:47							
		СНМ	Mid (3)		~26 50	GHz) (802 11	σΜ	(ODE.)		
		CH N	Mid (3)	0MHz [,]	~26.50	GHz) (802.11		IODE)	20 dB	
	Ref Lvl		Marker	0MHz 1 [T1] 105.4	1 dBµV		100 k 100 k	Hz Hz	RF Att	20 dB	
	128.7		Marker	0MHz 1 [T1]	1 dBµV	RBW	100 k 100 k	Hz Hz	I <mark>ODE)</mark> RF Att Unit	20 dB dBµV	,
128	128.7		Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8	Hz Hz	RF Att Unit		
128	128.7 11.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1	Hz Hz s	RF Att Unit 2.43735	dBμV 41 dBμV 254 GHz	
	128.7 11.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8	Hz Hz s	RF Att Unit 2.43735 51.	dBμV 41 dBμV 254 GHz 82 dBμV	
128 120	128.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787	dBμV 41 dBμV 254 GHz 82 dBμV 575 GHz	
128	128.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2	Hz Hz s [T1]	RF Att Unit 2.43735 51. 1.03787 57.	dBμV 41 dBμV 254 <u>GHz</u> 82 dBμV 575 GHz 05 dBμV	
128 120 110	128.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715	dBμV 41 dBμV 254 GHz 82 dBμV 575 GHz	
128 120	128.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz	
128 120 110	128.7 11.7	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	1MA
128 120 110	128.7 11.7 1 1MAX	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90	128.7 11.7 1 1MAX -D1 85.	dBμV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90 80	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90 80 70	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90 80	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	
128 120 110 90 80 70 60	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 439 GHz 20 dBμV	
128 120 110 100 90 80 70	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	
128 120 110 100 90 80 70 60 50	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	
128 120 110 90 80 70 60	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	
128 120 110 100 90 80 70 60 50	128.7 11.7 1 1MAX -D1 85.	dBµV dB Offs≀	Marker 2	0MHz 1 [T1] 105.4	1 dBµV	RBW VBW	100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 2.43735 51. 1.03787 57. 4.85715 56.	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	
128 120 110 100 90 80 70 60 50	128.7 11.7 1 1 1 1 1 1 1 1 1 1 1 1 1	dBµV dB Offsi 41 dBµV	Marker 2	0MHz 1 [T1] 105.4	1 dBµV 54 GHz		100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 105. 2.43735 51. 1.03787 6.60771 6.60771 000 000 000 000 000 000 000	dBμV 254 GHz 82 dBμV 575 GHz 05 dBμV 20 dBμV 543 GHz 439 GHz 20 dBμV	1MA
128 120 110 90 80 70 60 50 40	128.7 11.7 1 1 1 1 1 1 1 1 1 1 1 1 1	dBµV dB Offsi 41 dBµV	Marker 2 et	0MHz [,] 1 [T1] 105.4 2.437352 	1 dBµV		100 k 100 k 6.8 ▼1 ▽2 ▽3	Hz Hz s [T1] [T1]	RF Att Unit 105. 2.43735 51. 1.03787 6.60771 6.60771 000 000 000 000 000 000 000	dBμV 254 GHz 82 dBμV 575 GHz 20 dBμV 20 dBμV 543 GHz	1MA

(802.11g MODE)

CH H	ligh (3	0MHz	~26.50	GHz) (802.1	1g M	ODE)		
	Marker	1 [T1]		RBW	100 k	Hz	RF Att	20 dB	
Ref Lvl			9 dBµV						
	2	2.462583	54 GHz	SWT	6.8	5	Unit	dBµV	/
11.7 dB Offs	et				▼1	[T1]	105	49 dBµV	۱_
					1			354 GHz	
20					⊽2	[T1]		24 dBµV	
					-		325.69138		
0					3	[71]		12 dBµV	
Ť					_			1048 GHz	
					∇_4	[T1]		19 dBµV	
0							-	543 GHz	
1MAX									1
0									Ł
—D1 86 49 dBμV									Ł
									L
30									
									L
20									Ł
									L
3									L
io Y	4 X.								1
2	Mark		num	in	A MARA LA	1	monum	human	
o man was a mine		man	v () w V	Mrd 11	•••				Ł
ľ l									L
10									L
i U									1
									L
7									
Center 13.265			2.647	C11			c	6.47 GHz	

8.7 RADIATED EMISSIONS

8.7.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

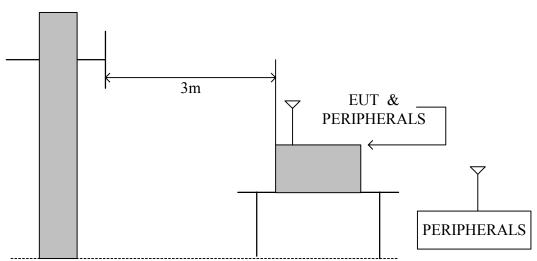
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

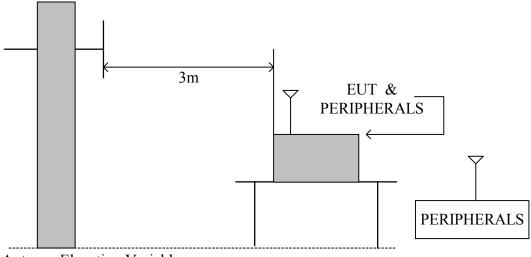
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

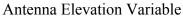
§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENTS


The following test equipments are utilized in making the measurements contained in this report.

	Ol	pen Area Test Site # 6		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEM	829054/017	APR. 14, 2009
Temp./Humidity Chamber	K.SON	THS-M1	242	JUN. 17, 2009
EMI Test Receiver	R&S	ESVS10	833206/012	APR. 15, 2009
Pre-Amplifier	HP	8447F	2944A03817	NOV. 01, 2009
Amplifier	MITEQ	AFSYY-00108650-42-10P-44	1205908	OCT. 24, 2009
Bilog Antenna	Sunol	JB1	A013105-1	SEP. 16, 2009
Horn Antenna	Com-Power	AH-118	71032	DEC. 20, 2009
Turn Table	YO Chen	001	N/A	N.C.R
Antenna Tower	AR	TP100A	N/A	N.C.R
Controller	СТ	SC101	N/A	N.C.R
RF Swieth	E-INSTRUMENT TELH LTD	ERS-180-1-2	EC1204141	N.C.R
Power Meter	Anritsu	ML2487A	6K00003888	APR. 15, 2009
Power Sensor	Anritsu	MA2491A	33265	APR. 15, 2009
AC Power Source	T-POWER	TFC-3020	N930010	N.C.R
DC Power Source	LOKO	DSP-5050	L1507009282	N.C.R


TEST SETUP


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)

TEST RESULTS

No non-compliance noted.

8.7.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	WAVE	Test Date	2008/9/16
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	Normal operating (worst case)	TEMP& Humidity	30.2°C, 61%

Horizontal

Frequency	cy Meter Reading		ency Meter Reading Antenn Facto		A Cable Loss Emission Level		Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dB µ V/M)	(dB)	PK/QP		
34.25	12.50	18.69	0.79	31.97	40.00	-8.03	QP		
148.15	18.20	12.85	1.51	32.56	43.50	-10.94	QP		
324.52	15.80	14.54	2.77	33.11	46.00	-12.89	QP		
400.00	12.50	16.20	3.71	32.41	46.00	-13.59	QP		
500.00	14.60	18.00	3.05	35.65	46.00	-10.35	QP		
625.00	13.10	19.63	3.61	36.34	46.00	-9.66	QP		
750.00	10.80	21.20	3.96	35.96	46.00	-10.05	QP		
N/A									

Vertical

Frequency	Meter Reading	Antenna Factor	Cable Loss	oss Emission Level Limits		Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dB µ V/M)	(dB)	PK/QP
43.68	18.70	11.72	0.90	31.32	40.00	-8.68	QP
62.50	26.50	7.85	1.00	35.35	40.00	-4.65	QP
125.00	22.40	14.30	1.40	38.10	43.50	-5.40	QP
250.00	16.30	12.20	2.02	30.52	46.00	-15.48	QP
375.00	14.80	15.65	3.40	33.85	46.00	-12.15	QP
500.00	12.30	18.00	3.05	33.35	46.00	-12.65	QP
625.00	9.80	19.63	3.61	33.04	46.00	-12.96	QP
N/A							

REMARK: Emission level $(dB\mu V/m)$ =Antenna Factor (dB/m) + Cable loss (dB) + Meter Reading $(dB\mu V)$.

8.7.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / I	EEE 802.11	b mode /	CH Low	Μ	easurem	ent Distance	e at 3m 🛛 H	Iorizontal polar	·ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2412.18	103.49	30.21	2.34	41.85	0.00	94.18	Fundamental Frequency		Р
	2412.18	96.34	30.21	2.34	41.85	0.00	87.03			Α
*	4824.03	49.83	33.58	3.70	43.88	0.69	43.93	74.00	-30.07	Р
*	4824.03	39.11	33.58	3.70	43.88	0.69	33.21	54.00	-20.79	А
	9648.13	47.22	39.86	5.74	39.03	0.61	54.41	74.18	-19.78	Р
	9648.13	38.62	39.86	5.74	39.03	0.61	45.81	67.03	-21.23	А
	N/A									Р
	N/A									Α

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	35.9°C, 31%

Vertical

	TX / I	EEE 802.11	b mode /	CH Low	Measurement Distance at 3m Vertical polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2412.27	115.17	30.21	2.34	41.85	0.00	105.86	Fundamental Frequency		Р
	2412.27	108.76	30.21	2.34	41.85	0.00	99.45			А
*	4823.97	53.86	33.58	3.70	43.88	0.69	47.96	74.00	-26.04	Р
*	4823.97	41.78	33.58	3.70	43.88	0.69	35.88	54.00	-18.12	А
	9648.06	47.67	39.86	5.74	39.03	0.61	54.86	85.86	-31.01	Р
	9648.06	39.39	39.86	5.74	39.03	0.61	46.58	79.45	-32.88	А
	N/A									Р
	N/A									А

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / IE	EE 802.111	o mode / C	H Middle	Μ	easurem	ent Distance	e at 3m 🛛 H	Iorizontal polar	·ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2437.96	103.57	30.17	2.34	41.85	0.00	94.23	Fundamental Frequency		Р
	2437.96	96.35	30.17	2.34	41.85	0.00	87.01			Α
*	4873.62	50.01	33.70	3.73	43.91	0.71	44.24	74.00	-29.76	Р
*	4873.62	42.61	33.70	3.73	43.91	0.71	36.84	54.00	-17.16	А
	9748.03	47.32	39.90	5.75	38.90	0.55	54.62	74.23	-19.61	Р
	9748.03	40.22	39.90	5.75	38.90	0.55	47.52	67.01	-19.49	А
	N/A									Р
	N/A									Α

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	35.9°C, 31%

Vertical

	TX / IEI	EE 802.11b	mode / Cl	H Middle	Ν	leasuren	nent Distan	ce at 3m	vertical polari	ty
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2436.17	115.80	30.18	2.34	41.85	0.00	106.46	Fundamor	Р	
	2436.17	109.26	30.18	2.34	41.85	0.00	99.92	Fundamental Frequency		Α
*	4873.75	56.03	33.70	3.73	43.91	0.71	50.26	74.00	-23.74	Р
*	4873.75	44.60	33.70	3.73	43.91	0.71	38.83	54.00	-15.17	А
	9747.89	48.36	39.90	5.75	38.90	0.55	55.66	86.46	-30.80	Р
	9747.89	41.17	39.90	5.75	38.90	0.55	48.47	79.92	-31.45	А
	N/A									Р
	N/A									Α

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / IE	EE 802.111	o mode / C	CH High	М	easurem	ent Distanc	e at 3m 🛛 I	Horizontal pola	rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2460.83	103.74	30.15	2.34	41.86	0.00	94.37	Fundamental Frequency		Р
	2460.83	96.85	30.15	2.34	41.86	0.00	87.48			Α
*	4923.68	49.86	33.82	3.76	43.94	0.73	44.23	74.00	-29.77	Р
*	4923.68	38.72	33.82	3.76	43.94	0.73	33.09	54.00	-20.91	А
	9847.72	48.62	39.94	5.76	38.78	0.49	56.04	74.37	-18.33	Р
	9847.72	39.85	39.94	5.76	38.78	0.49	47.27	67.48	-20.21	А
	N/A									Р
	N/A									Α

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	35.9°C, 31%

Vertical

	TX / IE	EE 802.111	o mode / C	TH High	Μ	leasurem	ent Distanc	e at 3m	Vertical polar	ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2461.72	114.80	30.15	2.34	41.86	0.00	105.43	Fundamental Frequency		Р
	2461.72	108.00	30.15	2.34	41.86	0.00	98.63			Α
*	4924.05	52.04	33.82	3.76	43.94	0.73	46.41	74.00	-27.59	Р
*	4924.05	40.32	33.82	3.76	43.94	0.73	34.69	54.00	-19.31	А
	9847.88	49.36	39.94	5.76	38.78	0.49	56.78	85.43	-28.65	Р
	9847.88	41.70	39.94	5.76	38.78	0.49	49.12	78.63	-29.51	А
	N/A									Р
	N/A									А

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / IF	CEE 802.11	g mode / C	CH Low	Μ	easurem	ent Distanc	e at 3m 🛛 I	Horizontal pola	rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2412.56	103.65	30.20	2.34	41.85	0.00	94.34	Fundamental Frequency		Р
	2412.56	92.53	30.20	2.34	41.85	0.00	83.22			Α
*	4823.98	47.32	33.58	3.70	43.88	0.69	41.42	74.00	-32.58	Р
*	4823.98	38.52	33.58	3.70	43.88	0.69	32.62	54.00	-21.38	А
	9647.53	47.16	39.86	5.74	39.03	0.61	54.35	74.34	-20.00	Р
	9647.53	38.53	39.86	5.74	39.03	0.61	45.72	63.22	-17.51	А
	N/A									Р
	N/A									А

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	35.9°C, 31%

Vertical

	TX / IE	CEE 802.11g	g mode / C	CH Low	Μ	leasurem	ent Distanc	e at 3m	Vertical polar	ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2412.49	115.13	30.21	2.34	41.85	0.00	105.82	Fundamental Frequency		Р
	2412.49	105.73	30.21	2.34	41.85	0.00	96.42			А
*	4823.94	51.12	33.58	3.70	43.88	0.69	45.22	74.00	-28.78	Р
*	4823.94	41.17	33.58	3.70	43.88	0.69	35.27	54.00	-18.73	А
	9647.87	49.35	39.86	5.74	39.03	0.61	56.54	85.82	-29.29	Р
	9647.87	40.22	39.86	5.74	39.03	0.61	47.41	76.42	-29.02	А
	N/A									Р
	N/A									А

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / IEE	E 802.11g	mode / C	H Middle	Μ	easurem	ent Distanc	e at 3m 🛛 I	Horizontal polar	rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2437.83	103.82	30.17	2.34	41.85	0.00	94.48	Fundamental Frequency		Р
	2437.83	93.27	30.17	2.34	41.85	0.00	83.93			Α
*	4878.65	48.22	33.71	3.73	43.91	0.71	42.46	74.00	-31.54	Р
*	4878.65	38.64	33.71	3.73	43.91	0.71	32.88	54.00	-21.12	А
	9748.13	47.02	39.90	5.75	38.90	0.55	54.32	74.48	-20.16	Р
	9748.13	38.62	39.90	5.75	38.90	0.55	45.92	63.93	-18.01	А
	N/A									Р
	N/A									А

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	35.9°C, 31%

Vertical

	TX / IEI	EE 802.11g	mode / Cl	H Middle	Ν	leasuren	nent Distan	ce at 3m V	ertical polari	ty
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2436.94	114.74	30.18	2.34	41.85	0.00	105.40	Fundamental Frequency		Р
	2436.94	108.06	30.18	2.34	41.85	0.00	98.72			Α
*	4875.26	51.37	33.70	3.73	43.91	0.71	45.61	74.00	-28.39	Р
*	4875.26	40.52	33.70	3.73	43.91	0.71	34.76	54.00	-19.24	Α
	9747.86	48.04	39.90	5.75	38.90	0.55	55.34	85.40	-30.06	Р
	9747.86	40.80	39.90	5.75	38.90	0.55	48.10	78.72	-30.62	Α
	N/A									Р
	N/A									Α

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	35.9°C, 31%

Horizontal

	TX / IEEE 802.11g mode / CH High				Measurement Distance at 3m Horizontal polarity					rity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2462.83	104.11	30.14	2.34	41.86	0.00	94.74	• Fundamental Frequency		Р
	2462.83	93.65	30.14	2.34	41.86	0.00	84.28	r undannen	nai Frequency	Α
*	4924.73	48.72	33.82	3.76	43.94	0.73	43.09	74.00	-30.91	Р
*	4924.73	38.24	33.82	3.76	43.94	0.73	32.61	54.00	-21.39	А
	9848.22	47.33	39.94	5.76	38.78	0.49	54.75	74.74	-19.99	Р
	9848.22	40.62	39.94	5.76	38.78	0.49	48.04	64.28	-16.24	А
	N/A									Р
	N/A									А

REMARK:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

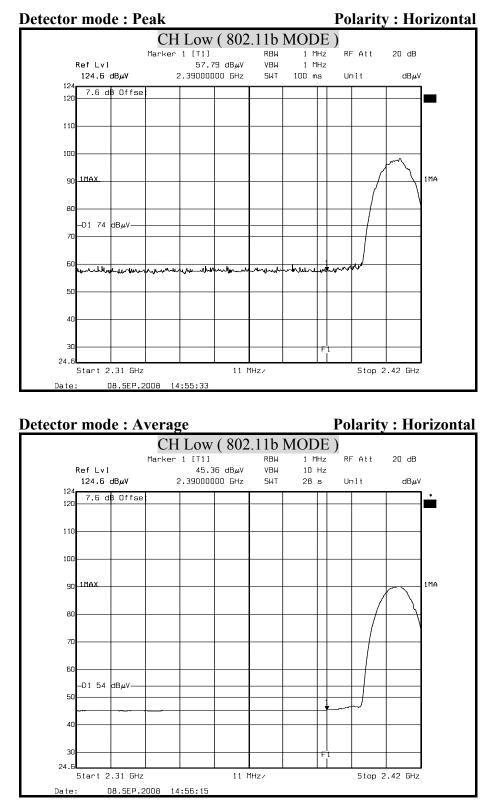
Product Name	WAVE	Test Date	2008/9/8
Model	PN:911400200-07A-G	Test By	Eric Yang
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	35.9℃, 31%

Vertical

	TX / IEEE 802.11g mode / CH High				Μ	leasurem	ent Distanc	e at 3m	Vertical polar	ity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
	2461.61	114.31	30.15	2.34	41.86	0.00	104.94	- Fundamental Frequency		Р
	2461.61	107.86	30.15	2.34	41.86	0.00	98.49			Α
*	4925.80	51.46	33.82	3.76	43.94	0.73	45.83	74.00	-28.17	Р
*	4925.80	39.82	33.82	3.76	43.94	0.73	34.19	54.00	-19.81	А
	9847.89	48.52	39.94	5.76	38.78	0.49	55.94	84.94	-29.00	Р
	9847.89	42.87	39.94	5.76	38.78	0.49	50.29	78.49	-28.20	А
	N/A									Р
	N/A									А

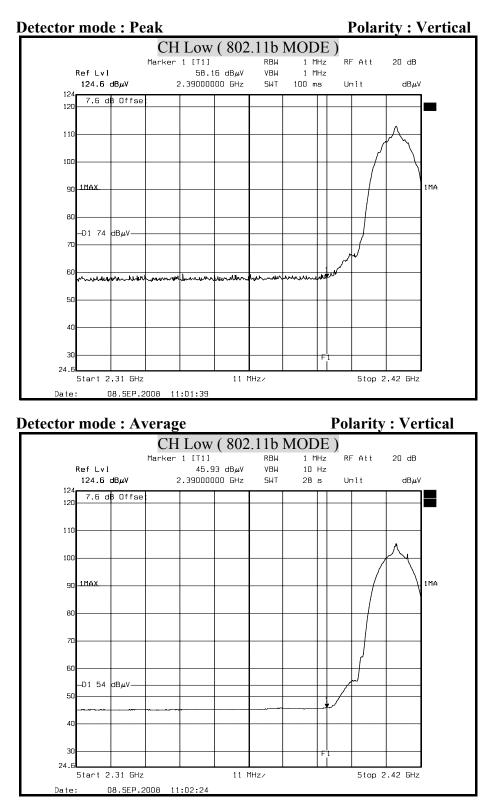
- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

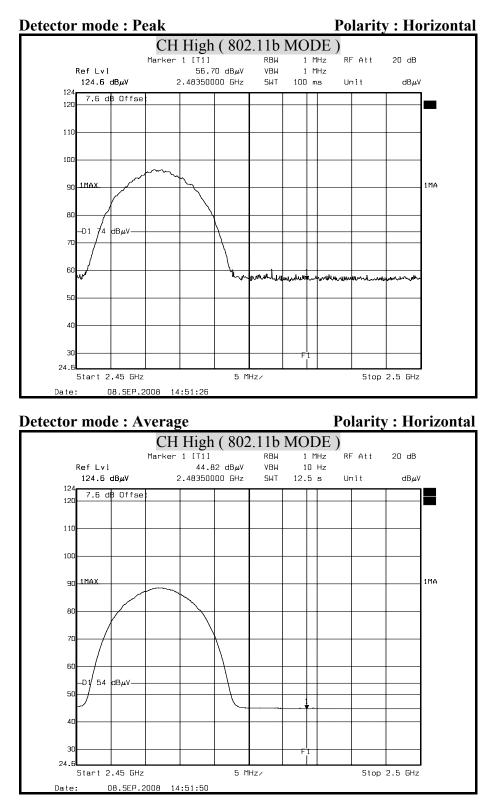
8.7.4 RESTRICTED BAND EDGES


IEEE 802.11b mode

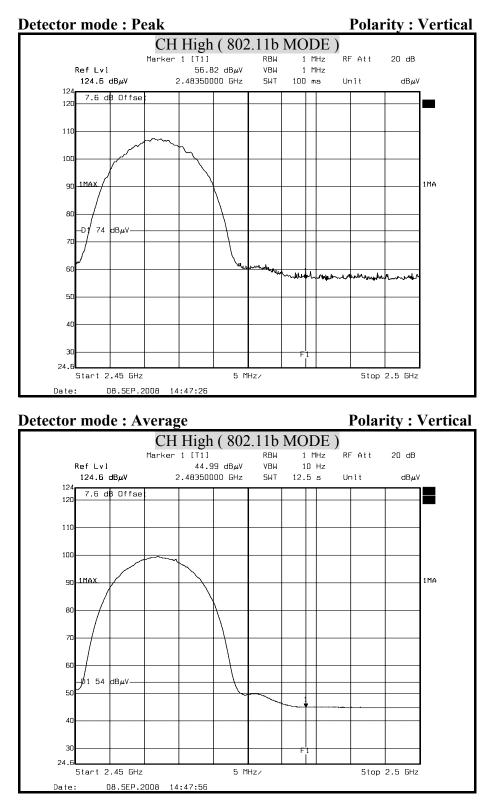
Channel	Polarity	Freq.(MHz)	Level(dBuV)	Limit(dBuV)	Margin(dB)	Detector
	Н	2390	57.79	74	-16.21	Peak
	Н	2390	45.36	54	-8.64	Average
	V	2390	58.16	74	-15.84	Peak
LOW	V	2390	45.93	54	-8.07	Average
	Н	2483.5	56.7	74	-17.3	Peak
	Н	2483.5	44.82	54	-9.18	Average
	V	2483.5	56.82	74	-17.18	Peak
HIGH	V	2483.5	44.99	54	-9.01	Average

IEEE 802.11g mode

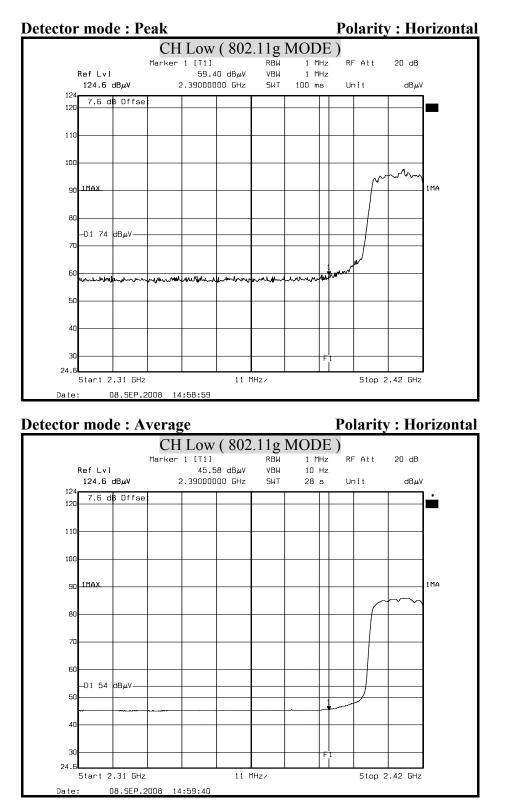

Channel	Polarity	Freq.(MHz)	Level(dBuV)	Limit(dBuV)	Margin(dB)	Detector
	Н	2390	59.4	74	-14.6	Peak
	Н	2390	45.58	54	-8.42	Average
	V	2390	69.46	74	-4.54	Peak
LOW	V	2390	50.48	54	-3.52	Average
	Н	2483.5	57.67	74	-16.33	Peak
	Н	2483.5	45.06	54	-8.94	Average
	V	2483.5	62.94	74	-11.06	Peak
HIGH	V	2483.5	47.73	54	-6.27	Average



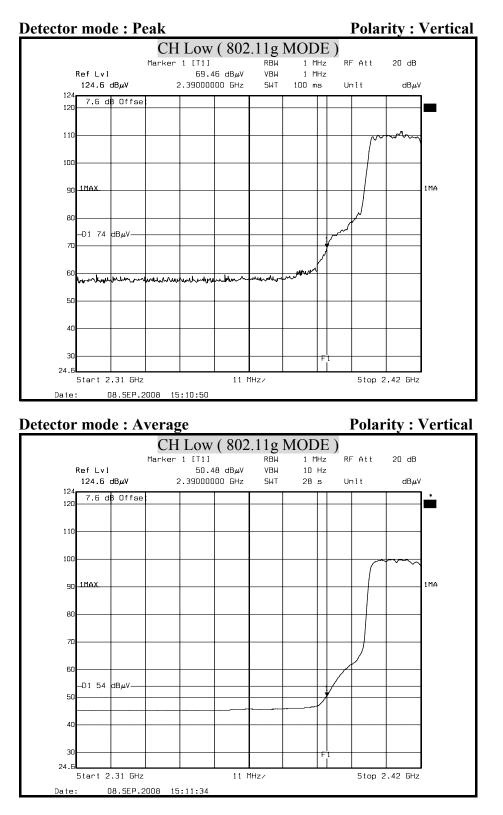
- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

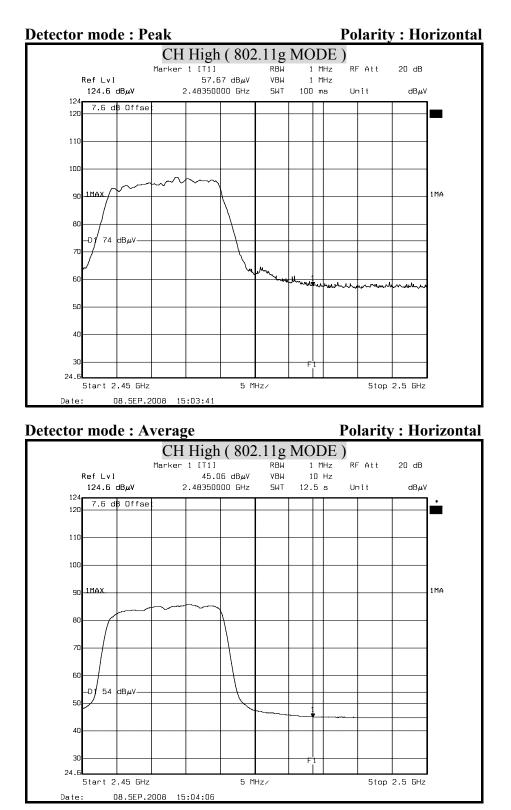


- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

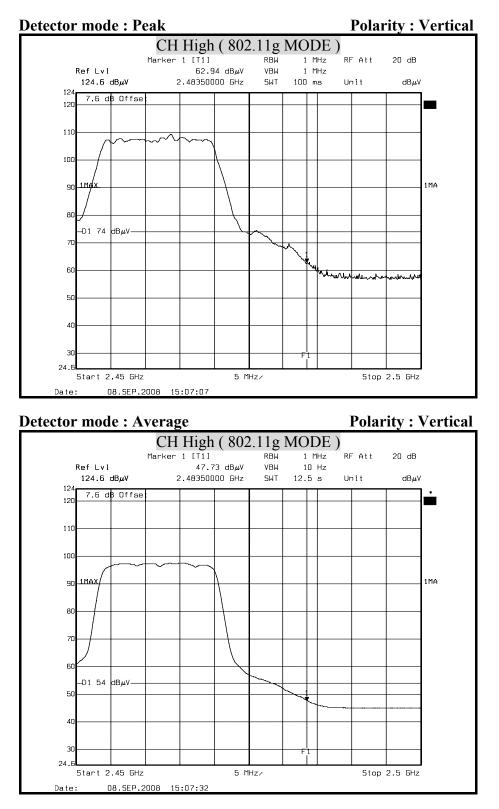


- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)


- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)



- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)



- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

- 1. Display Line = 54/74 dB μ V/m.
- 2. 2390MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.6(dB)
- 3. 2483.5MHz Offset(dB) = Antenna Factor(dB/m) + Cable Loss(dB) Pre-Amplifier(dB) + Attenuator(dB)=7.62(dB)

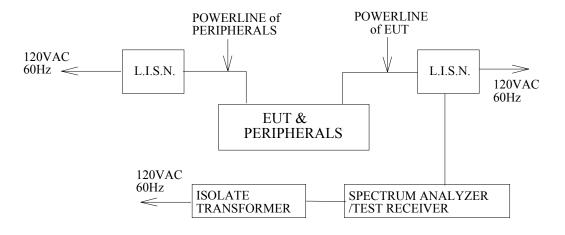
8.8 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)		
	Quasi-peak	Average	
0.15 - 0.5	66 to 56	56 to 46	
0.5 - 5	56	46	
5 - 30	60	50	


TEST EQUIPMENTS

The following test equipments are used during the conducted power line tests:

Conducted Emission room #1							
Name of Equipment	Manufacturer	Model Serial Number		Calibration Due			
L.I.S.N.	SCHWARZBECK	NNLK 8121	8121-446	NOV. 19, 2009 For Insertion loss			
	Rohde & Schwarz	ESH 3-Z5	840062/021	OCT. 05, 2009			
TEST RECEIVER	Rohde & Schwarz	ESCS 30	100348	JUL. 02, 2009			
TYPE N COAXIAL CABLE	SUHNER	BELDEN991 3	2981	FEB. 26, 2009			
Test S/W	e-3 (5.04211c) R&S (2.27)						

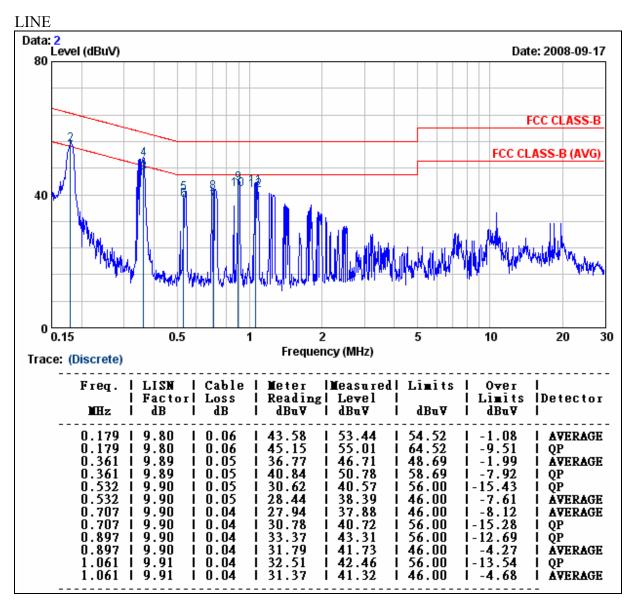
TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

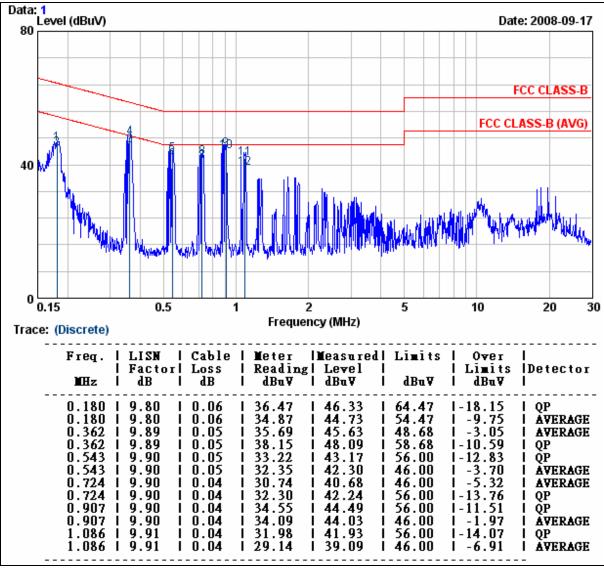

TEST RESULTS

No non-compliance noted.

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	WAVE	Test Date	2008/09/17
Model	PN:911400200-07A-G	Test By	Vision Chang
Test Mode	Normal operating (worst case)	TEMP& Humidity	28°C, 52%

REMARK:


1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

Product Name	WAVE	Test Date	2008/09/17
Model	PN:911400200-07A-G	Test By	Vision Chang
Test Mode	Normal operating (worst case)	TEMP& Humidity	28°C, 52%

REMARK:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used for this product is a dipole antenna. The peak Gain of this antenna is 5.0 dBi at 2.4GHz.