

: 13999840H-A-R1 Test report No. Page **Issued date** FCC ID

: 1 of 24 : December 8, 2021 : PAXPMVG101

RADIO TEST REPORT

Test Report No.: 13999840H-A-R1

Applicant Pacific Industrial Company, LTD.

Type of EUT **TPMS (Tire Pressure Monitoring System Transmitter)**

Model Number of EUT PMV-G101

FCC ID PAXPMVG101

Test regulation FCC Part 15 Subpart C: 2021

Test Result Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13999840H-A. 13999840H-A is replaced with this report.

Date of test:	October 6 and November 25, 2021
Representative test engineer:	(iyo
	Kiyoshiro Okazaki
	Engineer
Approved by:	S. pigozono
	Shinichi Miyazono
	Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 2 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

REVISION HISTORY

Original Test Report No.: 13999840H-A

Revision	Test report No.	Date	Page revised	Contents
-	13999840H-A	November 30,	-	-
(Original)		2021		
1	13999840H-A-R1	December 8,	P.18	Deletion of the following formula;
		2021		Tx on / (Tx on + Tx off) = 0.084
				Tx on / (Tx on + Tx off) * 100 = 8.4%

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1 Page : 3 of 24

Issued date : December 8, 2021 FCC ID : PAXPMVG101

Reference: Abbreviations (Including words undescribed in this report)

MCS The American Association for Laboratory Accreditation Modulation and Coding Scheme ACAlternating Current MRA Mutual Recognition Arrangement AFH N/A Adaptive Frequency Hopping Not Applicable Amplitude Modulation NIST National Institute of Standards and Technology AMAmp, AMP Amplifier NS No signal detect. American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PΚ Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency Dynamic Frequency Selection DFS RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Rx Direct Sequence Spread Spectrum Receiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SG EIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator SVSWR **EMC** ElectroMagnetic Compatibility Site-Voltage Standing Wave Ratio **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm TxTransmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth European Union Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum FM Frequency Modulation Freq. Frequency FSK Frequency Shift Keying **GFSK** Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System **GPS** Global Positioning System

Hori. Horizontal

ICES Interference-Causing Equipment Standard
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

ILAC International Laboratory Accreditation Conference
ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

JAB Japan Accreditation Board LAN Local Area Network

LAN Local Alea Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date : 13999840H-A-R1 : 4 of 24

Issued date : December 8, 2021 FCC ID : PAXPMVG101

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3:** Operation of EUT during testing......9 **SECTION 4:** SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) **APPENDIX 2:** Test instruments _______20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 5 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

SECTION 1: Customer information

Company Name : Pacific Industrial Company, LTD.

Address : 1300-1, YOKOI, GODO-CHO, ANPACHI-GUN, GIFU 503-2397,

JAPAN

Telephone Number : +81-584-28-0111 Contact Person : Masashi Hattori

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : TPMS (Tire Pressure Monitoring System Transmitter)

Model Number : PMV-G101

Serial Number : Refer to SECTION 4.2
Receipt Date : September 9, 2021
Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: PMV-G101 (referred to as the EUT in this report) is a TPMS (Tire Pressure Monitoring System Transmitter).

General Specification

Rating : DC 3.0 V

Radio Specification

Radio Type : Transceiver Frequency of Operation : 433.90 MHz

Modulation : FSK

Antenna type : Flatplane antenna (Built-in type)

Clock frequency (Maximum) : 26 MHz

*This transmitter transmits unmodulated center frequency (433.90 MHz) of several hundred μ s before and after transmission.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 6 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207	N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(a)(2) Section 15.231(e)	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(e)	10.3 dB 433.900 MHz Horizontal PK	Complied b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(e)	19.7 dB 3905.100 MHz Horizontal PK	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(c)	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Automatically deactivate)
- b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))
- c) Refer to APPENDIX 1 (data of -20 dB Bandwidth and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

The test was performed with the New Battery during the tests.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13999840H-A-R1 Page : 7 of 24

Issued date : December 8, 2021 FCC ID : PAXPMVG101

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
100 % (Accumied Randwidth	ANSI C63.10:2013 6 Standard test methods	Reference data	N/A	-	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emissio	<u>n</u>		
Measurement distance	Frequency rai	Uncertainty (+/-)	
3 m	9 kHz to 30 M	Hz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
			6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GH	łz	4.9 dB
	6 GHz to 18 G	Hz	5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
	26.5 GHz to 40	GHz	5.5 dB
10 m	1 GHz to 18 G	Hz	5.2 dB

Antenna Terminal test

Antenna Terminar test	
Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dR Emission Randwidth / 99 % Occupied Randwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 8 of 24

Issued date : December 8, 2021 FCC ID : PAXPMVG101

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

m	Width x Depth x	Size of reference ground plane (m) /	0.1	Maximum
Test site	Height (m)	horizontal conducting plane	Other rooms	measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 9 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item*	Mode
Automatically Deactivate	1) Alert mode
	2) Normal use mode
Electric Field Strength of Fundamental Emission	3) Transmitting mode (Tx)
Electric Field Strength of Spurious Emission	
Duty cycle	
-20 dB Bandwidth & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

(Date: 2021.09.08, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

A

*Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	TPMS (Time Procesure Manitoring)	PMV-G101	0004E2D	Pacific Industrial Company, LTD.	EUT
	(Tire Pressure Monitoring System Transmitter)			LID.	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} EUT was set by the software as follows; Software: PMV-G101 Ver 1.0

^{*}This setting of software is the worst case.

Test report No. : 13999840H-A-R1
Page : 10 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz	From	From	From	From	Above 1 GHz
	to 90 kHz and	90 kHz	150 kHz	490 kHz	30 MHz	
	From 110 kHz	to 110 kHz	to 490 kHz	to 30 MHz	to 1 GHz	
	to 150 kHz					
Detector Type	Peak	Peak	Peak	Peak	Peak and	Peak and
					Peak with	Peak with Duty factor
					Duty factor	·
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,
						VBW: 3 MHz

⁻ The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

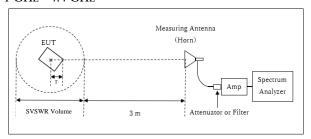
Measurement range : 9 kHz - 4.4 GHz
Test data : APPENDIX
Test regult

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Test report No. : 13999840H-A-R1
Page : 11 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101


[Test Setup]

Below 1 GHz

× : Center of turn table

1 GHz - 4.4 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

Distance Factor: $20 \times \log (4.0 \text{ m}^*/3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.00 m

SVSWR Volume: 2.0 m

(SVSWR Volume has been calibrated based on CISPR $\,$

16-1-4.) r = 0.0 m

 \ast The test was performed with r=0.0 m since EUT is small and it was the rather conservative condition.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 12 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth / 99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.							

Test data : APPENDIX

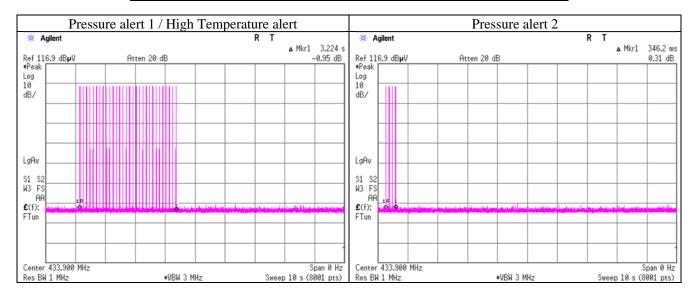
Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 13 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

APPENDIX 1: Test data

Automatically deactivate


Report No. 13999840H Test place Ise EMC Lab.

Measurement Room No.6

Date November 25, 2021
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Hiroyuki Furutaka
Mode Alert mode

Operation in FCC 15.231(a)(2)

Mode	Tx Frequency	Time of	Limit	Result
		Transmitting		
	[MHz]	[sec]	[sec]	
Pressure alert 1 / High Temperature alert	433.90	3.2240	5.000	Pass
Pressure alert 2	433.90	0.3462	5.000	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13999840H-A-R1 Test report No. : 14 of 24 Page **Issued date** : December 8, 2021 FCC ID : PAXPMVG101

Automatically deactivate

Report No. 13999840H Test place Ise EMC Lab. No.6

Measurement Room

November 25, 2021 20 deg. C / 40 % RH Temperature / Humidity Hiroyuki Furutaka Engineer Mode Normal use mode

Operation in FCC 15.231(e)

Rotating mode 1

Duration of transmission: 119.1 msec < 1sec

Silent period between transmissions: 15.99 sec - 0.1191 sec = 15.87 sec > 30 times the duration of transmission and 10 sec.

Stationary mode

Duration of transmission: 9 msec < 1sec

Silent period between transmissions: 96.57 sec - 0.009 sec = 96.56 sec > 30 times the duration of transmission and 10 sec.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13999840H-A-R1 Test report No. : 15 of 24 Page **Issued date** : December 8, 2021 FCC ID : PAXPMVG101

Automatically deactivate

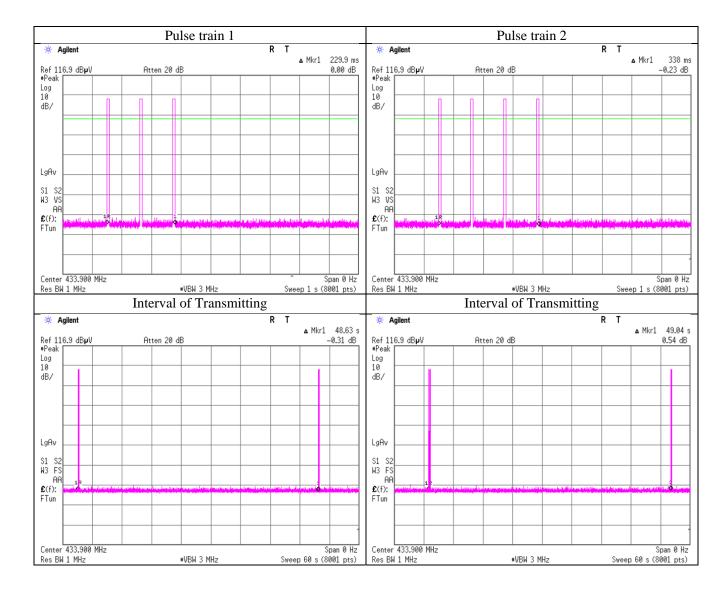
Report No. 13999840H Test place Ise EMC Lab. Measurement Room No.6

November 25, 2021 20 deg. C / 40 % RH Temperature / Humidity Hiroyuki Furutaka Engineer Mode Normal use mode

Operation in FCC 15.231(e)

Rotating mode 2

Pulse train 1


Duration of transmission: 229.9 msec < 1 sec

Silent period between transmissions: 48.63 sec - 0.2299 sec = 48.40 sec > 30 times the duration of transmission and 10 sec.

Pulse train 2

Duration of transmission: 338 msec < 1 sec

Silent period between transmissions: 49.04 sec - 0.338 sec = 48.70 sec > 30 times the duration of transmission and 10 sec.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 16 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13999840H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 6, 2021
Temperature / Humidity 24 deg. C / 46 % RH
Engineer Kiyoshiro Okazaki
Mode Transmitting mode

OP or PK

VI W IV													
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Margin		Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
433.900	PK	87.3	87.2	16.4	11.0	32.1	-	82.6	82.5	92.9	10.3	10.4	Carrier
867.800	PK	38.5	38.5	22.0	13.4	31.2	-	42.8	42.8	72.9	30.1	30.1	Outside
1301.700	PK	42.8	43.0	25.8	6.1	34.4	-	40.3	40.5	72.9	32.6	32.4	Inside
1735.600	PK	47.7	48.3	25.0	5.7	33.4	-	44.9	45.6	72.9	28.0	27.3	Outside
2169.500	PK	44.3	44.7	28.3	5.7	32.7	-	45.7	46.1	72.9	27.2	26.8	Outside
2603.400	PK	46.1	45.9	27.8	5.9	32.5	-	47.3	47.1	72.9	25.6	25.8	Outside
3037.300	PK	49.1	48.9	28.6	6.0	32.3	-	51.4	51.2	72.9	21.5	21.7	Outside
3471.200	PK	46.1	45.3	28.7	6.2	32.1	-	48.9	48.2	72.9	23.9	24.7	Outside
3905.100	PK	48.9	48.6	29.7	6.4	31.9	-	53.1	52.8	72.9	19.7	20.1	Inside
4339.000	PK	45.3	45.6	30.4	6.7	31.8	-	50.6	50.9	72.9	22.3	22.0	Inside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
433.900	PK	87.3	87.2	16.4	11.0	32.1	-21.6	61.0	60.9	72.9	11.9	12.0	Carrier
867.800	PK	38.5	38.5	22.0	13.4	31.2	-21.6	21.2	21.2	52.9	31.7	31.7	Outside
1301.700	PK	42.8	43.0	25.8	6.1	34.4	-21.6	18.7	18.9	52.9	34.2	34.0	Inside
1735.600	PK	47.7	48.3	25.0	5.7	33.4	-21.6	23.3	24.0	52.9	29.6	28.9	Outside
2169.500	PK	44.3	44.7	28.3	5.7	32.7	-21.6	24.1	24.5	52.9	28.8	28.4	Outside
2603.400	PK	46.1	45.9	27.8	5.9	32.5	-21.6	25.7	25.5	52.9	27.2	27.4	Outside
3037.300	PK	49.1	48.9	28.6	6.0	32.3	-21.6	29.8	29.6	52.9	23.1	23.3	Outside
3471.200	PK	46.1	45.3	28.7	6.2	32.1	-21.6	27.3	26.6	52.9	25.5	26.3	Outside
3905.100	PK	48.9	48.6	29.7	6.4	31.9	-21.6	31.5	31.2	52.9	21.3	21.7	Inside
4339.000	PK	45.3	45.6	30.4	6.7	31.8	-21.6	29.0	29.3	52.9	23.9	23.6	Inside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

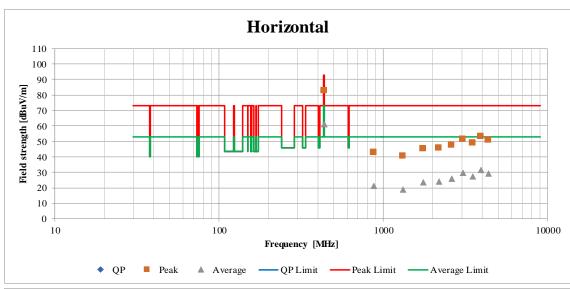
Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor (Refer to Duty Cycle data sheet)

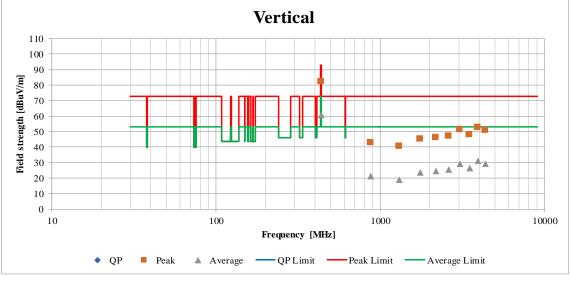
For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m}/3.0 \text{ m}) = 2.50 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13999840H-A-R1 Page : 17 of 24 **Issued date** : December 8, 2021 FCC ID : PAXPMVG101


Radiated Spurious Emission (Plot data, Worst case)

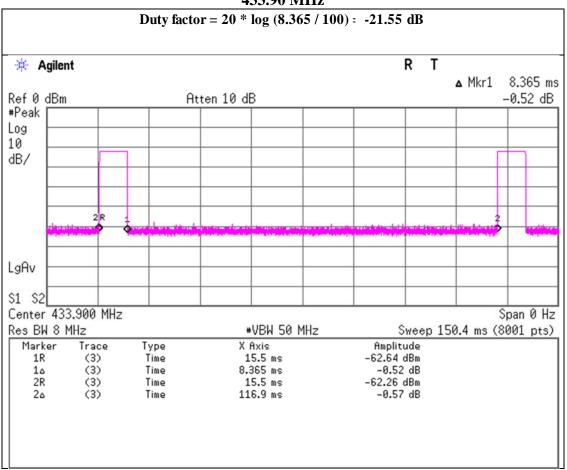
Report No. 13999840H Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

October 6, 2021 Temperature / Humidity 24 deg. C / 46 % RH Engineer Kiyoshiro Okazaki Mode Transmitting mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 18 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101


Duty Cycle

Report No. 13999840H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 6, 2021
Temperature / Humidity 24 deg. C / 46 % RH
Engineer Kiyoshiro Okazaki
Mode Transmitting mode

433.90 MHz

The ON time (8.365 ms) appears 1 times in 100 ms.

The actual measurement value was applied as Averaging factor (Duty factor).

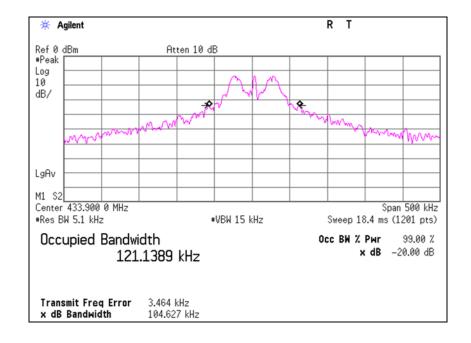
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13999840H-A-R1 Test report No. : 19 of 24 Page **Issued date** : December 8, 2021 FCC ID : PAXPMVG101

-20 dB Bandwidth and 99% Occupied Bandwidth

Report No. 13999840H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3


October 6, 2021 24 deg. C / 46 % RH Temperature / Humidity Kiyoshiro Okazaki Engineer Mode Transmitting mode

Bandwidth Limit: Fundamental Frequency **433.90** MHz x 0.25% = 1084.75 kHz

* The above limit was calculated from more stringent nominal frequency.

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
104.627	1084.75	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
121.1389	1084.75	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13999840H-A-R1
Page : 20 of 24
Issued date : December 8, 2021
FCC ID : PAXPMVG101

APPENDIX 2: Test instruments

Test equipment (Test date: October 6, 2021)

	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE		142645	Loop Antenna	UL Japan	-	-	-	-
RE	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/15/2021	12
RE	MMM-17	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900530	01/07/2021	12
RE	MSA-13	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	09/30/2021	12
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/07/2021	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	_	-	_
RE		178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/09/2021	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	1915	08/21/2021	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	_	07/19/2021	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/21/2021	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/18/2021	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/05/2021	12
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/10/2021	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	10/01/2020	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/03/2021	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/04/2021	12
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/14/2021	12
RE	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/15/2021	12
RE	MMM-18	141558	Digital Tester(TRUE RMS MULTIMETER)	Fluke Corporation	115	17930030	05/24/2021	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	12/18/2020	12
RE	MLPA-08	202511	Loop Antenna	UL Japan	-	-	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13999840H-A-R1

 Page
 : 21 of 24

 Issued date
 : December 8, 2021

 FCC ID
 : PAXPMVG101

Test equipment (Test date: November 25, 2021)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	_	-
RE	MOS-24	90289	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0005	01/15/2021	12
RE	MBM-10	141345	Barometer	Sunoh	SBR121	832	12/11/2019	36
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies	E4448A	MY44020357	03/10/2021	12
				Inc				

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN