

TEST REPORT

Test report no.: 1-5161/17-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03

Applicant

Pacific Industrial Co., LtdGodo-Cho, AnpachiGifu 503-2397 / JAPANPhone:-/-Fax:-/-Contact:Kunitaka Yanoe-mail:knyano@pacific-ind.co.jpPhone:+81 584 28 01 11

Manufacturer

Pacific Industrial Co., Ltd Godo-Cho, Anpachi Gifu 503-2397 / JAPAN

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	Tire Pressure Monitoring System Transmitter	
Model name:	PMV-E001	
FCC ID:	PAXPMVE001	
IC:	3729A-PMVE001	
Frequency:	314.975 MHz	PMV-E007
Technology tested:	Modulated carrier	ALCOUTOSO -
Antenna:	Integrated antenna	
Power supply:	3.0 V DC by lithium battery	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Mihail Dorongovskij Lab Manager Radio Communications & EMC

Test performed:

Marco Bertolino Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s and references	4
4	Test e	environment	5
5	Test i	item	5
	5.1 5.2	General description Additional information	
6	Desci	ription of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Test setup for normalized measurement configurations	8
7	Sequ	ence of testing	10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 4 GHz	11
8	Sumn	nary of measurement results	13
	8.1	Additional comments	13
9	Meas	urement results	14
	9.1 9.2 9.3 9.4	Timing of the transmitter and silent periods between transmissions Emission bandwidth Field strength of the fundamental Field strength of the harmonics and spurious	22 24
10	Obs	servations	30
An	nex A	Glossary	31
An	nex B	Document history	32
An	nex C	Accreditation Certificate	32

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2018-02-20
Date of receipt of test item:	2018-03-02
Start of test:	2018-03-02
End of test:	2018-03-06
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme temperature conditions required. No tests under extreme temperature conditions required.
Relative humidity content	:		35 %
Barometric pressure	:		1002 hpa
Power supply	:	V _{nom} V _{max} V _{min}	 3.0 V DC by lithium battery No tests under extreme voltage conditions required. No tests under extreme voltage conditions required.

5 Test item

5.1 General description

Kind of test item :	Tire Pressure Monitoring System Transmitter
Type identification :	PMV-E001
HMN :	-/-
PMN :	PMV-E001
HVIN :	PMV-E001
FVIN :	-/-
S/N serial number :	Radiated units: 0001897 / 0001898
HW hardware status :	-/-
SW software status :	RF test software
Frequency band :	314.975 MHz
Type of radio transmission : Use of frequency spectrum :	modulated carrier
Type of modulation :	F2D
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	3.7 V DC by lithium battery

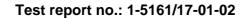
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-5161/17-01-02_AnnexA 1-5161/17-01-02_AnnexB 1-5161/17-01-02_AnnexD

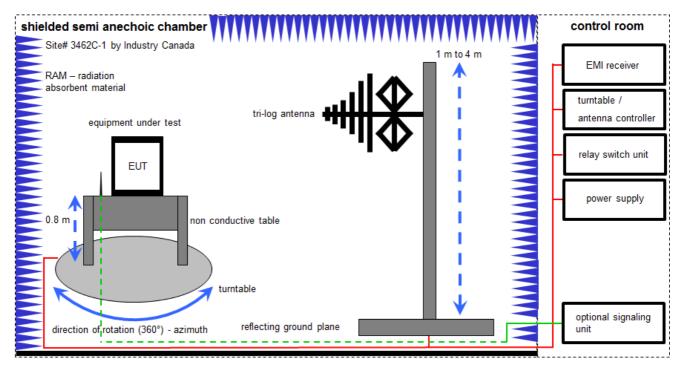
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

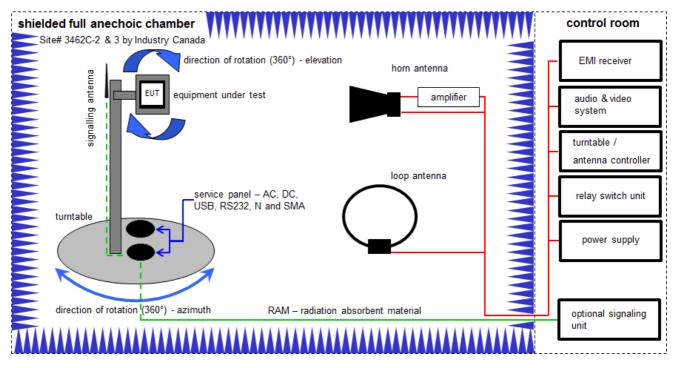
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

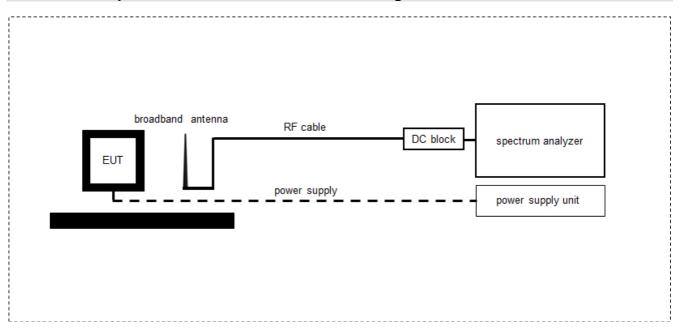
6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	А, В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	viKI!	14.02.2017	13.02.2019
4	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev	-/-	-/-
6	А, В	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	20.12.2017	19.12.2018
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	А, В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	А, В	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
11	А, В	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

6.3 Test setup for normalized measurement configurations

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019
2	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
3	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 4 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9	See table!	2018-03-08	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) 15.231(a & e) RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (a & e) RSS-210 Issue 9	Silent period between transmissions	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (a & e) RSS-210 Issue 9	Field strength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Field strength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-GEN	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		1*

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

1* No receiver mode integrated.

8.1 Additional comments

Reference documents: TPMS_Technical_Document (PMV-E001) _US_01_180226

Special test descriptions: None

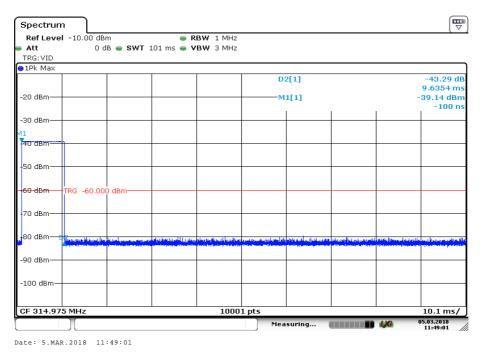
Configuration descriptions: None

9 Measurement results

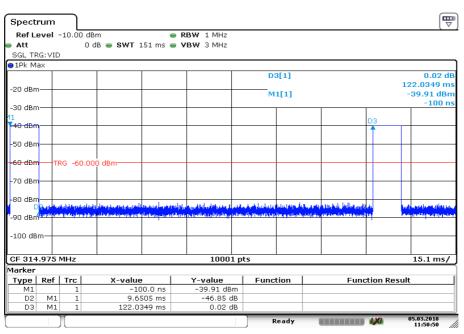
9.1 Timing of the transmitter and silent periods between transmissions

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	Zero		
Trace mode:	Single sweep		
Test setup:	See chapter 6.3 A		

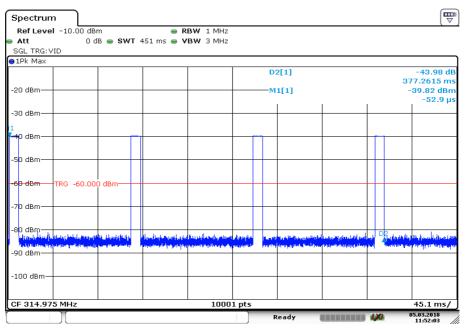

Limits:

FCC	IC
terms of the average value of the emission, and pustrength shall be determined by averaging over one long as the pulse train does not exceed 0.1 seconds. I longer than 0.1 seconds) or in cases where the pustrength shall be determined from the average absolute field strength is at its maximum value. The exact be submitted with any application for certification of the submitted with any application for certification of the strength of the submitted with any application for certification of the strength of the submitted with any application for certification of the strength of the stren	b), when the radiated emission limits are expressed in alsed operation is employed, the measurement field complete pulse train, including blanking intervals, as As an alternative (provided the transmitter operates for alse train exceeds 0.1 seconds, the measured field ute voltage during a 0.1 second interval during which method of calculating the average field strength shall or shall be retained in the measurement data file for obtification or verification.
In addition, devices operated under the provisions of automatically limiting operation so that the duration second and the silent period between transmiss transmission but in no ca	(e) of this paragraph shall be provided with a means for of each transmission shall not be greater than one ions shall be at least 30 times the duration of the ase less than 10 seconds.
The provisions of this section are restricted to period above 70 MHz. Except as shown in paragraph (e) of transmission of a control signal such as those used wit Continuous transmissions, voice, video and the radiod be sent with a control signal. The following condition periodic operation: (1) A manually operated trans deactivate the transmitter within not more than 5 set automatically shall cease transmission within 5 set regular predetermined intervals are not permitted. Ho data, to determine system integrity of transmitters us total duration of transmissions does not exceed more is no limit on the number of individual transmissions, two seconds per hour. (4) Intentional radiators wh emergencies involving fire, security, and safety of I during the pendency of the alarm condition. (5) Transmissions are under the control of a profession	All (a) adic operation within the band 40.66-40.70 MHz and this section, the intentional radiator is restricted to the th alarm systems, door openers, remote switches, etc. control of toys are not permitted. Data is permitted to ns shall be met to comply with the provisions for this mitter shall employ a switch that will automatically conds of being released. (2) A transmitter activated conds after activation. (3) Periodic transmissions at wever, polling or supervision transmissions, including ed in security or safety applications are allowed if the than two seconds per hour for each transmitter. There provided the total transmission time does not exceed ich are employed for radio control purposes during ife, when activated to signal an alarm, may operate mission of set-up information for security systems may phs (a)(1) and (a)(2) of this section, provided such nal installer and do not exceed ten seconds after a er is activated automatically. Such set-up information



Result:

Plot 1: Transmit burst


Plot 2: TX on time

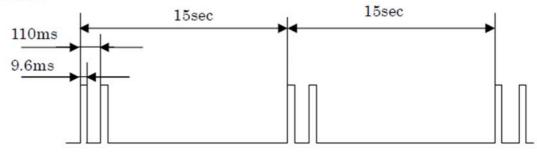
Date: 5.MAR.2018 11:50:50

Plot 3: TX on time (4 bursts / 1 pulse train)

Date: 5.MAR.2018 11:52:02

Timing according to the technical document TPMS_Technical_Document (PMV-E001) _US_01_180226:

Rotating mode 1: §15.231 (e)


1 burst within 122.3 ms = 9.6 % (9.6 ms) correction factor: 20 log (0.096) = 20.35 dB

2 burst within 15 sec (every 122.0 ms) same correction factor

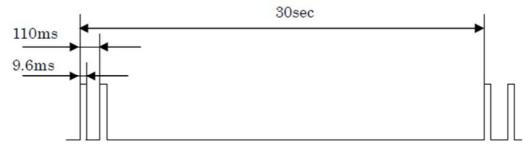
Minimum silent period: 15 sec - (1 * 122.0 ms + 9.6 ms) = 15 sec - 131.6 ms = 14.9 s

Limit: 1. > 30 times of the transmission = 30 * (1*122.0 ms + 9.6 ms) = 3.96 s (only relevant if greater than 10 sec) 2. > 10 sec

□Rotating mode1

Timing according to the technical document TPMS_Technical_Document (PMV-E001) _US_01_180226:

Rotating mode 2: §15.231 (e)


1 burst within 122.3 ms = 9.6 % (9.6 ms) correction factor: 20 log (0.096) = 20.35 dB

2 burst within 30 sec (every 122.0 ms) same correction factor

Minimum silent period: 30 sec - (1 * 122.0 ms + 9.6 ms) = 30 sec - 131.9 ms = 29.9 s

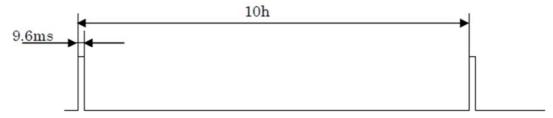
Limit: 1. > 30 times of the transmission = 30 * (1*122.0 ms + 9.6 ms) = 3.96 s (only relevant if greater than 10 sec) 2. > 10 sec

 \Box Rotating mode2

Timing according to the technical document TPMS_Technical_Document (PMV-E001) _US_01_180226:

Stationary mode: §15.231 (e)

1 burst within 100 ms = 9.6 % (9.6 ms) correction factor:


20 log (0.096) = 20.35 dB

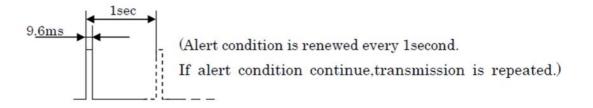
1 burst within 10 h same correction factor

Minimum silent period: 10 h - (1 * 9.6 ms) = 10 h - 9.6 ms = 10 h

Limit: 1. > 30 times of the transmission = 30 * (9.6 ms) = 288 ms (only relevant if greater than 10 sec) 2. > 10 sec

□ Stationary mode

Timing according to the technical document TPMS_Technical_Document (PMV-E001) _US_01_180226:


Pressure alert 1: §15.231 (a)(2)

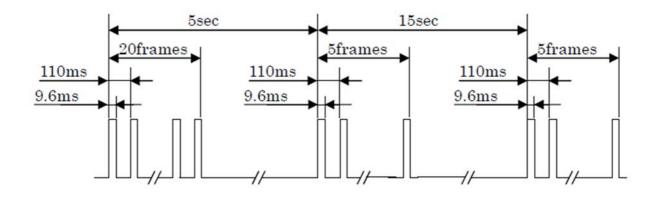
The device will enter automatically the pressure alert mode 1 (while stationary) if a sudden change of pressure or temperature is detected. As shown in the technical description the alert condition is renewed every second (only if the alarm is continuing) therefore after 1 second an additional automatic transmission is activated.

Limit: A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Transmission length = 1 * 9.6 ms within 1 s < 5 s

□ Pressure alert1 (Stationary mode only)

Timing according to the technical document TPMS_Technical_Document (PMV-E001) _US_01_180226:


Pressure alert 2: §15.231 (a)(2)

The device will enter automatically the pressure alert mode 2 (while vehicle is moving) if a sudden change of pressure or temperature is detected. As shown in the technical description the alert condition is renewed after 5 seconds (only if the alarm is continuing) and then again after 15 seconds.

Limit: A transmitter activated automatically shall cease transmission within 5 seconds after activation.

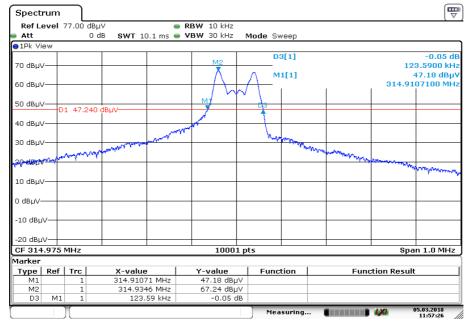
Transmission length = (19 * 122.0 ms + 9.6 ms) = 2327.6 ms < 5 s

□ Pressure alert2 (Rotating mode 1 only)

9.2 Emission bandwidth

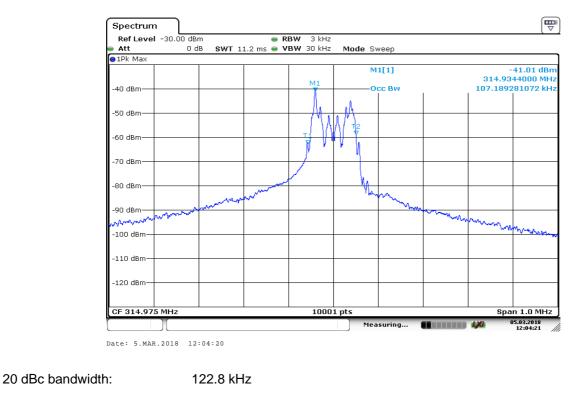
Measurement:

Measurement of the 99 % bandwidth of the modulated signal


Measurement parameter			
Detector:	Peak		
Sweep time:	200 ms		
Resolution bandwidth:	1 % of the span (10 kHz) FCC 1 % - 5 % of the OBW (3 kHz) RSS		
Video bandwidth:	3 x RBW		
Span:	1 MHz		
Trace mode:	Max. hold		
Test setup:	See chapter 6.3 A		

Limits:

FCC	IC		
The OBW shall not be wider than 0.25% of the centre frequency, here maximum 787.5 kHz.			



Result:

Plot 1: Emissions bandwidth, 20 dBc measurement

Plot 2: Emissions bandwidth, 99 % measurement

99 % emission bandwidth: 107.7 kHz

Date: 5.MAR.2018 11:57:26

9.3 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak / pulse averaging / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	120 kHz		
Video bandwidth:	3 x RBW		
Trace mode:	Max. hold		
Test setup:	See chapter 6.2 A		

Limits:

FCC			IC			
	Field strength of the fundamental.					
In addition to the provisions of S	ection 15.205, the	field strength of er	nissions from intentional radiators			
operated	under this Section s	shall not exceed th	e following:			
Fundamental Frequency (MHz)	Field strength o (µ۷/		Measurement distance (m)			
40.66 - 40.70	1,00	00	3			
70-130	50	0	3			
130-174	500 to	1,500	3			
174-260	1,50	00	3			
260-470	1,500 to 5,000		3			
Above 470	5,00	00	3			
314.975	3,249.64 [70.24 dBµV/m]		3			
40.00 40.70	0.0	-0				
40.66 - 40.70	2,2		3			
70-130	1,250		3			
130-174	1,250 to 3,750		3			
174-260	3,750		3			
260-470	3,750 to 12,500		3,750 to 12,500		3	
Above 470	12,500		12,500		3	
314.975	8,123.95 [78.20 dBµV/m]		3			

Result:

TEST CONDITIONS		Field strength (dBµV	/m at 3 m distance)	
Frequency		MHz	MHz	
Mo	Mode		Average	
T _{nom} V _{nom}		67.8	47.5	
Measurement uncertainty		±30	B	

*Value recalculated from Peak-to-Average correction factor calculated in 9.1

9.4 Field strength of the harmonics and spurious

Measurement:

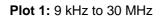
Measurement parameter			
Detector:	Peak / average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace mode:	Max. hold		
Test setup:	See chapter 6.1 A See chapter 6.2 B		

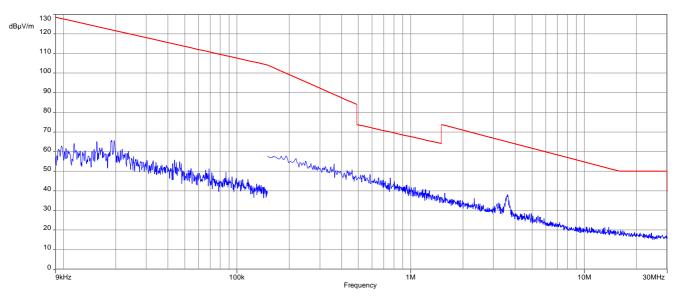
Limits:

FCC			IC
	Field strength of	the fundamental.	
In addition to the provisions of Second	ection 15.205, the f	ield strength of en	nissions from intentional radiators
operated u	under this Section s	hall not exceed th	e following:
Fundamental Frequency (MHz)	Field strength of spurious (µV/m)		Measurement distance (m)
40.66 - 40.70	100 /2	225	3
70-130	50 / 125		3
130-174	50 to 125 to		3
174-260	150 / 375		3
260-470	150 to 375 to		3
Above 470 500 / 1		,250	3

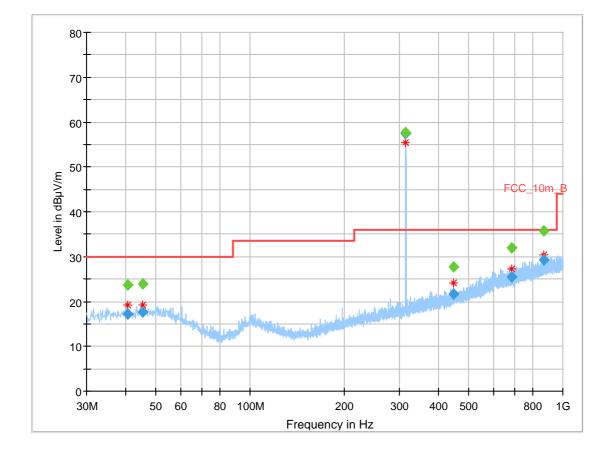
The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC		
Frequency (MHz)	Field streng	gth (µV/m)	Measurement distance (m)	
0.009 - 0.490	2400/F(kHz)		300	
0.490 - 1.705	24000/F(kHz)		30	
1.705 – 30	30		30	
30 - 88	100		3	
88 – 216	150		3	
216 - 960	200		3	
above 960	50	0	3	



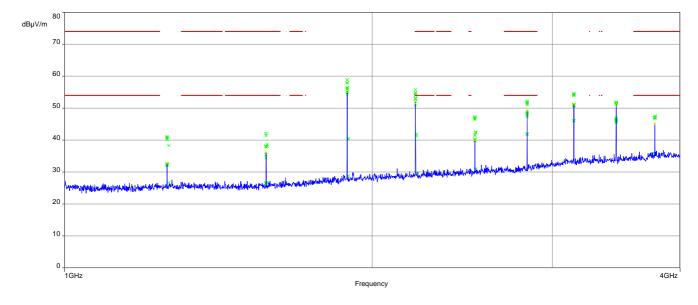

Results:

f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]	Results			
F	For spurious emissions below 1 GHz, please look at the table below the 1 GHz plot.						
1259.9	Peak	74.0	41.1	compliant			
1259.9	DC AVG	54.0	20.8	compliant			
4574.075	Peak	74.0	42.0	e e maliant			
1574.875	DC AVG	54.0	21.7	compliant			
4000.05	Peak	74.0	58.8	ee melie et			
1889.85	DC AVG	54.0	38.5	compliant			
2204 825	Peak	74.0	55.7	ee melie et			
2204.825	DC AVG	54.0	35.4	compliant			
2540.0	Peak	74.0	47.2				
2519.8	DC AVG	54.0	26.9	compliant			
0004 775	Peak	74.0	52.1	a a mar l'a má			
2834.775	DC AVG	54.0	31.8	compliant			
24.40.75	Peak	74.0	54.5	ee melie et			
3149.75	DC AVG	54.0	34.2	compliant			
2464 725	Peak	74.0	51.9	compliant			
3464.725	DC AVG	54.0	31.6	compliant			
0770 7	Peak	74.0	47.1	e e maliant			
3779.7	DC AVG	54.0	26.8	compliant			



Plots:

Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
40.736		23.75			1000	120	101.0	н
40.736	17.23		30.0	12.77	1000	120	101.0	Н
45.445		24.01			1000	120	170.0	Н
45.445	17.63		30.0	12.37	1000	120	170.0	Н
314.933		57.66			1000	120	170.0	Н
314.933	57.49		36.0	-21.49	1000	120	170.0	Н
447.978		27.61			1000	120	170.0	V
447.978	21.69		36.0	14.31	1000	120	170.0	V
685.013	25.56		36.0	10.44	1000	120	170.0	Н
685.013		32.04			1000	120	170.0	Н
869.449	29.38		36.0	6.62	1000	120	170.0	V
869.449		35.83			1000	120	170.0	V

(continuation of the "Final_Result" table from column 14 ...)

Frequency	Azimuth	Corr.
(MHz)	(deg)	(dB)
40.736	313.0	13.3
40.736	313.0	13.3
45.445	171.0	13.6
45.445	171.0	13.6
314.933	168.0	14.9
314.933	168.0	14.9
447.978	41.0	17.6
447.978	41.0	17.6
685.013	178.0	21.4
685.013	178.0	21.4
869.449	237.0	23.8
869.449	237.0	23.8

Plot 3: 1000 MHz to 4000 MHz, vertical & horizontal polarisation

10 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test		
DUT	Device under test		
UUT	Unit under test		
GUE	GNSS User Equipment		
ETSI	European Telecommunications Standards Institute		
EN	European Standard		
FCC	Federal Communications Commission		
FCC ID	Company Identifier at FCC		
IC	Industry Canada		
PMN	Product marketing name		
HMN	Host marketing name		
HVIN	Hardware version identification number		
FVIN	Firmware version identification number		
EMC	Electromagnetic Compatibility		
HW	Hardware		
SW	Software		
Inv. No.	Inventory number		
S/N or SN	Serial number		
С	Compliant		
NC	Not compliant		
NA	Not applicable		
NP	Not performed		
PP	Positive peak		
QP	Quasi peak		
AVG	Average		
00	Operating channel		
OCW	Operating channel bandwidth		
OBW	Occupied bandwidth		
OOB	Out of band		
DFS	Dynamic frequency selection		
CAC	Channel availability check		
OP	Occupancy period		
NOP	Non occupancy period		
DC	Duty cycle		
PER	Packet error rate		
CW	Clean wave		
MC	Modulated carrier		
WLAN	Wireless local area network		
RLAN	Radio local area network		
DSSS	Dynamic sequence spread spectrum		
OFDM	Orthogonal frequency division multiplexing		
FHSS	Frequency hopping spread spectrum		
GNSS	Global Navigation Satellite System		
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz		

Annex B Document history

Version	Applied changes	Date of release	
-/-	Initial release	2018-03-08	

Annex C Accreditation Certificate

first page	last page
Dakks Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesällee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAAKS). Exempted is the unchanged form of separate disjennizations of the cover sheet by the conformity assessment holdy medioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAAKS. The accreditation was granted pursuant to the Act on the Accreditation Biody (AkkStelleG) of 31 July 2009 (Federal aux Gaztet [a, 26:25] and the fleguingtion (E(Sh OF 552006 of the European Parliament and of
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number 0-P-13207-601 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D=P4.12076-01-03	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journa of the European Linno 12.8 of 9 July 2008, p. 10). DANKs is a signatory to the Multilateral Agreements for Multual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites:
Frankfurt, 02.06.2037 Durf de United and Change	EA. www.european-accreditation.org ILAC: www.ilac.org IAF: www.iaf.nu
Service and d.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf