

TEST REPORT

Test report no.: 1-5386/17-01-02-A

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Pacific Industrial Co., Ltd Godo-Cho, Anpachi

Gifu 503-2397 / JAPAN Contact: Kunitaka Yano

e-mail: knyano@pacific-ind.co.jp

Manufacturer

Pacific Industrial Co., Ltd Godo-Cho, Anpachi Gifu 503-2397 / JAPAN

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Tire Pressure Monitoring System Transmitter

 Model name:
 PMV-C215

 FCC ID:
 PAXPMVC215

 IC:
 3729A-PMVC215

Frequency: 433.9 MHz

Technology tested: Proprietary(Modulated carrier)
Antenna: Integrated PCB antenna
Power supply: 3.0 V DC by battery (CR2032)

Temperature range: -10°C to +60°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	David Lang

Lab Manager Radio Communications & EMC David Lang
Lab Manager
Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test it	tem	5
	5.1 5.2	General description	
6	Descr	iption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber	8
7	Measu	urement uncertainty1	0
8	Seque	ence of testing1	1
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz1 Sequence of testing radiated spurious 30 MHz to 1 GHz1 Sequence of testing radiated spurious 1 GHz to 18 GHz1	2
9	Sumn	nary of measurement results1	4
	9.1	Additional comments1	4
10	Mea	surement results1	5
	10.1 10.2 10.3 10.4	Timing of the transmitter	5 6
11	Obs	servations3	2
Anr	nex A	Glossary3	2
Anr	nex B	Document history3	3
Anr	nex C	Accreditation Certificate3	3

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5386/17-01-02 and dated 2017-11-13

2.2 Application details

Date of receipt of order: 2017-11-02
Date of receipt of test item: 2017-11-06
Start of test: 2017-11-07
End of test: 2017-11-10

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 33

-/-

3 Test standard/s and references

ANSI C63.10-2013

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic

equipment in the range of 9 kHz to 40 GHz

of unlicensed wireless devices

American national standard of procedures for compliance testing

© CTC advanced GmbH Page 4 of 33

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+20 °C during room temperature tests No tests under the extremes of temperature required! No tests under the extremes of temperature required!
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.0 V DC by battery (CR2032)
Power supply	:	V_{max}	No tests under the extremes of voltage required!
		V_{min}	No tests under the extremes of voltage required!

5 Test item

5.1 General description

Kind of test item :	Tire Pressure Monitoring System Transmitter
Type identification :	PMV-C215
HMN :	-/-
PMN :	PMV-C215
HVIN :	PMV-C215
FVIN :	-/-
S/N serial number :	0004429
HW hardware status :	Not provided!
SW software status :	Not provided!
Frequency band :	433.9 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	FSK (F2D)
Number of channels :	1
Antenna :	Integrated PCB antenna
Power supply :	3 V DC by battery (CR2032)
Temperature range :	-10°C to +60°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5386/17-01-01_AnnexA

1-5386/17-01-01_AnnexB 1-5386/17-01-01_AnnexD

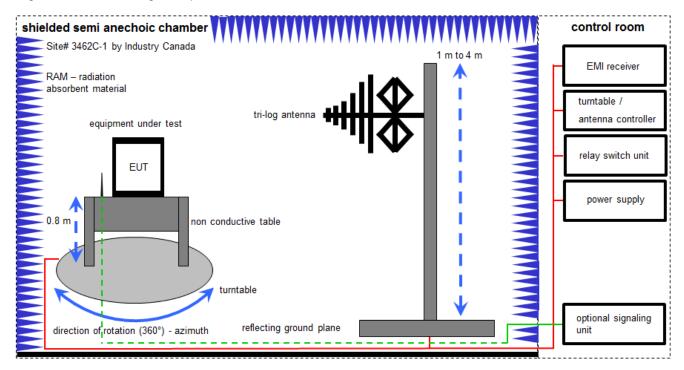
© CTC advanced GmbH Page 5 of 33

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical
ev Ve	periodic self verification long-term stability recognized	izw g	maintenance) internal cyclical maintenance blocked for accredited testing
vlkl! NK!	Attention: extended calibration interval Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 33

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

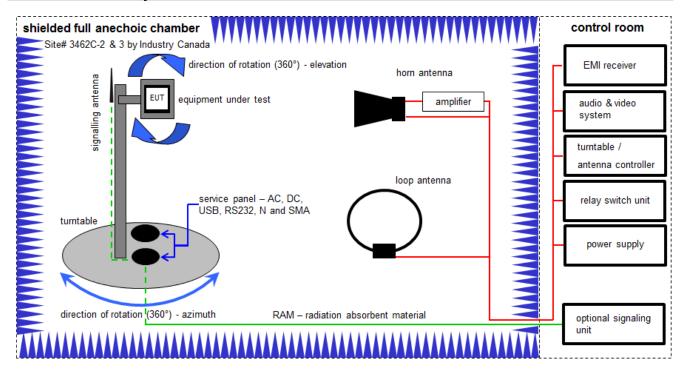
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 7 of 33

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
3	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
4	A+B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
5	A+B	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
6	В	Highpass Filter	WHKX2.6/18G- 10SS	Wainwright	12	300004651	ne	-/-	-/-
7	A+B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
8	A+B	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
9	A+B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018
10	A+B	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

© CTC advanced GmbH Page 8 of 33

6.3 Test setup for normalized measurement configurations

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101353	300004819	k	19.09.2016	18.09.2018
2	Α	RF-Cable WLAN- Tester Analyzer	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 54876	400001220	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 33

7 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Time of occupancy	According BT Core specification					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

© CTC advanced GmbH Page 10 of 33

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 11 of 33

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 33

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 33

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9 RSS-GEN	See table!	2017-11-16	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (a) (1) RSS-210 Issue 9	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 9	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-GEN	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.1 Additional comments

Reference documents: Test software manual: CCT_小型トリガ機_取扱説明書_英語版.pdf

Special test descriptions: None

Configuration descriptions: While timing measurements were performed with all supported operating

modes (Stationary mode: t91; Rotating mode 1: t92; Rotating mode 2: t93; Pressure alert: t94) the field strength measurements were performed with

constant modulated carrier (t95).

© CTC advanced GmbH Page 14 of 33

10 Measurement results

10.1 Timing of the transmitter

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Depends on the pulse train		
Resolution bandwidth:	3 MHz		
Video bandwidth:	3 MHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Test setup:	See chapter 6.3 A		
Measurement uncertainty: See chapter 7			

Limits:

FCC	IC

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

§15.231 (e)

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

§15.231 (a)

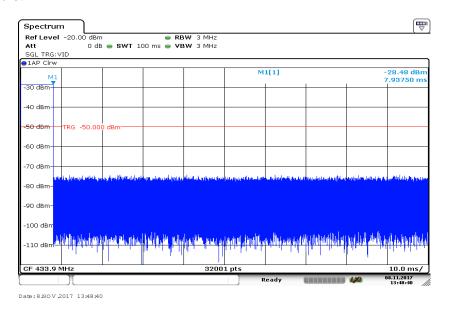
The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation: (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation. (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour. (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition. (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

© CTC advanced GmbH Page 15 of 33

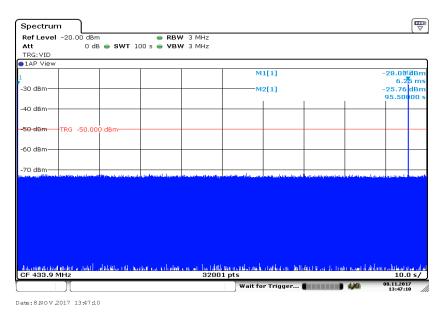
Result: Stationary mode: §15.231 (e)

1 burst within 100 ms = 7.9 % correction factor: $20 \log (0.079) = 22.0 dB$

Maximum transmission period: 7.9 ms (see Marker 1 in plot below)

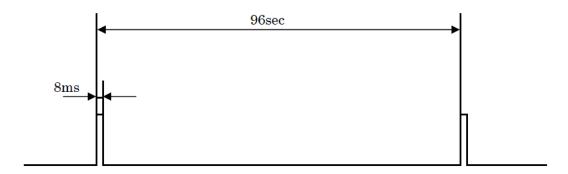

Limit: 1 second

Minimum silent period: 95500 ms - 7.9 ms = 95.5 sec


Limit: 1. > 30 times of the transmission = 30 * 7.9 ms = 237 ms (only relevant if greater than 10 sec)

2. > 10 sec

Plot 1: Transmit burst


Plot 2: Timing of the transmitter

© CTC advanced GmbH Page 16 of 33

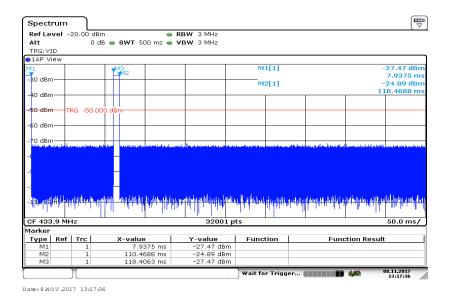
Plot 3: Timing of the transmitter (provided by manufacturer)

© CTC advanced GmbH Page 17 of 33

Result: Rotating mode 1: §15.231 (e)

1 burst within 100 ms = 7.9 % correction factor: $20 \log (0.079) = 22.0 dB$

Maximum transmission period: 118.4 ms (see Marker 3 in plot below)


Limit: 1 sec

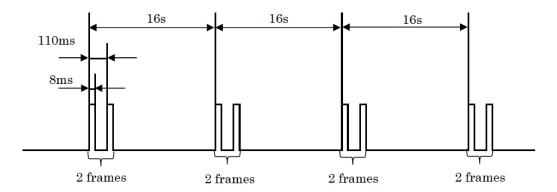
Minimum silent period: 15873.8 ms - 118.4 ms = 15.76 s


Limit: 1. > 30 times of the transmission = 30 * 118.4 ms = 3552 ms (only relevant if greater than 10 sec)

2. > 10 sec

Plot 1: Transmit burst

Plot 2: Timing of the transmitter



Date: 8 NOV 2017 13:14:49

© CTC advanced GmbH Page 18 of 33

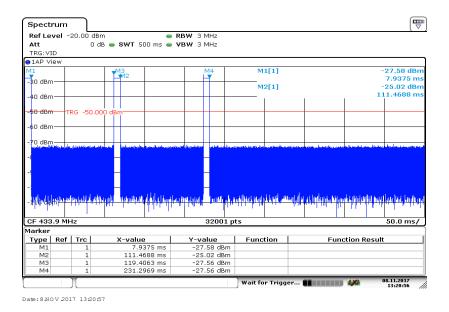
Plot 3: Timing of the transmitter (provided by manufacturer)

© CTC advanced GmbH Page 19 of 33

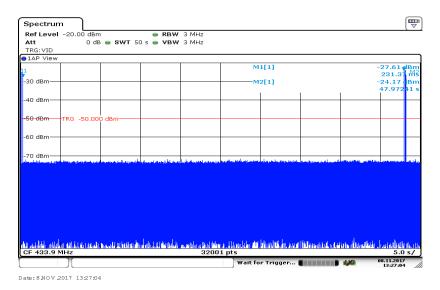
Result: Rotating mode 2: §15.231 (e)

1 burst within 100 ms = 7.9 % correction factor: $20 \log (0.079) = 22.0 dB$

Maximum transmission period: 231.3 ms (see Marker 4 in plot below)

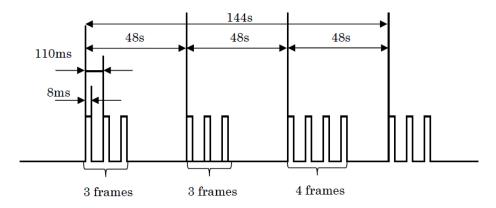

Limit: 1 sec

Minimum silent period: 47972.4 ms - 231.3 ms = 47.7 s


Limit: 1. > 30 times of the transmission = 30 * 231.3 ms = 6939 ms (only relevant if greater than 10 sec)

2. > 10 sec

Plot 1: Transmit burst


Plot 2: Timing of the transmitter

© CTC advanced GmbH Page 20 of 33

Plot 3: Timing of the transmitter (provided by manufacturer)

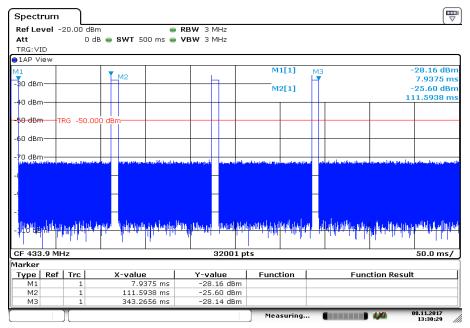
© CTC advanced GmbH Page 21 of 33

Result: Pressure alert mode: §15.231 (a)

1 burst within 100 ms = 7.9 % correction factor: $20 \log (0.079) = 22.0 dB$

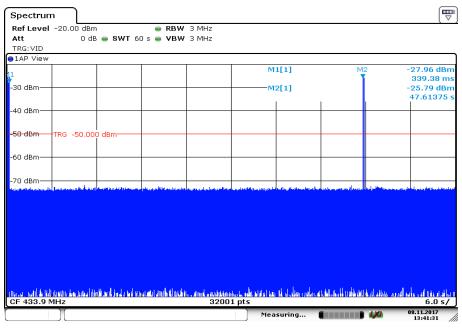
Maximum transmission period: The estimated maximum transmission time for 30 frames is based on the measured Dwell Time and frame length (see plots below) is:

$$29 \times 111.6 \text{ ms} + 7.9 \text{ ms} = 3.244 \text{ sec}$$


Limit:

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

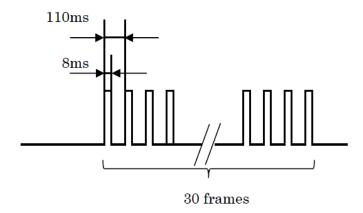
© CTC advanced GmbH Page 22 of 33



Plot 1: Transmit burst

Date: 8 NOV 2017 13:30:30

Plot 2: Timing of the transmitter



Date: 8 NO V 2017 13:41:31

© CTC advanced GmbH Page 23 of 33

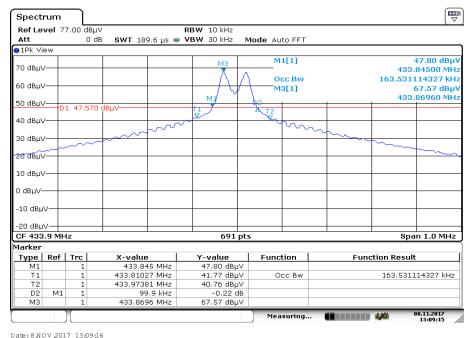
Plot 3: Timing of the transmitter (provided by manufacturer)

© CTC advanced GmbH Page 24 of 33

10.2 Emission bandwidth

Measurement:

Measurement of the 99 % bandwidth of the modulated signal


Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 % of the span (10 kHz)		
Video bandwidth:	3 x RBW		
Span:	Depends on the signal		
Trace-Mode:	Max. hold		
Test setup:	See chapter 6.3 A		
Measurement uncertainty: See chapter 7			

Limits:

FCC	IC		
The OBW shall not be wider than 0.25% of the centre frequency, here maximum 787.5 kHz.			

Result:

Plot 1: Emissions bandwidth

99 % emission bandwidth: 163.53 kHz

20 dBc bandwidth: 99.9 kHz

© CTC advanced GmbH Page 25 of 33

10.3 Field strength of the fundamental

Measurement:

Measurement parameter				
Detector:	Peak / pulse averaging			
Sweep time:	Auto			
Resolution bandwidth:	100 kHz			
Video bandwidth:	3 x RBW			
Trace mode:	Max. hold			
Test setup: See chapter 6.2 A				
Measurement uncertainty: See chapter 7				

Limits:

FCC	IC					
	Field strength of the fundamental.					
In addition to the provisions of S	In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators					
·	under this Section s	•				
Fundamental Frequency (MHz) Field strength of Fundamental (µV/m) Measurement distance						
40.66 – 40.70	1,00	00		3		
70-130	50	500		3		
130-174	500 to	1,500		3		
174-260	1,50	00		3		
260-470	1,500 to 5,000			3		
Above 470	5,00	00		3		
433.9	4398.33 [72.87 dBµV/m]			3		
40.66 – 40.70	2,25	50		3		
70-130	1,250			3		
130-174	1,250 to 3,750			3		
174-260	3,750			3		
260-470	3,750 to 12,500		3,750 to 12,500			3
Above 470	12,500		12,500			3
433.9	10995.83 [80).82 dBµV/m]		3		

Result:

TEST CONDITIONS		Field strength (dBµV/m at 3 m distance)		
Frequency		MHz	MHz	
Mode		Peak	Average	
T _{nom} V _{nom}		79.7 57.7*		
Measurement uncertainty		±30	dB	

^{*}Value recalculated from Peak-to-Average correction factor calculated in 9.1

© CTC advanced GmbH Page 26 of 33

10.4 Field strength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector:	Peak / average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz / 1 MHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace-Mode:	Max. hold		
Test setup:	See chapter 6.1 A, 6.1 B, 6.2 A		
Measurement uncertainty:	See chapter 7		

Limits:

FCC		IC		
	Field strength of	he fundamental.		
In addition to the provisions of S	Section 15.205, the f	eld strength of er	nissions from intentional radiators	
operated (under this Section s	hall not exceed th	e following:	
Fundamental Frequency (MHz) Field strength (µV/		•	Measurement distance (m)	
40.66 – 40.70	229	5	3	
70-130	12	5	3	
130-174 125 to		375	3	
174-260 37		5	3	
260-470 375 to		,250	3	
Above 470	1,25	0	3	

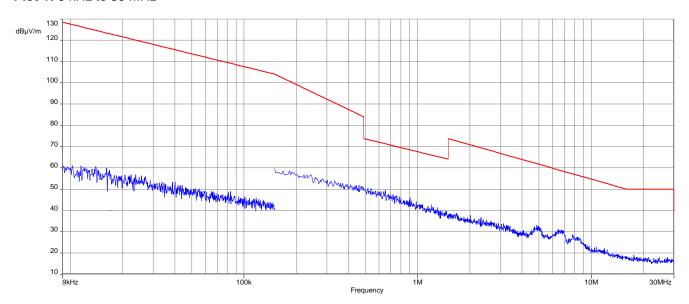
The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC			
Frequency (MHz)	Field strength (μV/m)		Measurement distance (m)		
0.009 - 0.490	2400/F(kHz)		300		
0.490 - 1.705	24000/F(kHz)		30		
1.705 – 30	30		30		
30 – 88	100		3		
88 – 216	150		150		3
216 – 960	200		3		
above 960	50	0	3		

© CTC advanced GmbH Page 27 of 33

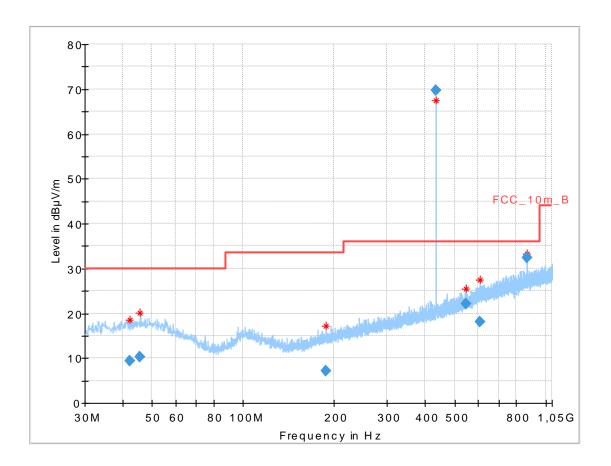
Results:

f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]	Results
	All Peak	emissions below 30 l	MHz > 20 dB below Ave	rage limit
	For results in ran	ge between 30 MHz	and 1GHz refer to result	table below plot.
4004.000	Peak	74	58.3	Compliant
1301.600	DC AVG	54	36.3*	Compliant
1735.540	Peak	74	58.7	Compliant
1735.540	DC AVG	54	36.7*	Compliant
2169.480	Peak	74	52.6	Compliant
2109.460	DC AVG	54	30.6*	Compliant
2603.160	Peak	74	55.8	Compliant
2003.100	DC AVG	54	33.8*	Compliant
3037.100	Peak	74	55.3	Compliant
3037.100	DC AVG	54	33.3*	Compliant
3471.560	Peak	74	51.5	Compliant
347 1.300	DC AVG	54	29.5*	Compliant
3905.280	Peak	74	57.3	Compliant
3905.200	DC AVG	54	35.3*	Compliant
4339.200	Peak	74	49.5	Compliant
4339.200	DC AVG	54	27.5*	Compliant
4773.120	Peak	74	50.5	Compliant
4113.120	DC AVG	54	28.5*	Compliant
5206.560	Peak	74	52.3	Compliant
3200.300	DC AVG	54	30.3*	Compliant
5641 200	Peak	74	51.4	Compliant
5641.200	DC AVG	54	29.4*	Compliant


^{*}Value recalculated from Peak-to-Average correction factor calculated in 9.1

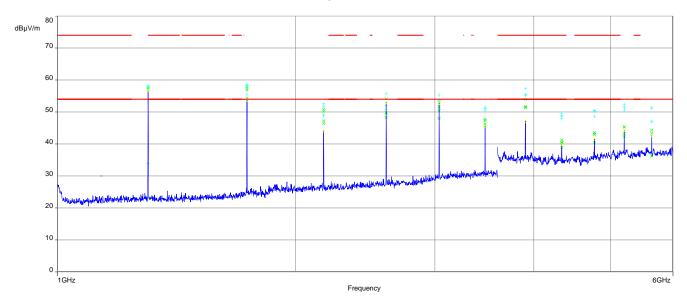
© CTC advanced GmbH Page 28 of 33

Plots:


Plot 1: 9 kHz to 30 MHz

© CTC advanced GmbH Page 29 of 33

Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.112	9.41	30.0	20.59	1000	120	100.0	٧	278.0	13.4
45.476	10.32	30.0	19.68	1000	120	170.0	Н	0.0	13.6
187.439	7.16	33.5	26.34	1000	120	170.0	Н	287.0	11.3
433.869	69.71	36.0	-33.71	1000	120	101.0	Н	195.0	17.4
544.018	22.11	36.0	13.89	1000	120	101.0	Н	331.0	19.3
607.092	18.11	36.0	17.89	1000	120	170.0	Н	46.0	20.8
867.757	32.34	36.0	3.66	1000	120	98.0	Н	155.0	23.8

© CTC advanced GmbH Page 30 of 33

Plot 3: 1000 MHz to 6000 MHz, vertical & horizontal polarisation

© CTC advanced GmbH Page 31 of 33

11 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test				
DUT	Device under test				
UUT	Unit under test				
FCC	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
IC	Industry Canada				
PMN	Product marketing name				
HMN	Host marketing name				
HVIN	Hardware version identification number				
FVIN	Firmware version identification number				
EMC	Electromagnetic Compatibility				
HW	Hardware				
SW	Software				
Inv. No.	Inventory number				
S/N or SN	Serial number				
С	Compliant				
NC	Not compliant				
NA	Not applicable				
NP	Not performed				
PP	Positive peak				
QP	Quasi peak				
AVG	Average				
ОС	Operating channel				
OCW	Operating channel bandwidth				
OBW	Occupied bandwidth				
ООВ	Out of band				
DFS	Dynamic frequency selection				
CAC	Channel availability check				
OP	Occupancy period				
NOP	Non occupancy period				
DC	Duty cycle				
PER	Packet error rate				
CW	Clean wave				
MC	Modulated carrier				

© CTC advanced GmbH Page 32 of 33

Annex B Document history

Version	Applied changes	Date of release	
-/-	Initial release	2017-11-16	
А	Timing calculations revised; Model name changed; Editorial changes	2017-11-14	

Annex C Accreditation Certificate

first page	last page			
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Multual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin G0327 Frankfurt am Main Signe Berlin Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig			
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03 Frankfurt, 02.06.2017 Disjunction of Division of Divisi	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I, p. 2625) and the Regulation (EC) No 765/2008 of the European Parlament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). DAKS is a signatory to the Multilational Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAP) and International Liboratory Accreditation Cooperation (IAC). The signatories to these agreements recognities each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org IAF: www.iaf.ru			

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 33 of 33