

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

Akkreditierungsstelle D-PL-12076-01-01

Pacific Industrial Co., LtdGodo-Cho, AnpachiGifu 503-2397 / JAPANPhone:-/-Fax:-/-Contact:Kunitaka Yanoe-mail:knyano@pacific-ind.co.jpPhone:+81 584 28 01 11

Manufacturer

Pacific Industrial Co., Ltd Godo-Cho, Anpachi Gifu 503-2397 / JAPAN

Test standard/s

47 CFR Part 15
Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9
Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item			
Kind of test item:	Tire Pressure Monitoring System Transmitter		
Model name:	PMV-C11A		
FCC ID:	PAXPMVC11A		
IC:	3729A-PMVC11A		
Frequency:	314.98 MHz		
Technology tested:	Modulated carrier		
Antenna:	Integrated PCB antenna	PMV-C11A ID:0000004	
Power supply:	3.0 V DC by lithium battery		

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Stefan Bös Lab Manager Radio Communications & EMC

Test performed:

Marco Bertolino Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s and references	4
4	Test e	environment	5
5	Test i	item	5
	5.1 5.2	General description Additional information	5
6	Desc	ription of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Test setup for normalized measurement configurations	8
7	Sequ	ence of testing	10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 4 GHz	11
8	Sumr	nary of measurement results	13
	8.1	Additional comments	
9	Meas	urement results	
	9.1 9.2 9.3 9.4	Timing of the transmitter and silent periods between transmissions Emission bandwidth Field strength of the fundamental Field strength of the harmonics and spurious	20 21
10	Ob	servations	27
An	nex A	Document history	27
An	nex B	Further information	27
An	nex C	Accreditation Certificate	28

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2016-12-13
Date of receipt of test item:	2017-02-03
Start of test:	2017-02-03
End of test:	2017-02-07
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		35 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.0 V DC by lithium batteryNo tests under extreme conditions required.No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item	Tire Pressure Monitoring System Transmitter
Type identification	PMV-C11A
HMN	-/-
PMN	PMV-C11A
HVIN	PMV-C11A
FVIN	-/-
S/N serial number	Radiated unit 1: 0000003 Radiated unit 2: 0000004 (EUT)
HW hardware status	-/-
SW software status	RF test software
Frequency band	314.98 MHz
Type of radio transmission Use of frequency spectrum	modulated carrier
Type of modulation	F2D
Number of channels	1
Antenna	Integrated PCB antenna
Power supply	3.7 V DC by lithium battery

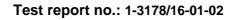
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-3178/16-01-01_AnnexA 1-3178/16-01-01_AnnexB 1-3178/16-01-01_AnnexD

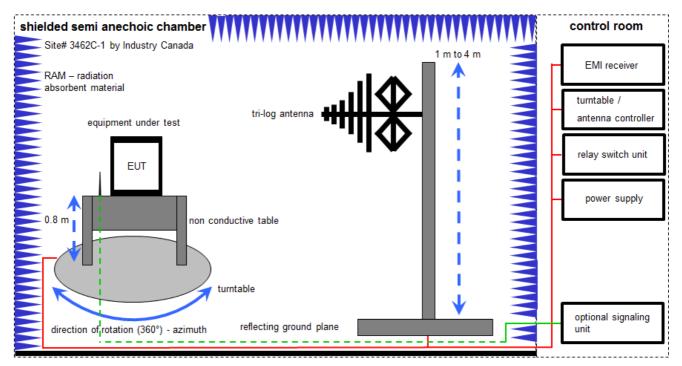
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

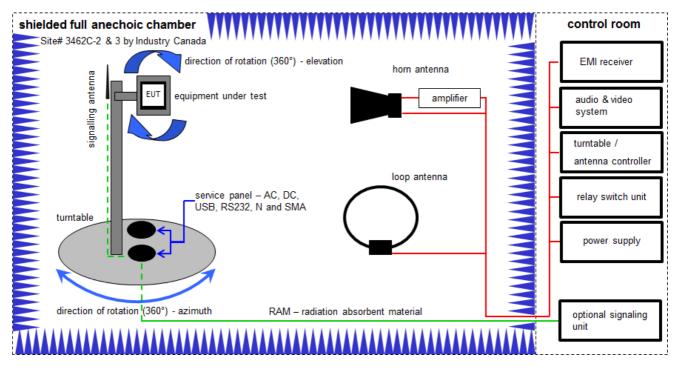
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

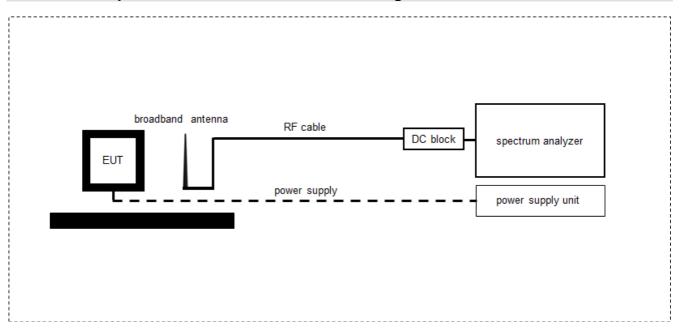
6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKI!	20.05.2015	20.05.2017
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	А, В	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	В	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	А, В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	Α, Β	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	viKi!	13.09.2016	13.03.2018

6.3 Test setup for normalized measurement configurations

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	23.01.2017	23.01.2018
2	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
3	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 699714	400001185	ev	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 4 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9	See table!	2017-02-08	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) 15.231(a + e) RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (a + e) RSS-210 Issue 9	Silent period between transmissions	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	X				-/-
§ 15.231 (a + e) RSS-210 Issue 9	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-GEN	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		1*

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

1* No receiver mode integrated.

8.1 Additional comments

Reference documents: TPMS_Technical_Document_PMV-C11A (EUT information and timing)

Special test descriptions: None

Configuration descriptions: None

9 Measurement results

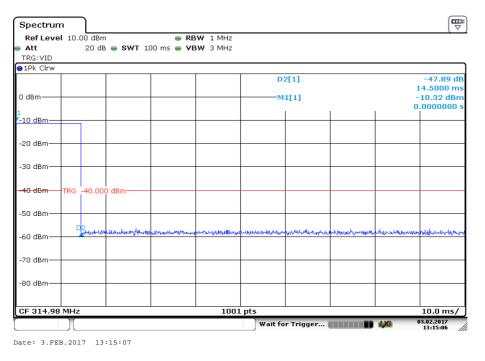
9.1 Timing of the transmitter and silent periods between transmissions

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	Zero		
Trace mode:	Single sweep		
Test setup:	See chapter 6.3 A		

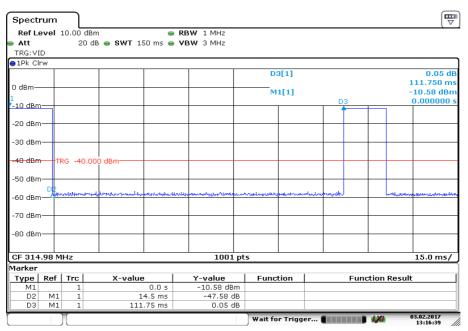
Limits:

FCC	IC
terms of the average value of the emission, and pustrength shall be determined by averaging over one long as the pulse train does not exceed 0.1 seconds. I longer than 0.1 seconds) or in cases where the pustrength shall be determined from the average absolute field strength is at its maximum value. The exact be submitted with any application for certification of the second seco	b), when the radiated emission limits are expressed in ulsed operation is employed, the measurement field complete pulse train, including blanking intervals, as As an alternative (provided the transmitter operates for ulse train exceeds 0.1 seconds, the measured field ute voltage during a 0.1 second interval during which method of calculating the average field strength shall or shall be retained in the measurement data file for obtification or verification.


§15.231 (e)

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Result:


Plot 1: Transmit burst

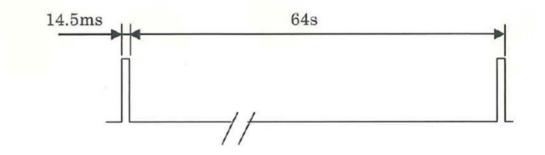
Transmit time (Tx on) = 14.5 ms @ 100 ms

The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is 16.8 dB

Plot 2: TX on time

Date: 3.FEB.2017 13:16:40

Timing according to the technical document TPMS_Technical_Document_PMV-C11A:

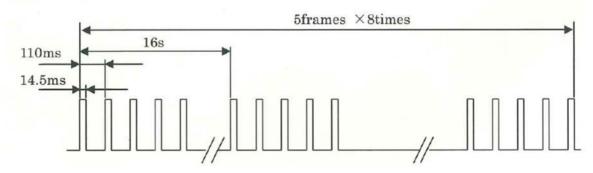

Normal mode: acc. §15.231

1 burst within 14.5 ms = 14.5 % correction factor: 20 log (0.145) = 16.8 dB

Minimum silent period: 64 sec - 14.5 ms = 63.9855 sec

Limit: 1. > 30 times of the transmission = 30 * 14.5 ms = 435 ms (only relevant if greater than 10 sec) 2. > 10 sec

□ Normal

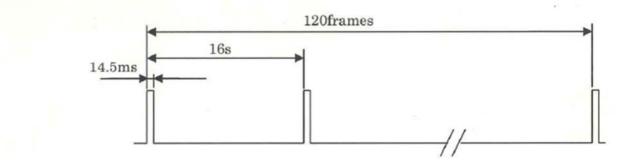

Pressure alert mode: acc. §15.231

Transmission time: 4 * 111.75 ms + 14.5 ms = 461.5 ms < 1 sec

Minimum silent period: $16 \sec - 461.5 \, \text{ms} = 15.5385 \, \text{sec}$

Limit: 1. >30 times of the transmission = 30 * xxx = xxx (only relevant if greater than 10 sec) 2. > 10 sec

Pressure alert

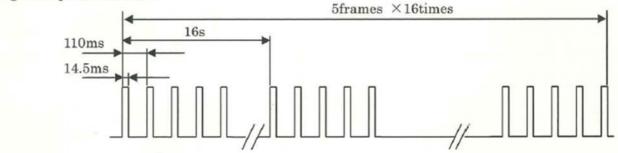

Slow puncture alert mode: §15.231

Transmission time: 1 x 14.5 ms = 14.5 ms < 1 sec

Minimum silent period: 16 sec - 14.5 ms = 15.9855 sec

Limit: 1. >30 times of the transmission = 30 * xxx = xxx (only relevant if greater than 10 sec) 2. > 10 sec

 \Box Slow puncture alert


High temperature alert: §15.231

Transmission time: 4 x 111.75 ms + 14.5 ms = 461.5 ms < 1 sec

Minimum silent period: $16 \sec - 461.5 \operatorname{ms} = 15.5385 \sec 360$

Limit: 1. >30 times of the transmission = 30 * xxx = xxx (only relevant if greater than 10 sec) 2. > 10 sec

□ High temperature alert

9.2 Emission bandwidth

Measurement:

Measurement of the 99 % bandwidth of the modulated signal

Measurement parameter			
Detector:	Peak		
Sweep time:	200 ms		
Resolution bandwidth:	1 % of the span (5 kHz) FCC 1 % – 5 % of the OBW (1.4 kHz - 6.8 kHz) RSS		
Video bandwidth:	3 x RBW (30 kHz)		
Span:	500 kHz		
Trace mode:	Max. hold		
Test setup:	See chapter 6.3 A		

Limits:

FCC	IC			
The OBW shall not be wider than 0.25% of the centre frequency, here maximum 787.5 kHz.				

Result:

Plot 1: Emissions bandwidth

	evel :	117.00 d		👄 RBW 6.25 kH:	-		
Att		20	0 dB 👄 SWT 200 m:	s 👄 VBW 🛛 30 kH:	2 Mode Sweep)	
∎1Pk Vi	ew						
110 dBL	o (D3[1]		-0.25 d
110 000	~			M2	Occ Bw		113.130 kH
100 dBL	N			X			136.681659170 kH
100 000					[1]		79.72 dBµ 314.926340 MF
90 dBµ\	/				<u> </u>		314.926340 MF
				м1/			
80 dBµ∖	/+D	1 79.720) dBµV T		✓ N ³ T2		
				We want to be a construction of the second se	N.		
70 dBµ∖	/						
SO GROV							
50 dBu\	.						
зо авру							
40 dBu∖							
10 000							
30 dBu\	/						
20 dBµ\	/						
CF 314	.985	MHz		2001 p	its		Span 500.0 kH
1arker							
Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	314.92634 MHz	79.72 dBµV			
Τ1		1	314.913286 MHz	74.42 dBµV	Occ Bw		136.68165917 kHz
Т2		1	315.049968 MHz				
M2		1	314.94327 MHz				
D3	M1	1	113.13 kHz	-0.25 dB			

Date: 3.FEB.2017 12:11:56

99 % emission bandwidth:	137 kHz
20 dBc bandwidth:	113 kHz

9.3 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak / pulse averaging / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	120 kHz		
Video bandwidth:	3 x RBW		
Trace mode:	Max. hold		
Test setup:	See chapter 6.2 A		

Limits:

FCC			IC		
Field strength of the fundamental.					
In addition to the provisions of S	ection 15.205, the	field strength of en	nissions from intentional radiators		
	under this Section s	-			
Fundamental Frequency (MHz) Field strength of Fundamental (µV/m) Measurement distance (n					
40.66 - 40.70	1,00	00	3		
70-130	50	0	3		
130-174	500 to 1,500		3		
174-260	1,50	00	3		
260-470	1,500 to 5,000		3		
Above 470	5,000		3		
314.98	3,249.64 [70.24 dBµV/m]		3		
40.66 - 40.70	2,2	50	3		
70-130	1,250		3		
130-174	1,250 to 3,750		3		
174-260	3,750		3		
260-470	3,750 to 12,500		3		
Above 470	12,500		3		
314.98	8,123.95 [78.20 dBµV/m]		3		

Result:

TEST CONDITIONS		Field strength (dBµV/	/m @ 3 m distance)
Frequency		MHz	MHz
Mo	Mode		Average
T _{nom} V _{nom}		71.1 54.3*	
Measurement uncertainty		±30	B

*Value recalculated from Peak-to-Average correction factor calculated in 9.1

9.4 Field strength of the harmonics and spurious

Measurement:

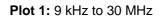
Measurement parameter			
Detector:	Peak / average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace mode:	Max. hold		
Test setup:	See chapter 6.1 A See chapter 6.2 B		

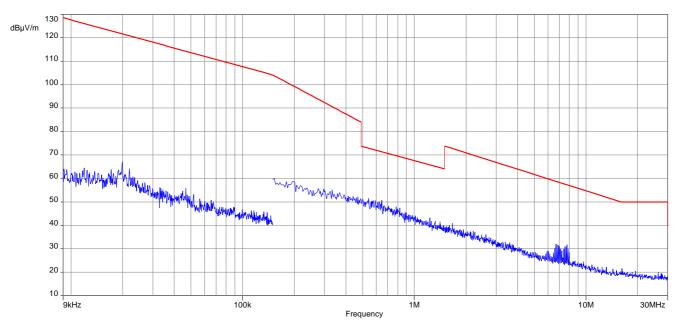
Limits:

FCC			IC		
Field strength of the fundamental.					
In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators					
operated u	under this Section s	hall not exceed th	e following:		
Fundamental Frequency (MHz)	Field strength (µV/		Measurement distance (m)		
40.66 - 40.70	100 /225		100 /225		3
70-130	50 / 125		3		
130-174	50 to 150 125 to 375		3		
174-260	150 / 375		150 / 375		3
260-470	150 to 500 375 to 1,250		3		
Above 470	500 / 1,250		3		

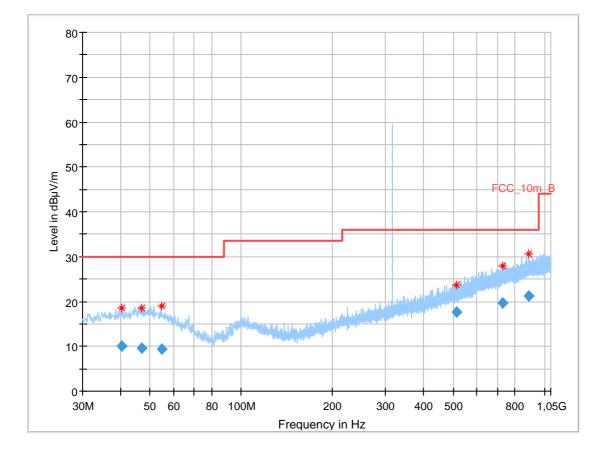
The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC		
Frequency (MHz)	Field strength (µV/m)		Measurement distance (m)	
0.009 - 0.490	2400/F	(kHz)	300	
0.490 - 1.705	24000/F	F(kHz)	30	
1.705 – 30	30)	30	
30 - 88	10	0	3	
88 – 216	15	0	3	
216 - 960	60 200		3	
above 960	50	0	3	

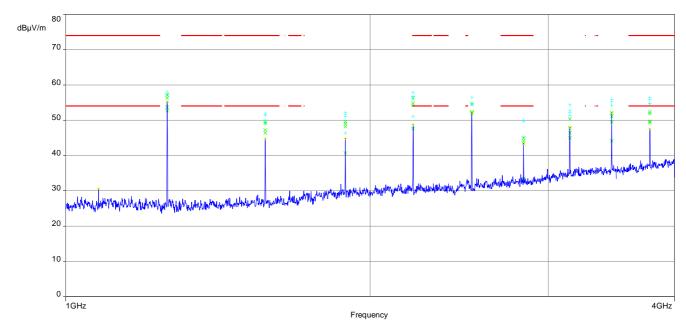



Results:

f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]	Results				
	For emissions below 1 GHz, please look at the table below the 1 GHz plot.							
1260	Peak	-/-	58.0	Compliant				
(No RB)	AVG (duty cycle average)	62	41.5	Compliant				
1575	Peak	74	51.8	Compliant				
1575	AVG (duty cycle average)	54	35.0	Compliant				
1890	Peak	-/-	52.2	Compliant				
(No RB)	AVG (duty cycle average)	62	35.4	Compliant				
2205	Peak	74	57.8	Compliant				
2205	AVG (duty cycle average)	54	41.0	Compliant				
2520 (No RB)	Peak	-/-	56.5	Compliant				
	AVG (duty cycle average)	62	39.7	Compliant				
0005	Peak	74	50.0	Compliant				
2835	AVG (duty cycle average)	54	33.2	Compliant				
3150	Peak	-/-	54.3	Compliant				
(No RB)	AVG (duty cycle average)	62	37.5	Compliant				
3465 (No RB)	Peak	-/-	55.9	Compliant				
	AVG (duty cycle average)	62	39.1	Compliant				
0770	Peak	74	56.5	Compliant				
3779	AVG (duty cycle average)	54	39.7	Compliant				



Plots:



Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.246650	10.00	30.00	20.00	1000.0	120.000	101.0	Н	109.0	13.2
47.119650	9.68	30.00	20.32	1000.0	120.000	185.0	V	272.0	13.7
54.552300	9.40	30.00	20.60	1000.0	120.000	101.0	Н	328.0	13.2
512.027550	17.66	36.00	18.34	1000.0	120.000	98.0	Н	77.0	18.9
730.896750	19.57	36.00	16.43	1000.0	120.000	179.0	Н	109.0	22.3
886.357500	21.28	36.00	14.72	1000.0	120.000	185.0	Н	286.0	24.0

Plot 3: 1000 MHz to 4000 MHz, vertical & horizontal polarisation

10 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2017-02-08	

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number
OBW		Occupied Bandwidth
OC		Operating Channel
OCW		Operating Channel Bandwidth
OOB		Out Of Band

Annex C Accreditation Certificate

Note:

The current certificate including annex can be received on request.