

EMC Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

Model: P2181 Party Dock

IC CERTIFICATION #:	6384A-2181PDRM (Remote) 6384A-2181PDRX (Docking station)
FCC ID:	PAV2181

APPLICANT: Griffin Technology 1930 Air Lane Drive Nashville, TN 37210

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4

REPORT DATE: August 9, 2010

FINAL TEST DATES: June 3 and June 29, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill

Mark E. Hill Staff Engineer Elliott Laboratories

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 9, 2010	First release	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
MOMENTARILY OPERATED DEVICES – CONTROL SIGNALS	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	
ANTENNA SYSTEM	8
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	10
RADIATED EMISSIONS CONSIDERATIONS CONDUCTED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER	11 11
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	11 11
FILTERS/ATTENUATORS	11 11
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
BANDWIDTH MEASUREMENTS	15
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	16
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RADIATED FUNDAMENTAL AND SPURIOUS EMISSIONS – MOMENTARILY OPERATED DEVIC	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	20
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
	4

SCOPE

An electromagnetic emissions test has been performed on the Griffin Technology model P2181 Party Dock, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Griffin Technology model P2181 Party Dock complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Griffin Technology model P2181 Party Dock and therefore apply only to the tested sample. The sample was selected and prepared by Michael O'Connor of Griffin Technology.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.231 (a) (1)	RSS 210 A1.1.1 (1)	Duration of manually activated transmissions	< 5 seconds	< 5 seconds	Complies
15.231 (a) (2)	RSS 210 A1.1.1 (2)	Duration of automatically activated transmissions	All transmissions are manually activated.	< 5 seconds	N/A
15.231 (a) (3)	RSS 210 A1.1.1 (3)	Transmissions at predetermined / regular intervals	All transmissions are manually activated.	Such transmissions are not permitted	Complies
15.231 (a) (4)	RSS 210 A1.1.1 (4)	Pendency of transmissions used during emergencies	Not used for emergencies	-	N/A
15.231 (b)	RSS 210 Table 4	Fundamental Signal Strength	66.7dBµV/m @ 433.92MHz (-14.1dB)	Refer to table in limits section	Complies
15.231 (b) / 15.209	RSS 210 Table 2 / 4	Radiated Spurious Emissions, 30 - 4400 MHz	54.9dBµV/m @ 867.81MHz (-5.9dB)	Refer to table in limits section	Complies
15.231 (c)	RSS 210 A1.1.3	Bandwidth	786kHz	< 0.25% of center frequency	Complies
15.231 (d)	RSS 210 A1.1.4	Frequency Stability - 40.66 – 40.70 MHz band	Operation at 433 MHz	-	N/A

Note 1 – Refer to the operational description included with this application for detailed description and timing diagrams for transmission duration.

Note 2 - As the device is intended for hand-held operation it was tested in all three orthogonal orientations.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

Transmitter					
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna internal and integral to the device	-	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	Not applicable- no receiver	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	Not applicable- battery powered	Refer to standard	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	1088kHz	Information only	N/A

Receiver

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	34.5dBµV/m @ 106.93MHz (-9.0dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	59.3dBµV @ 0.226MHz (-3.3dB)	Refer to standard	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Radiated emission (field	dBµV/m	25 to 1000 MHz	± 3.6 dB
strength)	ubµ v/III	1000 to 40000 MHz	$\pm 6.0 \text{ dB}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Griffin Technology model P2181 Party Dock is comprised of up to 4 independent wireless controls and one docking station (receiver) for an Apple iPad. The remote controls are battery powered and do not provide a means for charging the batteries. The docking station is powered from an AC/DC adapter, rated 10-240V, 50-60Hz, 0.5A.

The samples was received on June 3, 2010 and tested on June 3 and June 29, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Griffin	P2181	Remote Control	N/A	PAV2181
Company	Model	Description	Serial Number	FCC ID
Griffin	P2181	iPad Docking	-	N/A
		Station		
DVE	DSA-15P-05-05	AC/DC Adapter	-	N/A

ANTENNA SYSTEM

The antenna is PCB trace antenna internal to the device.

US

ENCLOSURE

The remote control enclosure is primarily constructed of plastic. It measures approximately 2.6cm wide by 11.7cm deep by 1cm high.

The docking station enclosure is primarily constructed of plastic. It measures approximately 21cm wide by 23cm deep by 5cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No support equipment was used during testing of the remote control. For the docking station the following equipment was used as local support:

Manufacturer	Model	Description	Serial Number	FCC ID
Apple	iPad	Tablet PC	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Remote Control					
Dort	Connected	Cable(s)			
Port	То	Description	Shielded or Unshielded	Length(m)	
None	-	-	-	-	

Docking Station					
Port	Connected		Cable(s)		
FOIL	То	Description	Shielded or Unshielded	Length(m)	
DC Power In	AC/DC	2wire	Unshielded	1.5m	
	Adapter				
AC/DC	AC Mains	-	-	-	
Adapter					
Component	75ohm	coax	shielded	1.8m	
Video (x3)	termination				
Video (x1)	75ohm	coax	shielded	1.8m	
	termination				
Audio (x2)	75ohm	coax	shielded	1.8m	
	termination				

EUT OPERATION

The remote control was configured to continuously transmit when a button was depressed.

During emissions testing for the docking station, the iPad was configured to continuously play audio and display video that would be passed thru the EUT. The EUT had the receiver active.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

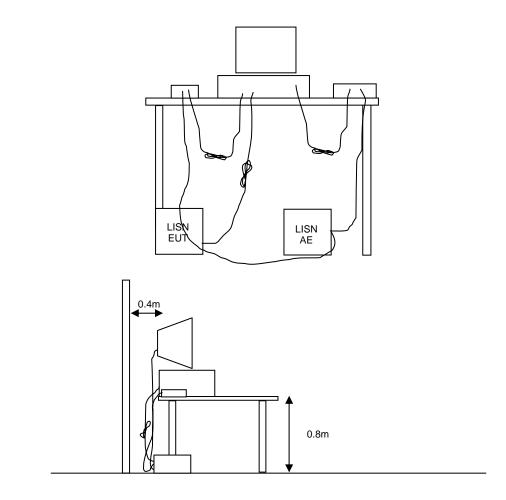
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

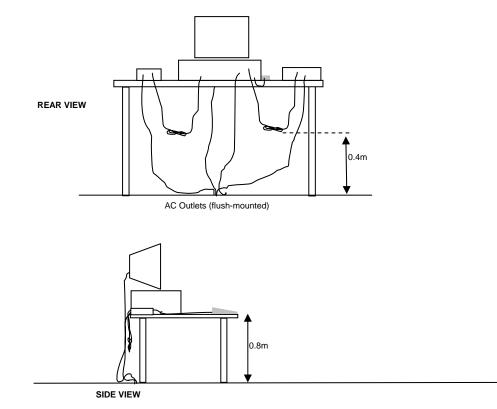

TEST PROCEDURES

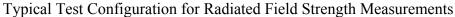
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

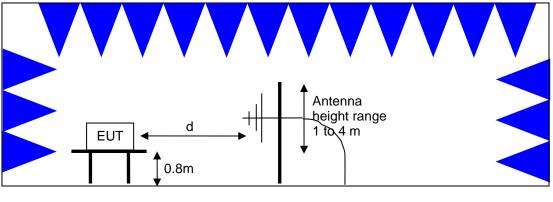

RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RADIATED FUNDAMENTAL AND SPURIOUS EMISSIONS - MOMENTARILY OPERATED DEVICES

The table below shows the limits for both the fundamental and spurious emissions for control signals. The limits for data signals, or signals with predetermined transmissions, are given in the second table

Operating Frequency (MHz)	Fundamental Field Strength (microvolts/m)	Spurious Emissions (microvolts/m)
70 - 130	1250	125
130 - 174	1250 - 3750	125 - 375
174 - 260	3750	375
260 - 470	3750 - 12,500	375 - 1250
Above 470	12,500	1250

Spurious Emissions Limits – Control Signals

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

 $M = R_c - L_s$

where:

and

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$$

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

	npponant i reet Equipment			
Radiated Emissions, 3	80 - 4,400MHz, 03-Jun-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/15/2010
	26.5GHz			
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	6/12/2010
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/2/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/13/2010
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103	1632	4/23/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz		1756	3/16/2011
Ronde & Schwarz		LSIDI	1750	3/10/2011
Radiated Emissions &	Signal Subs, 25 - 4,000 MHz, 03-	Jul-10		
<u>Manufacturer</u>	Description	Model	Asset #	Cal Due
Filtek	Filter, 1 GHz High Pass	HP12/1000-5BA	955	5/17/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-		1141	12/21/2010
	26.5 GHz			,_,_,_,
EMCO	Antenna, Horn, 1-18 GHz	3115	1386	9/2/2010
LINGO	(SA40-Blu)	0110	1000	0,2,2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	8/10/2010
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	3/31/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	2/5/2011
Agilent	PSG Vector Signal Generator	E8267C	1877	3/24/2011
-	(250kHz - 20GHz)			
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	2152	4/29/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	1/11/2011
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2204	2/26/2011
Radiated Emissions, 2	25 - 4000 MHz, 30-Jun-10			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Signal Generator, 9 kHz-1.04 GHz	SMY01	168	11/4/2010
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	5/17/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	1142	7/15/2010
Hewlett Packard	(SA40-Red) SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	4/14/2011
	(SA40) Blue			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/4/2011
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447E	1606	4/29/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	2/5/2011
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Conducted Emissions	- AC Power Ports, 01-Jul-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/12/2011
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	10/15/2010
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1594	5/27/2011
NUTUE & OUTWAIZ			1004	5/21/2011

Appendix A Test Equipment Calibration Data

Appendix B Test Data

T79128 11 Pages T79806 9 Pages

EMC Test Data

An ZAZZE	company	_	• / • • • • = ala
Client:	Griffin Technology	Job Number:	J79077
Model:	P2181 Audio/Video/Application Dock	Test-Log Number:	T79128
	(Remote Control)	Project Manager:	Sheareen
Contact:	Jeff Altheide		
Emissions Spec:	FCC 15.231(a) / EN 300 220	Class:	В
Immunity Spec:	EN 301 489-1/-3	Environment:	-

EMC Test Data

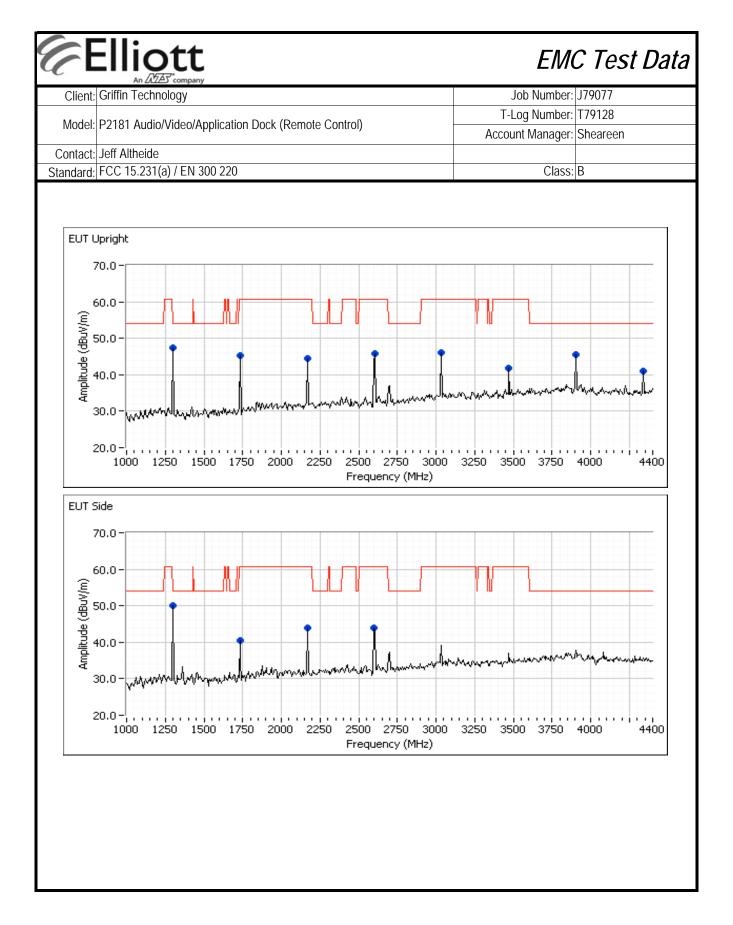
For The

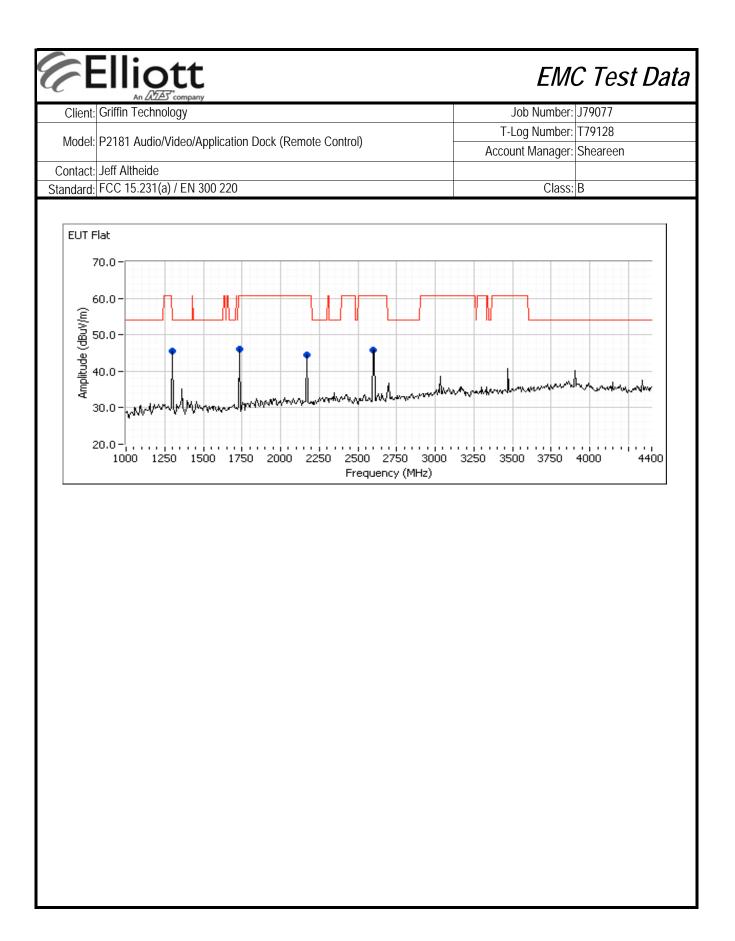
Griffin Technology

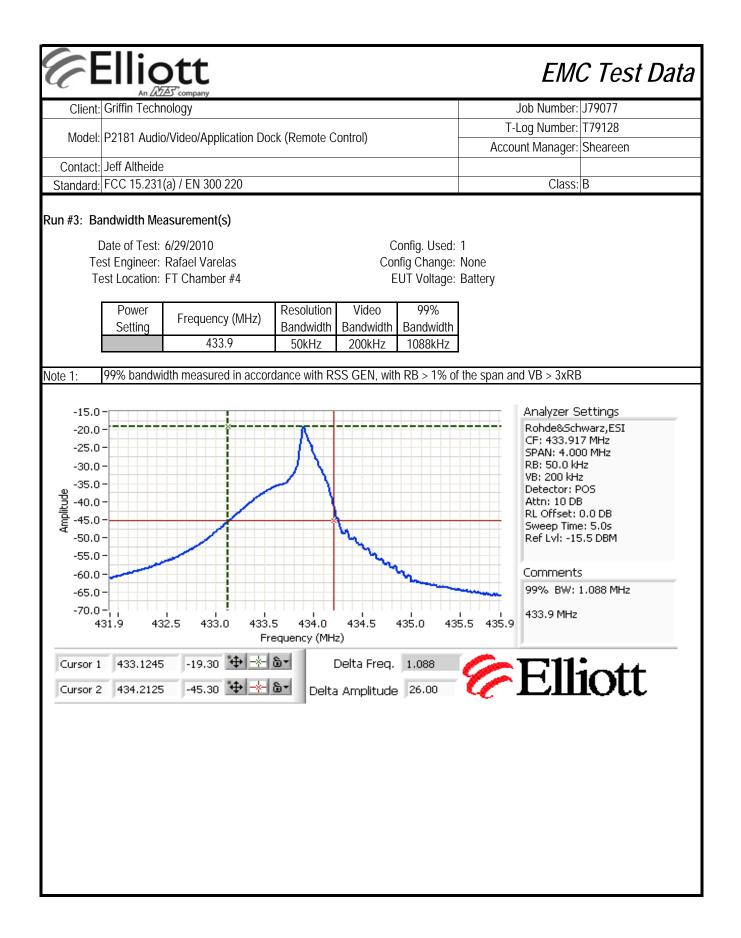
Model

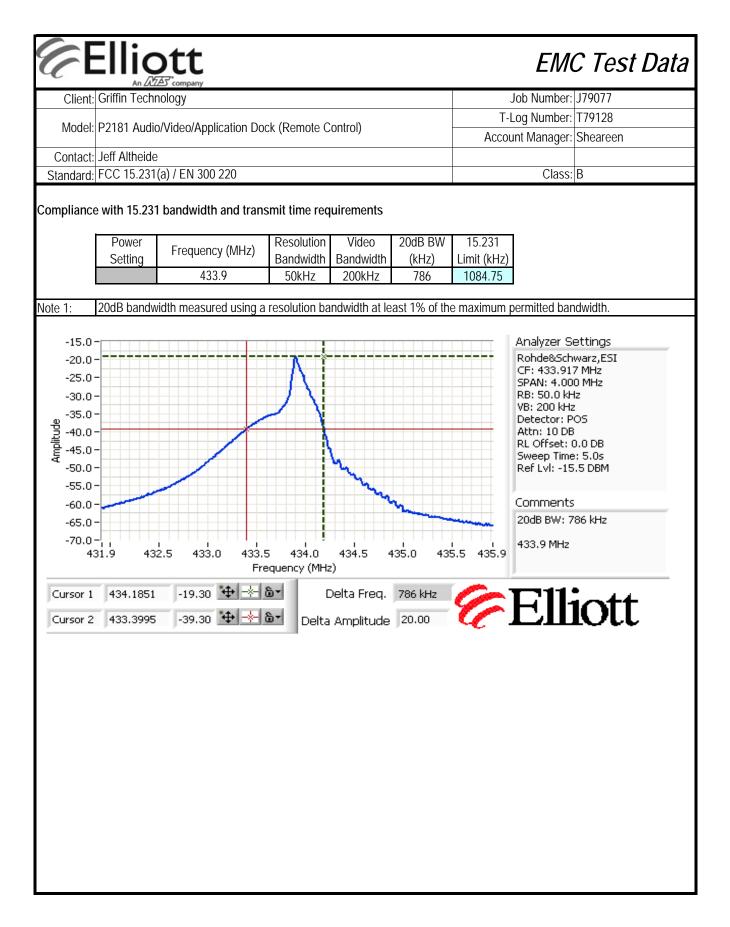
P2181 Audio/Video/Application Dock (Remote Control)

Date of Last Test: 7/31/2010


Elliott EMC Test Data Client: Griffin Technology Job Number: J79077 T-Log Number: T79128 Model: P2181 Audio/Video/Application Dock (Remote Control) Account Manager: Sheareen Contact: Jeff Altheide Standard: FCC 15.231(a) / EN 300 220 Class: B **Radiated Emissions** Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT was located on the turntable for radiated emissions testing. The EUT was tested in all three orthogonal orientations. The test distance and extrapolation factor (if applicable) are detailed under each run description. Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables. Ambient Conditions: Temperature: 20 °C Rel. Humidity: 39 % Summary of Results Value / Margin Run # Test Performed Limit Result FCC 15.231(b) 66.7dBµV/m @ 433.92MHz 2 Pass Fundamental Signal Field Strength RSS 210 Annex A.1 (-14.1dB) FCC 15.209 & Transmitter Radiated Spurious 54.9dBµV/m @ 867.81MHz 2 15.231(b) Pass Emissions, 30 - 4400 MHz (-5.9dB) RSS 210/RSS GEN 3 99% Bandwidth (center channel) **RSS-GEN** 1088kHz Pass FCC 15.231(b) 3 TX Shutoff time <5 seconds Pass RSS 210 Annex A.1 Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.


	Ellic	ott						EM	C Test Data
Client	Griffin Techr	lology						Job Number:	J79077
					× 1 1		T-	Log Number:	T79128
Model	P2181 Audio	o/Video/App	Dication Doc		Αссоι	unt Manager:	Sheareen		
Contact	Jeff Altheide								
Standard	FCC 15.231	(a) / EN 30	0 220			Class:	В		
EUT #2010 Te	aximized Rad 1841, Latchi Date of Test: est Engineer: est Location:	ng Unit 6/3/2010 Joseph Ca	digal	- 4400 MHz, T	C Co	Spurious En Config. Used: nfig Change: EUT Voltage:	1 none		
		quency Rar) - 5000 M⊦			istance 3		Distance 3		tion Factor .0
Note:	fulfill the req requirements spurious em	uirements of s of 15.231 issions mus	of 15.231(a) (e). Spuriou st comply wi	. The limits four semissions the higher semission of the higher semission of the higher semistance of the higher semistan	or 15.231(e) falling in res of the limit c	are for all oth tricted bands alculated bel	her devices p must comply low or the 15	rovided that y with the 15. .209 limit.	1(b) are for devices that they meet the 209 limit, all other
Note:	The field stre	ength of an	y spurious e	missions ma	y not exceed	the field stre	ength of the f	undamental s	signal.
	Frequency (MHz) 433.92		5.231(b) Lir Imental dBuV/m 80.8	nits Spurious dBuV/m 60.8		5.231(e) Lim Imental dBuV/m -	its Spurious dBuV/m -		
Note:					-				nission falls in a 5.209 limit is higher.
Note:		average lim			.,	0			surements shall not s for the use of a quasi-
	Correction -			measureme	nt - a duty c	ycle correct	tion of 20dB	was applied	I to the peak reading


C E		Dtt Arcompany						EMO	C Test Da
Client:	Griffin Techr							Job Number:	J79077
		h					T	Log Number:	T79128
Model:	P2181 Audio	o/Video/Ap	plication Doc	k (Remote C	Control)			unt Manager:	
Contact	Jeff Altheide	1							
	FCC 15.231		0 220					Class:	R
Stanuaru.	10010.201		0 220					010331	
Fundament EUT Flat	al Frequenc	у							
Frequency	Level	Pol	RSS 210/	FCC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
433.920	55.9	V	80.8	-24.9	AVG	69	1.0	AVG (0.10s)	
433.920	75.9	V	100.8	-24.9	PK	69	1.0	PK (0.10s)	
433.920	66.7	H	80.8	-14.1	AVG	82	1.0	AVG (0.10s)	
433.920	86.7	Н	100.8	-14.1	PK	82	1.0	PK (0.10s)	
EUT Side									
Frequency	Level	Pol		FCC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
433.920	60.4	V	80.8	-20.4	AVG	360	1.1	AVG (0.10s)	
433.920	80.4	V	100.8	-20.4	PK	360	1.1	PK (0.10s)	
433.920	65.6	H	80.8	-15.2	AVG	81	1.0	AVG (0.10s)	
433.920	85.6	Н	100.8	-15.2	PK	81	1.0	PK (0.10s)	
EUT Uprigh	it		-						
Frequency	Level	Pol	RSS 210 /	FCC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
433.920	62.9	V	80.8	-17.9	AVG	360	1.2	AVG (0.10s)	
433.920	82.9	V	100.8	-17.9	PK	360	1.2	PK (0.10s)	
433.920	53.8	Н	80.8	-27.0	AVG	315	3.5	AVG (0.10s)	
433.920	73.8	Н	100.8	-27.0	PK	315	3.5	PK (0.10s)	


Client		nology	Job Number: J79077						
Model	: P2181 Audi	o/Video/Ap	oplication Doc	T-Log Number: T79128 Account Manager: Sheareen					
Contact	: Jeff Altheide	<u></u>			ALLU	uni manayer.	Sheareen		
	FCC 15.231				Class	D			
Standard	FUU 15.231	(a) / EN 3	JU 220					Class:	В
purious E	missions								
		quency Ra	ange	Test D	istance	Limit D	istance	Extrapolat	ion Factor
	3() - 4400 M	Hz		3		}	0	.0
UT Uprig	nt								
Frequency	Level	Pol	RSS 210 / I	-CC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	00.111101113	
3905.240	45.9	H	54.0	-8.1	AVG	230	1.8		
867.812	50.3	H	60.8	-10.5	AVG	86	2.3	AVG (0.10s)	
1301.790	43.4	H	54.0	-10.6	AVG	204	2.5		
867.812	47.9	V	60.8	-12.9	AVG	27	1.2	AVG (0.10s)	
4339.140	39.6	Н	54.0	-14.4	AVG	233	1.3		
1735.690	42.3	V	60.8	-18.5	AVG	80	1.7		
2169.570	41.8	V	60.8	-19.0	AVG	351	1.6		
2603.510	40.4	V	60.8	-20.4	AVG	360	1.4		
3037.440	40.1	V	60.8	-20.7	AVG	142	1.5		
3905.280	50.0	Н	74.0	-24.0	PK	230	1.8		
3471.270	36.5	Н	60.8	-24.3	AVG	338	1.6		
1301.790	46.0	Н	74.0	-28.0	PK	204	2.5		
4339.260	46.0	Н	74.0	-28.0	PK	233	1.3		
867.812	50.6	Н	80.8	-30.2	PK	86	2.3	PK (0.10s)	
867.812	48.2	V	80.8	-32.6	PK	27	1.2	PK (0.10s)	
1735.840	45.6	V	80.0	-34.4	PK	80	1.7		
3037.350	46.0	V	80.8	-34.8	PK	142	1.5	 	
2603.330	45.4	V	80.8	-35.4	PK	360	1.4		
2169.710	45.4	V	80.8	-35.4	PK	351	1.6		
3471.430	44.9	Н	80.8	-35.9	PK	338	1.6		

	Griffin Techr	nology		Job Number: J79077					
Madal	D0101 Audi	- // // -l / / / -	ullastian Day		T-Log Number: T79128				
Wodel	P2181 Audio	o/video/Ap	plication Doc		Acco	unt Manager:	Sheareen		
Contact	Jeff Altheide								
Standard	FCC 15.231	(a) / EN 30	00 220					Class:	В
EUT Side	•		-					-	
Frequency	Level	Pol		FCC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	A) (O (O 10)	
867.812	54.9	H	60.8	-5.9	AVG	292	1.0	AVG (0.10s)	
867.812	52.6	V V	60.8	-8.2	AVG	334	1.4	AVG (0.10s)	
1301.800 2603.550	42.4 43.5	V	54.0 60.8	-11.6 -17.3	AVG AVG	0 128	1.1 1.3		
2603.550	43.5	V H	60.8 60.8	-17.3	AVG	36	1.3	+	
1735.670	42.3 37.5	H	60.8	-18.5	AVG	30	2.1		
867.812	55.1	H	80.8	-25.3	PK	292	1.0	PK (0.10s)	
867.812	52.8	V	80.8	-23.7	PK	334	1.4	PK (0.103) PK (0.10s)	
1301.710	45.9	V	74.0	-28.1	PK	0	1.1	1 K (0.103)	
2603.550	46.9	V	80.8	-33.9	PK	128	1.3		
2169.630	45.8	Ĥ	80.8	-35.0	PK	36	1.6		
1735.440	41.5	H	80.8	-39.3	PK	35	2.1		
UT Flat	1110		0010	0710					
Frequency	Level	Pol	RSS 210/	FCC 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
867.812	52.6	Н	60.8	-8.2	AVG	296	1.0	AVG (0.10s))
1301.780	45.8	V	54.0	-8.2	AVG	294	1.0		
867.812	49.1	V	60.8	-11.7	AVG	17	1.0	AVG (0.10s))
2169.610	41.2	V	60.8	-19.6	AVG	120	1.6		
2603.530	37.9	Н	60.8	-22.9	AVG	300	1.6		
1735.590	37.3	V	60.8	-23.5	AVG	316	1.3		
1301.680	47.9	V	74.0	-26.1	PK	294	1.0		
867.812	52.9	Н	80.8	-27.9	PK	296	1.0	PK (0.10s)	
867.812	49.4	V	80.8	-31.4	PK	17	1.0	PK (0.10s)	
	45.3	V	80.8	-35.5	PK	120	1.6		
2169.630	43.1	H V	80.8 80.8	-37.7	PK PK	300 316	1.6		
	41.8		00.0	-39.0		214	1.3		

Elliott EMC Test Data Client: Griffin Technology Job Number: J79077 T-Log Number: T79128 Model: P2181 Audio/Video/Application Dock (Remote Control) Account Manager: Sheareen Contact: Jeff Altheide Standard: FCC 15.231(a) / EN 300 220 Class: B Compliance with 15.231 duration of transmissions and time between transmissions: Transmissions are manually initiated and, therefore, random in nature. The plot below shows the duration of a transmission, with the first marker/cursor at the point the transmit key was released and the second marker/cursor at the end of the transmission. The duration is less than 5 seconds. -30.0 Analyzer Settings Rohde&Schwarz,ESI -35.0 CF: 433.917 MHz -40.0 SPAN: 0.000 MHz RB: 50.0 kHz -45.0-VB: 200 kHz -50.0 Detector: POS Amplitude -55.0 Attn: 10 DB RL Offset: 0.0 DB -60.0 Sweep Time: 10.0s -65.0 Ref Lvl: -15.5 DBM -70.0-Comments -75.0 Duration of Transmission -80.0 -85.0-1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 Time (ms) -31.12 💠 🕂 🗟 -Delta Time (ms) 208.33 1093.7500 Cursor 1 Elliott *- Շ-0.00 ÷ Delta Amplitude 31.12 Cursor 1 1302.0833

©Elliott

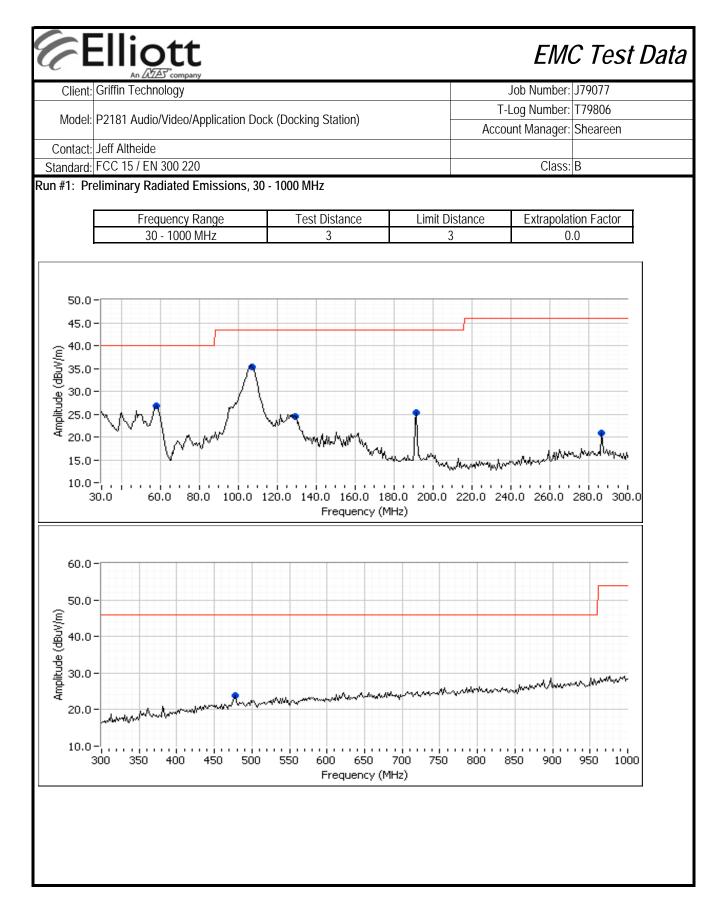
EMC Test Data

An <u>DCT</u> A	5 company		ne reer z ara
Client:	Griffin Technology	Job Number:	J79077
Model:	P2181 Audio/Video/Application Dock	Test-Log Number:	T79806
	(Docking Station)	Project Manager:	Sheareen
Contact:	Jeff Altheide		
Emissions Standard(s):	FCC 15 / EN 300 220	Class:	В
Immunity Standard(s):	EN 301 489-1/-3	Environment:	-

EMC Test Data

For The

Griffin Technology


Model

P2181 Audio/Video/Application Dock (Docking Station)

Date of Last Test: 7/6/2010

Elliott EMC Test Data Client: Griffin Technology Job Number: J79077 T-Log Number: T79806 Model: P2181 Audio/Video/Application Dock (Docking Station) Account Manager: Sheareen Contact: Jeff Altheide Standard: FCC 15 / EN 300 220 Class: B Radiated Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 6/29/2010 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Test Location: Fremont Chamber #4 EUT Voltage: 230V/50Hz General Test Configuration The EUT and any local support equipment were located on the turntable for radiated emissions testing. The test distance and extrapolation factor (if applicable) are detailed under each run description. Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables. Ambient Conditions: Temperature: 20.4 °C Rel. Humidity: 35 % Summary of Results Margin Run # Test Performed Limit Result **Radiated Emissions** 34.5dBµV/m @ 106.93MHz 2 FCC Class B Pass 30 - 1000 MHz, Maximized (-9.0dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.

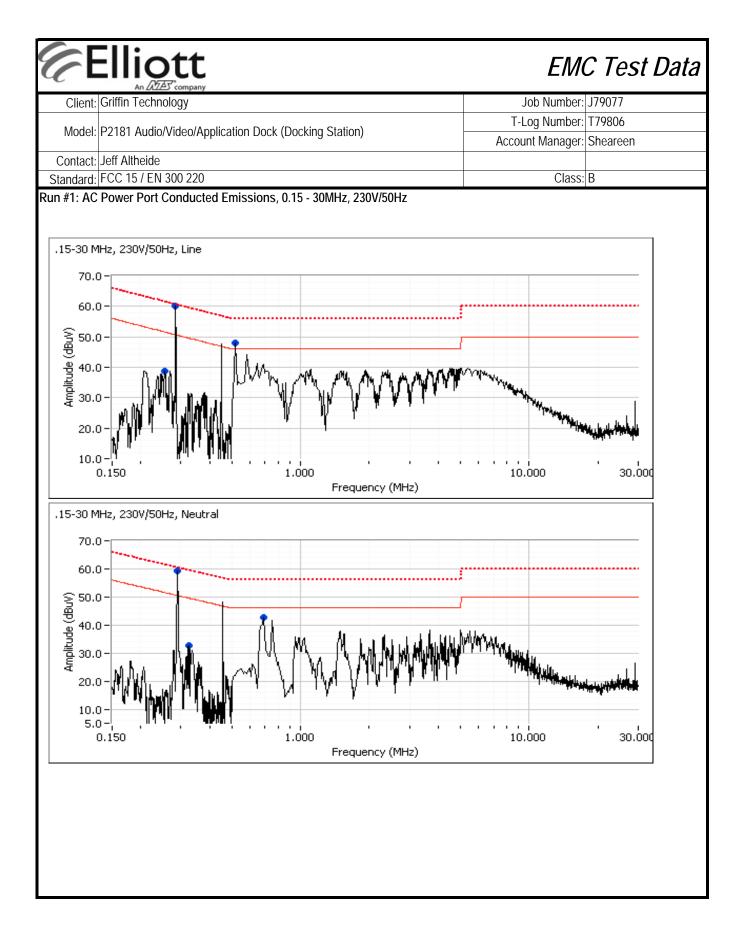
Note: No emissions were detected above 1GHz. Preliminary testing performed up to 1.3GHz

Elliott

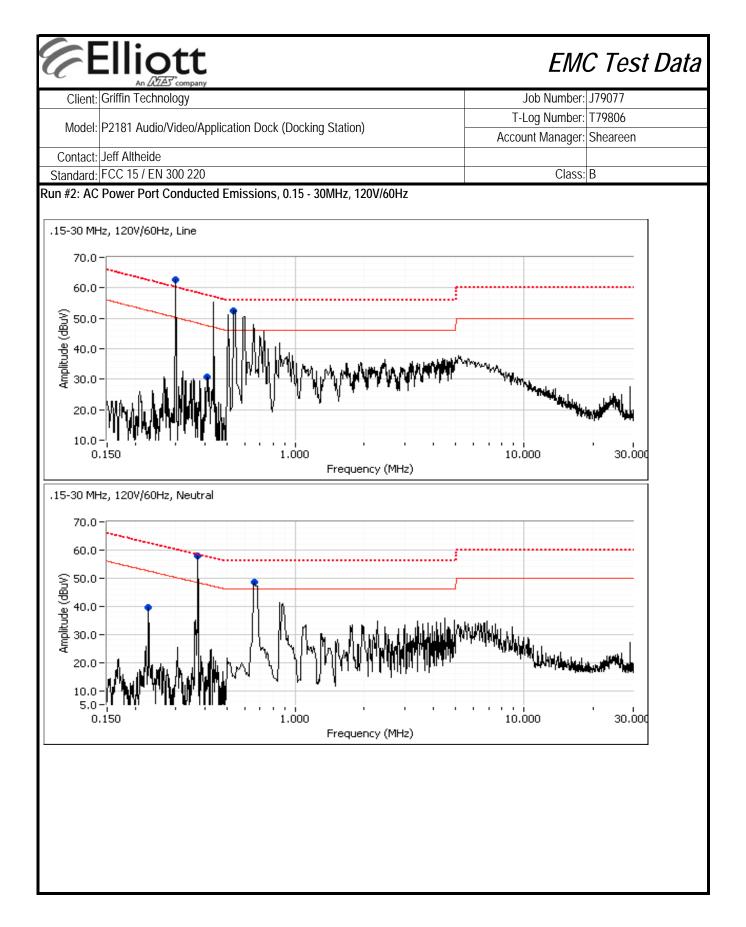
EMC Test Data

	An ZAZAS company											
Client:	Griffin Tech	nology				Job Number:	J79077					
Madal	P2181 Audio	o//idoo/Ap	T-Log Number: T79806									
wouer.	PZTOT AUUI	u/viueu/Ap	plication Doc	K (DUCKING 3	Αссοι	unt Manager:	Sheareen					
Contact:	Contact: Jeff Altheide											
Standard:	FCC 15 / EN	300 220						Class:	В			
Preliminary	v peak readir	ngs captur	ed during p	re-scan								
Frequency	Level	Pol	FCC (Class B	Detector	Azimuth	Height	Comments				
						1						

riequency	Level	P01	FUUL	1022 D	Delector	AZIIIIUUII	пеідпі	COMMENIS
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
58.511	26.9	V	40.0	-13.1	Peak	0	1.5	
106.932	35.4	V	43.5	-8.1	Peak	159	1.0	
190.950	25.3	V	43.5	-18.2	Peak	136	1.0	
128.366	24.5	V	43.5	-19.0	Peak	298	1.0	
286.159	20.9	Н	46.0	-25.1	Peak	290	1.0	
477.321	23.9	V	46.0	-22.1	Peak	359	1.0	


Preliminary quasi-peak readings (no manipulation of EUT interface cables)

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
477.321	19.2	V	46.0	-26.8	QP	360	1.0	QP (1.00s)
128.366	25.8	V	43.5	-17.7	QP	298	1.0	QP (1.00s)
286.159	18.1	Н	46.0	-27.9	QP	285	1.0	QP (1.00s)
106.932	34.5	V	43.5	-9.0	QP	153	1.0	QP (1.00s)
190.950	24.6	V	43.5	-18.9	QP	131	1.0	QP (1.00s)
58.511	26.2	V	40.0	-13.8	QP	0	1.0	QP (1.00s)


Run #2: Maximized Readings From Run #1 Maximized quasi-peak readings (includes manipulation of EUT interface cables)

	Fre	quency Ra	nge	Test D	istance	Limit D	istance	Extrapolation Factor
[30) - 1000 Mł	Ηz		3		3	0.0
Frequency	Level	Pol	FCC (Class B	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
106.932	34.5	V	43.5	-9.0	QP	153	1.0	QP (1.00s)
58.511	26.3	V	40.0	-13.7	QP	0	1.0	QP (1.00s)
477.321	19.2	V	46.0	-26.8	QP	360	1.0	QP (1.00s)
128.366	25.8	V	43.5	-17.7	QP	298	1.0	QP (1.00s)
286.159	18.1	Н	46.0	-27.9	QP	285	1.0	QP (1.00s)
190.950	24.6	V	43.5	-18.9	QP	131	1.0	QP (1.00s)

	ott			EMO	C Test Data
Client: Griffin Techr	nology			Job Number:	J79077
Model: P2181 Audio	o/Video/Application Dock (Docking S	Station)		Log Number:	
Contact: Jeff Altheide		,	Acco	unt Manager:	Sheareen
Standard: FCC 15 / EN				Class:	В
		ucted Emissions mont Facility, Semi-Anec	hoic Chamb	per)	
Test Specific Detail	s				
Objective:	The objective of this test session is specification listed above.	to perform final qualification	n testing of t	he EUT with re	espect to the
Date of Test: Test Engineer: Test Location:		Config. Used: Config Change: EUT Voltage:	None		
and 80cm from the LISN.	s: Temperatur	e: 21.4 °C			i vonden oodpring plan
	Rel. Humidit	iy: 35 %			
Summary of Result					
Summary of Result		Limit	Result	Margin	
Summary of Result Run # 1 2	s	Limit EN55022 Class B EN55022 Class B	Result Pass Pass	53.3dBµV @	2 0.255MHz (-8.3dB) 2 0.226MHz (-3.3dB)

Contact: Jeff Al Standard: FCC 1 Run #1: Continue Preliminary peak Frequency Lee MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42 Final quasi-peak a	15 / EN 300 220 readings captu vel AC μV Line 3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	red during pre	e- scan (peak 2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	s. average limit) Comments random spike	T-Log Number: Account Manager: Class:	Sheareen
Contact: Jeff Al Standard: FCC 1 Run #1: Continue Preliminary peak Frequency Lev MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42 Final quasi-peak a	Itheide 15 / EN 300 220 readings captu vel AC μV Line 3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	red during pre EN5502 Limit 51.6 50.7 46.0 50.6	e- scan (peak 2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	Comments		
Standard:FCC 1Run #1: ContinuePreliminary peakFrequencyMHz0.255380.283600.504470.288590.322320.70042Final quasi-peak	15 / EN 300 220 readings captu vel AC μV Line 3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	EN5502 Limit 51.6 50.7 46.0 50.6	2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	Comments	Class:	В
Run #1: Continue Preliminary peak Frequency Lev MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42	readings captu vel AC μV Line 3.8 Line 0.2 Line 0.4 Neutral 2.6 Neutral	EN5502 Limit 51.6 50.7 46.0 50.6	2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	Comments	Class:	В
Preliminary peak Frequency Lev MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42 Final quasi-peak 4	readings captu vel AC μV Line 3.8 Line 0.2 Line 0.4 Neutral 2.6 Neutral	EN5502 Limit 51.6 50.7 46.0 50.6	2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	Comments		
Frequency Lev MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42	vel AC μV Line 3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	EN5502 Limit 51.6 50.7 46.0 50.6	2 Class B Margin -12.8 9.5 1.9	Detector QP/Ave Peak Peak	Comments		
MHz dB 0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42	μV Line 3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	Limit 51.6 50.7 46.0 50.6	Margin -12.8 9.5 1.9	QP/Ave Peak Peak			
0.255 38 0.283 60 0.504 47 0.288 59 0.322 32 0.700 42	3.8 Line 0.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	51.6 50.7 46.0 50.6	-12.8 9.5 1.9	Peak Peak	random spike		
0.283 60 0.504 47 0.288 59 0.322 32 0.700 42 Final quasi-peak a	D.2 Line 7.9 Line 0.4 Neutral 2.6 Neutral	50.7 46.0 50.6	9.5 1.9	Peak	random spike		
0.504 47 0.288 59 0.322 32 0.700 42 Final quasi-peak a	7.9Line9.4Neutral2.6Neutral	46.0 50.6	1.9				
0.288 59 0.322 32 0.700 42 Final quasi-peak a	9.4Neutral2.6Neutral	50.6		Dook			
0.322 32 0.700 42 Final quasi-peak a	2.6 Neutral		<u>v</u> v	Peak Peak	random spike		
0.700 42 Final quasi-peak a		47.0	8.8 -17.0	Peak			
inal quasi-peak a		46.0	-3.2	Peak	1		
		1010	0.2	1 out			-
	and average rea	dings					
Frequency Lev	vel AC		2 Class B	Detector	Comments		
MHz dB	μV Line	Limit	Margin	QP/Ave			
0.255 53	3.3 Line	61.6	-8.3	QP	QP (1.00s)		
0.288 51		60.6	-8.8	QP	QP (1.00s)		
0.283 51		60.7	-9.0	QP	QP (1.00s)		
).0 Neutral	59.7	-9.7	QP	QP (1.00s)		
0.504 40		56.0	-15.2	QP	QP (1.00s)		
0.255 31 0.283 29	I.7 Line 9.8 Line	51.6 50.7	-19.9	AVG AVG	AVG (0.10s) AVG (0.10s)		
	5.0 Neutral	56.0	-20.9 -21.0	QP	QP (1.00s)		
0.504 22		46.0	-21.0	AVG	AVG (0.10s)		
	5.6 Neutral	49.7	-24.1	AVG	AVG (0.103) AVG (0.105)		
).9 Neutral	46.0	-25.1	AVG	AVG (0.10s)		
	3.8 Neutral	50.6	-26.8	AVG	AVG (0.10s)		

Clinet		Company					Job Number:	170077
Client	GIIIIII TECH	поюду					T-Log Number:	
Model	P2181 Audi	o/Video/Appli	cation Dock	(Docking Sta	ition)		Account Manager:	
Contact	Jeff Altheide	2					Account Manager.	Shearcen
	FCC 15 / EN						Class:	В
un #2: Co								-
reliminar						s. average limit)		
Frequency		AC		2 Class B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.299	62.7	Line	50.3	12.4	Peak	random spike		
0.410	30.9	Line	47.6	-16.7	Peak	 		
0.511	52.6	Line	46.0	6.6	Peak			
0.226	39.7	Neutral	52.5	-12.8	Peak	random spike		
0.371	57.9	Neutral	48.4	9.5	Peak			
0.665	48.4	Neutral	46.0	2.4	Peak			
inal quasi	-peak and a	verane readi	nas					
Frequency		AC		2 Class B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
	59.3	Neutral	62.6	-3.3	QP	QP (1.00s)		
		ai			QP	QP (1.00s)		
0.226		Line	60.3	-4.0	QP	QF (1.003)		
	56.3 52.2	Line Neutral	60.3 58.5	-4.0 -6.3	QP QP			
0.226 0.299	56.3					QP (1.00s) QP (1.00s) QP (1.00s)		
0.226 0.299 0.371	56.3 52.2	Neutral	58.5	-6.3	QP	QP (1.00s)		
0.226 0.299 0.371 0.410	56.3 52.2 51.1	Neutral Line	58.5 57.6	-6.3 -6.5	QP QP	QP (1.00s) QP (1.00s)		
0.226 0.299 0.371 0.410 0.511	56.3 52.2 51.1 46.9	Neutral Line Line Neutral Line	58.5 57.6 56.0	-6.3 -6.5 -9.1 -15.4 -21.6	QP QP QP QP AVG	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)		
0.226 0.299 0.371 0.410 0.511 0.665 0.299 0.410	56.3 52.2 51.1 46.9 40.6 28.7 24.2	Neutral Line Line Neutral	58.5 57.6 56.0 56.0 50.3 47.6	-6.3 -6.5 -9.1 -15.4 -21.6 -23.4	QP QP QP QP AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)		
0.226 0.299 0.371 0.410 0.511 0.665 0.299 0.410 0.371	56.3 52.2 51.1 46.9 40.6 28.7 24.2 24.2 24.9	Neutral Line Line Neutral Line	58.5 57.6 56.0 56.0 50.3 47.6 48.5	-6.3 -6.5 -9.1 -15.4 -21.6 -23.4 -23.6	QP QP QP AVG AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
0.226 0.299 0.371 0.410 0.511 0.665 0.299 0.410 0.371 0.226	56.3 52.2 51.1 46.9 40.6 28.7 24.2 24.9 28.9	Neutral Line Neutral Line Line Neutral Neutral	58.5 57.6 56.0 50.3 47.6 48.5 52.6	-6.3 -6.5 -9.1 -15.4 -21.6 -23.4 -23.6 -23.7	QP QP QP AVG AVG AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
0.226 0.299 0.371 0.410 0.511 0.665 0.299 0.410 0.371	56.3 52.2 51.1 46.9 40.6 28.7 24.2 24.2 24.9	Neutral Line Line Neutral Line Line Neutral	58.5 57.6 56.0 56.0 50.3 47.6 48.5	-6.3 -6.5 -9.1 -15.4 -21.6 -23.4 -23.6	QP QP QP AVG AVG AVG	QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		