

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report

Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C on the Griffin Technology Transmitter Model: Evolve Remote (1201R-B)

UPN:	6384A-1201RMTB
FCC ID:	PAV1201RB

GRANTEE: Griffin Technology 1930 Air Lane Drive Nashville, TN 37210

TEST SITE: **Elliott Laboratories** 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: May 9, 2008

REVISION DATE: October 17, 2008

FINAL TEST DATE:

April 29, 2008

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories File: R71647 Rev 2 Page 1 of 19

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	July 21, 2008	Initial Release	
2	October 17, 2008	Recalculated average measurements based on peak measurements and duty cycle. Added duty cycle plots. Added transmission shutdown data.	МЕН

TABLE OF CONTENTS

COVER PAGE	
REVISION HISTORY	.2
TABLE OF CONTENTS	.3
SCOPE	.5
OBJECTIVE	.6
STATEMENT OF COMPLIANCE	.6
TEST RESULTS SUMMARY	.7
MOMENTARILY OPERATED DEVICES – CONTROL SIGNALS GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	.8
EQUIPMENT UNDER TEST (EUT) DETAILS	.9
GENERAL	.9 .9 .9 .9
TEST SITE1	10
GENERAL INFORMATION	10 10
MEASUREMENT INSTRUMENTATION1	1
RECEIVER SYSTEM 1 INSTRUMENT CONTROL COMPUTER 1 LINE IMPEDANCE STABILIZATION NETWORK (LISN) 1 FILTERS/ATTENUATORS 1 ANTENNAS 1 ANTENNA MAST AND EQUIPMENT TURNTABLE 1 INSTRUMENT CALIBRATION 1	11 12 12 12
TEST PROCEDURES1	12
EUT AND CABLE PLACEMENT1RADIATED EMISSIONS1BANDWIDTH MEASUREMENTS1SPECIFICATION LIMITS AND SAMPLE CALCULATIONS1GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS1RADIATED FUNDAMENTAL AND SPURIOUS EMISSIONS – MOMENTARILY OPERATED DEVICESISAMPLE CALCULATIONS - CONDUCTED EMISSIONS1SAMPLE CALCULATIONS - RADIATED EMISSIONS1SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION1	13 15 16 16 17 18

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Griffin Technology model Evolve Remote pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Griffin Technology model Evolve Remote and therefore apply only to the tested sample. The sample was selected and prepared by Jeff Altheide of Griffin Technology.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Griffin Technology model Evolve Remote complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.231 (a) (1)	RSS 210 A1.1.1 (1)	Duration of manually activated transmissions	<5 seconds	< 5 seconds	Complies – Note 1
15.231 (a) (2)	RSS 210 A1.1.1 (2)	Duration of automatically activated transmissions		< 5 seconds	N/A – Note 3
15.231 (a) (3)	RSS 210 A1.1.1 (3)	Transmissions at predetermined / regular intervals		Such transmissions are not permitted	Complies – Note 3
15.231 (a) (4)	RSS 210 A1.1.1 (4)	Pendency of transmissions used during emergencies			Complies – Note 3
15.231 (b)	RSS 210 Table 4	Fundamental Signal Strength	73.5dBµV/m @ 433.498MHz (- 7.3dB)	Refer to table in limits section	Complies
15.231 (b) / 15.209	RSS 210 Table 2 / 4	Radiated Spurious Emissions, 30-1000 MHz	57.1 dBuV/m @ 867.095 MHz (-3.7 dB)	Refer to table in limits section	Complies
15.231 (c)	RSS 210 A1.1.3	Bandwidth	450kHz	< 0.5% of operating frequency	Complies
15.231 (d)	RSS 210 A1.1.4	Frequency Stability - 40.66 – 40.70 MHz band			N/A – Note 4

MOMENTARILY OPERATED DEVICES - CONTROL SIGNALS

Note 1 – Refer to the operational description included with this application for detailed description and timing diagrams for transmission duration.

Note 2 - As the device is intended for hand-held operation it was tested in all three orthogonal orientations.

Note 3 – The device uses only manually activated transmissions. The control purposes do not include emergency alarm activation.

Note 4 – The device operates with a fundamental frequency of 433.5 MHz.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antenna is internal to the device		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions		Refer to standard	N/A – Note 1
15.207	RSS GEN Table 2	AC Conducted Emissions		Refer to standard	N/A – Note 2
-	RSS 102	RF Exposure Requirements	RSS 102 declaration	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	N/A – Note 3

Note 1 – The device does not have a receiver function.

Note 2 – The device is battery powered.

Note 3 – The antenna is not detachable and is internal to the device.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$ \pm 2.4 \pm 3.0 \pm 3.6 \pm 6.0 $

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Griffin Technology model Evolve Remote is a 433.5 MHz remote control for the Evolve Speaker System.

The sample was received on April 29, 2008 and tested on April 29, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Griffin	Evolve Remote	Wireless	N/A	
	(1201R-B)	Remote Control		

ANTENNA SYSTEM

The internal printed circuit antenna is approximately 190 mm in length and is slightly larger than a $\frac{1}{4}$ wave monopole when operating at 433.54 MHz.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 4 cm wide by 10 cm deep by 1 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EUT INTERFACE PORTS

The EUT does not have any interface ports.

EUT OPERATION

During testing the EUT was configured to continuously transmit.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 29, 2008 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with Industry Canada.

Site Registration		n Numbers	Location
Site	FCC	Canada	
Chamber 4	211948	IC 4549-4	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

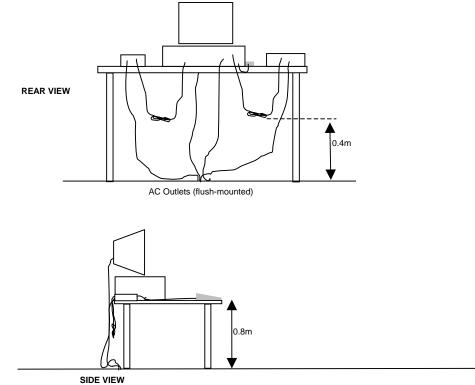
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

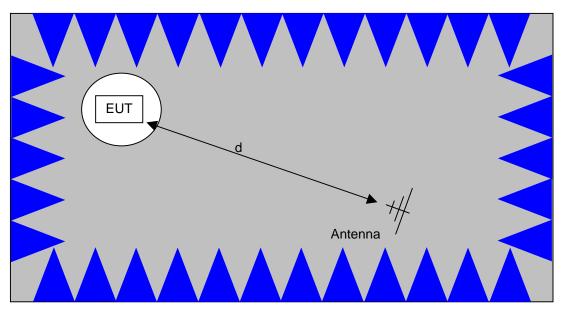
TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

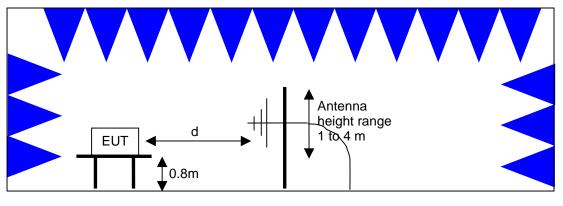

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RADIATED FUNDAMENTAL AND SPURIOUS EMISSIONS – MOMENTARILY OPERATED DEVICES

The table below shows the limits for both the fundamental and spurious emissions for control signals. The limits for data signals, or signals with predetermined transmissions, are given in the second table

Operating Frequency (MHz)	Fundamental Field Strength (microvolts/m)	Spurious Emissions (microvolts/m)
70 - 130	1250	125
130 - 174	1250 - 3750	125 - 375
174 - 260	3750	375
260-470	3750 - 12,500	375 - 1250
Above 470	12,500	1250

<u>Spurious Emissions Limits – Control Signals</u>

Operating Frequency (MHz)	Fundamental Field Strength (microvolts/m)	Spurious Emissions (microvolts/m)
70 - 130	500	50
130 - 174	500 - 1500	50 - 150
174 - 260	1500	150
260 - 470	1500 - 5000	150 - 500
Above 470	5000	500

Spurious Emissions Limits – Data Signals

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

3

where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 4,000 MHz, 29-Apr-08 Engineer: rvarelas

Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	Spectrum Analyzer 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	15-Jan-09
Rohde & Schwarz Hewlett Packard Sunol Sciences Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Preamplifier, 100 kHz - 1.3 GHz Biconilog, 30-3000 MHz Microwave Preamplifier, 1-26.5GHz	ESIB7 8447E JB3 8449B	1606 1657	25-Aug-08 07-May-08 03-May-08 06-Nov-08

EXHIBIT 2: Test Measurement Data

10 Pages

EMC Test Data

A division d			
Client:	Griffin Technology	Job Number:	J71514
Model:	Evolve Remote	Test-Log Number:	T71526
		Project Manager:	Sheareen Washington
Contact:	Jeff Altheide		
Emissions Spec:	FCC 15.231(a)/RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

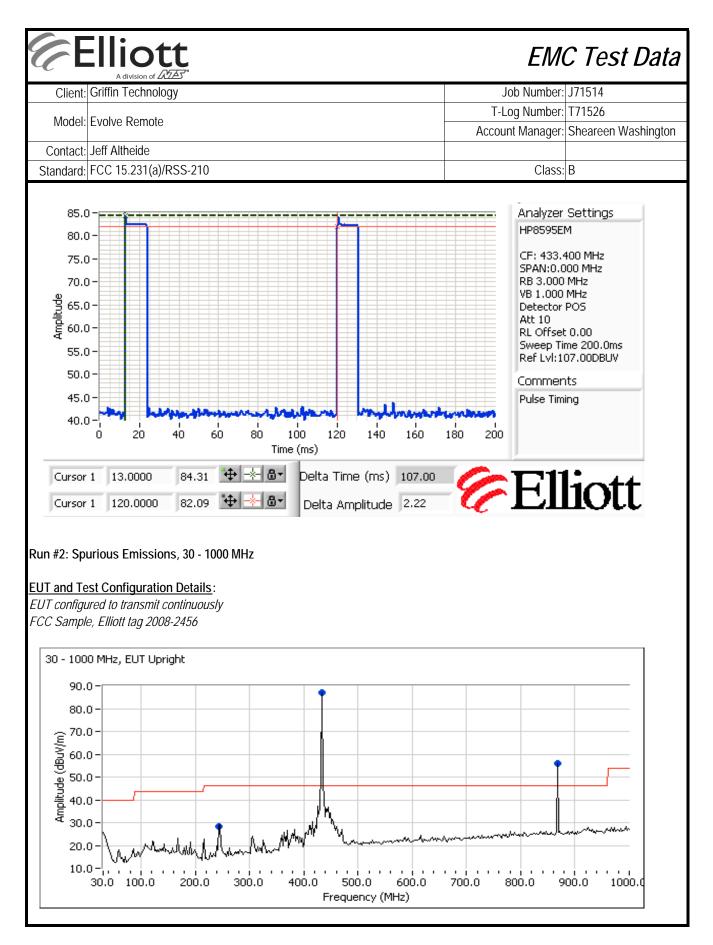
EMC Test Data

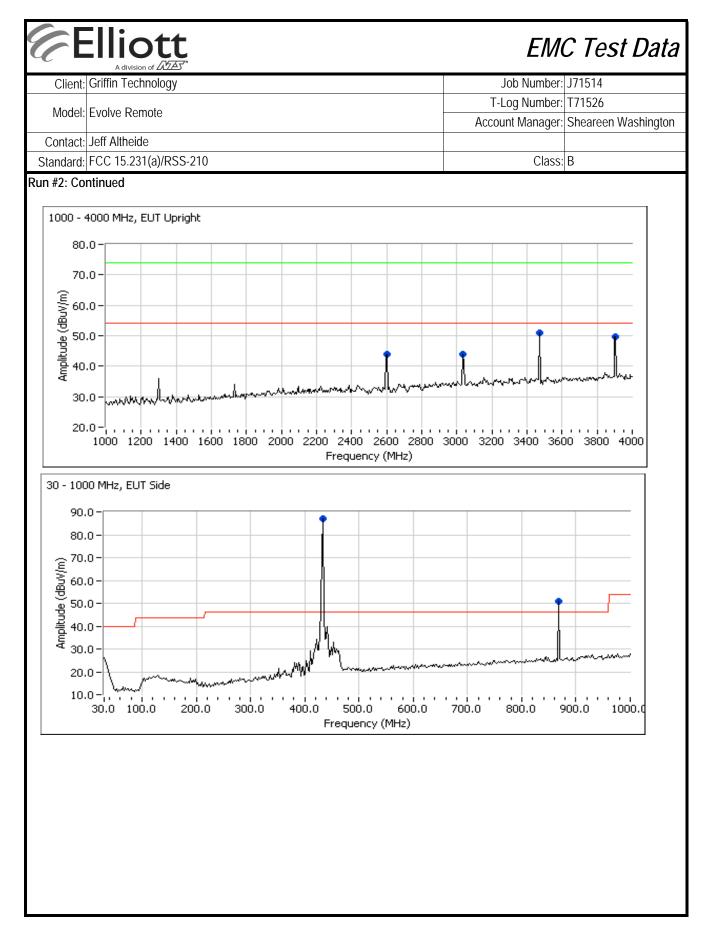
For The

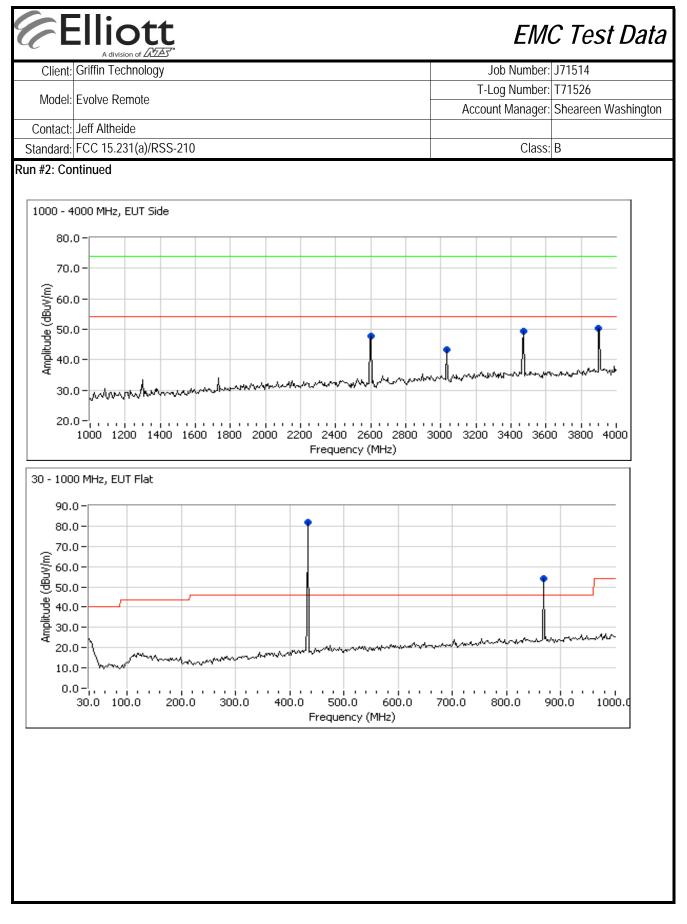
Griffin Technology

Model

Evolve Remote


Date of Last Test: 5/10/2008


	division of مرتححة Client: Griffin Technolo			Job Number:	171511
	lodel: Evolve Remote			Test-Log Number:	
IV					Sheareen Washington
Со	ntact: Jeff Altheide				g.
	Spec: FCC 15.231(a)	'RSS-210		Class:	В
Immunity	Spec: -			Environment:	-
	ote control that is des	formation v Ge igned to transr	neral Description mit commands to the E	ing the test sessions	aced on the Evolve Ba
attery powered (ipment Under Tes		
Manufacturer	Mode		Description	Serial Number	FCC ID
Griffin	Evolve	h	Remote		
he antenna is in	·	·	(Intentional Radia	ators Only)	
	EL tegral to the device.	IT Antenna	(Intentional Radia EUT Enclosure It measures approxim	nately 4 cm wide by 10 cm	deep by 1 cm high.
he EUT enclosu	EL tegral to the device. re is primarily constru	IT Antenna cted of plastic. Mo	(Intentional Radia	nately 4 cm wide by 10 cm	deep by 1 cm high.
The EUT enclosu	EL tegral to the device. re is primarily construc Test -	IT Antenna cted of plastic. Mo Date	(Intentional Radia EUT Enclosure It measures approxim	nately 4 cm wide by 10 cm	


Ellio	tt		ENA	C Test Data
A division o	of ATAS			
	Griffin Technology		Job Number:	
Model:	Evolve Remote		T-Log Number:	
Contact	Loff Althoido		Project Manager:	Sheareen Washington
	Jeff Altheide FCC 15.231(a)/RSS-210		Class:	В
Immunity Spec:			Environment:	D
			Environment.	_
The	following information	t Configuratio on was collected du cal Support Equipm	ring the test sessions	s(s).
Manufacturor			Serial Number	FCC ID
Manufacturer	Model	Description		
-	-	-	-	-
Manufacturer	Ren	note Support Equip	ment Serial Number	FCC ID
-	-	-	-	-
Port	Connected To	Description	Cable(s) Shielded or Unshield	ded Length(m)
Criterion A: During and after testing Criterion B:	EUT was configured to tran Performar the EUT shall continue to	nce Criteria for Imme transmit for Tx Mode.	unity Tests	olf recovers to permat
	vithout any operator interve		red provided that the EUT s	eii-recovers to normai
Loss of function is allow	ed provided that normal o	peration can be restored	by user intervention .	

	Dtt			EMC	Test Da
A divisi Client: Griffin Tec				Job Number: J	71514
Model: Evolve Re	mote			Log Number: T	
			Acco	unt Manager: S	heareen Washir
Contact: Jeff Altheir Standard: FCC 15.23				Class: B	
				1	
	Radia (Elliott Laboratories Freme	ted Emissions ont Facility, Semi-A		Chamber)	
est Specific Deta	ails				
Objective	e: The objective of this test session is specification listed above.	to perform engineering e	valuation tes	ting of the EUT	with respect to t
Test Enginee	st: 4/29/2008 r: Rafael Varelas n: Fremont Chamber #4	Config. Used: Config Change: EUT Voltage:	Refer to inc		
General Test Con The EUT and any loc	figuration cal support equipment were located or	n the turntable for radiated	d emissions	testing.	
The test distance an	d extrapolation factor (if applicable) ar	e detailed under each rur	n description		
antenna. Maximize	esting indicates that the emissions were d testing indicated that the emissions v ulation of the EUT's interface cables.	5			
antenna. Maximized antenna, and manipu	d testing indicated that the emissions valuation of the EUT's interface cables.	were maximized by orien			
antenna. Maximized antenna, and manipu	d testing indicated that the emissions valuation of the EUT's interface cables.	were maximized by orient 19.7 °C			
antenna. Maximized antenna, and manipu Ambient Conditio	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity:	were maximized by orient 19.7 °C			
antenna. Maximized antenna, and manipu Ambient Conditio	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity:	were maximized by orient 19.7 °C		EUT, elevation	of the measuren
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts	were maximized by orient 19.7 °C 41 %	tation of the	EUT, elevation Marg 73.5dBµ\	of the measuren in //m @
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu Run #	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts Test Performed	were maximized by orien 19.7 °C 41 %	tation of the	EUT, elevation	of the measuren //m @ z (-7.3dB) //m @
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu Run # 1	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts Test Performed RE, Fundamental Emissions	were maximized by orient 19.7 °C 41 % Limit FCC 15.231(a) FCC 15.231(a)	tation of the Result Pass	EUT, elevation Marg 73.5dBµ\ 433.498MHz 57.1 dBu\	in //m @ 2 (-7.3dB) //m @ 2 (-3.7 dB)
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu Run # 1 2	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts Test Performed RE, Fundamental Emissions RE, Spurious Emissions	were maximized by orient 19.7 °C 41 % Limit FCC 15.231(a) FCC 15.231(a) 15.209 FCC 15.231(a)	tation of the Result Pass	EUT, elevation 73.5dBµ\ 433.498MHz 57.1 dBu\ 867.095 MHz	of the measuren //m @ 2 (-7.3dB) //m @ 2 (-3.7 dB) Hz
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu Run # 1 2 3 4 Modifications Mac No modifications were Deviations From	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts Test Performed RE, Fundamental Emissions RE, Spurious Emissions 99% Bandwidth Transmitter Shutdown de During Testing re made to the EUT during testing	were maximized by orient 19.7 °C 41 % Limit FCC 15.231(a) FCC 15.231(a) 15.209 FCC 15.231(a) 15.209 FCC 15.231(a)(1)	Result Pass Pass -	EUT, elevation Marg 73.5dBµ\ 433.498MHz 57.1 dBu\ 867.095 MHz 450kł	of the measuren //m @ 2 (-7.3dB) //m @ 2 (-3.7 dB) Hz
antenna. Maximized antenna, and manipu Ambient Conditio Summary of Resu Run # 1 2 3 4 Modifications Mac No modifications were Deviations From	d testing indicated that the emissions valation of the EUT's interface cables. ns: Temperature: Rel. Humidity: Ilts Test Performed RE, Fundamental Emissions RE, Spurious Emissions 99% Bandwidth Transmitter Shutdown de During Testing re made to the EUT during testing The Standard made from the requirements of the sta	were maximized by orient 19.7 °C 41 % Limit FCC 15.231(a) FCC 15.231(a) 15.209 FCC 15.231(a) 15.209 FCC 15.231(a)(1) ndard.	Result Pass Pass -	EUT, elevation Marg 73.5dBµ\ 433.498MHz 57.1 dBu\ 867.095 MHz 450kł	in //m @ 2 (-7.3dB) //m @ 2 (-3.7 dB) Hz seconds

(Client:	A division of Griffin Techr							Job Number:	J71514
		05						Log Number:	
Model:	Evolve Remo	ote						-	Sheareen Washingto
Contact:	Jeff Altheide							5	
Standard:	FCC 15.231	(a)/RSS-2 [^]	10					Class:	В
<u>IT and Te</u> IT configu	est Configura ured to transn le, Elliott tag 2	ation Deta nit continue	<u>ils</u> : ously	nts					
equency	Level	Pol	FCC 15	() () ()	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
33.498	73.5	V	80.8	-7.3	AVG	260	1.1	EUT Upright	t
133.498	73.2	H	80.8	-7.6	AVG	200	1.0	EUT Flat	-
133.498	72.8	V	80.8	-8.0	AVG	274	1.1	EUT Side	
33.498	67.1	Н	80.8	-13.7	AVG	205	3.4	EUT Side	
133.498	65.6	Н	80.8	-15.2	AVG	218	1.6	EUT Upright	t
33.498	62.6	V	80.8	-18.2	AVG	305	2.5	EUT Flat	
33.498	93.0	V	100.8	-7.8	PK	260	1.1	EUT Upright	t
33.498	92.7	Н	100.8	-8.1	PK	203	1.0	EUT Flat	
33.498	92.3	V	100.8	-8.5	PK	274	1.1	EUT Side	
33.498	86.6	Н	100.8	-14.2	PK	205	3.4	EUT Side	
33.498	85.1	Н	100.8	-15.7	PK	218	1.6	EUT Upright	t
133.498	82.1	V	100.8	-18.7	PK	305	2.5	EUT Flat	
85	See plots sh	•		m the peak i	readings, base	ed on a duty	cycle corre	Analyze HP8595 CF: 433 SPAN:0 RB 3.00 VB 1.00 Detecto Att 10	3.400 MHz 1.000 MHz 00 MHz 00 MHz 00 MHz
75 70 epnjid WH 60 45 50 45	5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 0.0 - 1	nynluod o zo	,1444.1 4	40 50 Time (m:	60 7			Sweep Ref Lvl: Comme	et 0.00 Time 100.0ms :107.00DBUV ents Plot for Duty
75 70 epnjid WH 60 55 50 45	5.0 - 5.0 - 5.0 - 5.0 - 5.0 - 10		л чни с 30 0.73 ₩ →	Time (m:	60 7	0 80		Sweep Ref Lvl: Comme Timing f Cycle	Time 100.0ms :107.00DBUV ents

92								EIVI	C Test Data
Client:	Griffin Techr	nology						Job Number:	J71514
							T-	Log Number:	T71526
Model:	Evolve Rem	ote						0	Sheareen Washington
Contact:	Jeff Altheide	;						5	5
Standard:	FCC 15.231	(a)/RSS-22	10					Class:	В
un #2: Co	ntinued						I		I
1000 -	4000 MHz,	EUT Flat							
	0.0								
° l	0.0-								
7	0.0-								
Ê									
Amplitude (dBuV/m) 4 5 5 9	0.0-								
1 0 5	0.0-								
itud									1
du 4	0.0-						•	T.	a second
-				mound	mound	al norm	manderson	monument	1999-1999-1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
1 3	0.0-www.	hann	Maran 1999 1999 1999 1999 1999 1999 1999 19						
					Frequency	y (MHz)			
	Level	Pol		Class B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	FCC (Limit	Class B Margin	Detector Pk/QP/Avg	Azimuth degrees	meters		t Fundamental
MHz 434.329	dBµV/m 87.2	V/H V			Detector Pk/QP/Avg Peak	Azimuth degrees 270	meters 1.0	EUT Uprigh	t, Fundamental
MHz 434.329 434.329	dBμV/m 87.2 87.1	V/H V V			Detector Pk/QP/Avg Peak Peak	Azimuth degrees 270 53	meters 1.0 1.0	EUT Uprigh EUT Side, F	undamental
MHz 434.329 434.329 434.329	dBµV/m 87.2 87.1 81.7	V/H V	Limit - - -	Margin - -	Detector Pk/QP/Avg Peak	Azimuth degrees 270 53 29	meters 1.0 1.0 1.0	EUT Uprigh EUT Side, F EUT Flat, Fi	undamental undamental
MHz 434.329 434.329 434.329 867.095	dBμV/m 87.2 87.1	V/H V V H			Detector Pk/QP/Avg Peak Peak Peak	Azimuth degrees 270 53	meters 1.0 1.0	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N	undamental
MHz 434.329 434.329 434.329 867.095 867.095 8035.000	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0	V/H V H V H H	Limit - - 60.8 60.8 54.0	Margin - - -3.7 -6.5 -10.0	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak	Azimuth degrees 270 53 29 46 44 151	meters 1.0 1.0 1.0 1.1	EUT Uprigh EUT Side, F EUT Flat, Ft EUT Side, N EUT Flat - N EUT Uprigh	undamental undamental lon-restricted lon-restricted t, Non-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2600.000	dBμV/m 87.2 87.1 81.7 57.1 54.3	V/H V H V H H H	Limit - - - 60.8 60.8	Margin - - -3.7 -6.5	Detector Pk/QP/Avg Peak Peak QP Peak	Azimuth degrees 270 53 29 46 44 151 350	meters 1.0 1.0 1.0 1.1 1.1	EUT Uprigh EUT Side, F EUT Flat, Ft EUT Side, N EUT Flat - N EUT Uprigh	undamental undamental lon-restricted lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 8035.000 8034.830	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2	V/H V H V H H H V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0	Margin - - -3.7 -6.5 -10.0 -10.1 -10.8	Detector Pk/QP/Avg Peak Peak Peak QP Peak Peak Peak Peak	Azimuth degrees 270 53 29 46 44 151 350 175	meters 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.0	EUT Uprigh EUT Side, F EUT Flat, Fi EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N	undamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 8035.000 8034.830 867.095	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8	V/H V H H H H V V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 60.8	Margin - 	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP	Azimuth degrees 270 53 29 46 44 151 350 175 118	meters 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.0 1.0 1.5	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh	undamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted t - Non-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2600.000 8034.830 867.095 8470.000	dBµV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8	V/H V H V H H H V V V V	Limit - - - - - - - - - - - - - - - - - - -	Margin - 	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak QP Peak	Azimuth degrees 270 53 29 46 44 151 350 175 118 256	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3	EUT Uprigh EUT Side, F EUT Flat, Ft EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N	undamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted t - Non-restricted lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2600.000 8034.830 867.095 8470.000 8901.600	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6	V/H V H V H H H V V V V V	Limit - - - - - - - - - - - - - - - - - - -	Margin - 	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak QP Peak AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh	iundamental Jon-restricted Jon-restricted t, Non-restricted t, Non-restricted Jon-restricted t - Non-restricted Jon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2600.000 8034.830 867.095 8470.000 8901.600 8901.170	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3	V/H V H V H H H V V V V V V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak QP Peak AVG AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0 1.6	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted t - Non-restricted lon-restricted t
MHz 434.329 434.329 434.329 867.095 867.095 867.095 867.095 867.095 867.095 8470.000 8901.600 9901.600 9901.170 6035.000	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9	V/H V H H H H V V V V V V V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin - - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak QP Peak AVG AVG Peak	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0 1.6	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side EUT Flat - N	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted t - Non-restricted lon-restricted t lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 8035.000 8034.830 867.095 8470.000 8901.600 8901.600 8901.170 8035.000 8467.410	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3	V/H V H V H H H V V V V V V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak QP Peak AVG AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0 1.6	EUT Uprigh EUT Side, F EUT Flat, Fi EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Flat - N EUT Uprigh	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted t - Non-restricted lon-restricted t
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2600.000 3034.830 867.095 8470.000 3901.600 3901.170 3035.000 3467.410 3468.390	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0	V/H V H H H H V V V V V V V H	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin - 	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG Peak AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0 1.3 1.3	EUT Uprigh EUT Side, F EUT Flat, Ft EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Uprigh EUT Flat - N EUT Uprigh EUT Side EUT Flat - N EUT Uprigh EUT Side, N	iundamental Jon-restricted Jon-restricted t, Non-restricted t, Non-restricted Jon-restricted t - Non-restricted Jon-restricted t Jon-restricted t, Non-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 8035.000 8034.830 867.095 8470.000 8901.600 901.600 901.170 8035.000 8467.410 8468.390 8467.410	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 39.0 36.6 52.6	V/H V H H H V H V H	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201	meters 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.0 1.6 1.3 1.3 1.3	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Side, N	iundamental Jon-restricted Jon-restricted t, Non-restricted t, Non-restricted Jon-restricted Jon-restricted t Jon-restricted t Jon-restricted t, Non-restricted Jon-restricted Jon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 8035.000 2000.000 3034.830 867.095 3470.000 3901.600 3901.600 3901.600 3901.410 3468.390 2600.590 3467.410 3899.730	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 39.0 39.0 36.6 52.6 30.8	V/H V H H H H V V V V V V V V V V V V V	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4 -23.2	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Side, N	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted t - Non-restricted lon-restricted t lon-restricted t, Non-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 8035.000 2600.000 3034.830 867.095 3470.000 3901.600 3901.600 3467.410 3468.390 2600.590 3467.410 3899.730 3901.600	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 40.6 40.3 39.9 39.0 39.0 36.6 52.6 30.8 50.2	V/H V V H H H V V V V V V V V V V V V V	Limit - - 60.8 60.8 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4 -23.2 -23.8	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG PK AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68 324	meters 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	EUT Uprigh EUT Side, F EUT Flat, Fi EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Side, N EUT Side, N EUT Side, N	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted lon-restricted lon-restricted t lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 3035.000 2600.000 3034.830 867.095 3470.000 3901.600 3901.170 3035.000 3467.410 3468.390 2600.590 3467.410 3899.730 3901.600 2600.590	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 39.0 36.6 52.6 30.8 50.2 49.8	V/H V H H H V V V V V V V V V V V V V V	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -15.0 -17.4 -21.4 -23.2 -23.8 -24.2	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68 324 137	meters 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.6 1.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	EUT Uprigh EUT Side, F EUT Flat, Fi EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Side, N EUT Side, N EUT Side, N	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted t - Non-restricted lon-restricted t lon-restricted t, Non-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 3035.000 2600.000 3034.830 867.095 3470.000 3901.600 3467.410 3468.390 2600.590 3467.410 3899.730 3901.600 2600.590 3901.170	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 36.6 52.6 30.8 50.2 49.8 49.8	V/H V H H H V V V V V V V V V V V V V V H V H V H V	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4 -23.2 -23.8 -24.2 -24.2	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68 324 137 255	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.0 1.3	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Side, N EUT Uprigh EUT Flat EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted lon-restricted t lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted lon-restricted
434.329 434.329 434.329 867.095 867.095 3035.000 2600.000 3034.830 867.095 3470.000 3901.600 3901.600 3467.410 3468.390 2600.590 3467.410 3899.730 3901.600 2600.590 3901.600 2600.590 3901.170 239.991	dBµV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 39.0 39.0 36.6 52.6 30.8 50.2 49.8 49.8 19.0	V/H V H H H V	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4 -23.2 -23.8 -24.2 -24.2 -27.0	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68 324 201 177 137 201 68 324 137 255 133	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.0 1.3 1.6 1.0	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Side EUT Flat - N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side EUT Side EUT Uprigh	iundamental undamental lon-restricted lon-restricted t, Non-restricted lon-restricted lon-restricted lon-restricted lon-restricted t lon-restricted
MHz 434.329 434.329 434.329 867.095 867.095 867.095 8035.000 2600.000 3034.830 867.095 8470.000 3901.600 3467.410 3468.390 2600.590 3467.410 3991.600 2600.590 3901.600 2600.590 3901.170	dBμV/m 87.2 87.1 81.7 57.1 54.3 44.0 43.9 43.2 49.8 42.8 40.6 40.3 39.9 39.0 36.6 52.6 30.8 50.2 49.8 49.8	V/H V H H H V V V V V V V V V V V V V V H V H V H V	Limit - - - - - - - - - - - - - - - - - - -	Margin - -3.7 -6.5 -10.0 -10.1 -10.8 -11.0 -11.2 -13.4 -13.7 -14.1 -15.0 -15.0 -17.4 -21.4 -23.2 -23.8 -24.2 -24.2	Detector Pk/QP/Avg Peak Peak QP Peak Peak Peak Peak QP Peak AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK PK PK	Azimuth degrees 270 53 29 46 44 151 350 175 118 256 324 255 94 201 177 137 201 68 324 137 255	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.6 1.0 1.3	EUT Uprigh EUT Side, F EUT Flat, Fu EUT Side, N EUT Flat - N EUT Uprigh EUT Uprigh EUT Side, N EUT Uprigh EUT Flat - N EUT Uprigh EUT Side, N EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Uprigh EUT Side, N EUT Side, N	iundamental Jon-restricted Jon-restricted t, Non-restricted Jon-restricted Jon-restricted Jon-restricted Jon-restricted t Jon-restricted Jon-restricted Jon-restricted Jon-restricted Jon-restricted Jon-restricted Jon-restricted Jon-restricted

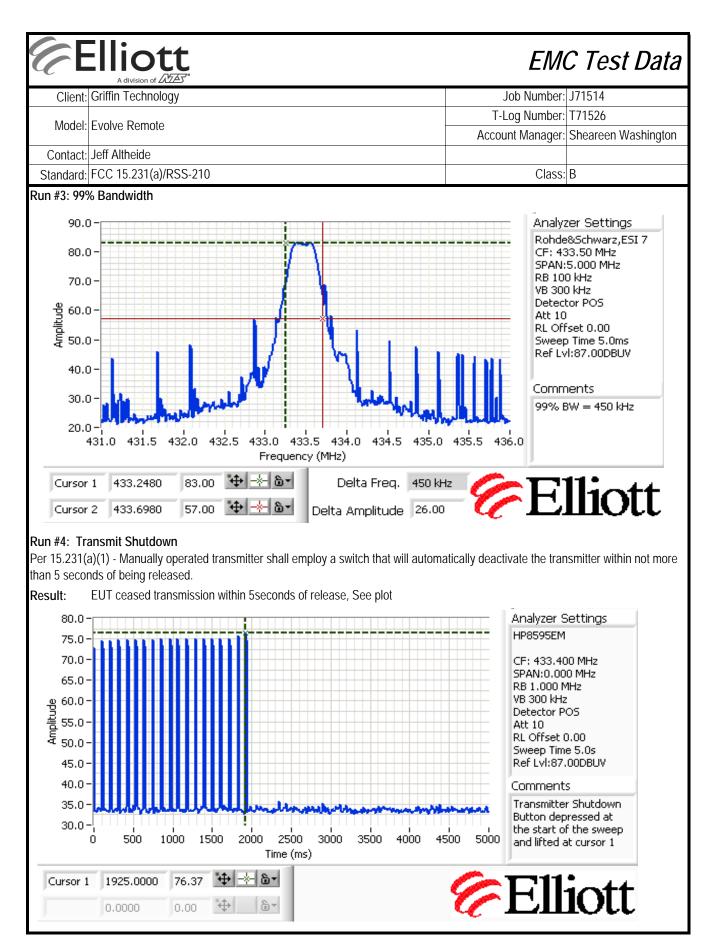


EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Griffin Technology Model Evolve RemoteConstruction

EXHIBIT 6: Operator's Manual for Griffin Technology Model Evolve Remote

EXHIBIT 7: Block Diagram of Griffin Technology Model Evolve Remote

EXHIBIT 8: Schematic Diagrams for Griffin Technology Model Evolve Remote EXHIBIT 9: Theory of Operation for Griffin Technology Model Evolve Remote EXHIBIT 10: RF Exposure Information