

FCC PART 15.247

MEASUREMENT AND TEST REPORT

For

CC&C Technologies, Inc.

8F, 150, Jian Yi Road, Chung Ho City, Taipei, Taiwan

FCC ID: PANBT330SV2

This Report Concerns: Original Report		Equipment Type: Bluetooth USB Micro Adapter	
Test Engineer:	King Tang		
Report No.:	RSZ08062403		
Test Date:	2008-07-03 to 2008-07-04		
Report Date:	2008-07-08		
Reviewed By:	EMC Manager: Green Xu Green . Thu		
Prepared By:	Bay Area Compliant Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008		

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Shenzhen) This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

FCC ID: PANBT330SV2

CC&C Technologies, Inc.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
\$15.247 (i) & \$2.1093 - RF EXPOSURE	9
CFR47 §15.203 - ANTENNA REQUIREMENT	
STANDARD APPLICABLE	
ANTENNA CONNECTOR CONSTRUCTION	
\$15.207 (a) - CONDUCTED EMISSIONS	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST RESULTS SUMMARY	
Test Data Plot(s) of Test Data	
CFR47 §15.205, §15.209, §15.247 - RADIATED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary	
TEST DATA	
CFR47 §15.247(a) (1)-CHANNEL SEPARATION TEST	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	

FCC Part 15.247 Test Report

CFR47 §15.247(a) (1) – 20dB BANDWIDTH TESTING	26
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
CFR47 §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	30
TEST PROCEDURE	
TEST DATA	
CFR47 §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	32
CFR47 §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	43
Applicable Standard	
Test Equipment List and Details	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	44
CFR47 §15.247(d) - BAND EDGES TESTING	45
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *CC&C Technologies, Inc.'s* product, model number: *BT-330S-V2* or the "EUT" as referred to in this report is a *Bluetooth USB Micro Adapter*, which measures approximately: 1.2 cm L x 0.4 cm W x 1.9 cm H, rated input voltage: 5 VDC form PC.

* All measurement and test data in this report was gathered from production sample serial number: 0806065 (Assigned by BACL, Shenzhen). The EUT was received on 2008-06-24.

Objective

This Type approval report is prepared on behalf of *CC&C Technologies, Inc. in* accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine Compliant with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliant Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliant Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliant Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in Compliant with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

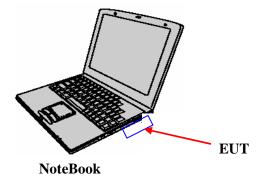
The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliant Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

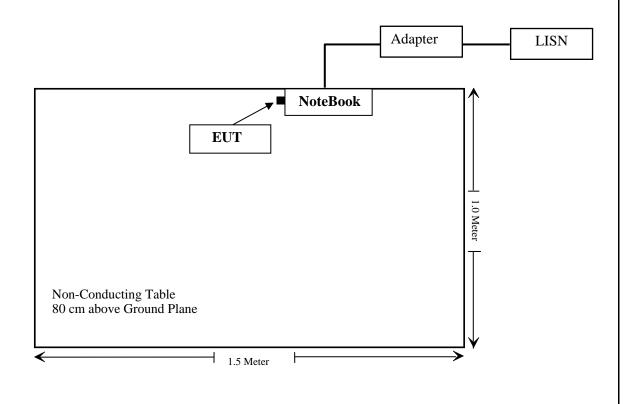
The current scope of accreditations can be found at <u>http://ts.nist.gov/Standards/scopes/2007070.htm</u>

SYSTEM TEST CONFIGURATION

Description of Test Configuration


The system was configured for testing in a typical fashion (as normally used by a typical user).

Equipment Modifications


No modifications were made to the EUT.

FCC ID: PANBT330SV2

Configuration of Test Setup

Block Diagram of Test Setup

Report No.: RSZ08062403

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliant
§15.247 (a)(1)	20 dB Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band Edges	Compliant

§15.247 (i) & §2.1093 - RF EXPOSURE

Standard Applicable

According to § 1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Limits for General Population/Uncontrolled Exposure

According to FCC Exclusion list, In the following table, f_{GHz} is mid-band frequency in GHz, and d is the distance to a person'sbody, excluding hands, wrists, feet, and ankles.

Exposure category	low threshold	high threshold
general population	$(60/f_{GHz}) \text{ mW}, d \le 2.5 \text{ cm}$ $(120/f_{GHz}) \text{ mW}, d \ge 2.5 \text{ cm}$	$(900/f_{\rm GHz})$ mW, $d < 20$ cm
occupational	$(375/f_{GHz}) \text{ mW}, d \le 2.5 \text{ cm}$ $(900/f_{GHz}) \text{ mW}, d \ge 2.5 \text{ cm}$	$(2250/f_{GHz}) \text{ mW}, d < 20 \text{ cm}$

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Measurement Result:

This is a portable device and the Max peak output power is 0.678mW<24.58 mW= (60/2.441GHz) mW

The SAR measurement is exempt.

CFR47 §15.203 - ANTENNA REQUIREMENT

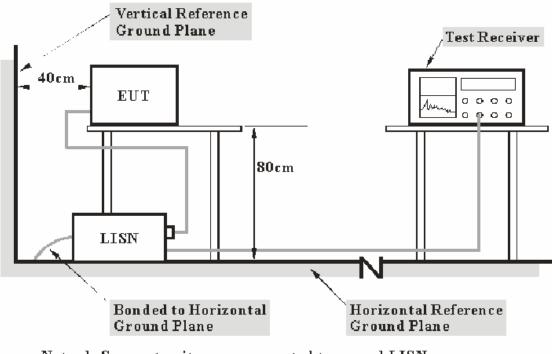
Standard Applicable

According to CFr47 § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has a printed antenna on PCB. The maximum gain is -2dBi; please refer to the internal photos.

Result: Compliant.


§15.207 (a) - CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliant Laboratories Corp. (Shenzhen) is ± 2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	DE25330	2008-03-25	2009-03-25
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2008-03-25	2009-03-25

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

15.23 dB at 0.155 MHz in the Neutral conductor mode

Test Data

Environmental Conditions

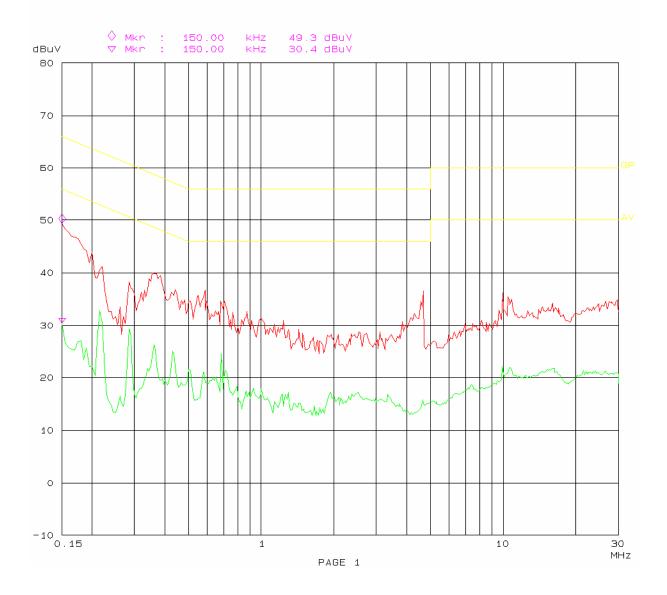
Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by King Tang on 2008-07-03

Test Mode: Transmitting

Line Conducted Emissions				FCC Par	t 15.207
Frequency (MHz)	Amplitude (dBµV)	Detector (QP/AV)	Conductor (Hot/Neutral)	Limit (dBµV)	Margin (dB)
0.155	50.50	QP	Neutral	65.73	15.23
0.395	41.40	QP	Neutral	57.96	16.56
0.150	49.30	QP	Hot	66.00	16.70
0.155	38.70	AV	Neutral	55.73	17.03
0.200	45.10	QP	Neutral	63.61	18.51
0.360	40.00	QP	Hot	58.73	18.73
0.395	29.10	AV	Neutral	47.96	18.86
0.345	40.00	QP	Neutral	59.08	19.08
4.665	36.50	QP	Hot	56.00	19.50
0.240	41.30	QP	Neutral	62.10	20.80
0.285	29.40	AV	Hot	50.67	21.27
0.240	30.50	AV	Neutral	52.10	21.60
0.220	41.20	QP	Hot	62.82	21.62
0.360	26.40	AV	Hot	48.73	22.33
0.285	38.30	QP	Hot	60.67	22.37
0.220	30.40	AV	Hot	52.82	22.42
8.850	37.40	QP	Neutral	60.00	22.60
9.960	36.10	QP	Hot	60.00	23.90
0.150	30.40	AV	Hot	56.00	25.60
0.345	22.50	AV	Neutral	49.08	26.58
9.905	22.20	AV	Hot	50.00	27.80
4.655	15.90	AV	Hot	46.00	30.10
0.200	21.60	AV	Neutral	53.61	32.01
8.835	17.50	AV	Neutral	50.00	32.50

Plot(s) of Test Data


Plot(s) of Test Data is presented hereinafter as reference.

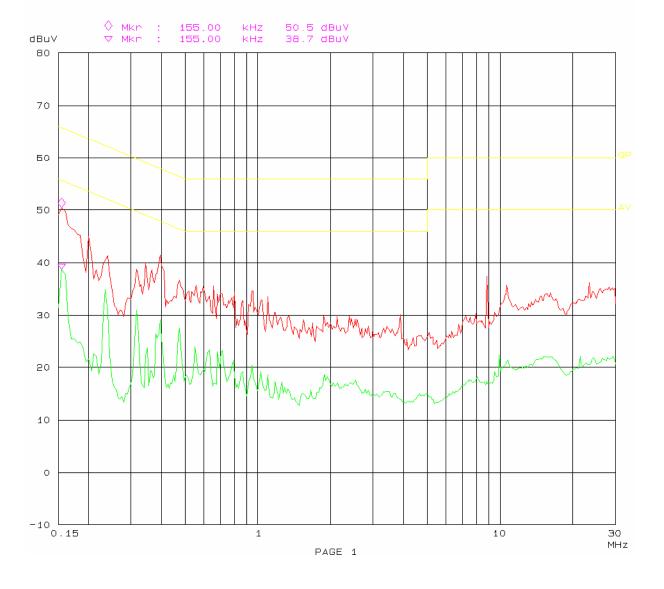
FCC ID: PANBT330SV2

03. Jul 08 23:08

Conduction Emission FCC15

EUT:	bluetooth USB Micro Adapter
Manuf:	CC&C M/N: BT-330S-V2
Op Cond:	Transmitting
Operator:	King
Test Spec:	AC 120V/60HZ HOT
Comment:	Temp:25 Hum:56%

Report No.: RSZ08062403


FCC Part 15.247 Test Report

FCC ID: PANBT330SV2

03. Jul 08 23:24

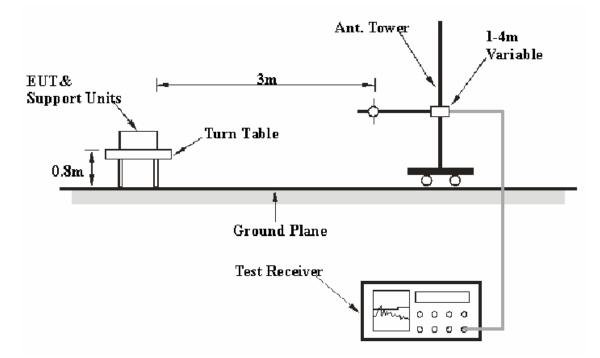
Conduction Emission FCC15

EUT:	bluetooth USB Micro Adapter
Manuf:	CC&C M/N: BT-330S-V2
Op Cond:	Transmitting
Operator:	King
Test Spec:	AC 120V/60HZ Neutral
Comment:	Temp:25 Hum:56%

Report No.: RSZ08062403

CFR47 §15.205, §15.209, §15.247 - RADIATED EMISSIONS

Applicable Standard


CFR47 §15.205; §15.209; §15.247 (d).

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliant Laboratories Corp. (Shenzhen) is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.109, FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W
30MHz - 1000 MHz	100 kHz	300 kHz
1000 MHz – 25 GHz	1 MHz	3 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2007-11-15	2008-11-15
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2008-03-11	2009-03-11
HP	Amplifier	8449B	3008A00277	2007-09-29	2008-09-29
Sunol Sciences	Horn Antenna	DRH-118	A052604	2007-09-25	2008-09-25
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2008-05-09	2009-05-09

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz and peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of Compliant with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit for Class B. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15,</u> <u>Subpart C, section 15.109, 15.205, 15.209, and 15.247</u>, with the worst margin reading of:

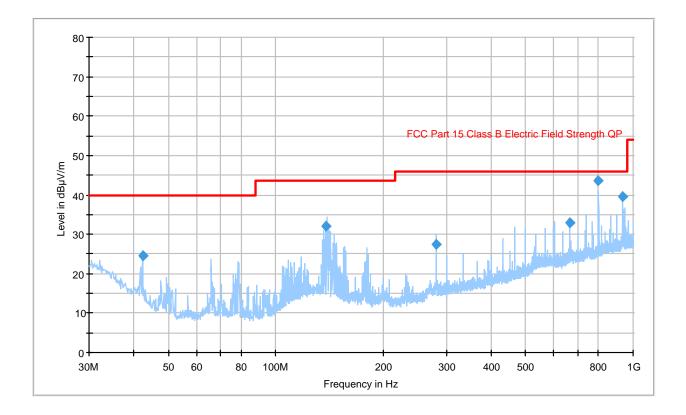
Transmitting mode (Below 1 GHz):

15.5 dB at 42.3675 MHz in the Vertical polarization

Transmitting mode (Above 1 GHz):

5.79 dB at 4804 MHz in the Vertical polarization (Low Channel)
6.20 dB at 4882 MHz in the Vertical polarization (Middle Channel)
7.03 dB at 4960 MHz in the Vertical polarization (High Channel)

Test Data


Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

The testing was performed by King Tang on 2008-07-04.

FCC ID: PANBT330SV2

Test Mode: Transmitting (Below 1GHz)

Frequency (MHz)	Corrected Amp. (dBµV/m)	Antenna Height (cm)	Ant. Polarity (H/V)	Turntable Position (deg)	Correction Factor (dB)	Limit (dBµV/m)	Margin (dB)
42.367500	24.5	239.0	V	0.0	-11.0	40.0	15.5
138.082200	32.1	130.0	V	3.0	-10.8	43.5	11.4
280.866250	27.3	349.0	V	355.0	-10.9	46.0	18.7
666.653450	33.0	163.0	V	339.0	-2.3	46.0	13.0
799.997475	43.6	102.0	Н	183.0	-0.3	46.0	2.4
933.352000	39.6	101.0	V	0.0	1.7	46.0	6.4

Freq.	Meter	Detector	Direction		Antenn	a	Cable	Pre- Amp.	Corr.	FCC	Part 15.	.247/209
(MHz)	Reading (dBuV)	PK/QP/AV	Degree	Height (m)	Polar (H/V)	Factor (dB)	Loss (dB)	Gain (dB)	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remarks
				Fre	quenc	y in Low	^v Chanr	nel				
4804	45.67	AV	320	1.2	V	31.3	4.64	33.4	48.21	54	5.79	Harmonic
4804	44.18	AV	60	1.4	Η	31.3	4.64	33.4	46.72	54	7.28	Harmonic
1924	41.73	AV	120	1.4	V	27.4	3.12	34.2	38.05	54	15.95	Spurious
1924	40.37	AV	180	1.4	Н	27.4	3.12	34.2	36.69	54	17.31	Spurious
4804	54.01	PK	90	1.1	V	31.3	4.64	33.4	56.55	74	17.45	Harmonic
4804	53.12	PK	120	1.3	Н	31.3	4.64	33.4	55.66	74	18.34	Harmonic
1924	50.19	PK	360	1.3	V	27.4	3.12	34.2	46.51	74	27.49	Spurious
1924	48.26	PK	45	1.3	Н	27.4	3.12	34.2	44.58	74	29.42	Spurious
	Frequency in Middle Channel											
4882	45.26	AV	360	1.1	V	31.3	4.64	33.4	47.80	54	6.20	Harmonic
4882	42.58	AV	120	1.2	Н	31.3	4.64	33.4	45.12	54	8.88	Harmonic
1447	43.18	AV	160	1.3	V	25.4	2.73	34.5	36.81	54	17.19	Spurious
4882	54.17	PK	200	1.3	V	31.3	4.64	33.4	56.71	74	17.29	Harmonic
1447	41.03	AV	45	1.4	Н	25.4	2.73	34.5	34.66	54	19.34	Spurious
4882	51.26	PK	0	1.4	Н	31.3	4.64	33.4	53.80	74	20.20	Harmonic
1447	52.32	PK	320	1.2	V	25.4	2.73	34.5	45.95	74	28.05	Spurious
1447	49.22	PK	90	1.5	Н	25.4	2.73	34.5	42.85	74	31.15	Spurious
	Frequency in High Channel											
4960	44.52	AV	45	1.5	V	31.3	4.55	33.4	46.97	54	7.03	Harmonic
2305	46.73	AV	160	1.3	V	27.4	3.52	33.9	43.75	54	10.25	Spurious
4960	40.25	AV	0	1.4	Η	31.3	4.55	33.4	42.70	54	11.30	Harmonic
2305	42.18	AV	180	1.3	Н	27.4	3.52	33.9	39.20	54	14.80	Spurious
4960	51.96	PK	160	1.4	V	31.3	4.55	33.4	54.41	74	19.59	Harmonic
2305	54.18	PK	360	1.2	V	27.4	3.52	33.9	51.20	74	22.80	Spurious
4960	48.26	PK	90	1.2	Η	31.3	4.55	33.4	50.71	74	23.29	Harmonic
2305	50.26	PK	200	1.4	Η	27.4	3.52	33.9	47.28	74	26.72	Spurious

Test Mode: Transmitting (Above 1GHz)

CFR47 §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

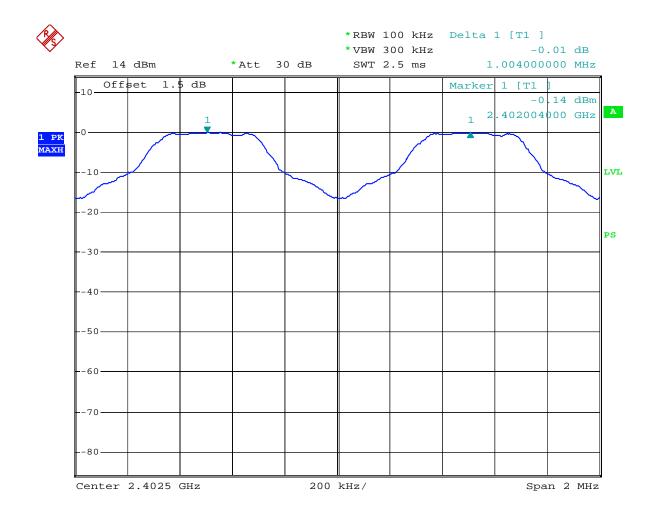
- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

Test Data

Environmental Conditions

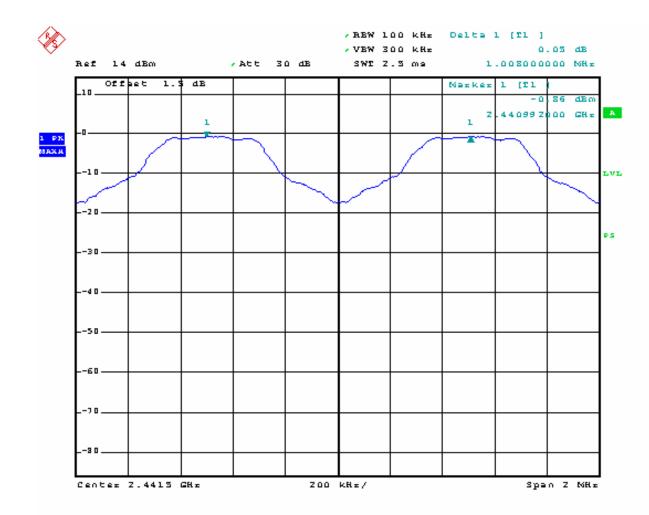
Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

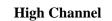
The testing was performed by King Tang on 2008-07-03.

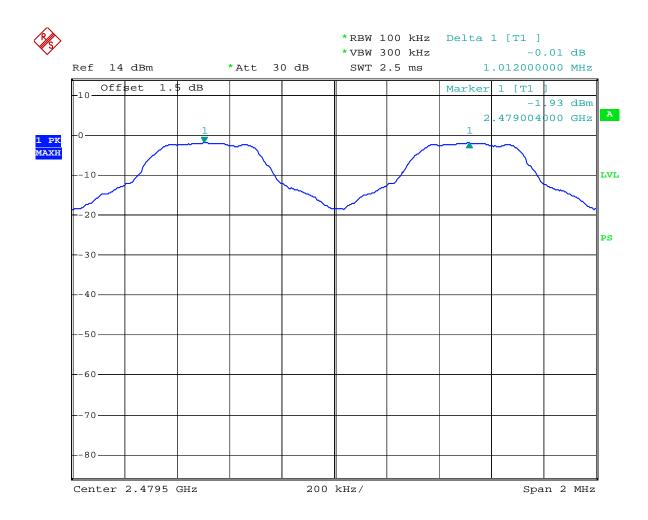

Test Mode: Transmitting

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low Channel	2402	1.004	0.592	Pass
Adjacent Channel	2403	1.004	0.392	1 455
Mid Channel	2441	1.008	0.597	Pass
Adjacent Channel	2442	1.008	0.397	F 855
High Channel	2480	1.012		5
Adjacent Channel	2479	1.012	0.595	Pass

Test Result: Compliant.


Please refer to following plots




channel separation low channel Date: 3.JUL.2008 19:18:52

Middle Channel

channel separation middle channel Date: 3.JUL.2008 19:27:59

channel separation high channel Date: 3.JUL.2008 19:29:31

CFR47 §15.247(a) (1) – 20dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16

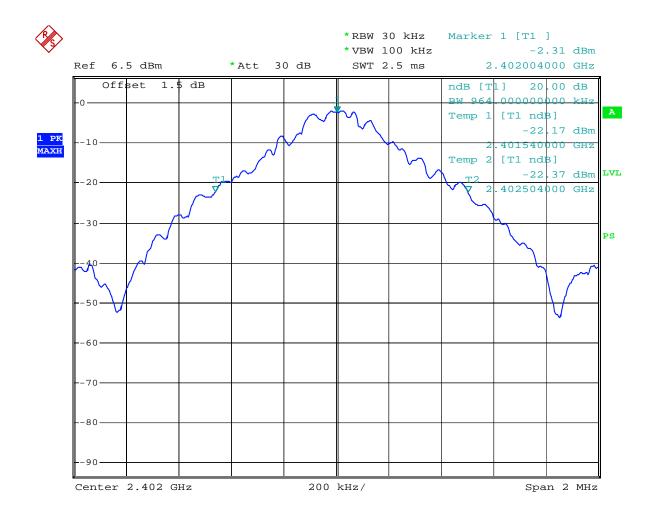
* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

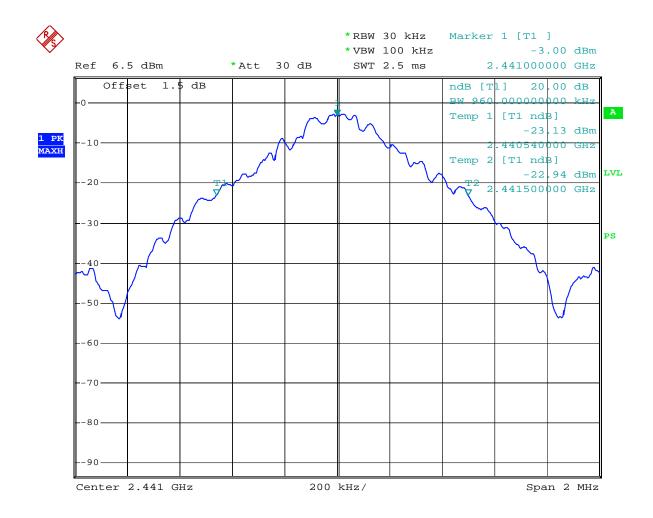
Test Data

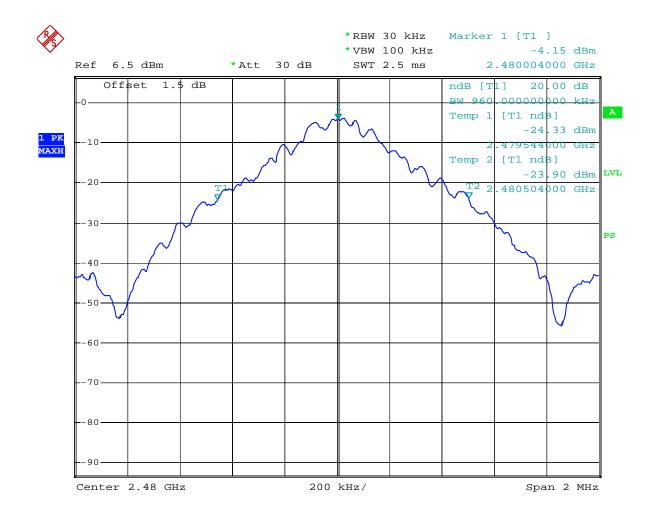
Environmental Conditions


Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

The testing was performed by King Tang on 2008-07-03. *Test Mode: Transmitting*

Channel	Channel Frequency (MHz)	20dB Bandwidth (kHz)		
Low	2402	964		
Middle	2441	960		
High	2480	960		


Test Result: Please refer to following plots


²⁰DB bandwidth low channel Date: 3.JUL.2008 19:12:05

Middle Channel

20DB bandwidth middel channel Date: 3.JUL.2008 19:13:50

²⁰DB bandwidth high channel Date: 3.JUL.2008 19:14:54

CFR47 §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in transmitting mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa


The testing was performed by King Tang on 2008-07-03.

Test Mode: Transmitting

Test Result: Compliant.

Please refer to following plot

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)	
2402-2480	79	>15	

Number of Hopping Channels

hopping channel

Date: 3.JUL.2008 20:06:24

CFR47 §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s Hop rate=1600/s

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.8 kPa

The testing was performed by King Tang on 2008-07-03.

Test Result: Compliant.

Please refer to following tables and plots

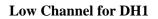
Test Mode: Transmitting

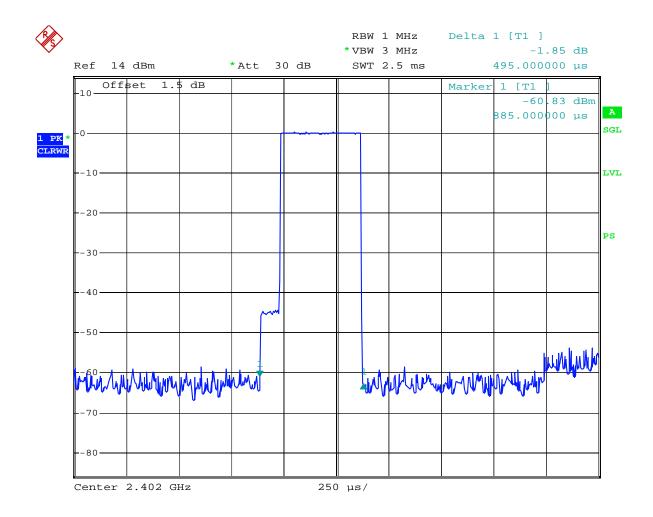
DH 1

Channel	Pulse width (ms)	Dwell time (s)	Limit (s)	Result
Low	0.495	0.1584	0.4	Pass
Middle	0.495	0.1584	0.4	Pass
High	0.495	0.1584	0.4	Pass

NOTE: Dwell time=Pulse width (ms) × $(1600 \div 2 \div 79) \times 31.6$ Second

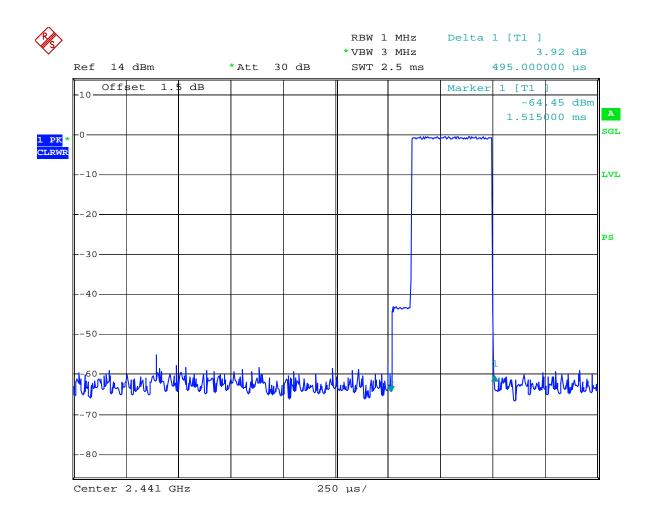
DH 3

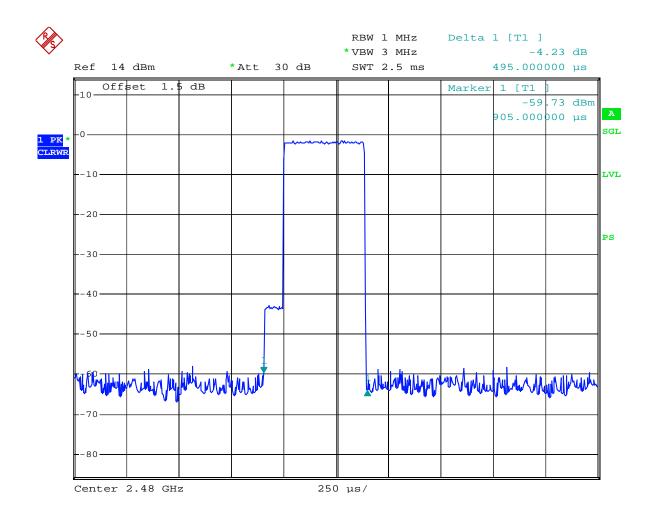

Channel	Pulse width (ms)	Dwell time (s)	Limit (s)	Result
Low	1.792	0.287	0.4	Pass
Middle	1.776	0.284	0.4	Pass
High	1.776	0.284	0.4	Pass


NOTE: Dwell time=Pulse width (ms) \times (1600 \div 4 \div 79) \times 31.6 Second

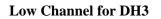
DH 5

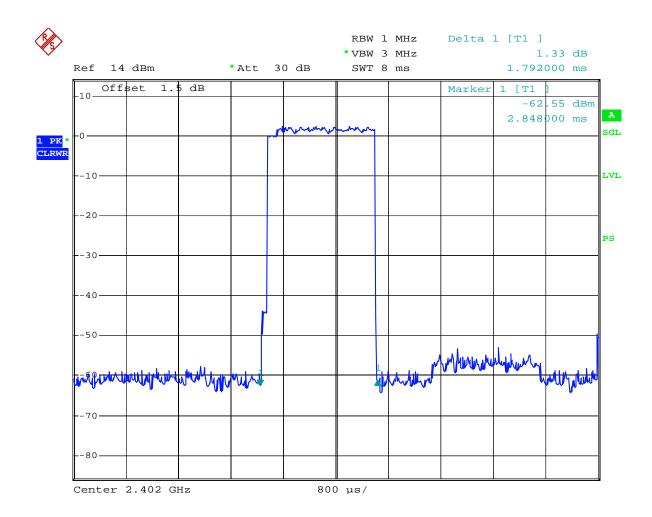
Channel	Pulse width (ms)	Dwell time (s)	Limit (s)	Result
Low	3.04	0.324	0.4	Pass
Middle	3.04	0.324	0.4	Pass
High	3.04	0.324	0.4	Pass


NOTE: Dwell time=Pulse width (ms) \times (1600 \div 6 \div 79) \times 31.6 Second

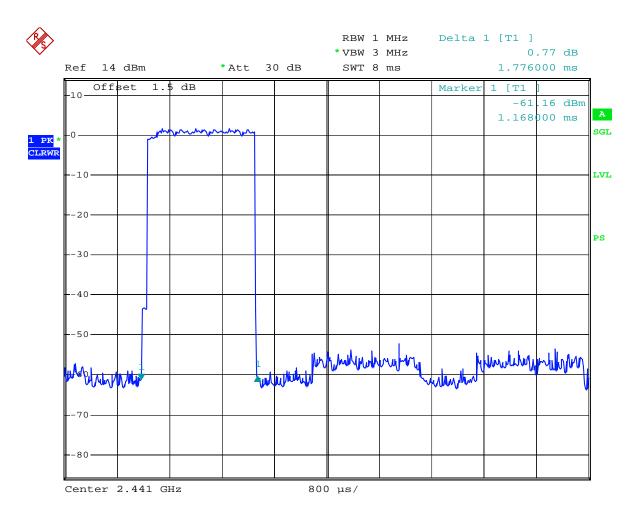

dell time low channel (DH1) Date: 3.JUL.2008 20:11:04

Middle Channel for DH1

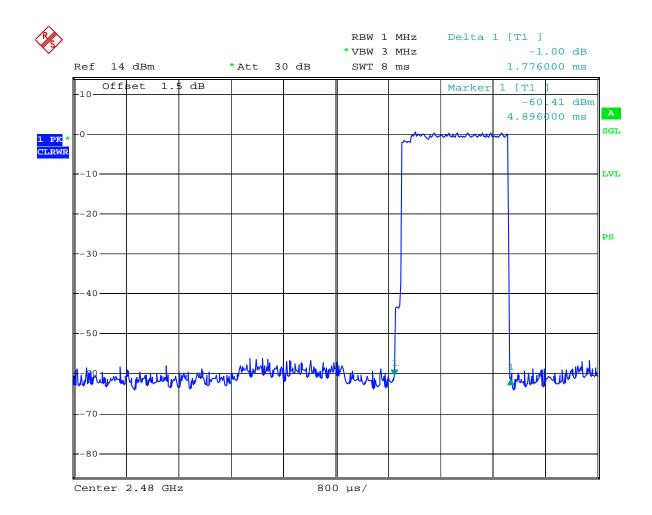



dell time middle channel (DH1) Date: 3.JUL.2008 20:12:55

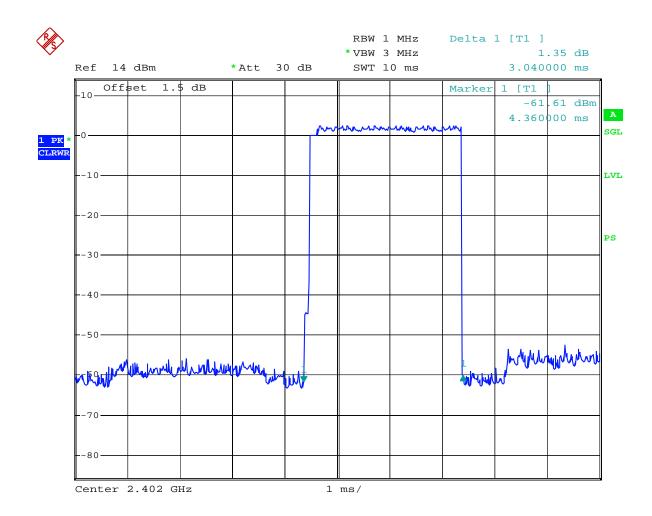
High Channel for DH1

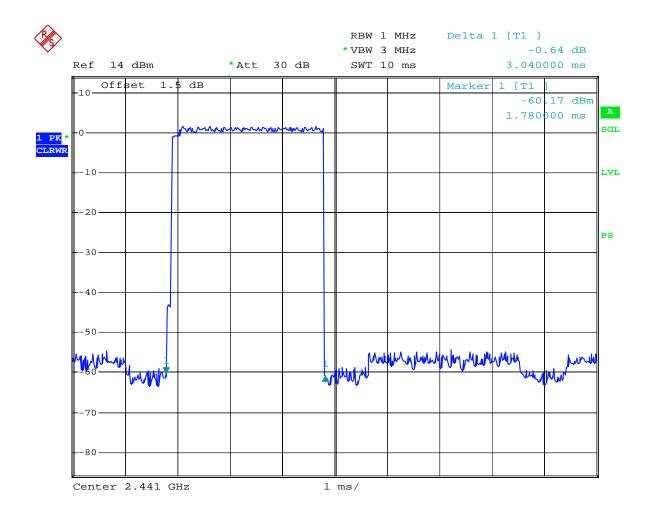


dell time high channel (DH1) Date: 3.JUL.2008 20:15:06

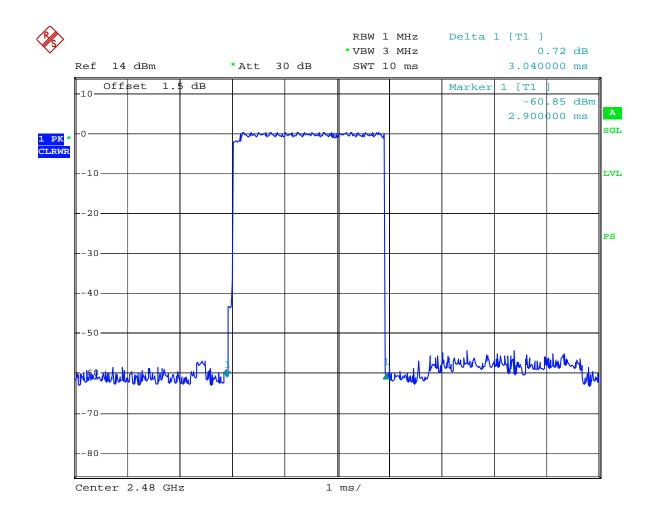

dell time low channel (DH3) Date: 3.JUL.2008 20:17:51

Middle Channel for DH3


dell time middle channel (DH3) Date: 3.JUL.2008 20:20:46


dell time high channel (DH3) Date: 3.JUL.2008 20:22:08

Low Channel for DH5


dell time low channel (DH5) Date: 3.JUL.2008 20:24:07

Middle Channel for DH5

dell time middle channel (DH5) Date: 3.JUL.2008 20:25:04

High Channel for DH5

dell time high channel (DH5) Date: 3.JUL.2008 20:26:05

CFR47 §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2007-11-15	2008-11-15
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16
HP	Amplifier	8449B	3008A00277	2007-09-29	2008-09-29
Sunol Sciences	Horn Antenna	DRH-118	A052604	2007-09-25	2008-09-25
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2008-05-09	2009-05-09

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in peak detection modes.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude. = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.8kPa

The testing was performed by King Tang on 2008-07-03.

Test Result: Compliant.

Please refer to following tables and plots

Enca	Receiver	Detector Table Test Antenna Cable Pre- Cord		Cord.	. Tran.	EIRP		FCC				
Freq. (MHz)	Reading (dBµV)	Detector PK/AV	Direction Degree	Height (m)	Factor (dB)	Loss (dB)	Amp. (dB)	Amp. (dBµV/m)	Factor (dB)	(dBm)	(mW)	15.247 Limit (W)
	Low Channel											
2402	94.37	РК	90	1.2	30.6	3.61	35	93.58	95.27	-1.69	0.678	1
	Middle Channel											
2441	93.86	РК	0	1.4	30.6	3.61	35	93.07	95.27	-2.2	0.603	1
	High Channel											
2480	92.12	РК	360	1.3	30.6	3.61	35	91.33	95.27	-3.94	0.404	1

Note: $P(dBm) = E(dB\mu V/m) - 95.27$

CFR47 §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliant with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16

* **Statement of Traceability:** Bay Area Compliant Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

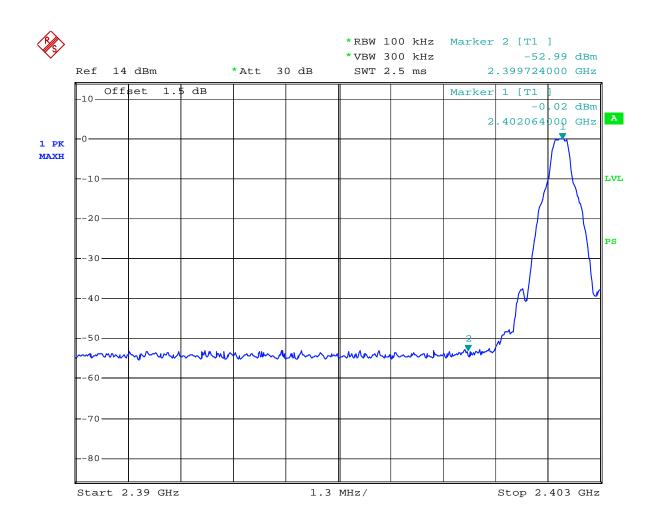
Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.8kPa

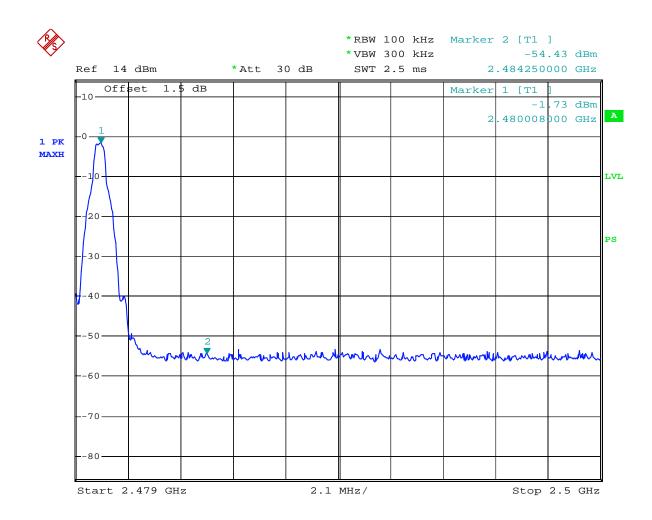
The testing was performed by King Tang on 2008-07-03.

Test Mode: Transmitting


Frequency (MHz)	Attenuation (dBc)	Limit (dBc)
2399.7240	52.97	20
2484.2500	52.70	20

Note: Attenuation = Peaklevel – Emission Level

Test Result: Compliant.


Please refer to following plot.

Band Edge Left Side

band edge left
Date: 3.JUL.2008 19:38:24

Band Edge Right Side

band edge right
Date: 3.JUL.2008 19:40:34

***** END OF REPORT *****