

FCC Test Report

Equipment	:	Remote Controller
Model No.	:	TR-014
FCC ID	:	PAGTR-014
Standard	:	47 CFR FCC Part 15.231
Operating Band	:	315 MHz
Operation	:	Manually operated within 5 sec
FCC Classification	:	DSC
Applicant	:	KAB Enterprise Co., Ltd. 21F, -1, No.33, Sec. 1, Minsheng Rd., Banqiao Dist., New Taipei City 220, Taiwan (R.O.C)
Manufacturer	:	Verdant Electronics(Dong Guan) Co., Ltd. Langxie Administrative District, Qiaotou, Dongguan City, Guang Dong Sheng, China.

The product sample received on May 03, 2013 and completely tested on Jun. 07, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

720 216

Wayne Hsu / Assistant Manager

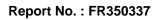


Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	The Worst Case Modulation Configuration	8
2.2	Test Channel Frequencies Configuration	8
2.3	The Worst Case Measurement Configuration	8
2.4	Test Setup Diagram	9
3	TRANSMITTER TEST RESULT	10
3.1	AC Power-line Conducted Emissions	10
3.2	Emission Bandwidth	
3.3	Fundamental Emissions	14
3.4	Transmitter Radiated Unwanted Emissions	
3.5	Operation Restriction	22
4	TEST EQUIPMENT AND CALIBRATION DATA	24

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	-	FCC 15.207	NA		
3.2	15.231(c)	Emission Bandwidth	88.8 kHz	Fc(70~900MHz): BW ≤ fc x 0.25%	Complied		
3.3	15.231(b)/(e)	Fundamental Emissions	[dBuV/m at 3m]: 43.95 (Margin 31.67dB) average	[dBuV/m at 3m]: average: 75.62	Complied		
3.4	15.231(b)/(e)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 839.950MHz 28.06 (Margin 17.94dB) - PK	FCC 15.231 (b)/(e) or FCC 15.209, whichever limit permits higher field strength.	Complied		
3.5	15.231(a)/(e)	Operation Restriction	Operated time and silent time are less than limits.	Manually operated within 5 sec	Complied		
NA = Not	Applicable						

Revision History

Report No.	Version	Description	Issued Date
FR350337	Rev. 01	Initial issue of report	Jun. 07, 2013

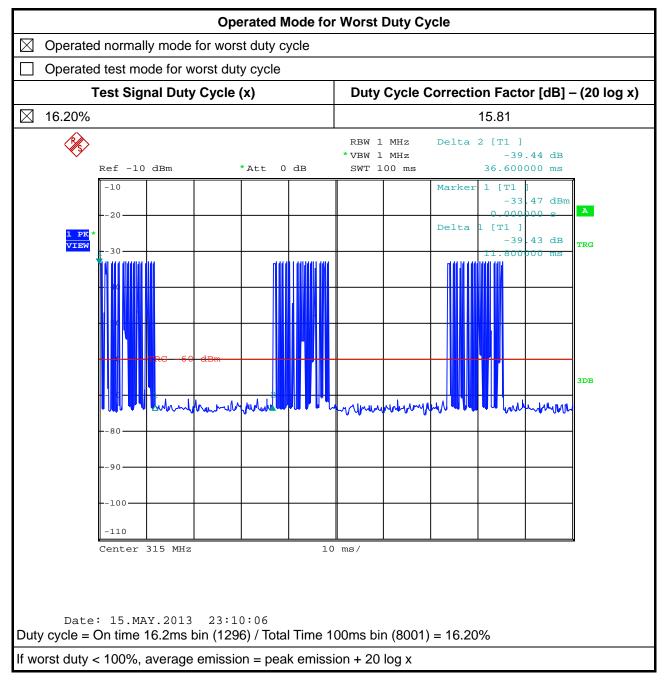
1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range (MHz)ModulationCh. Frequency (MHz)Channel NumberFundamental Field Strength (dBuV/m)Co-location							
315	315 ASK 315 1 43.95 N/A						
Note 1: Field strength performed average level at 3m. Note 2: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other.							

1.1.2 Antenna Information


	Antenna Category					
\boxtimes	Integral antenna (antenna permanently attached)					
	External antenna (dedicated antennas) ; Unique antenna connector					

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number		N/A			
Presentation of Equipment		Production ; Pre-Production ; Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009

1.3 Testing Location Information

	Testing Location						
\square	HWA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
	TEL : 886-3-327-3456 FAX : 886-3-327-0973						
Те	Test Condition Test Site No. Test Engineer Test Environment Test Date						
R	RF Conducte	d		TH01-HY	Wei	22.1°C / 61%	May 15, 2013
Rad	diated Emiss	sion	()3CH03-HY	Vic	26°C / 53%	Jun. 07, 2013

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty	,	
Test Item	Uncertainty	Limit	
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted 30 – 1000 MHz		±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature	·	±0.8 °C	N/A
Humidity		±3 %	N/A
DC and low frequency voltages	±3 %	N/A	
Time	±1.42 %	N/A	
Duty Cycle		±1.42 %	N/A

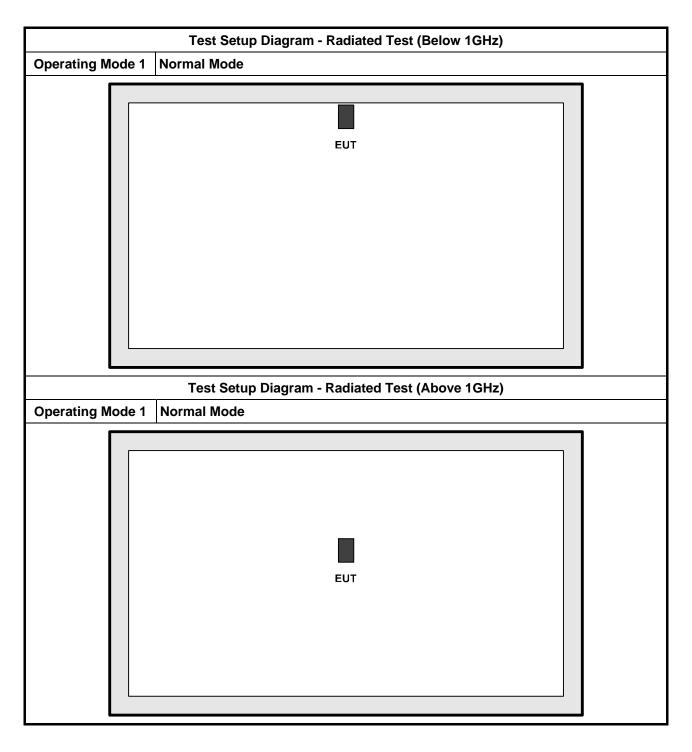
2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Modulation Used for Conformance Testing			
Test Mode	Field Strength (dBuV/m at 3 m)		
ASK-Transmit	43.95		

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration		
Test Mode	Test Channel Frequencies (MHz)	
ASK-Transmit	315-(F1)	


2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests				
Tests Item	Emission Bandwidth, Fund	Emission Bandwidth, Fundamental Emissions, Radiated Unwanted Emissions		
Test Condition	Radiated measurement	Radiated measurement		
	EUT will be placed in	fixed position.		
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.			
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.			
Operating Mode < 1GHz	1. Normal Mode			
Test Mode	ASK-Transmit			
	X Plane	Y Plane	Z Plane	
Orthogonal Planes of EUT				

The Worst Case Mode for Following Conformance Tests		
Tests Item Operation Restriction (silent time and operated time)		
Test Condition Radiated measurement		
Test Mode Operated normally mode for worst duty cycle condition.		

2.4 Test Setup Diagram

Transmitter Test Result 3

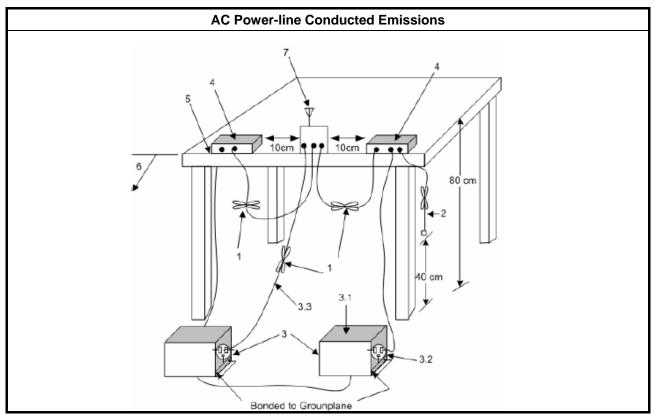
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit			
Frequency Emission (MHz) Quasi-Peak Average			
0.15-0.5	66 - 56 *	56 - 46 *	
0.5-5	56	46	
5-30 60		50	
Note 1: * Decreases with the logarithm of the frequency.			

creases with the logarithm of the frequency

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 **Test Setup**

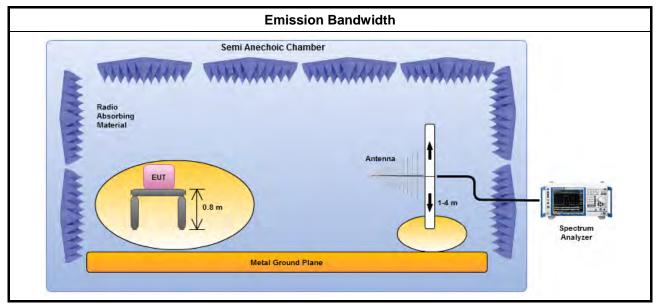
3.1.5 Test Result of AC Power-line Conducted Emissions

The EUT is battery powered; there is no need to do this testing.

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

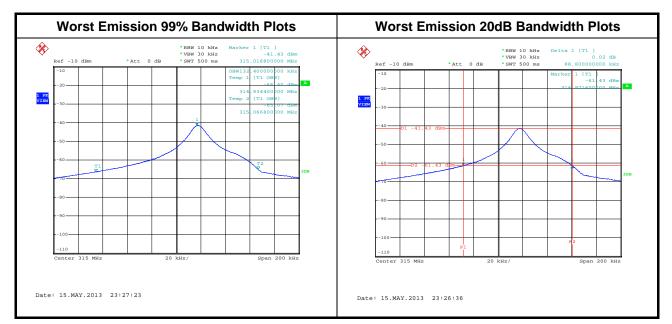
	Emission Bandwidth Limit
\boxtimes	Emission bandwidth falls completely within authorized band.
\boxtimes	Fc(70~900MHz): BW ≤ fc x 0.25%
	$Fc(>900MHz): BW \le fc \ge 0.5\%$


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method Refer as ANSI C63.10, clause 6.9.1 for 20 dB emission bandwidth and 99% occupied bandwidth measurement.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Emission Bandwidth Result				
Modulation Mode	Frequency (MHz)	99% Bandwidth (kHz)	20dB BW (kHz)	
ASK-Transmit	315	132.4	88.8	
Limit		787.5	N/A	
Result		Comp	lied	

3.3 Fundamental Emissions

3.3.1 Fundamental Emissions Limit

For manually operated within 5 sec, activated automatically within 5 sec, periodic transmissions			
Frequency Band (MHz) Fundamental Limit (uV/m) at 3m Fundamental Limit (dBu)			
40.66-40.70	2250	67	
70-130	1250	61.9	
130-174	1250-3750(**)	61.9-71.5	
174-260	3750	71.5	
260-470	3750-12500(**)	71.5-81.9	
Above 470	12500	81.9	

**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

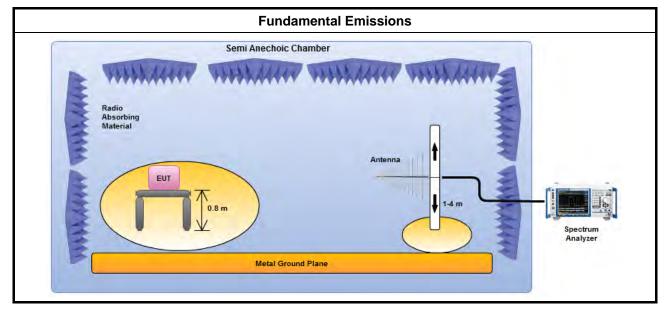
(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 56.81818×(operating frequency, MHz) - 6136.3636; (2) for the band 260 - 470 MHz, μ V/m at 3 meters = 41.6667×(operating frequency, MHz) - 7083.3333. Based on the average value of the measured emissions.

For periodic transmissions (lower field strength)			
Frequency Band (MHz) Fundamental Limit (uV/m) at 3m Fundamental Limit (dBuV/m) at			
40.66-40.70	1000	60	
70-130	500	54	
130-174	500-1500(**)	54-63.5	
174-260	1500	63.5	
260-470	1500-5000(**)	63.5-74	
Above 470	5000	74	

** 1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 22.72727×(operating frequency, MHz) – 2454.545; (2) for the band 260 - 470 MHz, μ V/m at 3 meters = 16.6667×(operating frequency, MHz) – 2833.3333. Based on the average value of the measured emissions.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

\bowtie	For	the transmitter emissions shall be measured using following options below:	
<u> </u>		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 100%.	
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).	
	\square	Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.	
\boxtimes	For radiated measurement, refer as ANSI C63.10, clause 6.5 for radiated emissions		

3.3.4 Test Setup

3.3.5 Test Result of Fundamental Emissions

Field Strength of Fundamental Emissions Result					
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Margin (dB)	Limit (dBuV/m)@3m	Туре
ASK-Transmit	315	59.76	35.86	95.62	peak
ASK-Transmit	315	43.95	31.67	75.62	average
Re	sult		Com	plied	
Note 1: Measurement worst emissions of receive antenna polarization: Horizontal. Note 2: If duty cycle < 100%, average emission = peak emission + 20 log (duty cycle).					

3.4 Transmitter Radiated Unwanted Emissions

3.4.1 Transmitter Radiated Unwanted Emissions Limit

For manually operated within 5 sec, activated automatically within 5 sec, periodic transmissions

Unwanted emissions limit follow this table or the general limits FCC 15.209, whichever limit permits higher field strength.

Frequency Band (MHz)	Spurious Limit (uV/m) at 3m	Spurious Limit (dBuV/m) at 3m
40.66-40.70	225	47
70-130	125	41.9
130-174	125-375(**)	41.9-51.5
174-260	375	51.5
260-470	375-1250(**)	51.5-61.9
Above 470	1250	61.9

**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 56.81818×(operating frequency, MHz) - 6136.3636; (2) for the band 260 - 470 MHz, μ V/m at 3 meters = 41.6667×(operating frequency, MHz) - 7083.3333. Based on the average value of the measured emissions.

For periodic transmissions (lower field strength)

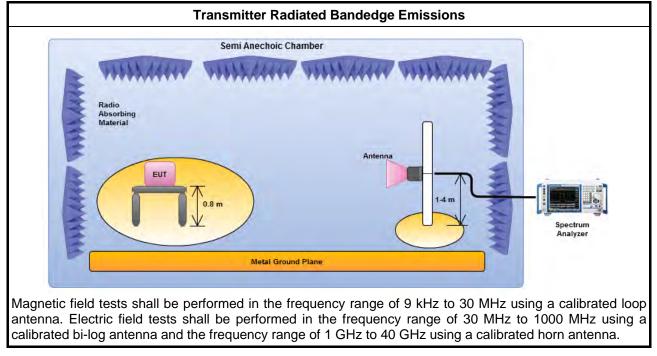
Unwanted emissions limit follow this table or the general limits FCC 15.209, whichever limit permits higher field strength.

Frequency Band (MHz)	Spurious Limit (uV/m) at 3m	Spurious Limit (dBuV/m) at 3m
40.66-40.70	100	40
70-130	50	34
130-174	50-150(**)	34-43.5
174-260	150	43.5
260-470	150-500(**)	43.5-54
Above 470	500	54

** 1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 22.72727×(operating frequency, MHz) – 2454.545; (2) for the band 260 - 470 MHz, μ V/m at 3 meters = 16.6667×(operating frequency, MHz) – 2833.3333. Based on the average value of the measured emissions.

3.4.2 Measuring Instruments

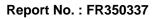

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

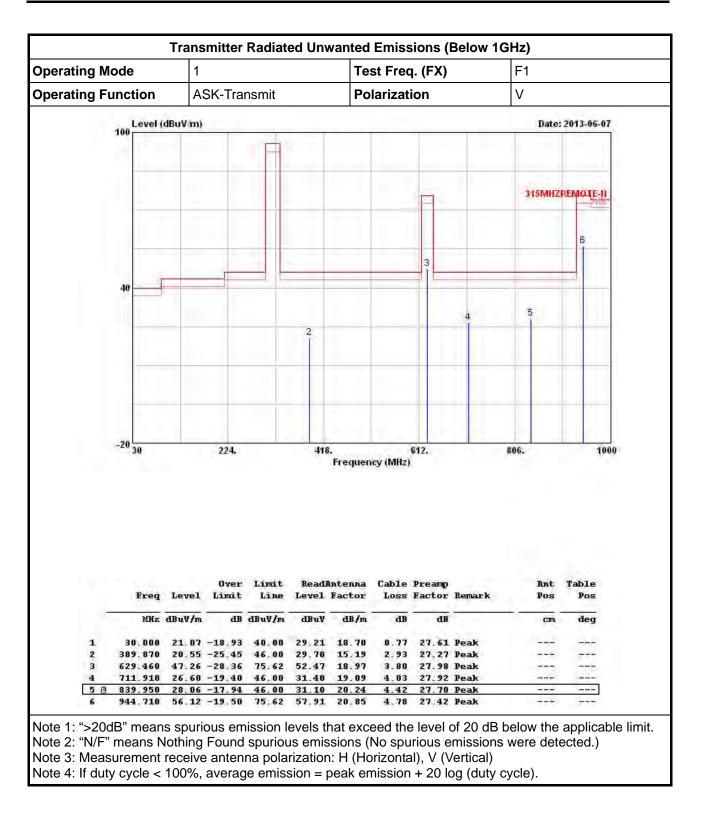
		Test Method – General Information	
\boxtimes	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].		
\square	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.		
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:	
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 100%.	
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).	
	\boxtimes	Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.	
\square	For	the transmitter bandedge emissions shall be measured using following options below:	
	\square	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.	
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.	
\square	For	radiated measurement.	
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.	
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.	
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.	

3.4.4 Test Setup

3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

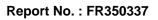

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

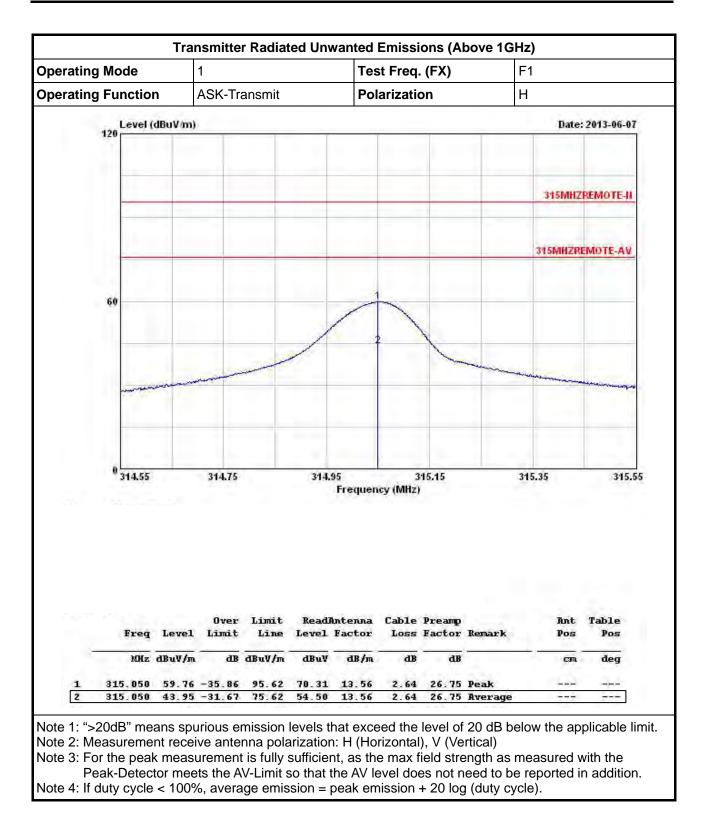
SPORTON INTERNATIONAL INC.	Page No.	: 17 of 24
TEL : 886-3-327-3456	Report Version	: Rev. 01
FAX : 886-3-327-0973		



porating	lode	1				Те	st Fred	q. (FX)		F1	
perating F	unction	A	ASK-Transmit		Ро	Polarization			V		
1.4	Level	(dBuV/m)		Date: 2013-06-						te: 2013-06-07	
	100							_			
										-	
								_		24584	IZREMOTE-N
								F		315190	2118
	1.1										
									_	_	
			_								
	40							4			6
										5	
	1		_	_		2	3			Ĩ	
		_				-			_		
						-			-	_	
	-20 30		224		418			612		806	10/
	-20 30		224.		418	Frequen	cy (MHz)	612.		806.	100
	-20 30			Liwit		Frequen					
		Level	Över	Limit Line		Frequen	Cable		Remark	806. Ant Pos	t Table
	Freq	Level dBuV/m	Over Limit	C 1997 1998 1997	Read i Level	Frequen Intenna Factor	Cable Loss	Preamp Factor	Remark	Ant	t Table s Pos
1	Freq MHz 71.710	dBuV/m 21.86	Over Limit dB -18.14	Line dBuV/m 40.00	ReadJ Level dBuV 41.78	Intenna Factor dB/m 6.37	Cable Loss dB 1.20	Preamp Factor dB 27.49	Peak	Ant Pos 	t Table s Pos n deg
2	Freq MHz 71.710 450.980	dBuV/m 21.86 23.21	Over Limit dB -18.14 -22.79	Line dBuV/m 40.00 46.00	ReadJ Level dBuV 41.78 31,03	Intenna Eactor dB/m 6.37 16.61	Cable Loss dB 1.20 3.18	Preamp Factor dB 27.49 27.61	Peak Peak	Ant Pos	t Table s Pos n deg
	Freq MHz 71.710	dBuV/m 21.86 23.21 24.83	Över Limit dB -18.14 -22.79 -21.17	Line dBuV/m 40.00 46.00 46.00	ReadJ Level dBu¥ 41.78 31.03 30.71	Frequen Intenna Eactor dB/m 6.37 16.61	Cable Loss dB 1.20	Preamp Factor dB 27.49 27.61 27.97	Peak Peak Peak	Ant Pos 	t Table s Pos n deg
2 3	Freq MHz 71. 710 450. 980 579. 020	dBuV/m 21.86 23.21 24.83 36.18 27.76	Over Limit dB -18.14 -22.79 -21.17 -39.44 -18.24	Line dBuV/m 40.00 46.00 46.00 75.62 46.00	ReadJ Level dBuV 41.78 31.03 30.71 41.39 30.81	Frequen Intenna Factor dB/m 6.37 16.61 18.45 18.97 20.23	Cable Loss dB 1.20 3.18 3.64 3.80 4.42	Preamp Factor dB 27.49 27.61 27.97	Peak Peak Peak Peak Peak Peak	Ant Pos 	t Table s Pos n deg

3.4.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)





Operating Mode			1			Те	st Free	q. (FX)		F1	
Operatin	g Functio	n	ASK-Transmit			Po	Polarization			V	
		Level (dBuV/m) Date: 2013-06-07									
	120										
	_								_	_	
				_					-	-	
										EP	
				_	_	_				ru	CLASS-B
	60	_							_		
		_	_			_		-	-	FCC CL	ASS-B-AV
				2		3		_	_	_	
		1		2							
										-	
											1.000
	0 1000		1800.		260			3400.		4200.	500
						Frequen					
				Limit		Antenna		1997 - P. 1997 -	-	5-997	Table
		Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
5	MHz	dBuV/m	Limit dB	Line dBuV/m	Level dBuV	Factor dB/m	Loss dB	Factor dB		5-997	C C C C C C
1 2 3		dBuV/m 37.81 39.27	Limit dB -36.19 -34.73	Line dBuV/m 74.00 74.00	Level dBuV 44.54 42.14	Eactor dB/m 24.65 27.38	Loss dB 1.99 2.41	Factor	Peak Peak	Pos	Pos

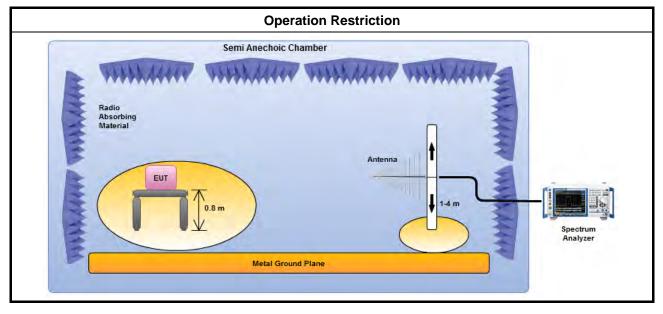
3.4.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

3.5 **Operation Restriction**

3.5.1 Operation Restriction Limit

	Operation Restriction Limit
\square	Manually operated: manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 sec of being released.
	Activated automatically: transmitter activated automatically shall cease transmission within 5 sec after activation.
	Periodic transmissions: permitted with total transmission time of 2 sec per hour or less.
	Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec.

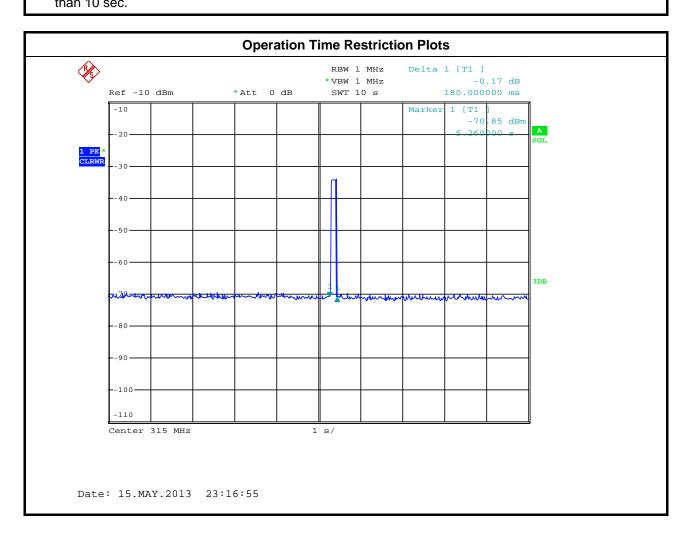
3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report. Activated automatically within 5 sec

Test Method

3.5.3 Test Procedures

Refer as ANSI C63.10, clause 7.4 for periodic operation measurement.


3.5.4 Test Setup

3.5.5 Test Result of Operation Restriction

	Operation Restriction Limit
[Manually operated: manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 sec of being released.
[Activated automatically: transmitter activated automatically shall cease transmission within 5 sec after activation.
[Periodic transmissions: permitted with total transmission time of 2 sec per hour or less.
I	Periodic transmissions (lower field strength): each transmission is not greater than 1 sec and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 sec.

4 Test Equipment and Calibration Data

Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
R&S	FSP 40	100305	9KHz~40GHz	Mar. 20, 2013	Conducted (TH01-HY)
G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100℃	Nov. 21, 2012	Conducted (TH01-HY)
R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 02, 2013	Conducted (TH01-HY)
HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
HUBER+SUHNER	SUCOFLEX_104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
	R&S G.W Giant Force R&S Anritsu Anritsu HUBER+SUHNER	R&S FSP 40 G.W APS-9102 Giant Force GTH-225-20-SP-SD R&S SMR40 Anritsu MA2411B Anritsu ML2495A HUBER+SUHNER SUCOFLEX_104	R&S FSP 40 100305 G.W APS-9102 EL920581 Giant Force GTH-225-20-SP-SD MAA1112-007 R&S SMR40 100116 Anritsu MA2411B 0917017 Anritsu ML2495A 0949003 HUBER+SUHNER SUCOFLEX_104 SN 345675/4	R&S FSP 40 100305 9KHz~40GHz G.W APS-9102 EL920581 AC 0V ~ 300V Giant Force GTH-225-20-SP-SD MAA1112-007 -20 ~ 100°C R&S SMR40 100116 10MHz ~ 40GHz Anritsu MA2411B 0917017 300MHz ~ 40GHz HUBER+SUHNER SUCOFLEX_104 SN 345675/4 1GHz ~ 26.5GHz	R&S FSP 40 100305 9KHz~40GHz Mar. 20, 2013 G.W APS-9102 EL920581 AC 0V ~ 300V Jul. 02, 2012 Giant Force GTH-225-20-SP-SD MAA1112-007 -20 ~ 100°C Nov. 21, 2012 R&S SMR40 100116 10MHz ~ 40GHz Jun. 26, 2012 Anritsu MA2411B 0917017 300MHz ~ 40GHz Feb. 02, 2013 HUBER+SUHNER SUCOFLEX_104 SN 345675/4 IGHz ~ 26.5GHz NA

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Dec. 01, 2012	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 14, 2012	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 03, 2013	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 16, 2012	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6744	1GHz ~ 18GHz	Mar 18, 2013	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Jan. 17, 2013	Radiation (03CH03-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Jan. 17, 2013	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/649/00	0~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz ~ 30 MHz	Jul. 03, 2012	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is two year.