FCC RADIO TEST REPORT

according to

47 CFR FCC Part 15 Subpart C § 15.231

Equipment Model No.	:Remote Controller :TR-009
Brand Name	: KAB
Filing Type	: New Application
Applicant	: KAB Enterprise Co., Ltd. 21F-1, No.33, Sec.1 Ming Sheng Rd. Panchiao, Taipei Hsien, Taiwan. R.O.C.
FCC ID	: PAGTR-009
Manufacturer	: Verdant Electronics(Dong Guan) Co., Ltd. Langxie Administrative District, Qiaotou, Dongguan City, Guang Dong Sheng, China.
Received Date	: Jul. 14, 2010
Final Test Date	: Jul. 27, 2010

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart C**. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.	SUM	IMARY OF THE TEST RESULT	2
2.	GEN	IERAL INFORMATION	3
	2.1	Product Details	3
	2.2	Table for Test Modes	3
	2.3	Table for Testing Locations	
	2.4	Table for Supporting Units	3
	2.5	Test Configurations	4
3.	TES	T RESULT	6
	3.1	AC Power Line Conducted Emissions Measurement	
	3.2	Field Strength of Fundamental Emissions Measurement	9
	3.3	20dB Spectrum Bandwidth Measurement	12
	3.4	Deactivating Time	14
	3.5	Radiated Emissions Measurement	
	3.6	Antenna Requirements	25
4.	LIST	OF MEASURING EQUIPMENTS	26
5.	TES	T LOCATION	27
6.	TAF	CERTIFICATE OF ACCREDITATION	
A	PPEN	NDIX A. TEST PHOTOS	. A1 ~ A4
Α	PPEN	NDIX B. PHOTOGRAPHS OF EUT	.B1 ~ B3

History of This Test Report

Original Issue Date: Aug. 09, 2010

Report No.: FR071433

No additional attachment.

□ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

CERTIFICATE OF COMPLIANCE

according to

47 CFR FCC Part 15 Subpart C § 15.231

Equipment	:	Remote Controller
Model No.	:	TR-009
Brand Name	:	KAB
Applicant	:	KAB Enterprise Co., Ltd.
		21F-1, No.33, Sec.1 Ming Sheng Rd. Panchiao, Taipei Hsien, Taiwan. R.O.C.

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jul. 14, 2010 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

ar 50108.9

Wayne Hsu ViceManager

SPORTON International Inc.

No. 52 Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

1. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
3.1	15.207	AC Power Line Conducted Emissions	-	-
3.2	15.231(b)/(e)	Field Strength of Fundamental Emissions	Complies	8.65 dB
3.3	15.231(c)	20dB Spectrum Bandwidth	Complies	-
3.4	15.231(a)/(e)	Deactivating time	Complies	-
3.5	15.231(b)/(e)	Radiated Emissions	Complies	5.86 dB
3.6	15.231(b)/(e)	Band Edge Emissions	Complies	-
3.7	15.203	Antenna Requirements	Complies	-

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±3.72dB	Confidence levels of 95%
20dB Spectrum Bandwidth	±6.25×10-7	Confidence levels of 95%
Radiated Emissions/ Band Edge Emissions	±3.72dB	Confidence levels of 95%

2. GENERAL INFORMATION

2.1 Product Details

Items	Description
Power Type	DC 12V Alkaline Battery (size 23A)
Modulation	ASK
Frequency Range	315 MHz
Channel Number	1
Channel Band Width (99%)	84 kHz
Max. Fundamental Field Strength	66.97 dBuV/m at 3m (Average)
Antenna	Integrated Antenna

2.2 Table for Test Modes

The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel
AC Power Line Conducted Emissions	N/A	N/A
Field Strength of Fundamental Emissions	СТХ	1
20dB Spectrum Bandwidth		
Deactivating Time	Normal Use	1
Radiated Emissions 9kHz~30MHz	СТХ	1
Radiated Emissions 9kHz~10 th Harmonic		
Band Edge Emissions		

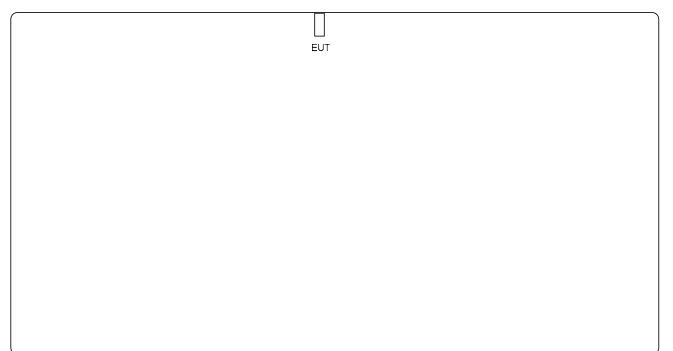
Note: CTX=continuously transmitter.

2.3 Table for Testing Locations

Test Site No.	Site Category	Location
TH01-HY	OVEN Room	Hwa Ya
03CH02-HY	SAC	Hwa Ya

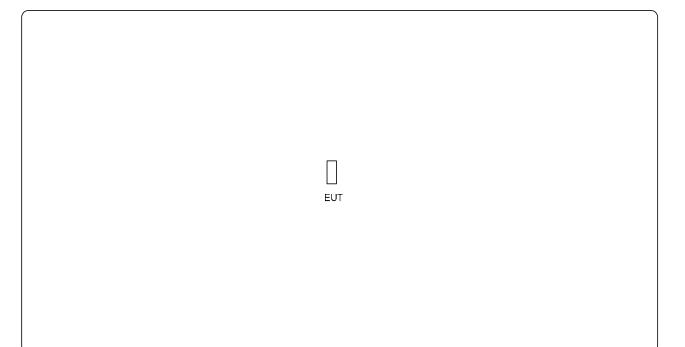
Semi Anechoic Chamber (SAC).

2.4 Table for Supporting Units


The EUT was tested alone.

_

2.5 Test Configurations


2.5.1 Radiation Emissions Test Configuration

For radiated emissions 9kHz~1GHz

SPORTON International Inc.	Page No.	: 4 of 28
TEL : 886-2-2696-2468	Issued Date	: Aug. 09, 2010
FAX : 886-2-2696-2255	FCC ID	: PAGTR-009

For radiated emissions above 1GHz

SPORTON International Inc. Page	No. : 5 of 28
TEL : 886-2-2696-2468 Issue	d Date : Aug. 09, 2010
FAX : 886-2-2696-2255 FCC	ID : PAGTR-009

3. TEST RESULT

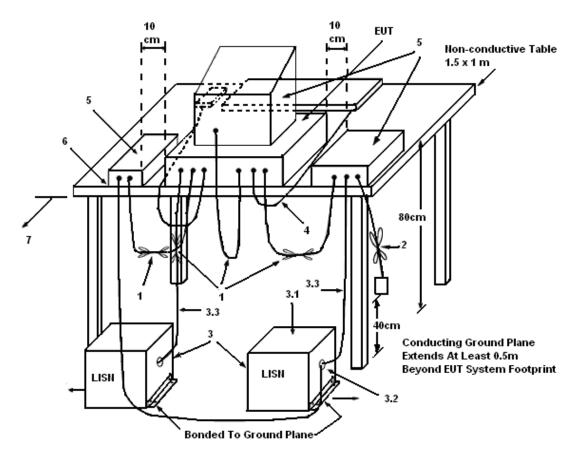
3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.1.3 Test Procedures

- 1. The EUT warm up about 15 minutes then start test.
- 2. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. The measurement has to be done between each power line and ground at the power terminal.

3.1.4 Test Setup Layout

- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω. LISN can be placed on top of, or immediately beneath, reference ground plane.
 - 3.1 All other equipment powered from additional LISN(s).
 - 3.2 Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - 3.3 LISN at least 80cm from nearest part of EUT chassis.
- 4. Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- 5. Non-EUT components of EUT system being tested.
- 6. Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- 7. Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

3.1.5 Test Deviation

There is no deviation with the original standard.

3.1.6 EUT Operation during Test

N/A

3.1.7 Results of AC Power Line Conducted Emissions Measurement

The EUT is battery powered; there is no need to do this testing.

3.2 Field Strength of Fundamental Emissions Measurement

3.2.1 Limit

Devices complying with 47 CFR FCC Part 15 Subpart C, section 15.231(a). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Fundamental Emissions Limit (uV/m) at 3m
40.66-40.70	2250
70-130	1250
130-174	1250-3750(**)
174-260	3750
260-470	3750-12500(**)
Above 470	12500

**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

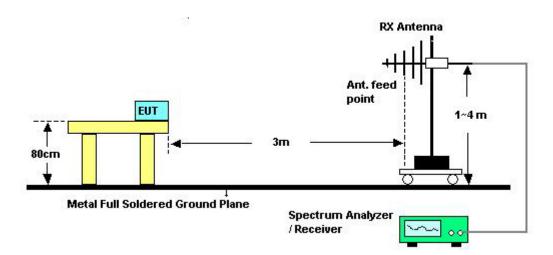
(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 56.81818×(operating frequency, MHz) - 6136.3636;

(2) for the band 260 - 470 MHz, μ V/m at 3 meters = 41.6667×(operating frequency, MHz) - 7083.3333.

So the field strength of emission limits have been calculated in below table.

Carrier Frequency (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
315 MHz	75.62 (Average)
315 MHz	95.62 (Peak)

3.2.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting	
Attenuation	Auto	
Center Frequency	Fundamental Frequency	
RB	120 kHz	
Detector	Peak / Average	

3.2.3 Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For Fundamental emissions, use the receiver to measure peak and average reading.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

3.2.4 Test Setup Layout

3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 EUT Operation during Test

The EUT was manually operated to be in transmitting mode.

SPORTON International Inc.			
TEL : 886-2-2696-2468			
FAX : 886-2-2696-2255			

Final Test Date	Jul. 27, 2010	Test Site No.	03CH02-HY
Temperature	24.9	Humidity	50.1%
Test Engineer	Daniel	Configurations	Channel 1

3.2.7 Test Result of Field Strength of Fundamental Emissions

	Mz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	314.480	67.04	-28.58	95.62	78.55	13.93	2.94	28.38	Peak
2	314.480	66.97	-8.65	75.62	78.48	13.93	2.94	28.38	Average

Note:

For pulsed transmitter emissions, average measurements are dependent on the pulse width or pulse train characteristics. Following as formula:

average emission = peak emission + 20 log (duty cycle); duty cycle = on time/100 milliseconds or period, Then EUT able to be configured for 100 % duty cycle in test mode, average duty cycle correction factors are not normally required.

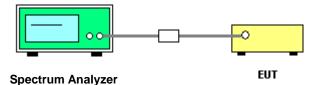
3.3 20dB Spectrum Bandwidth Measurement

3.3.1 Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calcuated in below table.

Fundamental Frequency	20dB Bandwidth Limits (kHz)
315 MHz	790

3.3.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	10 kHz
VB	10 kHz
Detector	Peak
Тгасе	Max Hold
Sweep Time	Auto

3.3.3 Test Procedures

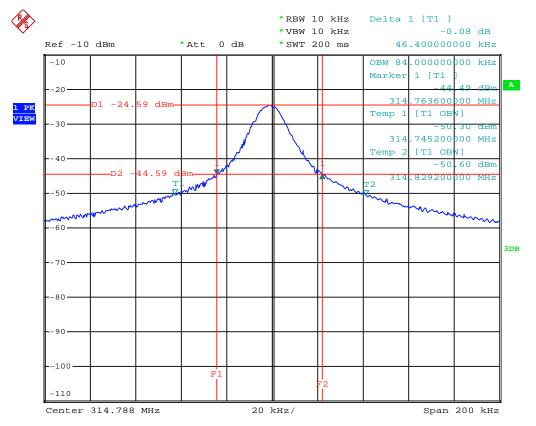
- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

3.3.4 Test Setup Layout

3.3.5 Test Deviation

There is no deviation with the original standard.

3.3.6 EUT Operation during Test


The EUT was manually operated to be in transmitting mode.

3.3.7 Test Result of 20dB Spectrum Bandwidth

Final Test Date	Jul. 14, 2010	Test Site No.	TH01-HY
Temperature	28	Humidity	58%
Test Engineer	Murphy	Configurations	Channel 1

Frequency	20dB BW (kHz)	99% OBW (kHz)	Limits (MHz)	Test Result
315 MHz	46.40	84.00	0.79	Complies

20 dB/99% Bandwidth Plot on 315 MHz

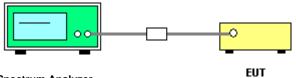
Date: 14.JUL.2010 17:36:29

3.4 Deactivating Time

3.4.1 Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

3.4.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	0 MHz
RB	1000 kHz
VB	1000 kHz
Detector	Peak
Trace	Single Trigger
Attenuation	Auto

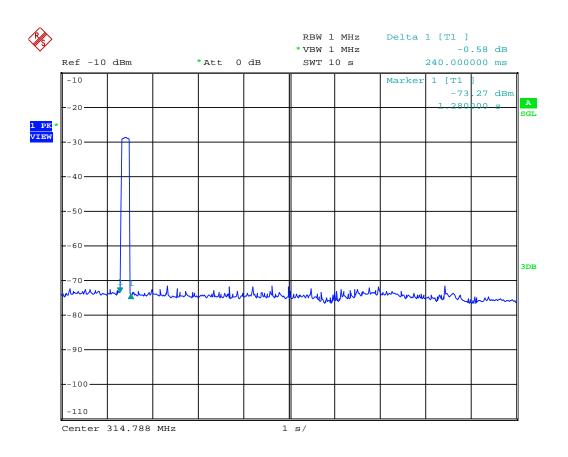
3.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- 4. Sweep Time is more than one pulse time.
- 5. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 6. Measure the maximum time duration of one single pulse.

3.4.4 Test Setup Layout

Spectrum Analyzer

3.4.5 Test Deviation


There is no deviation with the original standard.

3.4.6 EUT Operation during Test

The EUT was manually operated to be in transmitting mode.

3.4.7 Deactivating Time

		Test Site No.	TH01-HY
Temperature	28	Humidity	58%
Test Engineer	Murphy	Configurations	Channel 1

Date: 14.JUL.2010 17:42:03

Note: The EUT is deactivated immediately after being released.

3.4.8 Test Result of Operation Restriction

Periodic Operation Restriction	Applicable	Declared by applicant	Test performance	Passed
The transmitter is used for				
security or safety applications other applications		\square		
The transmitter is operated				
manually automatically		\boxtimes		
Periodic operation according to				
☐ 47 CFR FCC Part 15 Subpart C 15.231(a)/(e)				
Only control signals are sent and there is on continuous transmission.	\boxtimes	\boxtimes		\boxtimes
(1) A manually operated transmitter shall employ a switch that will automatically				
deactivate the transmitter within not more than 5 seconds of being released.				
(2) A transmitter activated automatically shall cease transmission within 5 seconds	\boxtimes		\boxtimes	
after activation.				
(3) Periodic transmissions at regular predetermined intervals are				
⊠ not permitted				
permitted with total transmission time of two seconds per hour or less (for				
polling or supervision transmission to determine system integrity of transmitters				
used in security or safety applications)				
47 CFR FCC Part 15 Subpart C 15.231(e)				Γ
The device is provided with a means for automatically limiting operation so that the				
duration of each transmissions is not greater than one second and the silent period				
between transmissions is at least 30 times the duration of the transmission but in				
no case less than 10 seconds.				

Note: Result may be based on the applicant declaration (i.e. no test is performed). However, in this casethere is no vertification by the test laboratory.

3.5 Radiated Emissions Measurement

3.5.1 Limit

Devices complying with 47 CFR FCC Part 15 Subpart C, section 15.231(a). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Spurious Emissions Limit (up/m) at 3m
40.66-40.70	225
70-130	125
130-174	125-375(**)
174-260	375
260-470	375-1250(**)
Above 470	1250

**1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

(1) for the band 130 - 174 MHz, μ V/m at 3 meters = 56.81818×(operating frequency, MHz) - 6136.3636;

(2) for the band 260 - 470 MHz, μ V/m at 3 meters = 41.6667×(operating frequency, MHz) - 7083.3333.

(3)The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

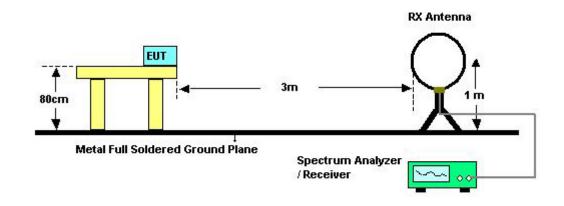
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F (KHz)	300
0.490~1.705	24000/F (KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments and Setting

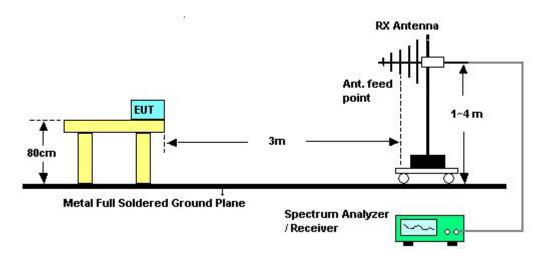
Please refer to section 4 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	1MHz / 1MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


3.5.3 Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum


- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

3.5.4 Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.5 Test Deviation

There is no deviation with the original standard.

3.5.6 EUT Operation during Test

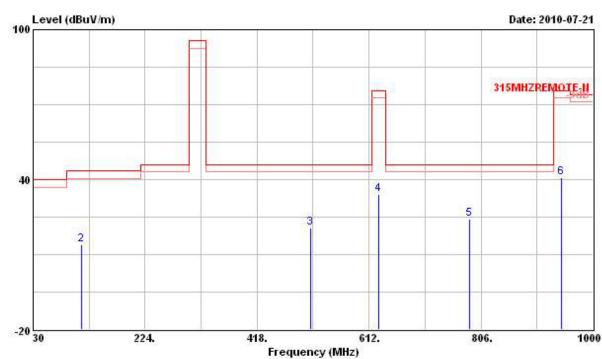
The EUT was manually operated to be in transmitting mode.

3.5.7 Results of Radiated Emissions (9kHz~30MHz)

Final Test Date	Jul. 27, 2010	Test Site No.	03CH02-HY
Temperature	24.9	Humidity	50.1%
Test Engineer	Daniel	Configurations	Channel 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

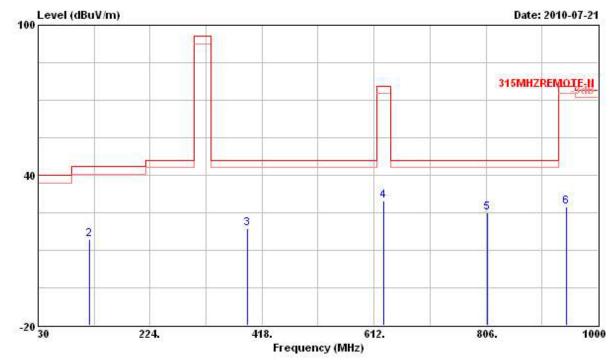
Note:


The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

3.5.8 Results for Radiated Emissions (30MHz~10th Harmonic)


Final Test Date	Jul. 21, 2010	Test Site No.	03CH02-HY
Temperature	24.9	Humidity	50.1%
Test Engineer	Daniel	Configurations	Channel 1

		4 - 1
$H \cap$	rizo	ntol
110	IZU	ntal

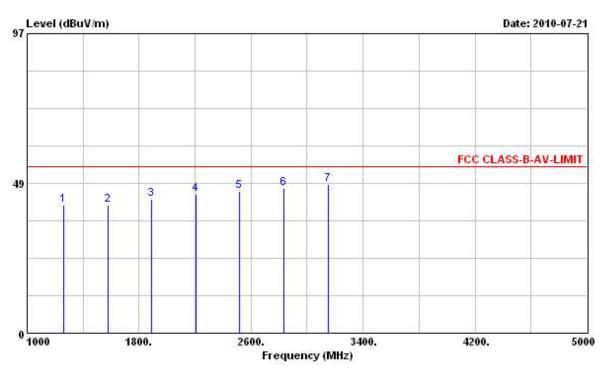
			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
5	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	4
1	30.000	15.50	-24.50	40.00	26.44	16.22	0.72	27.88	Peak
2	113.420	14.09	-29.41	43.50	27.14	12.80	1.72	27.57	Peak
3	510.150	20.50	-25.50	46.00	27.30	17.59	3.79	28.18	Peak
4	629.460	34.27	-41.35	75.62	38.45	19.79	4.16	28.13	Peak
5	785.630	24.18	-21.82	46.00	27.18	20.06	4.71	27.77	Peak
6	944.710	40.70	-34.92	75.62	41.57	21.13	5.22	27.22	Peak

Vertical

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
5	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	30.000	15.60	-24.40	40.00	26.54	16.22	0.72	27.88	Peak
2	118.270	14.23	-29.27	43.50	26.64	13.38	1.76	27.55	Peak
3	392.780	18.49	-27.51	46.00	27.64	15.15	3.29	27.59	Peak
4	629.460	29.54	-46.08	75.62	33.72	19.79	4.16	28.13	Peak
5	808.910	25.05	-20.95	46.00	27.70	20.25	4.79	27.69	Peak
6	944.710	27.40	-48.22	75.62	28.27	21.13	5.22	27.22	Peak

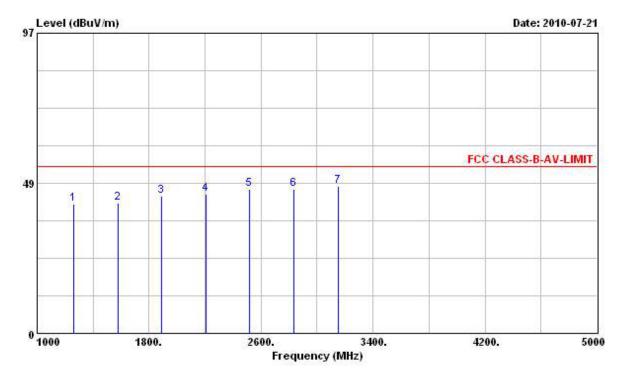
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.5.9 Results for Radiated Emissions (1GHz~10th harmonic of highest frequency)


Final Test Date	Jul. 21, 2010	Test Site No.	03CH02-HY
Temperature	24.9	Humidity	50.1%
Test Engineer	Daniel	Configurations	Channel 1

ŀ	ł	0	r	iz	ο	n	ta	I
•		-			-		~~	

		Freq	Level	Over Limit	Limit Line		Antenna Factor		Preamp Factor	Remark
	2	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	1
1		1260.000	41.64	-12.36	54.00	46.85	27.31	2.07	34.59	Peak
2		1575.000	41.48	-12.52	54.00	45.37	27.95	2.36	34.20	Peak
3		1890.000	43.29	-10.71	54.00	44.84	29.57	2.62	33.74	Peak
4		2205.000	44.92	-9.08	54.00	44.89	31.03	2.87	33.87	Peak
5	0	2520.000	45.82	-8.18	54.00	44.76	32.24	3.11	34.29	Peak
6	0	2835.000	46.89	-7.11	54.00	44.68	33.00	3.32	34.11	Peak
7	0	3150.000	48.14	-5.86	54.00	45.41	33.40	3.55	34.22	Peak

Vertical

			Over	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	1260.000	41.80	-12.20	54.00	46.75	27.57	2.07	34.59	Peak
2	1575.000	42.15	-11.85	54.00	45.39	28.60	2.36	34.20	Peak
3	1890.000	44.39	-9.61	54.00	45.47	30.04	2.62	33.74	Peak
4	2205.000	44.92	-9.08	54.00	44.58	31.34	2.87	33.87	Peak
5 @	2520.000	46.51	-7.49	54.00	45.26	32.43	3.11	34.29	Peak
6 @	2835.000	46.60	-7.40	54.00	44.46	32.93	3.32	34.11	Peak
7 0	3150.000	47.68	-6.32	54.00	45.12	33.23	3.55	34.22	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.6 Antenna Requirements

3.6.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connector Construction

All antenna connectors comply with the requirements.

SPORTON International Inc.	Page No.	: 25 of 28
TEL : 886-2-2696-2468	Issued Date	: Aug. 09, 2010
FAX : 886-2-2696-2255	FCC ID	: PAGTR-009

4. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSU26.5	100015	20Hz ~ 26.5GHz	Oct. 29, 2009	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz~40GHz	Dec. 03, 2009	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz~40GHz	Dec. 03, 2009	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jul. 31, 2009	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Apr. 16, 2010	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	N/A	Aug. 06, 2009	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 02, 2009	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 02, 2009	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jul. 12, 2010*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100305/040	9 kHz - 40GHz	Feb. 02, 2010	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz - 1 GHz 3m	May 01, 2010	Radiation (03CH02-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 24, 2010	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jul. 20, 2010	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz~18GHz	Oct. 22, 2009	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Feb. 26, 2010	Radiation (03CH02-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX106	03CH02-HY	1GHz~40GHz	Feb. 26, 2010	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz - 2 GHz	Nov. 30, 2009	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 28, 2008*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

5. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

6. TAF CERTIFICATE OF ACCREDITATION

	Certificate No. : L1190-10052
	財團法人全國認證基金會 Taiwan Accreditation Foundation
Ce	rtificate of Accreditation
	This is to certify that
	Sporton International Inc.
	& Wireless Communications Laboratory ., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
is	accredited in respect of laboratory
Accreditation Criteria	: ISO/IEC 17025:2005
Accreditation Number	: 1190
Originally Accredited	: December 15, 2003
Effective Period	: January 10, 2010 to January 09, 2013
Accredited Scope	: Testing Field, see described in the Appendix
Specific Accreditation Program	: Accreditation Program for Designated Testing Laboratory for Commodities Inspection Accreditation Program for Telecommunication Equipment Testing Laboratory Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities
	Jay-San Chen Jay-San Chen President, Taiwan Accreditation Foundation Date : May 29, 2010